
Tell us about the PDF download experience.

C# documentation
Learn how to write any application using the C# programming language on the .NET
platform.

Learn to program in C#

ｂ GET STARTED

Learn C# | Tutorials, courses, videos, and more

ｑ VIDEO

C# beginner video series

C# beginner stream

C# intermediate video series

ｇ TUTORIAL

Self-guided tutorials

In-browser tutorial

ｉ REFERENCE

C# on Q&A

Languages on .NET tech community forums

C# on Stack Overflow

C# on Discord

C# fundamentals

ｅ OVERVIEW

A tour of C#

Inside a C# program

C# highlights video series

https://dotnet.microsoft.com/learn/csharp
https://aka.ms/dotnet3-csharp
https://youtube.com/playlist?list=PLdo4fOcmZ0oXv32dOd36UydQYLejKR61R
https://learn.microsoft.com/en-us/shows/C-Advanced
https://learn.microsoft.com/en-us/users/dotnet/collections/yz26f8y64n7k07?WT.mc_id=dotnet-35129-website
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-us/answers/topics/dotnet-csharp.html
https://techcommunity.microsoft.com/t5/languages/bd-p/languages
https://stackoverflow.com/questions/tagged/c%23
https://aka.ms/csharp-discord
https://youtube.com/playlist?list=PLdo4fOcmZ0oU3ZLx6Ul1_HPrr6lFPIn9O
https://aka.ms/learn-pdf-feedback

ｐ CONCEPT

Type system

Object oriented programming

Functional techniques

Exceptions

Coding style

ｇ TUTORIAL

Display command-line

Intro to classes

Object oriented C#

Converting types

Pattern matching

Use LINQ to query data

Key concepts

ｅ OVERVIEW

Programming concepts

ｆ QUICKSTART

Methods

Properties

Indexers

Iterators

Delegates

Events

ｐ CONCEPT

Nullable reference types

Nullable reference migrations

Language Integrated Query (LINQ)

Versioning

What's new

ｈ WHAT'S NEW

What's new in C# 11

What's new in C# 10

What's new in C# 9.0

What's new in C# 8.0

ｇ TUTORIAL

Explore record types

Explore top level statements

Explore new patterns

Write a custom string interpolation handler

ｉ REFERENCE

Breaking changes in the C# compiler

Version compatibility

C# language reference

ｉ REFERENCE

Language reference

C# keywords

C# operators and expressions

Configure language version

C# language specification - C# 7 draft in progress

https://learn.microsoft.com/en-ca/dotnet/csharp/whats-new/csharp-8

Stay in touch

ｉ REFERENCE

.NET developer community

YouTube

Twitter

https://dotnet.microsoft.com/platform/community
https://www.youtube.com/dotnet
https://twitter.com/DotNet

A tour of the C# language
Article • 2022-12-13 • 14 minutes to read

C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming
language. C# enables developers to build many types of secure and robust applications
that run in .NET. C# has its roots in the C family of languages and will be immediately
familiar to C, C++, Java, and JavaScript programmers. This tour provides an overview of
the major components of the language in C# 11 and earlier. If you want to explore the
language through interactive examples, try the introduction to C# tutorials.

C# is an object-oriented, component-oriented programming language. C# provides
language constructs to directly support these concepts, making C# a natural language in
which to create and use software components. Since its origin, C# has added features to
support new workloads and emerging software design practices. At its core, C# is an
object-oriented language. You define types and their behavior.

Several C# features help create robust and durable applications. Garbage collection
automatically reclaims memory occupied by unreachable unused objects. Nullable types
guard against variables that don't refer to allocated objects. Exception handling
provides a structured and extensible approach to error detection and recovery. Lambda
expressions support functional programming techniques. Language Integrated Query
(LINQ) syntax creates a common pattern for working with data from any source.
Language support for asynchronous operations provides syntax for building distributed
systems. C# has a unified type system. All C# types, including primitive types such as
int and double , inherit from a single root object type. All types share a set of common
operations. Values of any type can be stored, transported, and operated upon in a
consistent manner. Furthermore, C# supports both user-defined reference types and
value types. C# allows dynamic allocation of objects and in-line storage of lightweight
structures. C# supports generic methods and types, which provide increased type safety
and performance. C# provides iterators, which enable implementers of collection classes
to define custom behaviors for client code.

C# emphasizes versioning to ensure programs and libraries can evolve over time in a
compatible manner. Aspects of C#'s design that were directly influenced by versioning
considerations include the separate virtual and override modifiers, the rules for
method overload resolution, and support for explicit interface member declarations.

.NET architecture

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/

C# programs run on .NET, a virtual execution system called the common language
runtime (CLR) and a set of class libraries. The CLR is the implementation by Microsoft of
the common language infrastructure (CLI), an international standard. The CLI is the basis
for creating execution and development environments in which languages and libraries
work together seamlessly.

Source code written in C# is compiled into an intermediate language (IL) that conforms
to the CLI specification. The IL code and resources, such as bitmaps and strings, are
stored in an assembly, typically with an extension of .dll. An assembly contains a
manifest that provides information about the assembly's types, version, and culture.

When the C# program is executed, the assembly is loaded into the CLR. The CLR
performs Just-In-Time (JIT) compilation to convert the IL code to native machine
instructions. The CLR provides other services related to automatic garbage collection,
exception handling, and resource management. Code that's executed by the CLR is
sometimes referred to as "managed code." "Unmanaged code," is compiled into native
machine language that targets a specific platform.

Language interoperability is a key feature of .NET. IL code produced by the C# compiler
conforms to the Common Type Specification (CTS). IL code generated from C# can
interact with code that was generated from the .NET versions of F#, Visual Basic, C++.
There are more than 20 other CTS-compliant languages. A single assembly may contain
multiple modules written in different .NET languages. The types can reference each
other as if they were written in the same language.

In addition to the run time services, .NET also includes extensive libraries. These libraries
support many different workloads. They're organized into namespaces that provide a
wide variety of useful functionality. The libraries include everything from file input and
output to string manipulation to XML parsing, to web application frameworks to
Windows Forms controls. The typical C# application uses the .NET class library
extensively to handle common "plumbing" chores.

For more information about .NET, see Overview of .NET.

The "Hello, World" program is traditionally used to introduce a programming language.
Here it is in C#:

C#

Hello world

using System;

https://learn.microsoft.com/en-ca/dotnet/standard/managed-code
https://learn.microsoft.com/en-ca/dotnet/core/introduction

The "Hello, World" program starts with a using directive that references the System
namespace. Namespaces provide a hierarchical means of organizing C# programs and
libraries. Namespaces contain types and other namespaces—for example, the System
namespace contains a number of types, such as the Console class referenced in the
program, and many other namespaces, such as IO and Collections . A using directive
that references a given namespace enables unqualified use of the types that are
members of that namespace. Because of the using directive, the program can use
Console.WriteLine as shorthand for System.Console.WriteLine .

The Hello class declared by the "Hello, World" program has a single member, the
method named Main . The Main method is declared with the static modifier. While
instance methods can reference a particular enclosing object instance using the keyword
this , static methods operate without reference to a particular object. By convention, a
static method named Main serves as the entry point of a C# program.

The line starting with // is a single line comment. C# single line comments start with //
continue to the end of the current line. C# also supports multi-line comments. Multi-line
comments start with /* and end with */ . The output of the program is produced by the
WriteLine method of the Console class in the System namespace. This class is provided
by the standard class libraries, which, by default, are automatically referenced by the
compiler.

A type defines the structure and behavior of any data in C#. The declaration of a type
may include its members, base type, interfaces it implements, and operations permitted
for that type. A variable is a label that refers to an instance of a specific type.

There are two kinds of types in C#: value types and reference types. Variables of value
types directly contain their data. Variables of reference types store references to their
data, the latter being known as objects. With reference types, it's possible for two
variables to reference the same object and possible for operations on one variable to
affect the object referenced by the other variable. With value types, the variables each

class Hello
{
 static void Main()
 {
 // This line prints "Hello, World"
 Console.WriteLine("Hello, World");
 }
}

Types and variables

have their own copy of the data, and it isn't possible for operations on one to affect the
other (except for ref and out parameter variables).

An identifier is a variable name. An identifier is a sequence of unicode characters
without any whitespace. An identifier may be a C# reserved word, if it's prefixed by @ .
Using a reserved word as an identifier can be useful when interacting with other
languages.

C#'s value types are further divided into simple types, enum types, struct types, nullable
value types, and tuple value types. C#'s reference types are further divided into class
types, interface types, array types, and delegate types.

The following outline provides an overview of C#'s type system.

Value types
Simple types

Signed integral: sbyte , short , int , long
Unsigned integral: byte , ushort , uint , ulong
Unicode characters: char , which represents a UTF-16 code unit
IEEE binary floating-point: float , double
High-precision decimal floating-point: decimal
Boolean: bool , which represents Boolean values—values that are either true
or false

Enum types
User-defined types of the form enum E {...} . An enum type is a distinct type
with named constants. Every enum type has an underlying type, which must
be one of the eight integral types. The set of values of an enum type is the
same as the set of values of the underlying type.

Struct types
User-defined types of the form struct S {...}

Nullable value types
Extensions of all other value types with a null value

Tuple value types
User-defined types of the form (T1, T2, ...)

Reference types
Class types

Ultimate base class of all other types: object
Unicode strings: string , which represents a sequence of UTF-16 code units
User-defined types of the form class C {...}

Interface types
User-defined types of the form interface I {...}

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/character-encoding-introduction
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/character-encoding-introduction

Array types
Single-dimensional, multi-dimensional, and jagged. For example: int[] ,
int[,] , and int[][]

Delegate types
User-defined types of the form delegate int D(...)

C# programs use type declarations to create new types. A type declaration specifies the
name and the members of the new type. Six of C#'s categories of types are user-
definable: class types, struct types, interface types, enum types, delegate types, and
tuple value types. You can also declare record types, either record struct , or record
class . Record types have compiler-synthesized members. You use records primarily for
storing values, with minimal associated behavior.

A class type defines a data structure that contains data members (fields) and
function members (methods, properties, and others). Class types support single
inheritance and polymorphism, mechanisms whereby derived classes can extend
and specialize base classes.
A struct type is similar to a class type in that it represents a structure with data
members and function members. However, unlike classes, structs are value types
and don't typically require heap allocation. Struct types don't support user-
specified inheritance, and all struct types implicitly inherit from type object .
An interface type defines a contract as a named set of public members. A class
or struct that implements an interface must provide implementations of the
interface's members. An interface may inherit from multiple base interfaces, and
a class or struct may implement multiple interfaces.
A delegate type represents references to methods with a particular parameter list
and return type. Delegates make it possible to treat methods as entities that can
be assigned to variables and passed as parameters. Delegates are analogous to
function types provided by functional languages. They're also similar to the
concept of function pointers found in some other languages. Unlike function
pointers, delegates are object-oriented and type-safe.

The class , struct , interface , and delegate types all support generics, whereby they
can be parameterized with other types.

C# supports single-dimensional and multi-dimensional arrays of any type. Unlike the
types listed above, array types don't have to be declared before they can be used.
Instead, array types are constructed by following a type name with square brackets. For
example, int[] is a single-dimensional array of int , int[,] is a two-dimensional array
of int , and int[][] is a single-dimensional array of single-dimensional arrays, or a
"jagged" array, of int .

Nullable types don't require a separate definition. For each non-nullable type T , there's
a corresponding nullable type T? , which can hold an additional value, null . For
instance, int? is a type that can hold any 32-bit integer or the value null , and string?
is a type that can hold any string or the value null .

C#'s type system is unified such that a value of any type can be treated as an object .
Every type in C# directly or indirectly derives from the object class type, and object is
the ultimate base class of all types. Values of reference types are treated as objects
simply by viewing the values as type object . Values of value types are treated as objects
by performing boxing and unboxing operations. In the following example, an int value is
converted to object and back again to int .

C#

When a value of a value type is assigned to an object reference, a "box" is allocated to
hold the value. That box is an instance of a reference type, and the value is copied into
that box. Conversely, when an object reference is cast to a value type, a check is made
that the referenced object is a box of the correct value type. If the check succeeds, the
value in the box is copied to the value type.

C#'s unified type system effectively means that value types are treated as object
references "on demand." Because of the unification, general-purpose libraries that use
type object can be used with all types that derive from object , including both
reference types and value types.

There are several kinds of variables in C#, including fields, array elements, local variables,
and parameters. Variables represent storage locations. Every variable has a type that
determines what values can be stored in the variable, as shown below.

Non-nullable value type
A value of that exact type

Nullable value type
A null value or a value of that exact type

object
A null reference, a reference to an object of any reference type, or a reference
to a boxed value of any value type

Class type

int i = 123;
object o = i; // Boxing
int j = (int)o; // Unboxing

A null reference, a reference to an instance of that class type, or a reference to
an instance of a class derived from that class type

Interface type
A null reference, a reference to an instance of a class type that implements
that interface type, or a reference to a boxed value of a value type that
implements that interface type

Array type
A null reference, a reference to an instance of that array type, or a reference to
an instance of a compatible array type

Delegate type
A null reference or a reference to an instance of a compatible delegate type

The key organizational concepts in C# are programs, namespaces, types, members, and
assemblies. Programs declare types, which contain members and can be organized into
namespaces. Classes, structs, and interfaces are examples of types. Fields, methods,
properties, and events are examples of members. When C# programs are compiled,
they're physically packaged into assemblies. Assemblies typically have the file extension
.exe or .dll , depending on whether they implement applications or libraries,
respectively.

As a small example, consider an assembly that contains the following code:

C#

Program structure

namespace Acme.Collections;

public class Stack<T>
{
 Entry _top;

 public void Push(T data)
 {
 _top = new Entry(_top, data);
 }

 public T Pop()
 {
 if (_top == null)
 {
 throw new InvalidOperationException();
 }
 T result = _top.Data;
 _top = _top.Next;

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/

The fully qualified name of this class is Acme.Collections.Stack . The class contains
several members: a field named _top , two methods named Push and Pop , and a nested
class named Entry . The Entry class further contains three members: a property named
Next , a property named Data , and a constructor. The Stack is a generic class. It has one
type parameter, T that is replaced with a concrete type when it's used.

A stack is a "first in - last out" (FILO) collection. New elements are added to the top of
the stack. When an element is removed, it's removed from the top of the stack. The
previous example declares the Stack type that defines the storage and behavior for a
stack. You can declare a variable that refers to an instance of the Stack type to use that
functionality.

Assemblies contain executable code in the form of Intermediate Language (IL)
instructions, and symbolic information in the form of metadata. Before it's executed, the
Just-In-Time (JIT) compiler of .NET Common Language Runtime converts the IL code in
an assembly to processor-specific code.

Because an assembly is a self-describing unit of functionality containing both code and
metadata, there's no need for #include directives and header files in C#. The public
types and members contained in a particular assembly are made available in a C#
program simply by referencing that assembly when compiling the program. For
example, this program uses the Acme.Collections.Stack class from the acme.dll
assembly:

C#

 return result;
 }

 class Entry
 {
 public Entry Next { get; set; }
 public T Data { get; set; }

 public Entry(Entry next, T data)
 {
 Next = next;
 Data = data;
 }
 }
}

class Example
{
 public static void Main()
 {

To compile this program, you would need to reference the assembly containing the stack
class defined in the earlier example.

C# programs can be stored in several source files. When a C# program is compiled, all
of the source files are processed together, and the source files can freely reference each
other. Conceptually, it's as if all the source files were concatenated into one large file
before being processed. Forward declarations are never needed in C# because, with few
exceptions, declaration order is insignificant. C# doesn't limit a source file to declaring
only one public type nor does it require the name of the source file to match a type
declared in the source file.

Further articles in this tour explain these organizational blocks.

 var s = new Acme.Collections.Stack<int>();
 s.Push(1); // stack contains 1
 s.Push(10); // stack contains 1, 10
 s.Push(100); // stack contains 1, 10, 100
 Console.WriteLine(s.Pop()); // stack contains 1, 10
 Console.WriteLine(s.Pop()); // stack contains 1
 Console.WriteLine(s.Pop()); // stack is empty
 }
}

Next

C# types and members
Article • 2022-03-18 • 6 minutes to read

As an object-oriented language, C# supports the concepts of encapsulation, inheritance,
and polymorphism. A class may inherit directly from one parent class, and it may
implement any number of interfaces. Methods that override virtual methods in a parent
class require the override keyword as a way to avoid accidental redefinition. In C#, a
struct is like a lightweight class; it's a stack-allocated type that can implement interfaces
but doesn't support inheritance. C# provides record class and record struct types,
which are types whose purpose is primarily storing data values.

Classes are the most fundamental of C#'s types. A class is a data structure that combines
state (fields) and actions (methods and other function members) in a single unit. A class
provides a definition for instances of the class, also known as objects. Classes support
inheritance and polymorphism, mechanisms whereby derived classes can extend and
specialize base classes.

New classes are created using class declarations. A class declaration starts with a header.
The header specifies:

The attributes and modifiers of the class
The name of the class
The base class (when inheriting from a base class)
The interfaces implemented by the class.

The header is followed by the class body, which consists of a list of member declarations
written between the delimiters { and } .

The following code shows a declaration of a simple class named Point :

C#

Classes and objects

public class Point
{
 public int X { get; }
 public int Y { get; }

 public Point(int x, int y) => (X, Y) = (x, y);
}

Instances of classes are created using the new operator, which allocates memory for a
new instance, invokes a constructor to initialize the instance, and returns a reference to
the instance. The following statements create two Point objects and store references to
those objects in two variables:

C#

The memory occupied by an object is automatically reclaimed when the object is no
longer reachable. It's not necessary or possible to explicitly deallocate objects in C#.

Generic classes define type parameters. Type parameters are a list of type parameter
names enclosed in angle brackets. Type parameters follow the class name. The type
parameters can then be used in the body of the class declarations to define the
members of the class. In the following example, the type parameters of Pair are TFirst
and TSecond :

C#

A class type that is declared to take type parameters is called a generic class type. Struct,
interface, and delegate types can also be generic. When the generic class is used, type
arguments must be provided for each of the type parameters:

C#

A generic type with type arguments provided, like Pair<int,string> above, is called a
constructed type.

var p1 = new Point(0, 0);
var p2 = new Point(10, 20);

Type parameters

public class Pair<TFirst, TSecond>
{
 public TFirst First { get; }
 public TSecond Second { get; }

 public Pair(TFirst first, TSecond second) =>
 (First, Second) = (first, second);
}

var pair = new Pair<int, string>(1, "two");
int i = pair.First; //TFirst int
string s = pair.Second; //TSecond string

A class declaration may specify a base class. Follow the class name and type parameters
with a colon and the name of the base class. Omitting a base class specification is the
same as deriving from type object . In the following example, the base class of Point3D
is Point . From the first example, the base class of Point is object :

C#

A class inherits the members of its base class. Inheritance means that a class implicitly
contains almost all members of its base class. A class doesn't inherit the instance and
static constructors, and the finalizer. A derived class can add new members to those
members it inherits, but it can't remove the definition of an inherited member. In the
previous example, Point3D inherits the X and Y members from Point , and every
Point3D instance contains three properties, X , Y , and Z .

An implicit conversion exists from a class type to any of its base class types. A variable of
a class type can reference an instance of that class or an instance of any derived class.
For example, given the previous class declarations, a variable of type Point can
reference either a Point or a Point3D :

C#

Classes define types that support inheritance and polymorphism. They enable you to
create sophisticated behaviors based on hierarchies of derived classes. By contrast,
struct types are simpler types whose primary purpose is to store data values. Structs
can't declare a base type; they implicitly derive from System.ValueType. You can't derive
other struct types from a struct type. They're implicitly sealed.

Base classes

public class Point3D : Point
{
 public int Z { get; set; }

 public Point3D(int x, int y, int z) : base(x, y)
 {
 Z = z;
 }
}

Point a = new(10, 20);
Point b = new Point3D(10, 20, 30);

Structs

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype

C#

An interface defines a contract that can be implemented by classes and structs. You
define an interface to declare capabilities that are shared among distinct types. For
example, the System.Collections.Generic.IEnumerable<T> interface defines a consistent
way to traverse all the items in a collection, such as an array. An interface can contain
methods, properties, events, and indexers. An interface typically doesn't provide
implementations of the members it defines—it merely specifies the members that must
be supplied by classes or structs that implement the interface.

Interfaces may employ multiple inheritance. In the following example, the interface
IComboBox inherits from both ITextBox and IListBox .

C#

Classes and structs can implement multiple interfaces. In the following example, the
class EditBox implements both IControl and IDataBound .

C#

public struct Point
{
 public double X { get; }
 public double Y { get; }

 public Point(double x, double y) => (X, Y) = (x, y);
}

Interfaces

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

interface IListBox : IControl
{
 void SetItems(string[] items);
}

interface IComboBox : ITextBox, IListBox { }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

When a class or struct implements a particular interface, instances of that class or struct
can be implicitly converted to that interface type. For example

C#

An Enum type defines a set of constant values. The following enum declares constants
that define different root vegetables:

C#

You can also define an enum to be used in combination as flags. The following
declaration declares a set of flags for the four seasons. Any combination of the seasons
may be applied, including an All value that includes all seasons:

C#

interface IDataBound
{
 void Bind(Binder b);
}

public class EditBox : IControl, IDataBound
{
 public void Paint() { }
 public void Bind(Binder b) { }
}

EditBox editBox = new();
IControl control = editBox;
IDataBound dataBound = editBox;

Enums

public enum SomeRootVegetable
{
 HorseRadish,
 Radish,
 Turnip
}

[Flags]
public enum Seasons
{
 None = 0,
 Summer = 1,
 Autumn = 2,
 Winter = 4,

The following example shows declarations of both the preceding enums:

C#

Variables of any type may be declared as non-nullable or nullable. A nullable variable
can hold an additional null value, indicating no value. Nullable Value types (structs or
enums) are represented by System.Nullable<T>. Non-nullable and Nullable Reference
types are both represented by the underlying reference type. The distinction is
represented by metadata read by the compiler and some libraries. The compiler
provides warnings when nullable references are dereferenced without first checking
their value against null . The compiler also provides warnings when non-nullable
references are assigned a value that may be null . The following example declares a
nullable int, initializing it to null . Then, it sets the value to 5 . It demonstrates the same
concept with a nullable string. For more information, see nullable value types and
nullable reference types.

C#

C# supports tuples, which provides concise syntax to group multiple data elements in a
lightweight data structure. You instantiate a tuple by declaring the types and names of
the members between (and) , as shown in the following example:

C#

 Spring = 8,
 All = Summer | Autumn | Winter | Spring
}

var turnip = SomeRootVegetable.Turnip;

var spring = Seasons.Spring;
var startingOnEquinox = Seasons.Spring | Seasons.Autumn;
var theYear = Seasons.All;

Nullable types

int? optionalInt = default;
optionalInt = 5;
string? optionalText = default;
optionalText = "Hello World.";

Tuples

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

Tuples provide an alternative for data structure with multiple members, without using
the building blocks described in the next article.

(double Sum, int Count) t2 = (4.5, 3);
Console.WriteLine($"Sum of {t2.Count} elements is {t2.Sum}.");
//Output:
//Sum of 3 elements is 4.5.

Previous Next

C# program building blocks
Article • 2023-01-10 • 24 minutes to read

The types described in the previous article in this Tour of C# series are built by using
these building blocks:

Members, such as properties, fields, methods, and events.
Expressions
Statements

The members of a class are either static members or instance members. Static
members belong to classes, and instance members belong to objects (instances of
classes).

The following list provides an overview of the kinds of members a class can contain.

Constants: Constant values associated with the class
Fields: Variables that are associated with the class
Methods: Actions that can be performed by the class
Properties: Actions associated with reading and writing named properties of the
class
Indexers: Actions associated with indexing instances of the class like an array
Events: Notifications that can be generated by the class
Operators: Conversions and expression operators supported by the class
Constructors: Actions required to initialize instances of the class or the class itself
Finalizers: Actions done before instances of the class are permanently discarded
Types: Nested types declared by the class

Each member of a class has an associated accessibility, which controls the regions of
program text that can access the member. There are six possible forms of accessibility.
The access modifiers are summarized below.

public : Access isn't limited.
private : Access is limited to this class.
protected : Access is limited to this class or classes derived from this class.
internal : Access is limited to the current assembly (.exe or .dll).

Members

Accessibility

protected internal : Access is limited to this class, classes derived from this class,
or classes within the same assembly.
private protected : Access is limited to this class or classes derived from this type
within the same assembly.

A field is a variable that is associated with a class or with an instance of a class.

A field declared with the static modifier defines a static field. A static field identifies
exactly one storage location. No matter how many instances of a class are created,
there's only ever one copy of a static field.

A field declared without the static modifier defines an instance field. Every instance of a
class contains a separate copy of all the instance fields of that class.

In the following example, each instance of the Color class has a separate copy of the R ,
G , and B instance fields, but there's only one copy of the Black , White , Red , Green , and
Blue static fields:

C#

As shown in the previous example, read-only fields may be declared with a readonly
modifier. Assignment to a read-only field can only occur as part of the field's declaration
or in a constructor in the same class.

Fields

public class Color
{
 public static readonly Color Black = new(0, 0, 0);
 public static readonly Color White = new(255, 255, 255);
 public static readonly Color Red = new(255, 0, 0);
 public static readonly Color Green = new(0, 255, 0);
 public static readonly Color Blue = new(0, 0, 255);

 public byte R;
 public byte G;
 public byte B;

 public Color(byte r, byte g, byte b)
 {
 R = r;
 G = g;
 B = b;
 }
}

A method is a member that implements a computation or action that can be performed
by an object or class. Static methods are accessed through the class. Instance methods
are accessed through instances of the class.

Methods may have a list of parameters, which represent values or variable references
passed to the method. Methods have a return type, which specifies the type of the value
computed and returned by the method. A method's return type is void if it doesn't
return a value.

Like types, methods may also have a set of type parameters, for which type arguments
must be specified when the method is called. Unlike types, the type arguments can
often be inferred from the arguments of a method call and need not be explicitly given.

The signature of a method must be unique in the class in which the method is declared.
The signature of a method consists of the name of the method, the number of type
parameters, and the number, modifiers, and types of its parameters. The signature of a
method doesn't include the return type.

When a method body is a single expression, the method can be defined using a
compact expression format, as shown in the following example:

C#

Parameters are used to pass values or variable references to methods. The parameters
of a method get their actual values from the arguments that are specified when the
method is invoked. There are four kinds of parameters: value parameters, reference
parameters, output parameters, and parameter arrays.

A value parameter is used for passing input arguments. A value parameter corresponds
to a local variable that gets its initial value from the argument that was passed for the
parameter. Modifications to a value parameter don't affect the argument that was
passed for the parameter.

Value parameters can be optional, by specifying a default value so that corresponding
arguments can be omitted.

Methods

public override string ToString() => "This is an object";

Parameters

A reference parameter is used for passing arguments by reference. The argument passed
for a reference parameter must be a variable with a definite value. During execution of
the method, the reference parameter represents the same storage location as the
argument variable. A reference parameter is declared with the ref modifier. The
following example shows the use of ref parameters.

C#

An output parameter is used for passing arguments by reference. It's similar to a
reference parameter, except that it doesn't require that you explicitly assign a value to
the caller-provided argument. An output parameter is declared with the out modifier.
The following example shows the use of out parameters.

C#

A parameter array permits a variable number of arguments to be passed to a method. A
parameter array is declared with the params modifier. Only the last parameter of a
method can be a parameter array, and the type of a parameter array must be a single-
dimensional array type. The Write and WriteLine methods of the System.Console class
are good examples of parameter array usage. They're declared as follows.

static void Swap(ref int x, ref int y)
{
 int temp = x;
 x = y;
 y = temp;
}

public static void SwapExample()
{
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine($"{i} {j}"); // "2 1"
}

static void Divide(int x, int y, out int quotient, out int remainder)
{
 quotient = x / y;
 remainder = x % y;
}

public static void OutUsage()
{
 Divide(10, 3, out int quo, out int rem);
 Console.WriteLine($"{quo} {rem}"); // "3 1"
}

https://learn.microsoft.com/en-us/dotnet/api/system.console

C#

Within a method that uses a parameter array, the parameter array behaves exactly like a
regular parameter of an array type. However, in an invocation of a method with a
parameter array, it's possible to pass either a single argument of the parameter array
type or any number of arguments of the element type of the parameter array. In the
latter case, an array instance is automatically created and initialized with the given
arguments. This example

C#

is equivalent to writing the following.

C#

A method's body specifies the statements to execute when the method is invoked.

A method body can declare variables that are specific to the invocation of the method.
Such variables are called local variables. A local variable declaration specifies a type
name, a variable name, and possibly an initial value. The following example declares a
local variable i with an initial value of zero and a local variable j with no initial value.

public class Console
{
 public static void Write(string fmt, params object[] args) { }
 public static void WriteLine(string fmt, params object[] args) { }
 // ...
}

int x, y, z;
x = 3;
y = 4;
z = 5;
Console.WriteLine("x={0} y={1} z={2}", x, y, z);

int x = 3, y = 4, z = 5;

string s = "x={0} y={1} z={2}";
object[] args = new object[3];
args[0] = x;
args[1] = y;
args[2] = z;
Console.WriteLine(s, args);

Method body and local variables

C#

C# requires a local variable to be definitely assigned before its value can be obtained.
For example, if the declaration of the previous i didn't include an initial value, the
compiler would report an error for the later usages of i because i wouldn't be
definitely assigned at those points in the program.

A method can use return statements to return control to its caller. In a method
returning void , return statements can't specify an expression. In a method returning
non-void, return statements must include an expression that computes the return
value.

A method declared with a static modifier is a static method. A static method doesn't
operate on a specific instance and can only directly access static members.

A method declared without a static modifier is an instance method. An instance
method operates on a specific instance and can access both static and instance
members. The instance on which an instance method was invoked can be explicitly
accessed as this . It's an error to refer to this in a static method.

The following Entity class has both static and instance members.

C#

class Squares
{
 public static void WriteSquares()
 {
 int i = 0;
 int j;
 while (i < 10)
 {
 j = i * i;
 Console.WriteLine($"{i} x {i} = {j}");
 i++;
 }
 }
}

Static and instance methods

class Entity
{
 static int s_nextSerialNo;
 int _serialNo;

Each Entity instance contains a serial number (and presumably some other information
that isn't shown here). The Entity constructor (which is like an instance method)
initializes the new instance with the next available serial number. Because the
constructor is an instance member, it's permitted to access both the _serialNo instance
field and the s_nextSerialNo static field.

The GetNextSerialNo and SetNextSerialNo static methods can access the
s_nextSerialNo static field, but it would be an error for them to directly access the
_serialNo instance field.

The following example shows the use of the Entity class.

C#

The SetNextSerialNo and GetNextSerialNo static methods are invoked on the class
whereas the GetSerialNo instance method is invoked on instances of the class.

 public Entity()
 {
 _serialNo = s_nextSerialNo++;
 }

 public int GetSerialNo()
 {
 return _serialNo;
 }

 public static int GetNextSerialNo()
 {
 return s_nextSerialNo;
 }

 public static void SetNextSerialNo(int value)
 {
 s_nextSerialNo = value;
 }
}

Entity.SetNextSerialNo(1000);
Entity e1 = new();
Entity e2 = new();
Console.WriteLine(e1.GetSerialNo()); // Outputs "1000"
Console.WriteLine(e2.GetSerialNo()); // Outputs "1001"
Console.WriteLine(Entity.GetNextSerialNo()); // Outputs "1002"

Virtual, override, and abstract methods

You use virtual, override, and abstract methods to define the behavior for a hierarchy of
class types. Because a class can derive from a base class, those derived classes may need
to modify the behavior implemented in the base class. A virtual method is one declared
and implemented in a base class where any derived class may provide a more specific
implementation. An override method is a method implemented in a derived class that
modifies the behavior of the base class' implementation. An abstract method is a
method declared in a base class that must be overridden in all derived classes. In fact,
abstract methods don't define an implementation in the base class.

Method calls to instance methods may resolve to either base class or derived class
implementations. The type of a variable determines its compile-time type. The compile-
time type is the type the compiler uses to determine its members. However, a variable
may be assigned to an instance of any type derived from its compile-time type. The run-
time type is the type of the actual instance a variable refers to.

When a virtual method is invoked, the run-time type of the instance for which that
invocation takes place determines the actual method implementation to invoke. In a
nonvirtual method invocation, the compile-time type of the instance is the determining
factor.

A virtual method can be overridden in a derived class. When an instance method
declaration includes an override modifier, the method overrides an inherited virtual
method with the same signature. A virtual method declaration introduces a new
method. An override method declaration specializes an existing inherited virtual method
by providing a new implementation of that method.

An abstract method is a virtual method with no implementation. An abstract method is
declared with the abstract modifier and is permitted only in an abstract class. An
abstract method must be overridden in every non-abstract derived class.

The following example declares an abstract class, Expression , which represents an
expression tree node, and three derived classes, Constant , VariableReference , and
Operation , which implement expression tree nodes for constants, variable references,
and arithmetic operations. (This example is similar to, but not related to the expression
tree types).

C#

public abstract class Expression
{
 public abstract double Evaluate(Dictionary<string, object> vars);
}

public class Constant : Expression

{
 double _value;

 public Constant(double value)
 {
 _value = value;
 }

 public override double Evaluate(Dictionary<string, object> vars)
 {
 return _value;
 }
}

public class VariableReference : Expression
{
 string _name;

 public VariableReference(string name)
 {
 _name = name;
 }

 public override double Evaluate(Dictionary<string, object> vars)
 {
 object value = vars[_name] ?? throw new Exception($"Unknown
variable: {_name}");
 return Convert.ToDouble(value);
 }
}

public class Operation : Expression
{
 Expression _left;
 char _op;
 Expression _right;

 public Operation(Expression left, char op, Expression right)
 {
 _left = left;
 _op = op;
 _right = right;
 }

 public override double Evaluate(Dictionary<string, object> vars)
 {
 double x = _left.Evaluate(vars);
 double y = _right.Evaluate(vars);
 switch (_op)
 {
 case '+': return x + y;
 case '-': return x - y;
 case '*': return x * y;
 case '/': return x / y;

The previous four classes can be used to model arithmetic expressions. For example,
using instances of these classes, the expression x + 3 can be represented as follows.

C#

The Evaluate method of an Expression instance is invoked to evaluate the given
expression and produce a double value. The method takes a Dictionary argument that
contains variable names (as keys of the entries) and values (as values of the entries).
Because Evaluate is an abstract method, non-abstract classes derived from Expression
must override Evaluate .

A Constant 's implementation of Evaluate simply returns the stored constant. A
VariableReference 's implementation looks up the variable name in the dictionary and
returns the resulting value. An Operation 's implementation first evaluates the left and
right operands (by recursively invoking their Evaluate methods) and then performs the
given arithmetic operation.

The following program uses the Expression classes to evaluate the expression x * (y +
2) for different values of x and y .

C#

 default: throw new Exception("Unknown operator");
 }
 }
}

Expression e = new Operation(
 new VariableReference("x"),
 '+',
 new Constant(3));

Expression e = new Operation(
 new VariableReference("x"),
 '*',
 new Operation(
 new VariableReference("y"),
 '+',
 new Constant(2)
)
);
Dictionary<string, object> vars = new();
vars["x"] = 3;
vars["y"] = 5;
Console.WriteLine(e.Evaluate(vars)); // "21"
vars["x"] = 1.5;

Method overloading permits multiple methods in the same class to have the same name
as long as they have unique signatures. When compiling an invocation of an overloaded
method, the compiler uses overload resolution to determine the specific method to
invoke. Overload resolution finds the one method that best matches the arguments. If
no single best match can be found, an error is reported. The following example shows
overload resolution in effect. The comment for each invocation in the UsageExample
method shows which method is invoked.

C#

As shown by the example, a particular method can always be selected by explicitly
casting the arguments to the exact parameter types and type arguments.

Members that contain executable code are collectively known as the function members
of a class. The preceding section describes methods, which are the primary types of

vars["y"] = 9;
Console.WriteLine(e.Evaluate(vars)); // "16.5"

Method overloading

class OverloadingExample
{
 static void F() => Console.WriteLine("F()");
 static void F(object x) => Console.WriteLine("F(object)");
 static void F(int x) => Console.WriteLine("F(int)");
 static void F(double x) => Console.WriteLine("F(double)");
 static void F<T>(T x) => Console.WriteLine($"F<T>(T), T is
{typeof(T)}");
 static void F(double x, double y) => Console.WriteLine("F(double,
double)");

 public static void UsageExample()
 {
 F(); // Invokes F()
 F(1); // Invokes F(int)
 F(1.0); // Invokes F(double)
 F("abc"); // Invokes F<T>(T), T is System.String
 F((double)1); // Invokes F(double)
 F((object)1); // Invokes F(object)
 F<int>(1); // Invokes F<T>(T), T is System.Int32
 F(1, 1); // Invokes F(double, double)
 }
}

Other function members

function members. This section describes the other kinds of function members
supported by C#: constructors, properties, indexers, events, operators, and finalizers.

The following example shows a generic class called MyList<T> , which implements a
growable list of objects. The class contains several examples of the most common kinds
of function members.

C#

public class MyList<T>
{
 const int DefaultCapacity = 4;

 T[] _items;
 int _count;

 public MyList(int capacity = DefaultCapacity)
 {
 _items = new T[capacity];
 }

 public int Count => _count;

 public int Capacity
 {
 get => _items.Length;
 set
 {
 if (value < _count) value = _count;
 if (value != _items.Length)
 {
 T[] newItems = new T[value];
 Array.Copy(_items, 0, newItems, 0, _count);
 _items = newItems;
 }
 }
 }

 public T this[int index]
 {
 get => _items[index];
 set
 {
 if (!object.Equals(_items[index], value)) {
 _items[index] = value;
 OnChanged();
 }
 }
 }

 public void Add(T item)
 {
 if (_count == Capacity) Capacity = _count * 2;

C# supports both instance and static constructors. An instance constructor is a member
that implements the actions required to initialize an instance of a class. A static
constructor is a member that implements the actions required to initialize a class itself
when it's first loaded.

A constructor is declared like a method with no return type and the same name as the
containing class. If a constructor declaration includes a static modifier, it declares a
static constructor. Otherwise, it declares an instance constructor.

Instance constructors can be overloaded and can have optional parameters. For
example, the MyList<T> class declares one instance constructor with a single optional
int parameter. Instance constructors are invoked using the new operator. The following

 _items[_count] = item;
 _count++;
 OnChanged();
 }
 protected virtual void OnChanged() =>
 Changed?.Invoke(this, EventArgs.Empty);

 public override bool Equals(object other) =>
 Equals(this, other as MyList<T>);

 static bool Equals(MyList<T> a, MyList<T> b)
 {
 if (Object.ReferenceEquals(a, null)) return
Object.ReferenceEquals(b, null);
 if (Object.ReferenceEquals(b, null) || a._count != b._count)
 return false;
 for (int i = 0; i < a._count; i++)
 {
 if (!object.Equals(a._items[i], b._items[i]))
 {
 return false;
 }
 }
 return true;
 }

 public event EventHandler Changed;

 public static bool operator ==(MyList<T> a, MyList<T> b) =>
 Equals(a, b);

 public static bool operator !=(MyList<T> a, MyList<T> b) =>
 !Equals(a, b);
}

Constructors

statements allocate two MyList<string> instances using the constructor of the MyList
class with and without the optional argument.

C#

Unlike other members, instance constructors aren't inherited. A class has no instance
constructors other than those constructors actually declared in the class. If no instance
constructor is supplied for a class, then an empty one with no parameters is
automatically provided.

Properties are a natural extension of fields. Both are named members with associated
types, and the syntax for accessing fields and properties is the same. However, unlike
fields, properties don't denote storage locations. Instead, properties have accessors that
specify the statements executed when their values are read or written. A get accessor
reads the value. A set accessor writes the value.

A property is declared like a field, except that the declaration ends with a get accessor
or a set accessor written between the delimiters { and } instead of ending in a
semicolon. A property that has both a get accessor and a set accessor is a read-write
property. A property that has only a get accessor is a read-only property. A property that
has only a set accessor is a write-only property.

A get accessor corresponds to a parameterless method with a return value of the
property type. A set accessor corresponds to a method with a single parameter named
value and no return type. The get accessor computes the value of the property. The set
accessor provides a new value for the property. When the property is the target of an
assignment, or the operand of ++ or -- , the set accessor is invoked. In other cases
where the property is referenced, the get accessor is invoked.

The MyList<T> class declares two properties, Count and Capacity , which are read-only
and read-write, respectively. The following code is an example of use of these
properties:

C#

MyList<string> list1 = new();
MyList<string> list2 = new(10);

Properties

MyList<string> names = new();
names.Capacity = 100; // Invokes set accessor

Similar to fields and methods, C# supports both instance properties and static
properties. Static properties are declared with the static modifier, and instance
properties are declared without it.

The accessor(s) of a property can be virtual. When a property declaration includes a
virtual , abstract , or override modifier, it applies to the accessor(s) of the property.

An indexer is a member that enables objects to be indexed in the same way as an array.
An indexer is declared like a property except that the name of the member is this
followed by a parameter list written between the delimiters [and] . The parameters
are available in the accessor(s) of the indexer. Similar to properties, indexers can be
read-write, read-only, and write-only, and the accessor(s) of an indexer can be virtual.

The MyList<T> class declares a single read-write indexer that takes an int parameter.
The indexer makes it possible to index MyList<T> instances with int values. For
example:

C#

Indexers can be overloaded. A class can declare multiple indexers as long as the number
or types of their parameters differ.

An event is a member that enables a class or object to provide notifications. An event is
declared like a field except that the declaration includes an event keyword and the type
must be a delegate type.

int i = names.Count; // Invokes get accessor
int j = names.Capacity; // Invokes get accessor

Indexers

MyList<string> names = new();
names.Add("Liz");
names.Add("Martha");
names.Add("Beth");
for (int i = 0; i < names.Count; i++)
{
 string s = names[i];
 names[i] = s.ToUpper();
}

Events

Within a class that declares an event member, the event behaves just like a field of a
delegate type (provided the event isn't abstract and doesn't declare accessors). The field
stores a reference to a delegate that represents the event handlers that have been
added to the event. If no event handlers are present, the field is null .

The MyList<T> class declares a single event member called Changed , which indicates that
a new item has been added to the list or a list item has been changed using the indexer
set accessor. The Changed event is raised by the OnChanged virtual method, which first
checks whether the event is null (meaning that no handlers are present). The notion of
raising an event is precisely equivalent to invoking the delegate represented by the
event. There are no special language constructs for raising events.

Clients react to events through event handlers. Event handlers are attached using the +=
operator and removed using the -= operator. The following example attaches an event
handler to the Changed event of a MyList<string> .

C#

For advanced scenarios where control of the underlying storage of an event is desired,
an event declaration can explicitly provide add and remove accessors, which are similar
to the set accessor of a property.

An operator is a member that defines the meaning of applying a particular expression
operator to instances of a class. Three kinds of operators can be defined: unary

class EventExample
{
 static int s_changeCount;

 static void ListChanged(object sender, EventArgs e)
 {
 s_changeCount++;
 }

 public static void Usage()
 {
 var names = new MyList<string>();
 names.Changed += new EventHandler(ListChanged);
 names.Add("Liz");
 names.Add("Martha");
 names.Add("Beth");
 Console.WriteLine(s_changeCount); // "3"
 }
}

Operators

operators, binary operators, and conversion operators. All operators must be declared as
public and static .

The MyList<T> class declares two operators, operator == and operator != . These
overridden operators give new meaning to expressions that apply those operators to
MyList instances. Specifically, the operators define equality of two MyList<T> instances
as comparing each of the contained objects using their Equals methods. The following
example uses the == operator to compare two MyList<int> instances.

C#

The first Console.WriteLine outputs True because the two lists contain the same
number of objects with the same values in the same order. Had MyList<T> not defined
operator == , the first Console.WriteLine would have output False because a and b
reference different MyList<int> instances.

A finalizer is a member that implements the actions required to finalize an instance of a
class. Typically, a finalizer is needed to release unmanaged resources. Finalizers can't
have parameters, they can't have accessibility modifiers, and they can't be invoked
explicitly. The finalizer for an instance is invoked automatically during garbage
collection. For more information, see the article on finalizers.

The garbage collector is allowed wide latitude in deciding when to collect objects and
run finalizers. Specifically, the timing of finalizer invocations isn't deterministic, and
finalizers may be executed on any thread. For these and other reasons, classes should
implement finalizers only when no other solutions are feasible.

The using statement provides a better approach to object destruction.

MyList<int> a = new();
a.Add(1);
a.Add(2);
MyList<int> b = new();
b.Add(1);
b.Add(2);
Console.WriteLine(a == b); // Outputs "True"
b.Add(3);
Console.WriteLine(a == b); // Outputs "False"

Finalizers

Expressions

Expressions are constructed from operands and operators. The operators of an
expression indicate which operations to apply to the operands. Examples of operators
include + , - , * , / , and new . Examples of operands include literals, fields, local variables,
and expressions.

When an expression contains multiple operators, the precedence of the operators
controls the order in which the individual operators are evaluated. For example, the
expression x + y * z is evaluated as x + (y * z) because the * operator has higher
precedence than the + operator.

When an operand occurs between two operators with the same precedence, the
associativity of the operators controls the order in which the operations are performed:

Except for the assignment and null-coalescing operators, all binary operators are
left-associative, meaning that operations are performed from left to right. For
example, x + y + z is evaluated as (x + y) + z .
The assignment operators, the null-coalescing ?? and ??= operators, and the
conditional operator ?: are right-associative, meaning that operations are
performed from right to left. For example, x = y = z is evaluated as x = (y = z) .

Precedence and associativity can be controlled using parentheses. For example, x + y *
z first multiplies y by z and then adds the result to x , but (x + y) * z first adds x
and y and then multiplies the result by z .

Most operators can be overloaded. Operator overloading permits user-defined operator
implementations to be specified for operations where one or both of the operands are
of a user-defined class or struct type.

C# provides operators to perform arithmetic, logical, bitwise and shift operations and
equality and order comparisons.

For the complete list of C# operators ordered by precedence level, see C# operators.

The actions of a program are expressed using statements. C# supports several different
kinds of statements, a number of which are defined in terms of embedded statements.

A block permits multiple statements to be written in contexts where a single
statement is allowed. A block consists of a list of statements written between the
delimiters { and } .
Declaration statements are used to declare local variables and constants.

Statements

Expression statements are used to evaluate expressions. Expressions that can be
used as statements include method invocations, object allocations using the new
operator, assignments using = and the compound assignment operators,
increment and decrement operations using the ++ and -- operators and await
expressions.
Selection statements are used to select one of a number of possible statements for
execution based on the value of some expression. This group contains the if and
switch statements.
Iteration statements are used to execute repeatedly an embedded statement. This
group contains the while , do , for , and foreach statements.
Jump statements are used to transfer control. This group contains the break ,
continue , goto , throw , return , and yield statements.
The try ...catch statement is used to catch exceptions that occur during execution
of a block, and the try ...finally statement is used to specify finalization code that
is always executed, whether an exception occurred or not.
The checked and unchecked statements are used to control the overflow-checking
context for integral-type arithmetic operations and conversions.
The lock statement is used to obtain the mutual-exclusion lock for a given object,
execute a statement, and then release the lock.
The using statement is used to obtain a resource, execute a statement, and then
dispose of that resource.

The following lists the kinds of statements that can be used:

Local variable declaration.
Local constant declaration.
Expression statement.
if statement.
switch statement.
while statement.
do statement.
for statement.
foreach statement.
break statement.
continue statement.
goto statement.
return statement.
yield statement.
throw statements and try statements.

checked and unchecked statements.
lock statement.
using statement.

 Previous Next

C# major language areas
Article • 2023-01-10 • 9 minutes to read

This article introduces the main features of the C# language.

C# and .NET provide many different collection types. Arrays have syntax defined by the
language. Generic collection types are listed in the System.Collections.Generic
namespace. Specialized collections include System.Span<T> for accessing continuous
memory on the stack frame, and System.Memory<T> for accessing continuous memory
on the managed heap. All collections, including arrays, Span<T>, and Memory<T> share
a unifying principle for iteration. You use the
System.Collections.Generic.IEnumerable<T> interface. This unifying principle means that
any of the collection types can be used with LINQ queries or other algorithms. You write
methods using IEnumerable<T> and those algorithms work with any collection.

An array is a data structure that contains a number of variables that are accessed
through computed indices. The variables contained in an array, also called the elements
of the array, are all of the same type. This type is called the element type of the array.

Array types are reference types, and the declaration of an array variable simply sets
aside space for a reference to an array instance. Actual array instances are created
dynamically at run time using the new operator. The new operation specifies the length
of the new array instance, which is then fixed for the lifetime of the instance. The indices
of the elements of an array range from 0 to Length - 1 . The new operator
automatically initializes the elements of an array to their default value, which, for
example, is zero for all numeric types and null for all reference types.

The following example creates an array of int elements, initializes the array, and prints
the contents of the array.

C#

Arrays, collections, and LINQ

Arrays

int[] a = new int[10];
for (int i = 0; i < a.Length; i++)
{
 a[i] = i * i;
}
for (int i = 0; i < a.Length; i++)

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.memory-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.memory-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

This example creates and operates on a single-dimensional array. C# also supports
multi-dimensional arrays. The number of dimensions of an array type, also known as
the rank of the array type, is one plus the number of commas between the square
brackets of the array type. The following example allocates a single-dimensional, a two-
dimensional, and a three-dimensional array, respectively.

C#

The a1 array contains 10 elements, the a2 array contains 50 (10 × 5) elements, and the
a3 array contains 100 (10 × 5 × 2) elements. The element type of an array can be any
type, including an array type. An array with elements of an array type is sometimes
called a jagged array because the lengths of the element arrays don't all have to be the
same. The following example allocates an array of arrays of int :

C#

The first line creates an array with three elements, each of type int[] and each with an
initial value of null . The next lines then initialize the three elements with references to
individual array instances of varying lengths.

The new operator permits the initial values of the array elements to be specified using
an array initializer, which is a list of expressions written between the delimiters { and
} . The following example allocates and initializes an int[] with three elements.

C#

The length of the array is inferred from the number of expressions between { and } .
Array initialization can be shortened further such that the array type doesn't have to be

{
 Console.WriteLine($"a[{i}] = {a[i]}");
}

int[] a1 = new int[10];
int[,] a2 = new int[10, 5];
int[,,] a3 = new int[10, 5, 2];

int[][] a = new int[3][];
a[0] = new int[10];
a[1] = new int[5];
a[2] = new int[20];

int[] a = new int[] { 1, 2, 3 };

restated.

C#

Both of the previous examples are equivalent to the following code:

C#

The foreach statement can be used to enumerate the elements of any collection. The
following code enumerates the array from the preceding example:

C#

The foreach statement uses the IEnumerable<T> interface, so it can work with any
collection.

C# string interpolation enables you to format strings by defining expressions whose
results are placed in a format string. For example, the following example prints the
temperature on a given day from a set of weather data:

C#

int[] a = { 1, 2, 3 };

int[] t = new int[3];
t[0] = 1;
t[1] = 2;
t[2] = 3;
int[] a = t;

foreach (int item in a)
{
 Console.WriteLine(item);
}

String interpolation

Console.WriteLine($"The low and high temperature on {weatherData.Date:MM-dd-
yyyy}");
Console.WriteLine($" was {weatherData.LowTemp} and
{weatherData.HighTemp}.");
// Output (similar to):
// The low and high temperature on 08-11-2020
// was 5 and 30.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

An interpolated string is declared using the $ token. String interpolation evaluates the
expressions between { and } , then converts the result to a string , and replaces the
text between the brackets with the string result of the expression. The : in the first
expression, {weatherData.Date:MM-dd-yyyy} specifies the format string. In the preceding
example, it specifies that the date should be printed in "MM-dd-yyyy" format.

The C# language provides pattern matching expressions to query the state of an object
and execute code based on that state. You can inspect types and the values of
properties and fields to determine which action to take. You can inspect the elements of
a list or array as well. The switch expression is the primary expression for pattern
matching.

A delegate type represents references to methods with a particular parameter list and
return type. Delegates make it possible to treat methods as entities that can be assigned
to variables and passed as parameters. Delegates are similar to the concept of function
pointers found in some other languages. Unlike function pointers, delegates are object-
oriented and type-safe.

The following example declares and uses a delegate type named Function .

C#

Pattern matching

Delegates and lambda expressions

delegate double Function(double x);

class Multiplier
{
 double _factor;

 public Multiplier(double factor) => _factor = factor;

 public double Multiply(double x) => x * _factor;
}

class DelegateExample
{
 static double[] Apply(double[] a, Function f)
 {
 var result = new double[a.Length];
 for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
 return result;
 }

An instance of the Function delegate type can reference any method that takes a
double argument and returns a double value. The Apply method applies a given
Function to the elements of a double[] , returning a double[] with the results. In the
Main method, Apply is used to apply three different functions to a double[] .

A delegate can reference either a lambda expression to create an anonymous function
(such as (x) => x * x in the previous example), a static method (such as Math.Sin in
the previous example) or an instance method (such as m.Multiply in the previous
example). A delegate that references an instance method also references a particular
object, and when the instance method is invoked through the delegate, that object
becomes this in the invocation.

Delegates can also be created using anonymous functions or lambda expressions, which
are "inline methods" that are created when declared. Anonymous functions can see the
local variables of the surrounding methods. The following example doesn't create a
class:

C#

A delegate doesn't know or care about the class of the method it references. The
referenced method must have the same parameters and return type as the delegate.

C# supports asynchronous programs with two keywords: async and await . You add the
async modifier to a method declaration to declare the method is asynchronous. The
await operator tells the compiler to asynchronously await for a result to finish. Control
is returned to the caller, and the method returns a structure that manages the state of
the asynchronous work. The structure is typically a
System.Threading.Tasks.Task<TResult>, but can be any type that supports the awaiter

 public static void Main()
 {
 double[] a = { 0.0, 0.5, 1.0 };
 double[] squares = Apply(a, (x) => x * x);
 double[] sines = Apply(a, Math.Sin);
 Multiplier m = new(2.0);
 double[] doubles = Apply(a, m.Multiply);
 }
}

double[] doubles = Apply(a, (double x) => x * 2.0);

async / await

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

pattern. These features enable you to write code that reads as its synchronous
counterpart, but executes asynchronously. For example, the following code downloads
the home page for Microsoft docs:

C#

This small sample shows the major features for asynchronous programming:

The method declaration includes the async modifier.
The body of the method awaits the return of the GetByteArrayAsync method.
The type specified in the return statement matches the type argument in the
Task<T> declaration for the method. (A method that returns a Task would use
return statements without any argument).

Types, members, and other entities in a C# program support modifiers that control
certain aspects of their behavior. For example, the accessibility of a method is controlled
using the public , protected , internal , and private modifiers. C# generalizes this
capability such that user-defined types of declarative information can be attached to
program entities and retrieved at run-time. Programs specify this declarative
information by defining and using attributes.

The following example declares a HelpAttribute attribute that can be placed on
program entities to provide links to their associated documentation.

C#

public async Task<int> RetrieveDocsHomePage()
{
 var client = new HttpClient();
 byte[] content = await
client.GetByteArrayAsync("https://docs.microsoft.com/");

 Console.WriteLine($"{nameof(RetrieveDocsHomePage)}: Finished
downloading.");
 return content.Length;
}

Attributes

public class HelpAttribute : Attribute
{
 string _url;
 string _topic;

 public HelpAttribute(string url) => _url = url;

https://learn.microsoft.com/en-us/

All attribute classes derive from the Attribute base class provided by the .NET library.
Attributes can be applied by giving their name, along with any arguments, inside square
brackets just before the associated declaration. If an attribute's name ends in Attribute ,
that part of the name can be omitted when the attribute is referenced. For example, the
HelpAttribute can be used as follows.

C#

This example attaches a HelpAttribute to the Widget class. It adds another
HelpAttribute to the Display method in the class. The public constructors of an
attribute class control the information that must be provided when the attribute is
attached to a program entity. Additional information can be provided by referencing
public read-write properties of the attribute class (such as the reference to the Topic
property previously).

The metadata defined by attributes can be read and manipulated at run time using
reflection. When a particular attribute is requested using this technique, the constructor
for the attribute class is invoked with the information provided in the program source.
The resulting attribute instance is returned. If additional information was provided
through properties, those properties are set to the given values before the attribute
instance is returned.

The following code sample demonstrates how to get the HelpAttribute instances
associated to the Widget class and its Display method.

C#

 public string Url => _url;

 public string Topic
 {
 get => _topic;
 set => _topic = value;
 }
}

[Help("https://docs.microsoft.com/dotnet/csharp/tour-of-csharp/features")]
public class Widget
{
 [Help("https://docs.microsoft.com/dotnet/csharp/tour-of-
csharp/features",
 Topic = "Display")]
 public void Display(string text) { }
}

https://learn.microsoft.com/en-us/dotnet/api/system.attribute

You can explore more about C# by trying one of our tutorials.

Type widgetType = typeof(Widget);

object[] widgetClassAttributes =
widgetType.GetCustomAttributes(typeof(HelpAttribute), false);

if (widgetClassAttributes.Length > 0)
{
 HelpAttribute attr = (HelpAttribute)widgetClassAttributes[0];
 Console.WriteLine($"Widget class help URL : {attr.Url} - Related topic :
{attr.Topic}");
}

System.Reflection.MethodInfo displayMethod =
widgetType.GetMethod(nameof(Widget.Display));

object[] displayMethodAttributes =
displayMethod.GetCustomAttributes(typeof(HelpAttribute), false);

if (displayMethodAttributes.Length > 0)
{
 HelpAttribute attr = (HelpAttribute)displayMethodAttributes[0];
 Console.WriteLine($"Display method help URL : {attr.Url} - Related topic
: {attr.Topic}");
}

Learn more

Previous

Introduction to C#
Article • 2022-12-10 • 2 minutes to read

Welcome to the introduction to C# tutorials. These lessons start with interactive code
that you can run in your browser. You can learn the basics of C# from the C# 101 video
series before starting these interactive lessons.

The first lessons explain C# concepts using small snippets of code. You'll learn the basics
of C# syntax and how to work with data types like strings, numbers, and booleans. It's all
interactive, and you'll be writing and running code within minutes. These first lessons
assume no prior knowledge of programming or the C# language.

You can try these tutorials in different environments. The concepts you'll learn are the
same. The difference is which experience you prefer:

In your browser, on the docs platform: This experience embeds a runnable C# code
window in docs pages. You write and execute C# code in the browser.
In the Microsoft Learn training experience. This learning path contains several
modules that teach the basics of C#.
In Jupyter on Binder . You can experiment with C# code in a Jupyter notebook on
binder.
On your local machine. After you've explored online, you can download the .NET
SDK and build programs on your machine.

All the introductory tutorials following the Hello World lesson are available using the
online browser experience or in your own local development environment. At the end of
each tutorial, you decide if you want to continue with the next lesson online or on your
own machine. There are links to help you set up your environment and continue with
the next tutorial on your machine.

In the Hello world tutorial, you'll create the most basic C# program. You'll explore the
string type and how to work with text. You can also use the path on Microsoft Learn
training or Jupyter on Binder .

https://learn-video.azurefd.net/vod/player?show=csharp-101&ep=what-is-
c&locale=en-ca&embedUrl=%2Fdotnet%2Fcsharp%2Ftour-of-csharp%2Ftutorials%2F

Hello world

Numbers in C#

https://aka.ms/dotnet3-csharp
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-us/training/paths/csharp-first-steps/
https://mybinder.org/v2/gh/dotnet/try-samples/main?filepath=hello-csharp%2Fhello-world.ipynb
https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-us/training/paths/csharp-first-steps/
https://mybinder.org/v2/gh/dotnet/try-samples/main?filepath=hello-csharp%2Fhello-world.ipynb
https://learn-video.azurefd.net/vod/player?show=csharp-101&ep=what-is-c&locale=en-ca&embedUrl=%2Fdotnet%2Fcsharp%2Ftour-of-csharp%2Ftutorials%2F
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/numbers-in-csharp

In the Numbers in C# tutorial, you'll learn how computers store numbers and how to
perform calculations with different numeric types. You'll learn the basics of rounding,
and how to perform mathematical calculations using C#. This tutorial is also available to
run locally on your machine.

This tutorial assumes that you've finished the Hello world lesson.

The Branches and loops tutorial teaches the basics of selecting different paths of code
execution based on the values stored in variables. You'll learn the basics of control flow,
which is the basis of how programs make decisions and choose different actions. This
tutorial is also available to run locally on your machine.

This tutorial assumes that you've finished the Hello world and Numbers in C# lessons.

The List collection lesson gives you a tour of the List collection type that stores
sequences of data. You'll learn how to add and remove items, search for items, and sort
the lists. You'll explore different kinds of lists. This tutorial is also available to run locally
on your machine.

This tutorial assumes that you've finished the lessons listed above.

This sample requires the dotnet-try global tool. Once you install the tool, and clone
the try-samples repo, you can learn Language Integrated Query (LINQ) through a set
of 101 samples you can run interactively. You can explore different ways to query,
explore, and transform data sequences.

Branches and loops

List collection

101 Linq Samples

https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/numbers-in-csharp
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/branches-and-loops
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/numbers-in-csharp
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/list-collection
https://github.com/dotnet/try/blob/main/README.md#setup
https://github.com/dotnet/try-samples
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/branches-and-loops
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/list-collection
https://github.com/dotnet/try-samples/tree/main/101-linq-samples

Set up your local environment
Article • 2022-04-28 • 2 minutes to read

The first step in running a tutorial on your machine is to set up a development
environment.

We recommend Visual Studio for Windows or Mac. You can download a free
version from the Visual Studio downloads page . Visual Studio includes the .NET
SDK.
You can also use the Visual Studio Code editor. You'll need to install the latest
.NET SDK separately.
If you prefer a different editor, you need to install the latest .NET SDK .

The instructions in these tutorials assume that you're using the .NET CLI to create, build,
and run applications. You'll use the following commands:

dotnet new creates an application. This command generates the files and assets
necessary for your application. The introduction to C# tutorials all use the console
application type. Once you've got the basics, you can expand to other application
types.
dotnet build builds the executable.
dotnet run runs the executable.

If you use Visual Studio 2019 for these tutorials, you'll choose a Visual Studio menu
selection when a tutorial directs you to run one of these CLI commands:

File > New > Project creates an application.
The Console Application project template is recommended.
You will be given the option to specify a target framework. The tutorials below
work best when targeting .NET 5 or higher.

Build > Build Solution builds the executable.
Debug > Start Without Debugging runs the executable.

You can start with any of the following tutorials:

Basic application development flow

Pick your tutorial

https://visualstudio.com/
https://visualstudio.microsoft.com/downloads
https://code.visualstudio.com/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-new
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-build
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-run

In the Numbers in C# tutorial, you'll learn how computers store numbers and how to
perform calculations with different numeric types. You'll learn the basics of rounding and
how to perform mathematical calculations using C#.

This tutorial assumes that you have finished the Hello world lesson.

The Branches and loops tutorial teaches the basics of selecting different paths of code
execution based on the values stored in variables. You'll learn the basics of control flow,
which is the basis of how programs make decisions and choose different actions.

This tutorial assumes that you have finished the Hello world and Numbers in C# lessons.

The List collection lesson gives you a tour of the List collection type that stores
sequences of data. You'll learn how to add and remove items, search for items, and sort
the lists. You'll explore different kinds of lists.

This tutorial assumes that you have finished the lessons listed above.

Numbers in C#

Branches and loops

List collection

https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/hello-world

How to use integer and floating point
numbers in C#
Article • 2022-10-15 • 9 minutes to read

This tutorial teaches you about the numeric types in C#. You'll write small amounts of
code, then you'll compile and run that code. The tutorial contains a series of lessons that
explore numbers and math operations in C#. These lessons teach you the fundamentals
of the C# language.

The tutorial expects that you have a machine set up for local development. See Set up
your local environment for installation instructions and an overview of application
development in .NET.

If you don't want to set up a local environment, see the interactive-in-browser version of
this tutorial.

Create a directory named numbers-quickstart. Make it the current directory and run the
following command:

.NET CLI

 Tip

To paste a code snippet inside the focus mode you should use your keyboard
shortcut (Ctrl + v , or cmd + v).

Prerequisites

Explore integer math

dotnet new console -n NumbersInCSharp -o .

） Important

The C# templates for .NET 6 use top level statements. Your application may not
match the code in this article, if you've already upgraded to the .NET 6. For more
information see the article on New C# templates generate top level statements

https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/numbers-in-csharp
https://learn.microsoft.com/en-ca/dotnet/core/tutorials/top-level-templates

Open Program.cs in your favorite editor, and replace the contents of the file with the
following code:

C#

Run this code by typing dotnet run in your command window.

You've seen one of the fundamental math operations with integers. The int type
represents an integer, a zero, positive, or negative whole number. You use the + symbol
for addition. Other common mathematical operations for integers include:

- for subtraction
* for multiplication
/ for division

Start by exploring those different operations. Add these lines after the line that writes
the value of c :

C#

The .NET 6 SDK also adds a set of implicit global using directives for projects that
use the following SDKs:

Microsoft.NET.Sdk

Microsoft.NET.Sdk.Web

Microsoft.NET.Sdk.Worker

These implicit global using directives include the most common namespaces for
the project type.

int a = 18;
int b = 6;
int c = a + b;
Console.WriteLine(c);

// subtraction
c = a - b;
Console.WriteLine(c);

// multiplication
c = a * b;
Console.WriteLine(c);

// division
c = a / b;
Console.WriteLine(c);

Run this code by typing dotnet run in your command window.

You can also experiment by writing multiple mathematics operations in the same line, if
you'd like. Try c = a + b - 12 * 17; for example. Mixing variables and constant
numbers is allowed.

You've finished the first step. Before you start the next section, let's move the current
code into a separate method. A method is a series of statements grouped together and
given a name. You call a method by writing the method's name followed by () .
Organizing your code into methods makes it easier to start working with a new example.
When you finish, your code should look like this:

C#

 Tip

As you explore C# (or any programming language), you'll make mistakes when you
write code. The compiler will find those errors and report them to you. When the
output contains error messages, look closely at the example code and the code in
your window to see what to fix. That exercise will help you learn the structure of C#
code.

WorkWithIntegers();

void WorkWithIntegers()
{
 int a = 18;
 int b = 6;
 int c = a + b;
 Console.WriteLine(c);

 // subtraction
 c = a - b;
 Console.WriteLine(c);

 // multiplication
 c = a * b;
 Console.WriteLine(c);

 // division
 c = a / b;
 Console.WriteLine(c);
}

The line WorkWithIntegers(); invokes the method. The following code declares the
method and defines it.

Comment out the call to WorkingWithIntegers() . It will make the output less cluttered as
you work in this section:

C#

The // starts a comment in C#. Comments are any text you want to keep in your source
code but not execute as code. The compiler doesn't generate any executable code from
comments. Because WorkWithIntegers() is a method, you need to only comment out
one line.

The C# language defines the precedence of different mathematics operations with rules
consistent with the rules you learned in mathematics. Multiplication and division take
precedence over addition and subtraction. Explore that by adding the following code
after the call to WorkWithIntegers() , and executing dotnet run :

C#

The output demonstrates that the multiplication is performed before the addition.

You can force a different order of operation by adding parentheses around the
operation or operations you want performed first. Add the following lines and run again:

C#

Explore more by combining many different operations. Add something like the following
lines. Try dotnet run again.

Explore order of operations

//WorkWithIntegers();

int a = 5;
int b = 4;
int c = 2;
int d = a + b * c;
Console.WriteLine(d);

d = (a + b) * c;
Console.WriteLine(d);

C#

You may have noticed an interesting behavior for integers. Integer division always
produces an integer result, even when you'd expect the result to include a decimal or
fractional portion.

If you haven't seen this behavior, try the following code:

C#

Type dotnet run again to see the results.

Before moving on, let's take all the code you've written in this section and put it in a
new method. Call that new method OrderPrecedence . Your code should look something
like this:

C#

d = (a + b) - 6 * c + (12 * 4) / 3 + 12;
Console.WriteLine(d);

int e = 7;
int f = 4;
int g = 3;
int h = (e + f) / g;
Console.WriteLine(h);

// WorkWithIntegers();
OrderPrecedence();

void WorkWithIntegers()
{
 int a = 18;
 int b = 6;
 int c = a + b;
 Console.WriteLine(c);

 // subtraction
 c = a - b;
 Console.WriteLine(c);

 // multiplication
 c = a * b;
 Console.WriteLine(c);

 // division
 c = a / b;
 Console.WriteLine(c);
}

That last sample showed you that integer division truncates the result. You can get the
remainder by using the modulo operator, the % character. Try the following code after
the method call to OrderPrecedence() :

C#

The C# integer type differs from mathematical integers in one other way: the int type
has minimum and maximum limits. Add this code to see those limits:

C#

void OrderPrecedence()
{
 int a = 5;
 int b = 4;
 int c = 2;
 int d = a + b * c;
 Console.WriteLine(d);

 d = (a + b) * c;
 Console.WriteLine(d);

 d = (a + b) - 6 * c + (12 * 4) / 3 + 12;
 Console.WriteLine(d);

 int e = 7;
 int f = 4;
 int g = 3;
 int h = (e + f) / g;
 Console.WriteLine(h);
}

Explore integer precision and limits

int a = 7;
int b = 4;
int c = 3;
int d = (a + b) / c;
int e = (a + b) % c;
Console.WriteLine($"quotient: {d}");
Console.WriteLine($"remainder: {e}");

int max = int.MaxValue;
int min = int.MinValue;
Console.WriteLine($"The range of integers is {min} to {max}");

If a calculation produces a value that exceeds those limits, you have an underflow or
overflow condition. The answer appears to wrap from one limit to the other. Add these
two lines to see an example:

C#

Notice that the answer is very close to the minimum (negative) integer. It's the same as
min + 2 . The addition operation overflowed the allowed values for integers. The answer
is a very large negative number because an overflow "wraps around" from the largest
possible integer value to the smallest.

There are other numeric types with different limits and precision that you would use
when the int type doesn't meet your needs. Let's explore those other types next.
Before you start the next section, move the code you wrote in this section into a
separate method. Name it TestLimits .

The double numeric type represents a double-precision floating point number. Those
terms may be new to you. A floating point number is useful to represent non-integral
numbers that may be very large or small in magnitude. Double-precision is a relative
term that describes the number of binary digits used to store the value. Double
precision numbers have twice the number of binary digits as single-precision. On
modern computers, it's more common to use double precision than single precision
numbers. Single precision numbers are declared using the float keyword. Let's explore.
Add the following code and see the result:

C#

Notice that the answer includes the decimal portion of the quotient. Try a slightly more
complicated expression with doubles:

C#

int what = max + 3;
Console.WriteLine($"An example of overflow: {what}");

Work with the double type

double a = 5;
double b = 4;
double c = 2;
double d = (a + b) / c;
Console.WriteLine(d);

The range of a double value is much greater than integer values. Try the following code
below what you've written so far:

C#

These values are printed in scientific notation. The number to the left of the E is the
significand. The number to the right is the exponent, as a power of 10. Just like decimal
numbers in math, doubles in C# can have rounding errors. Try this code:

C#

You know that 0.3 repeating finite number of times isn't exactly the same as 1/3 .

Challenge

Try other calculations with large numbers, small numbers, multiplication, and division
using the double type. Try more complicated calculations. After you've spent some time
with the challenge, take the code you've written and place it in a new method. Name
that new method WorkWithDoubles .

You've seen the basic numeric types in C#: integers and doubles. There's one other type
to learn: the decimal type. The decimal type has a smaller range but greater precision
than double . Let's take a look:

C#

double e = 19;
double f = 23;
double g = 8;
double h = (e + f) / g;
Console.WriteLine(h);

double max = double.MaxValue;
double min = double.MinValue;
Console.WriteLine($"The range of double is {min} to {max}");

double third = 1.0 / 3.0;
Console.WriteLine(third);

Work with decimal types

decimal min = decimal.MinValue;
decimal max = decimal.MaxValue;
Console.WriteLine($"The range of the decimal type is {min} to {max}");

Notice that the range is smaller than the double type. You can see the greater precision
with the decimal type by trying the following code:

C#

The M suffix on the numbers is how you indicate that a constant should use the decimal
type. Otherwise, the compiler assumes the double type.

Notice that the math using the decimal type has more digits to the right of the decimal
point.

Challenge

Now that you've seen the different numeric types, write code that calculates the area of
a circle whose radius is 2.50 centimeters. Remember that the area of a circle is the radius
squared multiplied by PI. One hint: .NET contains a constant for PI, Math.PI that you can
use for that value. Math.PI, like all constants declared in the System.Math namespace, is
a double value. For that reason, you should use double instead of decimal values for
this challenge.

You should get an answer between 19 and 20. You can check your answer by looking at
the finished sample code on GitHub .

Try some other formulas if you'd like.

You've completed the "Numbers in C#" quickstart. You can continue with the Branches
and loops quickstart in your own development environment.

You can learn more about numbers in C# in the following articles:

double a = 1.0;
double b = 3.0;
Console.WriteLine(a / b);

decimal c = 1.0M;
decimal d = 3.0M;
Console.WriteLine(c / d);

７ Note

The letter M was chosen as the most visually distinct letter between the double and
decimal keywords.

https://learn.microsoft.com/en-us/dotnet/api/system.math.pi
https://learn.microsoft.com/en-us/dotnet/api/system.math.pi
https://github.com/dotnet/samples/tree/main/csharp/numbers-quickstart/Program.cs#L9-L11

Integral numeric types
Floating-point numeric types
Built-in numeric conversions

C# if statements and loops -
conditional logic tutorial
Article • 2022-10-15 • 10 minutes to read

This tutorial teaches you how to write C# code that examines variables and changes the
execution path based on those variables. You write C# code and see the results of
compiling and running it. The tutorial contains a series of lessons that explore branching
and looping constructs in C#. These lessons teach you the fundamentals of the C#
language.

The tutorial expects that you have a machine set up for local development. See Set up
your local environment for installation instructions and an overview of application
development in .NET.

If you prefer to run the code without having to set up a local environment, see the
interactive-in-browser version of this tutorial.

Create a directory named branches-tutorial. Make that the current directory and run the
following command:

.NET CLI

 Tip

To paste a code snippet inside the focus mode you should use your keyboard
shortcut (Ctrl + v , or cmd + v).

Prerequisites

Make decisions using the if statement

dotnet new console -n BranchesAndLoops -o .

） Important

The C# templates for .NET 6 use top level statements. Your application may not
match the code in this article, if you've already upgraded to the .NET 6. For more
information see the article on New C# templates generate top level statements

https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/branches-and-loops
https://learn.microsoft.com/en-ca/dotnet/core/tutorials/top-level-templates

This command creates a new .NET console application in the current directory. Open
Program.cs in your favorite editor, and replace the contents with the following code:

C#

Try this code by typing dotnet run in your console window. You should see the message
"The answer is greater than 10." printed to your console. Modify the declaration of b so
that the sum is less than 10:

C#

Type dotnet run again. Because the answer is less than 10, nothing is printed. The
condition you're testing is false. You don't have any code to execute because you've
only written one of the possible branches for an if statement: the true branch.

This first sample shows the power of if and Boolean types. A Boolean is a variable that
can have one of two values: true or false . C# defines a special type, bool for Boolean

The .NET 6 SDK also adds a set of implicit global using directives for projects that
use the following SDKs:

Microsoft.NET.Sdk

Microsoft.NET.Sdk.Web

Microsoft.NET.Sdk.Worker

These implicit global using directives include the most common namespaces for
the project type.

int a = 5;
int b = 6;
if (a + b > 10)
 Console.WriteLine("The answer is greater than 10.");

int b = 3;

 Tip

As you explore C# (or any programming language), you'll make mistakes when you
write code. The compiler will find and report the errors. Look closely at the error
output and the code that generated the error. The compiler error can usually help
you find the problem.

variables. The if statement checks the value of a bool . When the value is true , the
statement following the if executes. Otherwise, it's skipped. This process of checking
conditions and executing statements based on those conditions is powerful.

To execute different code in both the true and false branches, you create an else
branch that executes when the condition is false. Try an else branch. Add the last two
lines in the code below (you should already have the first four):

C#

The statement following the else keyword executes only when the condition being
tested is false . Combining if and else with Boolean conditions provides all the power
you need to handle both a true and a false condition.

Because indentation isn't significant, you need to use { and } to indicate when you
want more than one statement to be part of the block that executes conditionally. C#
programmers typically use those braces on all if and else clauses. The following
example is the same as the one you created. Modify your code above to match the
following code:

C#

Make if and else work together

int a = 5;
int b = 3;
if (a + b > 10)
 Console.WriteLine("The answer is greater than 10");
else
 Console.WriteLine("The answer is not greater than 10");

） Important

The indentation under the if and else statements is for human readers. The C#
language doesn't treat indentation or white space as significant. The statement
following the if or else keyword will be executed based on the condition. All the
samples in this tutorial follow a common practice to indent lines based on the
control flow of statements.

int a = 5;
int b = 3;
if (a + b > 10)

You can test more complicated conditions. Add the following code after the code you've
written so far:

C#

The == symbol tests for equality. Using == distinguishes the test for equality from
assignment, which you saw in a = 5 .

The && represents "and". It means both conditions must be true to execute the
statement in the true branch. These examples also show that you can have multiple
statements in each conditional branch, provided you enclose them in { and } . You can
also use || to represent "or". Add the following code after what you've written so far:

C#

{
 Console.WriteLine("The answer is greater than 10");
}
else
{
 Console.WriteLine("The answer is not greater than 10");
}

 Tip

Through the rest of this tutorial, the code samples all include the braces, following
accepted practices.

int c = 4;
if ((a + b + c > 10) && (a == b))
{
 Console.WriteLine("The answer is greater than 10");
 Console.WriteLine("And the first number is equal to the second");
}
else
{
 Console.WriteLine("The answer is not greater than 10");
 Console.WriteLine("Or the first number is not equal to the second");
}

if ((a + b + c > 10) || (a == b))
{
 Console.WriteLine("The answer is greater than 10");
 Console.WriteLine("Or the first number is equal to the second");
}
else
{

Modify the values of a , b , and c and switch between && and || to explore. You'll gain
more understanding of how the && and || operators work.

You've finished the first step. Before you start the next section, let's move the current
code into a separate method. That makes it easier to start working with a new example.
Put the existing code in a method called ExploreIf() . Call it from the top of your
program. When you finished those changes, your code should look like the following:

C#

 Console.WriteLine("The answer is not greater than 10");
 Console.WriteLine("And the first number is not equal to the second");
}

ExploreIf();

void ExploreIf()
{
 int a = 5;
 int b = 3;
 if (a + b > 10)
 {
 Console.WriteLine("The answer is greater than 10");
 }
 else
 {
 Console.WriteLine("The answer is not greater than 10");
 }

 int c = 4;
 if ((a + b + c > 10) && (a > b))
 {
 Console.WriteLine("The answer is greater than 10");
 Console.WriteLine("And the first number is greater than the
second");
 }
 else
 {
 Console.WriteLine("The answer is not greater than 10");
 Console.WriteLine("Or the first number is not greater than the
second");
 }

 if ((a + b + c > 10) || (a > b))
 {
 Console.WriteLine("The answer is greater than 10");
 Console.WriteLine("Or the first number is greater than the second");
 }
 else
 {
 Console.WriteLine("The answer is not greater than 10");

Comment out the call to ExploreIf() . It will make the output less cluttered as you work
in this section:

C#

The // starts a comment in C#. Comments are any text you want to keep in your source
code but not execute as code. The compiler doesn't generate any executable code from
comments.

In this section, you use loops to repeat statements. Add this code after the call to
ExploreIf :

C#

The while statement checks a condition and executes the statement or statement block
following the while . It repeatedly checks the condition, executing those statements until
the condition is false.

There's one other new operator in this example. The ++ after the counter variable is the
increment operator. It adds 1 to the value of counter and stores that value in the
counter variable.

 Console.WriteLine("And the first number is not greater than the
second");
 }
}

//ExploreIf();

Use loops to repeat operations

int counter = 0;
while (counter < 10)
{
 Console.WriteLine($"Hello World! The counter is {counter}");
 counter++;
}

） Important

Make sure that the while loop condition changes to false as you execute the code.
Otherwise, you create an infinite loop where your program never ends. That is not

The while loop tests the condition before executing the code following the while . The
do ... while loop executes the code first, and then checks the condition. The do while
loop is shown in the following code:

C#

This do loop and the earlier while loop produce the same output.

The for loop is commonly used in C#. Try this code:

C#

The previous code does the same work as the while loop and the do loop you've
already used. The for statement has three parts that control how it works.

The first part is the for initializer: int index = 0; declares that index is the loop
variable, and sets its initial value to 0 .

The middle part is the for condition: index < 10 declares that this for loop continues
to execute as long as the value of counter is less than 10.

The final part is the for iterator: index++ specifies how to modify the loop variable after
executing the block following the for statement. Here, it specifies that index should be
incremented by 1 each time the block executes.

Experiment yourself. Try each of the following variations:

demonstrated in this sample, because you have to force your program to quit using
CTRL-C or other means.

int counter = 0;
do
{
 Console.WriteLine($"Hello World! The counter is {counter}");
 counter++;
} while (counter < 10);

Work with the for loop

for (int index = 0; index < 10; index++)
{
 Console.WriteLine($"Hello World! The index is {index}");
}

Change the initializer to start at a different value.
Change the condition to stop at a different value.

When you're done, let's move on to write some code yourself to use what you've
learned.

There's one other looping statement that isn't covered in this tutorial: the foreach
statement. The foreach statement repeats its statement for every item in a sequence of
items. It's most often used with collections, so it's covered in the next tutorial.

A while , do , or for loop can be nested inside another loop to create a matrix using the
combination of each item in the outer loop with each item in the inner loop. Let's do
that to build a set of alphanumeric pairs to represent rows and columns.

One for loop can generate the rows:

C#

Another loop can generate the columns:

C#

You can nest one loop inside the other to form pairs:

C#

Created nested loops

for (int row = 1; row < 11; row++)
{
 Console.WriteLine($"The row is {row}");
}

for (char column = 'a'; column < 'k'; column++)
{
 Console.WriteLine($"The column is {column}");
}

for (int row = 1; row < 11; row++)
{
 for (char column = 'a'; column < 'k'; column++)
 {
 Console.WriteLine($"The cell is ({row}, {column})");
 }
}

You can see that the outer loop increments once for each full run of the inner loop.
Reverse the row and column nesting, and see the changes for yourself. When you're
done, place the code from this section in a method called ExploreLoops() .

Now that you've seen the if statement and the looping constructs in the C# language,
see if you can write C# code to find the sum of all integers 1 through 20 that are
divisible by 3. Here are a few hints:

The % operator gives you the remainder of a division operation.
The if statement gives you the condition to see if a number should be part of the
sum.
The for loop can help you repeat a series of steps for all the numbers 1 through
20.

Try it yourself. Then check how you did. You should get 63 for an answer. You can see
one possible answer by viewing the completed code on GitHub .

You've completed the "branches and loops" tutorial.

You can continue with the Arrays and collections tutorial in your own development
environment.

You can learn more about these concepts in these articles:

Selection statements
Iteration statements

Combine branches and loops

https://github.com/dotnet/samples/blob/main/csharp/branches-quickstart/Program.cs#L87-L95

Learn to manage data collections using
List<T> in C#
Article • 2022-04-28 • 6 minutes to read

This introductory tutorial provides an introduction to the C# language and the basics of
the List<T> class.

The tutorial expects that you have a machine set up for local development. See Set up
your local environment for installation instructions and an overview of application
development in .NET.

If you prefer to run the code without having to set up a local environment, see the
interactive-in-browser version of this tutorial.

Create a directory named list-tutorial. Make that the current directory and run dotnet
new console .

Open Program.cs in your favorite editor, and replace the existing code with the
following:

Prerequisites

A basic list example

） Important

The C# templates for .NET 6 use top level statements. Your application may not
match the code in this article, if you've already upgraded to the .NET 6. For more
information see the article on New C# templates generate top level statements

The .NET 6 SDK also adds a set of implicit global using directives for projects that
use the following SDKs:

Microsoft.NET.Sdk
Microsoft.NET.Sdk.Web

Microsoft.NET.Sdk.Worker

These implicit global using directives include the most common namespaces for
the project type.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-ca/dotnet/csharp/tour-of-csharp/tutorials/list-collection
https://learn.microsoft.com/en-ca/dotnet/core/tutorials/top-level-templates

C#

Replace <name> with your name. Save Program.cs. Type dotnet run in your console
window to try it.

You've created a list of strings, added three names to that list, and printed the names in
all CAPS. You're using concepts that you've learned in earlier tutorials to loop through
the list.

The code to display names makes use of the string interpolation feature. When you
precede a string with the $ character, you can embed C# code in the string
declaration. The actual string replaces that C# code with the value it generates. In this
example, it replaces the {name.ToUpper()} with each name, converted to capital letters,
because you called the ToUpper method.

Let's keep exploring.

The collection you created uses the List<T> type. This type stores sequences of
elements. You specify the type of the elements between the angle brackets.

One important aspect of this List<T> type is that it can grow or shrink, enabling you to
add or remove elements. Add this code at the end of your program:

C#

You've added two more names to the end of the list. You've also removed one as well.
Save the file, and type dotnet run to try it.

var names = new List<string> { "<name>", "Ana", "Felipe" };
foreach (var name in names)
{
 Console.WriteLine($"Hello {name.ToUpper()}!");
}

Modify list contents

Console.WriteLine();
names.Add("Maria");
names.Add("Bill");
names.Remove("Ana");
foreach (var name in names)
{
 Console.WriteLine($"Hello {name.ToUpper()}!");
}

https://learn.microsoft.com/en-us/dotnet/api/system.string.toupper
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

The List<T> enables you to reference individual items by index as well. You place the
index between [and] tokens following the list name. C# uses 0 for the first index. Add
this code directly below the code you just added and try it:

C#

You can't access an index beyond the end of the list. Remember that indices start at 0,
so the largest valid index is one less than the number of items in the list. You can check
how long the list is using the Count property. Add the following code at the end of your
program:

C#

Save the file, and type dotnet run again to see the results.

Our samples use relatively small lists, but your applications may often create lists with
many more elements, sometimes numbering in the thousands. To find elements in these
larger collections, you need to search the list for different items. The IndexOf method
searches for an item and returns the index of the item. If the item isn't in the list,
IndexOf returns -1 . Add this code to the bottom of your program:

C#

Console.WriteLine($"My name is {names[0]}");
Console.WriteLine($"I've added {names[2]} and {names[3]} to the list");

Console.WriteLine($"The list has {names.Count} people in it");

Search and sort lists

var index = names.IndexOf("Felipe");
if (index == -1)
{
 Console.WriteLine($"When an item is not found, IndexOf returns
{index}");
}
else
{
 Console.WriteLine($"The name {names[index]} is at index {index}");
}

index = names.IndexOf("Not Found");
if (index == -1)
{
 Console.WriteLine($"When an item is not found, IndexOf returns
{index}");

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.count
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.indexof

The items in your list can be sorted as well. The Sort method sorts all the items in the list
in their normal order (alphabetically for strings). Add this code to the bottom of your
program:

C#

Save the file and type dotnet run to try this latest version.

Before you start the next section, let's move the current code into a separate method.
That makes it easier to start working with a new example. Place all the code you've
written in a new method called WorkWithStrings() . Call that method at the top of your
program. When you finish, your code should look like this:

C#

}
else
{
 Console.WriteLine($"The name {names[index]} is at index {index}");

}

names.Sort();
foreach (var name in names)
{
 Console.WriteLine($"Hello {name.ToUpper()}!");
}

WorkWithString();

void WorkWithString()
{
 var names = new List<string> { "<name>", "Ana", "Felipe" };
 foreach (var name in names)
 {
 Console.WriteLine($"Hello {name.ToUpper()}!");
 }

 Console.WriteLine();
 names.Add("Maria");
 names.Add("Bill");
 names.Remove("Ana");
 foreach (var name in names)
 {
 Console.WriteLine($"Hello {name.ToUpper()}!");
 }

 Console.WriteLine($"My name is {names[0]}");
 Console.WriteLine($"I've added {names[2]} and {names[3]} to the list");

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.sort

You've been using the string type in lists so far. Let's make a List<T> using a different
type. Let's build a set of numbers.

Add the following to your program after you call WorkWithStrings() :

C#

That creates a list of integers, and sets the first two integers to the value 1. These are the
first two values of a Fibonacci Sequence, a sequence of numbers. Each next Fibonacci
number is found by taking the sum of the previous two numbers. Add this code:

C#

 Console.WriteLine($"The list has {names.Count} people in it");

 var index = names.IndexOf("Felipe");
 if (index == -1)
 {
 Console.WriteLine($"When an item is not found, IndexOf returns
{index}");
 }
 else
 {
 Console.WriteLine($"The name {names[index]} is at index {index}");
 }

 index = names.IndexOf("Not Found");
 if (index == -1)
 {
 Console.WriteLine($"When an item is not found, IndexOf returns
{index}");
 }
 else
 {
 Console.WriteLine($"The name {names[index]} is at index {index}");

 }

 names.Sort();
 foreach (var name in names)
 {
 Console.WriteLine($"Hello {name.ToUpper()}!");
 }
}

Lists of other types

var fibonacciNumbers = new List<int> {1, 1};

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

Save the file and type dotnet run to see the results.

See if you can put together some of the concepts from this and earlier lessons. Expand
on what you've built so far with Fibonacci Numbers. Try to write the code to generate
the first 20 numbers in the sequence. (As a hint, the 20th Fibonacci number is 6765.)

You can see an example solution by looking at the finished sample code on GitHub .

With each iteration of the loop, you're taking the last two integers in the list, summing
them, and adding that value to the list. The loop repeats until you've added 20 items to
the list.

Congratulations, you've completed the list tutorial. You can continue with additional
tutorials in your own development environment.

You can learn more about working with the List type in the .NET fundamentals article
on collections. You'll also learn about many other collection types.

var previous = fibonacciNumbers[fibonacciNumbers.Count - 1];
var previous2 = fibonacciNumbers[fibonacciNumbers.Count - 2];

fibonacciNumbers.Add(previous + previous2);

foreach (var item in fibonacciNumbers)
 Console.WriteLine(item);

 Tip

To concentrate on just this section, you can comment out the code that calls
WorkingWithStrings(); . Just put two / characters in front of the call like this: //
WorkingWithStrings(); .

Challenge

Complete challenge

https://github.com/dotnet/samples/tree/main/csharp/list-quickstart/Program.cs#L8-L16
https://learn.microsoft.com/en-ca/dotnet/standard/collections/

General Structure of a C# Program
Article • 2022-03-18 • 2 minutes to read

C# programs consist of one or more files. Each file contains zero or more namespaces. A
namespace contains types such as classes, structs, interfaces, enumerations, and
delegates, or other namespaces. The following example is the skeleton of a C# program
that contains all of these elements.

C#

The preceding example uses top-level statements for the program's entry point. This
feature was added in C# 9. Prior to C# 9, the entry point was a static method named
Main , as shown in the following example:

// A skeleton of a C# program
using System;

// Your program starts here:
Console.WriteLine("Hello world!");

namespace YourNamespace
{
 class YourClass
 {
 }

 struct YourStruct
 {
 }

 interface IYourInterface
 {
 }

 delegate int YourDelegate();

 enum YourEnum
 {
 }

 namespace YourNestedNamespace
 {
 struct YourStruct
 {
 }
 }
}

C#

You learn about these program elements in the types section of the fundamentals guide:

Classes
Structs
Namespaces
Interfaces
Enums

// A skeleton of a C# program
using System;
namespace YourNamespace
{
 class YourClass
 {
 }

 struct YourStruct
 {
 }

 interface IYourInterface
 {
 }

 delegate int YourDelegate();

 enum YourEnum
 {
 }

 namespace YourNestedNamespace
 {
 struct YourStruct
 {
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 //Your program starts here...
 Console.WriteLine("Hello world!");
 }
 }
}

Related Sections

Delegates

For more information, see Basic concepts in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

C# Language Specification

Main() and command-line arguments
Article • 2022-09-29 • 8 minutes to read

The Main method is the entry point of a C# application. (Libraries and services do not
require a Main method as an entry point.) When the application is started, the Main
method is the first method that is invoked.

There can only be one entry point in a C# program. If you have more than one class that
has a Main method, you must compile your program with the StartupObject compiler
option to specify which Main method to use as the entry point. For more information,
see StartupObject (C# Compiler Options).

C#

Starting in C# 9, you can omit the Main method, and write C# statements as if they were
in the Main method, as in the following example:

C#

For information about how to write application code with an implicit entry point
method, see Top-level statements.

The Main method is the entry point of an executable program; it is where the
program control starts and ends.

class TestClass
{
 static void Main(string[] args)
 {
 // Display the number of command line arguments.
 Console.WriteLine(args.Length);
 }
}

using System.Text;

StringBuilder builder = new();
builder.AppendLine("Hello");
builder.AppendLine("World!");

Console.WriteLine(builder.ToString());

Overview

Main is declared inside a class or struct. Main must be static and it need not be
public. (In the earlier example, it receives the default access of private.) The
enclosing class or struct is not required to be static.
Main can either have a void , int , Task , or Task<int> return type.
If and only if Main returns a Task or Task<int> , the declaration of Main may
include the async modifier. This specifically excludes an async void Main method.
The Main method can be declared with or without a string[] parameter that
contains command-line arguments. When using Visual Studio to create Windows
applications, you can add the parameter manually or else use the
GetCommandLineArgs() method to obtain the command-line arguments.
Parameters are read as zero-indexed command-line arguments. Unlike C and C++,
the name of the program is not treated as the first command-line argument in the
args array, but it is the first element of the GetCommandLineArgs() method.

The following list shows valid Main signatures:

C#

The preceding examples all use the public accessor modifier. That's typical, but not
required.

The addition of async and Task , Task<int> return types simplifies program code when
console applications need to start and await asynchronous operations in Main .

You can return an int from the Main method by defining the method in one of the
following ways:

Main method code Main signature

No use of args or await static int Main()

Uses args , no use of await static int Main(string[] args)

public static void Main() { }
public static int Main() { }
public static void Main(string[] args) { }
public static int Main(string[] args) { }
public static async Task Main() { }
public static async Task<int> Main() { }
public static async Task Main(string[] args) { }
public static async Task<int> Main(string[] args) { }

Main() return values

https://learn.microsoft.com/en-us/dotnet/api/system.environment.getcommandlineargs#system-environment-getcommandlineargs
https://learn.microsoft.com/en-us/dotnet/api/system.environment.getcommandlineargs#system-environment-getcommandlineargs

Main method code Main signature

No use of args , uses await static async Task<int> Main()

Uses args and await static async Task<int> Main(string[] args)

If the return value from Main is not used, returning void or Task allows for slightly
simpler code.

Main method code Main signature

No use of args or await static void Main()

Uses args , no use of await static void Main(string[] args)

No use of args , uses await static async Task Main()

Uses args and await static async Task Main(string[] args)

However, returning int or Task<int> enables the program to communicate status
information to other programs or scripts that invoke the executable file.

The following example shows how the exit code for the process can be accessed.

This example uses .NET Core command-line tools. If you are unfamiliar with .NET Core
command-line tools, you can learn about them in this get-started article.

Create a new application by running dotnet new console . Modify the Main method in
Program.cs as follows:

C#

When a program is executed in Windows, any value returned from the Main function is
stored in an environment variable. This environment variable can be retrieved using
ERRORLEVEL from a batch file, or $LastExitCode from PowerShell.

You can build the application using the dotnet CLI dotnet build command.

// Save this program as MainReturnValTest.cs.
class MainReturnValTest
{
 static int Main()
 {
 //...
 return 0;
 }
}

https://learn.microsoft.com/en-ca/dotnet/core/introduction
https://learn.microsoft.com/en-ca/dotnet/core/tutorials/with-visual-studio-code
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet

Next, create a PowerShell script to run the application and display the result. Paste the
following code into a text file and save it as test.ps1 in the folder that contains the
project. Run the PowerShell script by typing test.ps1 at the PowerShell prompt.

Because the code returns zero, the batch file will report success. However, if you change
MainReturnValTest.cs to return a non-zero value and then recompile the program,
subsequent execution of the PowerShell script will report failure.

PowerShell

Output

When you declare an async return value for Main , the compiler generates the
boilerplate code for calling asynchronous methods in Main . If you don't specify the
async keyword, you need to write that code yourself, as shown in the following
example. The code in the example ensures that your program runs until the
asynchronous operation is completed:

C#

dotnet run
if ($LastExitCode -eq 0) {
 Write-Host "Execution succeeded"
} else
{
 Write-Host "Execution Failed"
}
Write-Host "Return value = " $LastExitCode

Execution succeeded
Return value = 0

Async Main return values

public static void Main()
{
 AsyncConsoleWork().GetAwaiter().GetResult();
}

private static async Task<int> AsyncConsoleWork()
{
 // Main body here
 return 0;
}

This boilerplate code can be replaced by:

C#

An advantage of declaring Main as async is that the compiler always generates the
correct code.

When the application entry point returns a Task or Task<int> , the compiler generates a
new entry point that calls the entry point method declared in the application code.
Assuming that this entry point is called $GeneratedMain , the compiler generates the
following code for these entry points:

static Task Main() results in the compiler emitting the equivalent of private
static void $GeneratedMain() => Main().GetAwaiter().GetResult();

static Task Main(string[]) results in the compiler emitting the equivalent of
private static void $GeneratedMain(string[] args) =>

Main(args).GetAwaiter().GetResult();

static Task<int> Main() results in the compiler emitting the equivalent of private
static int $GeneratedMain() => Main().GetAwaiter().GetResult();

static Task<int> Main(string[]) results in the compiler emitting the equivalent of
private static int $GeneratedMain(string[] args) =>

Main(args).GetAwaiter().GetResult();

You can send arguments to the Main method by defining the method in one of the
following ways:

Main method code Main signature

No return value, no use of await static void Main(string[] args)

static async Task<int> Main(string[] args)
{
 return await AsyncConsoleWork();
}

７ Note

If the examples used async modifier on the Main method, the compiler would
generate the same code.

Command-Line Arguments

Main method code Main signature

Return value, no use of await static int Main(string[] args)

No return value, uses await static async Task Main(string[] args)

Return value, uses await static async Task<int> Main(string[] args)

If the arguments are not used, you can omit args from the method signature for slightly
simpler code:

Main method code Main signature

No return value, no use of await static void Main()

Return value, no use of await static int Main()

No return value, uses await static async Task Main()

Return value, uses await static async Task<int> Main()

The parameter of the Main method is a String array that represents the command-line
arguments. Usually you determine whether arguments exist by testing the Length
property, for example:

C#

７ Note

You can also use Environment.CommandLine or
Environment.GetCommandLineArgs to access the command-line arguments from
any point in a console or Windows Forms application. To enable command-line
arguments in the Main method signature in a Windows Forms application, you
must manually modify the signature of Main . The code generated by the Windows
Forms designer creates Main without an input parameter.

if (args.Length == 0)
{
 System.Console.WriteLine("Please enter a numeric argument.");
 return 1;
}

 Tip

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.environment.commandline
https://learn.microsoft.com/en-us/dotnet/api/system.environment.getcommandlineargs

You can also convert the string arguments to numeric types by using the Convert class
or the Parse method. For example, the following statement converts the string to a
long number by using the Parse method:

C#

It is also possible to use the C# type long , which aliases Int64 :

C#

You can also use the Convert class method ToInt64 to do the same thing:

C#

For more information, see Parse and Convert.

The following example shows how to use command-line arguments in a console
application. The application takes one argument at run time, converts the argument to
an integer, and calculates the factorial of the number. If no arguments are supplied, the
application issues a message that explains the correct usage of the program.

To compile and run the application from a command prompt, follow these steps:

1. Paste the following code into any text editor, and then save the file as a text file
with the name Factorial.cs.

C#

The args array can't be null. So, it's safe to access the Length property without null
checking.

long num = Int64.Parse(args[0]);

long num = long.Parse(args[0]);

long num = Convert.ToInt64(s);

public class Functions
{
 public static long Factorial(int n)
 {
 // Test for invalid input.
 if ((n < 0) || (n > 20))
 {
 return -1;

https://learn.microsoft.com/en-us/dotnet/api/system.convert
https://learn.microsoft.com/en-us/dotnet/api/system.int64.parse
https://learn.microsoft.com/en-us/dotnet/api/system.int64.parse
https://learn.microsoft.com/en-us/dotnet/api/system.convert

 }

 // Calculate the factorial iteratively rather than recursively.
 long tempResult = 1;
 for (int i = 1; i <= n; i++)
 {
 tempResult *= i;
 }
 return tempResult;
 }
}

class MainClass
{
 static int Main(string[] args)
 {
 // Test if input arguments were supplied.
 if (args.Length == 0)
 {
 Console.WriteLine("Please enter a numeric argument.");
 Console.WriteLine("Usage: Factorial <num>");
 return 1;
 }

 // Try to convert the input arguments to numbers. This will
throw
 // an exception if the argument is not a number.
 // num = int.Parse(args[0]);
 int num;
 bool test = int.TryParse(args[0], out num);
 if (!test)
 {
 Console.WriteLine("Please enter a numeric argument.");
 Console.WriteLine("Usage: Factorial <num>");
 return 1;
 }

 // Calculate factorial.
 long result = Functions.Factorial(num);

 // Print result.
 if (result == -1)
 Console.WriteLine("Input must be >= 0 and <= 20.");
 else
 Console.WriteLine($"The Factorial of {num} is {result}.");

 return 0;
 }
}
// If 3 is entered on command line, the
// output reads: The factorial of 3 is 6.

2. From the Start screen or Start menu, open a Visual Studio Developer Command
Prompt window, and then navigate to the folder that contains the file that you
created.

3. Enter the following command to compile the application.

dotnet build

If your application has no compilation errors, an executable file that's named
Factorial.exe is created.

4. Enter the following command to calculate the factorial of 3:

dotnet run -- 3

5. The command produces this output: The factorial of 3 is 6.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

System.Environment
How to display command line arguments

７ Note

When running an application in Visual Studio, you can specify command-line
arguments in the Debug Page, Project Designer.

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.environment
https://learn.microsoft.com/en-us/visualstudio/ide/reference/debug-page-project-designer

Top-level statements - programs
without Main methods
Article • 2022-01-12 • 2 minutes to read

Starting in C# 9, you don't have to explicitly include a Main method in a console
application project. Instead, you can use the top-level statements feature to minimize the
code you have to write. In this case, the compiler generates a class and Main method
entry point for the application.

Here's a Program.cs file that is a complete C# program in C# 10:

C#

Top-level statements let you write simple programs for small utilities such as Azure
Functions and GitHub Actions. They also make it simpler for new C# programmers to
get started learning and writing code.

The following sections explain the rules on what you can and can't do with top-level
statements.

An application must have only one entry point. A project can have only one file with
top-level statements. Putting top-level statements in more than one file in a project
results in the following compiler error:

CS8802 Only one compilation unit can have top-level statements.

A project can have any number of additional source code files that don't have top-level
statements.

You can write a Main method explicitly, but it can't function as an entry point. The
compiler issues the following warning:

CS7022 The entry point of the program is global code; ignoring 'Main()' entry point.

Console.WriteLine("Hello World!");

Only one top-level file

No other entry points

In a project with top-level statements, you can't use the -main compiler option to select
the entry point, even if the project has one or more Main methods.

If you include using directives, they must come first in the file, as in this example:

C#

Top-level statements are implicitly in the global namespace.

A file with top-level statements can also contain namespaces and type definitions, but
they must come after the top-level statements. For example:

C#

using directives

using System.Text;

StringBuilder builder = new();
builder.AppendLine("Hello");
builder.AppendLine("World!");

Console.WriteLine(builder.ToString());

Global namespace

Namespaces and type definitions

MyClass.TestMethod();
MyNamespace.MyClass.MyMethod();

public class MyClass
{
 public static void TestMethod()
 {
 Console.WriteLine("Hello World!");
 }

}

namespace MyNamespace
{
 class MyClass
 {
 public static void MyMethod()

Top-level statements can reference the args variable to access any command-line
arguments that were entered. The args variable is never null but its Length is zero if no
command-line arguments were provided. For example:

C#

You can call an async method by using await . For example:

C#

To return an int value when the application ends, use the return statement as you
would in a Main method that returns an int . For example:

C#

 {
 Console.WriteLine("Hello World from
MyNamespace.MyClass.MyMethod!");
 }
 }
}

args

if (args.Length > 0)
{
 foreach (var arg in args)
 {
 Console.WriteLine($"Argument={arg}");
 }
}
else
{
 Console.WriteLine("No arguments");
}

await

Console.Write("Hello ");
await Task.Delay(5000);
Console.WriteLine("World!");

Exit code for the process

The compiler generates a method to serve as the program entry point for a project with
top-level statements. The name of this method isn't actually Main , it's an
implementation detail that your code can't reference directly. The signature of the
method depends on whether the top-level statements contain the await keyword or the
return statement. The following table shows what the method signature would look
like, using the method name Main in the table for convenience.

Top-level code contains Implicit Main signature

await and return static async Task<int> Main(string[] args)

await static async Task Main(string[] args)

return static int Main(string[] args)

No await or return static void Main(string[] args)

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Feature specification - Top-level statements

string? s = Console.ReadLine();

int returnValue = int.Parse(s ?? "-1");
return returnValue;

Implicit entry point method

C# language specification

The C# type system
Article • 2022-09-21 • 14 minutes to read

C# is a strongly typed language. Every variable and constant has a type, as does every
expression that evaluates to a value. Every method declaration specifies a name, the
type and kind (value, reference, or output) for each input parameter and for the return
value. The .NET class library defines built-in numeric types and complex types that
represent a wide variety of constructs. These include the file system, network
connections, collections and arrays of objects, and dates. A typical C# program uses
types from the class library and user-defined types that model the concepts that are
specific to the program's problem domain.

The information stored in a type can include the following items:

The storage space that a variable of the type requires.
The maximum and minimum values that it can represent.
The members (methods, fields, events, and so on) that it contains.
The base type it inherits from.
The interface(s) it implements.
The kinds of operations that are permitted.

The compiler uses type information to make sure all operations that are performed in
your code are type safe. For example, if you declare a variable of type int, the compiler
allows you to use the variable in addition and subtraction operations. If you try to
perform those same operations on a variable of type bool, the compiler generates an
error, as shown in the following example:

C#

int a = 5;
int b = a + 2; //OK

bool test = true;

// Error. Operator '+' cannot be applied to operands of type 'int' and
'bool'.
int c = a + test;

７ Note

C and C++ developers, notice that in C#, bool is not convertible to int .

The compiler embeds the type information into the executable file as metadata. The
common language runtime (CLR) uses that metadata at run time to further guarantee
type safety when it allocates and reclaims memory.

When you declare a variable or constant in a program, you must either specify its type
or use the var keyword to let the compiler infer the type. The following example shows
some variable declarations that use both built-in numeric types and complex user-
defined types:

C#

The types of method parameters and return values are specified in the method
declaration. The following signature shows a method that requires an int as an input
argument and returns a string:

C#

After you declare a variable, you can't redeclare it with a new type, and you can't assign
a value not compatible with its declared type. For example, you can't declare an int and
then assign it a Boolean value of true . However, values can be converted to other types,
for example when they're assigned to new variables or passed as method arguments. A

Specifying types in variable declarations

// Declaration only:
float temperature;
string name;
MyClass myClass;

// Declaration with initializers (four examples):
char firstLetter = 'C';
var limit = 3;
int[] source = { 0, 1, 2, 3, 4, 5 };
var query = from item in source
 where item <= limit
 select item;

public string GetName(int ID)
{
 if (ID < names.Length)
 return names[ID];
 else
 return String.Empty;
}
private string[] names = { "Spencer", "Sally", "Doug" };

type conversion that doesn't cause data loss is performed automatically by the compiler.
A conversion that might cause data loss requires a cast in the source code.

For more information, see Casting and Type Conversions.

C# provides a standard set of built-in types. These represent integers, floating point
values, Boolean expressions, text characters, decimal values, and other types of data.
There are also built-in string and object types. These types are available for you to use
in any C# program. For the complete list of the built-in types, see Built-in types.

You use the struct, class, interface, enum, and record constructs to create your own
custom types. The .NET class library itself is a collection of custom types that you can
use in your own applications. By default, the most frequently used types in the class
library are available in any C# program. Others become available only when you
explicitly add a project reference to the assembly that defines them. After the compiler
has a reference to the assembly, you can declare variables (and constants) of the types
declared in that assembly in source code. For more information, see .NET Class Library.

It's important to understand two fundamental points about the type system in .NET:

It supports the principle of inheritance. Types can derive from other types, called
base types. The derived type inherits (with some restrictions) the methods,
properties, and other members of the base type. The base type can in turn derive
from some other type, in which case the derived type inherits the members of both
base types in its inheritance hierarchy. All types, including built-in numeric types
such as System.Int32 (C# keyword: int), derive ultimately from a single base type,
which is System.Object (C# keyword: object). This unified type hierarchy is called
the Common Type System (CTS). For more information about inheritance in C#, see
Inheritance.
Each type in the CTS is defined as either a value type or a reference type. These
types include all custom types in the .NET class library and also your own user-
defined types. Types that you define by using the struct keyword are value types;
all the built-in numeric types are structs . Types that you define by using the

Built-in types

Custom types

The common type system

https://learn.microsoft.com/en-ca/dotnet/standard/class-library-overview
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/common-type-system

class or record keyword are reference types. Reference types and value types
have different compile-time rules, and different run-time behavior.

The following illustration shows the relationship between value types and reference
types in the CTS.

Classes and structs are two of the basic constructs of the common type system in .NET.
C# 9 adds records, which are a kind of class. Each is essentially a data structure that
encapsulates a set of data and behaviors that belong together as a logical unit. The data
and behaviors are the members of the class, struct, or record. The members include its
methods, properties, events, and so on, as listed later in this article.

A class, struct, or record declaration is like a blueprint that is used to create instances or
objects at run time. If you define a class, struct, or record named Person , Person is the
name of the type. If you declare and initialize a variable p of type Person , p is said to
be an object or instance of Person . Multiple instances of the same Person type can be
created, and each instance can have different values in its properties and fields.

７ Note

You can see that the most commonly used types are all organized in the System
namespace. However, the namespace in which a type is contained has no relation
to whether it is a value type or reference type.

https://learn.microsoft.com/en-us/dotnet/api/system

A class is a reference type. When an object of the type is created, the variable to which
the object is assigned holds only a reference to that memory. When the object reference
is assigned to a new variable, the new variable refers to the original object. Changes
made through one variable are reflected in the other variable because they both refer to
the same data.

A struct is a value type. When a struct is created, the variable to which the struct is
assigned holds the struct's actual data. When the struct is assigned to a new variable, it's
copied. The new variable and the original variable therefore contain two separate copies
of the same data. Changes made to one copy don't affect the other copy.

Record types may be either reference types (record class) or value types (record
struct).

In general, classes are used to model more complex behavior. Classes typically store
data that is intended to be modified after a class object is created. Structs are best
suited for small data structures. Structs typically store data that isn't intended to be
modified after the struct is created. Record types are data structures with additional
compiler synthesized members. Records typically store data that isn't intended to be
modified after the object is created.

Value types derive from System.ValueType, which derives from System.Object. Types that
derive from System.ValueType have special behavior in the CLR. Value type variables
directly contain their values. The memory for a struct is allocated inline in whatever
context the variable is declared. There's no separate heap allocation or garbage
collection overhead for value-type variables. You can declare record struct types that
are value types and include the synthesized members for records.

There are two categories of value types: struct and enum .

The built-in numeric types are structs, and they have fields and methods that you can
access:

C#

But you declare and assign values to them as if they're simple non-aggregate types:

C#

Value types

// constant field on type byte.
byte b = byte.MaxValue;

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype

Value types are sealed. You can't derive a type from any value type, for example
System.Int32. You can't define a struct to inherit from any user-defined class or struct
because a struct can only inherit from System.ValueType. However, a struct can
implement one or more interfaces. You can cast a struct type to any interface type that it
implements. This cast causes a boxing operation to wrap the struct inside a reference
type object on the managed heap. Boxing operations occur when you pass a value type
to a method that takes a System.Object or any interface type as an input parameter. For
more information, see Boxing and Unboxing.

You use the struct keyword to create your own custom value types. Typically, a struct is
used as a container for a small set of related variables, as shown in the following
example:

C#

For more information about structs, see Structure types. For more information about
value types, see Value types.

The other category of value types is enum . An enum defines a set of named integral
constants. For example, the System.IO.FileMode enumeration in the .NET class library
contains a set of named constant integers that specify how a file should be opened. It's
defined as shown in the following example:

C#

byte num = 0xA;
int i = 5;
char c = 'Z';

public struct Coords
{
 public int x, y;

 public Coords(int p1, int p2)
 {
 x = p1;
 y = p2;
 }
}

public enum FileMode
{
 CreateNew = 1,
 Create = 2,
 Open = 3,
 OpenOrCreate = 4,

https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.io.filemode

The System.IO.FileMode.Create constant has a value of 2. However, the name is much
more meaningful for humans reading the source code, and for that reason it's better to
use enumerations instead of constant literal numbers. For more information, see
System.IO.FileMode.

All enums inherit from System.Enum, which inherits from System.ValueType. All the rules
that apply to structs also apply to enums. For more information about enums, see
Enumeration types.

A type that is defined as a class , record , delegate, array, or interface is a reference
type.

When declaring a variable of a reference type, it contains the value null until you assign
it with an instance of that type or create one using the new operator. Creation and
assignment of a class are demonstrated in the following example:

C#

An interface cannot be directly instantiated using the new operator. Instead, create and
assign an instance of a class that implements the interface. Consider the following
example:

C#

When the object is created, the memory is allocated on the managed heap. The variable
holds only a reference to the location of the object. Types on the managed heap require
overhead both when they're allocated and when they're reclaimed. Garbage collection is

 Truncate = 5,
 Append = 6,
}

Reference types

MyClass myClass = new MyClass();
MyClass myClass2 = myClass;

MyClass myClass = new MyClass();

// Declare and assign using an existing value.
IMyInterface myInterface = myClass;

// Or create and assign a value in a single statement.
IMyInterface myInterface2 = new MyClass();

https://learn.microsoft.com/en-us/dotnet/api/system.io.filemode#system-io-filemode-create
https://learn.microsoft.com/en-us/dotnet/api/system.io.filemode
https://learn.microsoft.com/en-us/dotnet/api/system.enum
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype

the automatic memory management functionality of the CLR, which performs the
reclamation. However, garbage collection is also highly optimized, and in most scenarios
it doesn't create a performance issue. For more information about garbage collection,
see Automatic Memory Management.

All arrays are reference types, even if their elements are value types. Arrays implicitly
derive from the System.Array class. You declare and use them with the simplified syntax
that is provided by C#, as shown in the following example:

C#

Reference types fully support inheritance. When you create a class, you can inherit from
any other interface or class that isn't defined as sealed. Other classes can inherit from
your class and override your virtual methods. For more information about how to create
your own classes, see Classes, structs, and records. For more information about
inheritance and virtual methods, see Inheritance.

In C#, literal values receive a type from the compiler. You can specify how a numeric
literal should be typed by appending a letter to the end of the number. For example, to
specify that the value 4.56 should be treated as a float , append an "f" or "F" after the
number: 4.56f . If no letter is appended, the compiler will infer a type for the literal. For
more information about which types can be specified with letter suffixes, see Integral
numeric types and Floating-point numeric types.

Because literals are typed, and all types derive ultimately from System.Object, you can
write and compile code such as the following code:

C#

// Declare and initialize an array of integers.
int[] nums = { 1, 2, 3, 4, 5 };

// Access an instance property of System.Array.
int len = nums.Length;

Types of literal values

string s = "The answer is " + 5.ToString();
// Outputs: "The answer is 5"
Console.WriteLine(s);

Type type = 12345.GetType();
// Outputs: "System.Int32"
Console.WriteLine(type);

https://learn.microsoft.com/en-ca/dotnet/standard/automatic-memory-management
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.object

A type can be declared with one or more type parameters that serve as a placeholder for
the actual type (the concrete type). Client code provides the concrete type when it
creates an instance of the type. Such types are called generic types. For example, the
.NET type System.Collections.Generic.List<T> has one type parameter that by
convention is given the name T . When you create an instance of the type, you specify
the type of the objects that the list will contain, for example, string :

C#

The use of the type parameter makes it possible to reuse the same class to hold any
type of element, without having to convert each element to object. Generic collection
classes are called strongly typed collections because the compiler knows the specific type
of the collection's elements and can raise an error at compile time if, for example, you
try to add an integer to the stringList object in the previous example. For more
information, see Generics.

You can implicitly type a local variable (but not class members) by using the var
keyword. The variable still receives a type at compile time, but the type is provided by
the compiler. For more information, see Implicitly Typed Local Variables.

It can be inconvenient to create a named type for simple sets of related values that you
don't intend to store or pass outside method boundaries. You can create anonymous
types for this purpose. For more information, see Anonymous Types.

Ordinary value types can't have a value of null. However, you can create nullable value
types by appending a ? after the type. For example, int? is an int type that can also
have the value null. Nullable value types are instances of the generic struct type
System.Nullable<T>. Nullable value types are especially useful when you're passing data
to and from databases in which numeric values might be null . For more information,
see Nullable value types.

Generic types

List<string> stringList = new List<string>();
stringList.Add("String example");
// compile time error adding a type other than a string:
stringList.Add(4);

Implicit types, anonymous types, and nullable
value types

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

A variable can have different compile-time and run-time types. The compile-time type is
the declared or inferred type of the variable in the source code. The run-time type is the
type of the instance referred to by that variable. Often those two types are the same, as
in the following example:

C#

In other cases, the compile-time type is different, as shown in the following two
examples:

C#

In both of the preceding examples, the run-time type is a string . The compile-time
type is object in the first line, and IEnumerable<char> in the second.

If the two types are different for a variable, it's important to understand when the
compile-time type and the run-time type apply. The compile-time type determines all
the actions taken by the compiler. These compiler actions include method call
resolution, overload resolution, and available implicit and explicit casts. The run-time
type determines all actions that are resolved at run time. These run-time actions include
dispatching virtual method calls, evaluating is and switch expressions, and other type
testing APIs. To better understand how your code interacts with types, recognize which
action applies to which type.

For more information, see the following articles:

Builtin types
Value Types
Reference Types

Compile-time type and run-time type

string message = "This is a string of characters";

object anotherMessage = "This is another string of characters";
IEnumerable<char> someCharacters = "abcdefghijklmnopqrstuvwxyz";

Related sections

C# language specification

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Declare namespaces to organize types
Article • 2022-01-12 • 2 minutes to read

Namespaces are heavily used in C# programming in two ways. First, .NET uses
namespaces to organize its many classes, as follows:

C#

System is a namespace and Console is a class in that namespace. The using keyword
can be used so that the complete name isn't required, as in the following example:

C#

C#

For more information, see the using Directive.

Second, declaring your own namespaces can help you control the scope of class and
method names in larger programming projects. Use the namespace keyword to declare

System.Console.WriteLine("Hello World!");

using System;

Console.WriteLine("Hello World!");

） Important

The C# templates for .NET 6 use top level statements. Your application may not
match the code in this article, if you've already upgraded to the .NET 6. For more
information see the article on New C# templates generate top level statements

The .NET 6 SDK also adds a set of implicit global using directives for projects that
use the following SDKs:

Microsoft.NET.Sdk

Microsoft.NET.Sdk.Web

Microsoft.NET.Sdk.Worker

These implicit global using directives include the most common namespaces for
the project type.

https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.console
https://learn.microsoft.com/en-ca/dotnet/core/tutorials/top-level-templates

a namespace, as in the following example:

C#

The name of the namespace must be a valid C# identifier name.

Beginning with C# 10, you can declare a namespace for all types defined in that file, as
shown in the following example:

C#

The advantage of this new syntax is that it's simpler, saving horizontal space and braces.
That makes your code easier to read.

Namespaces have the following properties:

They organize large code projects.
They're delimited by using the . operator.
The using directive obviates the requirement to specify the name of the
namespace for every class.
The global namespace is the "root" namespace: global::System will always refer
to the .NET System namespace.

namespace SampleNamespace
{
 class SampleClass
 {
 public void SampleMethod()
 {
 System.Console.WriteLine(
 "SampleMethod inside SampleNamespace");
 }
 }
}

namespace SampleNamespace;

class AnotherSampleClass
{
 public void AnotherSampleMethod()
 {
 System.Console.WriteLine(
 "SampleMethod inside SampleNamespace");
 }
}

Namespaces overview

https://learn.microsoft.com/en-us/dotnet/api/system

For more information, see the Namespaces section of the C# language specification.

C# language specification

Introduction to classes
Article • 2021-09-15 • 5 minutes to read

A type that is defined as a class is a reference type. At run time, when you declare a
variable of a reference type, the variable contains the value null until you explicitly
create an instance of the class by using the new operator, or assign it an object of a
compatible type that may have been created elsewhere, as shown in the following
example:

C#

When the object is created, enough memory is allocated on the managed heap for that
specific object, and the variable holds only a reference to the location of said object.
Types on the managed heap require overhead both when they are allocated and when
they are reclaimed by the automatic memory management functionality of the CLR,
which is known as garbage collection. However, garbage collection is also highly
optimized and in most scenarios, it does not create a performance issue. For more
information about garbage collection, see Automatic memory management and
garbage collection.

Classes are declared by using the class keyword followed by a unique identifier, as
shown in the following example:

C#

Reference types

//Declaring an object of type MyClass.
MyClass mc = new MyClass();

//Declaring another object of the same type, assigning it the value of the
first object.
MyClass mc2 = mc;

Declaring Classes

//[access modifier] - [class] - [identifier]
public class Customer
{
 // Fields, properties, methods and events go here...
}

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/fundamentals

The class keyword is preceded by the access level. Because public is used in this case,
anyone can create instances of this class. The name of the class follows the class
keyword. The name of the class must be a valid C# identifier name. The remainder of the
definition is the class body, where the behavior and data are defined. Fields, properties,
methods, and events on a class are collectively referred to as class members.

Although they are sometimes used interchangeably, a class and an object are different
things. A class defines a type of object, but it is not an object itself. An object is a
concrete entity based on a class, and is sometimes referred to as an instance of a class.

Objects can be created by using the new keyword followed by the name of the class that
the object will be based on, like this:

C#

When an instance of a class is created, a reference to the object is passed back to the
programmer. In the previous example, object1 is a reference to an object that is based
on Customer . This reference refers to the new object but does not contain the object
data itself. In fact, you can create an object reference without creating an object at all:

C#

We don't recommend creating object references such as the preceding one that don't
refer to an object because trying to access an object through such a reference will fail at
run time. However, such a reference can be made to refer to an object, either by
creating a new object, or by assigning it an existing object, such as this:

C#

This code creates two object references that both refer to the same object. Therefore,
any changes to the object made through object3 are reflected in subsequent uses of
object4 . Because objects that are based on classes are referred to by reference, classes
are known as reference types.

Creating objects

Customer object1 = new Customer();

 Customer object2;

Customer object3 = new Customer();
Customer object4 = object3;

Classes fully support inheritance, a fundamental characteristic of object-oriented
programming. When you create a class, you can inherit from any other class that is not
defined as sealed, and other classes can inherit from your class and override class virtual
methods. Furthermore, you can implement one or more interfaces.

Inheritance is accomplished by using a derivation, which means a class is declared by
using a base class from which it inherits data and behavior. A base class is specified by
appending a colon and the name of the base class following the derived class name, like
this:

C#

When a class declares a base class, it inherits all the members of the base class except
the constructors. For more information, see Inheritance.

A class in C# can only directly inherit from one base class. However, because a base class
may itself inherit from another class, a class may indirectly inherit multiple base classes.
Furthermore, a class can directly implement one or more interfaces. For more
information, see Interfaces.

A class can be declared abstract. An abstract class contains abstract methods that have a
signature definition but no implementation. Abstract classes cannot be instantiated.
They can only be used through derived classes that implement the abstract methods. By
contrast, a sealed class does not allow other classes to derive from it. For more
information, see Abstract and Sealed Classes and Class Members.

Class definitions can be split between different source files. For more information, see
Partial Classes and Methods.

The following example defines a public class that contains an auto-implemented
property, a method, and a special method called a constructor. For more information,
see Properties, Methods, and Constructors articles. The instances of the class are then
instantiated with the new keyword.

Class inheritance

public class Manager : Employee
{
 // Employee fields, properties, methods and events are inherited
 // New Manager fields, properties, methods and events go here...
}

Example

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

using System;

public class Person
{
 // Constructor that takes no arguments:
 public Person()
 {
 Name = "unknown";
 }

 // Constructor that takes one argument:
 public Person(string name)
 {
 Name = name;
 }

 // Auto-implemented readonly property:
 public string Name { get; }

 // Method that overrides the base class (System.Object) implementation.
 public override string ToString()
 {
 return Name;
 }
}
class TestPerson
{
 static void Main()
 {
 // Call the constructor that has no parameters.
 var person1 = new Person();
 Console.WriteLine(person1.Name);

 // Call the constructor that has one parameter.
 var person2 = new Person("Sarah Jones");
 Console.WriteLine(person2.Name);
 // Get the string representation of the person2 instance.
 Console.WriteLine(person2);
 }
}
// Output:
// unknown
// Sarah Jones
// Sarah Jones

C# Language Specification

Introduction to record types in C#
Article • 2022-03-11 • 3 minutes to read

A record in C# is a class or struct that provides special syntax and behavior for working
with data models.

Consider using a record in place of a class or struct in the following scenarios:

You want to define a data model that depends on value equality.
You want to define a type for which objects are immutable.

For records, value equality means that two variables of a record type are equal if the
types match and all property and field values match. For other reference types such as
classes, equality means reference equality. That is, two variables of a class type are equal
if they refer to the same object. Methods and operators that determine equality of two
record instances use value equality.

Not all data models work well with value equality. For example, Entity Framework Core
depends on reference equality to ensure that it uses only one instance of an entity type
for what is conceptually one entity. For this reason, record types aren't appropriate for
use as entity types in Entity Framework Core.

An immutable type is one that prevents you from changing any property or field values
of an object after it's instantiated. Immutability can be useful when you need a type to
be thread-safe or you're depending on a hash code remaining the same in a hash table.
Records provide concise syntax for creating and working with immutable types.

Immutability isn't appropriate for all data scenarios. Entity Framework Core, for example,
doesn't support updating with immutable entity types.

The same syntax that declares and instantiates classes or structs can be used with
records. Just substitute the class keyword with the record , or use record struct

When to use records

Value equality

Immutability

How records differ from classes and structs

https://learn.microsoft.com/en-us/ef/core/
https://learn.microsoft.com/en-us/ef/core/

instead of struct . Likewise, the same syntax for expressing inheritance relationships is
supported by record classes. Records differ from classes in the following ways:

You can use positional parameters to create and instantiate a type with immutable
properties.
The same methods and operators that indicate reference equality or inequality in
classes (such as Object.Equals(Object) and ==), indicate value equality or inequality
in records.
You can use a with expression to create a copy of an immutable object with new
values in selected properties.
A record's ToString method creates a formatted string that shows an object's type
name and the names and values of all its public properties.
A record can inherit from another record. A record can't inherit from a class, and a
class can't inherit from a record.

Record structs differ from structs in that the compiler synthesizes the methods for
equality, and ToString . The compiler synthesizes a Deconstruct method for positional
record structs.

The following example defines a public record that uses positional parameters to
declare and instantiate a record. It then prints the type name and property values:

C#

The following example demonstrates value equality in records:

C#

Examples

public record Person(string FirstName, string LastName);

public static void Main()
{
 Person person = new("Nancy", "Davolio");
 Console.WriteLine(person);
 // output: Person { FirstName = Nancy, LastName = Davolio }
}

public record Person(string FirstName, string LastName, string[]
PhoneNumbers);

public static void Main()
{
 var phoneNumbers = new string[2];

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)

The following example demonstrates use of a with expression to copy an immutable
object and change one of the properties:

C#

For more information, see Records (C# reference).

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

 Person person1 = new("Nancy", "Davolio", phoneNumbers);
 Person person2 = new("Nancy", "Davolio", phoneNumbers);
 Console.WriteLine(person1 == person2); // output: True

 person1.PhoneNumbers[0] = "555-1234";
 Console.WriteLine(person1 == person2); // output: True

 Console.WriteLine(ReferenceEquals(person1, person2)); // output: False
}

public record Person(string FirstName, string LastName)
{
 public string[] PhoneNumbers { get; init; }
}

public static void Main()
{
 Person person1 = new("Nancy", "Davolio") { PhoneNumbers = new string[1]
};
 Console.WriteLine(person1);
 // output: Person { FirstName = Nancy, LastName = Davolio, PhoneNumbers
= System.String[] }

 Person person2 = person1 with { FirstName = "John" };
 Console.WriteLine(person2);
 // output: Person { FirstName = John, LastName = Davolio, PhoneNumbers =
System.String[] }
 Console.WriteLine(person1 == person2); // output: False

 person2 = person1 with { PhoneNumbers = new string[1] };
 Console.WriteLine(person2);
 // output: Person { FirstName = Nancy, LastName = Davolio, PhoneNumbers
= System.String[] }
 Console.WriteLine(person1 == person2); // output: False

 person2 = person1 with { };
 Console.WriteLine(person1 == person2); // output: True
}

C# Language Specification

Interfaces - define behavior for multiple
types
Article • 2022-11-03 • 4 minutes to read

An interface contains definitions for a group of related functionalities that a non-
abstract class or a struct must implement. An interface may define static methods,
which must have an implementation. An interface may define a default implementation
for members. An interface may not declare instance data such as fields, auto-
implemented properties, or property-like events.

By using interfaces, you can, for example, include behavior from multiple sources in a
class. That capability is important in C# because the language doesn't support multiple
inheritance of classes. In addition, you must use an interface if you want to simulate
inheritance for structs, because they can't actually inherit from another struct or class.

You define an interface by using the interface keyword as the following example shows.

C#

The name of an interface must be a valid C# identifier name. By convention, interface
names begin with a capital I .

Any class or struct that implements the IEquatable<T> interface must contain a
definition for an Equals method that matches the signature that the interface specifies.
As a result, you can count on a class that implements IEquatable<T> to contain an
Equals method with which an instance of the class can determine whether it's equal to
another instance of the same class.

The definition of IEquatable<T> doesn't provide an implementation for Equals . A class
or struct can implement multiple interfaces, but a class can only inherit from a single
class.

For more information about abstract classes, see Abstract and Sealed Classes and Class
Members.

Interfaces can contain instance methods, properties, events, indexers, or any
combination of those four member types. Interfaces may contain static constructors,

interface IEquatable<T>
{
 bool Equals(T obj);
}

https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1.equals

fields, constants, or operators. Beginning with C# 11, interface members that aren't
fields may be static abstract . An interface can't contain instance fields, instance
constructors, or finalizers. Interface members are public by default, and you can
explicitly specify accessibility modifiers, such as public , protected , internal , private ,
protected internal , or private protected . A private member must have a default
implementation.

To implement an interface member, the corresponding member of the implementing
class must be public, non-static, and have the same name and signature as the interface
member.

A class or struct that implements an interface must provide an implementation for all
declared members without a default implementation provided by the interface.
However, if a base class implements an interface, any class that's derived from the base
class inherits that implementation.

The following example shows an implementation of the IEquatable<T> interface. The
implementing class, Car , must provide an implementation of the Equals method.

C#

Properties and indexers of a class can define extra accessors for a property or indexer
that's defined in an interface. For example, an interface might declare a property that

７ Note

When an interface declares static members, a type implementing that interface may
also declare static members with the same signature. Those are distinct and
uniquely identified by the type declaring the member. The static member declared
in a type doesn't override the static member declared in the interface.

public class Car : IEquatable<Car>
{
 public string? Make { get; set; }
 public string? Model { get; set; }
 public string? Year { get; set; }

 // Implementation of IEquatable<T> interface
 public bool Equals(Car? car)
 {
 return (this.Make, this.Model, this.Year) ==
 (car?.Make, car?.Model, car?.Year);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1.equals

has a get accessor. The class that implements the interface can declare the same
property with both a get and set accessor. However, if the property or indexer uses
explicit implementation, the accessors must match. For more information about explicit
implementation, see Explicit Interface Implementation and Interface Properties.

Interfaces can inherit from one or more interfaces. The derived interface inherits the
members from its base interfaces. A class that implements a derived interface must
implement all members in the derived interface, including all members of the derived
interface's base interfaces. That class may be implicitly converted to the derived
interface or any of its base interfaces. A class might include an interface multiple times
through base classes that it inherits or through interfaces that other interfaces inherit.
However, the class can provide an implementation of an interface only one time and
only if the class declares the interface as part of the definition of the class (class
ClassName : InterfaceName). If the interface is inherited because you inherited a base
class that implements the interface, the base class provides the implementation of the
members of the interface. However, the derived class can reimplement any virtual
interface members instead of using the inherited implementation. When interfaces
declare a default implementation of a method, any class implementing that interface
inherits that implementation (You need to cast the class instance to the interface type to
access the default implementation on the Interface member).

A base class can also implement interface members by using virtual members. In that
case, a derived class can change the interface behavior by overriding the virtual
members. For more information about virtual members, see Polymorphism.

An interface has the following properties:

In C# versions earlier than 8.0, an interface is like an abstract base class with only
abstract members. A class or struct that implements the interface must implement
all its members.
Beginning with C# 8.0, an interface may define default implementations for some
or all of its members. A class or struct that implements the interface doesn't have
to implement members that have default implementations. For more information,
see default interface methods.
An interface can't be instantiated directly. Its members are implemented by any
class or struct that implements the interface.
A class or struct can implement multiple interfaces. A class can inherit a base class
and also implement one or more interfaces.

Interfaces summary

Generic classes and methods
Article • 2022-03-18 • 3 minutes to read

Generics introduces the concept of type parameters to .NET, which make it possible to
design classes and methods that defer the specification of one or more types until the
class or method is declared and instantiated by client code. For example, by using a
generic type parameter T , you can write a single class that other client code can use
without incurring the cost or risk of runtime casts or boxing operations, as shown here:

C#

Generic classes and methods combine reusability, type safety, and efficiency in a way
that their non-generic counterparts cannot. Generics are most frequently used with
collections and the methods that operate on them. The System.Collections.Generic
namespace contains several generic-based collection classes. The non-generic
collections, such as ArrayList are not recommended and are maintained for compatibility
purposes. For more information, see Generics in .NET.

You can also create custom generic types and methods to provide your own generalized
solutions and design patterns that are type-safe and efficient. The following code
example shows a simple generic linked-list class for demonstration purposes. (In most
cases, you should use the List<T> class provided by .NET instead of creating your own.)

// Declare the generic class.
public class GenericList<T>
{
 public void Add(T input) { }
}
class TestGenericList
{
 private class ExampleClass { }
 static void Main()
 {
 // Declare a list of type int.
 GenericList<int> list1 = new GenericList<int>();
 list1.Add(1);

 // Declare a list of type string.
 GenericList<string> list2 = new GenericList<string>();
 list2.Add("");

 // Declare a list of type ExampleClass.
 GenericList<ExampleClass> list3 = new GenericList<ExampleClass>();
 list3.Add(new ExampleClass());
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-ca/dotnet/standard/generics/
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

The type parameter T is used in several locations where a concrete type would
ordinarily be used to indicate the type of the item stored in the list. It is used in the
following ways:

As the type of a method parameter in the AddHead method.
As the return type of the Data property in the nested Node class.
As the type of the private member data in the nested class.

T is available to the nested Node class. When GenericList<T> is instantiated with a
concrete type, for example as a GenericList<int> , each occurrence of T will be replaced
with int .

C#

// type parameter T in angle brackets
public class GenericList<T>
{
 // The nested class is also generic on T.
 private class Node
 {
 // T used in non-generic constructor.
 public Node(T t)
 {
 next = null;
 data = t;
 }

 private Node? next;
 public Node? Next
 {
 get { return next; }
 set { next = value; }
 }

 // T as private member data type.
 private T data;

 // T as return type of property.
 public T Data
 {
 get { return data; }
 set { data = value; }
 }
 }

 private Node? head;

 // constructor
 public GenericList()
 {
 head = null;

The following code example shows how client code uses the generic GenericList<T>
class to create a list of integers. Simply by changing the type argument, the following
code could easily be modified to create lists of strings or any other custom type:

C#

 }

 // T as method parameter type:
 public void AddHead(T t)
 {
 Node n = new Node(t);
 n.Next = head;
 head = n;
 }

 public IEnumerator<T> GetEnumerator()
 {
 Node? current = head;

 while (current != null)
 {
 yield return current.Data;
 current = current.Next;
 }
 }
}

class TestGenericList
{
 static void Main()
 {
 // int is the type argument
 GenericList<int> list = new GenericList<int>();

 for (int x = 0; x < 10; x++)
 {
 list.AddHead(x);
 }

 foreach (int i in list)
 {
 System.Console.Write(i + " ");
 }
 System.Console.WriteLine("\nDone");
 }
}

Generics overview

Use generic types to maximize code reuse, type safety, and performance.
The most common use of generics is to create collection classes.
The .NET class library contains several generic collection classes in the
System.Collections.Generic namespace. The generic collections should be used
whenever possible instead of classes such as ArrayList in the System.Collections
namespace.
You can create your own generic interfaces, classes, methods, events, and
delegates.
Generic classes may be constrained to enable access to methods on particular data
types.
Information on the types that are used in a generic data type may be obtained at
run-time by using reflection.

For more information, see the C# Language Specification.

System.Collections.Generic
Generics in .NET

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Anonymous types
Article • 2022-10-04 • 4 minutes to read

Anonymous types provide a convenient way to encapsulate a set of read-only properties
into a single object without having to explicitly define a type first. The type name is
generated by the compiler and is not available at the source code level. The type of each
property is inferred by the compiler.

You create anonymous types by using the new operator together with an object
initializer. For more information about object initializers, see Object and Collection
Initializers.

The following example shows an anonymous type that is initialized with two properties
named Amount and Message .

C#

Anonymous types typically are used in the select clause of a query expression to return
a subset of the properties from each object in the source sequence. For more
information about queries, see LINQ in C#.

Anonymous types contain one or more public read-only properties. No other kinds of
class members, such as methods or events, are valid. The expression that is used to
initialize a property cannot be null , an anonymous function, or a pointer type.

The most common scenario is to initialize an anonymous type with properties from
another type. In the following example, assume that a class exists that is named
Product . Class Product includes Color and Price properties, together with other
properties that you are not interested in. Variable products is a collection of Product
objects. The anonymous type declaration starts with the new keyword. The declaration
initializes a new type that uses only two properties from Product . Using anonymous
types causes a smaller amount of data to be returned in the query.

If you don't specify member names in the anonymous type, the compiler gives the
anonymous type members the same name as the property being used to initialize them.
You provide a name for a property that's being initialized with an expression, as shown

var v = new { Amount = 108, Message = "Hello" };

// Rest the mouse pointer over v.Amount and v.Message in the following
// statement to verify that their inferred types are int and string.
Console.WriteLine(v.Amount + v.Message);

in the previous example. In the following example, the names of the properties of the
anonymous type are Color and Price .

C#

Typically, when you use an anonymous type to initialize a variable, you declare the
variable as an implicitly typed local variable by using var. The type name cannot be
specified in the variable declaration because only the compiler has access to the
underlying name of the anonymous type. For more information about var , see Implicitly
Typed Local Variables.

You can create an array of anonymously typed elements by combining an implicitly
typed local variable and an implicitly typed array, as shown in the following example.

C#

Anonymous types are class types that derive directly from object, and that cannot be
cast to any type except object. The compiler provides a name for each anonymous type,
although your application cannot access it. From the perspective of the common
language runtime, an anonymous type is no different from any other reference type.

If two or more anonymous object initializers in an assembly specify a sequence of
properties that are in the same order and that have the same names and types, the
compiler treats the objects as instances of the same type. They share the same
compiler-generated type information.

var productQuery =
 from prod in products
 select new { prod.Color, prod.Price };

foreach (var v in productQuery)
{
 Console.WriteLine("Color={0}, Price={1}", v.Color, v.Price);
}

 Tip

You can use .NET style rule IDE0037 to enforce whether inferred or explicit member
names are preferred.

var anonArray = new[] { new { name = "apple", diam = 4 }, new { name =
"grape", diam = 1 }};

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0037

Anonymous types support non-destructive mutation in the form of with expressions.
This enables you to create a new instance of an anonymous type where one or more
properties have new values:

C#

You cannot declare a field, a property, an event, or the return type of a method as
having an anonymous type. Similarly, you cannot declare a formal parameter of a
method, property, constructor, or indexer as having an anonymous type. To pass an
anonymous type, or a collection that contains anonymous types, as an argument to a
method, you can declare the parameter as type object . However, using object for
anonymous types defeats the purpose of strong typing. If you must store query results
or pass them outside the method boundary, consider using an ordinary named struct or
class instead of an anonymous type.

Because the Equals and GetHashCode methods on anonymous types are defined in
terms of the Equals and GetHashCode methods of the properties, two instances of the
same anonymous type are equal only if all their properties are equal.

Anonymous types do override the ToString method, concatenating the name and
ToString output of every property surrounded by curly braces.

var apple = new { Item = "apples", Price = 1.35 };
var onSale = apple with { Price = 0.79 };
Console.WriteLine(apple);
Console.WriteLine(onSale);

var v = new { Title = "Hello", Age = 24 };

Console.WriteLine(v.ToString()); // "{ Title = Hello, Age = 24 }"

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

Overview of classes, structs, and records
in C#
Article • 2022-09-21 • 4 minutes to read

In C#, the definition of a type—a class, struct, or record—is like a blueprint that specifies
what the type can do. An object is basically a block of memory that has been allocated
and configured according to the blueprint. This article provides an overview of these
blueprints and their features. The next article in this series introduces objects.

Encapsulation is sometimes referred to as the first pillar or principle of object-oriented
programming. A class or struct can specify how accessible each of its members is to
code outside of the class or struct. Methods and variables that aren't intended to be
used from outside of the class or assembly can be hidden to limit the potential for
coding errors or malicious exploits. For more information, see the Object-oriented
programming tutorial.

The members of a type include all methods, fields, constants, properties, and events. In
C#, there are no global variables or methods as there are in some other languages. Even
a program's entry point, the Main method, must be declared within a class or struct
(implicitly when you use top-level statements).

The following list includes all the various kinds of members that may be declared in a
class, struct, or record.

Fields
Constants
Properties
Methods
Constructors
Events
Finalizers
Indexers
Operators
Nested Types

Encapsulation

Members

For more information, see Members.

Some methods and properties are meant to be called or accessed from code outside a
class or struct, known as client code. Other methods and properties might be only for
use in the class or struct itself. It's important to limit the accessibility of your code so
that only the intended client code can reach it. You specify how accessible your types
and their members are to client code by using the following access modifiers:

public
protected
internal
protected internal
private
private protected.

The default accessibility is private .

Classes (but not structs) support the concept of inheritance. A class that derives from
another class, called the base class, automatically contains all the public, protected, and
internal members of the base class except its constructors and finalizers.

Classes may be declared as abstract, which means that one or more of their methods
have no implementation. Although abstract classes cannot be instantiated directly, they
can serve as base classes for other classes that provide the missing implementation.
Classes can also be declared as sealed to prevent other classes from inheriting from
them.

For more information, see Inheritance and Polymorphism.

Classes, structs, and records can implement multiple interfaces. To implement from an
interface means that the type implements all the methods defined in the interface. For
more information, see Interfaces.

Accessibility

Inheritance

Interfaces

Generic Types

Classes, structs, and records can be defined with one or more type parameters. Client
code supplies the type when it creates an instance of the type. For example, the List<T>
class in the System.Collections.Generic namespace is defined with one type parameter.
Client code creates an instance of a List<string> or List<int> to specify the type that
the list will hold. For more information, see Generics.

Classes (but not structs or records) can be declared as static . A static class can contain
only static members and can't be instantiated with the new keyword. One copy of the
class is loaded into memory when the program loads, and its members are accessed
through the class name. Classes, structs, and records can contain static members. For
more information, see Static classes and static class members.

A class, struct, or record can be nested within another class, struct, or record. For more
information, see Nested Types.

You can define part of a class, struct, or method in one code file and another part in a
separate code file. For more information, see Partial Classes and Methods.

You can instantiate and initialize class or struct objects, and collections of objects, by
assigning values to its properties. For more information, see How to initialize objects by
using an object initializer.

In situations where it isn't convenient or necessary to create a named class you use
anonymous types. Anonymous types are defined by their named data members. For
more information, see Anonymous types.

Static Types

Nested Types

Partial Types

Object Initializers

Anonymous Types

Extension Methods

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic

You can "extend" a class without creating a derived class by creating a separate type.
That type contains methods that can be called as if they belonged to the original type.
For more information, see Extension methods.

Within a class or struct method, you can use implicit typing to instruct the compiler to
determine a variable's type at compile time. For more information, see var (C#
reference).

C# 9 introduces the record type, a reference type that you can create instead of a class
or a struct. Records are classes with built-in behavior for encapsulating data in
immutable types. C# 10 introduces the record struct value type. A record (either
record class or record struct) provides the following features:

Concise syntax for creating a reference type with immutable properties.
Value equality. Two variables of a record type are equal if they have the same type,
and if, for every field, the values in both records are equal. Classes use reference
equality: two variables of a class type are equal if they refer to the same object.
Concise syntax for nondestructive mutation. A with expression lets you create a
new record instance that is a copy of an existing instance but with specified
property values changed.
Built-in formatting for display. The ToString method prints the record type name
and the names and values of public properties.
Support for inheritance hierarchies in record classes. Record classes support
inheritance. Record structs don't support inheritance.

For more information, see Records.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Implicitly Typed Local Variables

Records

C# Language Specification

Objects - create instances of types
Article • 2021-09-17 • 5 minutes to read

A class or struct definition is like a blueprint that specifies what the type can do. An
object is basically a block of memory that has been allocated and configured according
to the blueprint. A program may create many objects of the same class. Objects are also
called instances, and they can be stored in either a named variable or in an array or
collection. Client code is the code that uses these variables to call the methods and
access the public properties of the object. In an object-oriented language such as C#, a
typical program consists of multiple objects interacting dynamically.

Because classes are reference types, a variable of a class object holds a reference to the
address of the object on the managed heap. If a second variable of the same type is
assigned to the first variable, then both variables refer to the object at that address. This
point is discussed in more detail later in this article.

Instances of classes are created by using the new operator. In the following example,
Person is the type and person1 and person2 are instances, or objects, of that type.

C#

７ Note

Static types behave differently than what is described here. For more information,
see Static Classes and Static Class Members.

Struct Instances vs. Class Instances

public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }
 // Other properties, methods, events...
}

class Program
{
 static void Main()
 {

Because structs are value types, a variable of a struct object holds a copy of the entire
object. Instances of structs can also be created by using the new operator, but this isn't
required, as shown in the following example:

C#

 Person person1 = new Person("Leopold", 6);
 Console.WriteLine("person1 Name = {0} Age = {1}", person1.Name,
person1.Age);

 // Declare new person, assign person1 to it.
 Person person2 = person1;

 // Change the name of person2, and person1 also changes.
 person2.Name = "Molly";
 person2.Age = 16;

 Console.WriteLine("person2 Name = {0} Age = {1}", person2.Name,
person2.Age);
 Console.WriteLine("person1 Name = {0} Age = {1}", person1.Name,
person1.Age);
 }
}
/*
 Output:
 person1 Name = Leopold Age = 6
 person2 Name = Molly Age = 16
 person1 Name = Molly Age = 16
*/

namespace Example;

public struct Person
{
 public string Name;
 public int Age;
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }
}

public class Application
{
 static void Main()
 {
 // Create struct instance and initialize by using "new".
 // Memory is allocated on thread stack.
 Person p1 = new Person("Alex", 9);
 Console.WriteLine("p1 Name = {0} Age = {1}", p1.Name, p1.Age);

The memory for both p1 and p2 is allocated on the thread stack. That memory is
reclaimed along with the type or method in which it's declared. This is one reason why
structs are copied on assignment. By contrast, the memory that is allocated for a class
instance is automatically reclaimed (garbage collected) by the common language
runtime when all references to the object have gone out of scope. It isn't possible to
deterministically destroy a class object like you can in C++. For more information about
garbage collection in .NET, see Garbage Collection.

When you compare two objects for equality, you must first distinguish whether you
want to know whether the two variables represent the same object in memory, or
whether the values of one or more of their fields are equivalent. If you're intending to
compare values, you must consider whether the objects are instances of value types
(structs) or reference types (classes, delegates, arrays).

 // Create new struct object. Note that struct can be initialized
 // without using "new".
 Person p2 = p1;

 // Assign values to p2 members.
 p2.Name = "Spencer";
 p2.Age = 7;
 Console.WriteLine("p2 Name = {0} Age = {1}", p2.Name, p2.Age);

 // p1 values remain unchanged because p2 is copy.
 Console.WriteLine("p1 Name = {0} Age = {1}", p1.Name, p1.Age);
 }
}
/*
 Output:
 p1 Name = Alex Age = 9
 p2 Name = Spencer Age = 7
 p1 Name = Alex Age = 9
*/

７ Note

The allocation and deallocation of memory on the managed heap is highly
optimized in the common language runtime. In most cases there is no significant
difference in the performance cost of allocating a class instance on the heap versus
allocating a struct instance on the stack.

Object Identity vs. Value Equality

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/

To determine whether two class instances refer to the same location in memory
(which means that they have the same identity), use the static Object.Equals
method. (System.Object is the implicit base class for all value types and reference
types, including user-defined structs and classes.)

To determine whether the instance fields in two struct instances have the same
values, use the ValueType.Equals method. Because all structs implicitly inherit from
System.ValueType, you call the method directly on your object as shown in the
following example:

C#

The System.ValueType implementation of Equals uses boxing and reflection in
some cases. For information about how to provide an efficient equality algorithm
that is specific to your type, see How to define value equality for a type. Records
are reference types that use value semantics for equality.

To determine whether the values of the fields in two class instances are equal, you
might be able to use the Equals method or the == operator. However, only use
them if the class has overridden or overloaded them to provide a custom definition
of what "equality" means for objects of that type. The class might also implement
the IEquatable<T> interface or the IEqualityComparer<T> interface. Both
interfaces provide methods that can be used to test value equality. When
designing your own classes that override Equals , make sure to follow the

// Person is defined in the previous example.

//public struct Person
//{
// public string Name;
// public int Age;
// public Person(string name, int age)
// {
// Name = name;
// Age = age;
// }
//}

Person p1 = new Person("Wallace", 75);
Person p2 = new Person("", 42);
p2.Name = "Wallace";
p2.Age = 75;

if (p2.Equals(p1))
 Console.WriteLine("p2 and p1 have the same values.");

// Output: p2 and p1 have the same values.

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype.equals
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1

guidelines stated in How to define value equality for a type and
Object.Equals(Object).

For more information:

Classes
Constructors
Finalizers
Events
object
Inheritance
class
Structure types
new Operator
Common Type System

Related Sections

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/common-type-system

Inheritance - derive types to create
more specialized behavior
Article • 2022-02-16 • 6 minutes to read

Inheritance, together with encapsulation and polymorphism, is one of the three primary
characteristics of object-oriented programming. Inheritance enables you to create new
classes that reuse, extend, and modify the behavior defined in other classes. The class
whose members are inherited is called the base class, and the class that inherits those
members is called the derived class. A derived class can have only one direct base class.
However, inheritance is transitive. If ClassC is derived from ClassB , and ClassB is
derived from ClassA , ClassC inherits the members declared in ClassB and ClassA .

Conceptually, a derived class is a specialization of the base class. For example, if you
have a base class Animal , you might have one derived class that is named Mammal and
another derived class that is named Reptile . A Mammal is an Animal , and a Reptile is an
Animal , but each derived class represents different specializations of the base class.

Interface declarations may define a default implementation for its members. These
implementations are inherited by derived interfaces, and by classes that implement
those interfaces. For more information on default interface methods, see the article on
interfaces.

When you define a class to derive from another class, the derived class implicitly gains
all the members of the base class, except for its constructors and finalizers. The derived
class reuses the code in the base class without having to reimplement it. You can add
more members in the derived class. The derived class extends the functionality of the
base class.

The following illustration shows a class WorkItem that represents an item of work in
some business process. Like all classes, it derives from System.Object and inherits all its
methods. WorkItem adds six members of its own. These members include a constructor,
because constructors aren't inherited. Class ChangeRequest inherits from WorkItem and
represents a particular kind of work item. ChangeRequest adds two more members to the
members that it inherits from WorkItem and from Object. It must add its own
constructor, and it also adds originalItemID . Property originalItemID enables the

７ Note

Structs do not support inheritance, but they can implement interfaces.

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object

ChangeRequest instance to be associated with the original WorkItem to which the change
request applies.

The following example shows how the class relationships demonstrated in the previous
illustration are expressed in C#. The example also shows how WorkItem overrides the
virtual method Object.ToString, and how the ChangeRequest class inherits the WorkItem
implementation of the method. The first block defines the classes:

C#

// WorkItem implicitly inherits from the Object class.
public class WorkItem
{
 // Static field currentID stores the job ID of the last WorkItem that
 // has been created.
 private static int currentID;

 //Properties.
 protected int ID { get; set; }
 protected string Title { get; set; }
 protected string Description { get; set; }
 protected TimeSpan jobLength { get; set; }

 // Default constructor. If a derived class does not invoke a base-
 // class constructor explicitly, the default constructor is called
 // implicitly.
 public WorkItem()
 {
 ID = 0;
 Title = "Default title";
 Description = "Default description.";
 jobLength = new TimeSpan();
 }

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

 // Instance constructor that has three parameters.
 public WorkItem(string title, string desc, TimeSpan joblen)
 {
 this.ID = GetNextID();
 this.Title = title;
 this.Description = desc;
 this.jobLength = joblen;
 }

 // Static constructor to initialize the static member, currentID. This
 // constructor is called one time, automatically, before any instance
 // of WorkItem or ChangeRequest is created, or currentID is referenced.
 static WorkItem() => currentID = 0;

 // currentID is a static field. It is incremented each time a new
 // instance of WorkItem is created.
 protected int GetNextID() => ++currentID;

 // Method Update enables you to update the title and job length of an
 // existing WorkItem object.
 public void Update(string title, TimeSpan joblen)
 {
 this.Title = title;
 this.jobLength = joblen;
 }

 // Virtual method override of the ToString method that is inherited
 // from System.Object.
 public override string ToString() =>
 $"{this.ID} - {this.Title}";
}

// ChangeRequest derives from WorkItem and adds a property (originalItemID)
// and two constructors.
public class ChangeRequest : WorkItem
{
 protected int originalItemID { get; set; }

 // Constructors. Because neither constructor calls a base-class
 // constructor explicitly, the default constructor in the base class
 // is called implicitly. The base class must contain a default
 // constructor.

 // Default constructor for the derived class.
 public ChangeRequest() { }

 // Instance constructor that has four parameters.
 public ChangeRequest(string title, string desc, TimeSpan jobLen,
 int originalID)
 {
 // The following properties and the GetNexID method are inherited
 // from WorkItem.
 this.ID = GetNextID();
 this.Title = title;
 this.Description = desc;

This next block shows how to use the base and derived classes:

C#

When a base class declares a method as virtual, a derived class can override the method
with its own implementation. If a base class declares a member as abstract, that method
must be overridden in any non-abstract class that directly inherits from that class. If a
derived class is itself abstract, it inherits abstract members without implementing them.
Abstract and virtual members are the basis for polymorphism, which is the second

 this.jobLength = jobLen;

 // Property originalItemID is a member of ChangeRequest, but not
 // of WorkItem.
 this.originalItemID = originalID;
 }
}

// Create an instance of WorkItem by using the constructor in the
// base class that takes three arguments.
WorkItem item = new WorkItem("Fix Bugs",
 "Fix all bugs in my code branch",
 new TimeSpan(3, 4, 0, 0));

// Create an instance of ChangeRequest by using the constructor in
// the derived class that takes four arguments.
ChangeRequest change = new ChangeRequest("Change Base Class Design",
 "Add members to the class",
 new TimeSpan(4, 0, 0),
 1);

// Use the ToString method defined in WorkItem.
Console.WriteLine(item.ToString());

// Use the inherited Update method to change the title of the
// ChangeRequest object.
change.Update("Change the Design of the Base Class",
 new TimeSpan(4, 0, 0));

// ChangeRequest inherits WorkItem's override of ToString.
Console.WriteLine(change.ToString());
/* Output:
 1 - Fix Bugs
 2 - Change the Design of the Base Class
*/

Abstract and virtual methods

primary characteristic of object-oriented programming. For more information, see
Polymorphism.

You can declare a class as abstract if you want to prevent direct instantiation by using
the new operator. An abstract class can be used only if a new class is derived from it. An
abstract class can contain one or more method signatures that themselves are declared
as abstract. These signatures specify the parameters and return value but have no
implementation (method body). An abstract class doesn't have to contain abstract
members; however, if a class does contain an abstract member, the class itself must be
declared as abstract. Derived classes that aren't abstract themselves must provide the
implementation for any abstract methods from an abstract base class.

An interface is a reference type that defines a set of members. All classes and structs
that implement that interface must implement that set of members. An interface may
define a default implementation for any or all of these members. A class can implement
multiple interfaces even though it can derive from only a single direct base class.

Interfaces are used to define specific capabilities for classes that don't necessarily have
an "is a" relationship. For example, the System.IEquatable<T> interface can be
implemented by any class or struct to determine whether two objects of the type are
equivalent (however the type defines equivalence). IEquatable<T> doesn't imply the
same kind of "is a" relationship that exists between a base class and a derived class (for
example, a Mammal is an Animal). For more information, see Interfaces.

A class can prevent other classes from inheriting from it, or from any of its members, by
declaring itself or the member as sealed.

A derived class can hide base class members by declaring members with the same name
and signature. The new modifier can be used to explicitly indicate that the member isn't
intended to be an override of the base member. The use of new isn't required, but a
compiler warning will be generated if new isn't used. For more information, see

Abstract base classes

Interfaces

Preventing further derivation

Derived class hiding of base class members

https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1

Versioning with the Override and New Keywords and Knowing When to Use Override
and New Keywords.

Polymorphism
Article • 2021-11-06 • 7 minutes to read

Polymorphism is often referred to as the third pillar of object-oriented programming,
after encapsulation and inheritance. Polymorphism is a Greek word that means "many-
shaped" and it has two distinct aspects:

At run time, objects of a derived class may be treated as objects of a base class in
places such as method parameters and collections or arrays. When this
polymorphism occurs, the object's declared type is no longer identical to its run-
time type.
Base classes may define and implement virtual methods, and derived classes can
override them, which means they provide their own definition and implementation.
At run-time, when client code calls the method, the CLR looks up the run-time type
of the object, and invokes that override of the virtual method. In your source code
you can call a method on a base class, and cause a derived class's version of the
method to be executed.

Virtual methods enable you to work with groups of related objects in a uniform way. For
example, suppose you have a drawing application that enables a user to create various
kinds of shapes on a drawing surface. You don't know at compile time which specific
types of shapes the user will create. However, the application has to keep track of all the
various types of shapes that are created, and it has to update them in response to user
mouse actions. You can use polymorphism to solve this problem in two basic steps:

1. Create a class hierarchy in which each specific shape class derives from a common
base class.

2. Use a virtual method to invoke the appropriate method on any derived class
through a single call to the base class method.

First, create a base class called Shape , and derived classes such as Rectangle , Circle ,
and Triangle . Give the Shape class a virtual method called Draw , and override it in each
derived class to draw the particular shape that the class represents. Create a
List<Shape> object and add a Circle , Triangle , and Rectangle to it.

C#

public class Shape
{
 // A few example members
 public int X { get; private set; }
 public int Y { get; private set; }
 public int Height { get; set; }

To update the drawing surface, use a foreach loop to iterate through the list and call the
Draw method on each Shape object in the list. Even though each object in the list has a
declared type of Shape , it's the run-time type (the overridden version of the method in
each derived class) that will be invoked.

C#

 public int Width { get; set; }

 // Virtual method
 public virtual void Draw()
 {
 Console.WriteLine("Performing base class drawing tasks");
 }
}

public class Circle : Shape
{
 public override void Draw()
 {
 // Code to draw a circle...
 Console.WriteLine("Drawing a circle");
 base.Draw();
 }
}
public class Rectangle : Shape
{
 public override void Draw()
 {
 // Code to draw a rectangle...
 Console.WriteLine("Drawing a rectangle");
 base.Draw();
 }
}
public class Triangle : Shape
{
 public override void Draw()
 {
 // Code to draw a triangle...
 Console.WriteLine("Drawing a triangle");
 base.Draw();
 }
}

// Polymorphism at work #1: a Rectangle, Triangle and Circle
// can all be used wherever a Shape is expected. No cast is
// required because an implicit conversion exists from a derived
// class to its base class.
var shapes = new List<Shape>
{
 new Rectangle(),
 new Triangle(),

In C#, every type is polymorphic because all types, including user-defined types, inherit
from Object.

When a derived class inherits from a base class, it gains all the methods, fields,
properties, and events of the base class. The designer of the derived class has different
choices for the behavior of virtual methods:

The derived class may override virtual members in the base class, defining new
behavior.
The derived class may inherit the closest base class method without overriding it,
preserving the existing behavior but enabling further derived classes to override
the method.
The derived class may define new non-virtual implementation of those members
that hide the base class implementations.

A derived class can override a base class member only if the base class member is
declared as virtual or abstract. The derived member must use the override keyword to
explicitly indicate that the method is intended to participate in virtual invocation. The
following code provides an example:

C#

 new Circle()
};

// Polymorphism at work #2: the virtual method Draw is
// invoked on each of the derived classes, not the base class.
foreach (var shape in shapes)
{
 shape.Draw();
}
/* Output:
 Drawing a rectangle
 Performing base class drawing tasks
 Drawing a triangle
 Performing base class drawing tasks
 Drawing a circle
 Performing base class drawing tasks
*/

Polymorphism overview

Virtual members

public class BaseClass
{

https://learn.microsoft.com/en-us/dotnet/api/system.object

Fields can't be virtual; only methods, properties, events, and indexers can be virtual.
When a derived class overrides a virtual member, that member is called even when an
instance of that class is being accessed as an instance of the base class. The following
code provides an example:

C#

Virtual methods and properties enable derived classes to extend a base class without
needing to use the base class implementation of a method. For more information, see
Versioning with the Override and New Keywords. An interface provides another way to
define a method or set of methods whose implementation is left to derived classes.

If you want your derived class to have a member with the same name as a member in a
base class, you can use the new keyword to hide the base class member. The new
keyword is put before the return type of a class member that is being replaced. The
following code provides an example:

C#

 public virtual void DoWork() { }
 public virtual int WorkProperty
 {
 get { return 0; }
 }
}
public class DerivedClass : BaseClass
{
 public override void DoWork() { }
 public override int WorkProperty
 {
 get { return 0; }
 }
}

DerivedClass B = new DerivedClass();
B.DoWork(); // Calls the new method.

BaseClass A = B;
A.DoWork(); // Also calls the new method.

Hide base class members with new members

public class BaseClass
{
 public void DoWork() { WorkField++; }
 public int WorkField;
 public int WorkProperty

Hidden base class members may be accessed from client code by casting the instance of
the derived class to an instance of the base class. For example:

C#

Virtual members remain virtual, regardless of how many classes have been declared
between the virtual member and the class that originally declared it. If class A declares a
virtual member, and class B derives from A , and class C derives from B , class C inherits
the virtual member, and may override it, regardless of whether class B declared an
override for that member. The following code provides an example:

C#

A derived class can stop virtual inheritance by declaring an override as sealed. Stopping
inheritance requires putting the sealed keyword before the override keyword in the

 {
 get { return 0; }
 }
}

public class DerivedClass : BaseClass
{
 public new void DoWork() { WorkField++; }
 public new int WorkField;
 public new int WorkProperty
 {
 get { return 0; }
 }
}

DerivedClass B = new DerivedClass();
B.DoWork(); // Calls the new method.

BaseClass A = (BaseClass)B;
A.DoWork(); // Calls the old method.

Prevent derived classes from overriding virtual members

public class A
{
 public virtual void DoWork() { }
}
public class B : A
{
 public override void DoWork() { }
}

class member declaration. The following code provides an example:

C#

In the previous example, the method DoWork is no longer virtual to any class derived
from C . It's still virtual for instances of C , even if they're cast to type B or type A . Sealed
methods can be replaced by derived classes by using the new keyword, as the following
example shows:

C#

In this case, if DoWork is called on D using a variable of type D , the new DoWork is called.
If a variable of type C , B , or A is used to access an instance of D , a call to DoWork will
follow the rules of virtual inheritance, routing those calls to the implementation of
DoWork on class C .

A derived class that has replaced or overridden a method or property can still access the
method or property on the base class using the base keyword. The following code
provides an example:

C#

public class C : B
{
 public sealed override void DoWork() { }
}

public class D : C
{
 public new void DoWork() { }
}

Access base class virtual members from derived classes

public class Base
{
 public virtual void DoWork() {/*...*/ }
}
public class Derived : Base
{
 public override void DoWork()
 {
 //Perform Derived's work here
 //...
 // Call DoWork on base class
 base.DoWork();

For more information, see base.

 }
}

７ Note

It is recommended that virtual members use base to call the base class
implementation of that member in their own implementation. Letting the base class
behavior occur enables the derived class to concentrate on implementing behavior
specific to the derived class. If the base class implementation is not called, it is up
to the derived class to make their behavior compatible with the behavior of the
base class.

Pattern matching overview
Article • 2022-12-04 • 9 minutes to read

Pattern matching is a technique where you test an expression to determine if it has
certain characteristics. C# pattern matching provides more concise syntax for testing
expressions and taking action when an expression matches. The "is expression" supports
pattern matching to test an expression and conditionally declare a new variable to the
result of that expression. The "switch expression" enables you to perform actions based
on the first matching pattern for an expression. These two expressions support a rich
vocabulary of patterns.

This article provides an overview of scenarios where you can use pattern matching.
These techniques can improve the readability and correctness of your code. For a full
discussion of all the patterns you can apply, see the article on patterns in the language
reference.

One of the most common scenarios for pattern matching is to ensure values aren't
null . You can test and convert a nullable value type to its underlying type while testing
for null using the following example:

C#

The preceding code is a declaration pattern to test the type of the variable, and assign it
to a new variable. The language rules make this technique safer than many others. The
variable number is only accessible and assigned in the true portion of the if clause. If
you try to access it elsewhere, either in the else clause, or after the if block, the
compiler issues an error. Secondly, because you're not using the == operator, this
pattern works when a type overloads the == operator. That makes it an ideal way to
check null reference values, adding the not pattern:

Null checks

int? maybe = 12;

if (maybe is int number)
{
 Console.WriteLine($"The nullable int 'maybe' has the value {number}");
}
else
{
 Console.WriteLine("The nullable int 'maybe' doesn't hold a value");
}

C#

The preceding example used a constant pattern to compare the variable to null . The
not is a logical pattern that matches when the negated pattern doesn't match.

Another common use for pattern matching is to test a variable to see if it matches a
given type. For example, the following code tests if a variable is non-null and
implements the System.Collections.Generic.IList<T> interface. If it does, it uses the
ICollection<T>.Count property on that list to find the middle index. The declaration
pattern doesn't match a null value, regardless of the compile-time type of the variable.
The code below guards against null , in addition to guarding against a type that doesn't
implement IList .

C#

The same tests can be applied in a switch expression to test a variable against multiple
different types. You can use that information to create better algorithms based on the
specific run-time type.

string? message = "This is not the null string";

if (message is not null)
{
 Console.WriteLine(message);
}

Type tests

public static T MidPoint<T>(IEnumerable<T> sequence)
{
 if (sequence is IList<T> list)
 {
 return list[list.Count / 2];
 }
 else if (sequence is null)
 {
 throw new ArgumentNullException(nameof(sequence), "Sequence can't be
null.");
 }
 else
 {
 int halfLength = sequence.Count() / 2 - 1;
 if (halfLength < 0) halfLength = 0;
 return sequence.Skip(halfLength).First();
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1.count#system-collections-generic-icollection-1-count

You can also test a variable to find a match on specific values. The following code shows
one example where you test a value against all possible values declared in an
enumeration:

C#

The previous example demonstrates a method dispatch based on the value of an
enumeration. The final _ case is a discard pattern that matches all values. It handles any
error conditions where the value doesn't match one of the defined enum values. If you
omit that switch arm, the compiler warns that you haven't handled all possible input
values. At run time, the switch expression throws an exception if the object being
examined doesn't match any of the switch arms. You could use numeric constants
instead of a set of enum values. You can also use this similar technique for constant
string values that represent the commands:

C#

The preceding example shows the same algorithm, but uses string values instead of an
enum. You would use this scenario if your application responds to text commands
instead of a regular data format. Starting with C# 11, you can also use a Span<char> or a
ReadOnlySpan<char> to test for constant string values, as shown in the following sample:

Compare discrete values

public State PerformOperation(Operation command) =>
 command switch
 {
 Operation.SystemTest => RunDiagnostics(),
 Operation.Start => StartSystem(),
 Operation.Stop => StopSystem(),
 Operation.Reset => ResetToReady(),
 _ => throw new ArgumentException("Invalid enum value for command",
nameof(command)),
 };

public State PerformOperation(string command) =>
 command switch
 {
 "SystemTest" => RunDiagnostics(),
 "Start" => StartSystem(),
 "Stop" => StopSystem(),
 "Reset" => ResetToReady(),
 _ => throw new ArgumentException("Invalid string value for command",
nameof(command)),
 };

C#

In all these examples, the discard pattern ensures that you handle every input. The
compiler helps you by making sure every possible input value is handled.

You can use relational patterns to test how a value compares to constants. For example,
the following code returns the state of water based on the temperature in Fahrenheit:

C#

The preceding code also demonstrates the conjunctive and logical pattern to check that
both relational patterns match. You can also use a disjunctive or pattern to check that
either pattern matches. The two relational patterns are surrounded by parentheses,
which you can use around any pattern for clarity. The final two switch arms handle the
cases for the melting point and the boiling point. Without those two arms, the compiler
warns you that your logic doesn't cover every possible input.

The preceding code also demonstrates another important feature the compiler provides
for pattern matching expressions: The compiler warns you if you don't handle every
input value. The compiler also issues a warning if a switch arm is already handled by a
previous switch arm. That gives you freedom to refactor and reorder switch expressions.
Another way to write the same expression could be:

public State PerformOperation(ReadOnlySpan<char> command) =>
 command switch
 {
 "SystemTest" => RunDiagnostics(),
 "Start" => StartSystem(),
 "Stop" => StopSystem(),
 "Reset" => ResetToReady(),
 _ => throw new ArgumentException("Invalid string value for command",
nameof(command)),
 };

Relational patterns

string WaterState(int tempInFahrenheit) =>
 tempInFahrenheit switch
 {
 (> 32) and (< 212) => "liquid",
 < 32 => "solid",
 > 212 => "gas",
 32 => "solid/liquid transition",
 212 => "liquid / gas transition",
 };

C#

The key lesson in this, and any other refactoring or reordering, is that the compiler
validates that you've covered all inputs.

All the patterns you've seen so far have been checking one input. You can write patterns
that examine multiple properties of an object. Consider the following Order record:

C#

The preceding positional record type declares two members at explicit positions.
Appearing first is the Items , then the order's Cost . For more information, see Records.

The following code examines the number of items and the value of an order to calculate
a discounted price:

C#

The first two arms examine two properties of the Order . The third examines only the
cost. The next checks against null , and the final matches any other value. If the Order

string WaterState2(int tempInFahrenheit) =>
 tempInFahrenheit switch
 {
 < 32 => "solid",
 32 => "solid/liquid transition",
 < 212 => "liquid",
 212 => "liquid / gas transition",
 _ => "gas",
};

Multiple inputs

public record Order(int Items, decimal Cost);

public decimal CalculateDiscount(Order order) =>
 order switch
 {
 { Items: > 10, Cost: > 1000.00m } => 0.10m,
 { Items: > 5, Cost: > 500.00m } => 0.05m,
 { Cost: > 250.00m } => 0.02m,
 null => throw new ArgumentNullException(nameof(order), "Can't
calculate discount on null order"),
 var someObject => 0m,
 };

type defines a suitable Deconstruct method, you can omit the property names from the
pattern and use deconstruction to examine properties:

C#

The preceding code demonstrates the positional pattern where the properties are
deconstructed for the expression.

You can check elements in a list or an array using a list pattern. A list pattern provides a
means to apply a pattern to any element of a sequence. In addition, you can apply the
discard pattern (_) to match any element, or apply a slice pattern to match zero or more
elements.

List patterns are a valuable tool when data doesn't follow a regular structure. You can
use pattern matching to test the shape and values of the data instead of transforming it
into a set of objects.

Consider the following excerpt from a text file containing bank transactions:

Output

It's a CSV format, but some of the rows have more columns than others. Even worse for
processing, one column in the WITHDRAWAL type has user-generated text and can contain

public decimal CalculateDiscount(Order order) =>
 order switch
 {
 (> 10, > 1000.00m) => 0.10m,
 (> 5, > 50.00m) => 0.05m,
 { Cost: > 250.00m } => 0.02m,
 null => throw new ArgumentNullException(nameof(order), "Can't
calculate discount on null order"),
 var someObject => 0m,
 };

List patterns

04-01-2020, DEPOSIT, Initial deposit, 2250.00
04-15-2020, DEPOSIT, Refund, 125.65
04-18-2020, DEPOSIT, Paycheck, 825.65
04-22-2020, WITHDRAWAL, Debit, Groceries, 255.73
05-01-2020, WITHDRAWAL, #1102, Rent, apt, 2100.00
05-02-2020, INTEREST, 0.65
05-07-2020, WITHDRAWAL, Debit, Movies, 12.57
04-15-2020, FEE, 5.55

a comma in the text. A list pattern that includes the discard pattern, constant pattern and
var pattern to capture the value processes data in this format:

C#

The preceding example takes a string array, where each element is one field in the row.
The switch expression keys on the second field, which determines the kind of
transaction, and the number of remaining columns. Each row ensures the data is in the
correct format. The discard pattern (_) skips the first field, with the date of the
transaction. The second field matches the type of transaction. Remaining element
matches skip to the field with the amount. The final match uses the var pattern to
capture the string representation of the amount. The expression calculates the amount
to add or subtract from the balance.

List patterns enable you to match on the shape of a sequence of data elements. You use
the discard and slice patterns to match the location of elements. You use other patterns
to match characteristics about individual elements.

This article provided a tour of the kinds of code you can write with pattern matching in
C#. The following articles show more examples of using patterns in scenarios, and the
full vocabulary of patterns available to use.

Use pattern matching to avoid 'is' check followed by a cast (style rules IDE0020 and
IDE0038)
Exploration: Use pattern matching to build your class behavior for better code
Tutorial: Use pattern matching to build type-driven and data-driven algorithms

decimal balance = 0m;
foreach (string[] transaction in ReadRecords())
{
 balance += transaction switch
 {
 [_, "DEPOSIT", _, var amount] => decimal.Parse(amount),
 [_, "WITHDRAWAL", .., var amount] => -decimal.Parse(amount),
 [_, "INTEREST", var amount] => decimal.Parse(amount),
 [_, "FEE", var fee] => -decimal.Parse(fee),
 _ => throw new
InvalidOperationException($"Record {string.Join(", ", transaction)} is not
in the expected format!"),
 };
 Console.WriteLine($"Record: {string.Join(", ", transaction)}, New
balance: {balance:C}");
}

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0020-ide0038

Reference: Pattern matching

Discards - C# Fundamentals
Article • 2022-09-29 • 8 minutes to read

Discards are placeholder variables that are intentionally unused in application code.
Discards are equivalent to unassigned variables; they don't have a value. A discard
communicates intent to the compiler and others that read your code: You intended to
ignore the result of an expression. You may want to ignore the result of an expression,
one or more members of a tuple expression, an out parameter to a method, or the
target of a pattern matching expression.

Discards make the intent of your code clear. A discard indicates that our code never
uses the variable. They enhance its readability and maintainability.

You indicate that a variable is a discard by assigning it the underscore (_) as its name.
For example, the following method call returns a tuple in which the first and second
values are discards. area is a previously declared variable set to the third component
returned by GetCityInformation :

C#

Beginning with C# 9.0, you can use discards to specify unused input parameters of a
lambda expression. For more information, see the Input parameters of a lambda
expression section of the Lambda expressions article.

When _ is a valid discard, attempting to retrieve its value or use it in an assignment
operation generates compiler error CS0301, "The name '_' doesn't exist in the current
context". This error is because _ isn't assigned a value, and may not even be assigned a
storage location. If it were an actual variable, you couldn't discard more than one value,
as the previous example did.

Discards are useful in working with tuples when your application code uses some tuple
elements but ignores others. For example, the following QueryCityDataForYears method
returns a tuple with the name of a city, its area, a year, the city's population for that year,
a second year, and the city's population for that second year. The example shows the
change in population between those two years. Of the data available from the tuple,
we're unconcerned with the city area, and we know the city name and the two dates at

(_, _, area) = city.GetCityInformation(cityName);

Tuple and object deconstruction

design-time. As a result, we're only interested in the two population values stored in the
tuple, and can handle its remaining values as discards.

C#

For more information on deconstructing tuples with discards, see Deconstructing tuples
and other types.

The Deconstruct method of a class, structure, or interface also allows you to retrieve
and deconstruct a specific set of data from an object. You can use discards when you're
interested in working with only a subset of the deconstructed values. The following
example deconstructs a Person object into four strings (the first and last names, the city,
and the state), but discards the last name and the state.

C#

var (_, _, _, pop1, _, pop2) = QueryCityDataForYears("New York City", 1960,
2010);

Console.WriteLine($"Population change, 1960 to 2010: {pop2 - pop1:N0}");

static (string, double, int, int, int, int) QueryCityDataForYears(string
name, int year1, int year2)
{
 int population1 = 0, population2 = 0;
 double area = 0;

 if (name == "New York City")
 {
 area = 468.48;
 if (year1 == 1960)
 {
 population1 = 7781984;
 }
 if (year2 == 2010)
 {
 population2 = 8175133;
 }
 return (name, area, year1, population1, year2, population2);
 }

 return ("", 0, 0, 0, 0, 0);
}
// The example displays the following output:
// Population change, 1960 to 2010: 393,149

using System;

namespace Discards
{

 public class Person
 {
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public Person(string fname, string mname, string lname,
 string cityName, string stateName)
 {
 FirstName = fname;
 MiddleName = mname;
 LastName = lname;
 City = cityName;
 State = stateName;
 }

 // Return the first and last name.
 public void Deconstruct(out string fname, out string lname)
 {
 fname = FirstName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string mname, out
string lname)
 {
 fname = FirstName;
 mname = MiddleName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string lname,
 out string city, out string state)
 {
 fname = FirstName;
 lname = LastName;
 city = City;
 state = State;
 }
 }
 class Example
 {
 public static void Main()
 {
 var p = new Person("John", "Quincy", "Adams", "Boston", "MA");

 // Deconstruct the person object.
 var (fName, _, city, _) = p;
 Console.WriteLine($"Hello {fName} of {city}!");
 // The example displays the following output:
 // Hello John of Boston!
 }

For more information on deconstructing user-defined types with discards, see
Deconstructing tuples and other types.

The discard pattern can be used in pattern matching with the switch expression. Every
expression, including null , always matches the discard pattern.

The following example defines a ProvidesFormatInfo method that uses a switch
expression to determine whether an object provides an IFormatProvider implementation
and tests whether the object is null . It also uses the discard pattern to handle non-null
objects of any other type.

C#

When calling the Deconstruct method to deconstruct a user-defined type (an instance
of a class, structure, or interface), you can discard the values of individual out

 }
}

Pattern matching with switch

object?[] objects = { CultureInfo.CurrentCulture,
 CultureInfo.CurrentCulture.DateTimeFormat,
 CultureInfo.CurrentCulture.NumberFormat,
 new ArgumentException(), null };
foreach (var obj in objects)
 ProvidesFormatInfo(obj);

static void ProvidesFormatInfo(object? obj) =>
 Console.WriteLine(obj switch
 {
 IFormatProvider fmt => $"{fmt.GetType()} object",
 null => "A null object reference: Its use could result in a
NullReferenceException",
 _ => "Some object type without format information"
 });
// The example displays the following output:
// System.Globalization.CultureInfo object
// System.Globalization.DateTimeFormatInfo object
// System.Globalization.NumberFormatInfo object
// Some object type without format information
// A null object reference: Its use could result in a
NullReferenceException

Calls to methods with out parameters

https://learn.microsoft.com/en-us/dotnet/api/system.iformatprovider

arguments. But you can also discard the value of out arguments when calling any
method with an out parameter.

The following example calls the DateTime.TryParse(String, out DateTime) method to
determine whether the string representation of a date is valid in the current culture.
Because the example is concerned only with validating the date string and not with
parsing it to extract the date, the out argument to the method is a discard.

C#

You can use a standalone discard to indicate any variable that you choose to ignore.
One typical use is to use an assignment to ensure that an argument isn't null. The
following code uses a discard to force an assignment. The right side of the assignment
uses the null coalescing operator to throw an System.ArgumentNullException when the
argument is null . The code doesn't need the result of the assignment, so it's discarded.
The expression forces a null check. The discard clarifies your intent: the result of the
assignment isn't needed or used.

C#

string[] dateStrings = {"05/01/2018 14:57:32.8", "2018-05-01 14:57:32.8",
 "2018-05-01T14:57:32.8375298-04:00", "5/01/2018",
 "5/01/2018 14:57:32.80 -07:00",
 "1 May 2018 2:57:32.8 PM", "16-05-2018 1:00:32 PM",
 "Fri, 15 May 2018 20:10:57 GMT" };
foreach (string dateString in dateStrings)
{
 if (DateTime.TryParse(dateString, out _))
 Console.WriteLine($"'{dateString}': valid");
 else
 Console.WriteLine($"'{dateString}': invalid");
}
// The example displays output like the following:
// '05/01/2018 14:57:32.8': valid
// '2018-05-01 14:57:32.8': valid
// '2018-05-01T14:57:32.8375298-04:00': valid
// '5/01/2018': valid
// '5/01/2018 14:57:32.80 -07:00': valid
// '1 May 2018 2:57:32.8 PM': valid
// '16-05-2018 1:00:32 PM': invalid
// 'Fri, 15 May 2018 20:10:57 GMT': invalid

A standalone discard

public static void Method(string arg)
{
 _ = arg ?? throw new ArgumentNullException(paramName: nameof(arg),

https://learn.microsoft.com/en-us/dotnet/api/system.datetime.tryparse#system-datetime-tryparse(system-string-system-datetime@)
https://learn.microsoft.com/en-us/dotnet/api/system.argumentnullexception

The following example uses a standalone discard to ignore the Task object returned by
an asynchronous operation. Assigning the task has the effect of suppressing the
exception that the operation throws as it is about to complete. It makes your intent
clear: You want to discard the Task , and ignore any errors generated from that
asynchronous operation.

C#

Without assigning the task to a discard, the following code generates a compiler
warning:

C#

message: "arg can't be null");

 // Do work with arg.
}

private static async Task ExecuteAsyncMethods()
{
 Console.WriteLine("About to launch a task...");
 _ = Task.Run(() =>
 {
 var iterations = 0;
 for (int ctr = 0; ctr < int.MaxValue; ctr++)
 iterations++;
 Console.WriteLine("Completed looping operation...");
 throw new InvalidOperationException();
 });
 await Task.Delay(5000);
 Console.WriteLine("Exiting after 5 second delay");
}
// The example displays output like the following:
// About to launch a task...
// Completed looping operation...
// Exiting after 5 second delay

private static async Task ExecuteAsyncMethods()
{
 Console.WriteLine("About to launch a task...");
 // CS4014: Because this call is not awaited, execution of the current
method continues before the call is completed.
 // Consider applying the 'await' operator to the result of the call.
 Task.Run(() =>
 {
 var iterations = 0;
 for (int ctr = 0; ctr < int.MaxValue; ctr++)
 iterations++;
 Console.WriteLine("Completed looping operation...");
 throw new InvalidOperationException();

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

_ is also a valid identifier. When used outside of a supported context, _ is treated not
as a discard but as a valid variable. If an identifier named _ is already in scope, the use
of _ as a standalone discard can result in:

Accidental modification of the value of the in-scope _ variable by assigning it the
value of the intended discard. For example:

C#

A compiler error for violating type safety. For example:

C#

Compiler error CS0136, "A local or parameter named '_' cannot be declared in this
scope because that name is used in an enclosing local scope to define a local or
parameter." For example:

C#

 });
 await Task.Delay(5000);
 Console.WriteLine("Exiting after 5 second delay");

７ Note

If you run either of the preceding two samples using a debugger, the debugger will
stop the program when the exception is thrown. Without a debugger attached, the
exception is silently ignored in both cases.

private static void ShowValue(int _)
{
 byte[] arr = { 0, 0, 1, 2 };
 _ = BitConverter.ToInt32(arr, 0);
 Console.WriteLine(_);
}
 // The example displays the following output:
 // 33619968

private static bool RoundTrips(int _)
{
 string value = _.ToString();
 int newValue = 0;
 _ = Int32.TryParse(value, out newValue);
 return _ == newValue;
}
// The example displays the following compiler error:
// error CS0029: Cannot implicitly convert type 'bool' to 'int'

Remove unnecessary expression value (style rule IDE0058)
Remove unnecessary value assignment (style rule IDE0059)
Remove unused parameter (style rule IDE0060)
Deconstructing tuples and other types
is operator
switch expression

 public void DoSomething(int _)
{
 var _ = GetValue(); // Error: cannot declare local _ when one is
already in scope
}
// The example displays the following compiler error:
// error CS0136:
// A local or parameter named '_' cannot be declared in this
scope
// because that name is used in an enclosing local scope
// to define a local or parameter

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0058
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0059
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0060

Deconstructing tuples and other types
Article • 2022-09-29 • 10 minutes to read

A tuple provides a lightweight way to retrieve multiple values from a method call. But
once you retrieve the tuple, you have to handle its individual elements. Working on an
element-by-element basis is cumbersome, as the following example shows. The
QueryCityData method returns a three-tuple, and each of its elements is assigned to a
variable in a separate operation.

C#

Retrieving multiple field and property values from an object can be equally
cumbersome: you must assign a field or property value to a variable on a member-by-
member basis.

You can retrieve multiple elements from a tuple or retrieve multiple field, property, and
computed values from an object in a single deconstruct operation. To deconstruct a
tuple, you assign its elements to individual variables. When you deconstruct an object,
you assign selected values to individual variables.

public class Example
{
 public static void Main()
 {
 var result = QueryCityData("New York City");

 var city = result.Item1;
 var pop = result.Item2;
 var size = result.Item3;

 // Do something with the data.
 }

 private static (string, int, double) QueryCityData(string name)
 {
 if (name == "New York City")
 return (name, 8175133, 468.48);

 return ("", 0, 0);
 }
}

Tuples

C# features built-in support for deconstructing tuples, which lets you unpackage all the
items in a tuple in a single operation. The general syntax for deconstructing a tuple is
similar to the syntax for defining one: you enclose the variables to which each element is
to be assigned in parentheses in the left side of an assignment statement. For example,
the following statement assigns the elements of a four-tuple to four separate variables:

C#

There are three ways to deconstruct a tuple:

You can explicitly declare the type of each field inside parentheses. The following
example uses this approach to deconstruct the three-tuple returned by the
QueryCityData method.

C#

You can use the var keyword so that C# infers the type of each variable. You place
the var keyword outside of the parentheses. The following example uses type
inference when deconstructing the three-tuple returned by the QueryCityData
method.

C#

You can also use the var keyword individually with any or all of the variable
declarations inside the parentheses.

C#

var (name, address, city, zip) = contact.GetAddressInfo();

public static void Main()
{
 (string city, int population, double area) = QueryCityData("New
York City");

 // Do something with the data.
}

public static void Main()
{
 var (city, population, area) = QueryCityData("New York City");

 // Do something with the data.
}

This is cumbersome and isn't recommended.

Lastly, you may deconstruct the tuple into variables that have already been
declared.

C#

Beginning in C# 10, you can mix variable declaration and assignment in a
deconstruction.

C#

You can't specify a specific type outside the parentheses even if every field in the tuple
has the same type. Doing so generates compiler error CS8136, "Deconstruction 'var (...)'
form disallows a specific type for 'var'.".

You must assign each element of the tuple to a variable. If you omit any elements, the
compiler generates error CS8132, "Can't deconstruct a tuple of 'x' elements into 'y'

public static void Main()
{
 (string city, var population, var area) = QueryCityData("New York
City");

 // Do something with the data.
}

public static void Main()
{
 string city = "Raleigh";
 int population = 458880;
 double area = 144.8;

 (city, population, area) = QueryCityData("New York City");

 // Do something with the data.
}

public static void Main()
{
 string city = "Raleigh";
 int population = 458880;

 (city, population, double area) = QueryCityData("New York City");

 // Do something with the data.
}

variables."

Often when deconstructing a tuple, you're interested in the values of only some
elements. You can take advantage of C#'s support for discards, which are write-only
variables whose values you've chosen to ignore. A discard is chosen by an underscore
character ("_") in an assignment. You can discard as many values as you like; all are
represented by the single discard, _ .

The following example illustrates the use of tuples with discards. The
QueryCityDataForYears method returns a six-tuple with the name of a city, its area, a
year, the city's population for that year, a second year, and the city's population for that
second year. The example shows the change in population between those two years. Of
the data available from the tuple, we're unconcerned with the city area, and we know
the city name and the two dates at design-time. As a result, we're only interested in the
two population values stored in the tuple, and can handle its remaining values as
discards.

C#

Tuple elements with discards

using System;

public class ExampleDiscard
{
 public static void Main()
 {
 var (_, _, _, pop1, _, pop2) = QueryCityDataForYears("New York
City", 1960, 2010);

 Console.WriteLine($"Population change, 1960 to 2010: {pop2 -
pop1:N0}");
 }

 private static (string, double, int, int, int, int)
QueryCityDataForYears(string name, int year1, int year2)
 {
 int population1 = 0, population2 = 0;
 double area = 0;

 if (name == "New York City")
 {
 area = 468.48;
 if (year1 == 1960)
 {
 population1 = 7781984;
 }
 if (year2 == 2010)

C# doesn't offer built-in support for deconstructing non-tuple types other than the
record and DictionaryEntry types. However, as the author of a class, a struct, or an
interface, you can allow instances of the type to be deconstructed by implementing one
or more Deconstruct methods. The method returns void, and each value to be
deconstructed is indicated by an out parameter in the method signature. For example,
the following Deconstruct method of a Person class returns the first, middle, and last
name:

C#

You can then deconstruct an instance of the Person class named p with an assignment
like the following code:

C#

The following example overloads the Deconstruct method to return various
combinations of properties of a Person object. Individual overloads return:

A first and last name.
A first, middle, and last name.
A first name, a last name, a city name, and a state name.

C#

 {
 population2 = 8175133;
 }
 return (name, area, year1, population1, year2, population2);
 }

 return ("", 0, 0, 0, 0, 0);
 }
}
// The example displays the following output:
// Population change, 1960 to 2010: 393,149

User-defined types

public void Deconstruct(out string fname, out string mname, out string
lname)

var (fName, mName, lName) = p;

using System;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.dictionaryentry.deconstruct

public class Person
{
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public Person(string fname, string mname, string lname,
 string cityName, string stateName)
 {
 FirstName = fname;
 MiddleName = mname;
 LastName = lname;
 City = cityName;
 State = stateName;
 }

 // Return the first and last name.
 public void Deconstruct(out string fname, out string lname)
 {
 fname = FirstName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string mname, out string
lname)
 {
 fname = FirstName;
 mname = MiddleName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string lname,
 out string city, out string state)
 {
 fname = FirstName;
 lname = LastName;
 city = City;
 state = State;
 }
}

public class ExampleClassDeconstruction
{
 public static void Main()
 {
 var p = new Person("John", "Quincy", "Adams", "Boston", "MA");

 // Deconstruct the person object.
 var (fName, lName, city, state) = p;
 Console.WriteLine($"Hello {fName} {lName} of {city}, {state}!");
 }
}

Multiple Deconstruct methods having the same number of parameters are ambiguous.
You must be careful to define Deconstruct methods with different numbers of
parameters, or "arity". Deconstruct methods with the same number of parameters
cannot be distinguished during overload resolution.

Just as you do with tuples, you can use discards to ignore selected items returned by a
Deconstruct method. Each discard is defined by a variable named "_", and a single
deconstruction operation can include multiple discards.

The following example deconstructs a Person object into four strings (the first and last
names, the city, and the state) but discards the last name and the state.

C#

If you didn't author a class, struct, or interface, you can still deconstruct objects of that
type by implementing one or more Deconstruct extension methods to return the values
in which you're interested.

The following example defines two Deconstruct extension methods for the
System.Reflection.PropertyInfo class. The first returns a set of values that indicate the
characteristics of the property, including its type, whether it's static or instance, whether
it's read-only, and whether it's indexed. The second indicates the property's accessibility.
Because the accessibility of get and set accessors can differ, Boolean values indicate
whether the property has separate get and set accessors and, if it does, whether they
have the same accessibility. If there's only one accessor or both the get and the set
accessor have the same accessibility, the access variable indicates the accessibility of
the property as a whole. Otherwise, the accessibility of the get and set accessors are
indicated by the getAccess and setAccess variables.

// The example displays the following output:
// Hello John Adams of Boston, MA!

User-defined type with discards

// Deconstruct the person object.
var (fName, _, city, _) = p;
Console.WriteLine($"Hello {fName} of {city}!");
// The example displays the following output:
// Hello John of Boston!

Extension methods for user-defined types

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.propertyinfo

C#

using System;
using System.Collections.Generic;
using System.Reflection;

public static class ReflectionExtensions
{
 public static void Deconstruct(this PropertyInfo p, out bool isStatic,
 out bool isReadOnly, out bool isIndexed,
 out Type propertyType)
 {
 var getter = p.GetMethod;

 // Is the property read-only?
 isReadOnly = ! p.CanWrite;

 // Is the property instance or static?
 isStatic = getter.IsStatic;

 // Is the property indexed?
 isIndexed = p.GetIndexParameters().Length > 0;

 // Get the property type.
 propertyType = p.PropertyType;
 }

 public static void Deconstruct(this PropertyInfo p, out bool
hasGetAndSet,
 out bool sameAccess, out string access,
 out string getAccess, out string
setAccess)
 {
 hasGetAndSet = sameAccess = false;
 string getAccessTemp = null;
 string setAccessTemp = null;

 MethodInfo getter = null;
 if (p.CanRead)
 getter = p.GetMethod;

 MethodInfo setter = null;
 if (p.CanWrite)
 setter = p.SetMethod;

 if (setter != null && getter != null)
 hasGetAndSet = true;

 if (getter != null)
 {
 if (getter.IsPublic)
 getAccessTemp = "public";
 else if (getter.IsPrivate)
 getAccessTemp = "private";

 else if (getter.IsAssembly)
 getAccessTemp = "internal";
 else if (getter.IsFamily)
 getAccessTemp = "protected";
 else if (getter.IsFamilyOrAssembly)
 getAccessTemp = "protected internal";
 }

 if (setter != null)
 {
 if (setter.IsPublic)
 setAccessTemp = "public";
 else if (setter.IsPrivate)
 setAccessTemp = "private";
 else if (setter.IsAssembly)
 setAccessTemp = "internal";
 else if (setter.IsFamily)
 setAccessTemp = "protected";
 else if (setter.IsFamilyOrAssembly)
 setAccessTemp = "protected internal";
 }

 // Are the accessibility of the getter and setter the same?
 if (setAccessTemp == getAccessTemp)
 {
 sameAccess = true;
 access = getAccessTemp;
 getAccess = setAccess = String.Empty;
 }
 else
 {
 access = null;
 getAccess = getAccessTemp;
 setAccess = setAccessTemp;
 }
 }
}

public class ExampleExtension
{
 public static void Main()
 {
 Type dateType = typeof(DateTime);
 PropertyInfo prop = dateType.GetProperty("Now");
 var (isStatic, isRO, isIndexed, propType) = prop;
 Console.WriteLine($"\nThe {dateType.FullName}.{prop.Name}
property:");
 Console.WriteLine($" PropertyType: {propType.Name}");
 Console.WriteLine($" Static: {isStatic}");
 Console.WriteLine($" Read-only: {isRO}");
 Console.WriteLine($" Indexed: {isIndexed}");

 Type listType = typeof(List<>);
 prop = listType.GetProperty("Item",
 BindingFlags.Public |

Some system types provide the Deconstruct method as a convenience. For example, the
System.Collections.Generic.KeyValuePair<TKey,TValue> type provides this functionality.
When you're iterating over a System.Collections.Generic.Dictionary<TKey,TValue> each
element is a KeyValuePair<TKey, TValue> and can be deconstructed. Consider the
following example:

C#

BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.Static);
 var (hasGetAndSet, sameAccess, accessibility, getAccessibility,
setAccessibility) = prop;
 Console.Write($"\nAccessibility of the {listType.FullName}.
{prop.Name} property: ");

 if (!hasGetAndSet | sameAccess)
 {
 Console.WriteLine(accessibility);
 }
 else
 {
 Console.WriteLine($"\n The get accessor: {getAccessibility}");
 Console.WriteLine($" The set accessor: {setAccessibility}");
 }
 }
}
// The example displays the following output:
// The System.DateTime.Now property:
// PropertyType: DateTime
// Static: True
// Read-only: True
// Indexed: False
//
// Accessibility of the System.Collections.Generic.List`1.Item
property: public

Extension method for system types

Dictionary<string, int> snapshotCommitMap =
new(StringComparer.OrdinalIgnoreCase)
{
 ["https://github.com/dotnet/docs"] = 16_465,
 ["https://github.com/dotnet/runtime"] = 114_223,
 ["https://github.com/dotnet/installer"] = 22_436,
 ["https://github.com/dotnet/roslyn"] = 79_484,
 ["https://github.com/dotnet/aspnetcore"] = 48_386
};

foreach (var (repo, commitCount) in snapshotCommitMap)
{
 Console.WriteLine(

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.keyvaluepair-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2

You can add a Deconstruct method to system types that don't have one. Consider the
following extension method:

C#

This extension method allows all Nullable<T> types to be deconstructed into a tuple of
(bool hasValue, T value) . The following example shows code that uses this extension
method:

C#

When you declare a record type by using two or more positional parameters, the
compiler creates a Deconstruct method with an out parameter for each positional
parameter in the record declaration. For more information, see Positional syntax for
property definition and Deconstructor behavior in derived records.

 $"The {repo} repository had {commitCount:N0} commits as of November
10th, 2021.");
}

public static class NullableExtensions
{
 public static void Deconstruct<T>(
 this T? nullable,
 out bool hasValue,
 out T value) where T : struct
 {
 hasValue = nullable.HasValue;
 value = nullable.GetValueOrDefault();
 }
}

DateTime? questionableDateTime = default;
var (hasValue, value) = questionableDateTime;
Console.WriteLine(
 $"{{ HasValue = {hasValue}, Value = {value} }}");

questionableDateTime = DateTime.Now;
(hasValue, value) = questionableDateTime;
Console.WriteLine(
 $"{{ HasValue = {hasValue}, Value = {value} }}");

// Example outputs:
// { HasValue = False, Value = 1/1/0001 12:00:00 AM }
// { HasValue = True, Value = 11/10/2021 6:11:45 PM }

record types

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

Deconstruct variable declaration (style rule IDE0042)
Discards
Tuple types

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0042

Exceptions and Exception Handling
Article • 2022-01-12 • 2 minutes to read

The C# language's exception handling features help you deal with any unexpected or
exceptional situations that occur when a program is running. Exception handling uses
the try , catch , and finally keywords to try actions that may not succeed, to handle
failures when you decide that it's reasonable to do so, and to clean up resources
afterward. Exceptions can be generated by the common language runtime (CLR), by
.NET or third-party libraries, or by application code. Exceptions are created by using the
throw keyword.

In many cases, an exception may be thrown not by a method that your code has called
directly, but by another method further down in the call stack. When an exception is
thrown, the CLR will unwind the stack, looking for a method with a catch block for the
specific exception type, and it will execute the first such catch block that it finds. If it
finds no appropriate catch block anywhere in the call stack, it will terminate the process
and display a message to the user.

In this example, a method tests for division by zero and catches the error. Without the
exception handling, this program would terminate with a DivideByZeroException was
unhandled error.

C#

public class ExceptionTest
{
 static double SafeDivision(double x, double y)
 {
 if (y == 0)
 throw new DivideByZeroException();
 return x / y;
 }

 public static void Main()
 {
 // Input for test purposes. Change the values to see
 // exception handling behavior.
 double a = 98, b = 0;
 double result;

 try
 {
 result = SafeDivision(a, b);
 Console.WriteLine("{0} divided by {1} = {2}", a, b, result);
 }
 catch (DivideByZeroException)

Exceptions have the following properties:

Exceptions are types that all ultimately derive from System.Exception .
Use a try block around the statements that might throw exceptions.
Once an exception occurs in the try block, the flow of control jumps to the first
associated exception handler that is present anywhere in the call stack. In C#, the
catch keyword is used to define an exception handler.
If no exception handler for a given exception is present, the program stops
executing with an error message.
Don't catch an exception unless you can handle it and leave the application in a
known state. If you catch System.Exception , rethrow it using the throw keyword at
the end of the catch block.
If a catch block defines an exception variable, you can use it to obtain more
information about the type of exception that occurred.
Exceptions can be explicitly generated by a program by using the throw keyword.
Exception objects contain detailed information about the error, such as the state of
the call stack and a text description of the error.
Code in a finally block is executed regardless of if an exception is thrown. Use a
finally block to release resources, for example to close any streams or files that
were opened in the try block.
Managed exceptions in .NET are implemented on top of the Win32 structured
exception handling mechanism. For more information, see Structured Exception
Handling (C/C++) and A Crash Course on the Depths of Win32 Structured
Exception Handling .

For more information, see Exceptions in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

 {
 Console.WriteLine("Attempted divide by zero.");
 }
 }
}

Exceptions Overview

C# Language Specification

See also

https://learn.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp
http://bytepointer.com/resources/pietrek_crash_course_depths_of_win32_seh.htm

SystemException
C# Keywords
throw
try-catch
try-finally
try-catch-finally
Exceptions

https://learn.microsoft.com/en-us/dotnet/api/system.systemexception
https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/

Use exceptions
Article • 2021-09-15 • 3 minutes to read

In C#, errors in the program at run time are propagated through the program by using a
mechanism called exceptions. Exceptions are thrown by code that encounters an error
and caught by code that can correct the error. Exceptions can be thrown by the .NET
runtime or by code in a program. Once an exception is thrown, it propagates up the call
stack until a catch statement for the exception is found. Uncaught exceptions are
handled by a generic exception handler provided by the system that displays a dialog
box.

Exceptions are represented by classes derived from Exception. This class identifies the
type of exception and contains properties that have details about the exception.
Throwing an exception involves creating an instance of an exception-derived class,
optionally configuring properties of the exception, and then throwing the object by
using the throw keyword. For example:

C#

After an exception is thrown, the runtime checks the current statement to see whether it
is within a try block. If it is, any catch blocks associated with the try block are checked
to see whether they can catch the exception. Catch blocks typically specify exception
types; if the type of the catch block is the same type as the exception, or a base class of
the exception, the catch block can handle the method. For example:

C#

class CustomException : Exception
{
 public CustomException(string message)
 {
 }
}
private static void TestThrow()
{
 throw new CustomException("Custom exception in TestThrow()");
}

try
{
 TestThrow();
}
catch (CustomException ex)
{

https://learn.microsoft.com/en-us/dotnet/api/system.exception

If the statement that throws an exception isn't within a try block or if the try block
that encloses it has no matching catch block, the runtime checks the calling method for
a try statement and catch blocks. The runtime continues up the calling stack,
searching for a compatible catch block. After the catch block is found and executed,
control is passed to the next statement after that catch block.

A try statement can contain more than one catch block. The first catch statement that
can handle the exception is executed; any following catch statements, even if they're
compatible, are ignored. Order catch blocks from most specific (or most-derived) to
least specific. For example:

C#

 System.Console.WriteLine(ex.ToString());
}

using System;
using System.IO;

namespace Exceptions
{
 public class CatchOrder
 {
 public static void Main()
 {
 try
 {
 using (var sw = new StreamWriter("./test.txt"))
 {
 sw.WriteLine("Hello");
 }
 }
 // Put the more specific exceptions first.
 catch (DirectoryNotFoundException ex)
 {
 Console.WriteLine(ex);
 }
 catch (FileNotFoundException ex)
 {
 Console.WriteLine(ex);
 }
 // Put the least specific exception last.
 catch (IOException ex)
 {
 Console.WriteLine(ex);
 }
 Console.WriteLine("Done");
 }
 }
}

Before the catch block is executed, the runtime checks for finally blocks. Finally
blocks enable the programmer to clean up any ambiguous state that could be left over
from an aborted try block, or to release any external resources (such as graphics
handles, database connections, or file streams) without waiting for the garbage collector
in the runtime to finalize the objects. For example:

C#

If WriteByte() threw an exception, the code in the second try block that tries to
reopen the file would fail if file.Close() isn't called, and the file would remain locked.
Because finally blocks are executed even if an exception is thrown, the finally block
in the previous example allows for the file to be closed correctly and helps avoid an
error.

If no compatible catch block is found on the call stack after an exception is thrown, one
of three things occurs:

static void TestFinally()
{
 FileStream? file = null;
 //Change the path to something that works on your machine.
 FileInfo fileInfo = new System.IO.FileInfo("./file.txt");

 try
 {
 file = fileInfo.OpenWrite();
 file.WriteByte(0xF);
 }
 finally
 {
 // Closing the file allows you to reopen it immediately - otherwise
IOException is thrown.
 file?.Close();
 }

 try
 {
 file = fileInfo.OpenWrite();
 Console.WriteLine("OpenWrite() succeeded");
 }
 catch (IOException)
 {
 Console.WriteLine("OpenWrite() failed");
 }
}

If the exception is within a finalizer, the finalizer is aborted and the base finalizer, if
any, is called.
If the call stack contains a static constructor, or a static field initializer, a
TypeInitializationException is thrown, with the original exception assigned to the
InnerException property of the new exception.
If the start of the thread is reached, the thread is terminated.

https://learn.microsoft.com/en-us/dotnet/api/system.typeinitializationexception
https://learn.microsoft.com/en-us/dotnet/api/system.exception.innerexception

Exception Handling (C# Programming
Guide)
Article • 2022-01-25 • 4 minutes to read

A try block is used by C# programmers to partition code that might be affected by an
exception. Associated catch blocks are used to handle any resulting exceptions. A finally
block contains code that is run whether or not an exception is thrown in the try block,
such as releasing resources that are allocated in the try block. A try block requires one
or more associated catch blocks, or a finally block, or both.

The following examples show a try-catch statement, a try-finally statement, and a
try-catch-finally statement.

C#

C#

C#

try
{
 // Code to try goes here.
}
catch (SomeSpecificException ex)
{
 // Code to handle the exception goes here.
 // Only catch exceptions that you know how to handle.
 // Never catch base class System.Exception without
 // rethrowing it at the end of the catch block.
}

try
{
 // Code to try goes here.
}
finally
{
 // Code to execute after the try block goes here.
}

try
{
 // Code to try goes here.
}
catch (SomeSpecificException ex)

A try block without a catch or finally block causes a compiler error.

A catch block can specify the type of exception to catch. The type specification is called
an exception filter. The exception type should be derived from Exception. In general,
don't specify Exception as the exception filter unless either you know how to handle all
exceptions that might be thrown in the try block, or you've included a throw statement
at the end of your catch block.

Multiple catch blocks with different exception classes can be chained together. The
catch blocks are evaluated from top to bottom in your code, but only one catch block
is executed for each exception that is thrown. The first catch block that specifies the
exact type or a base class of the thrown exception is executed. If no catch block
specifies a matching exception class, a catch block that doesn't have any type is
selected, if one is present in the statement. It's important to position catch blocks with
the most specific (that is, the most derived) exception classes first.

Catch exceptions when the following conditions are true:

You have a good understanding of why the exception might be thrown, and you
can implement a specific recovery, such as prompting the user to enter a new file
name when you catch a FileNotFoundException object.
You can create and throw a new, more specific exception.

C#

{
 // Code to handle the exception goes here.
}
finally
{
 // Code to execute after the try (and possibly catch) blocks
 // goes here.
}

Catch Blocks

int GetInt(int[] array, int index)
{
 try
 {
 return array[index];
 }
 catch (IndexOutOfRangeException e)
 {
 throw new ArgumentOutOfRangeException(

https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.io.filenotfoundexception

You want to partially handle an exception before passing it on for more handling.
In the following example, a catch block is used to add an entry to an error log
before rethrowing the exception.

C#

You can also specify exception filters to add a boolean expression to a catch clause.
Exception filters indicate that a specific catch clause matches only when that condition is
true. In the following example, both catch clauses use the same exception class, but an
extra condition is checked to create a different error message:

C#

An exception filter that always returns false can be used to examine all exceptions but
not process them. A typical use is to log exceptions:

 "Parameter index is out of range.", e);
 }
}

try
{
 // Try to access a resource.
}
catch (UnauthorizedAccessException e)
{
 // Call a custom error logging procedure.
 LogError(e);
 // Re-throw the error.
 throw;
}

int GetInt(int[] array, int index)
{
 try
 {
 return array[index];
 }
 catch (IndexOutOfRangeException e) when (index < 0)
 {
 throw new ArgumentOutOfRangeException(
 "Parameter index cannot be negative.", e);
 }
 catch (IndexOutOfRangeException e)
 {
 throw new ArgumentOutOfRangeException(
 "Parameter index cannot be greater than the array size.", e);
 }
}

C#

The LogException method always returns false , no catch clause using this exception
filter matches. The catch clause can be general, using System.Exception, and later
clauses can process more specific exception classes.

A finally block enables you to clean up actions that are performed in a try block. If
present, the finally block executes last, after the try block and any matched catch
block. A finally block always runs, whether an exception is thrown or a catch block
matching the exception type is found.

The finally block can be used to release resources such as file streams, database
connections, and graphics handles without waiting for the garbage collector in the
runtime to finalize the objects. For more information See the using Statement.

In the following example, the finally block is used to close a file that is opened in the
try block. Notice that the state of the file handle is checked before the file is closed. If
the try block can't open the file, the file handle still has the value null and the finally
block doesn't try to close it. Instead, if the file is opened successfully in the try block,
the finally block closes the open file.

C#

public static void Main()
{
 try
 {
 string? s = null;
 Console.WriteLine(s.Length);
 }
 catch (Exception e) when (LogException(e))
 {
 }
 Console.WriteLine("Exception must have been handled");
}

private static bool LogException(Exception e)
{
 Console.WriteLine($"\tIn the log routine. Caught {e.GetType()}");
 Console.WriteLine($"\tMessage: {e.Message}");
 return false;
}

Finally Blocks

https://learn.microsoft.com/en-us/dotnet/api/system.exception

For more information, see Exceptions and The try statement in the C# Language
Specification. The language specification is the definitive source for C# syntax and
usage.

C# Reference
try-catch
try-finally
try-catch-finally
using Statement

FileStream? file = null;
FileInfo fileinfo = new System.IO.FileInfo("./file.txt");
try
{
 file = fileinfo.OpenWrite();
 file.WriteByte(0xF);
}
finally
{
 // Check for null because OpenWrite might have failed.
 file?.Close();
}

C# Language Specification

See also

Creating and Throwing Exceptions
Article • 2022-08-16 • 3 minutes to read

Exceptions are used to indicate that an error has occurred while running the program.
Exception objects that describe an error are created and then thrown with the throw
keyword. The runtime then searches for the most compatible exception handler.

Programmers should throw exceptions when one or more of the following conditions
are true:

The method can't complete its defined functionality. For example, if a parameter to
a method has an invalid value:

C#

An inappropriate call to an object is made, based on the object state. One example
might be trying to write to a read-only file. In cases where an object state doesn't
allow an operation, throw an instance of InvalidOperationException or an object
based on a derivation of this class. The following code is an example of a method
that throws an InvalidOperationException object:

C#

static void CopyObject(SampleClass original)
{
 _ = original ?? throw new ArgumentException("Parameter cannot be
null", nameof(original));
}

public class ProgramLog
{
 FileStream logFile = null!;
 public void OpenLog(FileInfo fileName, FileMode mode) { }

 public void WriteLog()
 {
 if (!logFile.CanWrite)
 {
 throw new InvalidOperationException("Logfile cannot be
read-only");
 }
 // Else write data to the log and return.
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception

When an argument to a method causes an exception. In this case, the original
exception should be caught and an ArgumentException instance should be
created. The original exception should be passed to the constructor of the
ArgumentException as the InnerException parameter:

C#

Exceptions contain a property named StackTrace. This string contains the name of the
methods on the current call stack, together with the file name and line number where
the exception was thrown for each method. A StackTrace object is created automatically
by the common language runtime (CLR) from the point of the throw statement, so that
exceptions must be thrown from the point where the stack trace should begin.

All exceptions contain a property named Message. This string should be set to explain
the reason for the exception. Information that is sensitive to security shouldn't be put in
the message text. In addition to Message, ArgumentException contains a property
named ParamName that should be set to the name of the argument that caused the
exception to be thrown. In a property setter, ParamName should be set to value .

Public and protected methods throw exceptions whenever they can't complete their
intended functions. The exception class thrown is the most specific exception available
that fits the error conditions. These exceptions should be documented as part of the
class functionality, and derived classes or updates to the original class should retain the
same behavior for backward compatibility.

static int GetValueFromArray(int[] array, int index)
{
 try
 {
 return array[index];
 }
 catch (IndexOutOfRangeException e)
 {
 throw new ArgumentOutOfRangeException(
 "Parameter index is out of range.", e);
 }
}

７ Note

The example above is for illustrative purposes. Index validating via exceptions is in
most cases bad practice. Exceptions should be reserved to guard against
exceptional program conditions, not for argument checking as above.

https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception
https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception
https://learn.microsoft.com/en-us/dotnet/api/system.exception.innerexception
https://learn.microsoft.com/en-us/dotnet/api/system.exception.stacktrace
https://learn.microsoft.com/en-us/dotnet/api/system.exception.stacktrace
https://learn.microsoft.com/en-us/dotnet/api/system.exception.message
https://learn.microsoft.com/en-us/dotnet/api/system.exception.message
https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception
https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception.paramname
https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception.paramname

The following list identifies practices to avoid when throwing exceptions:

Don't use exceptions to change the flow of a program as part of ordinary
execution. Use exceptions to report and handle error conditions.
Exceptions shouldn't be returned as a return value or parameter instead of being
thrown.
Don't throw System.Exception, System.SystemException,
System.NullReferenceException, or System.IndexOutOfRangeException
intentionally from your own source code.
Don't create exceptions that can be thrown in debug mode but not release mode.
To identify run-time errors during the development phase, use Debug Assert
instead.

Programs can throw a predefined exception class in the System namespace (except
where previously noted), or create their own exception classes by deriving from
Exception. The derived classes should define at least three constructors: one
parameterless constructor, one that sets the message property, and one that sets both
the Message and InnerException properties. For example:

C#

Add new properties to the exception class when the data they provide is useful to
resolving the exception. If new properties are added to the derived exception class,
ToString() should be overridden to return the added information.

For more information, see Exceptions and The throw statement in the C# Language
Specification. The language specification is the definitive source for C# syntax and

Things to Avoid When Throwing Exceptions

Defining Exception Classes

[Serializable]
public class InvalidDepartmentException : Exception
{
 public InvalidDepartmentException() : base() { }
 public InvalidDepartmentException(string message) : base(message) { }
 public InvalidDepartmentException(string message, Exception inner) :
base(message, inner) { }
}

C# Language Specification

https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.systemexception
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.indexoutofrangeexception
https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.exception.message
https://learn.microsoft.com/en-us/dotnet/api/system.exception.innerexception

usage.

Exception Hierarchy

See also

https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/

Compiler-generated exceptions
Article • 2021-11-05 • 2 minutes to read

Some exceptions are thrown automatically by the .NET runtime when basic operations
fail. These exceptions and their error conditions are listed in the following table.

Exception Description

ArithmeticException A base class for exceptions that occur during arithmetic
operations, such as DivideByZeroException and
OverflowException.

ArrayTypeMismatchException Thrown when an array can't store a given element because the
actual type of the element is incompatible with the actual type of
the array.

DivideByZeroException Thrown when an attempt is made to divide an integral value by
zero.

IndexOutOfRangeException Thrown when an attempt is made to index an array when the
index is less than zero or outside the bounds of the array.

InvalidCastException Thrown when an explicit conversion from a base type to an
interface or to a derived type fails at run time.

NullReferenceException Thrown when an attempt is made to reference an object whose
value is null.

OutOfMemoryException Thrown when an attempt to allocate memory using the new
operator fails. This exception indicates that the memory available
to the common language runtime has been exhausted.

OverflowException Thrown when an arithmetic operation in a checked context
overflows.

StackOverflowException Thrown when the execution stack is exhausted by having too
many pending method calls; usually indicates a very deep or
infinite recursion.

TypeInitializationException Thrown when a static constructor throws an exception and no
compatible catch clause exists to catch it.

try-catch
try-finally
try-catch-finally

See also

https://learn.microsoft.com/en-us/dotnet/api/system.arithmeticexception
https://learn.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.arraytypemismatchexception
https://learn.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception
https://learn.microsoft.com/en-us/dotnet/api/system.indexoutofrangeexception
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.outofmemoryexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.stackoverflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.typeinitializationexception

C# identifier naming rules and
conventions
Article • 2022-03-29 • 2 minutes to read

An identifier is the name you assign to a type (class, interface, struct, record, delegate,
or enum), member, variable, or namespace.

Valid identifiers must follow these rules:

Identifiers must start with a letter or underscore (_).
Identifiers may contain Unicode letter characters, decimal digit characters, Unicode
connecting characters, Unicode combining characters, or Unicode formatting
characters. For more information on Unicode categories, see the Unicode Category
Database . You can declare identifiers that match C# keywords by using the @
prefix on the identifier. The @ is not part of the identifier name. For example, @if
declares an identifier named if . These verbatim identifiers are primarily for
interoperability with identifiers declared in other languages.

For a complete definition of valid identifiers, see the Identifiers topic in the C# Language
Specification.

In addition to the rules, there are many identifier naming conventions used throughout
the .NET APIs. By convention, C# programs use PascalCase for type names, namespaces,
and all public members. In addition, the following conventions are common:

Interface names start with a capital I .
Attribute types end with the word Attribute .
Enum types use a singular noun for non-flags, and a plural noun for flags.
Identifiers shouldn't contain two consecutive underscore (_) characters. Those
names are reserved for compiler-generated identifiers.

For more information, see Naming conventions.

Naming rules

Naming conventions

C# Language Specification

https://www.unicode.org/reports/tr44/
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/naming-guidelines

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Programming Guide
C# Reference
Classes
Structure types
Namespaces
Interfaces
Delegates

See also

C# Coding Conventions
Article • 2022-09-29 • 11 minutes to read

Coding conventions serve the following purposes:

There are several naming conventions to consider when writing C# code.

In the following examples, any of the guidance pertaining to elements marked public is
also applicable when working with protected and protected internal elements, all of
which are intended to be visible to external callers.

Use pascal casing ("PascalCasing") when naming a class , record , or struct .

C#

C#

They create a consistent look to the code, so that readers can focus on content, not
layout.

＂

They enable readers to understand the code more quickly by making assumptions
based on previous experience.

＂

They facilitate copying, changing, and maintaining the code.＂

They demonstrate C# best practices.＂

） Important

The guidelines in this article are used by Microsoft to develop samples and
documentation. They were adopted from the .NET Runtime, C# Coding Style
guidelines. You can use them, or adapt them to your needs. The primary objectives
are consistency and readability within your project, team, organization, or company
source code.

Naming conventions

Pascal case

public class DataService
{
}

https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md

C#

When naming an interface , use pascal casing in addition to prefixing the name with an
I . This clearly indicates to consumers that it's an interface .

C#

When naming public members of types, such as fields, properties, events, methods,
and local functions, use pascal casing.

C#

public record PhysicalAddress(
 string Street,
 string City,
 string StateOrProvince,
 string ZipCode);

public struct ValueCoordinate
{
}

public interface IWorkerQueue
{
}

public class ExampleEvents
{
 // A public field, these should be used sparingly
 public bool IsValid;

 // An init-only property
 public IWorkerQueue WorkerQueue { get; init; }

 // An event
 public event Action EventProcessing;

 // Method
 public void StartEventProcessing()
 {
 // Local function
 static int CountQueueItems() => WorkerQueue.Count;
 // ...
 }
}

When writing positional records, use pascal casing for parameters as they're the public
properties of the record.

C#

For more information on positional records, see Positional syntax for property definition.

Use camel casing ("camelCasing") when naming private or internal fields, and prefix
them with _ .

C#

When working with static fields that are private or internal , use the s_ prefix and
for thread static use t_ .

C#

public record PhysicalAddress(
 string Street,
 string City,
 string StateOrProvince,
 string ZipCode);

Camel case

public class DataService
{
 private IWorkerQueue _workerQueue;
}

 Tip

When editing C# code that follows these naming conventions in an IDE that
supports statement completion, typing _ will show all of the object-scoped
members.

public class DataService
{
 private static IWorkerQueue s_workerQueue;

 [ThreadStatic]
 private static TimeSpan t_timeSpan;
}

When writing method parameters, use camel casing.

C#

For more information on C# naming conventions, see C# Coding Style .

Examples that don't include using directives, use namespace qualifications. If you
know that a namespace is imported by default in a project, you don't have to fully
qualify the names from that namespace. Qualified names can be broken after a dot
(.) if they are too long for a single line, as shown in the following example.

C#

You don't have to change the names of objects that were created by using the
Visual Studio designer tools to make them fit other guidelines.

Good layout uses formatting to emphasize the structure of your code and to make the
code easier to read. Microsoft examples and samples conform to the following
conventions:

Use the default Code Editor settings (smart indenting, four-character indents, tabs
saved as spaces). For more information, see Options, Text Editor, C#, Formatting.

Write only one statement per line.

Write only one declaration per line.

If continuation lines are not indented automatically, indent them one tab stop (four
spaces).

Add at least one blank line between method definitions and property definitions.

public T SomeMethod<T>(int someNumber, bool isValid)
{
}

Additional naming conventions

var currentPerformanceCounterCategory = new System.Diagnostics.
 PerformanceCounterCategory();

Layout conventions

https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md
https://learn.microsoft.com/en-us/visualstudio/ide/reference/options-text-editor-csharp-formatting

Use parentheses to make clauses in an expression apparent, as shown in the
following code.

C#

Place the comment on a separate line, not at the end of a line of code.

Begin comment text with an uppercase letter.

End comment text with a period.

Insert one space between the comment delimiter (//) and the comment text, as
shown in the following example.

C#

Don't create formatted blocks of asterisks around comments.

Ensure all public members have the necessary XML comments providing
appropriate descriptions about their behavior.

The following sections describe practices that the C# team follows to prepare code
examples and samples.

Use string interpolation to concatenate short strings, as shown in the following
code.

C#

if ((val1 > val2) && (val1 > val3))
{
 // Take appropriate action.
}

Commenting conventions

// The following declaration creates a query. It does not run
// the query.

Language guidelines

String data type

To append strings in loops, especially when you're working with large amounts of
text, use a StringBuilder object.

C#

Use implicit typing for local variables when the type of the variable is obvious from
the right side of the assignment, or when the precise type is not important.

C#

Don't use var when the type is not apparent from the right side of the assignment.
Don't assume the type is clear from a method name. A variable type is considered
clear if it's a new operator or an explicit cast.

C#

Don't rely on the variable name to specify the type of the variable. It might not be
correct. In the following example, the variable name inputInt is misleading. It's a
string.

C#

string displayName = $"{nameList[n].LastName},
{nameList[n].FirstName}";

var phrase =
"la";
var manyPhrases = new StringBuilder();
for (var i = 0; i < 10000; i++)
{
 manyPhrases.Append(phrase);
}
//Console.WriteLine("tra" + manyPhrases);

Implicitly typed local variables

var var1 = "This is clearly a string.";
var var2 = 27;

int var3 = Convert.ToInt32(Console.ReadLine());
int var4 = ExampleClass.ResultSoFar();

var inputInt = Console.ReadLine();
Console.WriteLine(inputInt);

https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

Avoid the use of var in place of dynamic. Use dynamic when you want run-time
type inference. For more information, see Using type dynamic (C# Programming
Guide).

Use implicit typing to determine the type of the loop variable in for loops.

The following example uses implicit typing in a for statement.

C#

Don't use implicit typing to determine the type of the loop variable in foreach
loops. In most cases, the type of elements in the collection isn't immediately
obvious. The collection's name shouldn't be solely relied upon for inferring the
type of its elements.

The following example uses explicit typing in a foreach statement.

C#

var phrase =
"la";
var manyPhrases = new StringBuilder();
for (var i = 0; i < 10000; i++)
{
 manyPhrases.Append(phrase);
}
//Console.WriteLine("tra" + manyPhrases);

foreach (char ch in laugh)
{
 if (ch == 'h')
 Console.Write("H");
 else
 Console.Write(ch);
}
Console.WriteLine();

７ Note

Be careful not to accidentally change a type of an element of the iterable
collection. For example, it is easy to switch from System.Linq.IQueryable to
System.Collections.IEnumerable in a foreach statement, which changes the
execution of a query.

Unsigned data types

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

In general, use int rather than unsigned types. The use of int is common throughout
C#, and it is easier to interact with other libraries when you use int .

Use the concise syntax when you initialize arrays on the declaration line. In the following
example, note that you can't use var instead of string[] .

C#

If you use explicit instantiation, you can use var .

C#

Use Func<> and Action<> instead of defining delegate types. In a class, define the
delegate method.

C#

Call the method using the signature defined by the Func<> or Action<> delegate.

C#

Arrays

string[] vowels1 = { "a", "e", "i", "o", "u" };

var vowels2 = new string[] { "a", "e", "i", "o", "u" };

Delegates

public static Action<string> ActionExample1 = x => Console.WriteLine($"x is:
{x}");

public static Action<string, string> ActionExample2 = (x, y) =>
 Console.WriteLine($"x is: {x}, y is {y}");

public static Func<string, int> FuncExample1 = x => Convert.ToInt32(x);

public static Func<int, int, int> FuncExample2 = (x, y) => x + y;

ActionExample1("string for x");

ActionExample2("string for x", "string for y");

Console.WriteLine($"The value is {FuncExample1("1")}");

https://learn.microsoft.com/en-ca/dotnet/standard/delegates-lambdas

If you create instances of a delegate type, use the concise syntax. In a class, define the
delegate type and a method that has a matching signature.

C#

Create an instance of the delegate type and call it. The following declaration shows the
condensed syntax.

C#

The following declaration uses the full syntax.

C#

Use a try-catch statement for most exception handling.

C#

Console.WriteLine($"The sum is {FuncExample2(1, 2)}");

public delegate void Del(string message);

public static void DelMethod(string str)
{
 Console.WriteLine("DelMethod argument: {0}", str);
}

Del exampleDel2 = DelMethod;
exampleDel2("Hey");

Del exampleDel1 = new Del(DelMethod);
exampleDel1("Hey");

try - catch and using statements in exception handling

static string GetValueFromArray(string[] array, int index)
{
 try
 {
 return array[index];
 }
 catch (System.IndexOutOfRangeException ex)
 {
 Console.WriteLine("Index is out of range: {0}", index);
 throw;

Simplify your code by using the C# using statement. If you have a try-finally
statement in which the only code in the finally block is a call to the Dispose
method, use a using statement instead.

In the following example, the try -finally statement only calls Dispose in the
finally block.

C#

You can do the same thing with a using statement.

C#

Use the new using syntax that doesn't require braces:

C#

To avoid exceptions and increase performance by skipping unnecessary comparisons,
use && instead of & and || instead of | when you perform comparisons, as shown in the
following example.

 }
}

Font font1 = new Font("Arial", 10.0f);
try
{
 byte charset = font1.GdiCharSet;
}
finally
{
 if (font1 != null)
 {
 ((IDisposable)font1).Dispose();
 }
}

using (Font font2 = new Font("Arial", 10.0f))
{
 byte charset2 = font2.GdiCharSet;
}

using Font font3 = new Font("Arial", 10.0f);
byte charset3 = font3.GdiCharSet;

&& and || operators

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose

C#

If the divisor is 0, the second clause in the if statement would cause a run-time error.
But the && operator short-circuits when the first expression is false. That is, it doesn't
evaluate the second expression. The & operator would evaluate both, resulting in a run-
time error when divisor is 0.

Use one of the concise forms of object instantiation, as shown in the following
declarations. The second example shows syntax that is available starting in C# 9.

C#

C#

The preceding declarations are equivalent to the following declaration.

C#

Use object initializers to simplify object creation, as shown in the following
example.

C#

Console.Write("Enter a dividend: ");
int dividend = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter a divisor: ");
int divisor = Convert.ToInt32(Console.ReadLine());

if ((divisor != 0) && (dividend / divisor > 0))
{
 Console.WriteLine("Quotient: {0}", dividend / divisor);
}
else
{
 Console.WriteLine("Attempted division by 0 ends up here.");
}

new operator

var instance1 = new ExampleClass();

ExampleClass instance2 = new();

ExampleClass instance2 = new ExampleClass();

The following example sets the same properties as the preceding example but
doesn't use initializers.

C#

If you're defining an event handler that you don't need to remove later, use a lambda
expression.

C#

The lambda expression shortens the following traditional definition.

C#

var instance3 = new ExampleClass { Name = "Desktop", ID = 37414,
 Location = "Redmond", Age = 2.3 };

var instance4 = new ExampleClass();
instance4.Name = "Desktop";
instance4.ID = 37414;
instance4.Location = "Redmond";
instance4.Age = 2.3;

Event handling

public Form2()
{
 this.Click += (s, e) =>
 {
 MessageBox.Show(
 ((MouseEventArgs)e).Location.ToString());
 };
}

public Form1()
{
 this.Click += new EventHandler(Form1_Click);
}

void Form1_Click(object? sender, EventArgs e)
{
 MessageBox.Show(((MouseEventArgs)e).Location.ToString());
}

Static members

Call static members by using the class name: ClassName.StaticMember. This practice
makes code more readable by making static access clear. Don't qualify a static member
defined in a base class with the name of a derived class. While that code compiles, the
code readability is misleading, and the code may break in the future if you add a static
member with the same name to the derived class.

Use meaningful names for query variables. The following example uses
seattleCustomers for customers who are located in Seattle.

C#

Use aliases to make sure that property names of anonymous types are correctly
capitalized, using Pascal casing.

C#

Rename properties when the property names in the result would be ambiguous.
For example, if your query returns a customer name and a distributor ID, instead of
leaving them as Name and ID in the result, rename them to clarify that Name is the
name of a customer, and ID is the ID of a distributor.

C#

Use implicit typing in the declaration of query variables and range variables.

C#

LINQ queries

var seattleCustomers = from customer in customers
 where customer.City == "Seattle"
 select customer.Name;

var localDistributors =
 from customer in customers
 join distributor in distributors on customer.City equals
distributor.City
 select new { Customer = customer, Distributor = distributor };

var localDistributors2 =
 from customer in customers
 join distributor in distributors on customer.City equals
distributor.City
 select new { CustomerName = customer.Name, DistributorID =
distributor.ID };

Align query clauses under the from clause, as shown in the previous examples.

Use where clauses before other query clauses to ensure that later query clauses
operate on the reduced, filtered set of data.

C#

Use multiple from clauses instead of a join clause to access inner collections. For
example, a collection of Student objects might each contain a collection of test
scores. When the following query is executed, it returns each score that is over 90,
along with the last name of the student who received the score.

C#

Follow the guidelines in Secure Coding Guidelines.

.NET runtime coding guidelines
Visual Basic Coding Conventions
Secure Coding Guidelines

var seattleCustomers = from customer in customers
 where customer.City == "Seattle"
 select customer.Name;

var seattleCustomers2 = from customer in customers
 where customer.City == "Seattle"
 orderby customer.Name
 select customer;

var scoreQuery = from student in students
 from score in student.Scores!
 where score > 90
 select new { Last = student.LastName, score };

Security

See also

https://learn.microsoft.com/en-ca/dotnet/standard/security/secure-coding-guidelines
https://github.com/dotnet/runtime/blob/main/docs/coding-guidelines/coding-style.md
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/program-structure/coding-conventions
https://learn.microsoft.com/en-ca/dotnet/standard/security/secure-coding-guidelines

How to display command-line
arguments
Article • 2022-03-11 • 2 minutes to read

Arguments provided to an executable on the command line are accessible in top-level
statements or through an optional parameter to Main . The arguments are provided in
the form of an array of strings. Each element of the array contains one argument. White-
space between arguments is removed. For example, consider these command-line
invocations of a fictitious executable:

Input on command line Array of strings passed to Main

executable.exe a b c "a"

"b"

"c"

executable.exe one two "one"

"two"

executable.exe "one two" three "one two"

"three"

This example displays the command-line arguments passed to a command-line
application. The output shown is for the first entry in the table above.

C#

７ Note

When you are running an application in Visual Studio, you can specify command-
line arguments in the Debug Page, Project Designer.

Example

// The Length property provides the number of array elements.
Console.WriteLine($"parameter count = {args.Length}");

for (int i = 0; i < args.Length; i++)

https://learn.microsoft.com/en-us/visualstudio/ide/reference/debug-page-project-designer

System.CommandLine overview
Tutorial: Get started with System.CommandLine

{
 Console.WriteLine($"Arg[{i}] = [{args[i]}]");
}

/* Output (assumes 3 cmd line args):
 parameter count = 3
 Arg[0] = [a]
 Arg[1] = [b]
 Arg[2] = [c]
*/

See also

https://learn.microsoft.com/en-ca/dotnet/standard/commandline/
https://learn.microsoft.com/en-ca/dotnet/standard/commandline/get-started-tutorial

Explore object oriented programming
with classes and objects
Article • 2022-05-26 • 9 minutes to read

In this tutorial, you'll build a console application and see the basic object-oriented
features that are part of the C# language.

We recommend Visual Studio for Windows or Mac. You can download a free
version from the Visual Studio downloads page . Visual Studio includes the .NET
SDK.
You can also use the Visual Studio Code editor. You'll need to install the latest
.NET SDK separately.
If you prefer a different editor, you need to install the latest .NET SDK .

Using a terminal window, create a directory named classes. You'll build your application
there. Change to that directory and type dotnet new console in the console window.
This command creates your application. Open Program.cs. It should look like this:

C#

In this tutorial, you're going to create new types that represent a bank account. Typically
developers define each class in a different text file. That makes it easier to manage as a
program grows in size. Create a new file named BankAccount.cs in the Classes directory.

This file will contain the definition of a bank account. Object Oriented programming
organizes code by creating types in the form of classes. These classes contain the code
that represents a specific entity. The BankAccount class represents a bank account. The
code implements specific operations through methods and properties. In this tutorial,
the bank account supports this behavior:

1. It has a 10-digit number that uniquely identifies the bank account.
2. It has a string that stores the name or names of the owners.

Prerequisites

Create your application

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

https://visualstudio.com/
https://visualstudio.microsoft.com/downloads
https://code.visualstudio.com/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

3. The balance can be retrieved.
4. It accepts deposits.
5. It accepts withdrawals.
6. The initial balance must be positive.
7. Withdrawals can't result in a negative balance.

You can start by creating the basics of a class that defines that behavior. Create a new
file using the File:New command. Name it BankAccount.cs. Add the following code to
your BankAccount.cs file:

C#

Before going on, let's take a look at what you've built. The namespace declaration
provides a way to logically organize your code. This tutorial is relatively small, so you'll
put all the code in one namespace.

public class BankAccount defines the class, or type, you're creating. Everything inside
the { and } that follows the class declaration defines the state and behavior of the
class. There are five members of the BankAccount class. The first three are properties.
Properties are data elements and can have code that enforces validation or other rules.
The last two are methods. Methods are blocks of code that perform a single function.
Reading the names of each of the members should provide enough information for you
or another developer to understand what the class does.

Define the bank account type

namespace Classes;

public class BankAccount
{
 public string Number { get; }
 public string Owner { get; set; }
 public decimal Balance { get; }

 public void MakeDeposit(decimal amount, DateTime date, string note)
 {
 }

 public void MakeWithdrawal(decimal amount, DateTime date, string note)
 {
 }
}

Open a new account

The first feature to implement is to open a bank account. When a customer opens an
account, they must supply an initial balance, and information about the owner or
owners of that account.

Creating a new object of the BankAccount type means defining a constructor that
assigns those values. A constructor is a member that has the same name as the class. It's
used to initialize objects of that class type. Add the following constructor to the
BankAccount type. Place the following code above the declaration of MakeDeposit :

C#

The preceding code identifies the properties of the object being constructed by
including the this qualifier. That qualifier is usually optional and omitted. You could
also have written:

C#

The this qualifier is only required when a local variable or parameter has the same
name as that field or property. The this qualifier is omitted throughout the remainder
of this article unless it's necessary.

Constructors are called when you create an object using new. Replace the line
Console.WriteLine("Hello World!"); in Program.cs with the following code (replace
<name> with your name):

C#

public BankAccount(string name, decimal initialBalance)
{
 this.Owner = name;
 this.Balance = initialBalance;
}

public BankAccount(string name, decimal initialBalance)
{
 Owner = name;
 Balance = initialBalance;
}

using Classes;

var account = new BankAccount("<name>", 1000);
Console.WriteLine($"Account {account.Number} was created for {account.Owner}
with {account.Balance} initial balance.");

Let's run what you've built so far. If you're using Visual Studio, Select Start without
debugging from the Debug menu. If you're using a command line, type dotnet run in
the directory where you've created your project.

Did you notice that the account number is blank? It's time to fix that. The account
number should be assigned when the object is constructed. But it shouldn't be the
responsibility of the caller to create it. The BankAccount class code should know how to
assign new account numbers. A simple way is to start with a 10-digit number. Increment
it when each new account is created. Finally, store the current account number when an
object is constructed.

Add a member declaration to the BankAccount class. Place the following line of code
after the opening brace { at the beginning of the BankAccount class:

C#

The accountNumberSeed is a data member. It's private , which means it can only be
accessed by code inside the BankAccount class. It's a way of separating the public
responsibilities (like having an account number) from the private implementation (how
account numbers are generated). It's also static , which means it's shared by all of the
BankAccount objects. The value of a non-static variable is unique to each instance of the
BankAccount object. Add the following two lines to the constructor to assign the account
number. Place them after the line that says this.Balance = initialBalance :

C#

Type dotnet run to see the results.

Your bank account class needs to accept deposits and withdrawals to work correctly.
Let's implement deposits and withdrawals by creating a journal of every transaction for
the account. Tracking every transaction has a few advantages over simply updating the
balance on each transaction. The history can be used to audit all transactions and
manage daily balances. Computing the balance from the history of all transactions when

private static int accountNumberSeed = 1234567890;

this.Number = accountNumberSeed.ToString();
accountNumberSeed++;

Create deposits and withdrawals

needed ensures any errors in a single transaction that are fixed will be correctly reflected
in the balance on the next computation.

Let's start by creating a new type to represent a transaction. The transaction is a simple
type that doesn't have any responsibilities. It needs a few properties. Create a new file
named Transaction.cs. Add the following code to it:

C#

Now, let's add a List<T> of Transaction objects to the BankAccount class. Add the
following declaration after the constructor in your BankAccount.cs file:

C#

Now, let's correctly compute the Balance . The current balance can be found by
summing the values of all transactions. As the code is currently, you can only get the
initial balance of the account, so you'll have to update the Balance property. Replace
the line public decimal Balance { get; } in BankAccount.cs with the following code:

C#

namespace Classes;

public class Transaction
{
 public decimal Amount { get; }
 public DateTime Date { get; }
 public string Notes { get; }

 public Transaction(decimal amount, DateTime date, string note)
 {
 Amount = amount;
 Date = date;
 Notes = note;
 }
}

private List<Transaction> allTransactions = new List<Transaction>();

public decimal Balance
{
 get
 {
 decimal balance = 0;
 foreach (var item in allTransactions)
 {
 balance += item.Amount;
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

This example shows an important aspect of properties. You're now computing the
balance when another programmer asks for the value. Your computation enumerates all
transactions, and provides the sum as the current balance.

Next, implement the MakeDeposit and MakeWithdrawal methods. These methods will
enforce the final two rules: the initial balance must be positive, and any withdrawal must
not create a negative balance.

These rules introduce the concept of exceptions. The standard way of indicating that a
method can't complete its work successfully is to throw an exception. The type of
exception and the message associated with it describe the error. Here, the MakeDeposit
method throws an exception if the amount of the deposit isn't greater than 0. The
MakeWithdrawal method throws an exception if the withdrawal amount isn't greater than
0, or if applying the withdrawal results in a negative balance. Add the following code
after the declaration of the allTransactions list:

C#

 return balance;
 }
}

public void MakeDeposit(decimal amount, DateTime date, string note)
{
 if (amount <= 0)
 {
 throw new ArgumentOutOfRangeException(nameof(amount), "Amount of
deposit must be positive");
 }
 var deposit = new Transaction(amount, date, note);
 allTransactions.Add(deposit);
}

public void MakeWithdrawal(decimal amount, DateTime date, string note)
{
 if (amount <= 0)
 {
 throw new ArgumentOutOfRangeException(nameof(amount), "Amount of
withdrawal must be positive");
 }
 if (Balance - amount < 0)
 {
 throw new InvalidOperationException("Not sufficient funds for this
withdrawal");
 }
 var withdrawal = new Transaction(-amount, date, note);
 allTransactions.Add(withdrawal);
}

The throw statement throws an exception. Execution of the current block ends, and
control transfers to the first matching catch block found in the call stack. You'll add a
catch block to test this code a little later on.

The constructor should get one change so that it adds an initial transaction, rather than
updating the balance directly. Since you already wrote the MakeDeposit method, call it
from your constructor. The finished constructor should look like this:

C#

DateTime.Now is a property that returns the current date and time. Test this code by
adding a few deposits and withdrawals in your Main method, following the code that
creates a new BankAccount :

C#

Next, test that you're catching error conditions by trying to create an account with a
negative balance. Add the following code after the preceding code you just added:

C#

public BankAccount(string name, decimal initialBalance)
{
 Number = accountNumberSeed.ToString();
 accountNumberSeed++;

 Owner = name;
 MakeDeposit(initialBalance, DateTime.Now, "Initial balance");
}

account.MakeWithdrawal(500, DateTime.Now, "Rent payment");
Console.WriteLine(account.Balance);
account.MakeDeposit(100, DateTime.Now, "Friend paid me back");
Console.WriteLine(account.Balance);

// Test that the initial balances must be positive.
BankAccount invalidAccount;
try
{
 invalidAccount = new BankAccount("invalid", -55);
}
catch (ArgumentOutOfRangeException e)
{
 Console.WriteLine("Exception caught creating account with negative
balance");
 Console.WriteLine(e.ToString());

https://learn.microsoft.com/en-us/dotnet/api/system.datetime.now#system-datetime-now

You use the try and catch statements to mark a block of code that may throw exceptions
and to catch those errors that you expect. You can use the same technique to test the
code that throws an exception for a negative balance. Add the following code before
the declaration of invalidAccount in your Main method:

C#

Save the file and type dotnet run to try it.

To finish this tutorial, you can write the GetAccountHistory method that creates a string
for the transaction history. Add this method to the BankAccount type:

C#

 return;
}

// Test for a negative balance.
try
{
 account.MakeWithdrawal(750, DateTime.Now, "Attempt to overdraw");
}
catch (InvalidOperationException e)
{
 Console.WriteLine("Exception caught trying to overdraw");
 Console.WriteLine(e.ToString());
}

Challenge - log all transactions

public string GetAccountHistory()
{
 var report = new System.Text.StringBuilder();

 decimal balance = 0;
 report.AppendLine("Date\t\tAmount\tBalance\tNote");
 foreach (var item in allTransactions)
 {
 balance += item.Amount;
 report.AppendLine($"
{item.Date.ToShortDateString()}\t{item.Amount}\t{balance}\t{item.Notes}");
 }

 return report.ToString();
}

The history uses the StringBuilder class to format a string that contains one line for each
transaction. You've seen the string formatting code earlier in these tutorials. One new
character is \t . That inserts a tab to format the output.

Add this line to test it in Program.cs:

C#

Run your program to see the results.

If you got stuck, you can see the source for this tutorial in our GitHub repo .

You can continue with the object oriented programming tutorial.

You can learn more about these concepts in these articles:

Selection statements
Iteration statements

Console.WriteLine(account.GetAccountHistory());

Next steps

https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://github.com/dotnet/docs/tree/main/docs/csharp/fundamentals/tutorials/snippets/introduction-to-classes

Object-Oriented programming (C#)
Article • 2023-01-03 • 11 minutes to read

C# is an object-oriented programming language. The four basic principles of object-
oriented programming are:

Abstraction Modeling the relevant attributes and interactions of entities as classes
to define an abstract representation of a system.
Encapsulation Hiding the internal state and functionality of an object and only
allowing access through a public set of functions.
Inheritance Ability to create new abstractions based on existing abstractions.
Polymorphism Ability to implement inherited properties or methods in different
ways across multiple abstractions.

In the preceding tutorial, introduction to classes you saw both abstraction and
encapsulation. The BankAccount class provided an abstraction for the concept of a bank
account. You could modify its implementation without affecting any of the code that
used the BankAccount class. Both the BankAccount and Transaction classes provide
encapsulation of the components needed to describe those concepts in code.

In this tutorial, you'll extend that application to make use of inheritance and
polymorphism to add new features. You'll also add features to the BankAccount class,
taking advantage of the abstraction and encapsulation techniques you learned in the
preceding tutorial.

After building this program, you get requests to add features to it. It works great in the
situation where there is only one bank account type. Over time, needs change, and
related account types are requested:

An interest earning account that accrues interest at the end of each month.
A line of credit that can have a negative balance, but when there's a balance,
there's an interest charge each month.
A pre-paid gift card account that starts with a single deposit, and only can be paid
off. It can be refilled once at the start of each month.

All of these different accounts are similar to BankAccount class defined in the earlier
tutorial. You could copy that code, rename the classes, and make modifications. That
technique would work in the short term, but it would be more work over time. Any
changes would be copied across all the affected classes.

Create different types of accounts

Instead, you can create new bank account types that inherit methods and data from the
BankAccount class created in the preceding tutorial. These new classes can extend the
BankAccount class with the specific behavior needed for each type:

C#

Each of these classes inherits the shared behavior from their shared base class, the
BankAccount class. Write the implementations for new and different functionality in each
of the derived classes. These derived classes already have all the behavior defined in the
BankAccount class.

It's a good practice to create each new class in a different source file. In Visual Studio ,
you can right-click on the project, and select add class to add a new class in a new file. In
Visual Studio Code , select File then New to create a new source file. In either tool,
name the file to match the class: InterestEarningAccount.cs, LineOfCreditAccount.cs, and
GiftCardAccount.cs.

When you create the classes as shown in the preceding sample, you'll find that none of
your derived classes compile. A constructor is responsible for initializing an object. A
derived class constructor must initialize the derived class, and provide instructions on
how to initialize the base class object included in the derived class. The proper
initialization normally happens without any extra code. The BankAccount class declares
one public constructor with the following signature:

C#

The compiler doesn't generate a default constructor when you define a constructor
yourself. That means each derived class must explicitly call this constructor. You declare
a constructor that can pass arguments to the base class constructor. The following code
shows the constructor for the InterestEarningAccount :

public class InterestEarningAccount : BankAccount
{
}

public class LineOfCreditAccount : BankAccount
{
}

public class GiftCardAccount : BankAccount
{
}

public BankAccount(string name, decimal initialBalance)

https://visualstudio.com/
https://code.visualstudio.com/

C#

The parameters to this new constructor match the parameter type and names of the
base class constructor. You use the : base() syntax to indicate a call to a base class
constructor. Some classes define multiple constructors, and this syntax enables you to
pick which base class constructor you call. Once you've updated the constructors, you
can develop the code for each of the derived classes. The requirements for the new
classes can be stated as follows:

An interest earning account:
Will get a credit of 2% of the month-ending-balance.

A line of credit:
Can have a negative balance, but not be greater in absolute value than the
credit limit.
Will incur an interest charge each month where the end of month balance isn't
0.
Will incur a fee on each withdrawal that goes over the credit limit.

A gift card account:
Can be refilled with a specified amount once each month, on the last day of the
month.

You can see that all three of these account types have an action that takes places at the
end of each month. However, each account type does different tasks. You use
polymorphism to implement this code. Create a single virtual method in the
BankAccount class:

C#

The preceding code shows how you use the virtual keyword to declare a method in
the base class that a derived class may provide a different implementation for. A
virtual method is a method where any derived class may choose to reimplement. The
derived classes use the override keyword to define the new implementation. Typically
you refer to this as "overriding the base class implementation". The virtual keyword
specifies that derived classes may override the behavior. You can also declare abstract
methods where derived classes must override the behavior. The base class does not

public InterestEarningAccount(string name, decimal initialBalance) :
base(name, initialBalance)
{
}

public virtual void PerformMonthEndTransactions() { }

provide an implementation for an abstract method. Next, you need to define the
implementation for two of the new classes you've created. Start with the
InterestEarningAccount :

C#

Add the following code to the LineOfCreditAccount . The code negates the balance to
compute a positive interest charge that is withdrawn from the account:

C#

The GiftCardAccount class needs two changes to implement its month-end
functionality. First, modify the constructor to include an optional amount to add each
month:

C#

The constructor provides a default value for the monthlyDeposit value so callers can
omit a 0 for no monthly deposit. Next, override the PerformMonthEndTransactions
method to add the monthly deposit, if it was set to a non-zero value in the constructor:

C#

public override void PerformMonthEndTransactions()
{
 if (Balance > 500m)
 {
 decimal interest = Balance * 0.05m;
 MakeDeposit(interest, DateTime.Now, "apply monthly interest");
 }
}

public override void PerformMonthEndTransactions()
{
 if (Balance < 0)
 {
 // Negate the balance to get a positive interest charge:
 decimal interest = -Balance * 0.07m;
 MakeWithdrawal(interest, DateTime.Now, "Charge monthly interest");
 }
}

private readonly decimal _monthlyDeposit = 0m;

public GiftCardAccount(string name, decimal initialBalance, decimal
monthlyDeposit = 0) : base(name, initialBalance)
 => _monthlyDeposit = monthlyDeposit;

The override applies the monthly deposit set in the constructor. Add the following code
to the Main method to test these changes for the GiftCardAccount and the
InterestEarningAccount :

C#

Verify the results. Now, add a similar set of test code for the LineOfCreditAccount :

C#

When you add the preceding code and run the program, you'll see something like the
following error:

public override void PerformMonthEndTransactions()
{
 if (_monthlyDeposit != 0)
 {
 MakeDeposit(_monthlyDeposit, DateTime.Now, "Add monthly deposit");
 }
}

var giftCard = new GiftCardAccount("gift card", 100, 50);
giftCard.MakeWithdrawal(20, DateTime.Now, "get expensive coffee");
giftCard.MakeWithdrawal(50, DateTime.Now, "buy groceries");
giftCard.PerformMonthEndTransactions();
// can make additional deposits:
giftCard.MakeDeposit(27.50m, DateTime.Now, "add some additional spending
money");
Console.WriteLine(giftCard.GetAccountHistory());

var savings = new InterestEarningAccount("savings account", 10000);
savings.MakeDeposit(750, DateTime.Now, "save some money");
savings.MakeDeposit(1250, DateTime.Now, "Add more savings");
savings.MakeWithdrawal(250, DateTime.Now, "Needed to pay monthly bills");
savings.PerformMonthEndTransactions();
Console.WriteLine(savings.GetAccountHistory());

var lineOfCredit = new LineOfCreditAccount("line of credit", 0);
// How much is too much to borrow?
lineOfCredit.MakeWithdrawal(1000m, DateTime.Now, "Take out monthly
advance");
lineOfCredit.MakeDeposit(50m, DateTime.Now, "Pay back small amount");
lineOfCredit.MakeWithdrawal(5000m, DateTime.Now, "Emergency funds for
repairs");
lineOfCredit.MakeDeposit(150m, DateTime.Now, "Partial restoration on
repairs");
lineOfCredit.PerformMonthEndTransactions();
Console.WriteLine(lineOfCredit.GetAccountHistory());

Console

This code fails because the BankAccount assumes that the initial balance must be greater
than 0. Another assumption baked into the BankAccount class is that the balance can't
go negative. Instead, any withdrawal that overdraws the account is rejected. Both of
those assumptions need to change. The line of credit account starts at 0, and generally
will have a negative balance. Also, if a customer borrows too much money, they incur a
fee. The transaction is accepted, it just costs more. The first rule can be implemented by
adding an optional argument to the BankAccount constructor that specifies the
minimum balance. The default is 0 . The second rule requires a mechanism that enables
derived classes to modify the default algorithm. In a sense, the base class "asks" the
derived type what should happen when there's an overdraft. The default behavior is to
reject the transaction by throwing an exception.

Let's start by adding a second constructor that includes an optional minimumBalance
parameter. This new constructor does all the actions done by the existing constructor.
Also, it sets the minimum balance property. You could copy the body of the existing
constructor, but that means two locations to change in the future. Instead, you can use
constructor chaining to have one constructor call another. The following code shows the
two constructors and the new additional field:

C#

Unhandled exception. System.ArgumentOutOfRangeException: Amount of deposit
must be positive (Parameter 'amount')
 at OOProgramming.BankAccount.MakeDeposit(Decimal amount, DateTime date,
String note) in BankAccount.cs:line 42
 at OOProgramming.BankAccount..ctor(String name, Decimal initialBalance)
in BankAccount.cs:line 31
 at OOProgramming.LineOfCreditAccount..ctor(String name, Decimal
initialBalance) in LineOfCreditAccount.cs:line 9
 at OOProgramming.Program.Main(String[] args) in Program.cs:line 29

７ Note

The actual output includes the full path to the folder with the project. The folder
names were omitted for brevity. Also, depending on your code format, the line
numbers may be slightly different.

private readonly decimal _minimumBalance;

public BankAccount(string name, decimal initialBalance) : this(name,
initialBalance, 0) { }

The preceding code shows two new techniques. First, the minimumBalance field is marked
as readonly . That means the value cannot be changed after the object is constructed.
Once a BankAccount is created, the minimumBalance can't change. Second, the
constructor that takes two parameters uses : this(name, initialBalance, 0) { } as its
implementation. The : this() expression calls the other constructor, the one with three
parameters. This technique allows you to have a single implementation for initializing an
object even though client code can choose one of many constructors.

This implementation calls MakeDeposit only if the initial balance is greater than 0 . That
preserves the rule that deposits must be positive, yet lets the credit account open with a
0 balance.

Now that the BankAccount class has a read-only field for the minimum balance, the final
change is to change the hard code 0 to minimumBalance in the MakeWithdrawal method:

C#

After extending the BankAccount class, you can modify the LineOfCreditAccount
constructor to call the new base constructor, as shown in the following code:

C#

Notice that the LineOfCreditAccount constructor changes the sign of the creditLimit
parameter so it matches the meaning of the minimumBalance parameter.

public BankAccount(string name, decimal initialBalance, decimal
minimumBalance)
{
 Number = s_accountNumberSeed.ToString();
 s_accountNumberSeed++;

 Owner = name;
 _minimumBalance = minimumBalance;
 if (initialBalance > 0)
 MakeDeposit(initialBalance, DateTime.Now, "Initial balance");
}

if (Balance - amount < minimumBalance)

public LineOfCreditAccount(string name, decimal initialBalance, decimal
creditLimit) : base(name, initialBalance, -creditLimit)
{
}

The last feature to add enables the LineOfCreditAccount to charge a fee for going over
the credit limit instead of refusing the transaction.

One technique is to define a virtual function where you implement the required
behavior. The BankAccount class refactors the MakeWithdrawal method into two
methods. The new method does the specified action when the withdrawal takes the
balance below the minimum. The existing MakeWithdrawal method has the following
code:

C#

Replace it with the following code:

C#

Different overdraft rules

public void MakeWithdrawal(decimal amount, DateTime date, string note)
{
 if (amount <= 0)
 {
 throw new ArgumentOutOfRangeException(nameof(amount), "Amount of
withdrawal must be positive");
 }
 if (Balance - amount < _minimumBalance)
 {
 throw new InvalidOperationException("Not sufficient funds for this
withdrawal");
 }
 var withdrawal = new Transaction(-amount, date, note);
 allTransactions.Add(withdrawal);
}

public void MakeWithdrawal(decimal amount, DateTime date, string note)
{
 if (amount <= 0)
 {
 throw new ArgumentOutOfRangeException(nameof(amount), "Amount of
withdrawal must be positive");
 }
 Transaction? overdraftTransaction = CheckWithdrawalLimit(Balance -
amount < _minimumBalance);
 Transaction? withdrawal = new(-amount, date, note);
 _allTransactions.Add(withdrawal);
 if (overdraftTransaction != null)
 _allTransactions.Add(overdraftTransaction);
}

protected virtual Transaction? CheckWithdrawalLimit(bool isOverdrawn)
{

The added method is protected , which means that it can be called only from derived
classes. That declaration prevents other clients from calling the method. It's also
virtual so that derived classes can change the behavior. The return type is a
Transaction? . The ? annotation indicates that the method may return null . Add the
following implementation in the LineOfCreditAccount to charge a fee when the
withdrawal limit is exceeded:

C#

The override returns a fee transaction when the account is overdrawn. If the withdrawal
doesn't go over the limit, the method returns a null transaction. That indicates there's
no fee. Test these changes by adding the following code to your Main method in the
Program class:

C#

Run the program, and check the results.

 if (isOverdrawn)
 {
 throw new InvalidOperationException("Not sufficient funds for this
withdrawal");
 }
 else
 {
 return default;
 }
}

protected override Transaction? CheckWithdrawalLimit(bool isOverdrawn) =>
 isOverdrawn
 ? new Transaction(-20, DateTime.Now, "Apply overdraft fee")
 : default;

var lineOfCredit = new LineOfCreditAccount("line of credit", 0, 2000);
// How much is too much to borrow?
lineOfCredit.MakeWithdrawal(1000m, DateTime.Now, "Take out monthly
advance");
lineOfCredit.MakeDeposit(50m, DateTime.Now, "Pay back small amount");
lineOfCredit.MakeWithdrawal(5000m, DateTime.Now, "Emergency funds for
repairs");
lineOfCredit.MakeDeposit(150m, DateTime.Now, "Partial restoration on
repairs");
lineOfCredit.PerformMonthEndTransactions();
Console.WriteLine(lineOfCredit.GetAccountHistory());

If you got stuck, you can see the source for this tutorial in our GitHub repo .

This tutorial demonstrated many of the techniques used in Object-Oriented
programming:

You used Abstraction when you defined classes for each of the different account
types. Those classes described the behavior for that type of account.
You used Encapsulation when you kept many details private in each class.
You used Inheritance when you leveraged the implementation already created in
the BankAccount class to save code.
You used Polymorphism when you created virtual methods that derived classes
could override to create specific behavior for that account type.

Summary

https://github.com/dotnet/docs/tree/main/docs/csharp/fundamentals/tutorials/snippets/object-oriented-programming

Inheritance in C# and .NET
Article • 2022-04-28 • 25 minutes to read

This tutorial introduces you to inheritance in C#. Inheritance is a feature of object-
oriented programming languages that allows you to define a base class that provides
specific functionality (data and behavior) and to define derived classes that either inherit
or override that functionality.

We recommend Visual Studio for Windows or Mac. You can download a free
version from the Visual Studio downloads page . Visual Studio includes the .NET
SDK.
You can also use the Visual Studio Code editor. You'll need to install the latest
.NET SDK separately.
If you prefer a different editor, you need to install the latest .NET SDK .

To create and run the examples in this tutorial, you use the dotnet utility from the
command line. Follow these steps for each example:

1. Create a directory to store the example.

2. Enter the dotnet new console command at a command prompt to create a new
.NET Core project.

3. Copy and paste the code from the example into your code editor.

4. Enter the dotnet restore command from the command line to load or restore the
project's dependencies.

You don't have to run dotnet restore because it's run implicitly by all commands
that require a restore to occur, such as dotnet new , dotnet build , dotnet run ,
dotnet test , dotnet publish , and dotnet pack . To disable implicit restore, use the
--no-restore option.

The dotnet restore command is still useful in certain scenarios where explicitly
restoring makes sense, such as continuous integration builds in Azure DevOps
Services or in build systems that need to explicitly control when the restore occurs.

Prerequisites

Running the examples

https://visualstudio.com/
https://visualstudio.microsoft.com/downloads
https://code.visualstudio.com/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-new
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-restore
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-restore
https://learn.microsoft.com/en-us/azure/devops/build-release/apps/aspnet/build-aspnet-core

For information about how to manage NuGet feeds, see the dotnet restore
documentation.

5. Enter the dotnet run command to compile and execute the example.

Inheritance is one of the fundamental attributes of object-oriented programming. It
allows you to define a child class that reuses (inherits), extends, or modifies the behavior
of a parent class. The class whose members are inherited is called the base class. The
class that inherits the members of the base class is called the derived class.

C# and .NET support single inheritance only. That is, a class can only inherit from a single
class. However, inheritance is transitive, which allows you to define an inheritance
hierarchy for a set of types. In other words, type D can inherit from type C , which
inherits from type B , which inherits from the base class type A . Because inheritance is
transitive, the members of type A are available to type D .

Not all members of a base class are inherited by derived classes. The following members
are not inherited:

Static constructors, which initialize the static data of a class.

Instance constructors, which you call to create a new instance of the class. Each
class must define its own constructors.

Finalizers, which are called by the runtime's garbage collector to destroy instances
of a class.

While all other members of a base class are inherited by derived classes, whether they
are visible or not depends on their accessibility. A member's accessibility affects its
visibility for derived classes as follows:

Private members are visible only in derived classes that are nested in their base
class. Otherwise, they are not visible in derived classes. In the following example,
A.B is a nested class that derives from A , and C derives from A . The private
A._value field is visible in A.B. However, if you remove the comments from the
C.GetValue method and attempt to compile the example, it produces compiler
error CS0122: "'A._value' is inaccessible due to its protection level."

C#

Background: What is inheritance?

public class A
{

https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-restore
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-run

Protected members are visible only in derived classes.

Internal members are visible only in derived classes that are located in the same
assembly as the base class. They are not visible in derived classes located in a
different assembly from the base class.

Public members are visible in derived classes and are part of the derived class'
public interface. Public inherited members can be called just as if they are defined
in the derived class. In the following example, class A defines a method named
Method1 , and class B inherits from class A . The example then calls Method1 as if it
were an instance method on B .

C#

 private int _value = 10;

 public class B : A
 {
 public int GetValue()
 {
 return _value;
 }
 }
}

public class C : A
{
 // public int GetValue()
 // {
 // return _value;
 // }
}

public class AccessExample
{
 public static void Main(string[] args)
 {
 var b = new A.B();
 Console.WriteLine(b.GetValue());
 }
}
// The example displays the following output:
// 10

public class A
{
 public void Method1()
 {
 // Method implementation.
 }
}

Derived classes can also override inherited members by providing an alternate
implementation. In order to be able to override a member, the member in the base class
must be marked with the virtual keyword. By default, base class members are not
marked as virtual and cannot be overridden. Attempting to override a non-virtual
member, as the following example does, generates compiler error CS0506: "<member>
cannot override inherited member <member> because it is not marked virtual, abstract,
or override.

C#

In some cases, a derived class must override the base class implementation. Base class
members marked with the abstract keyword require that derived classes override them.
Attempting to compile the following example generates compiler error CS0534, "
<class> does not implement inherited abstract member <member>", because class B
provides no implementation for A.Method1 .

C#

public class B : A
{ }

public class Example
{
 public static void Main()
 {
 B b = new ();
 b.Method1();
 }
}

public class A
{
 public void Method1()
 {
 // Do something.
 }
}

public class B : A
{
 public override void Method1() // Generates CS0506.
 {
 // Do something else.
 }
}

Inheritance applies only to classes and interfaces. Other type categories (structs,
delegates, and enums) do not support inheritance. Because of these rules, attempting to
compile code like the following example produces compiler error CS0527: "Type
'ValueType' in interface list is not an interface." The error message indicates that,
although you can define the interfaces that a struct implements, inheritance is not
supported.

C#

Besides any types that they may inherit from through single inheritance, all types in the
.NET type system implicitly inherit from Object or a type derived from it. The common
functionality of Object is available to any type.

To see what implicit inheritance means, let's define a new class, SimpleClass , that is
simply an empty class definition:

C#

You can then use reflection (which lets you inspect a type's metadata to get information
about that type) to get a list of the members that belong to the SimpleClass type.
Although you haven't defined any members in your SimpleClass class, output from the
example indicates that it actually has nine members. One of these members is a

public abstract class A
{
 public abstract void Method1();
}

public class B : A // Generates CS0534.
{
 public void Method3()
 {
 // Do something.
 }
}

public struct ValueStructure : ValueType // Generates CS0527.
{
}

Implicit inheritance

public class SimpleClass
{ }

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object

parameterless (or default) constructor that is automatically supplied for the SimpleClass
type by the C# compiler. The remaining eight are members of Object, the type from
which all classes and interfaces in the .NET type system ultimately implicitly inherit.

C#

using System.Reflection;

public class SimpleClassExample
{
 public static void Main()
 {
 Type t = typeof(SimpleClass);
 BindingFlags flags = BindingFlags.Instance | BindingFlags.Static |
BindingFlags.Public |
 BindingFlags.NonPublic |
BindingFlags.FlattenHierarchy;
 MemberInfo[] members = t.GetMembers(flags);
 Console.WriteLine($"Type {t.Name} has {members.Length} members: ");
 foreach (MemberInfo member in members)
 {
 string access = "";
 string stat = "";
 var method = member as MethodBase;
 if (method != null)
 {
 if (method.IsPublic)
 access = " Public";
 else if (method.IsPrivate)
 access = " Private";
 else if (method.IsFamily)
 access = " Protected";
 else if (method.IsAssembly)
 access = " Internal";
 else if (method.IsFamilyOrAssembly)
 access = " Protected Internal ";
 if (method.IsStatic)
 stat = " Static";
 }
 string output = $"{member.Name} ({member.MemberType}): {access}
{stat}, Declared by {member.DeclaringType}";
 Console.WriteLine(output);
 }
 }
}
// The example displays the following output:
// Type SimpleClass has 9 members:
// ToString (Method): Public, Declared by System.Object
// Equals (Method): Public, Declared by System.Object
// Equals (Method): Public Static, Declared by System.Object
// ReferenceEquals (Method): Public Static, Declared by System.Object
// GetHashCode (Method): Public, Declared by System.Object
// GetType (Method): Public, Declared by System.Object

https://learn.microsoft.com/en-us/dotnet/api/system.object

Implicit inheritance from the Object class makes these methods available to the
SimpleClass class:

The public ToString method, which converts a SimpleClass object to its string
representation, returns the fully qualified type name. In this case, the ToString
method returns the string "SimpleClass".

Three methods that test for equality of two objects: the public instance
Equals(Object) method, the public static Equals(Object, Object) method, and the
public static ReferenceEquals(Object, Object) method. By default, these methods
test for reference equality; that is, to be equal, two object variables must refer to
the same object.

The public GetHashCode method, which computes a value that allows an instance of
the type to be used in hashed collections.

The public GetType method, which returns a Type object that represents the
SimpleClass type.

The protected Finalize method, which is designed to release unmanaged resources
before an object's memory is reclaimed by the garbage collector.

The protected MemberwiseClone method, which creates a shallow clone of the
current object.

Because of implicit inheritance, you can call any inherited member from a SimpleClass
object just as if it was actually a member defined in the SimpleClass class. For instance,
the following example calls the SimpleClass.ToString method, which SimpleClass
inherits from Object.

C#

// Finalize (Method): Internal, Declared by System.Object
// MemberwiseClone (Method): Internal, Declared by System.Object
// .ctor (Constructor): Public, Declared by SimpleClass

public class EmptyClass
{ }

public class ClassNameExample
{
 public static void Main()
 {
 EmptyClass sc = new();
 Console.WriteLine(sc.ToString());
 }

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.object.finalize
https://learn.microsoft.com/en-us/dotnet/api/system.object.memberwiseclone
https://learn.microsoft.com/en-us/dotnet/api/system.object

The following table lists the categories of types that you can create in C# and the types
from which they implicitly inherit. Each base type makes a different set of members
available through inheritance to implicitly derived types.

Type category Implicitly inherits from

class Object

struct ValueType, Object

enum Enum, ValueType, Object

delegate MulticastDelegate, Delegate, Object

Ordinarily, inheritance is used to express an "is a" relationship between a base class and
one or more derived classes, where the derived classes are specialized versions of the
base class; the derived class is a type of the base class. For example, the Publication
class represents a publication of any kind, and the Book and Magazine classes represent
specific types of publications.

Note that "is a" also expresses the relationship between a type and a specific
instantiation of that type. In the following example, Automobile is a class that has three
unique read-only properties: Make , the manufacturer of the automobile; Model , the kind
of automobile; and Year , its year of manufacture. Your Automobile class also has a
constructor whose arguments are assigned to the property values, and it overrides the

}
// The example displays the following output:
// EmptyClass

Inheritance and an "is a" relationship

７ Note

A class or struct can implement one or more interfaces. While interface
implementation is often presented as a workaround for single inheritance or as a
way of using inheritance with structs, it is intended to express a different
relationship (a "can do" relationship) between an interface and its implementing
type than inheritance. An interface defines a subset of functionality (such as the
ability to test for equality, to compare or sort objects, or to support culture-
sensitive parsing and formatting) that the interface makes available to its
implementing types.

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.enum
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.multicastdelegate
https://learn.microsoft.com/en-us/dotnet/api/system.delegate
https://learn.microsoft.com/en-us/dotnet/api/system.object

Object.ToString method to produce a string that uniquely identifies the Automobile
instance rather than the Automobile class.

C#

In this case, you shouldn't rely on inheritance to represent specific car makes and
models. For example, you don't need to define a Packard type to represent automobiles
manufactured by the Packard Motor Car Company. Instead, you can represent them by
creating an Automobile object with the appropriate values passed to its class
constructor, as the following example does.

C#

public class Automobile
{
 public Automobile(string make, string model, int year)
 {
 if (make == null)
 throw new ArgumentNullException(nameof(make), "The make cannot
be null.");
 else if (string.IsNullOrWhiteSpace(make))
 throw new ArgumentException("make cannot be an empty string or
have space characters only.");
 Make = make;

 if (model == null)
 throw new ArgumentNullException(nameof(model), "The model cannot
be null.");
 else if (string.IsNullOrWhiteSpace(model))
 throw new ArgumentException("model cannot be an empty string or
have space characters only.");
 Model = model;

 if (year < 1857 || year > DateTime.Now.Year + 2)
 throw new ArgumentException("The year is out of range.");
 Year = year;
 }

 public string Make { get; }

 public string Model { get; }

 public int Year { get; }

 public override string ToString() => $"{Year} {Make} {Model}";
}

using System;

public class Example

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

An is-a relationship based on inheritance is best applied to a base class and to derived
classes that add additional members to the base class or that require additional
functionality not present in the base class.

Let's look at the process of designing a base class and its derived classes. In this section,
you'll define a base class, Publication , which represents a publication of any kind, such
as a book, a magazine, a newspaper, a journal, an article, etc. You'll also define a Book
class that derives from Publication . You could easily extend the example to define other
derived classes, such as Magazine , Journal , Newspaper , and Article .

In designing your Publication class, you need to make several design decisions:

What members to include in your base Publication class, and whether the
Publication members provide method implementations or whether Publication
is an abstract base class that serves as a template for its derived classes.

In this case, the Publication class will provide method implementations. The
Designing abstract base classes and their derived classes section contains an
example that uses an abstract base class to define the methods that derived
classes must override. Derived classes are free to provide any implementation that
is suitable for the derived type.

The ability to reuse code (that is, multiple derived classes share the declaration and
implementation of base class methods and do not need to override them) is an
advantage of non-abstract base classes. Therefore, you should add members to
Publication if their code is likely to be shared by some or most specialized
Publication types. If you fail to provide base class implementations efficiently,
you'll end up having to provide largely identical member implementations in

{
 public static void Main()
 {
 var packard = new Automobile("Packard", "Custom Eight", 1948);
 Console.WriteLine(packard);
 }
}
// The example displays the following output:
// 1948 Packard Custom Eight

Designing the base class and derived classes

The base Publication class

derived classes rather a single implementation in the base class. The need to
maintain duplicated code in multiple locations is a potential source of bugs.

Both to maximize code reuse and to create a logical and intuitive inheritance
hierarchy, you want to be sure that you include in the Publication class only the
data and functionality that is common to all or to most publications. Derived
classes then implement members that are unique to the particular kinds of
publication that they represent.

How far to extend your class hierarchy. Do you want to develop a hierarchy of
three or more classes, rather than simply a base class and one or more derived
classes? For example, Publication could be a base class of Periodical , which in
turn is a base class of Magazine , Journal and Newspaper .

For your example, you'll use the small hierarchy of a Publication class and a single
derived class, Book . You could easily extend the example to create a number of
additional classes that derive from Publication , such as Magazine and Article .

Whether it makes sense to instantiate the base class. If it does not, you should
apply the abstract keyword to the class. Otherwise, your Publication class can be
instantiated by calling its class constructor. If an attempt is made to instantiate a
class marked with the abstract keyword by a direct call to its class constructor, the
C# compiler generates error CS0144, "Cannot create an instance of the abstract
class or interface." If an attempt is made to instantiate the class by using reflection,
the reflection method throws a MemberAccessException.

By default, a base class can be instantiated by calling its class constructor. You do
not have to explicitly define a class constructor. If one is not present in the base
class' source code, the C# compiler automatically provides a default
(parameterless) constructor.

For your example, you'll mark the Publication class as abstract so that it cannot
be instantiated. An abstract class without any abstract methods indicates that
this class represents an abstract concept that is shared among several concrete
classes (like a Book , Journal).

Whether derived classes must inherit the base class implementation of particular
members, whether they have the option to override the base class implementation,
or whether they must provide an implementation. You use the abstract keyword to
force derived classes to provide an implementation. You use the virtual keyword to
allow derived classes to override a base class method. By default, methods defined
in the base class are not overridable.

https://learn.microsoft.com/en-us/dotnet/api/system.memberaccessexception

The Publication class does not have any abstract methods, but the class itself is
abstract .

Whether a derived class represents the final class in the inheritance hierarchy and
cannot itself be used as a base class for additional derived classes. By default, any
class can serve as a base class. You can apply the sealed keyword to indicate that a
class cannot serve as a base class for any additional classes. Attempting to derive
from a sealed class generated compiler error CS0509, "cannot derive from sealed
type <typeName>".

For your example, you'll mark your derived class as sealed .

The following example shows the source code for the Publication class, as well as a
PublicationType enumeration that is returned by the Publication.PublicationType
property. In addition to the members that it inherits from Object, the Publication class
defines the following unique members and member overrides:

C#

public enum PublicationType { Misc, Book, Magazine, Article };

public abstract class Publication
{
 private bool _published = false;
 private DateTime _datePublished;
 private int _totalPages;

 public Publication(string title, string publisher, PublicationType type)
 {
 if (string.IsNullOrWhiteSpace(publisher))
 throw new ArgumentException("The publisher is required.");
 Publisher = publisher;

 if (string.IsNullOrWhiteSpace(title))
 throw new ArgumentException("The title is required.");
 Title = title;

 Type = type;
 }

 public string Publisher { get; }

 public string Title { get; }

 public PublicationType Type { get; }

 public string? CopyrightName { get; private set; }

 public int CopyrightDate { get; private set; }

https://learn.microsoft.com/en-us/dotnet/api/system.object

A constructor

Because the Publication class is abstract , it cannot be instantiated directly from
code like the following example:

C#

 public int Pages
 {
 get { return _totalPages; }
 set
 {
 if (value <= 0)
 throw new ArgumentOutOfRangeException(nameof(value), "The
number of pages cannot be zero or negative.");
 _totalPages = value;
 }
 }

 public string GetPublicationDate()
 {
 if (!_published)
 return "NYP";
 else
 return _datePublished.ToString("d");
 }

 public void Publish(DateTime datePublished)
 {
 _published = true;
 _datePublished = datePublished;
 }

 public void Copyright(string copyrightName, int copyrightDate)
 {
 if (string.IsNullOrWhiteSpace(copyrightName))
 throw new ArgumentException("The name of the copyright holder is
required.");
 CopyrightName = copyrightName;

 int currentYear = DateTime.Now.Year;
 if (copyrightDate < currentYear - 10 || copyrightDate > currentYear
+ 2)
 throw new ArgumentOutOfRangeException($"The copyright year must
be between {currentYear - 10} and {currentYear + 1}");
 CopyrightDate = copyrightDate;
 }

 public override string ToString() => Title;
}

However, its instance constructor can be called directly from derived class
constructors, as the source code for the Book class shows.

Two publication-related properties

Title is a read-only String property whose value is supplied by calling the
Publication constructor.

Pages is a read-write Int32 property that indicates how many total pages the
publication has. The value is stored in a private field named totalPages . It must be
a positive number or an ArgumentOutOfRangeException is thrown.

Publisher-related members

Two read-only properties, Publisher and Type . The values are originally supplied
by the call to the Publication class constructor.

Publishing-related members

Two methods, Publish and GetPublicationDate , set and return the publication
date. The Publish method sets a private published flag to true when it is called
and assigns the date passed to it as an argument to the private datePublished
field. The GetPublicationDate method returns the string "NYP" if the published
flag is false , and the value of the datePublished field if it is true .

Copyright-related members

The Copyright method takes the name of the copyright holder and the year of the
copyright as arguments and assigns them to the CopyrightName and CopyrightDate
properties.

An override of the ToString method

If a type does not override the Object.ToString method, it returns the fully qualified
name of the type, which is of little use in differentiating one instance from another.
The Publication class overrides Object.ToString to return the value of the Title
property.

var publication = new Publication("Tiddlywinks for Experts", "Fun and
Games",
 PublicationType.Book);

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.argumentoutofrangeexception
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

The following figure illustrates the relationship between your base Publication class
and its implicitly inherited Object class.

The Book class represents a book as a specialized type of publication. The following
example shows the source code for the Book class.

C#

The Book class

using System;

public sealed class Book : Publication
{
 public Book(string title, string author, string publisher) :
 this(title, string.Empty, author, publisher)
 { }

 public Book(string title, string isbn, string author, string publisher)
: base(title, publisher, PublicationType.Book)
 {
 // isbn argument must be a 10- or 13-character numeric string

https://learn.microsoft.com/en-us/dotnet/api/system.object

without "-" characters.
 // We could also determine whether the ISBN is valid by comparing
its checksum digit
 // with a computed checksum.
 //
 if (!string.IsNullOrEmpty(isbn))
 {
 // Determine if ISBN length is correct.
 if (!(isbn.Length == 10 | isbn.Length == 13))
 throw new ArgumentException("The ISBN must be a 10- or 13-
character numeric string.");
 if (!ulong.TryParse(isbn, out _))
 throw new ArgumentException("The ISBN can consist of numeric
characters only.");
 }
 ISBN = isbn;

 Author = author;
 }

 public string ISBN { get; }

 public string Author { get; }

 public decimal Price { get; private set; }

 // A three-digit ISO currency symbol.
 public string? Currency { get; private set; }

 // Returns the old price, and sets a new price.
 public decimal SetPrice(decimal price, string currency)
 {
 if (price < 0)
 throw new ArgumentOutOfRangeException(nameof(price), "The price
cannot be negative.");
 decimal oldValue = Price;
 Price = price;

 if (currency.Length != 3)
 throw new ArgumentException("The ISO currency symbol is a 3-
character string.");
 Currency = currency;

 return oldValue;
 }

 public override bool Equals(object? obj)
 {
 if (obj is not Book book)
 return false;
 else
 return ISBN == book.ISBN;
 }

 public override int GetHashCode() => ISBN.GetHashCode();

In addition to the members that it inherits from Publication , the Book class defines the
following unique members and member overrides:

Two constructors

The two Book constructors share three common parameters. Two, title and
publisher, correspond to parameters of the Publication constructor. The third is
author, which is stored to a public immutable Author property. One constructor
includes an isbn parameter, which is stored in the ISBN auto-property.

The first constructor uses the this keyword to call the other constructor.
Constructor chaining is a common pattern in defining constructors. Constructors
with fewer parameters provide default values when calling the constructor with the
greatest number of parameters.

The second constructor uses the base keyword to pass the title and publisher
name to the base class constructor. If you don't make an explicit call to a base class
constructor in your source code, the C# compiler automatically supplies a call to
the base class' default or parameterless constructor.

A read-only ISBN property, which returns the Book object's International Standard
Book Number, a unique 10- or 13-digit number. The ISBN is supplied as an
argument to one of the Book constructors. The ISBN is stored in a private backing
field, which is auto-generated by the compiler.

A read-only Author property. The author name is supplied as an argument to both
Book constructors and is stored in the property.

Two read-only price-related properties, Price and Currency . Their values are
provided as arguments in a SetPrice method call. The Currency property is the
three-digit ISO currency symbol (for example, USD for the U.S. dollar). ISO currency
symbols can be retrieved from the ISOCurrencySymbol property. Both of these
properties are externally read-only, but both can be set by code in the Book class.

A SetPrice method, which sets the values of the Price and Currency properties.
Those values are returned by those same properties.

Overrides to the ToString method (inherited from Publication) and the
Object.Equals(Object) and GetHashCode methods (inherited from Object).

 public override string ToString() => $"{(string.IsNullOrEmpty(Author) ?
"" : Author + ", ")}{Title}";
}

https://learn.microsoft.com/en-us/dotnet/api/system.globalization.regioninfo.isocurrencysymbol
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode
https://learn.microsoft.com/en-us/dotnet/api/system.object

Unless it is overridden, the Object.Equals(Object) method tests for reference
equality. That is, two object variables are considered to be equal if they refer to the
same object. In the Book class, on the other hand, two Book objects should be
equal if they have the same ISBN.

When you override the Object.Equals(Object) method, you must also override the
GetHashCode method, which returns a value that the runtime uses to store items
in hashed collections for efficient retrieval. The hash code should return a value
that's consistent with the test for equality. Since you've overridden
Object.Equals(Object) to return true if the ISBN properties of two Book objects are
equal, you return the hash code computed by calling the GetHashCode method of
the string returned by the ISBN property.

The following figure illustrates the relationship between the Book class and Publication ,
its base class.

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.string.gethashcode

You can now instantiate a Book object, invoke both its unique and inherited members,
and pass it as an argument to a method that expects a parameter of type Publication
or of type Book , as the following example shows.

C#

public class ClassExample
{
 public static void Main()
 {
 var book = new Book("The Tempest", "0971655819", "Shakespeare,
William",

In the previous example, you defined a base class that provided an implementation for a
number of methods to allow derived classes to share code. In many cases, however, the
base class is not expected to provide an implementation. Instead, the base class is an
abstract class that declares abstract methods; it serves as a template that defines the
members that each derived class must implement. Typically in an abstract base class, the
implementation of each derived type is unique to that type. You marked the class with
the abstract keyword because it made no sense to instantiate a Publication object,
although the class did provide implementations of functionality common to
publications.

For example, each closed two-dimensional geometric shape includes two properties:
area, the inner extent of the shape; and perimeter, or the distance along the edges of
the shape. The way in which these properties are calculated, however, depends
completely on the specific shape. The formula for calculating the perimeter (or
circumference) of a circle, for example, is different from that of a square. The Shape class
is an abstract class with abstract methods. That indicates derived classes share the
same functionality, but those derived classes implement that functionality differently.

 "Public Domain Press");
 ShowPublicationInfo(book);
 book.Publish(new DateTime(2016, 8, 18));
 ShowPublicationInfo(book);

 var book2 = new Book("The Tempest", "Classic Works Press",
"Shakespeare, William");
 Console.Write($"{book.Title} and {book2.Title} are the same
publication: " +
 $"{((Publication)book).Equals(book2)}");
 }

 public static void ShowPublicationInfo(Publication pub)
 {
 string pubDate = pub.GetPublicationDate();
 Console.WriteLine($"{pub.Title}, " +
 $"{(pubDate == "NYP" ? "Not Yet Published" : "published on
" + pubDate):d} by {pub.Publisher}");
 }
}
// The example displays the following output:
// The Tempest, Not Yet Published by Public Domain Press
// The Tempest, published on 8/18/2016 by Public Domain Press
// The Tempest and The Tempest are the same publication: False

Designing abstract base classes and their
derived classes

The following example defines an abstract base class named Shape that defines two
properties: Area and Perimeter . In addition to marking the class with the abstract
keyword, each instance member is also marked with the abstract keyword. In this case,
Shape also overrides the Object.ToString method to return the name of the type, rather
than its fully qualified name. And it defines two static members, GetArea and
GetPerimeter , that allow callers to easily retrieve the area and perimeter of an instance
of any derived class. When you pass an instance of a derived class to either of these
methods, the runtime calls the method override of the derived class.

C#

You can then derive some classes from Shape that represent specific shapes. The
following example defines three classes, Square , Rectangle , and Circle . Each uses a
formula unique for that particular shape to compute the area and perimeter. Some of
the derived classes also define properties, such as Rectangle.Diagonal and
Circle.Diameter , that are unique to the shape that they represent.

C#

public abstract class Shape
{
 public abstract double Area { get; }

 public abstract double Perimeter { get; }

 public override string ToString() => GetType().Name;

 public static double GetArea(Shape shape) => shape.Area;

 public static double GetPerimeter(Shape shape) => shape.Perimeter;
}

using System;

public class Square : Shape
{
 public Square(double length)
 {
 Side = length;
 }

 public double Side { get; }

 public override double Area => Math.Pow(Side, 2);

 public override double Perimeter => Side * 4;

 public double Diagonal => Math.Round(Math.Sqrt(2) * Side, 2);

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

The following example uses objects derived from Shape . It instantiates an array of
objects derived from Shape and calls the static methods of the Shape class, which wraps
return Shape property values. The runtime retrieves values from the overridden
properties of the derived types. The example also casts each Shape object in the array to
its derived type and, if the cast succeeds, retrieves properties of that particular subclass
of Shape .

}

public class Rectangle : Shape
{
 public Rectangle(double length, double width)
 {
 Length = length;
 Width = width;
 }

 public double Length { get; }

 public double Width { get; }

 public override double Area => Length * Width;

 public override double Perimeter => 2 * Length + 2 * Width;

 public bool IsSquare() => Length == Width;

 public double Diagonal => Math.Round(Math.Sqrt(Math.Pow(Length, 2) +
Math.Pow(Width, 2)), 2);
}

public class Circle : Shape
{
 public Circle(double radius)
 {
 Radius = radius;
 }

 public override double Area => Math.Round(Math.PI * Math.Pow(Radius, 2),
2);

 public override double Perimeter => Math.Round(Math.PI * 2 * Radius, 2);

 // Define a circumference, since it's the more familiar term.
 public double Circumference => Perimeter;

 public double Radius { get; }

 public double Diameter => Radius * 2;
}

C#

using System;

public class Example
{
 public static void Main()
 {
 Shape[] shapes = { new Rectangle(10, 12), new Square(5),
 new Circle(3) };
 foreach (Shape shape in shapes)
 {
 Console.WriteLine($"{shape}: area, {Shape.GetArea(shape)}; " +
 $"perimeter, {Shape.GetPerimeter(shape)}");
 if (shape is Rectangle rect)
 {
 Console.WriteLine($" Is Square: {rect.IsSquare()},
Diagonal: {rect.Diagonal}");
 continue;
 }
 if (shape is Square sq)
 {
 Console.WriteLine($" Diagonal: {sq.Diagonal}");
 continue;
 }
 }
 }
}
// The example displays the following output:
// Rectangle: area, 120; perimeter, 44
// Is Square: False, Diagonal: 15.62
// Square: area, 25; perimeter, 20
// Diagonal: 7.07
// Circle: area, 28.27; perimeter, 18.85

How to safely cast by using pattern
matching and the is and as operators
Article • 2022-03-11 • 4 minutes to read

Because objects are polymorphic, it's possible for a variable of a base class type to hold
a derived type. To access the derived type's instance members, it's necessary to cast the
value back to the derived type. However, a cast creates the risk of throwing an
InvalidCastException. C# provides pattern matching statements that perform a cast
conditionally only when it will succeed. C# also provides the is and as operators to test if
a value is of a certain type.

The following example shows how to use the pattern matching is statement:

C#

var g = new Giraffe();
var a = new Animal();
FeedMammals(g);
FeedMammals(a);
// Output:
// Eating.
// Animal is not a Mammal

SuperNova sn = new SuperNova();
TestForMammals(g);
TestForMammals(sn);

static void FeedMammals(Animal a)
{
 if (a is Mammal m)
 {
 m.Eat();
 }
 else
 {
 // variable 'm' is not in scope here, and can't be used.
 Console.WriteLine($"{a.GetType().Name} is not a Mammal");
 }
}

static void TestForMammals(object o)
{
 // You also can use the as operator and test for null
 // before referencing the variable.
 var m = o as Mammal;
 if (m != null)
 {
 Console.WriteLine(m.ToString());

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception

The preceding sample demonstrates a few features of pattern matching syntax. The if
(a is Mammal m) statement combines the test with an initialization assignment. The
assignment occurs only when the test succeeds. The variable m is only in scope in the
embedded if statement where it has been assigned. You can't access m later in the
same method. The preceding example also shows how to use the as operator to convert
an object to a specified type.

You can also use the same syntax for testing if a nullable value type has a value, as
shown in the following example:

C#

 }
 else
 {
 Console.WriteLine($"{o.GetType().Name} is not a Mammal");
 }
}
// Output:
// I am an animal.
// SuperNova is not a Mammal

class Animal
{
 public void Eat() { Console.WriteLine("Eating."); }
 public override string ToString()
 {
 return "I am an animal.";
 }
}
class Mammal : Animal { }
class Giraffe : Mammal { }

class SuperNova { }

int i = 5;
PatternMatchingNullable(i);

int? j = null;
PatternMatchingNullable(j);

double d = 9.78654;
PatternMatchingNullable(d);

PatternMatchingSwitch(i);
PatternMatchingSwitch(j);
PatternMatchingSwitch(d);

static void PatternMatchingNullable(ValueType? val)
{
 if (val is int j) // Nullable types are not allowed in patterns

The preceding sample demonstrates other features of pattern matching to use with
conversions. You can test a variable for the null pattern by checking specifically for the
null value. When the runtime value of the variable is null , an is statement checking
for a type always returns false . The pattern matching is statement doesn't allow a
nullable value type, such as int? or Nullable<int> , but you can test for any other value
type. The is patterns from the preceding example aren't limited to the nullable value
types. You can also use those patterns to test if a variable of a reference type has a value
or it's null .

 {
 Console.WriteLine(j);
 }
 else if (val is null) // If val is a nullable type with no value, this
expression is true
 {
 Console.WriteLine("val is a nullable type with the null value");
 }
 else
 {
 Console.WriteLine("Could not convert " + val.ToString());
 }
}

static void PatternMatchingSwitch(ValueType? val)
{
 switch (val)
 {
 case int number:
 Console.WriteLine(number);
 break;
 case long number:
 Console.WriteLine(number);
 break;
 case decimal number:
 Console.WriteLine(number);
 break;
 case float number:
 Console.WriteLine(number);
 break;
 case double number:
 Console.WriteLine(number);
 break;
 case null:
 Console.WriteLine("val is a nullable type with the null value");
 break;
 default:
 Console.WriteLine("Could not convert " + val.ToString());
 break;
 }
}

The preceding sample also shows how you use the type pattern in a switch statement
where the variable may be one of many different types.

If you want to test if a variable is a given type, but not assign it to a new variable, you
can use the is and as operators for reference types and nullable value types. The
following code shows how to use the is and as statements that were part of the C#
language before pattern matching was introduced to test if a variable is of a given type:

C#

// Use the is operator to verify the type.
// before performing a cast.
Giraffe g = new();
UseIsOperator(g);

// Use the as operator and test for null
// before referencing the variable.
UseAsOperator(g);

// Use pattern matching to test for null
// before referencing the variable
UsePatternMatchingIs(g);

// Use the as operator to test
// an incompatible type.
SuperNova sn = new();
UseAsOperator(sn);

// Use the as operator with a value type.
// Note the implicit conversion to int? in
// the method body.
int i = 5;
UseAsWithNullable(i);

double d = 9.78654;
UseAsWithNullable(d);

static void UseIsOperator(Animal a)
{
 if (a is Mammal)
 {
 Mammal m = (Mammal)a;
 m.Eat();
 }
}

static void UsePatternMatchingIs(Animal a)
{
 if (a is Mammal m)
 {
 m.Eat();
 }

As you can see by comparing this code with the pattern matching code, the pattern
matching syntax provides more robust features by combining the test and the
assignment in a single statement. Use the pattern matching syntax whenever possible.

}

static void UseAsOperator(object o)
{
 Mammal? m = o as Mammal;
 if (m is not null)
 {
 Console.WriteLine(m.ToString());
 }
 else
 {
 Console.WriteLine($"{o.GetType().Name} is not a Mammal");
 }
}

static void UseAsWithNullable(System.ValueType val)
{
 int? j = val as int?;
 if (j is not null)
 {
 Console.WriteLine(j);
 }
 else
 {
 Console.WriteLine("Could not convert " + val.ToString());
 }
}
class Animal
{
 public void Eat() => Console.WriteLine("Eating.");
 public override string ToString() => "I am an animal.";
}
class Mammal : Animal { }
class Giraffe : Mammal { }

class SuperNova { }

Tutorial: Use pattern matching to build
type-driven and data-driven algorithms
Article • 2022-09-29 • 15 minutes to read

You can write functionality that behaves as though you extended types that may be in
other libraries. Another use for patterns is to create functionality your application
requires that isn't a fundamental feature of the type being extended.

In this tutorial, you'll learn how to:

We recommend Visual Studio for Windows or Mac. You can download a free
version from the Visual Studio downloads page . Visual Studio includes the .NET
SDK.
You can also use the Visual Studio Code editor. You'll need to install the latest
.NET SDK separately.
If you prefer a different editor, you need to install the latest .NET SDK .

This tutorial assumes you're familiar with C# and .NET, including either Visual Studio or
the .NET CLI.

Modern development often includes integrating data from multiple sources and
presenting information and insights from that data in a single cohesive application. You
and your team won't have control or access for all the types that represent the incoming
data.

The classic object-oriented design would call for creating types in your application that
represent each data type from those multiple data sources. Then, your application
would work with those new types, build inheritance hierarchies, create virtual methods,
and implement abstractions. Those techniques work, and sometimes they're the best
tools. Other times you can write less code. You can write more clear code using
techniques that separate the data from the operations that manipulate that data.

Recognize situations where pattern matching should be used.＂

Use pattern matching expressions to implement behavior based on types and
property values.

＂

Combine pattern matching with other techniques to create complete algorithms.＂

Prerequisites

Scenarios for pattern matching

https://visualstudio.com/
https://visualstudio.microsoft.com/downloads
https://code.visualstudio.com/
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

In this tutorial, you'll create and explore an application that takes incoming data from
several external sources for a single scenario. You'll see how pattern matching provides
an efficient way to consume and process that data in ways that weren't part of the
original system.

Consider a major metropolitan area that is using tolls and peak time pricing to manage
traffic. You write an application that calculates tolls for a vehicle based on its type. Later
enhancements incorporate pricing based on the number of occupants in the vehicle.
Further enhancements add pricing based on the time and the day of the week.

From that brief description, you may have quickly sketched out an object hierarchy to
model this system. However, your data is coming from multiple sources like other
vehicle registration management systems. These systems provide different classes to
model that data and you don't have a single object model you can use. In this tutorial,
you'll use these simplified classes to model for the vehicle data from these external
systems, as shown in the following code:

C#

namespace ConsumerVehicleRegistration
{
 public class Car
 {
 public int Passengers { get; set; }
 }
}

namespace CommercialRegistration
{
 public class DeliveryTruck
 {
 public int GrossWeightClass { get; set; }
 }
}

namespace LiveryRegistration
{
 public class Taxi
 {
 public int Fares { get; set; }
 }

 public class Bus
 {
 public int Capacity { get; set; }
 public int Riders { get; set; }
 }
}

You can download the starter code from the dotnet/samples GitHub repository. You
can see that the vehicle classes are from different systems, and are in different
namespaces. No common base class, other than System.Object can be used.

The scenario used in this tutorial highlights the kinds of problems that pattern matching
is well suited to solve:

The objects you need to work with aren't in an object hierarchy that matches your
goals. You may be working with classes that are part of unrelated systems.
The functionality you're adding isn't part of the core abstraction for these classes.
The toll paid by a vehicle changes for different types of vehicles, but the toll isn't a
core function of the vehicle.

When the shape of the data and the operations on that data aren't described together,
the pattern matching features in C# make it easier to work with.

The most basic toll calculation relies only on the vehicle type:

A Car is $2.00.
A Taxi is $3.50.
A Bus is $5.00.
A DeliveryTruck is $10.00

Create a new TollCalculator class, and implement pattern matching on the vehicle type
to get the toll amount. The following code shows the initial implementation of the
TollCalculator .

C#

Pattern matching designs

Implement the basic toll calculations

using System;
using CommercialRegistration;
using ConsumerVehicleRegistration;
using LiveryRegistration;

namespace Calculators;

public class TollCalculator
{
 public decimal CalculateToll(object vehicle) =>
 vehicle switch

https://github.com/dotnet/samples/tree/main/csharp/tutorials/patterns/start

The preceding code uses a switch expression (not the same as a switch statement) that
tests the declaration pattern. A switch expression begins with the variable, vehicle in
the preceding code, followed by the switch keyword. Next comes all the switch arms
inside curly braces. The switch expression makes other refinements to the syntax that
surrounds the switch statement. The case keyword is omitted, and the result of each
arm is an expression. The last two arms show a new language feature. The { } case
matches any non-null object that didn't match an earlier arm. This arm catches any
incorrect types passed to this method. The { } case must follow the cases for each
vehicle type. If the order were reversed, the { } case would take precedence. Finally, the
null constant pattern detects when null is passed to this method. The null pattern
can be last because the other patterns match only a non-null object of the correct type.

You can test this code using the following code in Program.cs :

C#

 {
 Car c => 2.00m,
 Taxi t => 3.50m,
 Bus b => 5.00m,
 DeliveryTruck t => 10.00m,
 { } => throw new ArgumentException(message: "Not a known
vehicle type", paramName: nameof(vehicle)),
 null => throw new ArgumentNullException(nameof(vehicle))
 };
}

using System;
using CommercialRegistration;
using ConsumerVehicleRegistration;
using LiveryRegistration;

using toll_calculator;

var tollCalc = new TollCalculator();

var car = new Car();
var taxi = new Taxi();
var bus = new Bus();
var truck = new DeliveryTruck();

Console.WriteLine($"The toll for a car is {tollCalc.CalculateToll(car)}");
Console.WriteLine($"The toll for a taxi is {tollCalc.CalculateToll(taxi)}");
Console.WriteLine($"The toll for a bus is {tollCalc.CalculateToll(bus)}");
Console.WriteLine($"The toll for a truck is
{tollCalc.CalculateToll(truck)}");

try
{

That code is included in the starter project, but is commented out. Remove the
comments, and you can test what you've written.

You're starting to see how patterns can help you create algorithms where the code and
the data are separate. The switch expression tests the type and produces different
values based on the results. That's only the beginning.

The toll authority wants to encourage vehicles to travel at maximum capacity. They've
decided to charge more when vehicles have fewer passengers, and encourage full
vehicles by offering lower pricing:

Cars and taxis with no passengers pay an extra $0.50.
Cars and taxis with two passengers get a $0.50 discount.
Cars and taxis with three or more passengers get a $1.00 discount.
Buses that are less than 50% full pay an extra $2.00.
Buses that are more than 90% full get a $1.00 discount.

These rules can be implemented using a property pattern in the same switch expression.
A property pattern compares a property value to a constant value. The property pattern
examines properties of the object once the type has been determined. The single case
for a Car expands to four different cases:

C#

 tollCalc.CalculateToll("this will fail");
}
catch (ArgumentException e)
{
 Console.WriteLine("Caught an argument exception when using the wrong
type");
}
try
{
 tollCalc.CalculateToll(null!);
}
catch (ArgumentNullException e)
{
 Console.WriteLine("Caught an argument exception when using null");
}

Add occupancy pricing

vehicle switch
{
 Car {Passengers: 0} => 2.00m + 0.50m,
 Car {Passengers: 1} => 2.0m,

The first three cases test the type as a Car , then check the value of the Passengers
property. If both match, that expression is evaluated and returned.

You would also expand the cases for taxis in a similar manner:

C#

Next, implement the occupancy rules by expanding the cases for buses, as shown in the
following example:

C#

The toll authority isn't concerned with the number of passengers in the delivery trucks.
Instead, they adjust the toll amount based on the weight class of the trucks as follows:

Trucks over 5000 lbs are charged an extra $5.00.
Light trucks under 3000 lbs are given a $2.00 discount.

 Car {Passengers: 2} => 2.0m - 0.50m,
 Car => 2.00m - 1.0m,

 // ...
};

vehicle switch
{
 // ...

 Taxi {Fares: 0} => 3.50m + 1.00m,
 Taxi {Fares: 1} => 3.50m,
 Taxi {Fares: 2} => 3.50m - 0.50m,
 Taxi => 3.50m - 1.00m,

 // ...
};

vehicle switch
{
 // ...

 Bus b when ((double)b.Riders / (double)b.Capacity) < 0.50 => 5.00m +
2.00m,
 Bus b when ((double)b.Riders / (double)b.Capacity) > 0.90 => 5.00m -
1.00m,
 Bus => 5.00m,

 // ...
};

That rule is implemented with the following code:

C#

The preceding code shows the when clause of a switch arm. You use the when clause to
test conditions other than equality on a property. When you've finished, you'll have a
method that looks much like the following code:

C#

Many of these switch arms are examples of recursive patterns. For example, Car {
Passengers: 1} shows a constant pattern inside a property pattern.

vehicle switch
{
 // ...

 DeliveryTruck t when (t.GrossWeightClass > 5000) => 10.00m + 5.00m,
 DeliveryTruck t when (t.GrossWeightClass < 3000) => 10.00m - 2.00m,
 DeliveryTruck => 10.00m,
};

vehicle switch
{
 Car {Passengers: 0} => 2.00m + 0.50m,
 Car {Passengers: 1} => 2.0m,
 Car {Passengers: 2} => 2.0m - 0.50m,
 Car => 2.00m - 1.0m,

 Taxi {Fares: 0} => 3.50m + 1.00m,
 Taxi {Fares: 1} => 3.50m,
 Taxi {Fares: 2} => 3.50m - 0.50m,
 Taxi => 3.50m - 1.00m,

 Bus b when ((double)b.Riders / (double)b.Capacity) < 0.50 => 5.00m +
2.00m,
 Bus b when ((double)b.Riders / (double)b.Capacity) > 0.90 => 5.00m -
1.00m,
 Bus => 5.00m,

 DeliveryTruck t when (t.GrossWeightClass > 5000) => 10.00m + 5.00m,
 DeliveryTruck t when (t.GrossWeightClass < 3000) => 10.00m - 2.00m,
 DeliveryTruck => 10.00m,

 { } => throw new ArgumentException(message: "Not a known vehicle
type", paramName: nameof(vehicle)),
 null => throw new ArgumentNullException(nameof(vehicle))
};

You can make this code less repetitive by using nested switches. The Car and Taxi both
have four different arms in the preceding examples. In both cases, you can create a
declaration pattern that feeds into a constant pattern. This technique is shown in the
following code:

C#

In the preceding sample, using a recursive expression means you don't repeat the Car
and Taxi arms containing child arms that test the property value. This technique isn't
used for the Bus and DeliveryTruck arms because those arms are testing ranges for the
property, not discrete values.

public decimal CalculateToll(object vehicle) =>
 vehicle switch
 {
 Car c => c.Passengers switch
 {
 0 => 2.00m + 0.5m,
 1 => 2.0m,
 2 => 2.0m - 0.5m,
 _ => 2.00m - 1.0m
 },

 Taxi t => t.Fares switch
 {
 0 => 3.50m + 1.00m,
 1 => 3.50m,
 2 => 3.50m - 0.50m,
 _ => 3.50m - 1.00m
 },

 Bus b when ((double)b.Riders / (double)b.Capacity) < 0.50 => 5.00m +
2.00m,
 Bus b when ((double)b.Riders / (double)b.Capacity) > 0.90 => 5.00m -
1.00m,
 Bus b => 5.00m,

 DeliveryTruck t when (t.GrossWeightClass > 5000) => 10.00m + 5.00m,
 DeliveryTruck t when (t.GrossWeightClass < 3000) => 10.00m - 2.00m,
 DeliveryTruck t => 10.00m,

 { } => throw new ArgumentException(message: "Not a known vehicle
type", paramName: nameof(vehicle)),
 null => throw new ArgumentNullException(nameof(vehicle))
 };

Add peak pricing

For the final feature, the toll authority wants to add time sensitive peak pricing. During
the morning and evening rush hours, the tolls are doubled. That rule only affects traffic
in one direction: inbound to the city in the morning, and outbound in the evening rush
hour. During other times during the workday, tolls increase by 50%. Late night and early
morning, tolls are reduced by 25%. During the weekend, it's the normal rate, regardless
of the time. You could use a series if if and else statements to express this using the
following code:

C#

public decimal PeakTimePremiumIfElse(DateTime timeOfToll, bool inbound)
{
 if ((timeOfToll.DayOfWeek == DayOfWeek.Saturday) ||
 (timeOfToll.DayOfWeek == DayOfWeek.Sunday))
 {
 return 1.0m;
 }
 else
 {
 int hour = timeOfToll.Hour;
 if (hour < 6)
 {
 return 0.75m;
 }
 else if (hour < 10)
 {
 if (inbound)
 {
 return 2.0m;
 }
 else
 {
 return 1.0m;
 }
 }
 else if (hour < 16)
 {
 return 1.5m;
 }
 else if (hour < 20)
 {
 if (inbound)
 {
 return 1.0m;
 }
 else
 {
 return 2.0m;
 }
 }
 else // Overnight
 {

The preceding code does work correctly, but isn't readable. You have to chain through
all the input cases and the nested if statements to reason about the code. Instead,
you'll use pattern matching for this feature, but you'll integrate it with other techniques.
You could build a single pattern match expression that would account for all the
combinations of direction, day of the week, and time. The result would be a complicated
expression. It would be hard to read and difficult to understand. That makes it hard to
ensure correctness. Instead, combine those methods to build a tuple of values that
concisely describes all those states. Then use pattern matching to calculate a multiplier
for the toll. The tuple contains three discrete conditions:

The day is either a weekday or a weekend.
The band of time when the toll is collected.
The direction is into the city or out of the city

The following table shows the combinations of input values and the peak pricing
multiplier:

Day Time Direction Premium

Weekday morning rush inbound x 2.00

Weekday morning rush outbound x 1.00

Weekday daytime inbound x 1.50

Weekday daytime outbound x 1.50

Weekday evening rush inbound x 1.00

Weekday evening rush outbound x 2.00

Weekday overnight inbound x 0.75

Weekday overnight outbound x 0.75

Weekend morning rush inbound x 1.00

Weekend morning rush outbound x 1.00

Weekend daytime inbound x 1.00

Weekend daytime outbound x 1.00

 return 0.75m;
 }
 }
}

Day Time Direction Premium

Weekend evening rush inbound x 1.00

Weekend evening rush outbound x 1.00

Weekend overnight inbound x 1.00

Weekend overnight outbound x 1.00

There are 16 different combinations of the three variables. By combining some of the
conditions, you'll simplify the final switch expression.

The system that collects the tolls uses a DateTime structure for the time when the toll
was collected. Build member methods that create the variables from the preceding
table. The following function uses a pattern matching switch expression to express
whether a DateTime represents a weekend or a weekday:

C#

That method is correct, but it's repetitious. You can simplify it, as shown in the following
code:

C#

Next, add a similar function to categorize the time into the blocks:

C#

private static bool IsWeekDay(DateTime timeOfToll) =>
 timeOfToll.DayOfWeek switch
 {
 DayOfWeek.Monday => true,
 DayOfWeek.Tuesday => true,
 DayOfWeek.Wednesday => true,
 DayOfWeek.Thursday => true,
 DayOfWeek.Friday => true,
 DayOfWeek.Saturday => false,
 DayOfWeek.Sunday => false
 };

private static bool IsWeekDay(DateTime timeOfToll) =>
 timeOfToll.DayOfWeek switch
 {
 DayOfWeek.Saturday => false,
 DayOfWeek.Sunday => false,
 _ => true
 };

https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-us/dotnet/api/system.datetime

You add a private enum to convert each range of time to a discrete value. Then, the
GetTimeBand method uses relational patterns, and conjunctive or patterns, both added
in C# 9.0. A relational pattern lets you test a numeric value using < , > , <= , or >= . The
or pattern tests if an expression matches one or more patterns. You can also use an and
pattern to ensure that an expression matches two distinct patterns, and a not pattern to
test that an expression doesn't match a pattern.

After you create those methods, you can use another switch expression with the tuple
pattern to calculate the pricing premium. You could build a switch expression with all
16 arms:

C#

private enum TimeBand
{
 MorningRush,
 Daytime,
 EveningRush,
 Overnight
}

private static TimeBand GetTimeBand(DateTime timeOfToll) =>
 timeOfToll.Hour switch
 {
 < 6 or > 19 => TimeBand.Overnight,
 < 10 => TimeBand.MorningRush,
 < 16 => TimeBand.Daytime,
 _ => TimeBand.EveningRush,
 };

public decimal PeakTimePremiumFull(DateTime timeOfToll, bool inbound) =>
 (IsWeekDay(timeOfToll), GetTimeBand(timeOfToll), inbound) switch
 {
 (true, TimeBand.MorningRush, true) => 2.00m,
 (true, TimeBand.MorningRush, false) => 1.00m,
 (true, TimeBand.Daytime, true) => 1.50m,
 (true, TimeBand.Daytime, false) => 1.50m,
 (true, TimeBand.EveningRush, true) => 1.00m,
 (true, TimeBand.EveningRush, false) => 2.00m,
 (true, TimeBand.Overnight, true) => 0.75m,
 (true, TimeBand.Overnight, false) => 0.75m,
 (false, TimeBand.MorningRush, true) => 1.00m,
 (false, TimeBand.MorningRush, false) => 1.00m,
 (false, TimeBand.Daytime, true) => 1.00m,
 (false, TimeBand.Daytime, false) => 1.00m,
 (false, TimeBand.EveningRush, true) => 1.00m,
 (false, TimeBand.EveningRush, false) => 1.00m,
 (false, TimeBand.Overnight, true) => 1.00m,
 (false, TimeBand.Overnight, false) => 1.00m,
 };

The above code works, but it can be simplified. All eight combinations for the weekend
have the same toll. You can replace all eight with the following line:

C#

Both inbound and outbound traffic have the same multiplier during the weekday
daytime and overnight hours. Those four switch arms can be replaced with the following
two lines:

C#

The code should look like the following code after those two changes:

C#

Finally, you can remove the two rush hour times that pay the regular price. Once you
remove those arms, you can replace the false with a discard (_) in the final switch arm.
You'll have the following finished method:

C#

(false, _, _) => 1.0m,

(true, TimeBand.Overnight, _) => 0.75m,
(true, TimeBand.Daytime, _) => 1.5m,

public decimal PeakTimePremium(DateTime timeOfToll, bool inbound) =>
 (IsWeekDay(timeOfToll), GetTimeBand(timeOfToll), inbound) switch
 {
 (true, TimeBand.MorningRush, true) => 2.00m,
 (true, TimeBand.MorningRush, false) => 1.00m,
 (true, TimeBand.Daytime, _) => 1.50m,
 (true, TimeBand.EveningRush, true) => 1.00m,
 (true, TimeBand.EveningRush, false) => 2.00m,
 (true, TimeBand.Overnight, _) => 0.75m,
 (false, _, _) => 1.00m,
 };

public decimal PeakTimePremium(DateTime timeOfToll, bool inbound) =>
 (IsWeekDay(timeOfToll), GetTimeBand(timeOfToll), inbound) switch
 {
 (true, TimeBand.Overnight, _) => 0.75m,
 (true, TimeBand.Daytime, _) => 1.5m,
 (true, TimeBand.MorningRush, true) => 2.0m,
 (true, TimeBand.EveningRush, false) => 2.0m,

This example highlights one of the advantages of pattern matching: the pattern
branches are evaluated in order. If you rearrange them so that an earlier branch handles
one of your later cases, the compiler warns you about the unreachable code. Those
language rules made it easier to do the preceding simplifications with confidence that
the code didn't change.

Pattern matching makes some types of code more readable and offers an alternative to
object-oriented techniques when you can't add code to your classes. The cloud is
causing data and functionality to live apart. The shape of the data and the operations on
it aren't necessarily described together. In this tutorial, you consumed existing data in
entirely different ways from its original function. Pattern matching gave you the ability
to write functionality that overrode those types, even though you couldn't extend them.

You can download the finished code from the dotnet/samples GitHub repository.
Explore patterns on your own and add this technique into your regular coding activities.
Learning these techniques gives you another way to approach problems and create new
functionality.

Patterns
switch expression

 _ => 1.0m,
 };

Next steps

See also

https://github.com/dotnet/samples/tree/main/csharp/tutorials/patterns/finished

How to handle an exception using
try/catch
Article • 2022-08-12 • 2 minutes to read

The purpose of a try-catch block is to catch and handle an exception generated by
working code. Some exceptions can be handled in a catch block and the problem
solved without the exception being rethrown; however, more often the only thing that
you can do is make sure that the appropriate exception is thrown.

In this example, IndexOutOfRangeException isn't the most appropriate exception:
ArgumentOutOfRangeException makes more sense for the method because the error is
caused by the index argument passed in by the caller.

C#

The code that causes an exception is enclosed in the try block. A catch statement is
added immediately after it to handle IndexOutOfRangeException , if it occurs. The catch
block handles the IndexOutOfRangeException and throws the more appropriate
ArgumentOutOfRangeException instead. In order to provide the caller with as much
information as possible, consider specifying the original exception as the InnerException

Example

static int GetInt(int[] array, int index)
{
 try
 {
 return array[index];
 }
 catch (IndexOutOfRangeException e) // CS0168
 {
 Console.WriteLine(e.Message);
 // Set IndexOutOfRangeException to the new exception's
InnerException.
 throw new ArgumentOutOfRangeException("index parameter is out of
range.", e);
 }
}

Comments

https://learn.microsoft.com/en-us/dotnet/api/system.indexoutofrangeexception
https://learn.microsoft.com/en-us/dotnet/api/system.argumentoutofrangeexception
https://learn.microsoft.com/en-us/dotnet/api/system.exception.innerexception

of the new exception. Because the InnerException property is read-only, you must assign
it in the constructor of the new exception.

https://learn.microsoft.com/en-us/dotnet/api/system.exception.innerexception

How to execute cleanup code using
finally
Article • 2021-09-15 • 2 minutes to read

The purpose of a finally statement is to ensure that the necessary cleanup of objects,
usually objects that are holding external resources, occurs immediately, even if an
exception is thrown. One example of such cleanup is calling Close on a FileStream
immediately after use instead of waiting for the object to be garbage collected by the
common language runtime, as follows:

C#

To turn the previous code into a try-catch-finally statement, the cleanup code is
separated from the working code, as follows.

C#

static void CodeWithoutCleanup()
{
 FileStream? file = null;
 FileInfo fileInfo = new FileInfo("./file.txt");

 file = fileInfo.OpenWrite();
 file.WriteByte(0xF);

 file.Close();
}

Example

static void CodeWithCleanup()
{
 FileStream? file = null;
 FileInfo? fileInfo = null;

 try
 {
 fileInfo = new FileInfo("./file.txt");

 file = fileInfo.OpenWrite();
 file.WriteByte(0xF);
 }
 catch (UnauthorizedAccessException e)
 {
 Console.WriteLine(e.Message);

https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.close
https://learn.microsoft.com/en-us/dotnet/api/system.io.filestream

Because an exception can occur at any time within the try block before the
OpenWrite() call, or the OpenWrite() call itself could fail, we aren't guaranteed that the
file is open when we try to close it. The finally block adds a check to make sure that
the FileStream object isn't null before you call the Close method. Without the null
check, the finally block could throw its own NullReferenceException, but throwing
exceptions in finally blocks should be avoided if it's possible.

A database connection is another good candidate for being closed in a finally block.
Because the number of connections allowed to a database server is sometimes limited,
you should close database connections as quickly as possible. If an exception is thrown
before you can close your connection, using the finally block is better than waiting for
garbage collection.

using Statement
try-catch
try-finally
try-catch-finally

 }
 finally
 {
 file?.Close();
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.filestream
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.close
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

What's new in C# 11
Article • 2022-11-30 • 8 minutes to read

The following features were added in C# 11:

Raw string literals
Generic math support
Generic attributes
UTF-8 string literals
Newlines in string interpolation expressions
List patterns
File-local types
Required members
Auto-default structs
Pattern match Span<char> on a constant string
Extended nameof scope
Numeric IntPtr
ref fields and scoped ref
Improved method group conversion to delegate
Warning wave 7

You can download the latest Visual Studio 2022 . You can also try all these features
with the .NET 7 SDK, which can be downloaded from the .NET downloads page.

You can declare a generic class whose base class is System.Attribute. This feature
provides a more convenient syntax for attributes that require a System.Type parameter.
Previously, you'd need to create an attribute that takes a Type as its constructor
parameter:

C#

７ Note

We're interested in your feedback on these features. If you find issues with any of
these new features, create a new issue in the dotnet/roslyn repository.

Generic attributes

// Before C# 11:
public class TypeAttribute : Attribute
{

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs8981---the-type-name-only-contains-lower-cased-ascii-characters
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet
https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://github.com/dotnet/roslyn/issues/new/choose
https://github.com/dotnet/roslyn

And to apply the attribute, you use the typeof operator:

C#

Using this new feature, you can create a generic attribute instead:

C#

Then, specify the type parameter to use the attribute:

C#

You must supply all type parameters when you apply the attribute. In other words, the
generic type must be fully constructed. In the example above, the empty parentheses ((
and)) can be omitted as the attribute does not have any arguments.

C#

The type arguments must satisfy the same restrictions as the typeof operator. Types that
require metadata annotations aren't allowed. For example, the following types aren't
allowed as the type parameter:

dynamic

string? (or any nullable reference type)

 public TypeAttribute(Type t) => ParamType = t;

 public Type ParamType { get; }
}

[TypeAttribute(typeof(string))]
public string Method() => default;

// C# 11 feature:
public class GenericAttribute<T> : Attribute { }

[GenericAttribute<string>()]
public string Method() => default;

public class GenericType<T>
{
 [GenericAttribute<T>()] // Not allowed! generic attributes must be fully
constructed types.
 public string Method() => default;
}

(int X, int Y) (or any other tuple types using C# tuple syntax).

These types aren't directly represented in metadata. They include annotations that
describe the type. In all cases, you can use the underlying type instead:

object for dynamic .
string instead of string? .
ValueTuple<int, int> instead of (int X, int Y) .

There are several language features that enable generic math support:

static virtual members in interfaces
checked user defined operators
relaxed shift operators
unsigned right-shift operator

You can add static abstract or static virtual members in interfaces to define
interfaces that include overloadable operators, other static members, and static
properties. The primary scenario for this feature is to use mathematical operators in
generic types. For example, you can implement the System.IAdditionOperators<TSelf,
TOther, TResult> interface in a type that implements operator + . Other interfaces
define other mathematical operations or well-defined values. You can learn about the
new syntax in the article on interfaces. Interfaces that include static virtual methods
are typically generic interfaces. Furthermore, most will declare a constraint that the type
parameter implements the declared interface.

You can learn more and try the feature yourself in the tutorial Explore static abstract
interface members, or the Preview features in .NET 6 – generic math blog post.

Generic math created other requirements on the language.

unsigned right shift operator: Before C# 11, to force an unsigned right-shift, you
would need to cast any signed integer type to an unsigned type, perform the shift,
then cast the result back to a signed type. Beginning in C# 11, you can use the
>>> , the unsigned shift operator.
relaxed shift operator requirements: C# 11 removes the requirement that the
second operand must be an int or implicitly convertible to int . This change
allows types that implement generic math interfaces to be used in these locations.
checked and unchecked user defined operators: Developers can now define checked
and unchecked arithmetic operators. The compiler generates calls to the correct

Generic math support

https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math/

variant based on the current context. You can read more about checked operators
in the article on Arithmetic operators.

The nint and nuint types now alias System.IntPtr and System.UIntPtr, respectively.

The text inside the { and } characters for a string interpolation can now span multiple
lines. The text between the { and } markers is parsed as C#. Any legal C#, including
newlines, is allowed. This feature makes it easier to read string interpolations that use
longer C# expressions, like pattern matching switch expressions, or LINQ queries.

You can learn more about the newlines feature in the string interpolations article in the
language reference.

List patterns extend pattern matching to match sequences of elements in a list or an
array. For example, sequence is [1, 2, 3] is true when the sequence is an array or a
list of three integers (1, 2, and 3). You can match elements using any pattern, including
constant, type, property and relational patterns. The discard pattern (_) matches any
single element, and the new range pattern (..) matches any sequence of zero or more
elements.

You can learn more details about list patterns in the pattern matching article in the
language reference.

The C# standard on Method group conversions now includes the following item:

The conversion is permitted (but not required) to use an existing delegate
instance that already contains these references.

Previous versions of the standard prohibited the compiler from reusing the delegate
object created for a method group conversion. The C# 11 compiler caches the delegate

Numeric IntPtr and UIntPtr

Newlines in string interpolations

List patterns

Improved method group conversion to
delegate

https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr

object created from a method group conversion and reuses that single delegate object.
This feature was first available in Visual Studio 2022 version 17.2 as a preview feature,
and in .NET 7 Preview 2.

Raw string literals are a new format for string literals. Raw string literals can contain
arbitrary text, including whitespace, new lines, embedded quotes, and other special
characters without requiring escape sequences. A raw string literal starts with at least
three double-quote (""") characters. It ends with the same number of double-quote
characters. Typically, a raw string literal uses three double quotes on a single line to start
the string, and three double quotes on a separate line to end the string. The newlines
following the opening quote and preceding the closing quote aren't included in the final
content:

C#

Any whitespace to the left of the closing double quotes will be removed from the string
literal. Raw string literals can be combined with string interpolation to include braces in
the output text. Multiple $ characters denote how many consecutive braces start and
end the interpolation:

C#

The preceding example specifies that two braces start and end an interpolation. The
third repeated opening and closing brace are included in the output string.

You can learn more about raw string literals in the article on strings in the programming
guide, and the language reference articles on string literals and interpolated strings.

Raw string literals

string longMessage = """
 This is a long message.
 It has several lines.
 Some are indented
 more than others.
 Some should start at the first column.
 Some have "quoted text" in them.
 """;

var location = $$"""
 You are at {{{Longitude}}, {{Latitude}}}
 """;

The C# 11 compiler ensures that all fields of a struct type are initialized to their default
value as part of executing a constructor. This change means any field or auto property
not initialized by a constructor is automatically initialized by the compiler. Structs where
the constructor doesn't definitely assign all fields now compile, and any fields not
explicitly initialized are set to their default value. You can read more about how this
change affects struct initialization in the article on structs.

You've been able to test if a string had a specific constant value using pattern
matching for several releases. Now, you can use the same pattern matching logic with
variables that are Span<char> or ReadOnlySpan<char> .

Type parameter names and parameter names are now in scope when used in a nameof
expression in an attribute declaration on that method. This feature means you can use
the nameof operator to specify the name of a method parameter in an attribute on the
method or parameter declaration. This feature is most often useful to add attributes for
nullable analysis.

You can specify the u8 suffix on a string literal to specify UTF-8 character encoding. If
your application needs UTF-8 strings, for HTTP string constants or similar text protocols,
you can use this feature to simplify the creation of UTF-8 strings.

You can learn more about UTF-8 string literals in the string literal section of the article
on builtin reference types.

You can add the required modifier to properties and fields to enforce constructors and
callers to initialize those values. The

Auto-default struct

Pattern match Span<char> or
ReadOnlySpan<char> on a constant string

Extended nameof scope

UTF-8 string literals

Required members

System.Diagnostics.CodeAnalysis.SetsRequiredMembersAttribute can be added to
constructors to inform the compiler that a constructor initializes all required members.

For more information on required members, See the init-only section of the properties
article.

You can declare ref fields inside a ref struct. This supports types such as
System.Span<T> without special attributes or hidden internal types.

You can add the scoped modifier to any ref declaration. This limits the scope where the
reference can escape to.

Beginning in C# 11, you can use the file access modifier to create a type whose
visibility is scoped to the source file in which it is declared. This feature helps source
generator authors avoid naming collisions. You can learn more about this feature in the
article on file-scoped types in the language reference.

What's new in .NET 7

ref fields and ref scoped variables

File local types

See also

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.setsrequiredmembersattribute
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-ca/dotnet/core/whats-new/dotnet-7

What's new in C# 10
Article • 2022-11-29 • 5 minutes to read

C# 10 adds the following features and enhancements to the C# language:

Record structs
Improvements of structure types
Interpolated string handlers
global using directives
File-scoped namespace declaration
Extended property patterns
Improvements on lambda expressions
Allow const interpolated strings
Record types can seal ToString()
Improved definite assignment
Allow both assignment and declaration in the same deconstruction
Allow AsyncMethodBuilder attribute on methods
CallerArgumentExpression attribute
Enhanced #line pragma
Warning wave 6

C# 10 is supported on .NET 6. For more information, see C# language versioning.

You can download the latest .NET 6 SDK from the .NET downloads page . You can also
download Visual Studio 2022 , which includes the .NET 6 SDK.

You can declare value type records using the record struct or readonly record struct
declarations. You can now clarify that a record is a reference type with the record class
declaration.

７ Note

We're interested in your feedback on these features. If you find issues with any of
these new features, create a new issue in the dotnet/roslyn repository.

Record structs

Improvements of structure types

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs8826---partial-method-declarations-have-signature-differences
https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/vs/
https://github.com/dotnet/roslyn/issues/new/choose
https://github.com/dotnet/roslyn

C# 10 introduces the following improvements related to structure types:

You can declare an instance parameterless constructor in a structure type and
initialize an instance field or property at its declaration. For more information, see
the Struct initialization and default values section of the Structure types article.
A left-hand operand of the with expression can be of any structure type or an
anonymous (reference) type.

You can create a type that builds the resulting string from an interpolated string
expression. The .NET libraries use this feature in many APIs. You can build one by
following this tutorial.

You can add the global modifier to any using directive to instruct the compiler that the
directive applies to all source files in the compilation. This is typically all source files in a
project.

You can use a new form of the namespace declaration to declare that all declarations
that follow are members of the declared namespace:

C#

This new syntax saves both horizontal and vertical space for namespace declarations.

Beginning with C# 10, you can reference nested properties or fields within a property
pattern. For example, a pattern of the form

C#

Interpolated string handler

Global using directives

File-scoped namespace declaration

namespace MyNamespace;

Extended property patterns

{ Prop1.Prop2: pattern }

is valid in C# 10 and later and equivalent to

C#

valid in C# 8.0 and later.

For more information, see the Extended property patterns feature proposal note. For
more information about a property pattern, see the Property pattern section of the
Patterns article.

C# 10 includes many improvements to how lambda expressions are handled:

Lambda expressions may have a natural type, where the compiler can infer a
delegate type from the lambda expression or method group.
Lambda expressions may declare a return type when the compiler can't infer it.
Attributes can be applied to lambda expressions.

These features make lambda expressions more similar to methods and local functions.
They make it easier to use lambda expressions without declaring a variable of a delegate
type, and they work more seamlessly with the new ASP.NET Core Minimal APIs.

In C# 10, const strings may be initialized using string interpolation if all the
placeholders are themselves constant strings. String interpolation can create more
readable constant strings as you build constant strings used in your application. The
placeholder expressions can't be numeric constants because those constants are
converted to strings at run time. The current culture may affect their string
representation. Learn more in the language reference on const expressions.

In C# 10, you can add the sealed modifier when you override ToString in a record type.
Sealing the ToString method prevents the compiler from synthesizing a ToString
method for any derived record types. A sealed ToString ensures all derived record
types use the ToString method defined in a common base record type. You can learn
more about this feature in the article on records.

{ Prop1: { Prop2: pattern } }

Lambda expression improvements

Constant interpolated strings

Record types can seal ToString

This change removes a restriction from earlier versions of C#. Previously, a
deconstruction could assign all values to existing variables, or initialize newly declared
variables:

C#

C# 10 removes this restriction:

C#

Prior to C# 10, there were many scenarios where definite assignment and null-state
analysis produced warnings that were false positives. These generally involved
comparisons to boolean constants, accessing a variable only in the true or false
statements in an if statement, and null coalescing expressions. These examples
generated warnings in previous versions of C#, but don't in C# 10:

C#

Assignment and declaration in same
deconstruction

// Initialization:
(int x, int y) = point;

// assignment:
int x1 = 0;
int y1 = 0;
(x1, y1) = point;

int x = 0;
(x, int y) = point;

Improved definite assignment

string representation = "N/A";
if ((c != null && c.GetDependentValue(out object obj)) == true)
{
 representation = obj.ToString(); // undesired error
}

// Or, using ?.
if (c?.GetDependentValue(out object obj) == true)
{
 representation = obj.ToString(); // undesired error
}

The main impact of this improvement is that the warnings for definite assignment and
null-state analysis are more accurate.

In C# 10 and later, you can specify a different async method builder for a single method,
in addition to specifying the method builder type for all methods that return a given
task-like type. A custom async method builder enables advanced performance tuning
scenarios where a given method may benefit from a custom builder.

To learn more, see the section on AsyncMethodBuilder in the article on attributes read
by the compiler.

You can use the System.Runtime.CompilerServices.CallerArgumentExpressionAttribute to
specify a parameter that the compiler replaces with the text representation of another
argument. This feature enables libraries to create more specific diagnostics. The
following code tests a condition. If the condition is false, the exception message
contains the text representation of the argument passed to condition :

C#

You can learn more about this feature in the article on Caller information attributes in
the language reference section.

// Or, using ??
if (c?.GetDependentValue(out object obj) ?? false)
{
 representation = obj.ToString(); // undesired error
}

Allow AsyncMethodBuilder attribute on
methods

CallerArgumentExpression attribute diagnostics

public static void Validate(bool condition,
[CallerArgumentExpression("condition")] string? message=null)
{
 if (!condition)
 {
 throw new InvalidOperationException($"Argument failed validation:
<{message}>");
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerargumentexpressionattribute

C# 10 supports a new format for the #line pragma. You likely won't use the new format,
but you'll see its effects. The enhancements enable more fine-grained output in domain-
specific languages (DSLs) like Razor. The Razor engine uses these enhancements to
improve the debugging experience. You'll find debuggers can highlight your Razor
source more accurately. To learn more about the new syntax, see the article on
Preprocessor directives in the language reference. You can also read the feature
specification for Razor based examples.

Enhanced #line pragma

What's new in C# 9.0
Article • 2022-11-29 • 17 minutes to read

C# 9.0 adds the following features and enhancements to the C# language:

Records
Init only setters
Top-level statements
Pattern matching enhancements
Performance and interop

Native sized integers
Function pointers
Suppress emitting localsinit flag

Fit and finish features
Target-typed new expressions
static anonymous functions
Target-typed conditional expressions
Covariant return types
Extension GetEnumerator support for foreach loops
Lambda discard parameters
Attributes on local functions

Support for code generators
Module initializers
New features for partial methods

Warning wave 5

C# 9.0 is supported on .NET 5. For more information, see C# language versioning.

You can download the latest .NET SDK from the .NET downloads page .

C# 9.0 introduces record types. You use the record keyword to define a reference type
that provides built-in functionality for encapsulating data. You can create record types
with immutable properties by using positional parameters or standard property syntax:

７ Note

We're interested in your feedback on these features. If you find issues with any of
these new features, create a new issue in the dotnet/roslyn repository.

Record types

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs7023---a-static-type-is-used-in-an-is-or-as-expression
https://dotnet.microsoft.com/download
https://github.com/dotnet/roslyn/issues/new/choose
https://github.com/dotnet/roslyn

C#

C#

You can also create record types with mutable properties and fields:

C#

While records can be mutable, they are primarily intended for supporting immutable
data models. The record type offers the following features:

Concise syntax for creating a reference type with immutable properties
Behavior useful for a data-centric reference type:

Value equality
Concise syntax for nondestructive mutation
Built-in formatting for display

Support for inheritance hierarchies

You can use structure types to design data-centric types that provide value equality and
little or no behavior. But for relatively large data models, structure types have some
disadvantages:

They don't support inheritance.
They're less efficient at determining value equality. For value types, the
ValueType.Equals method uses reflection to find all fields. For records, the compiler
generates the Equals method. In practice, the implementation of value equality in
records is measurably faster.
They use more memory in some scenarios, since every instance has a complete
copy of all of the data. Record types are reference types, so a record instance
contains only a reference to the data.

public record Person(string FirstName, string LastName);

public record Person
{
 public string FirstName { get; init; } = default!;
 public string LastName { get; init; } = default!;
};

public record Person
{
 public string FirstName { get; set; } = default!;
 public string LastName { get; set; } = default!;
};

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype.equals

You can use positional parameters to declare properties of a record and to initialize the
property values when you create an instance:

C#

When you use the positional syntax for property definition, the compiler creates:

A public init-only auto-implemented property for each positional parameter
provided in the record declaration. An init-only property can only be set in the
constructor or by using a property initializer.
A primary constructor whose parameters match the positional parameters on the
record declaration.
A Deconstruct method with an out parameter for each positional parameter
provided in the record declaration.

For more information, see Positional syntax in the C# language reference article about
records.

A record type is not necessarily immutable. You can declare properties with set
accessors and fields that aren't readonly . But while records can be mutable, they make it
easier to create immutable data models. Properties that you create by using positional
syntax are immutable.

Immutability can be useful when you want a data-centric type to be thread-safe or a
hash code to remain the same in a hash table. It can prevent bugs that happen when
you pass an argument by reference to a method, and the method unexpectedly changes
the argument value.

The features unique to record types are implemented by compiler-synthesized methods,
and none of these methods compromises immutability by modifying object state.

Positional syntax for property definition

public record Person(string FirstName, string LastName);

public static void Main()
{
 Person person = new("Nancy", "Davolio");
 Console.WriteLine(person);
 // output: Person { FirstName = Nancy, LastName = Davolio }
}

Immutability

Value equality means that two variables of a record type are equal if the types match
and all property and field values match. For other reference types, equality means
identity. That is, two variables of a reference type are equal if they refer to the same
object.

The following example illustrates value equality of record types:

C#

In class types, you could manually override equality methods and operators to achieve
value equality, but developing and testing that code would be time-consuming and
error-prone. Having this functionality built-in prevents bugs that would result from
forgetting to update custom override code when properties or fields are added or
changed.

For more information, see Value equality in the C# language reference article about
records.

If you need to mutate immutable properties of a record instance, you can use a with
expression to achieve nondestructive mutation. A with expression makes a new record
instance that is a copy of an existing record instance, with specified properties and fields
modified. You use object initializer syntax to specify the values to be changed, as shown
in the following example:

C#

Value equality

public record Person(string FirstName, string LastName, string[]
PhoneNumbers);

public static void Main()
{
 var phoneNumbers = new string[2];
 Person person1 = new("Nancy", "Davolio", phoneNumbers);
 Person person2 = new("Nancy", "Davolio", phoneNumbers);
 Console.WriteLine(person1 == person2); // output: True

 person1.PhoneNumbers[0] = "555-1234";
 Console.WriteLine(person1 == person2); // output: True

 Console.WriteLine(ReferenceEquals(person1, person2)); // output: False
}

Nondestructive mutation

For more information, see Nondestructive mutation in the C# language reference article
about records.

Record types have a compiler-generated ToString method that displays the names and
values of public properties and fields. The ToString method returns a string of the
following format:

<record type name> { <property name> = <value>, <property name> = <value>,
...}

For reference types, the type name of the object that the property refers to is displayed
instead of the property value. In the following example, the array is a reference type, so
System.String[] is displayed instead of the actual array element values:

public record Person(string FirstName, string LastName)
{
 public string[] PhoneNumbers { get; init; }
}

public static void Main()
{
 Person person1 = new("Nancy", "Davolio") { PhoneNumbers = new string[1]
};
 Console.WriteLine(person1);
 // output: Person { FirstName = Nancy, LastName = Davolio, PhoneNumbers
= System.String[] }

 Person person2 = person1 with { FirstName = "John" };
 Console.WriteLine(person2);
 // output: Person { FirstName = John, LastName = Davolio, PhoneNumbers =
System.String[] }
 Console.WriteLine(person1 == person2); // output: False

 person2 = person1 with { PhoneNumbers = new string[1] };
 Console.WriteLine(person2);
 // output: Person { FirstName = Nancy, LastName = Davolio, PhoneNumbers
= System.String[] }
 Console.WriteLine(person1 == person2); // output: False

 person2 = person1 with { };
 Console.WriteLine(person1 == person2); // output: True
}

Built-in formatting for display

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

For more information, see Built-in formatting in the C# language reference article about
records.

A record can inherit from another record. However, a record can't inherit from a class,
and a class can't inherit from a record.

The following example illustrates inheritance with positional property syntax:

C#

For two record variables to be equal, the run-time type must be equal. The types of the
containing variables might be different. This is illustrated in the following code example:

C#

In the example, all instances have the same properties and the same property values.
But student == teacher returns False although both are Person -type variables. And

Person { FirstName = Nancy, LastName = Davolio, ChildNames = System.String[]
}

Inheritance

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 Console.WriteLine(teacher);
 // output: Teacher { FirstName = Nancy, LastName = Davolio, Grade = 3 }
}

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public record Student(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 Person student = new Student("Nancy", "Davolio", 3);
 Console.WriteLine(teacher == student); // output: False

 Student student2 = new Student("Nancy", "Davolio", 3);
 Console.WriteLine(student2 == student); // output: True
}

student == student2 returns True although one is a Person variable and one is a
Student variable.

All public properties and fields of both derived and base types are included in the
ToString output, as shown in the following example:

C#

For more information, see Inheritance in the C# language reference article about
records.

Init only setters provide consistent syntax to initialize members of an object. Property
initializers make it clear which value is setting which property. The downside is that
those properties must be settable. Starting with C# 9.0, you can create init accessors
instead of set accessors for properties and indexers. Callers can use property initializer
syntax to set these values in creation expressions, but those properties are readonly
once construction has completed. Init only setters provide a window to change state.
That window closes when the construction phase ends. The construction phase
effectively ends after all initialization, including property initializers and with-expressions
have completed.

You can declare init only setters in any type you write. For example, the following
struct defines a weather observation structure:

C#

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public record Student(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);

public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 Console.WriteLine(teacher);
 // output: Teacher { FirstName = Nancy, LastName = Davolio, Grade = 3 }
}

Init only setters

public struct WeatherObservation
{
 public DateTime RecordedAt { get; init; }
 public decimal TemperatureInCelsius { get; init; }
 public decimal PressureInMillibars { get; init; }

Callers can use property initializer syntax to set the values, while still preserving the
immutability:

C#

An attempt to change an observation after initialization results in a compiler error:

C#

Init only setters can be useful to set base class properties from derived classes. They can
also set derived properties through helpers in a base class. Positional records declare
properties using init only setters. Those setters are used in with-expressions. You can
declare init only setters for any class , struct , or record you define.

For more information, see init (C# Reference).

Top-level statements remove unnecessary ceremony from many applications. Consider
the canonical "Hello World!" program:

C#

 public override string ToString() =>
 $"At {RecordedAt:h:mm tt} on {RecordedAt:M/d/yyyy}: " +
 $"Temp = {TemperatureInCelsius}, with {PressureInMillibars}
pressure";
}

var now = new WeatherObservation
{
 RecordedAt = DateTime.Now,
 TemperatureInCelsius = 20,
 PressureInMillibars = 998.0m
};

// Error! CS8852.
now.TemperatureInCelsius = 18;

Top-level statements

using System;

namespace HelloWorld
{
 class Program
 {

There's only one line of code that does anything. With top-level statements, you can
replace all that boilerplate with the using directive and the single line that does the
work:

C#

If you wanted a one-line program, you could remove the using directive and use the
fully qualified type name:

C#

Only one file in your application may use top-level statements. If the compiler finds top-
level statements in multiple source files, it's an error. It's also an error if you combine
top-level statements with a declared program entry point method, typically a Main
method. In a sense, you can think that one file contains the statements that would
normally be in the Main method of a Program class.

One of the most common uses for this feature is creating teaching materials. Beginner
C# developers can write the canonical "Hello World!" in one or two lines of code. None
of the extra ceremony is needed. However, seasoned developers will find many uses for
this feature as well. Top-level statements enable a script-like experience for
experimentation similar to what Jupyter notebooks provide. Top-level statements are
great for small console programs and utilities. Azure Functions is an ideal use case for
top-level statements.

Most importantly, top-level statements don't limit your application's scope or
complexity. Those statements can access or use any .NET class. They also don't limit
your use of command-line arguments or return values. Top-level statements can access
an array of strings named args . If the top-level statements return an integer value, that
value becomes the integer return code from a synthesized Main method. The top-level

 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

using System;

Console.WriteLine("Hello World!");

System.Console.WriteLine("Hello World!");

https://learn.microsoft.com/en-us/azure/azure-functions/

statements may contain async expressions. In that case, the synthesized entry point
returns a Task , or Task<int> .

For more information, see Top-level statements in the C# Programming Guide.

C# 9 includes new pattern matching improvements:

Type patterns match an object matches a particular type
Parenthesized patterns enforce or emphasize the precedence of pattern
combinations
Conjunctive and patterns require both patterns to match
Disjunctive or patterns require either pattern to match
Negated not patterns require that a pattern doesn't match
Relational patterns require the input be less than, greater than, less than or equal,
or greater than or equal to a given constant.

These patterns enrich the syntax for patterns. Consider these examples:

C#

With optional parentheses to make it clear that and has higher precedence than or :

C#

One of the most common uses is a new syntax for a null check:

C#

Any of these patterns can be used in any context where patterns are allowed: is pattern
expressions, switch expressions, nested patterns, and the pattern of a switch

Pattern matching enhancements

public static bool IsLetter(this char c) =>
 c is >= 'a' and <= 'z' or >= 'A' and <= 'Z';

public static bool IsLetterOrSeparator(this char c) =>
 c is (>= 'a' and <= 'z') or (>= 'A' and <= 'Z') or '.' or ',';

if (e is not null)
{
 // ...
}

statement's case label.

For more information, see Patterns (C# reference).

For more information, see the Relational patterns and Logical patterns sections of the
Patterns article.

Three new features improve support for native interop and low-level libraries that
require high performance: native sized integers, function pointers, and omitting the
localsinit flag.

Native sized integers, nint and nuint , are integer types. They're expressed by the
underlying types System.IntPtr and System.UIntPtr. The compiler surfaces additional
conversions and operations for these types as native ints. Native sized integers define
properties for MaxValue or MinValue . These values can't be expressed as compile-time
constants because they depend on the native size of an integer on the target machine.
Those values are readonly at run time. You can use constant values for nint in the range
[int.MinValue .. int.MaxValue]. You can use constant values for nuint in the range
[uint.MinValue .. uint.MaxValue]. The compiler performs constant folding for all unary
and binary operators using the System.Int32 and System.UInt32 types. If the result
doesn't fit in 32 bits, the operation is executed at run time and isn't considered a
constant. Native sized integers can increase performance in scenarios where integer
math is used extensively and needs to have the fastest performance possible. For more
information, see nint and nuint types.

Function pointers provide an easy syntax to access the IL opcodes ldftn and calli . You
can declare function pointers using new delegate* syntax. A delegate* type is a pointer
type. Invoking the delegate* type uses calli , in contrast to a delegate that uses
callvirt on the Invoke() method. Syntactically, the invocations are identical. Function
pointer invocation uses the managed calling convention. You add the unmanaged keyword
after the delegate* syntax to declare that you want the unmanaged calling convention.
Other calling conventions can be specified using attributes on the delegate*
declaration. For more information, see Unsafe code and pointer types.

Finally, you can add the System.Runtime.CompilerServices.SkipLocalsInitAttribute to
instruct the compiler not to emit the localsinit flag. This flag instructs the CLR to zero-
initialize all local variables. The localsinit flag has been the default behavior for C#
since 1.0. However, the extra zero-initialization may have measurable performance
impact in some scenarios. In particular, when you use stackalloc . In those cases, you

Performance and interop

https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.uint32
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.skiplocalsinitattribute

can add the SkipLocalsInitAttribute. You may add it to a single method or property, or to
a class , struct , interface , or even a module. This attribute doesn't affect abstract
methods; it affects the code generated for the implementation. For more information,
see SkipLocalsInit attribute.

These features can improve performance in some scenarios. They should be used only
after careful benchmarking both before and after adoption. Code involving native sized
integers must be tested on multiple target platforms with different integer sizes. The
other features require unsafe code.

Many of the other features help you write code more efficiently. In C# 9.0, you can omit
the type in a new expression when the created object's type is already known. The most
common use is in field declarations:

C#

Target-typed new can also be used when you need to create a new object to pass as an
argument to a method. Consider a ForecastFor() method with the following signature:

C#

You could call it as follows:

C#

Another nice use for this feature is to combine it with init only properties to initialize a
new object:

C#

Fit and finish features

private List<WeatherObservation> _observations = new();

public WeatherForecast ForecastFor(DateTime forecastDate,
WeatherForecastOptions options)

var forecast = station.ForecastFor(DateTime.Now.AddDays(2), new());

WeatherStation station = new() { Location = "Seattle, WA" };

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.skiplocalsinitattribute

You can return an instance created by the default constructor using a return new();
statement.

A similar feature improves the target type resolution of conditional expressions. With
this change, the two expressions need not have an implicit conversion from one to the
other, but may both have implicit conversions to a target type. You likely won't notice
this change. What you will notice is that some conditional expressions that previously
required casts or wouldn't compile now just work.

Starting in C# 9.0, you can add the static modifier to lambda expressions or
anonymous methods. Static lambda expressions are analogous to the static local
functions: a static lambda or anonymous method can't capture local variables or
instance state. The static modifier prevents accidentally capturing other variables.

Covariant return types provide flexibility for the return types of override methods. An
override method can return a type derived from the return type of the overridden base
method. This can be useful for records and for other types that support virtual clone or
factory methods.

In addition, the foreach loop will recognize and use an extension method GetEnumerator
that otherwise satisfies the foreach pattern. This change means foreach is consistent
with other pattern-based constructions such as the async pattern, and pattern-based
deconstruction. In practice, this change means you can add foreach support to any
type. You should limit its use to when enumerating an object makes sense in your
design.

Next, you can use discards as parameters to lambda expressions. This convenience
enables you to avoid naming the argument, and the compiler may avoid using it. You
use the _ for any argument. For more information, see the Input parameters of a
lambda expression section of the Lambda expressions article.

Finally, you can now apply attributes to local functions. For example, you can apply
nullable attribute annotations to local functions.

Two final features support C# code generators. C# code generators are a component
you can write that is similar to a roslyn analyzer or code fix. The difference is that code
generators analyze code and write new source code files as part of the compilation
process. A typical code generator searches code for attributes or other conventions.

Support for code generators

A code generator reads attributes or other code elements using the Roslyn analysis APIs.
From that information, it adds new code to the compilation. Source generators can only
add code; they aren't allowed to modify any existing code in the compilation.

The two features added for code generators are extensions to partial method syntax,
and module initializers. First, the changes to partial methods. Before C# 9.0, partial
methods are private but can't specify an access modifier, have a void return, and can't
have out parameters. These restrictions meant that if no method implementation is
provided, the compiler removes all calls to the partial method. C# 9.0 removes these
restrictions, but requires that partial method declarations have an implementation. Code
generators can provide that implementation. To avoid introducing a breaking change,
the compiler considers any partial method without an access modifier to follow the old
rules. If the partial method includes the private access modifier, the new rules govern
that partial method. For more information, see partial method (C# Reference).

The second new feature for code generators is module initializers. Module initializers
are methods that have the ModuleInitializerAttribute attribute attached to them. These
methods will be called by the runtime before any other field access or method
invocation within the entire module. A module initializer method:

Must be static
Must be parameterless
Must return void
Must not be a generic method
Must not be contained in a generic class
Must be accessible from the containing module

That last bullet point effectively means the method and its containing class must be
internal or public. The method can't be a local function. For more information, see
ModuleInitializer attribute.

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.moduleinitializerattribute

Learn about any breaking changes in
the C# compiler
Article • 2022-11-18 • 2 minutes to read

You can find breaking changes since the C# 10 release here.

The Roslyn team maintains a list of breaking changes in the C# and Visual Basic
compilers. You can find information on those changes at these links on their GitHub
repository:

Breaking changes in Roslyn in C# 10.0/.NET 6
Breaking changes in Roslyn after .NET 5
Breaking changes in VS2019 version 16.8 introduced with .NET 5 and C# 9.0
Breaking changes in VS2019 Update 1 and beyond compared to VS2019
Breaking changes since VS2017 (C# 7)
Breaking changes in Roslyn 3.0 (VS2019) from Roslyn 2.* (VS2017)
Breaking changes in Roslyn 2.0 (VS2017) from Roslyn 1.* (VS2015) and native C#
compiler (VS2013 and previous).
Breaking changes in Roslyn 1.0 (VS2015) from the native C# compiler (VS2013 and
previous).
Unicode version change in C# 6

https://learn.microsoft.com/en-ca/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%207
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20DotNet%206.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20post%20DotNet%205.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20DotNet%205.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20post%20VS2019.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20post%20VS2017.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20VS2019.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20VS2017.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Compiler%20Breaking%20Changes%20-%20VS2015.md
https://github.com/dotnet/roslyn/blob/main/docs/compilers/CSharp/Unicode%20Version.md

The history of C#
Article • 2022-12-09 • 14 minutes to read

This article provides a history of each major release of the C# language. The C# team is
continuing to innovate and add new features. Detailed language feature status,
including features considered for upcoming releases can be found on the dotnet/roslyn
repository on GitHub.

Released November, 2022

The following features were added in C# 11:

Raw string literals
Generic math support
Generic attributes
UTF-8 string literals
Newlines in string interpolation expressions
List patterns
File-local types
Required members
Auto-default structs
Pattern match Span<char> on a constant string
Extended nameof scope
Numeric IntPtr

） Important

The C# language relies on types and methods in what the C# specification defines
as a standard library for some of the features. The .NET platform delivers those
types and methods in a number of packages. One example is exception processing.
Every throw statement or expression is checked to ensure the object being thrown
is derived from Exception. Similarly, every catch is checked to ensure that the type
being caught is derived from Exception. Each version may add new requirements.
To use the latest language features in older environments, you may need to install
specific libraries. These dependencies are documented in the page for each specific
version. You can learn more about the relationships between language and library
for background on this dependency.

C# version 11

https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md
https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.exception

ref fields and scoped ref
Improved method group conversion to delegate
Warning wave 7

C# 11 introduces generic math and several features that support that goal. You can write
numeric algorithms once for all number types. There's more features to make working
with struct types easier, like required members and auto-default structs. Working with
strings gets easier with Raw string literals, newline in string interpolations, and UTF-8
string literals. Features like file local types enable source generators to be simpler.
Finally, list patterns add more support for pattern matching.

Released November, 2021

C# 10 adds the following features and enhancements to the C# language:

Record structs
Improvements of structure types
Interpolated string handlers
global using directives
File-scoped namespace declaration
Extended property patterns
Improvements on lambda expressions
Allow const interpolated strings
Record types can seal ToString()
Improved definite assignment
Allow both assignment and declaration in the same deconstruction
Allow AsyncMethodBuilder attribute on methods
CallerArgumentExpression attribute
Enhanced #line pragma

More features were available in preview mode. In order to use these features, you must
set <LangVersion> to Preview in your project:

Generic attributes later in this article.
static abstract members in interfaces

C# 10 continues work on themes of removing ceremony, separating data from
algorithms, and improved performance for the .NET Runtime.

Many of the features mean you'll type less code to express the same concepts. Record
structs synthesize many of the same methods that record classes do. Structs and

C# version 10

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs8981---the-type-name-only-contains-lower-cased-ascii-characters

anonymous types support with expressions. Global using directives and file scoped
namespace declarations mean you express dependencies and namespace organization
more clearly. Lambda improvements makes it easier to declare lambda expressions
where they're used. New property patterns and deconstruction improvements create
more concise code.

The new interpolated string handlers and AsyncMethodBuilder behavior can improve
performance. These language features were applied in the .NET Runtime to achieve
performance improvements in .NET 6.

C# 10 also marks more of a shift to the yearly cadence for .NET releases. Because not
every feature can be completed in a yearly timeframe, you can try a couple of "preview"
features in C# 10. Both generic attributes and static abstract members in interfaces can be
used, but these preview features may change before their final release.

Released November, 2020

C# 9 was released with .NET 5. It's the default language version for any assembly that
targets the .NET 5 release. It contains the following new and enhanced features:

Records
Init only setters
Top-level statements
Pattern matching enhancements
Performance and interop

Native sized integers
Function pointers
Suppress emitting localsinit flag

Fit and finish features
Target-typed new expressions
static anonymous functions
Target-typed conditional expressions
Covariant return types
Extension GetEnumerator support for foreach loops
Lambda discard parameters
Attributes on local functions

Support for code generators
Module initializers
New features for partial methods

C# version 9

C# 9 continues three of the themes from previous releases: removing ceremony,
separating data from algorithms, and providing more patterns in more places.

Top level statements means your main program is simpler to read. There's less need for
ceremony: a namespace, a Program class, and static void Main() are all unnecessary.

The introduction of records provides a concise syntax for reference types that follow
value semantics for equality. You'll use these types to define data containers that
typically define minimal behavior. Init-only setters provide the capability for non-
destructive mutation (with expressions) in records. C# 9 also adds covariant return
types so that derived records can override virtual methods and return a type derived
from the base method's return type.

The pattern matching capabilities have been expanded in several ways. Numeric types
now support range patterns. Patterns can be combined using and , or , and not patterns.
Parentheses can be added to clarify more complex patterns.

Another set of features supports high-performance computing in C#:

The nint and nuint types model the native-size integer types on the target CPU.
Function pointers provide delegate-like functionality while avoiding the allocations
necessary to create a delegate object.
The localsinit instruction can be omitted to save instructions.

Another set of improvements supports scenarios where code generators add
functionality:

Module initializers are methods that the runtime calls when an assembly loads.
Partial methods support new accessibly modifiers and non-void return types. In
those cases, an implementation must be provided.

C# 9 adds many other small features that improve developer productivity, both writing
and reading code:

Target-type new expressions
static anonymous functions
Target-type conditional expressions
Extension GetEnumerator() support for foreach loops
Lambda expressions can declare discard parameters
Attributes can be applied to local functions

The C# 9 release continues the work to keep C# a modern, general-purpose
programming language. Features continue to support modern workloads and
application types.

Released September, 2019

C# 8.0 is the first major C# release that specifically targets .NET Core. Some features rely
on new CLR capabilities, others on library types added only in .NET Core. C# 8.0 adds
the following features and enhancements to the C# language:

Readonly members
Default interface methods
Pattern matching enhancements:

Switch expressions
Property patterns
Tuple patterns
Positional patterns

Using declarations
Static local functions
Disposable ref structs
Nullable reference types
Asynchronous streams
Indices and ranges
Null-coalescing assignment
Unmanaged constructed types
Stackalloc in nested expressions
Enhancement of interpolated verbatim strings

Default interface members require enhancements in the CLR. Those features were added
in the CLR for .NET Core 3.0. Ranges and indexes, and asynchronous streams require
new types in the .NET Core 3.0 libraries. Nullable reference types, while implemented in
the compiler, is much more useful when libraries are annotated to provide semantic
information regarding the null state of arguments and return values. Those annotations
are being added in the .NET Core libraries.

Released May, 2018

There are two main themes to the C# 7.3 release. One theme provides features that
enable safe code to be as performant as unsafe code. The second theme provides
incremental improvements to existing features. New compiler options were also added
in this release.

C# version 8.0

C# version 7.3

The following new features support the theme of better performance for safe code:

You can access fixed fields without pinning.
You can reassign ref local variables.
You can use initializers on stackalloc arrays.
You can use fixed statements with any type that supports a pattern.
You can use more generic constraints.

The following enhancements were made to existing features:

You can test == and != with tuple types.
You can use expression variables in more locations.
You may attach attributes to the backing field of auto-implemented properties.
Method resolution when arguments differ by in has been improved.
Overload resolution now has fewer ambiguous cases.

The new compiler options are:

-publicsign to enable Open Source Software (OSS) signing of assemblies.
-pathmap to provide a mapping for source directories.

Released November, 2017

C# 7.2 added several small language features:

Initializers on stackalloc arrays.
Use fixed statements with any type that supports a pattern.
Access fixed fields without pinning.
Reassign ref local variables.
Declare readonly struct types, to indicate that a struct is immutable and should
be passed as an in parameter to its member methods.
Add the in modifier on parameters, to specify that an argument is passed by
reference but not modified by the called method.
Use the ref readonly modifier on method returns, to indicate that a method
returns its value by reference but doesn't allow writes to that object.
Declare ref struct types, to indicate that a struct type accesses managed memory
directly and must always be stack allocated.
Use additional generic constraints.
Non-trailing named arguments

Named arguments can be followed by positional arguments.

C# version 7.2

Leading underscores in numeric literals
Numeric literals can now have leading underscores before any printed digits.

private protected access modifier
The private protected access modifier enables access for derived classes in the
same assembly.

Conditional ref expressions
The result of a conditional expression (?:) can now be a reference.

Released August, 2017

C# started releasing point releases with C# 7.1. This version added the language version
selection configuration element, three new language features, and new compiler
behavior.

The new language features in this release are:

async Main method
The entry point for an application can have the async modifier.

default literal expressions
You can use default literal expressions in default value expressions when the
target type can be inferred.

Inferred tuple element names
The names of tuple elements can be inferred from tuple initialization in many
cases.

Pattern matching on generic type parameters
You can use pattern match expressions on variables whose type is a generic
type parameter.

Finally, the compiler has two options -refout and -refonly that control reference
assembly generation

Released March, 2017

C# version 7.0 was released with Visual Studio 2017. This version has some evolutionary
and cool stuff in the vein of C# 6.0. Here are some of the new features:

Out variables
Tuples and deconstruction

C# version 7.1

C# version 7.0

Pattern matching
Local functions
Expanded expression bodied members
Ref locals
Ref returns

Other features included:

Discards
Binary Literals and Digit Separators
Throw expressions

All of these features offer new capabilities for developers and the opportunity to write
cleaner code than ever. A highlight is condensing the declaration of variables to use
with the out keyword and by allowing multiple return values via tuple. .NET Core now
targets any operating system and has its eyes firmly on the cloud and on portability.
These new capabilities certainly occupy the language designers' thoughts and time, in
addition to coming up with new features.

Released July, 2015

Version 6.0, released with Visual Studio 2015, released many smaller features that made
C# programming more productive. Here are some of them:

Static imports
Exception filters
Auto-property initializers
Expression bodied members
Null propagator
String interpolation
nameof operator

Other new features include:

Index initializers
Await in catch/finally blocks
Default values for getter-only properties

Each of these features is interesting in its own right. But if you look at them altogether,
you see an interesting pattern. In this version, C# started to eliminate language

C# version 6.0

boilerplate to make code more terse and readable. So for fans of clean, simple code, this
language version was a huge win.

They did one other thing along with this version, though it's not a traditional language
feature in itself. They released Roslyn the compiler as a service . The C# compiler is
now written in C#, and you can use the compiler as part of your programming efforts.

Released August, 2012

C# version 5.0, released with Visual Studio 2012, was a focused version of the language.
Nearly all of the effort for that version went into another groundbreaking language
concept: the async and await model for asynchronous programming. Here's the major
features list:

Asynchronous members
Caller info attributes
Code Project: Caller Info Attributes in C# 5.0

The caller info attribute lets you easily retrieve information about the context in which
you're running without resorting to a ton of boilerplate reflection code. It has many uses
in diagnostics and logging tasks.

But async and await are the real stars of this release. When these features came out in
2012, C# changed the game again by baking asynchrony into the language as a first-
class participant. If you've ever dealt with long running operations and the
implementation of webs of callbacks, you probably loved this language feature.

Released April, 2010

C# version 4.0, released with Visual Studio 2010, would have had a difficult time living
up to the groundbreaking status of version 3.0. This version introduced some interesting
new features:

Dynamic binding
Named/optional arguments
Generic covariant and contravariant
Embedded interop types

C# version 5.0

C# version 4.0

https://github.com/dotnet/roslyn
https://www.codeproject.com/Tips/606379/Caller-Info-Attributes-in-Csharp
https://learn.microsoft.com/en-ca/dotnet/standard/generics/covariance-and-contravariance
https://learn.microsoft.com/en-ca/dotnet/framework/interop/type-equivalence-and-embedded-interop-types

Embedded interop types eased the deployment pain of creating COM interop
assemblies for your application. Generic covariance and contravariance give you more
power to use generics, but they're a bit academic and probably most appreciated by
framework and library authors. Named and optional parameters let you eliminate many
method overloads and provide convenience. But none of those features are exactly
paradigm altering.

The major feature was the introduction of the dynamic keyword. The dynamic keyword
introduced into C# version 4.0 the ability to override the compiler on compile-time
typing. By using the dynamic keyword, you can create constructs similar to dynamically
typed languages like JavaScript. You can create a dynamic x = "a string" and then add
six to it, leaving it up to the runtime to sort out what should happen next.

Dynamic binding gives you the potential for errors but also great power within the
language.

Released November, 2007

C# version 3.0 came in late 2007, along with Visual Studio 2008, though the full boat of
language features would actually come with .NET Framework version 3.5. This version
marked a major change in the growth of C#. It established C# as a truly formidable
programming language. Let's take a look at some major features in this version:

Auto-implemented properties
Anonymous types
Query expressions
Lambda expressions
Expression trees
Extension methods
Implicitly typed local variables
Partial methods
Object and collection initializers

In retrospect, many of these features seem both inevitable and inseparable. They all fit
together strategically. It's thought that C# version's killer feature was the query
expression, also known as Language-Integrated Query (LINQ).

A more nuanced view examines expression trees, lambda expressions, and anonymous
types as the foundation upon which LINQ is constructed. But, in either case, C# 3.0

C# version 3.0

presented a revolutionary concept. C# 3.0 had begun to lay the groundwork for turning
C# into a hybrid Object-Oriented / Functional language.

Specifically, you could now write SQL-style, declarative queries to perform operations on
collections, among other things. Instead of writing a for loop to compute the average
of a list of integers, you could now do that as simply as list.Average() . The
combination of query expressions and extension methods made a list of integers a
whole lot smarter.

Released November, 2005

Let's take a look at some major features of C# 2.0, released in 2005, along with Visual
Studio 2005:

Generics
Partial types
Anonymous methods
Nullable value types
Iterators
Covariance and contravariance

Other C# 2.0 features added capabilities to existing features:

Getter/setter separate accessibility
Method group conversions (delegates)
Static classes
Delegate inference

While C# may have started as a generic Object-Oriented (OO) language, C# version 2.0
changed that in a hurry. With generics, types and methods can operate on an arbitrary
type while still retaining type safety. For instance, having a List<T> lets you have
List<string> or List<int> and perform type-safe operations on those strings or
integers while you iterate through them. Using generics is better than creating a
ListInt type that derives from ArrayList or casting from Object for every operation.

C# version 2.0 brought iterators. To put it succinctly, iterators let you examine all the
items in a List (or other Enumerable types) with a foreach loop. Having iterators as a
first-class part of the language dramatically enhanced readability of the language and
people's ability to reason about the code.

C# version 2.0

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

And yet, C# continued to play a bit of catch-up with Java. Java had already released
versions that included generics and iterators. But that would soon change as the
languages continued to evolve apart.

Released April, 2003

C# version 1.2 shipped with Visual Studio .NET 2003. It contained a few small
enhancements to the language. Most notable is that starting with this version, the code
generated in a foreach loop called Dispose on an IEnumerator when that IEnumerator
implemented IDisposable.

Released January, 2002

When you go back and look, C# version 1.0, released with Visual Studio .NET 2002,
looked a lot like Java. As part of its stated design goals for ECMA , it sought to be a
"simple, modern, general-purpose object-oriented language." At the time, looking like
Java meant it achieved those early design goals.

But if you look back on C# 1.0 now, you'd find yourself a little dizzy. It lacked the built-in
async capabilities and some of the slick functionality around generics you take for
granted. As a matter of fact, it lacked generics altogether. And LINQ? Not available yet.
Those additions would take some years to come out.

C# version 1.0 looked stripped of features, compared to today. You'd find yourself
writing some verbose code. But yet, you have to start somewhere. C# version 1.0 was a
viable alternative to Java on the Windows platform.

The major features of C# 1.0 included:

Classes
Structs
Interfaces
Events
Properties
Delegates
Operators and expressions
Statements
Attributes

C# version 1.2

C# version 1.0

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://feeldotneteasy.blogspot.com/2011/01/c-design-goals.html

Article originally published on the NDepend blog , courtesy of Erik Dietrich and Patrick
Smacchia.

https://blog.ndepend.com/c-versions-look-language-history/

Relationships between language
features and library types
Article • 2021-09-15 • 2 minutes to read

The C# language definition requires a standard library to have certain types and certain
accessible members on those types. The compiler generates code that uses these
required types and members for many different language features. When necessary,
there are NuGet packages that contain types needed for newer versions of the language
when writing code for environments where those types or members have not been
deployed yet.

This dependency on standard library functionality has been part of the C# language
since its first version. In that version, examples included:

Exception - used for all compiler generated exceptions.
String - the C# string type is a synonym for String.
Int32 - synonym of int .

That first version was simple: the compiler and the standard library shipped together,
and there was only one version of each.

Subsequent versions of C# have occasionally added new types or members to the
dependencies. Examples include: INotifyCompletion, CallerFilePathAttribute and
CallerMemberNameAttribute. C# 7.0 continues this by adding a dependency on
ValueTuple to implement the tuples language feature.

The language design team works to minimize the surface area of the types and
members required in a compliant standard library. That goal is balanced against a clean
design where new library features are incorporated seamlessly into the language. There
will be new features in future versions of C# that require new types and members in a
standard library. It's important to understand how to manage those dependencies in
your work.

C# compiler tools are now decoupled from the release cycle of the .NET libraries on
supported platforms. In fact, different .NET libraries have different release cycles: the
.NET Framework on Windows is released as a Windows Update, .NET Core ships on a
separate schedule, and the Xamarin versions of library updates ship with the Xamarin
tools for each target platform.

Managing your dependencies

https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.inotifycompletion
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerfilepathattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callermembernameattribute
https://learn.microsoft.com/en-us/dotnet/api/system.valuetuple

The majority of time, you won't notice these changes. However, when you are working
with a newer version of the language that requires features not yet in the .NET libraries
on that platform, you'll reference the NuGet packages to provide those new types. As
the platforms your app supports are updated with new framework installations, you can
remove the extra reference.

This separation means you can use new language features even when you are targeting
machines that may not have the corresponding framework.

Version and update considerations for
C# developers
Article • 2021-09-15 • 2 minutes to read

Compatibility is a very important goal as new features are added to the C# language. In
almost all cases, existing code can be recompiled with a new compiler version without
any issue.

More care may be required when you adopt new language features in a library. You may
be creating a new library with features found in the latest version and need to ensure
apps built using previous versions of the compiler can use it. Or you may be upgrading
an existing library and many of your users may not have upgraded versions yet. As you
make decisions on adopting new features, you'll need to consider two variations of
compatibility: source-compatible and binary-compatible.

Changes to your library are binary-compatible when your updated library can be used
without rebuilding applications and libraries that use it. Dependent assemblies are not
required to be rebuilt, nor are any source code changes required.

Changes to your library are source-compatible when applications and libraries that use
your library do not require source code changes, but the source must be recompiled
against the new version to work correctly.

If a change is neither source-compatible nor binary-compatible, source code changes
along with recompilation are required in dependent libraries and applications.

These compatibility concepts affect the public and protected declarations for your
library, not its internal implementation. Adopting any new features internally are always
binary-compatible.

Binary-compatible changes

Source-compatible changes

Incompatible changes

Evaluate your library

binary-compatible changes provide new syntax that generates the same compiled code
for public declarations as the older syntax. For example, changing a method to an
expression-bodied member is a binary-compatible change:

Original code:

C#

New code:

C#

source-compatible changes introduce syntax that changes the compiled code for a
public member, but in a way that is compatible with existing call sites. For example,
changing a method signature from a by value parameter to an in by reference
parameter is source-compatible, but not binary-compatible:

Original code:

C#

New code:

C#

The What's new articles note if introducing a feature that affects public declarations is
source-compatible or binary-compatible.

public double CalculateSquare(double value)
{
 return value * value;
}

public double CalculateSquare(double value) => value * value;

public double CalculateSquare(double value) => value * value;

public double CalculateSquare(in double value) => value * value;

Tutorial: Explore C# 11 feature - static
virtual members in interfaces
Article • 2022-08-03 • 8 minutes to read

C# 11 and .NET 7 include static virtual members in interfaces. This feature enables you to
define interfaces that include overloaded operators or other static members. Once
you've defined interfaces with static members, you can use those interfaces as
constraints to create generic types that use operators or other static methods. Even if
you don't create interfaces with overloaded operators, you'll likely benefit from this
feature and the generic math classes enabled by the language update.

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET 7, which supports C# 11. The C# 11
compiler is available starting with Visual Studio 2022, version 17.3 or the .NET 7
SDK .

Let's start with an example. The following method returns the midpoint of two double
numbers:

C#

The same logic would work for any numeric type: int , short , long , float decimal , or
any type that represents a number. You need to have a way to use the + and /
operators, and to define a value for 2 . You can use the
System.Numerics.INumber<TSelf> interface to write the preceding method as the
following generic method:

C#

Define interfaces with static members.＂

Use interfaces to define classes that implement interfaces with operators defined.＂

Create generic algorithms that rely on static interface methods.＂

Prerequisites

Static abstract interface methods

public static double MidPoint(double left, double right) =>
 (left + right) / (2.0);

https://visualstudio.microsoft.com/downloads/
https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-us/dotnet/api/system.numerics.inumber-1

Any type that implements the INumber<TSelf> interface must include a definition for
operator + , and for operator / . The denominator is defined by T.CreateChecked(2) to
create the value 2 for any numeric type, which forces the denominator to be the same
type as the two parameters. INumberBase<TSelf>.CreateChecked<TOther>(TOther)
creates an instance of the type from the specified value and throws an
OverflowException if the value falls outside the representable range. (This
implementation has the potential for overflow if left and right are both large enough
values. There are alternative algorithms that can avoid this potential issue.)

You define static abstract members in an interface using familiar syntax: You add the
static and abstract modifiers to any static member that doesn't provide an
implementation. The following example defines an IGetNext<T> interface that can be
applied to any type that overrides operator ++ :

C#

The constraint that the type argument, T , implements IGetNext<T> ensures that the
signature for the operator includes the containing type, or its type argument. Many
operators enforce that its parameters must match the type, or be the type parameter
constrained to implement the containing type. Without this constraint, the ++ operator
couldn't be defined in the IGetNext<T> interface.

You can create a structure that creates a string of 'A' characters where each increment
adds another character to the string using the following code:

C#

public static T MidPoint<T>(T left, T right)
 where T : INumber<T> => (left + right) / T.CreateChecked(2); // note:
the addition of left and right may overflow here; it's just for
demonstration purposes

public interface IGetNext<T> where T : IGetNext<T>
{
 static abstract T operator ++(T other);
}

public struct RepeatSequence : IGetNext<RepeatSequence>
{
 private const char Ch = 'A';
 public string Text = new string(Ch, 1);

 public RepeatSequence() {}

https://learn.microsoft.com/en-us/dotnet/api/system.numerics.inumber-1
https://learn.microsoft.com/en-us/dotnet/api/system.numerics.inumberbase-1.createchecked#system-numerics-inumberbase-1-createchecked-1(-0)
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

More generally, you can build any algorithm where you might want to define ++ to
mean "produce the next value of this type". Using this interface produces clear code and
results:

C#

The preceding example produces the following output:

PowerShell

This small example demonstrates the motivation for this feature. You can use natural
syntax for operators, constant values, and other static operations. You can explore these
techniques when you create multiple types that rely on static members, including
overloaded operators. Define the interfaces that match your types' capabilities and then
declare those types' support for the new interface.

The motivating scenario for allowing static methods, including operators, in interfaces is
to support generic math algorithms. The .NET 7 base class library contains interface
definitions for many arithmetic operators, and derived interfaces that combine many
arithmetic operators in an INumber<T> interface. Let's apply those types to build a

 public static RepeatSequence operator ++(RepeatSequence other)
 => other with { Text = other.Text + Ch };

 public override string ToString() => Text;
}

var str = new RepeatSequence();

for (int i = 0; i < 10; i++)
 Console.WriteLine(str++);

A
AA
AAA
AAAA
AAAAA
AAAAAA
AAAAAAA
AAAAAAAA
AAAAAAAAA
AAAAAAAAAA

Generic math

https://learn.microsoft.com/en-ca/dotnet/standard/generics/math

Point<T> record that can use any numeric type for T . The point can be moved by some
XOffset and YOffset using the + operator.

Start by creating a new Console application, either by using dotnet new or Visual Studio.
Set the C# language version to "preview", which enables C# 11 preview features. Add
the following element to your csproj file inside a <PropertyGroup> element:

XML

The public interface for the Translation<T> and Point<T> should look like the following
code:

C#

You use the record type for both the Translation<T> and Point<T> types: Both store
two values, and they represent data storage rather than sophisticated behavior. The
implementation of operator + would look like the following code:

C#

For the previous code to compile, you'll need to declare that T supports the
IAdditionOperators<TSelf, TOther, TResult> interface. That interface includes the
operator + static method. It declares three type parameters: One for the left operand,
one for the right operand, and one for the result. Some types implement + for different

<LangVersion>preview</LangVersion>

７ Note

This element cannot be set using the Visual Studio UI. You need to edit the project
file directly.

// Note: Not complete. This won't compile yet.
public record Translation<T>(T XOffset, T YOffset);

public record Point<T>(T X, T Y)
{
 public static Point<T> operator +(Point<T> left, Translation<T> right);
}

public static Point<T> operator +(Point<T> left, Translation<T> right) =>
 left with { X = left.X + right.XOffset, Y = left.Y + right.YOffset };

operand and result types. Add a declaration that the type argument, T implements
IAdditionOperators<T, T, T> :

C#

After you add that constraint, your Point<T> class can use the + for its addition
operator. Add the same constraint on the Translation<T> declaration:

C#

The IAdditionOperators<T, T, T> constraint prevents a developer using your class from
creating a Translation using a type that doesn't meet the constraint for the addition to
a point. You've added the necessary constraints to the type parameter for
Translation<T> and Point<T> so this code works. You can test by adding code like the
following above the declarations of Translation and Point in your Program.cs file:

C#

You can make this code more reusable by declaring that these types implement the
appropriate arithmetic interfaces. The first change to make is to declare that Point<T,
T> implements the IAdditionOperators<Point<T>, Translation<T>, Point<T>> interface.
The Point type makes use of different types for operands and the result. The Point
type already implements an operator + with that signature, so adding the interface to
the declaration is all you need:

C#

public record Point<T>(T X, T Y) where T : IAdditionOperators<T, T, T>

public record Translation<T>(T XOffset, T YOffset) where T :
IAdditionOperators<T, T, T>;

var pt = new Point<int>(3, 4);

var translate = new Translation<int>(5, 10);

var final = pt + translate;

Console.WriteLine(pt);
Console.WriteLine(translate);
Console.WriteLine(final);

public record Point<T>(T X, T Y) : IAdditionOperators<Point<T>,
Translation<T>, Point<T>>
 where T : IAdditionOperators<T, T, T>

Finally, when you're performing addition, it's useful to have a property that defines the
additive identity value for that type. There's a new interface for that feature:
IAdditiveIdentity<TSelf,TResult>. A translation of {0, 0} is the additive identity: The
resulting point is the same as the left operand. The IAdditiveIdentity<TSelf, TResult>
interface defines one readonly property, AdditiveIdentity , that returns the identity
value. The Translation<T> needs a few changes to implement this interface:

C#

There are a few changes here, so let's walk through them one by one. First, you declare
that the Translation type implements the IAdditiveIdentity interface:

C#

You next might try implementing the interface member as shown in the following code:

C#

The preceding code won't compile, because 0 depends on the type. The answer: Use
IAdditiveIdentity<T>.AdditiveIdentity for 0 . That change means that your constraints
must now include that T implements IAdditiveIdentity<T> . That results in the
following implementation:

C#

using System.Numerics;

public record Translation<T>(T XOffset, T YOffset) :
IAdditiveIdentity<Translation<T>, Translation<T>>
 where T : IAdditionOperators<T, T, T>, IAdditiveIdentity<T, T>
{
 public static Translation<T> AdditiveIdentity =>
 new Translation<T>(XOffset: T.AdditiveIdentity, YOffset:
T.AdditiveIdentity);
}

public record Translation<T>(T XOffset, T YOffset) :
IAdditiveIdentity<Translation<T>, Translation<T>>

public static Translation<T> AdditiveIdentity =>
 new Translation<T>(XOffset: 0, YOffset: 0);

public static Translation<T> AdditiveIdentity =>
 new Translation<T>(XOffset: T.AdditiveIdentity, YOffset:

https://learn.microsoft.com/en-us/dotnet/api/system.numerics.iadditiveidentity-2

Now that you've added that constraint on Translation<T> , you need to add the same
constraint to Point<T> :

C#

This sample has given you a look at how the interfaces for generic math compose. You
learned how to:

Experiment with these features and register feedback. You can use the Send Feedback
menu item in Visual Studio, or create a new issue in the roslyn repository on GitHub.
Build generic algorithms that work with any numeric type. Build algorithms using these
interfaces where the type argument may only implement a subset of number-like
capabilities. Even if you don't build new interfaces that use these capabilities, you can
experiment with using them in your algorithms.

Generic math

T.AdditiveIdentity);

using System.Numerics;

public record Point<T>(T X, T Y) : IAdditionOperators<Point<T>,
Translation<T>, Point<T>>
 where T : IAdditionOperators<T, T, T>, IAdditiveIdentity<T, T>
{
 public static Point<T> operator +(Point<T> left, Translation<T> right)
=>
 left with { X = left.X + right.XOffset, Y = left.Y + right.YOffset
};
}

Write a method that relied on the INumber<T> interface so that method could be
used with any numeric type.

＂

Build a type that relies on the addition interfaces to implement a type that only
supports one mathematical operation. That type declares its support for those same
interfaces so it can be composed in other ways. The algorithms are written using
the most natural syntax of mathematical operators.

＂

See also

https://github.com/dotnet/roslyn/issues/new/choose
https://learn.microsoft.com/en-ca/dotnet/standard/generics/math

Create record types
Article • 2023-01-12 • 12 minutes to read

C# 9 introduces records, a new reference type that you can create instead of classes or
structs. C# 10 adds record structs so that you can define records as value types. Records
are distinct from classes in that record types use value-based equality. Two variables of a
record type are equal if the record type definitions are identical, and if for every field,
the values in both records are equal. Two variables of a class type are equal if the
objects referred to are the same class type and the variables refer to the same object.
Value-based equality implies other capabilities you'll probably want in record types. The
compiler generates many of those members when you declare a record instead of a
class . The compiler generates those same methods for record struct types.

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET 6 or later, including the C# 10 or later
compiler. The C# 10 compiler is available starting with Visual Studio 2022 or the .NET
6 SDK .

You define a record by declaring a type with the record keyword, instead of the class
or struct keyword. Optionally, you can declare a record class to clarify that it's a
reference type. A record is a reference type and follows value-based equality semantics.
You can define a record struct to create a record that is a value type. To enforce value
semantics, the compiler generates several methods for your record type (both for
record class types and record struct types):

An override of Object.Equals(Object).
A virtual Equals method whose parameter is the record type.
An override of Object.GetHashCode().
Methods for operator == and operator != .
Record types implement System.IEquatable<T>.

Decide if you should declare a class or a record .＂

Declare record types and positional record types.＂

Substitute your methods for compiler generated methods in records.＂

Prerequisites

Characteristics of records

https://visualstudio.microsoft.com/vs
https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode#system-object-gethashcode
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1

Records also provide an override of Object.ToString(). The compiler synthesizes methods
for displaying records using Object.ToString(). You'll explore those members as you write
the code for this tutorial. Records support with expressions to enable non-destructive
mutation of records.

You can also declare positional records using a more concise syntax. The compiler
synthesizes more methods for you when you declare positional records:

A primary constructor whose parameters match the positional parameters on the
record declaration.
Public properties for each parameter of a primary constructor. These properties are
init-only for record class types and readonly record struct types. For record
struct types, they're read-write.
A Deconstruct method to extract properties from the record.

Data and statistics are among the scenarios where you'll want to use records. For this
tutorial, you'll build an application that computes degree days for different uses. Degree
days are a measure of heat (or lack of heat) over a period of days, weeks, or months.
Degree days track and predict energy usage. More hotter days means more air
conditioning, and more colder days means more furnace usage. Degree days help
manage plant populations and correlate to plant growth as the seasons change. Degree
days help track animal migrations for species that travel to match climate.

The formula is based on the mean temperature on a given day and a baseline
temperature. To compute degree days over time, you'll need the high and low
temperature each day for a period of time. Let's start by creating a new application.
Make a new console application. Create a new record type in a new file named
"DailyTemperature.cs":

C#

The preceding code defines a positional record. The DailyTemperature record is a
readonly record struct , because you don't intend to inherit from it, and it should be
immutable. The HighTemp and LowTemp properties are init only properties, meaning they
can be set in the constructor or using a property initializer. If you wanted the positional
parameters to be read-write, you declare a record struct instead of a readonly record

Build temperature data

public readonly record struct DailyTemperature(double HighTemp, double
LowTemp);

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring#system-object-tostring
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring#system-object-tostring

struct . The DailyTemperature type also has a primary constructor that has two
parameters that match the two properties. You use the primary constructor to initialize a
DailyTemperature record. The following code creates and initializes several
DailyTemperature records. The first uses named parameters to clarify the HighTemp and
LowTemp . The remaining initializers use positional parameters to initialize the HighTemp
and LowTemp :

C#

You can add your own properties or methods to records, including positional records.
You'll need to compute the mean temperature for each day. You can add that property
to the DailyTemperature record:

C#

Let's make sure you can use this data. Add the following code to your Main method:

C#

private static DailyTemperature[] data = new DailyTemperature[]
{
 new DailyTemperature(HighTemp: 57, LowTemp: 30),
 new DailyTemperature(60, 35),
 new DailyTemperature(63, 33),
 new DailyTemperature(68, 29),
 new DailyTemperature(72, 47),
 new DailyTemperature(75, 55),
 new DailyTemperature(77, 55),
 new DailyTemperature(72, 58),
 new DailyTemperature(70, 47),
 new DailyTemperature(77, 59),
 new DailyTemperature(85, 65),
 new DailyTemperature(87, 65),
 new DailyTemperature(85, 72),
 new DailyTemperature(83, 68),
 new DailyTemperature(77, 65),
 new DailyTemperature(72, 58),
 new DailyTemperature(77, 55),
 new DailyTemperature(76, 53),
 new DailyTemperature(80, 60),
 new DailyTemperature(85, 66)
};

public readonly record struct DailyTemperature(double HighTemp, double
LowTemp)
{
 public double Mean => (HighTemp + LowTemp) / 2.0;
}

Run your application, and you'll see output that looks similar to the following display
(several rows removed for space):

.NET CLI

The preceding code shows the output from the override of ToString synthesized by the
compiler. If you prefer different text, you can write your own version of ToString that
prevents the compiler from synthesizing a version for you.

To compute degree days, you take the difference from a baseline temperature and the
mean temperature on a given day. To measure heat over time, you discard any days
where the mean temperature is below the baseline. To measure cold over time, you
discard any days where the mean temperature is above the baseline. For example, the
U.S. uses 65F as the base for both heating and cooling degree days. That's the
temperature where no heating or cooling is needed. If a day has a mean temperature of
70F, that day is five cooling degree days and zero heating degree days. Conversely, if
the mean temperature is 55F, that day is 10 heating degree days and 0 cooling degree
days.

You can express these formulas as a small hierarchy of record types: an abstract degree
day type and two concrete types for heating degree days and cooling degree days.
These types can also be positional records. They take a baseline temperature and a
sequence of daily temperature records as arguments to the primary constructor:

C#

foreach (var item in data)
 Console.WriteLine(item);

DailyTemperature { HighTemp = 57, LowTemp = 30, Mean = 43.5 }
DailyTemperature { HighTemp = 60, LowTemp = 35, Mean = 47.5 }

DailyTemperature { HighTemp = 80, LowTemp = 60, Mean = 70 }
DailyTemperature { HighTemp = 85, LowTemp = 66, Mean = 75.5 }

Compute degree days

public abstract record DegreeDays(double BaseTemperature,
IEnumerable<DailyTemperature> TempRecords);

public sealed record HeatingDegreeDays(double BaseTemperature,
IEnumerable<DailyTemperature> TempRecords)
 : DegreeDays(BaseTemperature, TempRecords)

The abstract DegreeDays record is the shared base class for both the HeatingDegreeDays
and CoolingDegreeDays records. The primary constructor declarations on the derived
records show how to manage base record initialization. Your derived record declares
parameters for all the parameters in the base record primary constructor. The base
record declares and initializes those properties. The derived record doesn't hide them,
but only creates and initializes properties for parameters that aren't declared in its base
record. In this example, the derived records don't add new primary constructor
parameters. Test your code by adding the following code to your Main method:

C#

You'll get output like the following display:

.NET CLI

Your code calculates the correct number of heating and cooling degree days over that
period of time. But this example shows why you may want to replace some of the
synthesized methods for records. You can declare your own version of any of the
compiler-synthesized methods in a record type except the clone method. The clone

{
 public double DegreeDays => TempRecords.Where(s => s.Mean <
BaseTemperature).Sum(s => BaseTemperature - s.Mean);
}

public sealed record CoolingDegreeDays(double BaseTemperature,
IEnumerable<DailyTemperature> TempRecords)
 : DegreeDays(BaseTemperature, TempRecords)
{
 public double DegreeDays => TempRecords.Where(s => s.Mean >
BaseTemperature).Sum(s => s.Mean - BaseTemperature);
}

var heatingDegreeDays = new HeatingDegreeDays(65, data);
Console.WriteLine(heatingDegreeDays);

var coolingDegreeDays = new CoolingDegreeDays(65, data);
Console.WriteLine(coolingDegreeDays);

HeatingDegreeDays { BaseTemperature = 65, TempRecords =
record_types.DailyTemperature[], DegreeDays = 85 }
CoolingDegreeDays { BaseTemperature = 65, TempRecords =
record_types.DailyTemperature[], DegreeDays = 71.5 }

Define compiler-synthesized methods

method has a compiler-generated name and you can't provide a different
implementation. These synthesized methods include a copy constructor, the members
of the System.IEquatable<T> interface, equality and inequality tests, and GetHashCode().
For this purpose, you'll synthesize PrintMembers . You could also declare your own
ToString , but PrintMembers provides a better option for inheritance scenarios. To
provide your own version of a synthesized method, the signature must match the
synthesized method.

The TempRecords element in the console output isn't useful. It displays the type, but
nothing else. You can change this behavior by providing your own implementation of
the synthesized PrintMembers method. The signature depends on modifiers applied to
the record declaration:

If a record type is sealed , or a record struct , the signature is private bool
PrintMembers(StringBuilder builder);

If a record type isn't sealed and derives from object (that is, it doesn't declare a
base record), the signature is protected virtual bool PrintMembers(StringBuilder
builder);

If a record type isn't sealed and derives from another record, the signature is
protected override bool PrintMembers(StringBuilder builder);

These rules are easiest to comprehend through understanding the purpose of
PrintMembers . PrintMembers adds information about each property in a record type to a
string. The contract requires base records to add their members to the display and
assumes derived members will add their members. Each record type synthesizes a
ToString override that looks similar to the following example for HeatingDegreeDays :

C#

You declare a PrintMembers method in the DegreeDays record that doesn't print the type
of the collection:

public override string ToString()
{
 StringBuilder stringBuilder = new StringBuilder();
 stringBuilder.Append("HeatingDegreeDays");
 stringBuilder.Append(" { ");
 if (PrintMembers(stringBuilder))
 {
 stringBuilder.Append(" ");
 }
 stringBuilder.Append("}");
 return stringBuilder.ToString();
}

https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode#system-object-gethashcode

C#

The signature declares a virtual protected method to match the compiler's version.
Don't worry if you get the accessors wrong; the language enforces the correct signature.
If you forget the correct modifiers for any synthesized method, the compiler issues
warnings or errors that help you get the right signature.

In C# 10 and later, you can declare the ToString method as sealed in a record type.
That prevents derived records from providing a new implementation. Derived records
will still contain the PrintMembers override. You would seal ToString if you didn't want it
to display the runtime type of the record. In the preceding example, you'd lose the
information on where the record was measuring heating or cooling degree days.

The synthesized members in a positional record class don't modify the state of the
record. The goal is that you can more easily create immutable records. Remember that
you declare a readonly record struct to create an immutable record struct. Look again
at the preceding declarations for HeatingDegreeDays and CoolingDegreeDays . The
members added perform computations on the values for the record, but don't mutate
state. Positional records make it easier for you to create immutable reference types.

Creating immutable reference types means you'll want to use non-destructive mutation.
You create new record instances that are similar to existing record instances using with
expressions. These expressions are a copy construction with additional assignments that
modify the copy. The result is a new record instance where each property has been
copied from the existing record and optionally modified. The original record is
unchanged.

Let's add a couple features to your program that demonstrate with expressions. First,
let's create a new record to compute growing degree days using the same data.
Growing degree days typically uses 41F as the baseline and measures temperatures
above the baseline. To use the same data, you can create a new record that is similar to
the coolingDegreeDays , but with a different base temperature:

C#

protected virtual bool PrintMembers(StringBuilder stringBuilder)
{
 stringBuilder.Append($"BaseTemperature = {BaseTemperature}");
 return true;
}

Non-destructive mutation

You can compare the number of degrees computed to the numbers generated with a
higher baseline temperature. Remember that records are reference types and these
copies are shallow copies. The array for the data isn't copied, but both records refer to
the same data. That fact is an advantage in one other scenario. For growing degree
days, it's useful to keep track of the total for the previous five days. You can create new
records with different source data using with expressions. The following code builds a
collection of these accumulations, then displays the values:

C#

You can also use with expressions to create copies of records. Don't specify any
properties between the braces for the with expression. That means create a copy, and
don't change any properties:

C#

Run the finished application to see the results.

This tutorial showed several aspects of records. Records provide concise syntax for types
where the fundamental use is storing data. For object-oriented classes, the fundamental
use is defining responsibilities. This tutorial focused on positional records, where you can

// Growing degree days measure warming to determine plant growing rates
var growingDegreeDays = coolingDegreeDays with { BaseTemperature = 41 };
Console.WriteLine(growingDegreeDays);

// showing moving accumulation of 5 days using range syntax
List<CoolingDegreeDays> movingAccumulation = new();
int rangeSize = (data.Length > 5) ? 5 : data.Length;
for (int start = 0; start < data.Length - rangeSize; start++)
{
 var fiveDayTotal = growingDegreeDays with { TempRecords = data[start..
(start + rangeSize)] };
 movingAccumulation.Add(fiveDayTotal);
}
Console.WriteLine();
Console.WriteLine("Total degree days in the last five days");
foreach(var item in movingAccumulation)
{
 Console.WriteLine(item);
}

var growingDegreeDaysCopy = growingDegreeDays with { };

Summary

use a concise syntax to declare the properties for a record. The compiler synthesizes
several members of the record for copying and comparing records. You can add any
other members you need for your record types. You can create immutable record types
knowing that none of the compiler-generated members would mutate state. And with
expressions make it easy to support non-destructive mutation.

Records add another way to define types. You use class definitions to create object-
oriented hierarchies that focus on the responsibilities and behavior of objects. You
create struct types for data structures that store data and are small enough to copy
efficiently. You create record types when you want value-based equality and
comparison, don't want to copy values, and want to use reference variables. You create
record struct types when you want the features of records for a type that is small
enough to copy efficiently.

You can learn more about records in the C# language reference article for the record
type and the proposed record type specification and record struct specification.

Tutorial: Explore ideas using top-level
statements to build code as you learn
Article • 2022-06-07 • 8 minutes to read

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET 6, which includes the C# 10 compiler. The
C# 10 compiler is available starting with Visual Studio 2022 or .NET 6 SDK .

This tutorial assumes you're familiar with C# and .NET, including either Visual Studio or
the .NET CLI.

Top-level statements enable you to avoid the extra ceremony required by placing your
program's entry point in a static method in a class. The typical starting point for a new
console application looks like the following code:

C#

The preceding code is the result of running the dotnet new console command and
creating a new console application. Those 11 lines contain only one line of executable

Learn the rules governing your use of top-level statements.＂

Use top-level statements to explore algorithms.＂

Refactor explorations into reusable components.＂

Prerequisites

Start exploring

using System;

namespace Application
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

https://visualstudio.microsoft.com/vs/
https://dot.net/get-dotnet6

code. You can simplify that program with the new top-level statements feature. That
enables you to remove all but two of the lines in this program:

C#

This feature simplifies what's needed to begin exploring new ideas. You can use top-
level statements for scripting scenarios, or to explore. Once you've got the basics
working, you can start refactoring the code and create methods, classes, or other
assemblies for reusable components you've built. Top-level statements do enable quick
experimentation and beginner tutorials. They also provide a smooth path from
experimentation to full programs.

Top-level statements are executed in the order they appear in the file. Top-level
statements can only be used in one source file in your application. The compiler
generates an error if you use them in more than one file.

For this tutorial, let's build a console application that answers a "yes" or "no" question
with a random answer. You'll build out the functionality step by step. You can focus on
your task rather than ceremony needed for the structure of a typical program. Then,
once you're happy with the functionality, you can refactor the application as you see fit.

// See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

） Important

The C# templates for .NET 6 use top level statements. Your application may not
match the code in this article, if you've already upgraded to the .NET 6. For more
information see the article on New C# templates generate top level statements

The .NET 6 SDK also adds a set of implicit global using directives for projects that
use the following SDKs:

Microsoft.NET.Sdk

Microsoft.NET.Sdk.Web
Microsoft.NET.Sdk.Worker

These implicit global using directives include the most common namespaces for
the project type.

Build a magic .NET answer machine

https://learn.microsoft.com/en-ca/dotnet/core/tutorials/top-level-templates

A good starting point is to write the question back to the console. You can start by
writing the following code:

C#

You don't declare an args variable. For the single source file that contains your top-level
statements, the compiler recognizes args to mean the command-line arguments. The
type of args is a string[] , as in all C# programs.

You can test your code by running the following dotnet run command:

.NET CLI

The arguments after the -- on the command line are passed to the program. You can
see the type of the args variable, because that's what's printed to the console:

Console

To write the question to the console, you'll need to enumerate the arguments and
separate them with a space. Replace the WriteLine call with the following code:

C#

Now, when you run the program, it will correctly display the question as a string of
arguments.

Console.WriteLine(args);

dotnet run -- Should I use top level statements in all my programs?

System.String[]

Console.WriteLine();
foreach(var s in args)
{
 Console.Write(s);
 Console.Write(' ');
}
Console.WriteLine();

Respond with a random answer

After echoing the question, you can add the code to generate the random answer. Start
by adding an array of possible answers:

C#

This array has ten answers that are affirmative, five that are non-committal, and five that
are negative. Next, add the following code to generate and display a random answer
from the array:

C#

You can run the application again to see the results. You should see something like the
following output:

.NET CLI

This code answers the questions, but let's add one more feature. You'd like your
question app to simulate thinking about the answer. You can do that by adding a bit of
ASCII animation, and pausing while working. Add the following code after the line that
echoes the question:

C#

string[] answers =
{
 "It is certain.", "Reply hazy, try again.", "Don’t count on
it.",
 "It is decidedly so.", "Ask again later.", "My reply is no.",
 "Without a doubt.", "Better not tell you now.", "My sources say
no.",
 "Yes – definitely.", "Cannot predict now.", "Outlook not so
good.",
 "You may rely on it.", "Concentrate and ask again.", "Very doubtful.",
 "As I see it, yes.",
 "Most likely.",
 "Outlook good.",
 "Yes.",
 "Signs point to yes.",
};

var index = new Random().Next(answers.Length - 1);
Console.WriteLine(answers[index]);

dotnet run -- Should I use top level statements in all my programs?

Should I use top level statements in all my programs?
Better not tell you now.

You'll also need to add a using statement to the top of the source file:

C#

The using statements must be before any other statements in the file. Otherwise, it's a
compiler error. You can run the program again and see the animation. That makes a
better experience. Experiment with the length of the delay to match your taste.

The preceding code creates a set of spinning lines separated by a space. Adding the
await keyword instructs the compiler to generate the program entry point as a method
that has the async modifier, and returns a System.Threading.Tasks.Task. This program
doesn't return a value, so the program entry point returns a Task . If your program
returns an integer value, you would add a return statement to the end of your top-level
statements. That return statement would specify the integer value to return. If your top-
level statements include an await expression, the return type becomes
System.Threading.Tasks.Task<TResult>.

Your program should look like the following code:

C#

for (int i = 0; i < 20; i++)
{
 Console.Write("| -");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("/ \\");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("- |");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("\\ /");
 await Task.Delay(50);
 Console.Write("\b\b\b");
}
Console.WriteLine();

using System.Threading.Tasks;

Refactoring for the future

Console.WriteLine();
foreach(var s in args)
{
 Console.Write(s);

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

The preceding code is reasonable. It works. But it isn't reusable. Now that you have the
application working, it's time to pull out reusable parts.

One candidate is the code that displays the waiting animation. That snippet can become
a method:

You can start by creating a local function in your file. Replace the current animation with
the following code:

C#

 Console.Write(' ');
}
Console.WriteLine();

for (int i = 0; i < 20; i++)
{
 Console.Write("| -");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("/ \\");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("- |");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("\\ /");
 await Task.Delay(50);
 Console.Write("\b\b\b");
}
Console.WriteLine();

string[] answers =
{
 "It is certain.", "Reply hazy, try again.", "Don't count on
it.",
 "It is decidedly so.", "Ask again later.", "My reply is no.",
 "Without a doubt.", "Better not tell you now.", "My sources say
no.",
 "Yes – definitely.", "Cannot predict now.", "Outlook not so
good.",
 "You may rely on it.", "Concentrate and ask again.", "Very doubtful.",
 "As I see it, yes.",
 "Most likely.",
 "Outlook good.",
 "Yes.",
 "Signs point to yes.",
};

var index = new Random().Next(answers.Length - 1);
Console.WriteLine(answers[index]);

The preceding code creates a local function inside your main method. That's still not
reusable. So, extract that code into a class. Create a new file named utilities.cs and add
the following code:

C#

await ShowConsoleAnimation();

static async Task ShowConsoleAnimation()
{
 for (int i = 0; i < 20; i++)
 {
 Console.Write("| -");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("/ \\");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("- |");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("\\ /");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 }
 Console.WriteLine();
}

namespace MyNamespace
{
 public static class Utilities
 {
 public static async Task ShowConsoleAnimation()
 {
 for (int i = 0; i < 20; i++)
 {
 Console.Write("| -");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("/ \\");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("- |");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 Console.Write("\\ /");
 await Task.Delay(50);
 Console.Write("\b\b\b");
 }
 Console.WriteLine();
 }

A file that has top-level statements can also contain namespaces and types at the end of
the file, after the top-level statements. But for this tutorial you put the animation
method in a separate file to make it more readily reusable.

Finally, you can clean the animation code to remove some duplication:

C#

Now you have a complete application, and you've refactored the reusable parts for later
use. You can call the new utility method from your top-level statements, as shown below
in the finished version of the main program:

C#

 }
}

foreach (string s in new[] { "| -", "/ \\", "- |", "\\ /", })
{
 Console.Write(s);
 await Task.Delay(50);
 Console.Write("\b\b\b");
}

using MyNamespace;

Console.WriteLine();
foreach(var s in args)
{
 Console.Write(s);
 Console.Write(' ');
}
Console.WriteLine();

await Utilities.ShowConsoleAnimation();

string[] answers =
{
 "It is certain.", "Reply hazy, try again.", "Don’t count on
it.",
 "It is decidedly so.", "Ask again later.", "My reply is no.",
 "Without a doubt.", "Better not tell you now.", "My sources say
no.",
 "Yes – definitely.", "Cannot predict now.", "Outlook not so
good.",
 "You may rely on it.", "Concentrate and ask again.", "Very doubtful.",
 "As I see it, yes.",
 "Most likely.",
 "Outlook good.",
 "Yes.",

The preceding example adds the call to Utilities.ShowConsoleAnimation , and adds an
additional using statement.

Top-level statements make it easier to create simple programs for use to explore new
algorithms. You can experiment with algorithms by trying different snippets of code.
Once you've learned what works, you can refactor the code to be more maintainable.

Top-level statements simplify programs that are based on console applications. These
include Azure functions, GitHub actions, and other small utilities. For more information,
see Top-level statements (C# Programming Guide).

 "Signs point to yes.",
};

var index = new Random().Next(answers.Length - 1);
Console.WriteLine(answers[index]);

Summary

Use pattern matching to build your class
behavior for better code
Article • 2022-12-06 • 10 minutes to read

The pattern matching features in C# provide syntax to express your algorithms. You can
use these techniques to implement the behavior in your classes. You can combine
object-oriented class design with a data-oriented implementation to provide concise
code while modeling real-world objects.

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET 5, including the C# 9 compiler. The C# 9
compiler is available starting with Visual Studio 2019 version 16.8 or the .NET 5 SDK .

In this tutorial, you'll build a C# class that simulates a canal lock . Briefly, a canal lock is
a device that raises and lowers boats as they travel between two stretches of water at
different levels. A lock has two gates and some mechanism to change the water level.

In its normal operation, a boat enters one of the gates while the water level in the lock
matches the water level on the side the boat enters. Once in the lock, the water level is
changed to match the water level where the boat will leave the lock. Once the water
level matches that side, the gate on the exit side opens. Safety measures make sure an
operator can't create a dangerous situation in the canal. The water level can be changed
only when both gates are closed. At most one gate can be open. To open a gate, the
water level in the lock must match the water level outside the gate being opened.

You can build a C# class to model this behavior. A CanalLock class would support
commands to open or close either gate. It would have other commands to raise or lower
the water. The class should also support properties to read the current state of both
gates and the water level. Your methods implement the safety measures.

Express your object oriented classes using data patterns.＂

Implement those patterns using C#'s pattern matching features.＂

Leverage compiler diagnostics to validate your implementation.＂

Prerequisites

Build a simulation of a canal lock

https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet/5.0
https://en.wikipedia.org/wiki/Lock_(water_navigation)

You'll build a console application to test your CanalLock class. Create a new console
project for .NET 5 using either Visual Studio or the .NET CLI. Then, add a new class and
name it CanalLock . Next, design your public API, but leave the methods not
implemented:

C#

The preceding code initializes the object so both gates are closed, and the water level is
low. Next, write the following test code in your Main method to guide you as you create
a first implementation of the class:

Define a class

public enum WaterLevel
{
 Low,
 High
}
public class CanalLock
{
 // Query canal lock state:
 public WaterLevel CanalLockWaterLevel { get; private set; } =
WaterLevel.Low;
 public bool HighWaterGateOpen { get; private set; } = false;
 public bool LowWaterGateOpen { get; private set; } = false;

 // Change the upper gate.
 public void SetHighGate(bool open)
 {
 throw new NotImplementedException();
 }

 // Change the lower gate.
 public void SetLowGate(bool open)
 {
 throw new NotImplementedException();
 }

 // Change water level.
 public void SetWaterLevel(WaterLevel newLevel)
 {
 throw new NotImplementedException();
 }

 public override string ToString() =>
 $"The lower gate is {(LowWaterGateOpen ? "Open" : "Closed")}. " +
 $"The upper gate is {(HighWaterGateOpen ? "Open" : "Closed")}. " +
 $"The water level is {CanalLockWaterLevel}.";
}

C#

Next, add a first implementation of each method in the CanalLock class. The following
code implements the methods of the class without concern to the safety rules. You'll
add safety tests later:

C#

// Create a new canal lock:
var canalGate = new CanalLock();

// State should be doors closed, water level low:
Console.WriteLine(canalGate);

canalGate.SetLowGate(open: true);
Console.WriteLine($"Open the lower gate: {canalGate}");

Console.WriteLine("Boat enters lock from lower gate");

canalGate.SetLowGate(open: false);
Console.WriteLine($"Close the lower gate: {canalGate}");

canalGate.SetWaterLevel(WaterLevel.High);
Console.WriteLine($"Raise the water level: {canalGate}");

canalGate.SetHighGate(open: true);
Console.WriteLine($"Open the higher gate: {canalGate}");

Console.WriteLine("Boat exits lock at upper gate");
Console.WriteLine("Boat enters lock from upper gate");

canalGate.SetHighGate(open: false);
Console.WriteLine($"Close the higher gate: {canalGate}");

canalGate.SetWaterLevel(WaterLevel.Low);
Console.WriteLine($"Lower the water level: {canalGate}");

canalGate.SetLowGate(open: true);
Console.WriteLine($"Open the lower gate: {canalGate}");

Console.WriteLine("Boat exits lock at upper gate");

canalGate.SetLowGate(open: false);
Console.WriteLine($"Close the lower gate: {canalGate}");

// Change the upper gate.
public void SetHighGate(bool open)
{
 HighWaterGateOpen = open;
}

// Change the lower gate.

The tests you've written so far pass. You've implemented the basics. Now, write a test for
the first failure condition. At the end of the previous tests, both gates are closed, and
the water level is set to low. Add a test to try opening the upper gate:

C#

This test fails because the gate opens. As a first implementation, you could fix it with the
following code:

C#

Your tests pass. But, as you add more tests, you'll add more and more if clauses and
test different properties. Soon, these methods will get too complicated as you add more

public void SetLowGate(bool open)
{
 LowWaterGateOpen = open;
}

// Change water level.
public void SetWaterLevel(WaterLevel newLevel)
{
 CanalLockWaterLevel = newLevel;
}

Console.WriteLine("===");
Console.WriteLine(" Test invalid commands");
// Open "wrong" gate (2 tests)
try
{
 canalGate = new CanalLock();
 canalGate.SetHighGate(open: true);
}
catch (InvalidOperationException)
{
 Console.WriteLine("Invalid operation: Can't open the high gate. Water is
low.");
}
Console.WriteLine($"Try to open upper gate: {canalGate}");

// Change the upper gate.
public void SetHighGate(bool open)
{
 if (open && (CanalLockWaterLevel == WaterLevel.High))
 HighWaterGateOpen = true;
 else if (open && (CanalLockWaterLevel == WaterLevel.Low))
 throw new InvalidOperationException("Cannot open high gate when the
water is low");
}

conditionals.

A better way is to use patterns to determine if the object is in a valid state to execute a
command. You can express if a command is allowed as a function of three variables: the
state of the gate, the level of the water, and the new setting:

New setting Gate state Water Level Result

Closed Closed High Closed

Closed Closed Low Closed

Closed Open High Closed

Closed Open Low Closed

Open Closed High Open

Open Closed Low Closed (Error)

Open Open High Open

Open Open Low Closed (Error)

The fourth and last rows in the table have strike through text because they're invalid.
The code you're adding now should make sure the high water gate is never opened
when the water is low. Those states can be coded as a single switch expression
(remember that false indicates "Closed"):

C#

Try this version. Your tests pass, validating the code. The full table shows the possible
combinations of inputs and results. That means you and other developers can quickly

Implement the commands with patterns

HighWaterGateOpen = (open, HighWaterGateOpen, CanalLockWaterLevel) switch
{
 (false, false, WaterLevel.High) => false,
 (false, false, WaterLevel.Low) => false,
 (false, true, WaterLevel.High) => false,
 (false, true, WaterLevel.Low) => false, // should never happen
 (true, false, WaterLevel.High) => true,
 (true, false, WaterLevel.Low) => throw new
InvalidOperationException("Cannot open high gate when the water is low"),
 (true, true, WaterLevel.High) => true,
 (true, true, WaterLevel.Low) => false, // should never happen
};

look at the table and see that you've covered all the possible inputs. Even easier, the
compiler can help as well. After you add the previous code, you can see that the
compiler generates a warning: CS8524 indicates the switch expression doesn't cover all
possible inputs. The reason for that warning is that one of the inputs is an enum type.
The compiler interprets "all possible inputs" as all inputs from the underlying type,
typically an int . This switch expression only checks the values declared in the enum . To
remove the warning, you can add a catch-all discard pattern for the last arm of the
expression. This condition throws an exception, because it indicates invalid input:

C#

The preceding switch arm must be last in your switch expression because it matches all
inputs. Experiment by moving it earlier in the order. That causes a compiler error CS8510
for unreachable code in a pattern. The natural structure of switch expressions enables
the compiler to generate errors and warnings for possible mistakes. The compiler "safety
net" makes it easier for you to create correct code in fewer iterations, and the freedom
to combine switch arms with wildcards. The compiler will issue errors if your
combination results in unreachable arms you didn't expect, and warnings if you remove
an arm that's needed.

The first change is to combine all the arms where the command is to close the gate;
that's always allowed. Add the following code as the first arm in your switch expression:

C#

After you add the previous switch arm, you'll get four compiler errors, one on each of
the arms where the command is false . Those arms are already covered by the newly
added arm. You can safely remove those four lines. You intended this new switch arm to
replace those conditions.

Next, you can simplify the four arms where the command is to open the gate. In both
cases where the water level is high, the gate can be opened. (In one, it's already open.)
One case where the water level is low throws an exception, and the other shouldn't
happen. It should be safe to throw the same exception if the water lock is already in an
invalid state. You can make the following simplifications for those arms:

C#

_ => throw new InvalidOperationException("Invalid internal state"),

(false, _, _) => false,

Run your tests again, and they pass. Here's the final version of the SetHighGate method:

C#

Now that you've seen the technique, fill in the SetLowGate and SetWaterLevel methods
yourself. Start by adding the following code to test invalid operations on those methods:

C#

(true, _, WaterLevel.High) => true,
(true, false, WaterLevel.Low) => throw new InvalidOperationException("Cannot
open high gate when the water is low"),
_ => throw new InvalidOperationException("Invalid internal state"),

// Change the upper gate.
public void SetHighGate(bool open)
{
 HighWaterGateOpen = (open, HighWaterGateOpen, CanalLockWaterLevel)
switch
 {
 (false, _, _) => false,
 (true, _, WaterLevel.High) => true,
 (true, false, WaterLevel.Low) => throw new
InvalidOperationException("Cannot open high gate when the water is low"),
 _ => throw new
InvalidOperationException("Invalid internal state"),
 };
}

Implement patterns yourself

Console.WriteLine();
Console.WriteLine();
try
{
 canalGate = new CanalLock();
 canalGate.SetWaterLevel(WaterLevel.High);
 canalGate.SetLowGate(open: true);
}
catch (InvalidOperationException)
{
 Console.WriteLine("invalid operation: Can't open the lower gate. Water
is high.");
}
Console.WriteLine($"Try to open lower gate: {canalGate}");
// change water level with gate open (2 tests)
Console.WriteLine();
Console.WriteLine();
try

Run your application again. You can see the new tests fail, and the canal lock gets into
an invalid state. Try to implement the remaining methods yourself. The method to set
the lower gate should be similar to the method to set the upper gate. The method that
changes the water level has different checks, but should follow a similar structure. You
may find it helpful to use the same process for the method that sets the water level.
Start with all four inputs: The state of both gates, the current state of the water level, and
the requested new water level. The switch expression should start with:

C#

You'll have 16 total switch arms to fill in. Then, test and simplify.

Did you make methods something like this?

C#

{
 canalGate = new CanalLock();
 canalGate.SetLowGate(open: true);
 canalGate.SetWaterLevel(WaterLevel.High);
}
catch (InvalidOperationException)
{
 Console.WriteLine("invalid operation: Can't raise water when the lower
gate is open.");
}
Console.WriteLine($"Try to raise water with lower gate open: {canalGate}");
Console.WriteLine();
Console.WriteLine();
try
{
 canalGate = new CanalLock();
 canalGate.SetWaterLevel(WaterLevel.High);
 canalGate.SetHighGate(open: true);
 canalGate.SetWaterLevel(WaterLevel.Low);
}
catch (InvalidOperationException)
{
 Console.WriteLine("invalid operation: Can't lower water when the high
gate is open.");
}
Console.WriteLine($"Try to lower water with high gate open: {canalGate}");

CanalLockWaterLevel = (newLevel, CanalLockWaterLevel, LowWaterGateOpen,
HighWaterGateOpen) switch
{
 // elided
};

Your tests should pass, and the canal lock should operate safely.

In this tutorial, you learned to use pattern matching to check the internal state of an
object before applying any changes to that state. You can check combinations of
properties. Once you've built tables for any of those transitions, you test your code, then
simplify for readability and maintainability. These initial refactorings may suggest further
refactorings that validate internal state or manage other API changes. This tutorial
combined classes and objects with a more data-oriented, pattern-based approach to
implement those classes.

// Change the lower gate.
public void SetLowGate(bool open)
{
 LowWaterGateOpen = (open, LowWaterGateOpen, CanalLockWaterLevel) switch
 {
 (false, _, _) => false,
 (true, _, WaterLevel.Low) => true,
 (true, false, WaterLevel.High) => throw new
InvalidOperationException("Cannot open high gate when the water is low"),
 _ => throw new InvalidOperationException("Invalid internal state"),
 };
}

// Change water level.
public void SetWaterLevel(WaterLevel newLevel)
{
 CanalLockWaterLevel = (newLevel, CanalLockWaterLevel, LowWaterGateOpen,
HighWaterGateOpen) switch
 {
 (WaterLevel.Low, WaterLevel.Low, true, false) => WaterLevel.Low,
 (WaterLevel.High, WaterLevel.High, false, true) => WaterLevel.High,
 (WaterLevel.Low, _, false, false) => WaterLevel.Low,
 (WaterLevel.High, _, false, false) => WaterLevel.High,
 (WaterLevel.Low, WaterLevel.High, false, true) => throw new
InvalidOperationException("Cannot lower water when the high gate is open"),
 (WaterLevel.High, WaterLevel.Low, true, false) => throw new
InvalidOperationException("Cannot raise water when the low gate is open"),
 _ => throw new InvalidOperationException("Invalid internal state"),
 };
}

Summary

Tutorial: Write a custom string
interpolation handler
Article • 2022-03-31 • 12 minutes to read

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET 6, including the C# 10 compiler. The C#
10 compiler is available starting with Visual Studio 2022 or .NET 6 SDK .

This tutorial assumes you're familiar with C# and .NET, including either Visual Studio or
the .NET CLI.

C# 10 adds support for a custom interpolated string handler. An interpolated string
handler is a type that processes the placeholder expression in an interpolated string.
Without a custom handler, placeholders are processed similar to String.Format. Each
placeholder is formatted as text, and then the components are concatenated to form
the resulting string.

You can write a handler for any scenario where you use information about the resulting
string. Will it be used? What constraints are on the format? Some examples include:

You may require none of the resulting strings are greater than some limit, such as
80 characters. You can process the interpolated strings to fill a fixed-length buffer,
and stop processing once that buffer length is reached.
You may have a tabular format, and each placeholder must have a fixed length. A
custom handler can enforce that, rather than forcing all client code to conform.

In this tutorial, you'll create a string interpolation handler for one of the core
performance scenarios: logging libraries. Depending on the configured log level, the
work to construct a log message isn't needed. If logging is off, the work to construct a
string from an interpolated string expression isn't needed. The message is never printed,

Implement the string interpolation handler pattern＂

Interact with the receiver in a string interpolation operation.＂

Add arguments to the string interpolation handler＂

Understand the new library features for string interpolation＂

Prerequisites

New outline

https://visualstudio.microsoft.com/downloads/
https://dotnet.microsoft.com/download
https://learn.microsoft.com/en-us/dotnet/api/system.string.format

so any string concatenation can be skipped. In addition, any expressions used in the
placeholders, including generating stack traces, doesn't need to be done.

An interpolated string handler can determine if the formatted string will be used, and
only perform the necessary work if needed.

Let's start from a basic Logger class that supports different levels:

C#

This Logger supports six different levels. When a message won't pass the log level filter,
there's no output. The public API for the logger accepts a (fully formatted) string as the
message. All the work to create the string has already been done.

This step is to build an interpolated string handler that recreates the current behavior. An
interpolated string handler is a type that must have the following characteristics:

The System.Runtime.CompilerServices.InterpolatedStringHandlerAttribute applied
to the type.
A constructor that has two int parameters, literalLength and formatCount .
(More parameters are allowed).

Initial implementation

public enum LogLevel
{
 Off,
 Critical,
 Error,
 Warning,
 Information,
 Trace
}

public class Logger
{
 public LogLevel EnabledLevel { get; init; } = LogLevel.Error;

 public void LogMessage(LogLevel level, string msg)
 {
 if (EnabledLevel < level) return;
 Console.WriteLine(msg);
 }
}

Implement the handler pattern

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.interpolatedstringhandlerattribute

A public AppendLiteral method with the signature: public void
AppendLiteral(string s) .
A generic public AppendFormatted method with the signature: public void
AppendFormatted<T>(T t) .

Internally, the builder creates the formatted string, and provides a member for a client
to retrieve that string. The following code shows a LogInterpolatedStringHandler type
that meets these requirements:

C#

You can now add an overload to LogMessage in the Logger class to try your new
interpolated string handler:

C#

[InterpolatedStringHandler]
public ref struct LogInterpolatedStringHandler
{
 // Storage for the built-up string
 StringBuilder builder;

 public LogInterpolatedStringHandler(int literalLength, int
formattedCount)
 {
 builder = new StringBuilder(literalLength);
 Console.WriteLine($"\tliteral length: {literalLength},
formattedCount: {formattedCount}");
 }

 public void AppendLiteral(string s)
 {
 Console.WriteLine($"\tAppendLiteral called: {{{s}}}");

 builder.Append(s);
 Console.WriteLine($"\tAppended the literal string");
 }

 public void AppendFormatted<T>(T t)
 {
 Console.WriteLine($"\tAppendFormatted called: {{{t}}} is of type
{typeof(T)}");

 builder.Append(t?.ToString());
 Console.WriteLine($"\tAppended the formatted object");
 }

 internal string GetFormattedText() => builder.ToString();
}

You don't need to remove the original LogMessage method, the compiler will prefer a
method with an interpolated handler parameter over a method with a string parameter
when the argument is an interpolated string expression.

You can verify that the new handler is invoked using the following code as the main
program:

C#

Running the application produces output similar to the following text:

PowerShell

public void LogMessage(LogLevel level, LogInterpolatedStringHandler builder)
{
 if (EnabledLevel < level) return;
 Console.WriteLine(builder.GetFormattedText());
}

var logger = new Logger() { EnabledLevel = LogLevel.Warning };
var time = DateTime.Now;

logger.LogMessage(LogLevel.Error, $"Error Level. CurrentTime: {time}. This
is an error. It will be printed.");
logger.LogMessage(LogLevel.Trace, $"Trace Level. CurrentTime: {time}. This
won't be printed.");
logger.LogMessage(LogLevel.Warning, "Warning Level. This warning is a
string, not an interpolated string expression.");

 literal length: 65, formattedCount: 1
 AppendLiteral called: {Error Level. CurrentTime: }
 Appended the literal string
 AppendFormatted called: {10/20/2021 12:19:10 PM} is of type
System.DateTime
 Appended the formatted object
 AppendLiteral called: {. This is an error. It will be printed.}
 Appended the literal string
Error Level. CurrentTime: 10/20/2021 12:19:10 PM. This is an error. It will
be printed.
 literal length: 50, formattedCount: 1
 AppendLiteral called: {Trace Level. CurrentTime: }
 Appended the literal string
 AppendFormatted called: {10/20/2021 12:19:10 PM} is of type
System.DateTime
 Appended the formatted object
 AppendLiteral called: {. This won't be printed.}
 Appended the literal string
Warning Level. This warning is a string, not an interpolated string
expression.

Tracing through the output, you can see how the compiler adds code to call the handler
and build the string:

The compiler adds a call to construct the handler, passing the total length of the
literal text in the format string, and the number of placeholders.
The compiler adds calls to AppendLiteral and AppendFormatted for each section of
the literal string and for each placeholder.
The compiler invokes the LogMessage method using the
CoreInterpolatedStringHandler as the argument.

Finally, notice that the last warning doesn't invoke the interpolated string handler. The
argument is a string , so that call invokes the other overload with a string parameter.

The preceding version of the interpolated string handler implements the pattern. To
avoid processing every placeholder expression, you'll need more information in the
handler. In this section, you'll improve your handler so that it does less work when the
constructed string won't be written to the log. You use
System.Runtime.CompilerServices.InterpolatedStringHandlerArgumentAttribute to
specify a mapping between parameters to a public API and parameters to a handler's
constructor. That provides the handler with the information needed to determine if the
interpolated string should be evaluated.

Let's start with changes to the Handler. First, add a field to track if the handler is
enabled. Add two parameters to the constructor: one to specify the log level for this
message, and the other a reference to the log object:

C#

Next, use the field so that your handler only appends literals or formatted objects when
the final string will be used:

Add more capabilities to the handler

private readonly bool enabled;

public LogInterpolatedStringHandler(int literalLength, int formattedCount,
Logger logger, LogLevel logLevel)
{
 enabled = logger.EnabledLevel >= logLevel;
 builder = new StringBuilder(literalLength);
 Console.WriteLine($"\tliteral length: {literalLength}, formattedCount:
{formattedCount}");
}

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.interpolatedstringhandlerargumentattribute

C#

Next, you'll need to update the LogMessage declaration so that the compiler passes the
additional parameters to the handler's constructor. That's handled using the
System.Runtime.CompilerServices.InterpolatedStringHandlerArgumentAttribute on the
handler argument:

C#

This attribute specifies the list of arguments to LogMessage that map to the parameters
that follow the required literalLength and formattedCount parameters. The empty
string (""), specifies the receiver. The compiler substitutes the value of the Logger object
represented by this for the next argument to the handler's constructor. The compiler
substitutes the value of level for the following argument. You can provide any number
of arguments for any handler you write. The arguments that you add are string
arguments.

You can run this version using the same test code. This time, you'll see the following
results:

public void AppendLiteral(string s)
{
 Console.WriteLine($"\tAppendLiteral called: {{{s}}}");
 if (!enabled) return;

 builder.Append(s);
 Console.WriteLine($"\tAppended the literal string");
}

public void AppendFormatted<T>(T t)
{
 Console.WriteLine($"\tAppendFormatted called: {{{t}}} is of type
{typeof(T)}");
 if (!enabled) return;

 builder.Append(t?.ToString());
 Console.WriteLine($"\tAppended the formatted object");
}

public void LogMessage(LogLevel level,
[InterpolatedStringHandlerArgument("", "level")]
LogInterpolatedStringHandler builder)
{
 if (EnabledLevel < level) return;
 Console.WriteLine(builder.GetFormattedText());
}

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.interpolatedstringhandlerargumentattribute

PowerShell

You can see that the AppendLiteral and AppendFormat methods are being called, but
they aren't doing any work. The handler has determined that the final string won't be
needed, so the handler doesn't build it. There are still a couple of improvements to
make.

First, you can add an overload of AppendFormatted that constrains the argument to a
type that implements System.IFormattable. This overload enables callers to add format
strings in the placeholders. While making this change, let's also change the return type
of the other AppendFormatted and AppendLiteral methods, from void to bool (if any of
these methods have different return types, then you'll get a compilation error). That
change enables short circuiting. The methods return false to indicate that processing of
the interpolated string expression should be stopped. Returning true indicates that it
should continue. In this example, you're using it to stop processing when the resulting
string isn't needed. Short circuiting supports more fine-grained actions. You could stop
processing the expression once it reaches a certain length, to support fixed-length
buffers. Or some condition could indicate remaining elements aren't needed.

C#

 literal length: 65, formattedCount: 1
 AppendLiteral called: {Error Level. CurrentTime: }
 Appended the literal string
 AppendFormatted called: {10/20/2021 12:19:10 PM} is of type
System.DateTime
 Appended the formatted object
 AppendLiteral called: {. This is an error. It will be printed.}
 Appended the literal string
Error Level. CurrentTime: 10/20/2021 12:19:10 PM. This is an error. It will
be printed.
 literal length: 50, formattedCount: 1
 AppendLiteral called: {Trace Level. CurrentTime: }
 AppendFormatted called: {10/20/2021 12:19:10 PM} is of type
System.DateTime
 AppendLiteral called: {. This won't be printed.}
Warning Level. This warning is a string, not an interpolated string
expression.

public void AppendFormatted<T>(T t, string format) where T : IFormattable
{
 Console.WriteLine($"\tAppendFormatted (IFormattable version) called: {t}
with format {{{format}}} is of type {typeof(T)},");

 builder.Append(t?.ToString(format, null));
 Console.WriteLine($"\tAppended the formatted object");
}

https://learn.microsoft.com/en-us/dotnet/api/system.iformattable

With that addition, you can specify format strings in your interpolated string expression:

C#

The :t on the first message specifies the "short time format" for the current time. The
previous example showed one of the overloads to the AppendFormatted method that you
can create for your handler. You don't need to specify a generic argument for the object
being formatted. You may have more efficient ways to convert types you create to
string. You can write overloads of AppendFormatted that takes those types instead of a
generic argument. The compiler will pick the best overload. The runtime uses this
technique to convert System.Span<T> to string output. You can add an integer
parameter to specify the alignment of the output, with or without an IFormattable. The
System.Runtime.CompilerServices.DefaultInterpolatedStringHandler that ships with .NET
6 contains nine overloads of AppendFormatted for different uses. You can use it as a
reference while building a handler for your purposes.

Run the sample now, and you'll see that for the Trace message, only the first
AppendLiteral is called:

PowerShell

var time = DateTime.Now;

logger.LogMessage(LogLevel.Error, $"Error Level. CurrentTime: {time}. The
time doesn't use formatting.");
logger.LogMessage(LogLevel.Error, $"Error Level. CurrentTime: {time:t}. This
is an error. It will be printed.");
logger.LogMessage(LogLevel.Trace, $"Trace Level. CurrentTime: {time:t}. This
won't be printed.");

 literal length: 60, formattedCount: 1
 AppendLiteral called: Error Level. CurrentTime:
 Appended the literal string
 AppendFormatted called: 10/20/2021 12:18:29 PM is of type
System.DateTime
 Appended the formatted object
 AppendLiteral called: . The time doesn't use formatting.
 Appended the literal string
Error Level. CurrentTime: 10/20/2021 12:18:29 PM. The time doesn't use
formatting.
 literal length: 65, formattedCount: 1
 AppendLiteral called: Error Level. CurrentTime:
 Appended the literal string
 AppendFormatted (IFormattable version) called: 10/20/2021 12:18:29
PM with format {t} is of type System.DateTime,
 Appended the formatted object
 AppendLiteral called: . This is an error. It will be printed.
 Appended the literal string

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.iformattable
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.defaultinterpolatedstringhandler
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.defaultinterpolatedstringhandler.appendformatted

You can make one final update to the handler's constructor that improves efficiency. The
handler can add a final out bool parameter. Setting that parameter to false indicates
that the handler shouldn't be called at all to process the interpolated string expression:

C#

That change means you can remove the enabled field. Then, you can change the return
type of AppendLiteral and AppendFormatted to void . Now, when you run the sample,
you'll see the following output:

PowerShell

Error Level. CurrentTime: 12:18 PM. This is an error. It will be printed.
 literal length: 50, formattedCount: 1
 AppendLiteral called: Trace Level. CurrentTime:
Warning Level. This warning is a string, not an interpolated string
expression.

public LogInterpolatedStringHandler(int literalLength, int formattedCount,
Logger logger, LogLevel level, out bool isEnabled)
{
 isEnabled = logger.EnabledLevel >= level;
 Console.WriteLine($"\tliteral length: {literalLength}, formattedCount:
{formattedCount}");
 builder = isEnabled ? new StringBuilder(literalLength) : default!;
}

 literal length: 60, formattedCount: 1
 AppendLiteral called: Error Level. CurrentTime:
 Appended the literal string
 AppendFormatted called: 10/20/2021 12:19:10 PM is of type
System.DateTime
 Appended the formatted object
 AppendLiteral called: . The time doesn't use formatting.
 Appended the literal string
Error Level. CurrentTime: 10/20/2021 12:19:10 PM. The time doesn't use
formatting.
 literal length: 65, formattedCount: 1
 AppendLiteral called: Error Level. CurrentTime:
 Appended the literal string
 AppendFormatted (IFormattable version) called: 10/20/2021 12:19:10
PM with format {t} is of type System.DateTime,
 Appended the formatted object
 AppendLiteral called: . This is an error. It will be printed.
 Appended the literal string
Error Level. CurrentTime: 12:19 PM. This is an error. It will be printed.
 literal length: 50, formattedCount: 1
Warning Level. This warning is a string, not an interpolated string
expression.

The only output when LogLevel.Trace was specified is the output from the constructor.
The handler indicated that it's not enabled, so none of the Append methods were
invoked.

This example illustrates an important point for interpolated string handlers, especially
when logging libraries are used. Any side-effects in the placeholders may not occur. Add
the following code to your main program and see this behavior in action:

C#

You can see the index variable is incremented five times each iteration of the loop.
Because the placeholders are evaluated only for Critical , Error and Warning levels,
not for Information and Trace , the final value of index doesn't match the expectation:

PowerShell

Interpolated string handlers provide greater control over how an interpolated string
expression is converted to a string. The .NET runtime team has already used this feature
to improve performance in several areas. You can make use of the same capability in
your own libraries. To explore further, look at the
System.Runtime.CompilerServices.DefaultInterpolatedStringHandler. It provides a more
complete implementation than you built here. You'll see many more overloads that are
possible for the Append methods.

int index = 0;
int numberOfIncrements = 0;
for (var level = LogLevel.Critical; level <= LogLevel.Trace; level++)
{
 Console.WriteLine(level);
 logger.LogMessage(level, $"{level}: Increment index a few times
{index++}, {index++}, {index++}, {index++}, {index++}");
 numberOfIncrements += 5;
}
Console.WriteLine($"Value of index {index}, value of numberOfIncrements:
{numberOfIncrements}");

Critical
Critical: Increment index a few times 0, 1, 2, 3, 4
Error
Error: Increment index a few times 5, 6, 7, 8, 9
Warning
Warning: Increment index a few times 10, 11, 12, 13, 14
Information
Trace
Value of index 15, value of numberOfIncrements: 25

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.defaultinterpolatedstringhandler

Tutorial: Update interfaces with default
interface methods
Article • 2022-11-03 • 6 minutes to read

You can define an implementation when you declare a member of an interface. The
most common scenario is to safely add members to an interface already released and
used by innumerable clients.

In this tutorial, you'll learn how to:

You’ll need to set up your machine to run .NET, including the C# compiler. The C#
compiler is available with Visual Studio 2022 or the .NET SDK .

This tutorial starts with version 1 of a customer relationship library. You can get the
starter application on our samples repo on GitHub . The company that built this library
intended customers with existing applications to adopt their library. They provided
minimal interface definitions for users of their library to implement. Here's the interface
definition for a customer:

C#

They defined a second interface that represents an order:

Extend interfaces safely by adding methods with implementations.＂

Create parameterized implementations to provide greater flexibility.＂

Enable implementers to provide a more specific implementation in the form of an
override.

＂

Prerequisites

Scenario overview

public interface ICustomer
{
 IEnumerable<IOrder> PreviousOrders { get; }

 DateTime DateJoined { get; }
 DateTime? LastOrder { get; }
 string Name { get; }
 IDictionary<DateTime, string> Reminders { get; }
}

https://visualstudio.microsoft.com/downloads
https://dotnet.microsoft.com/download
https://github.com/dotnet/samples/tree/main/csharp/tutorials/default-interface-members-versions/starter/customer-relationship

C#

From those interfaces, the team could build a library for their users to create a better
experience for their customers. Their goal was to create a deeper relationship with
existing customers and improve their relationships with new customers.

Now, it's time to upgrade the library for the next release. One of the requested features
enables a loyalty discount for customers that have lots of orders. This new loyalty
discount gets applied whenever a customer makes an order. The specific discount is a
property of each individual customer. Each implementation of ICustomer can set
different rules for the loyalty discount.

The most natural way to add this functionality is to enhance the ICustomer interface
with a method to apply any loyalty discount. This design suggestion caused concern
among experienced developers: "Interfaces are immutable once they've been released!
This is a breaking change!" Default interface implementations for upgrading interfaces.
The library authors can add new members to the interface and provide a default
implementation for those members.

Default interface implementations enable developers to upgrade an interface while still
enabling any implementors to override that implementation. Users of the library can
accept the default implementation as a non-breaking change. If their business rules are
different, they can override.

The team agreed on the most likely default implementation: a loyalty discount for
customers.

The upgrade should provide the functionality to set two properties: the number of
orders needed to be eligible for the discount, and the percentage of the discount. This
makes it a perfect scenario for default interface methods. You can add a method to the
ICustomer interface, and provide the most likely implementation. All existing, and any
new implementations can use the default implementation, or provide their own.

First, add the new method to the interface, including the body of the method:

public interface IOrder
{
 DateTime Purchased { get; }
 decimal Cost { get; }
}

Upgrade with default interface methods

C#

The library author wrote a first test to check the implementation:

C#

Notice the following portion of the test:

C#

That cast from SampleCustomer to ICustomer is necessary. The SampleCustomer class
doesn't need to provide an implementation for ComputeLoyaltyDiscount ; that's provided

// Version 1:
public decimal ComputeLoyaltyDiscount()
{
 DateTime TwoYearsAgo = DateTime.Now.AddYears(-2);
 if ((DateJoined < TwoYearsAgo) && (PreviousOrders.Count() > 10))
 {
 return 0.10m;
 }
 return 0;
}

SampleCustomer c = new SampleCustomer("customer one", new DateTime(2010, 5,
31))
{
 Reminders =
 {
 { new DateTime(2010, 08, 12), "childs's birthday" },
 { new DateTime(1012, 11, 15), "anniversary" }
 }
};

SampleOrder o = new SampleOrder(new DateTime(2012, 6, 1), 5m);
c.AddOrder(o);

o = new SampleOrder(new DateTime(2103, 7, 4), 25m);
c.AddOrder(o);

// Check the discount:
ICustomer theCustomer = c;
Console.WriteLine($"Current discount:
{theCustomer.ComputeLoyaltyDiscount()}");

// Check the discount:
ICustomer theCustomer = c;
Console.WriteLine($"Current discount:
{theCustomer.ComputeLoyaltyDiscount()}");

by the ICustomer interface. However, the SampleCustomer class doesn't inherit members
from its interfaces. That rule hasn't changed. In order to call any method declared and
implemented in the interface, the variable must be the type of the interface, ICustomer
in this example.

That's a good start. But, the default implementation is too restrictive. Many consumers
of this system may choose different thresholds for number of purchases, a different
length of membership, or a different percentage discount. You can provide a better
upgrade experience for more customers by providing a way to set those parameters.
Let's add a static method that sets those three parameters controlling the default
implementation:

C#

There are many new language capabilities shown in that small code fragment. Interfaces
can now include static members, including fields and methods. Different access
modifiers are also enabled. The additional fields are private, the new method is public.
Any of the modifiers are allowed on interface members.

Provide parameterization

// Version 2:
public static void SetLoyaltyThresholds(
 TimeSpan ago,
 int minimumOrders = 10,
 decimal percentageDiscount = 0.10m)
{
 length = ago;
 orderCount = minimumOrders;
 discountPercent = percentageDiscount;
}
private static TimeSpan length = new TimeSpan(365 * 2, 0,0,0); // two years
private static int orderCount = 10;
private static decimal discountPercent = 0.10m;

public decimal ComputeLoyaltyDiscount()
{
 DateTime start = DateTime.Now - length;

 if ((DateJoined < start) && (PreviousOrders.Count() > orderCount))
 {
 return discountPercent;
 }
 return 0;
}

Applications that use the general formula for computing the loyalty discount, but
different parameters, don't need to provide a custom implementation; they can set the
arguments through a static method. For example, the following code sets a "customer
appreciation" that rewards any customer with more than one month's membership:

C#

The code you've added so far has provided a convenient implementation for those
scenarios where users want something like the default implementation, or to provide an
unrelated set of rules. For a final feature, let's refactor the code a bit to enable scenarios
where users may want to build on the default implementation.

Consider a startup that wants to attract new customers. They offer a 50% discount off a
new customer's first order. Otherwise, existing customers get the standard discount. The
library author needs to move the default implementation into a protected static
method so that any class implementing this interface can reuse the code in their
implementation. The default implementation of the interface member calls this shared
method as well:

C#

In an implementation of a class that implements this interface, the override can call the
static helper method, and extend that logic to provide the "new customer" discount:

C#

ICustomer.SetLoyaltyThresholds(new TimeSpan(30, 0, 0, 0), 1, 0.25m);
Console.WriteLine($"Current discount:
{theCustomer.ComputeLoyaltyDiscount()}");

Extend the default implementation

public decimal ComputeLoyaltyDiscount() => DefaultLoyaltyDiscount(this);
protected static decimal DefaultLoyaltyDiscount(ICustomer c)
{
 DateTime start = DateTime.Now - length;

 if ((c.DateJoined < start) && (c.PreviousOrders.Count() > orderCount))
 {
 return discountPercent;
 }
 return 0;
}

You can see the entire finished code in our samples repo on GitHub . You can get the
starter application on our samples repo on GitHub .

These new features mean that interfaces can be updated safely when there's a
reasonable default implementation for those new members. Carefully design interfaces
to express single functional ideas that can be implemented by multiple classes. That
makes it easier to upgrade those interface definitions when new requirements are
discovered for that same functional idea.

public decimal ComputeLoyaltyDiscount()
{
 if (PreviousOrders.Any() == false)
 return 0.50m;
 else
 return ICustomer.DefaultLoyaltyDiscount(this);
}

https://github.com/dotnet/samples/tree/main/csharp/tutorials/default-interface-members-versions/finished/customer-relationship
https://github.com/dotnet/samples/tree/main/csharp/tutorials/default-interface-members-versions/starter/customer-relationship

Tutorial: Mix functionality in when
creating classes using interfaces with
default interface methods
Article • 2022-11-03 • 8 minutes to read

You can define an implementation when you declare a member of an interface. This
feature provides new capabilities where you can define default implementations for
features declared in interfaces. Classes can pick when to override functionality, when to
use the default functionality, and when not to declare support for discrete features.

In this tutorial, you'll learn how to:

You’ll need to set up your machine to run .NET, including the C# compiler. The C#
compiler is available with Visual Studio 2022 , or the .NET SDK or later.

One way you can implement behavior that appears as part of an interface is to define
extension methods that provide the default behavior. Interfaces declare a minimum set
of members while providing a greater surface area for any class that implements that
interface. For example, the extension methods in Enumerable provide the
implementation for any sequence to be the source of a LINQ query.

Extension methods are resolved at compile time, using the declared type of the variable.
Classes that implement the interface can provide a better implementation for any
extension method. Variable declarations must match the implementing type to enable
the compiler to choose that implementation. When the compile-time type matches the
interface, method calls resolve to the extension method. Another concern with extension
methods is that those methods are accessible wherever the class containing the
extension methods is accessible. Classes cannot declare if they should or should not
provide features declared in extension methods.

Create interfaces with implementations that describe discrete features.＂

Create classes that use the default implementations.＂

Create classes that override some or all of the default implementations.＂

Prerequisites

Limitations of extension methods

https://visualstudio.microsoft.com/downloads
https://dotnet.microsoft.com/download/dotnet
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable

You can declare the default implementations as interface methods. Then, every class
automatically uses the default implementation. Any class that can provide a better
implementation can override the interface method definition with a better algorithm. In
one sense, this technique sounds similar to how you could use extension methods.

In this article, you'll learn how default interface implementations enable new scenarios.

Consider a home automation application. You probably have many different types of
lights and indicators that could be used throughout the house. Every light must support
APIs to turn them on and off, and to report the current state. Some lights and indicators
may support other features, such as:

Turn light on, then turn it off after a timer.
Blink the light for a period of time.

Some of these extended capabilities could be emulated in devices that support the
minimal set. That indicates providing a default implementation. For those devices that
have more capabilities built in, the device software would use the native capabilities. For
other lights, they could choose to implement the interface and use the default
implementation.

Default interface members is a better solution for this scenario than extension methods.
Class authors can control which interfaces they choose to implement. Those interfaces
they choose are available as methods. In addition, because default interface methods
are virtual by default, the method dispatch always chooses the implementation in the
class.

Let's create the code to demonstrate these differences.

Start by creating the interface that defines the behavior for all lights:

C#

Design the application

Create interfaces

public interface ILight
{
 void SwitchOn();
 void SwitchOff();
 bool IsOn();
}

A basic overhead light fixture might implement this interface as shown in the following
code:

C#

In this tutorial, the code doesn't drive IoT devices, but emulates those activities by
writing messages to the console. You can explore the code without automating your
house.

Next, let's define the interface for a light that can automatically turn off after a timeout:

C#

You could add a basic implementation to the overhead light, but a better solution is to
modify this interface definition to provide a virtual default implementation:

C#

public class OverheadLight : ILight
{
 private bool isOn;
 public bool IsOn() => isOn;
 public void SwitchOff() => isOn = false;
 public void SwitchOn() => isOn = true;

 public override string ToString() => $"The light is {(isOn ? "on" :
"off")}";
}

public interface ITimerLight : ILight
{
 Task TurnOnFor(int duration);
}

public interface ITimerLight : ILight
{
 public async Task TurnOnFor(int duration)
 {
 Console.WriteLine("Using the default interface method for the
ITimerLight.TurnOnFor.");
 SwitchOn();
 await Task.Delay(duration);
 SwitchOff();
 Console.WriteLine("Completed ITimerLight.TurnOnFor sequence.");
 }
}

By adding that change, the OverheadLight class can implement the timer function by
declaring support for the interface:

C#

A different light type may support a more sophisticated protocol. It can provide its own
implementation for TurnOnFor , as shown in the following code:

C#

Unlike overriding virtual class methods, the declaration of TurnOnFor in the
HalogenLight class does not use the override keyword.

The advantages of default interface methods become clearer as you introduce more
advanced capabilities. Using interfaces enables you to mix and match capabilities. It also
enables each class author to choose between the default implementation and a custom
implementation. Let's add an interface with a default implementation for a blinking light:

public class OverheadLight : ITimerLight { }

public class HalogenLight : ITimerLight
{
 private enum HalogenLightState
 {
 Off,
 On,
 TimerModeOn
 }

 private HalogenLightState state;
 public void SwitchOn() => state = HalogenLightState.On;
 public void SwitchOff() => state = HalogenLightState.Off;
 public bool IsOn() => state != HalogenLightState.Off;
 public async Task TurnOnFor(int duration)
 {
 Console.WriteLine("Halogen light starting timer function.");
 state = HalogenLightState.TimerModeOn;
 await Task.Delay(duration);
 state = HalogenLightState.Off;
 Console.WriteLine("Halogen light finished custom timer function");
 }

 public override string ToString() => $"The light is {state}";
}

Mix and match capabilities

C#

The default implementation enables any light to blink. The overhead light can add both
timer and blink capabilities using the default implementation:

C#

A new light type, the LEDLight supports both the timer function and the blink function
directly. This light style implements both the ITimerLight and IBlinkingLight
interfaces, and overrides the Blink method:

C#

public interface IBlinkingLight : ILight
{
 public async Task Blink(int duration, int repeatCount)
 {
 Console.WriteLine("Using the default interface method for
IBlinkingLight.Blink.");
 for (int count = 0; count < repeatCount; count++)
 {
 SwitchOn();
 await Task.Delay(duration);
 SwitchOff();
 await Task.Delay(duration);
 }
 Console.WriteLine("Done with the default interface method for
IBlinkingLight.Blink.");
 }
}

public class OverheadLight : ILight, ITimerLight, IBlinkingLight
{
 private bool isOn;
 public bool IsOn() => isOn;
 public void SwitchOff() => isOn = false;
 public void SwitchOn() => isOn = true;

 public override string ToString() => $"The light is {(isOn ? "on" :
"off")}";
}

public class LEDLight : IBlinkingLight, ITimerLight, ILight
{
 private bool isOn;
 public void SwitchOn() => isOn = true;
 public void SwitchOff() => isOn = false;
 public bool IsOn() => isOn;
 public async Task Blink(int duration, int repeatCount)
 {

An ExtraFancyLight might support both blink and timer functions directly:

C#

The HalogenLight you created earlier doesn't support blinking. So, don't add the
IBlinkingLight to the list of its supported interfaces.

Next, let's write some test code. You can make use of C#'s pattern matching feature to
determine a light's capabilities by examining which interfaces it supports. The following
method exercises the supported capabilities of each light:

C#

 Console.WriteLine("LED Light starting the Blink function.");
 await Task.Delay(duration * repeatCount);
 Console.WriteLine("LED Light has finished the Blink function.");
 }

 public override string ToString() => $"The light is {(isOn ? "on" :
"off")}";
}

public class ExtraFancyLight : IBlinkingLight, ITimerLight, ILight
{
 private bool isOn;
 public void SwitchOn() => isOn = true;
 public void SwitchOff() => isOn = false;
 public bool IsOn() => isOn;
 public async Task Blink(int duration, int repeatCount)
 {
 Console.WriteLine("Extra Fancy Light starting the Blink function.");
 await Task.Delay(duration * repeatCount);
 Console.WriteLine("Extra Fancy Light has finished the Blink
function.");
 }
 public async Task TurnOnFor(int duration)
 {
 Console.WriteLine("Extra Fancy light starting timer function.");
 await Task.Delay(duration);
 Console.WriteLine("Extra Fancy light finished custom timer
function");
 }

 public override string ToString() => $"The light is {(isOn ? "on" :
"off")}";
}

Detect the light types using pattern matching

The following code in your Main method creates each light type in sequence and tests
that light:

C#

private static async Task TestLightCapabilities(ILight light)
{
 // Perform basic tests:
 light.SwitchOn();
 Console.WriteLine($"\tAfter switching on, the light is {(light.IsOn() ?
"on" : "off")}");
 light.SwitchOff();
 Console.WriteLine($"\tAfter switching off, the light is {(light.IsOn() ?
"on" : "off")}");

 if (light is ITimerLight timer)
 {
 Console.WriteLine("\tTesting timer function");
 await timer.TurnOnFor(1000);
 Console.WriteLine("\tTimer function completed");
 }
 else
 {
 Console.WriteLine("\tTimer function not supported.");
 }

 if (light is IBlinkingLight blinker)
 {
 Console.WriteLine("\tTesting blinking function");
 await blinker.Blink(500, 5);
 Console.WriteLine("\tBlink function completed");
 }
 else
 {
 Console.WriteLine("\tBlink function not supported.");
 }
}

static async Task Main(string[] args)
{
 Console.WriteLine("Testing the overhead light");
 var overhead = new OverheadLight();
 await TestLightCapabilities(overhead);
 Console.WriteLine();

 Console.WriteLine("Testing the halogen light");
 var halogen = new HalogenLight();
 await TestLightCapabilities(halogen);
 Console.WriteLine();

 Console.WriteLine("Testing the LED light");
 var led = new LEDLight();

This scenario shows a base interface without any implementations. Adding a method
into the ILight interface introduces new complexities. The language rules governing
default interface methods minimize the effect on the concrete classes that implement
multiple derived interfaces. Let's enhance the original interface with a new method to
show how that changes its use. Every indicator light can report its power status as an
enumerated value:

C#

The default implementation assumes no power:

C#

These changes compile cleanly, even though the ExtraFancyLight declares support for
the ILight interface and both derived interfaces, ITimerLight and IBlinkingLight .
There's only one "closest" implementation declared in the ILight interface. Any class

 await TestLightCapabilities(led);
 Console.WriteLine();

 Console.WriteLine("Testing the fancy light");
 var fancy = new ExtraFancyLight();
 await TestLightCapabilities(fancy);
 Console.WriteLine();
}

How the compiler determines best
implementation

public enum PowerStatus
{
 NoPower,
 ACPower,
 FullBattery,
 MidBattery,
 LowBattery
}

public interface ILight
{
 void SwitchOn();
 void SwitchOff();
 bool IsOn();
 public PowerStatus Power() => PowerStatus.NoPower;
}

that declared an override would become the one "closest" implementation. You saw
examples in the preceding classes that overrode the members of other derived
interfaces.

Avoid overriding the same method in multiple derived interfaces. Doing so creates an
ambiguous method call whenever a class implements both derived interfaces. The
compiler can't pick a single better method so it issues an error. For example, if both the
IBlinkingLight and ITimerLight implemented an override of PowerStatus , the
OverheadLight would need to provide a more specific override. Otherwise, the compiler
can't pick between the implementations in the two derived interfaces. You can usually
avoid this situation by keeping interface definitions small and focused on one feature. In
this scenario, each capability of a light is its own interface; multiple interfaces are only
inherited by classes.

This sample shows one scenario where you can define discrete features that can be
mixed into classes. You declare any set of supported functionality by declaring which
interfaces a class supports. The use of virtual default interface methods enables classes
to use or define a different implementation for any or all the interface methods. This
language capability provides new ways to model the real-world systems you're building.
Default interface methods provide a clearer way to express related classes that may mix
and match different features using virtual implementations of those capabilities.

Indices and ranges
Article • 2022-11-03 • 7 minutes to read

Ranges and indices provide a succinct syntax for accessing single elements or ranges in
a sequence.

In this tutorial, you'll learn how to:

Indices and ranges provide a succinct syntax for accessing single elements or ranges in a
sequence.

This language support relies on two new types and two new operators:

System.Index represents an index into a sequence.
The index from end operator ^ , which specifies that an index is relative to the end
of a sequence.
System.Range represents a sub range of a sequence.
The range operator .. , which specifies the start and end of a range as its
operands.

Let's start with the rules for indices. Consider an array sequence . The 0 index is the same
as sequence[0] . The ^0 index is the same as sequence[sequence.Length] . The expression
sequence[^0] does throw an exception, just as sequence[sequence.Length] does. For any
number n , the index ^n is the same as sequence.Length - n .

C#

Use the syntax for ranges in a sequence.＂

Implicitly define a Range.＂

Understand the design decisions for the start and end of each sequence.＂

Learn scenarios for the Index and Range types.＂

Language support for indices and ranges

string[] words = new string[]
{
 // index from start index from end
 "The", // 0 ^9
 "quick", // 1 ^8
 "brown", // 2 ^7
 "fox", // 3 ^6
 "jumps", // 4 ^5
 "over", // 5 ^4
 "the", // 6 ^3

https://learn.microsoft.com/en-us/dotnet/api/system.index
https://learn.microsoft.com/en-us/dotnet/api/system.range
https://learn.microsoft.com/en-us/dotnet/api/system.range
https://learn.microsoft.com/en-us/dotnet/api/system.index
https://learn.microsoft.com/en-us/dotnet/api/system.range

You can retrieve the last word with the ^1 index. Add the following code below the
initialization:

C#

A range specifies the start and end of a range. The start of the range is inclusive, but the
end of the range is exclusive, meaning the start is included in the range but the end isn't
included in the range. The range [0..^0] represents the entire range, just as
[0..sequence.Length] represents the entire range.

The following code creates a subrange with the words "quick", "brown", and "fox". It
includes words[1] through words[3] . The element words[4] isn't in the range.

C#

The following code returns the range with "lazy" and "dog". It includes words[^2] and
words[^1] . The end index words[^0] isn't included. Add the following code as well:

C#

The following examples create ranges that are open ended for the start, end, or both:

C#

 "lazy", // 7 ^2
 "dog" // 8 ^1
}; // 9 (or words.Length) ^0

Console.WriteLine($"The last word is {words[^1]}");

string[] quickBrownFox = words[1..4];
foreach (var word in quickBrownFox)
 Console.Write($"< {word} >");
Console.WriteLine();

string[] lazyDog = words[^2..^0];
foreach (var word in lazyDog)
 Console.Write($"< {word} >");
Console.WriteLine();

string[] allWords = words[..]; // contains "The" through "dog".
string[] firstPhrase = words[..4]; // contains "The" through "fox"
string[] lastPhrase = words[6..]; // contains "the", "lazy" and "dog"
foreach (var word in allWords)
 Console.Write($"< {word} >");
Console.WriteLine();

You can also declare ranges or indices as variables. The variable can then be used inside
the [and] characters:

C#

The following sample shows many of the reasons for those choices. Modify x , y , and z
to try different combinations. When you experiment, use values where x is less than y ,
and y is less than z for valid combinations. Add the following code in a new method.
Try different combinations:

C#

foreach (var word in firstPhrase)
 Console.Write($"< {word} >");
Console.WriteLine();
foreach (var word in lastPhrase)
 Console.Write($"< {word} >");
Console.WriteLine();

Index the = ^3;
Console.WriteLine(words[the]);
Range phrase = 1..4;
string[] text = words[phrase];
foreach (var word in text)
 Console.Write($"< {word} >");
Console.WriteLine();

int[] numbers = Enumerable.Range(0, 100).ToArray();
int x = 12;
int y = 25;
int z = 36;

Console.WriteLine($"{numbers[^x]} is the same as {numbers[numbers.Length -
x]}");
Console.WriteLine($"{numbers[x..y].Length} is the same as {y - x}");

Console.WriteLine("numbers[x..y] and numbers[y..z] are consecutive and
disjoint:");
Span<int> x_y = numbers[x..y];
Span<int> y_z = numbers[y..z];
Console.WriteLine($"\tnumbers[x..y] is {x_y[0]} through {x_y[^1]},
numbers[y..z] is {y_z[0]} through {y_z[^1]}");

Console.WriteLine("numbers[x..^x] removes x elements at each end:");
Span<int> x_x = numbers[x..^x];
Console.WriteLine($"\tnumbers[x..^x] starts with {x_x[0]} and ends with
{x_x[^1]}");

Console.WriteLine("numbers[..x] means numbers[0..x] and numbers[x..] means
numbers[x..^0]");

Not only arrays support indices and ranges. You can also use indices and ranges with
string, Span<T>, or ReadOnlySpan<T>.

When using the range operator expression syntax, the compiler implicitly converts the
start and end values to an Index and from them, creates a new Range instance. The
following code shows an example implicit conversion from the range operator
expression syntax, and its corresponding explicit alternative:

C#

Span<int> start_x = numbers[..x];
Span<int> zero_x = numbers[0..x];
Console.WriteLine($"\t{start_x[0]}..{start_x[^1]} is the same as
{zero_x[0]}..{zero_x[^1]}");
Span<int> z_end = numbers[z..];
Span<int> z_zero = numbers[z..^0];
Console.WriteLine($"\t{z_end[0]}..{z_end[^1]} is the same as {z_zero[0]}..
{z_zero[^1]}");

Implicit range operator expression conversions

Range implicitRange = 3..^5;

Range explicitRange = new(
 start: new Index(value: 3, fromEnd: false),
 end: new Index(value: 5, fromEnd: true));

if (implicitRange.Equals(explicitRange))
{
 Console.WriteLine(
 $"The implicit range '{implicitRange}' equals the explicit range
'{explicitRange}'");
}
// Sample output:
// The implicit range '3..^5' equals the explicit range '3..^5'

） Important

Implicit conversions from Int32 to Index throw an ArgumentOutOfRangeException
when the value is negative. Likewise, the Index constructor throws an
ArgumentOutOfRangeException when the value parameter is negative.

Type support for indices and ranges

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.index
https://learn.microsoft.com/en-us/dotnet/api/system.range
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.index
https://learn.microsoft.com/en-us/dotnet/api/system.argumentoutofrangeexception

Indexes and ranges provide clear, concise syntax to access a single element or a range
of elements in a sequence. An index expression typically returns the type of the
elements of a sequence. A range expression typically returns the same sequence type as
the source sequence.

Any type that provides an indexer with an Index or Range parameter explicitly supports
indices or ranges respectively. An indexer that takes a single Range parameter may
return a different sequence type, such as System.Span<T>.

A type is countable if it has a property named Length or Count with an accessible getter
and a return type of int . A countable type that doesn't explicitly support indices or
ranges may provide an implicit support for them. For more information, see the Implicit
Index support and Implicit Range support sections of the feature proposal note. Ranges
using implicit range support return the same sequence type as the source sequence.

For example, the following .NET types support both indices and ranges: String,
Span<T>, and ReadOnlySpan<T>. The List<T> supports indices but doesn't support
ranges.

Array has more nuanced behavior. Single dimension arrays support both indices and
ranges. Multi-dimensional arrays don't support indexers or ranges. The indexer for a
multi-dimensional array has multiple parameters, not a single parameter. Jagged arrays,
also referred to as an array of arrays, support both ranges and indexers. The following
example shows how to iterate a rectangular subsection of a jagged array. It iterates the

） Important

The performance of code using the range operator depends on the type of the
sequence operand.

The time complexity of the range operator depends on the sequence type. For
example, if the sequence is a string or an array, then the result is a copy of the
specified section of the input, so the time complexity is O(N) (where N is the length
of the range). On the other hand, if it's a System.Span<T> or a
System.Memory<T>, the result references the same backing store, which means
there is no copy and the operation is O(1).

In addition to the time complexity, this causes extra allocations and copies,
impacting performance. In performance sensitive code, consider using Span<T> or
Memory<T> as the sequence type, since the range operator does not allocate for
them.

https://learn.microsoft.com/en-us/dotnet/api/system.index
https://learn.microsoft.com/en-us/dotnet/api/system.range
https://learn.microsoft.com/en-us/dotnet/api/system.range
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.memory-1

section in the center, excluding the first and last three rows, and the first and last two
columns from each selected row:

C#

In all cases, the range operator for Array allocates an array to store the elements
returned.

You'll often use ranges and indices when you want to analyze a portion of a larger
sequence. The new syntax is clearer in reading exactly what portion of the sequence is
involved. The local function MovingAverage takes a Range as its argument. The method
then enumerates just that range when calculating the min, max, and average. Try the
following code in your project:

C#

var jagged = new int[10][]
{
 new int[10] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 },
 new int[10] { 10,11,12,13,14,15,16,17,18,19 },
 new int[10] { 20,21,22,23,24,25,26,27,28,29 },
 new int[10] { 30,31,32,33,34,35,36,37,38,39 },
 new int[10] { 40,41,42,43,44,45,46,47,48,49 },
 new int[10] { 50,51,52,53,54,55,56,57,58,59 },
 new int[10] { 60,61,62,63,64,65,66,67,68,69 },
 new int[10] { 70,71,72,73,74,75,76,77,78,79 },
 new int[10] { 80,81,82,83,84,85,86,87,88,89 },
 new int[10] { 90,91,92,93,94,95,96,97,98,99 },
};

var selectedRows = jagged[3..^3];

foreach (var row in selectedRows)
{
 var selectedColumns = row[2..^2];
 foreach (var cell in selectedColumns)
 {
 Console.Write($"{cell}, ");
 }
 Console.WriteLine();
}

Scenarios for indices and ranges

int[] sequence = Sequence(1000);

for(int start = 0; start < sequence.Length; start += 100)
{
 Range r = start..(start+10);

https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.range

When taking a range from an array, the result is an array that is copied from the initial
array, rather than referenced. Modifying values in the resulting array will not change
values in the initial array.

For example:

C#

 var (min, max, average) = MovingAverage(sequence, r);
 Console.WriteLine($"From {r.Start} to {r.End}: \tMin: {min},\tMax:
{max},\tAverage: {average}");
}

for (int start = 0; start < sequence.Length; start += 100)
{
 Range r = ^(start + 10)..^start;
 var (min, max, average) = MovingAverage(sequence, r);
 Console.WriteLine($"From {r.Start} to {r.End}: \tMin: {min},\tMax:
{max},\tAverage: {average}");
}

(int min, int max, double average) MovingAverage(int[] subSequence, Range
range) =>
 (
 subSequence[range].Min(),
 subSequence[range].Max(),
 subSequence[range].Average()
);

int[] Sequence(int count) =>
 Enumerable.Range(0, count).Select(x => (int)(Math.Sqrt(x) *
100)).ToArray();

A Note on Range Indices and Arrays

var arrayOfFiveItems = new[] { 1, 2, 3, 4, 5 };

var firstThreeItems = arrayOfFiveItems[..3]; // contains 1,2,3
firstThreeItems[0] = 11; // now contains 11,2,3

Console.WriteLine(string.Join(",", firstThreeItems));
Console.WriteLine(string.Join(",", arrayOfFiveItems));

// output:
// 11,2,3
// 1,2,3,4,5

Tutorial: Express your design intent
more clearly with nullable and non-
nullable reference types
Article • 2022-11-03 • 10 minutes to read

Nullable reference types complement reference types the same way nullable value types
complement value types. You declare a variable to be a nullable reference type by
appending a ? to the type. For example, string? represents a nullable string . You can
use these new types to more clearly express your design intent: some variables must
always have a value, others may be missing a value.

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET, including the C# compiler. The C#
compiler is available with Visual Studio 2022 , or the .NET SDK .

This tutorial assumes you're familiar with C# and .NET, including either Visual Studio or
the .NET CLI.

In this tutorial, you'll build a library that models running a survey. The code uses both
nullable reference types and non-nullable reference types to represent the real-world
concepts. The survey questions can never be null. A respondent might prefer not to
answer a question. The responses might be null in this case.

The code you'll write for this sample expresses that intent, and the compiler enforces
that intent.

Incorporate nullable and non-nullable reference types into your designs＂

Enable nullable reference type checks throughout your code.＂

Write code where the compiler enforces those design decisions.＂

Use the nullable reference feature in your own designs＂

Prerequisites

Incorporate nullable reference types into your
designs

https://visualstudio.microsoft.com/downloads
https://dotnet.microsoft.com/download/dotnet

Create a new console application either in Visual Studio or from the command line using
dotnet new console . Name the application NullableIntroduction . Once you've created
the application, you'll need to specify that the entire project compiles in an enabled
nullable annotation context. Open the .csproj file and add a Nullable element to the
PropertyGroup element. Set its value to enable . You must opt into the nullable
reference types feature in projects earlier than C# 11. That's because once the feature is
turned on, existing reference variable declarations become non-nullable reference
types. While that decision will help find issues where existing code may not have proper
null-checks, it may not accurately reflect your original design intent:

XML

Prior to .NET 6, new projects do not include the Nullable element. Beginning with .NET
6, new projects include the <Nullable>enable</Nullable> element in the project file.

This survey application requires creating a number of classes:

A class that models the list of questions.
A class that models a list of people contacted for the survey.
A class that models the answers from a person that took the survey.

These types will make use of both nullable and non-nullable reference types to express
which members are required and which members are optional. Nullable reference types
communicate that design intent clearly:

The questions that are part of the survey can never be null: It makes no sense to
ask an empty question.
The respondents can never be null. You'll want to track people you contacted, even
respondents that declined to participate.
Any response to a question may be null. Respondents can decline to answer some
or all questions.

If you've programmed in C#, you may be so accustomed to reference types that allow
null values that you may have missed other opportunities to declare non-nullable

Create the application and enable nullable
reference types

<Nullable>enable</Nullable>

Design the types for the application

instances:

The collection of questions should be non-nullable.
The collection of respondents should be non-nullable.

As you write the code, you'll see that a non-nullable reference type as the default for
references avoids common mistakes that could lead to NullReferenceExceptions. One
lesson from this tutorial is that you made decisions about which variables could or could
not be null . The language didn't provide syntax to express those decisions. Now it
does.

The app you'll build does the following steps:

1. Creates a survey and adds questions to it.
2. Creates a pseudo-random set of respondents for the survey.
3. Contacts respondents until the completed survey size reaches the goal number.
4. Writes out important statistics on the survey responses.

The first code you'll write creates the survey. You'll write classes to model a survey
question and a survey run. Your survey has three types of questions, distinguished by
the format of the answer: Yes/No answers, number answers, and text answers. Create a
public SurveyQuestion class:

C#

The compiler interprets every reference type variable declaration as a non-nullable
reference type for code in an enabled nullable annotation context. You can see your first
warning by adding properties for the question text and the type of question, as shown
in the following code:

C#

Build the survey with nullable and non-nullable
reference types

namespace NullableIntroduction
{
 public class SurveyQuestion
 {
 }
}

namespace NullableIntroduction
{

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

Because you haven't initialized QuestionText , the compiler issues a warning that a non-
nullable property hasn't been initialized. Your design requires the question text to be
non-null, so you add a constructor to initialize it and the QuestionType value as well. The
finished class definition looks like the following code:

C#

Adding the constructor removes the warning. The constructor argument is also a non-
nullable reference type, so the compiler doesn't issue any warnings.

Next, create a public class named SurveyRun . This class contains a list of
SurveyQuestion objects and methods to add questions to the survey, as shown in the
following code:

C#

 public enum QuestionType
 {
 YesNo,
 Number,
 Text
 }

 public class SurveyQuestion
 {
 public string QuestionText { get; }
 public QuestionType TypeOfQuestion { get; }
 }
}

namespace NullableIntroduction;

public enum QuestionType
{
 YesNo,
 Number,
 Text
}

public class SurveyQuestion
{
 public string QuestionText { get; }
 public QuestionType TypeOfQuestion { get; }

 public SurveyQuestion(QuestionType typeOfQuestion, string text) =>
 (TypeOfQuestion, QuestionText) = (typeOfQuestion, text);
}

As before, you must initialize the list object to a non-null value or the compiler issues a
warning. There are no null checks in the second overload of AddQuestion because they
aren't needed: You've declared that variable to be non-nullable. Its value can't be null .

Switch to Program.cs in your editor and replace the contents of Main with the following
lines of code:

C#

Because the entire project is in an enabled nullable annotation context, you'll get
warnings when you pass null to any method expecting a non-nullable reference type.
Try it by adding the following line to Main :

C#

using System.Collections.Generic;

namespace NullableIntroduction
{
 public class SurveyRun
 {
 private List<SurveyQuestion> surveyQuestions = new
List<SurveyQuestion>();

 public void AddQuestion(QuestionType type, string question) =>
 AddQuestion(new SurveyQuestion(type, question));
 public void AddQuestion(SurveyQuestion surveyQuestion) =>
surveyQuestions.Add(surveyQuestion);
 }
}

var surveyRun = new SurveyRun();
surveyRun.AddQuestion(QuestionType.YesNo, "Has your code ever thrown a
NullReferenceException?");
surveyRun.AddQuestion(new SurveyQuestion(QuestionType.Number, "How many
times (to the nearest 100) has that happened?"));
surveyRun.AddQuestion(QuestionType.Text, "What is your favorite color?");

surveyRun.AddQuestion(QuestionType.Text, default);

Create respondents and get answers to the
survey

Next, write the code that generates answers to the survey. This process involves several
small tasks:

1. Build a method that generates respondent objects. These represent people asked
to fill out the survey.

2. Build logic to simulate asking the questions to a respondent and collecting
answers or noting that a respondent didn't answer.

3. Repeat until enough respondents have answered the survey.

You'll need a class to represent a survey response, so add that now. Enable nullable
support. Add an Id property and a constructor that initializes it, as shown in the
following code:

C#

Next, add a static method to create new participants by generating a random ID:

C#

The main responsibility of this class is to generate the responses for a participant to the
questions in the survey. This responsibility has a few steps:

1. Ask for participation in the survey. If the person doesn't consent, return a missing
(or null) response.

2. Ask each question and record the answer. Each answer may also be missing (or
null).

Add the following code to your SurveyResponse class:

C#

namespace NullableIntroduction
{
 public class SurveyResponse
 {
 public int Id { get; }

 public SurveyResponse(int id) => Id = id;
 }
}

private static readonly Random randomGenerator = new Random();
public static SurveyResponse GetRandomId() => new
SurveyResponse(randomGenerator.Next());

The storage for the survey answers is a Dictionary<int, string>? , indicating that it may
be null. You're using the new language feature to declare your design intent, both to the
compiler and to anyone reading your code later. If you ever dereference

private Dictionary<int, string>? surveyResponses;
public bool AnswerSurvey(IEnumerable<SurveyQuestion> questions)
{
 if (ConsentToSurvey())
 {
 surveyResponses = new Dictionary<int, string>();
 int index = 0;
 foreach (var question in questions)
 {
 var answer = GenerateAnswer(question);
 if (answer != null)
 {
 surveyResponses.Add(index, answer);
 }
 index++;
 }
 }
 return surveyResponses != null;
}

private bool ConsentToSurvey() => randomGenerator.Next(0, 2) == 1;

private string? GenerateAnswer(SurveyQuestion question)
{
 switch (question.TypeOfQuestion)
 {
 case QuestionType.YesNo:
 int n = randomGenerator.Next(-1, 2);
 return (n == -1) ? default : (n == 0) ? "No" : "Yes";
 case QuestionType.Number:
 n = randomGenerator.Next(-30, 101);
 return (n < 0) ? default : n.ToString();
 case QuestionType.Text:
 default:
 switch (randomGenerator.Next(0, 5))
 {
 case 0:
 return default;
 case 1:
 return "Red";
 case 2:
 return "Green";
 case 3:
 return "Blue";
 }
 return "Red. No, Green. Wait.. Blue... AAARGGGGGHHH!";
 }
}

surveyResponses without checking for the null value first, you'll get a compiler warning.
You don't get a warning in the AnswerSurvey method because the compiler can
determine the surveyResponses variable was set to a non-null value above.

Using null for missing answers highlights a key point for working with nullable
reference types: your goal isn't to remove all null values from your program. Rather,
your goal is to ensure that the code you write expresses the intent of your design.
Missing values are a necessary concept to express in your code. The null value is a clear
way to express those missing values. Trying to remove all null values only leads to
defining some other way to express those missing values without null .

Next, you need to write the PerformSurvey method in the SurveyRun class. Add the
following code in the SurveyRun class:

C#

Here again, your choice of a nullable List<SurveyResponse>? indicates the response may
be null. That indicates the survey hasn't been given to any respondents yet. Notice that
respondents are added until enough have consented.

The last step to run the survey is to add a call to perform the survey at the end of the
Main method:

C#

private List<SurveyResponse>? respondents;
public void PerformSurvey(int numberOfRespondents)
{
 int respondentsConsenting = 0;
 respondents = new List<SurveyResponse>();
 while (respondentsConsenting < numberOfRespondents)
 {
 var respondent = SurveyResponse.GetRandomId();
 if (respondent.AnswerSurvey(surveyQuestions))
 respondentsConsenting++;
 respondents.Add(respondent);
 }
}

surveyRun.PerformSurvey(50);

Examine survey responses

The last step is to display survey results. You'll add code to many of the classes you've
written. This code demonstrates the value of distinguishing nullable and non-nullable
reference types. Start by adding the following two expression-bodied members to the
SurveyResponse class:

C#

Because surveyResponses is a nullable reference type, null checks are necessary before
de-referencing it. The Answer method returns a non-nullable string, so we have to cover
the case of a missing answer by using the null-coalescing operator.

Next, add these three expression-bodied members to the SurveyRun class:

C#

The AllParticipants member must take into account that the respondents variable
might be null, but the return value can't be null. If you change that expression by
removing the ?? and the empty sequence that follows, the compiler warns you the
method might return null and its return signature returns a non-nullable type.

Finally, add the following loop at the bottom of the Main method:

C#

public bool AnsweredSurvey => surveyResponses != null;
public string Answer(int index) => surveyResponses?.GetValueOrDefault(index)
?? "No answer";

public IEnumerable<SurveyResponse> AllParticipants => (respondents ??
Enumerable.Empty<SurveyResponse>());
public ICollection<SurveyQuestion> Questions => surveyQuestions;
public SurveyQuestion GetQuestion(int index) => surveyQuestions[index];

foreach (var participant in surveyRun.AllParticipants)
{
 Console.WriteLine($"Participant: {participant.Id}:");
 if (participant.AnsweredSurvey)
 {
 for (int i = 0; i < surveyRun.Questions.Count; i++)
 {
 var answer = participant.Answer(i);
 Console.WriteLine($"\t{surveyRun.GetQuestion(i).QuestionText} :
{answer}");
 }
 }
 else
 {

You don't need any null checks in this code because you've designed the underlying
interfaces so that they all return non-nullable reference types.

You can get the code for the finished tutorial from our samples repository in the
csharp/NullableIntroduction folder.

Experiment by changing the type declarations between nullable and non-nullable
reference types. See how that generates different warnings to ensure you don't
accidentally dereference a null .

Learn how to use nullable reference type when using Entity Framework:

 Console.WriteLine("\tNo responses");
 }
}

Get the code

Next steps

Entity Framework Core Fundamentals: Working with Nullable Reference Types

https://github.com/dotnet/samples
https://github.com/dotnet/samples/tree/main/csharp/NullableIntroduction
https://learn.microsoft.com/en-us/ef/core/miscellaneous/nullable-reference-types

Tutorial: Generate and consume async
streams using C# and .NET
Article • 2022-12-06 • 9 minutes to read

Async streams model a streaming source of data. Data streams often retrieve or
generate elements asynchronously. They provide a natural programming model for
asynchronous streaming data sources.

In this tutorial, you'll learn how to:

You'll need to set up your machine to run .NET, including the C# compiler. The C#
compiler is available with Visual Studio 2022 or the .NET SDK .

You'll need to create a GitHub access token so that you can access the GitHub
GraphQL endpoint. Select the following permissions for your GitHub Access Token:

repo:status
public_repo

Save the access token in a safe place so you can use it to gain access to the GitHub API
endpoint.

This tutorial assumes you're familiar with C# and .NET, including either Visual Studio or
the .NET CLI.

Create a data source that generates a sequence of data elements asynchronously.＂

Consume that data source asynchronously.＂

Support cancellation and captured contexts for asynchronous streams.＂

Recognize when the new interface and data source are preferred to earlier
synchronous data sequences.

＂

Prerequisites

２ Warning

Keep your personal access token secure. Any software with your personal access
token could make GitHub API calls using your access rights.

Run the starter application

https://visualstudio.microsoft.com/downloads
https://dotnet.microsoft.com/download
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/#creating-a-token

You can get the code for the starter application used in this tutorial from the
dotnet/docs repository in the csharp/whats-new/tutorials folder.

The starter application is a console application that uses the GitHub GraphQL
interface to retrieve recent issues written in the dotnet/docs repository. Start by
looking at the following code for the starter app Main method:

C#

static async Task Main(string[] args)
{
 //Follow these steps to create a GitHub Access Token
 // https://help.github.com/articles/creating-a-personal-access-token-
for-the-command-line/#creating-a-token
 //Select the following permissions for your GitHub Access Token:
 // - repo:status
 // - public_repo
 // Replace the 3rd parameter to the following code with your GitHub
access token.
 var key = GetEnvVariable("GitHubKey",
 "You must store your GitHub key in the 'GitHubKey' environment
variable",
 "");

 var client = new GitHubClient(new
Octokit.ProductHeaderValue("IssueQueryDemo"))
 {
 Credentials = new Octokit.Credentials(key)
 };

 var progressReporter = new progressStatus((num) =>
 {
 Console.WriteLine($"Received {num} issues in total");
 });
 CancellationTokenSource cancellationSource = new
CancellationTokenSource();

 try
 {
 var results = await RunPagedQueryAsync(client, PagedIssueQuery,
"docs",
 cancellationSource.Token, progressReporter);
 foreach(var issue in results)
 Console.WriteLine(issue);
 }
 catch (OperationCanceledException)
 {
 Console.WriteLine("Work has been cancelled");
 }
}

https://github.com/dotnet/docs
https://github.com/dotnet/docs/tree/main/docs/csharp/tutorials/snippets/generate-consume-asynchronous-streams/start
https://developer.github.com/v4/
https://github.com/dotnet/docs

You can either set a GitHubKey environment variable to your personal access token, or
you can replace the last argument in the call to GetEnvVariable with your personal
access token. Don't put your access code in source code if you'll be sharing the source
with others. Never upload access codes to a shared source repository.

After creating the GitHub client, the code in Main creates a progress reporting object
and a cancellation token. Once those objects are created, Main calls RunPagedQueryAsync
to retrieve the most recent 250 created issues. After that task has finished, the results
are displayed.

When you run the starter application, you can make some important observations about
how this application runs. You'll see progress reported for each page returned from
GitHub. You can observe a noticeable pause before GitHub returns each new page of
issues. Finally, the issues are displayed only after all 10 pages have been retrieved from
GitHub.

The implementation reveals why you observed the behavior discussed in the previous
section. Examine the code for RunPagedQueryAsync :

C#

Examine the implementation

private static async Task<JArray> RunPagedQueryAsync(GitHubClient client,
string queryText, string repoName, CancellationToken cancel, IProgress<int>
progress)
{
 var issueAndPRQuery = new GraphQLRequest
 {
 Query = queryText
 };
 issueAndPRQuery.Variables["repo_name"] = repoName;

 JArray finalResults = new JArray();
 bool hasMorePages = true;
 int pagesReturned = 0;
 int issuesReturned = 0;

 // Stop with 10 pages, because these are large repos:
 while (hasMorePages && (pagesReturned++ < 10))
 {
 var postBody = issueAndPRQuery.ToJsonText();
 var response = await client.Connection.Post<string>(new
Uri("https://api.github.com/graphql"),
 postBody, "application/json", "application/json");

 JObject results =

Let's concentrate on the paging algorithm and async structure of the preceding code.
(You can consult the GitHub GraphQL documentation for details on the GitHub
GraphQL API.) The RunPagedQueryAsync method enumerates the issues from most recent
to oldest. It requests 25 issues per page and examines the pageInfo structure of the
response to continue with the previous page. That follows GraphQL's standard paging
support for multi-page responses. The response includes a pageInfo object that
includes a hasPreviousPages value and a startCursor value used to request the
previous page. The issues are in the nodes array. The RunPagedQueryAsync method
appends these nodes to an array that contains all the results from all pages.

After retrieving and restoring a page of results, RunPagedQueryAsync reports progress
and checks for cancellation. If cancellation has been requested, RunPagedQueryAsync
throws an OperationCanceledException.

There are several elements in this code that can be improved. Most importantly,
RunPagedQueryAsync must allocate storage for all the issues returned. This sample stops
at 250 issues because retrieving all open issues would require much more memory to
store all the retrieved issues. The protocols for supporting progress reports and
cancellation make the algorithm harder to understand on its first reading. More types
and APIs are involved. You must trace the communications through the
CancellationTokenSource and its associated CancellationToken to understand where
cancellation is requested and where it's granted.

JObject.Parse(response.HttpResponse.Body.ToString()!);

 int totalCount = (int)issues(results)["totalCount"]!;
 hasMorePages = (bool)pageInfo(results)["hasPreviousPage"]!;
 issueAndPRQuery.Variables["start_cursor"] = pageInfo(results)
["startCursor"]!.ToString();
 issuesReturned += issues(results)["nodes"]!.Count();
 finalResults.Merge(issues(results)["nodes"]!);
 progress?.Report(issuesReturned);
 cancel.ThrowIfCancellationRequested();
 }
 return finalResults;

 JObject issues(JObject result) => (JObject)result["data"]!
["repository"]!["issues"]!;
 JObject pageInfo(JObject result) => (JObject)issues(result)
["pageInfo"]!;
}

Async streams provide a better way

https://developer.github.com/v4/guides/
https://learn.microsoft.com/en-us/dotnet/api/system.operationcanceledexception
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

Async streams and the associated language support address all those concerns. The
code that generates the sequence can now use yield return to return elements in a
method that was declared with the async modifier. You can consume an async stream
using an await foreach loop just as you consume any sequence using a foreach loop.

These new language features depend on three new interfaces added to .NET Standard
2.1 and implemented in .NET Core 3.0:

System.Collections.Generic.IAsyncEnumerable<T>
System.Collections.Generic.IAsyncEnumerator<T>
System.IAsyncDisposable

These three interfaces should be familiar to most C# developers. They behave in a
manner similar to their synchronous counterparts:

System.Collections.Generic.IEnumerable<T>
System.Collections.Generic.IEnumerator<T>
System.IDisposable

One type that may be unfamiliar is System.Threading.Tasks.ValueTask. The ValueTask
struct provides a similar API to the System.Threading.Tasks.Task class. ValueTask is used
in these interfaces for performance reasons.

Next, convert the RunPagedQueryAsync method to generate an async stream. First,
change the signature of RunPagedQueryAsync to return an IAsyncEnumerable<JToken> , and
remove the cancellation token and progress objects from the parameter list as shown in
the following code:

C#

The starter code processes each page as the page is retrieved, as shown in the following
code:

C#

Convert to async streams

private static async IAsyncEnumerable<JToken>
RunPagedQueryAsync(GitHubClient client,
 string queryText, string repoName)

finalResults.Merge(issues(results)["nodes"]!);
progress?.Report(issuesReturned);
cancel.ThrowIfCancellationRequested();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

Replace those three lines with the following code:

C#

You can also remove the declaration of finalResults earlier in this method and the
return statement that follows the loop you modified.

You've finished the changes to generate an async stream. The finished method should
resemble the following code:

C#

foreach (JObject issue in issues(results)["nodes"]!)
 yield return issue;

private static async IAsyncEnumerable<JToken>
RunPagedQueryAsync(GitHubClient client,
 string queryText, string repoName)
{
 var issueAndPRQuery = new GraphQLRequest
 {
 Query = queryText
 };
 issueAndPRQuery.Variables["repo_name"] = repoName;

 bool hasMorePages = true;
 int pagesReturned = 0;
 int issuesReturned = 0;

 // Stop with 10 pages, because these are large repos:
 while (hasMorePages && (pagesReturned++ < 10))
 {
 var postBody = issueAndPRQuery.ToJsonText();
 var response = await client.Connection.Post<string>(new
Uri("https://api.github.com/graphql"),
 postBody, "application/json", "application/json");

 JObject results =
JObject.Parse(response.HttpResponse.Body.ToString()!);

 int totalCount = (int)issues(results)["totalCount"]!;
 hasMorePages = (bool)pageInfo(results)["hasPreviousPage"]!;
 issueAndPRQuery.Variables["start_cursor"] = pageInfo(results)
["startCursor"]!.ToString();
 issuesReturned += issues(results)["nodes"]!.Count();

 foreach (JObject issue in issues(results)["nodes"]!)
 yield return issue;
 }

Next, you change the code that consumes the collection to consume the async stream.
Find the following code in Main that processes the collection of issues:

C#

Replace that code with the following await foreach loop:

C#

The new interface IAsyncEnumerator<T> derives from IAsyncDisposable. That means the
preceding loop will asynchronously dispose the stream when the loop finishes. You can
imagine the loop looks like the following code:

C#

 JObject issues(JObject result) => (JObject)result["data"]!
["repository"]!["issues"]!;
 JObject pageInfo(JObject result) => (JObject)issues(result)
["pageInfo"]!;
}

var progressReporter = new progressStatus((num) =>
{
 Console.WriteLine($"Received {num} issues in total");
});
CancellationTokenSource cancellationSource = new CancellationTokenSource();

try
{
 var results = await RunPagedQueryAsync(client, PagedIssueQuery, "docs",
 cancellationSource.Token, progressReporter);
 foreach(var issue in results)
 Console.WriteLine(issue);
}
catch (OperationCanceledException)
{
 Console.WriteLine("Work has been cancelled");
}

int num = 0;
await foreach (var issue in RunPagedQueryAsync(client, PagedIssueQuery,
"docs"))
{
 Console.WriteLine(issue);
 Console.WriteLine($"Received {++num} issues in total");
}

int num = 0;
var enumerator = RunPagedQueryAsync(client, PagedIssueQuery,

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable

By default, stream elements are processed in the captured context. If you want to
disable capturing of the context, use the
TaskAsyncEnumerableExtensions.ConfigureAwait extension method. For more
information about synchronization contexts and capturing the current context, see the
article on consuming the Task-based asynchronous pattern.

Async streams support cancellation using the same protocol as other async methods.
You would modify the signature for the async iterator method as follows to support
cancellation:

C#

"docs").GetEnumeratorAsync();
try
{
 while (await enumerator.MoveNextAsync())
 {
 var issue = enumerator.Current;
 Console.WriteLine(issue);
 Console.WriteLine($"Received {++num} issues in total");
 }
} finally
{
 if (enumerator != null)
 await enumerator.DisposeAsync();
}

private static async IAsyncEnumerable<JToken>
RunPagedQueryAsync(GitHubClient client,
 string queryText, string repoName, [EnumeratorCancellation]
CancellationToken cancellationToken = default)
{
 var issueAndPRQuery = new GraphQLRequest
 {
 Query = queryText
 };
 issueAndPRQuery.Variables["repo_name"] = repoName;

 bool hasMorePages = true;
 int pagesReturned = 0;
 int issuesReturned = 0;

 // Stop with 10 pages, because these are large repos:
 while (hasMorePages && (pagesReturned++ < 10))
 {
 var postBody = issueAndPRQuery.ToJsonText();
 var response = await client.Connection.Post<string>(new
Uri("https://api.github.com/graphql"),
 postBody, "application/json", "application/json");

 JObject results =

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskasyncenumerableextensions.configureawait
https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/consuming-the-task-based-asynchronous-pattern

The System.Runtime.CompilerServices.EnumeratorCancellationAttribute attribute causes
the compiler to generate code for the IAsyncEnumerator<T> that makes the token
passed to GetAsyncEnumerator visible to the body of the async iterator as that argument.
Inside runQueryAsync , you could examine the state of the token and cancel further work
if requested.

You use another extension method, WithCancellation, to pass the cancellation token to
the async stream. You would modify the loop enumerating the issues as follows:

C#

You can get the code for the finished tutorial from the dotnet/docs repository in the
csharp/whats-new/tutorials folder.

JObject.Parse(response.HttpResponse.Body.ToString()!);

 int totalCount = (int)issues(results)["totalCount"]!;
 hasMorePages = (bool)pageInfo(results)["hasPreviousPage"]!;
 issueAndPRQuery.Variables["start_cursor"] = pageInfo(results)
["startCursor"]!.ToString();
 issuesReturned += issues(results)["nodes"]!.Count();

 foreach (JObject issue in issues(results)["nodes"]!)
 yield return issue;
 }

 JObject issues(JObject result) => (JObject)result["data"]!
["repository"]!["issues"]!;
 JObject pageInfo(JObject result) => (JObject)issues(result)
["pageInfo"]!;
}

private static async Task EnumerateWithCancellation(GitHubClient client)
{
 int num = 0;
 var cancellation = new CancellationTokenSource();
 await foreach (var issue in RunPagedQueryAsync(client, PagedIssueQuery,
"docs")
 .WithCancellation(cancellation.Token))
 {
 Console.WriteLine(issue);
 Console.WriteLine($"Received {++num} issues in total");
 }
}

Run the finished application

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.enumeratorcancellationattribute
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskasyncenumerableextensions.withcancellation
https://github.com/dotnet/docs
https://github.com/dotnet/docs/tree/main/docs/csharp/tutorials/snippets/generate-consume-asynchronous-streams/finished

Run the application again. Contrast its behavior with the behavior of the starter
application. The first page of results is enumerated as soon as it's available. There's an
observable pause as each new page is requested and retrieved, then the next page's
results are quickly enumerated. The try / catch block isn't needed to handle
cancellation: the caller can stop enumerating the collection. Progress is clearly reported
because the async stream generates results as each page is downloaded. The status for
each issue returned is seamlessly included in the await foreach loop. You don't need a
callback object to track progress.

You can see improvements in memory use by examining the code. You no longer need
to allocate a collection to store all the results before they're enumerated. The caller can
determine how to consume the results and if a storage collection is needed.

Run both the starter and finished applications and you can observe the differences
between the implementations for yourself. You can delete the GitHub access token you
created when you started this tutorial after you've finished. If an attacker gained access
to that token, they could access GitHub APIs using your credentials.

Use string interpolation to construct
formatted strings
Article • 2021-09-15 • 7 minutes to read

This tutorial teaches you how to use C# string interpolation to insert values into a single
result string. You write C# code and see the results of compiling and running it. The
tutorial contains a series of lessons that show you how to insert values into a string and
format those values in different ways.

This tutorial expects that you have a machine you can use for development. The .NET
tutorial Hello World in 10 minutes has instructions for setting up your local
development environment on Windows, Linux, or macOS. You can also complete the
interactive version of this tutorial in your browser.

Create a directory named interpolated. Make it the current directory and run the
following command from a console window:

.NET CLI

This command creates a new .NET Core console application in the current directory.

Open Program.cs in your favorite editor, and replace the line Console.WriteLine("Hello
World!"); with the following code, where you replace <name> with your name:

C#

Try this code by typing dotnet run in your console window. When you run the program,
it displays a single string that includes your name in the greeting. The string included in
the WriteLine method call is an interpolated string expression. It's a kind of template that
lets you construct a single string (called the result string) from a string that includes
embedded code. Interpolated strings are particularly useful for inserting values into a
string or concatenating (joining together) strings.

This simple example contains the two elements that every interpolated string must have:

Create an interpolated string

dotnet new console

var name = "<name>";
Console.WriteLine($"Hello, {name}. It's a pleasure to meet you!");

https://dotnet.microsoft.com/learn/dotnet/hello-world-tutorial/intro
https://learn.microsoft.com/en-ca/dotnet/csharp/tutorials/exploration/interpolated-strings
https://learn.microsoft.com/en-us/dotnet/api/system.console.writeline

A string literal that begins with the $ character before its opening quotation mark
character. There can't be any spaces between the $ symbol and the quotation
mark character. (If you'd like to see what happens if you include one, insert a space
after the $ character, save the file, and run the program again by typing dotnet
run in the console window. The C# compiler displays an error message, "error
CS1056: Unexpected character '$'".)

One or more interpolation expressions. An interpolation expression is indicated by
an opening and closing brace ({ and }). You can put any C# expression that
returns a value (including null) inside the braces.

Let's try a few more string interpolation examples with some other data types.

In the previous section, you used string interpolation to insert one string inside of
another. The result of an interpolation expression can be of any data type, though. Let's
include values of various data types in an interpolated string.

In the following example, we first define a class data type Vegetable that has a Name
property and a ToString method, which overrides the behavior of the Object.ToString()
method. The public access modifier makes that method available to any client code to
get the string representation of a Vegetable instance. In the example the
Vegetable.ToString method returns the value of the Name property that is initialized at
the Vegetable constructor:

C#

Then we create an instance of the Vegetable class named item by using the new
operator and providing a name for the constructor Vegetable :

C#

Finally, we include the item variable into an interpolated string that also contains a
DateTime value, a Decimal value, and a Unit enumeration value. Replace all of the C#
code in your editor with the following code, and then use the dotnet run command to
run it:

Include different data types

public Vegetable(string name) => Name = name;

var item = new Vegetable("eggplant");

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring#system-object-tostring
https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-us/dotnet/api/system.decimal

C#

Note that the interpolation expression item in the interpolated string resolves to the
text "eggplant" in the result string. That's because, when the type of the expression
result is not a string, the result is resolved to a string in the following way:

If the interpolation expression evaluates to null , an empty string ("", or
String.Empty) is used.

If the interpolation expression doesn't evaluate to null , typically the ToString
method of the result type is called. You can test this by updating the
implementation of the Vegetable.ToString method. You might not even need to
implement the ToString method since every type has some implementation of this
method. To test this, comment out the definition of the Vegetable.ToString
method in the example (to do that, put a comment symbol, // , in front of it). In
the output, the string "eggplant" is replaced by the fully qualified type name
("Vegetable" in this example), which is the default behavior of the Object.ToString()
method. The default behavior of the ToString method for an enumeration value is
to return the string representation of the value.

using System;

public class Vegetable
{
 public Vegetable(string name) => Name = name;

 public string Name { get; }

 public override string ToString() => Name;
}

public class Program
{
 public enum Unit { item, kilogram, gram, dozen };

 public static void Main()
 {
 var item = new Vegetable("eggplant");
 var date = DateTime.Now;
 var price = 1.99m;
 var unit = Unit.item;
 Console.WriteLine($"On {date}, the price of {item} was {price} per
{unit}.");
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.string.empty
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring#system-object-tostring

In the output from this example, the date is too precise (the price of eggplant doesn't
change every second), and the price value doesn't indicate a unit of currency. In the next
section, you'll learn how to fix those issues by controlling the format of string
representations of the expression results.

In the previous section, two poorly formatted strings were inserted into the result string.
One was a date and time value for which only the date was appropriate. The second was
a price that didn't indicate its unit of currency. Both issues are easy to address. String
interpolation lets you specify format strings that control the formatting of particular
types. Modify the call to Console.WriteLine from the previous example to include the
format strings for the date and price expressions as shown in the following line:

C#

You specify a format string by following the interpolation expression with a colon (":")
and the format string. "d" is a standard date and time format string that represents the
short date format. "C2" is a standard numeric format string that represents a number as
a currency value with two digits after the decimal point.

A number of types in the .NET libraries support a predefined set of format strings. These
include all the numeric types and the date and time types. For a complete list of types
that support format strings, see Format Strings and .NET Class Library Types in the
Formatting Types in .NET article.

Try modifying the format strings in your text editor and, each time you make a change,
rerun the program to see how the changes affect the formatting of the date and time
and the numeric value. Change the "d" in {date:d} to "t" (to display the short time
format), "y" (to display the year and month), and "yyyy" (to display the year as a four-
digit number). Change the "C2" in {price:C2} to "e" (for exponential notation) and "F3"
(for a numeric value with three digits after the decimal point).

In addition to controlling formatting, you can also control the field width and alignment
of the formatted strings that are included in the result string. In the next section, you'll
learn how to do this.

Control the formatting of interpolation
expressions

Console.WriteLine($"On {date:d}, the price of {item} was {price:C2} per
{unit}.");

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-date-and-time-format-strings#the-short-date-d-format-specifier
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-numeric-format-strings#currency-format-specifier-c
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types#format-strings-and-net-types
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types

Ordinarily, when the result of an interpolation expression is formatted to string, that
string is included in a result string without leading or trailing spaces. Particularly when
you work with a set of data, being able to control a field width and text alignment helps
to produce a more readable output. To see this, replace all the code in your text editor
with the following code, then type dotnet run to execute the program:

C#

The names of authors are left-aligned, and the titles they wrote are right-aligned. You
specify the alignment by adding a comma (",") after an interpolation expression and
designating the minimum field width. If the specified value is a positive number, the
field is right-aligned. If it is a negative number, the field is left-aligned.

Try removing the negative signs from the {"Author",-25} and {title.Key,-25} code
and run the example again, as the following code does:

C#

Control the field width and alignment of
interpolation expressions

using System;
using System.Collections.Generic;

public class Example
{
 public static void Main()
 {
 var titles = new Dictionary<string, string>()
 {
 ["Doyle, Arthur Conan"] = "Hound of the Baskervilles, The",
 ["London, Jack"] = "Call of the Wild, The",
 ["Shakespeare, William"] = "Tempest, The"
 };

 Console.WriteLine("Author and Title List");
 Console.WriteLine();
 Console.WriteLine($"|{"Author",-25}|{"Title",30}|");
 foreach (var title in titles)
 Console.WriteLine($"|{title.Key,-25}|{title.Value,30}|");
 }
}

Console.WriteLine($"|{"Author",25}|{"Title",30}|");
foreach (var title in titles)
 Console.WriteLine($"|{title.Key,25}|{title.Value,30}|");

This time, the author information is right-aligned.

You can combine an alignment specifier and a format string for a single interpolation
expression. To do that, specify the alignment first, followed by a colon and the format
string. Replace all of the code inside the Main method with the following code, which
displays three formatted strings with defined field widths. Then run the program by
entering the dotnet run command.

C#

The output looks something like the following:

Console

You've completed the string interpolation tutorial.

For more information, see the String interpolation topic and the String interpolation in
C# tutorial.

Console.WriteLine($"[{DateTime.Now,-20:d}] Hour [{DateTime.Now,-10:HH}]
[{1063.342,15:N2}] feet");

[04/14/2018] Hour [16] [1,063.34] feet

String interpolation in C#
Article • 2022-09-29 • 5 minutes to read

This tutorial shows you how to use string interpolation to format and include expression
results in a result string. The examples assume that you are familiar with basic C#
concepts and .NET type formatting. If you are new to string interpolation or .NET type
formatting, check out the interactive string interpolation tutorial first. For more
information about formatting types in .NET, see the Formatting Types in .NET topic.

The string interpolation feature is built on top of the composite formatting feature and
provides a more readable and convenient syntax to include formatted expression results
in a result string.

To identify a string literal as an interpolated string, prepend it with the $ symbol. You
can embed any valid C# expression that returns a value in an interpolated string. In the
following example, as soon as an expression is evaluated, its result is converted into a
string and included in a result string:

C#

７ Note

The C# examples in this article run in the Try.NET inline code runner and
playground. Select the Run button to run an example in an interactive window.
Once you execute the code, you can modify it and run the modified code by
selecting Run again. The modified code either runs in the interactive window or, if
compilation fails, the interactive window displays all C# compiler error messages.

Introduction

double a = 3;
double b = 4;
Console.WriteLine($"Area of the right triangle with legs of {a} and {b} is
{0.5 * a * b}");
Console.WriteLine($"Length of the hypotenuse of the right triangle with legs
of {a} and {b} is {CalculateHypotenuse(a, b)}");

double CalculateHypotenuse(double leg1, double leg2) => Math.Sqrt(leg1 *
leg1 + leg2 * leg2);

// Expected output:
// Area of the right triangle with legs of 3 and 4 is 6
// Length of the hypotenuse of the right triangle with legs of 3 and 4 is 5

https://learn.microsoft.com/en-ca/dotnet/csharp/tutorials/exploration/interpolated-strings
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting
https://dotnet.microsoft.com/platform/try-dotnet

As the example shows, you include an expression in an interpolated string by enclosing
it with braces:

C#

Interpolated strings support all the capabilities of the string composite formatting
feature. That makes them a more readable alternative to the use of the String.Format
method.

You specify a format string that is supported by the type of the expression result by
following the interpolation expression with a colon (":") and the format string:

C#

The following example shows how to specify standard and custom format strings for
expressions that produce date and time or numeric results:

C#

For more information, see the Format String Component section of the Composite
Formatting topic. That section provides links to the topics that describe standard and
custom format strings supported by .NET base types.

{<interpolationExpression>}

How to specify a format string for an
interpolation expression

{<interpolationExpression>:<formatString>}

var date = new DateTime(1731, 11, 25);
Console.WriteLine($"On {date:dddd, MMMM dd, yyyy} Leonhard Euler introduced
the letter e to denote {Math.E:F5} in a letter to Christian Goldbach.");

// Expected output:
// On Sunday, November 25, 1731 Leonhard Euler introduced the letter e to
denote 2.71828 in a letter to Christian Goldbach.

How to control the field width and alignment
of the formatted interpolation expression

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting#format-string-component
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting

You specify the minimum field width and the alignment of the formatted expression
result by following the interpolation expression with a comma (",") and the constant
expression:

C#

If the alignment value is positive, the formatted expression result is right-aligned; if
negative, it's left-aligned.

If you need to specify both alignment and a format string, start with the alignment
component:

C#

The following example shows how to specify alignment and uses pipe characters ("|") to
delimit text fields:

C#

As the example output shows, if the length of the formatted expression result exceeds
specified field width, the alignment value is ignored.

For more information, see the Alignment Component section of the Composite
Formatting topic.

{<interpolationExpression>,<alignment>}

{<interpolationExpression>,<alignment>:<formatString>}

const int NameAlignment = -9;
const int ValueAlignment = 7;

double a = 3;
double b = 4;
Console.WriteLine($"Three classical Pythagorean means of {a} and {b}:");
Console.WriteLine($"|{"Arithmetic",NameAlignment}|{0.5 * (a +
b),ValueAlignment:F3}|");
Console.WriteLine($"|{"Geometric",NameAlignment}|{Math.Sqrt(a *
b),ValueAlignment:F3}|");
Console.WriteLine($"|{"Harmonic",NameAlignment}|{2 / (1 / a + 1 /
b),ValueAlignment:F3}|");

// Expected output:
// Three classical Pythagorean means of 3 and 4:
// |Arithmetic| 3.500|
// |Geometric| 3.464|
// |Harmonic | 3.429|

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting#alignment-component
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting

Interpolated strings support all escape sequences that can be used in ordinary string
literals. For more information, see String escape sequences.

To interpret escape sequences literally, use a verbatim string literal. An interpolated
verbatim string starts with the $ character followed by the @ character. You can use the
$ and @ tokens in any order: both $@"..." and @$"..." are valid interpolated verbatim
strings.

To include a brace, "{" or "}", in a result string, use two braces, "{{" or "}}". For more
information, see the Escaping Braces section of the Composite Formatting topic.

The following example shows how to include braces in a result string and construct a
verbatim interpolated string:

C#

As the colon (":") has special meaning in an item with an interpolation expression, in
order to use a conditional operator in an expression, enclose it in parentheses, as the
following example shows:

C#

How to use escape sequences in an
interpolated string

var xs = new int[] { 1, 2, 7, 9 };
var ys = new int[] { 7, 9, 12 };
Console.WriteLine($"Find the intersection of the {{{string.Join(", ",xs)}}}
and {{{string.Join(", ",ys)}}} sets.");

var userName = "Jane";
var stringWithEscapes = $"C:\\Users\\{userName}\\Documents";
var verbatimInterpolated = $@"C:\Users\{userName}\Documents";
Console.WriteLine(stringWithEscapes);
Console.WriteLine(verbatimInterpolated);

// Expected output:
// Find the intersection of the {1, 2, 7, 9} and {7, 9, 12} sets.
// C:\Users\Jane\Documents
// C:\Users\Jane\Documents

How to use a ternary conditional operator ?:
in an interpolation expression

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting#escaping-braces
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting

By default, an interpolated string uses the current culture defined by the
CultureInfo.CurrentCulture property for all formatting operations. Use implicit
conversion of an interpolated string to a System.FormattableString instance and call its
ToString(IFormatProvider) method to create a culture-specific result string. The following
example shows how to do that:

C#

As the example shows, you can use one FormattableString instance to generate multiple
result strings for various cultures.

var rand = new Random();
for (int i = 0; i < 7; i++)
{
 Console.WriteLine($"Coin flip: {(rand.NextDouble() < 0.5 ? "heads" :
"tails")}");
}

How to create a culture-specific result string
with string interpolation

var cultures = new System.Globalization.CultureInfo[]
{
 System.Globalization.CultureInfo.GetCultureInfo("en-US"),
 System.Globalization.CultureInfo.GetCultureInfo("en-GB"),
 System.Globalization.CultureInfo.GetCultureInfo("nl-NL"),
 System.Globalization.CultureInfo.InvariantCulture
};

var date = DateTime.Now;
var number = 31_415_926.536;
FormattableString message = $"{date,20}{number,20:N3}";
foreach (var culture in cultures)
{
 var cultureSpecificMessage = message.ToString(culture);
 Console.WriteLine($"{culture.Name,-10}{cultureSpecificMessage}");
}

// Expected output is like:
// en-US 5/17/18 3:44:55 PM 31,415,926.536
// en-GB 17/05/2018 15:44:55 31,415,926.536
// nl-NL 17-05-18 15:44:55 31.415.926,536
// 05/17/2018 15:44:55 31,415,926.536

https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture#system-globalization-cultureinfo-currentculture
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.tostring#system-formattablestring-tostring(system-iformatprovider)
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring

Along with the FormattableString.ToString(IFormatProvider) method, you can use the
static FormattableString.Invariant method to resolve an interpolated string to a result
string for the InvariantCulture. The following example shows how to do that:

C#

This tutorial describes common scenarios of string interpolation usage. For more
information about string interpolation, see the String interpolation topic. For more
information about formatting types in .NET, see the Formatting Types in .NET and
Composite formatting topics.

String.Format
System.FormattableString
System.IFormattable
Strings

How to create a result string using the invariant
culture

string messageInInvariantCulture = FormattableString.Invariant($"Date and
time in invariant culture: {DateTime.Now}");
Console.WriteLine(messageInInvariantCulture);

// Expected output is like:
// Date and time in invariant culture: 05/17/2018 15:46:24

Conclusion

See also

https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.tostring#system-formattablestring-tostring(system-iformatprovider)
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.invariant
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.invariantculture#system-globalization-cultureinfo-invariantculture
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-us/dotnet/api/system.iformattable

Console app
Article • 2022-09-29 • 10 minutes to read

This tutorial teaches you a number of features in .NET and the C# language. You'll learn:

The basics of the .NET CLI
The structure of a C# Console Application
Console I/O
The basics of File I/O APIs in .NET
The basics of the Task-based Asynchronous Programming in .NET

You'll build an application that reads a text file, and echoes the contents of that text file
to the console. The output to the console is paced to match reading it aloud. You can
speed up or slow down the pace by pressing the '<' (less than) or '>' (greater than) keys.
You can run this application on Windows, Linux, macOS, or in a Docker container.

There are a lot of features in this tutorial. Let's build them one by one.

.NET 6 SDK .
A code editor.

The first step is to create a new application. Open a command prompt and create a new
directory for your application. Make that the current directory. Type the command
dotnet new console at the command prompt. This creates the starter files for a basic
"Hello World" application.

Before you start making modifications, let's run the simple Hello World application. After
creating the application, type dotnet run at the command prompt. This command runs
the NuGet package restore process, creates the application executable, and runs the
executable.

The simple Hello World application code is all in Program.cs. Open that file with your
favorite text editor. Replace the code in Program.cs with the following code:

C#

Prerequisites

Create the app

namespace TeleprompterConsole;

https://dotnet.microsoft.com/download/dotnet/6.0

At the top of the file, see a namespace statement. Like other Object Oriented languages
you may have used, C# uses namespaces to organize types. This Hello World program is
no different. You can see that the program is in the namespace with the name
TeleprompterConsole .

The first feature to add is the ability to read a text file and display all that text to the
console. First, let's add a text file. Copy the sampleQuotes.txt file from the GitHub
repository for this sample into your project directory. This will serve as the script for
your application. For information on how to download the sample app for this tutorial,
see the instructions in Samples and Tutorials.

Next, add the following method in your Program class (right below the Main method):

C#

This method is a special type of C# method called an iterator method. Iterator methods
return sequences that are evaluated lazily. That means each item in the sequence is
generated as it is requested by the code consuming the sequence. Iterator methods are
methods that contain one or more yield return statements. The object returned by the
ReadFrom method contains the code to generate each item in the sequence. In this
example, that involves reading the next line of text from the source file, and returning
that string. Each time the calling code requests the next item from the sequence, the

internal class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
}

Reading and Echoing the File

static IEnumerable<string> ReadFrom(string file)
{
 string? line;
 using (var reader = File.OpenText(file))
 {
 while ((line = reader.ReadLine()) != null)
 {
 yield return line;
 }
 }
}

https://github.com/dotnet/samples/raw/main/csharp/getting-started/console-teleprompter/sampleQuotes.txt
https://github.com/dotnet/samples/tree/main/csharp/getting-started/console-teleprompter
https://learn.microsoft.com/en-ca/dotnet/samples-and-tutorials/#view-and-download-samples

code reads the next line of text from the file and returns it. When the file is completely
read, the sequence indicates that there are no more items.

There are two C# syntax elements that may be new to you. The using statement in this
method manages resource cleanup. The variable that is initialized in the using
statement (reader , in this example) must implement the IDisposable interface. That
interface defines a single method, Dispose , that should be called when the resource
should be released. The compiler generates that call when execution reaches the closing
brace of the using statement. The compiler-generated code ensures that the resource is
released even if an exception is thrown from the code in the block defined by the using
statement.

The reader variable is defined using the var keyword. var defines an implicitly typed
local variable. That means the type of the variable is determined by the compile-time
type of the object assigned to the variable. Here, that is the return value from the
OpenText(String) method, which is a StreamReader object.

Now, let's fill in the code to read the file in the Main method:

C#

Run the program (using dotnet run) and you can see every line printed out to the
console.

What you have is being displayed far too fast to read aloud. Now you need to add the
delays in the output. As you start, you'll be building some of the core code that enables
asynchronous processing. However, these first steps will follow a few anti-patterns. The
anti-patterns are pointed out in comments as you add the code, and the code will be
updated in later steps.

There are two steps to this section. First, you'll update the iterator method to return
single words instead of entire lines. That's done with these modifications. Replace the
yield return line; statement with the following code:

C#

var lines = ReadFrom("sampleQuotes.txt");
foreach (var line in lines)
{
 Console.WriteLine(line);
}

Adding Delays and Formatting output

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.opentext#system-io-file-opentext(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader

Next, you need to modify how you consume the lines of the file, and add a delay after
writing each word. Replace the Console.WriteLine(line) statement in the Main method
with the following block:

C#

Run the sample, and check the output. Now, each single word is printed, followed by a
200 ms delay. However, the displayed output shows some issues because the source
text file has several lines that have more than 80 characters without a line break. That
can be hard to read while it's scrolling by. That's easy to fix. You'll just keep track of the
length of each line, and generate a new line whenever the line length reaches a certain
threshold. Declare a local variable after the declaration of words in the ReadFrom method
that holds the line length:

C#

Then, add the following code after the yield return word + " "; statement (before the
closing brace):

C#

var words = line.Split(' ');
foreach (var word in words)
{
 yield return word + " ";
}
yield return Environment.NewLine;

Console.Write(line);
if (!string.IsNullOrWhiteSpace(line))
{
 var pause = Task.Delay(200);
 // Synchronously waiting on a task is an
 // anti-pattern. This will get fixed in later
 // steps.
 pause.Wait();
}

var lineLength = 0;

lineLength += word.Length + 1;
if (lineLength > 70)
{
 yield return Environment.NewLine;
 lineLength = 0;
}

Run the sample, and you'll be able to read aloud at its pre-configured pace.

In this final step, you'll add the code to write the output asynchronously in one task,
while also running another task to read input from the user if they want to speed up or
slow down the text display, or stop the text display altogether. This has a few steps in it
and by the end, you'll have all the updates that you need. The first step is to create an
asynchronous Task returning method that represents the code you've created so far to
read and display the file.

Add this method to your Program class (it's taken from the body of your Main method):

C#

You'll notice two changes. First, in the body of the method, instead of calling Wait() to
synchronously wait for a task to finish, this version uses the await keyword. In order to
do that, you need to add the async modifier to the method signature. This method
returns a Task . Notice that there are no return statements that return a Task object.
Instead, that Task object is created by code the compiler generates when you use the
await operator. You can imagine that this method returns when it reaches an await .
The returned Task indicates that the work has not completed. The method resumes
when the awaited task completes. When it has executed to completion, the returned
Task indicates that it is complete. Calling code can monitor that returned Task to
determine when it has completed.

Add an await keyword before the call to ShowTeleprompter :

C#

Async Tasks

private static async Task ShowTeleprompter()
{
 var words = ReadFrom("sampleQuotes.txt");
 foreach (var word in words)
 {
 Console.Write(word);
 if (!string.IsNullOrWhiteSpace(word))
 {
 await Task.Delay(200);
 }
 }
}

await ShowTeleprompter();

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.wait#system-threading-tasks-task-wait

This requires you to change the Main method signature to:

C#

Learn more about the async Main method in our fundamentals section.

Next, you need to write the second asynchronous method to read from the Console and
watch for the '<' (less than), '>' (greater than) and 'X' or 'x' keys. Here's the method you
add for that task:

C#

This creates a lambda expression to represent an Action delegate that reads a key from
the Console and modifies a local variable representing the delay when the user presses
the '<' (less than) or '>' (greater than) keys. The delegate method finishes when user
presses the 'X' or 'x' keys, which allow the user to stop the text display at any time. This
method uses ReadKey() to block and wait for the user to press a key.

To finish this feature, you need to create a new async Task returning method that starts
both of these tasks (GetInput and ShowTeleprompter), and also manages the shared data

static async Task Main(string[] args)

private static async Task GetInput()
{
 var delay = 200;
 Action work = () =>
 {
 do {
 var key = Console.ReadKey(true);
 if (key.KeyChar == '>')
 {
 delay -= 10;
 }
 else if (key.KeyChar == '<')
 {
 delay += 10;
 }
 else if (key.KeyChar == 'X' || key.KeyChar == 'x')
 {
 break;
 }
 } while (true);
 };
 await Task.Run(work);
}

https://learn.microsoft.com/en-us/dotnet/api/system.action
https://learn.microsoft.com/en-us/dotnet/api/system.console.readkey#system-console-readkey

between these two tasks.

It's time to create a class that can handle the shared data between these two tasks. This
class contains two public properties: the delay, and a flag Done to indicate that the file
has been completely read:

C#

Put that class in a new file, and include that class in the TeleprompterConsole namespace
as shown. You'll also need to add a using static statement at the top of the file so that
you can reference the Min and Max methods without the enclosing class or namespace
names. A using static statement imports the methods from one class. This is in contrast
with the using statement without static , which imports all classes from a namespace.

C#

Next, you need to update the ShowTeleprompter and GetInput methods to use the new
config object. Write one final Task returning async method to start both tasks and exit
when the first task finishes:

C#

namespace TeleprompterConsole;

internal class TelePrompterConfig
{
 public int DelayInMilliseconds { get; private set; } = 200;
 public void UpdateDelay(int increment) // negative to speed up
 {
 var newDelay = Min(DelayInMilliseconds + increment, 1000);
 newDelay = Max(newDelay, 20);
 DelayInMilliseconds = newDelay;
 }
 public bool Done { get; private set; }
 public void SetDone()
 {
 Done = true;
 }
}

using static System.Math;

private static async Task RunTeleprompter()
{
 var config = new TelePrompterConfig();
 var displayTask = ShowTeleprompter(config);

The one new method here is the WhenAny(Task[]) call. That creates a Task that finishes
as soon as any of the tasks in its argument list completes.

Next, you need to update both the ShowTeleprompter and GetInput methods to use the
config object for the delay:

C#

This new version of ShowTeleprompter calls a new method in the TeleprompterConfig
class. Now, you need to update Main to call RunTeleprompter instead of
ShowTeleprompter :

C#

 var speedTask = GetInput(config);
 await Task.WhenAny(displayTask, speedTask);
}

private static async Task ShowTeleprompter(TelePrompterConfig config)
{
 var words = ReadFrom("sampleQuotes.txt");
 foreach (var word in words)
 {
 Console.Write(word);
 if (!string.IsNullOrWhiteSpace(word))
 {
 await Task.Delay(config.DelayInMilliseconds);
 }
 }
 config.SetDone();
}

private static async Task GetInput(TelePrompterConfig config)
{
 Action work = () =>
 {
 do {
 var key = Console.ReadKey(true);
 if (key.KeyChar == '>')
 config.UpdateDelay(-10);
 else if (key.KeyChar == '<')
 config.UpdateDelay(10);
 else if (key.KeyChar == 'X' || key.KeyChar == 'x')
 config.SetDone();
 } while (!config.Done);
 };
 await Task.Run(work);
}

await RunTeleprompter();

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany#system-threading-tasks-task-whenany(system-threading-tasks-task())

This tutorial showed you a number of the features around the C# language and the .NET
Core libraries related to working in Console applications. You can build on this
knowledge to explore more about the language, and the classes introduced here. You've
seen the basics of File and Console I/O, blocking and non-blocking use of the Task-
based asynchronous programming, a tour of the C# language and how C# programs are
organized, and the .NET CLI.

For more information about File I/O, see File and Stream I/O. For more information
about asynchronous programming model used in this tutorial, see Task-based
Asynchronous Programming and Asynchronous programming.

Conclusion

https://learn.microsoft.com/en-ca/dotnet/standard/io/
https://learn.microsoft.com/en-ca/dotnet/standard/parallel-programming/task-based-asynchronous-programming

Tutorial: Make HTTP requests in a .NET
console app using C#
Article • 2022-10-29 • 8 minutes to read

This tutorial builds an app that issues HTTP requests to a REST service on GitHub. The
app reads information in JSON format and converts the JSON into C# objects.
Converting from JSON to C# objects is known as deserialization.

The tutorial shows how to:

If you prefer to follow along with the final sample for this tutorial, you can download it.
For download instructions, see Samples and Tutorials.

.NET SDK 6.0 or later
A code editor such as [Visual Studio Code (an open-source, cross-platform
editor). You can run the sample app on Windows, Linux, or macOS, or in a Docker
container.

1. Open a command prompt and create a new directory for your app. Make that the
current directory.

2. Enter the following command in a console window:

.NET CLI

This command creates the starter files for a basic "Hello World" app. The project
name is "WebAPIClient".

3. Navigate into the "WebAPIClient" directory, and run the app.

.NET CLI

Send HTTP requests.＂

Deserialize JSON responses.＂

Configure deserialization with attributes.＂

Prerequisites

Create the client app

dotnet new console --name WebAPIClient

https://learn.microsoft.com/en-us/samples/dotnet/samples/console-webapiclient/
https://learn.microsoft.com/en-ca/dotnet/samples-and-tutorials/#view-and-download-samples
https://dotnet.microsoft.com/download/dotnet/6.0
https://code.visualstudio.com/

.NET CLI

dotnet run automatically runs dotnet restore to restore any dependencies that the
app needs. It also runs dotnet build if needed. You should see the app output
"Hello, World!" . In your terminal, press Ctrl + C to stop the app.

This app calls the GitHub API to get information about the projects under the .NET
Foundation umbrella. The endpoint is https://api.github.com/orgs/dotnet/repos . To
retrieve information, it makes an HTTP GET request. Browsers also make HTTP GET
requests, so you can paste that URL into your browser address bar to see what
information you'll be receiving and processing.

Use the HttpClient class to make HTTP requests. HttpClient supports only async
methods for its long-running APIs. So the following steps create an async method and
call it from the Main method.

1. Open the Program.cs file in your project directory and replace its contents with the
following:

C#

This code:

Replaces the Console.WriteLine statement with a call to
ProcessRepositoriesAsync that uses the await keyword.
Defines an empty ProcessRepositoriesAsync method.

2. In the Program class, use an HttpClient to handle requests and responses, by
replacing the content with the following C#.

cd WebAPIClient

dotnet run

Make HTTP requests

await ProcessRepositoriesAsync();

static async Task ProcessRepositoriesAsync(HttpClient client)
{
}

https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-run
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-restore
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-build
https://developer.github.com/v3/
https://www.dotnetfoundation.org/
https://api.github.com/orgs/dotnet/repos
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

C#

This code:

Sets up HTTP headers for all requests:
An Accept header to accept JSON responses
A User-Agent header. These headers are checked by the GitHub server
code and are necessary to retrieve information from GitHub.

3. In the ProcessRepositoriesAsync method, call the GitHub endpoint that returns a
list of all repositories under the .NET foundation organization:

C#

This code:

Awaits the task returned from calling HttpClient.GetStringAsync(String)
method. This method sends an HTTP GET request to the specified URI. The
body of the response is returned as a String, which is available when the task
completes.
The response string json is printed to the console.

4. Build the app and run it.

using System.Net.Http.Headers;

using HttpClient client = new();
client.DefaultRequestHeaders.Accept.Clear();
client.DefaultRequestHeaders.Accept.Add(
 new
MediaTypeWithQualityHeaderValue("application/vnd.github.v3+json"));
client.DefaultRequestHeaders.Add("User-Agent", ".NET Foundation
Repository Reporter");

await ProcessRepositoriesAsync(client);

static async Task ProcessRepositoriesAsync(HttpClient client)
{
}

 static async Task ProcessRepositoriesAsync(HttpClient client)
 {
 var json = await client.GetStringAsync(
 "https://api.github.com/orgs/dotnet/repos");

 Console.Write(json);
 }

https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept
https://developer.mozilla.org/docs/Web/HTTP/Headers/User-Agent
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstringasync#system-net-http-httpclient-getstringasync(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.string

.NET CLI

There is no build warning because the ProcessRepositoriesAsync now contains an
await operator. The output is a long display of JSON text.

The following steps convert the JSON response into C# objects. You use the
System.Text.Json.JsonSerializer class to deserialize JSON into objects.

1. Create a file named Repository.cs and add the following code:

C#

The preceding code defines a class to represent the JSON object returned from the
GitHub API. You'll use this class to display a list of repository names.

The JSON for a repository object contains dozens of properties, but only the name
property will be deserialized. The serializer automatically ignores JSON properties
for which there is no match in the target class. This feature makes it easier to
create types that work with only a subset of fields in a large JSON packet.

The C# convention is to capitalize the first letter of property names, but the name
property here starts with a lowercase letter because that matches exactly what's in
the JSON. Later you'll see how to use C# property names that don't match the
JSON property names.

2. Use the serializer to convert JSON into C# objects. Replace the call to
GetStringAsync(String) in the ProcessRepositoriesAsync method with the following
lines:

C#

dotnet run

Deserialize the JSON Result

public record class Repository(string name);

await using Stream stream =
 await
client.GetStreamAsync("https://api.github.com/orgs/dotnet/repos");
var repositories =
 await JsonSerializer.DeserializeAsync<List<Repository>>(stream);

https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/capitalization-conventions
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstringasync#system-net-http-httpclient-getstringasync(system-string)

The updated code replaces GetStringAsync(String) with GetStreamAsync(String).
This serializer method uses a stream instead of a string as its source.

The first argument to JsonSerializer.DeserializeAsync<TValue>(Stream,
JsonSerializerOptions, CancellationToken) is an await expression. await
expressions can appear almost anywhere in your code, even though up to now,
you've only seen them as part of an assignment statement. The other two
parameters, JsonSerializerOptions and CancellationToken , are optional and are
omitted in the code snippet.

The DeserializeAsync method is generic, which means you supply type arguments
for what kind of objects should be created from the JSON text. In this example,
you're deserializing to a List<Repository> , which is another generic object, a
System.Collections.Generic.List<T>. The List<T> class stores a collection of
objects. The type argument declares the type of objects stored in the List<T> . The
type argument is your Repository record, because the JSON text represents a
collection of repository objects.

3. Add code to display the name of each repository. Replace the lines that read:

C#

with the following code:

C#

4. The following using directives should be present at the top of the file:

C#

5. Run the app.

.NET CLI

Console.Write(json);

foreach (var repo in repositories ?? Enumerable.Empty<Repository>())
 Console.Write(repo.name);

using System.Net.Http.Headers;
using System.Text.Json;

dotnet run

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstringasync#system-net-http-httpclient-getstringasync(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstreamasync#system-net-http-httpclient-getstreamasync(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer.deserializeasync#system-text-json-jsonserializer-deserializeasync-1(system-io-stream-system-text-json-jsonserializeroptions-system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

The output is a list of the names of the repositories that are part of the .NET
Foundation.

1. In Repository.cs, replace the file contents with the following C#.

C#

This code:

Changes the name of the name property to Name .
Adds the JsonPropertyNameAttribute to specify how this property appears in
the JSON.

2. In Program.cs, update the code to use the new capitalization of the Name property:

C#

3. Run the app.

The output is the same.

The ProcessRepositoriesAsync method can do the async work and return a collection of
the repositories. Change that method to return Task<List<Repository>> , and move the
code that writes to the console near its caller.

1. Change the signature of ProcessRepositoriesAsync to return a task whose result is
a list of Repository objects:

C#

Configure deserialization

using System.Text.Json.Serialization;

public record class Repository(
 [property: JsonPropertyName("name")] string Name);

foreach (var repo in repositories)
 Console.Write(repo.Name);

Refactor the code

static async Task<List<Repository>> ProcessRepositoriesAsync()

https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization.jsonpropertynameattribute

2. Return the repositories after processing the JSON response:

C#

The compiler generates the Task<T> object for the return value because you've
marked this method as async .

3. Modify the Program.cs file, replacing the call to ProcessRepositoriesAsync with the
following to capture the results and write each repository name to the console.

C#

4. Run the app.

The output is the same.

The following steps add code to process more of the properties in the received JSON
packet. You probably won't want to process every property, but adding a few more
demonstrates other features of C#.

1. Replace the contents of Repository class, with the following record definition:

C#

await using Stream stream =
 await
client.GetStreamAsync("https://api.github.com/orgs/dotnet/repos");
var repositories =
 await JsonSerializer.DeserializeAsync<List<Repository>>(stream);
return repositories ?? new();

var repositories = await ProcessRepositoriesAsync(client);

foreach (var repo in repositories)
 Console.Write(repo.Name);

Deserialize more properties

using System.Text.Json.Serialization;

public record class Repository(
 [property: JsonPropertyName("name")] string Name,
 [property: JsonPropertyName("description")] string Description,
 [property: JsonPropertyName("html_url")] Uri GitHubHomeUrl,
 [property: JsonPropertyName("homepage")] Uri Homepage,
 [property: JsonPropertyName("watchers")] int Watchers);

The Uri and int types have built-in functionality to convert to and from string
representation. No extra code is needed to deserialize from JSON string format to
those target types. If the JSON packet contains data that doesn't convert to a
target type, the serialization action throws an exception.

2. Update the foreach loop in the Program.cs file to display the property values:

C#

3. Run the app.

The list now includes the additional properties.

The date of the last push operation is formatted in this fashion in the JSON response:

JSON

This format is for Coordinated Universal Time (UTC), so the result of deserialization is a
DateTime value whose Kind property is Utc.

To get a date and time represented in your time zone, you have to write a custom
conversion method.

1. In Repository.cs, add a property for the UTC representation of the date and time
and a readonly LastPush property that returns the date converted to local time,
the file should look like the following:

C#

foreach (var repo in repositories)
{
 Console.WriteLine($"Name: {repo.Name}");
 Console.WriteLine($"Homepage: {repo.Homepage}");
 Console.WriteLine($"GitHub: {repo.GitHubHomeUrl}");
 Console.WriteLine($"Description: {repo.Description}");
 Console.WriteLine($"Watchers: {repo.Watchers:#,0}");
 Console.WriteLine();
}

Add a date property

2016-02-08T21:27:00Z

using System.Text.Json.Serialization;

public record class Repository(

https://learn.microsoft.com/en-us/dotnet/api/system.uri
https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.kind
https://learn.microsoft.com/en-us/dotnet/api/system.datetimekind#system-datetimekind-utc

The LastPush property is defined using an expression-bodied member for the get
accessor. There's no set accessor. Omitting the set accessor is one way to define
a read-only property in C#. (Yes, you can create write-only properties in C#, but
their value is limited.)

2. Add another output statement in Program.cs: again:

C#

3. The complete app should resemble the following Program.cs file:

C#

 [property: JsonPropertyName("name")] string Name,
 [property: JsonPropertyName("description")] string Description,
 [property: JsonPropertyName("html_url")] Uri GitHubHomeUrl,
 [property: JsonPropertyName("homepage")] Uri Homepage,
 [property: JsonPropertyName("watchers")] int Watchers,
 [property: JsonPropertyName("pushed_at")] DateTime LastPushUtc)
{
 public DateTime LastPush => LastPushUtc.ToLocalTime();
}

Console.WriteLine($"Last push: {repo.LastPush}");

using System.Net.Http.Headers;
using System.Text.Json;

using HttpClient client = new();
client.DefaultRequestHeaders.Accept.Clear();
client.DefaultRequestHeaders.Accept.Add(
 new
MediaTypeWithQualityHeaderValue("application/vnd.github.v3+json"));
client.DefaultRequestHeaders.Add("User-Agent", ".NET Foundation
Repository Reporter");

var repositories = await ProcessRepositoriesAsync(client);

foreach (var repo in repositories)
{
 Console.WriteLine($"Name: {repo.Name}");
 Console.WriteLine($"Homepage: {repo.Homepage}");
 Console.WriteLine($"GitHub: {repo.GitHubHomeUrl}");
 Console.WriteLine($"Description: {repo.Description}");
 Console.WriteLine($"Watchers: {repo.Watchers:#,0}");
 Console.WriteLine($"{repo.LastPush}");
 Console.WriteLine();
}

static async Task<List<Repository>> ProcessRepositoriesAsync(HttpClient

4. Run the app.

The output includes the date and time of the last push to each repository.

In this tutorial, you created an app that makes web requests and parses the results. Your
version of the app should now match the finished sample.

Learn more about how to configure JSON serialization in How to serialize and
deserialize (marshal and unmarshal) JSON in .NET.

client)
{
 await using Stream stream =
 await
client.GetStreamAsync("https://api.github.com/orgs/dotnet/repos");
 var repositories =
 await JsonSerializer.DeserializeAsync<List<Repository>>
(stream);
 return repositories ?? new();
}

Next steps

https://learn.microsoft.com/en-us/samples/dotnet/samples/console-webapiclient/
https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/how-to

Work with Language-Integrated Query
(LINQ)
Article • 2021-09-15 • 15 minutes to read

This tutorial teaches you features in .NET Core and the C# language. You’ll learn how to:

Generate sequences with LINQ.
Write methods that can be easily used in LINQ queries.
Distinguish between eager and lazy evaluation.

You'll learn these techniques by building an application that demonstrates one of the
basic skills of any magician: the faro shuffle . Briefly, a faro shuffle is a technique where
you split a card deck exactly in half, then the shuffle interleaves each one card from each
half to rebuild the original deck.

Magicians use this technique because every card is in a known location after each
shuffle, and the order is a repeating pattern.

For your purposes, it is a light hearted look at manipulating sequences of data. The
application you'll build constructs a card deck and then performs a sequence of shuffles,
writing the sequence out each time. You'll also compare the updated order to the
original order.

This tutorial has multiple steps. After each step, you can run the application and see the
progress. You can also see the completed sample in the dotnet/samples GitHub
repository. For download instructions, see Samples and Tutorials.

You’ll need to set up your machine to run .NET core. You can find the installation
instructions on the .NET Core Download page. You can run this application on
Windows, Ubuntu Linux, or OS X, or in a Docker container. You’ll need to install your
favorite code editor. The descriptions below use Visual Studio Code which is an open
source, cross-platform editor. However, you can use whatever tools you are comfortable
with.

Introduction

Prerequisites

Create the Application

https://en.wikipedia.org/wiki/Faro_shuffle
https://github.com/dotnet/samples/blob/main/csharp/getting-started/console-linq
https://learn.microsoft.com/en-ca/dotnet/samples-and-tutorials/#view-and-download-samples
https://dotnet.microsoft.com/download
https://code.visualstudio.com/

The first step is to create a new application. Open a command prompt and create a new
directory for your application. Make that the current directory. Type the command
dotnet new console at the command prompt. This creates the starter files for a basic
"Hello World" application.

If you've never used C# before, this tutorial explains the structure of a C# program. You
can read that and then return here to learn more about LINQ.

Before you begin, make sure that the following lines are at the top of the Program.cs file
generated by dotnet new console :

C#

If these three lines (using statements) aren't at the top of the file, our program will not
compile.

Now that you have all of the references that you'll need, consider what constitutes a
deck of cards. Commonly, a deck of playing cards has four suits, and each suit has
thirteen values. Normally, you might consider creating a Card class right off the bat and
populating a collection of Card objects by hand. With LINQ, you can be more concise
than the usual way of dealing with creating a deck of cards. Instead of creating a Card
class, you can create two sequences to represent suits and ranks, respectively. You'll
create a really simple pair of iterator methods that will generate the ranks and suits as
IEnumerable<T>s of strings:

C#

Create the Data Set

// Program.cs
using System;
using System.Collections.Generic;
using System.Linq;

// Program.cs
// The Main() method

static IEnumerable<string> Suits()
{
 yield return "clubs";
 yield return "diamonds";
 yield return "hearts";
 yield return "spades";
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Place these underneath the Main method in your Program.cs file. These two methods
both utilize the yield return syntax to produce a sequence as they run. The compiler
builds an object that implements IEnumerable<T> and generates the sequence of
strings as they are requested.

Now, use these iterator methods to create the deck of cards. You'll place the LINQ query
in our Main method. Here's a look at it:

C#

The multiple from clauses produce a SelectMany, which creates a single sequence from
combining each element in the first sequence with each element in the second
sequence. The order is important for our purposes. The first element in the first source
sequence (Suits) is combined with every element in the second sequence (Ranks). This
produces all thirteen cards of first suit. That process is repeated with each element in the

static IEnumerable<string> Ranks()
{
 yield return "two";
 yield return "three";
 yield return "four";
 yield return "five";
 yield return "six";
 yield return "seven";
 yield return "eight";
 yield return "nine";
 yield return "ten";
 yield return "jack";
 yield return "queen";
 yield return "king";
 yield return "ace";
}

// Program.cs
static void Main(string[] args)
{
 var startingDeck = from s in Suits()
 from r in Ranks()
 select new { Suit = s, Rank = r };

 // Display each card that we've generated and placed in startingDeck in
the console
 foreach (var card in startingDeck)
 {
 Console.WriteLine(card);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.selectmany

first sequence (Suits). The end result is a deck of cards ordered by suits, followed by
values.

It's important to keep in mind that whether you choose to write your LINQ in the query
syntax used above or use method syntax instead, it's always possible to go from one
form of syntax to the other. The above query written in query syntax can be written in
method syntax as:

C#

The compiler translates LINQ statements written with query syntax into the equivalent
method call syntax. Therefore, regardless of your syntax choice, the two versions of the
query produce the same result. Choose which syntax works best for your situation: for
instance, if you're working in a team where some of the members have difficulty with
method syntax, try to prefer using query syntax.

Go ahead and run the sample you've built at this point. It will display all 52 cards in the
deck. You may find it very helpful to run this sample under a debugger to observe how
the Suits() and Ranks() methods execute. You can clearly see that each string in each
sequence is generated only as it is needed.

var startingDeck = Suits().SelectMany(suit => Ranks().Select(rank => new {
Suit = suit, Rank = rank }));

Manipulate the Order

Next, focus on how you're going to shuffle the cards in the deck. The first step in any
good shuffle is to split the deck in two. The Take and Skip methods that are part of the
LINQ APIs provide that feature for you. Place them underneath the foreach loop:

C#

However, there's no shuffle method to take advantage of in the standard library, so
you'll have to write your own. The shuffle method you'll be creating illustrates several
techniques that you'll use with LINQ-based programs, so each part of this process will
be explained in steps.

In order to add some functionality to how you interact with the IEnumerable<T> you'll
get back from LINQ queries, you'll need to write some special kinds of methods called
extension methods. Briefly, an extension method is a special purpose static method that
adds new functionality to an already-existing type without having to modify the original
type you want to add functionality to.

Give your extension methods a new home by adding a new static class file to your
program called Extensions.cs , and then start building out the first extension method:

C#

// Program.cs
public static void Main(string[] args)
{
 var startingDeck = from s in Suits()
 from r in Ranks()
 select new { Suit = s, Rank = r };

 foreach (var c in startingDeck)
 {
 Console.WriteLine(c);
 }

 // 52 cards in a deck, so 52 / 2 = 26
 var top = startingDeck.Take(26);
 var bottom = startingDeck.Skip(26);
}

// Extensions.cs
using System;
using System.Collections.Generic;
using System.Linq;

namespace LinqFaroShuffle
{
 public static class Extensions
 {
 public static IEnumerable<T> InterleaveSequenceWith<T>(this

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Look at the method signature for a moment, specifically the parameters:

C#

You can see the addition of the this modifier on the first argument to the method. That
means you call the method as though it were a member method of the type of the first
argument. This method declaration also follows a standard idiom where the input and
output types are IEnumerable<T> . That practice enables LINQ methods to be chained
together to perform more complex queries.

Naturally, since you split the deck into halves, you'll need to join those halves together.
In code, this means you'll be enumerating both of the sequences you acquired through
Take and Skip at once, interleaving the elements, and creating one sequence: your
now-shuffled deck of cards. Writing a LINQ method that works with two sequences
requires that you understand how IEnumerable<T> works.

The IEnumerable<T> interface has one method: GetEnumerator. The object returned by
GetEnumerator has a method to move to the next element, and a property that retrieves
the current element in the sequence. You will use those two members to enumerate the
collection and return the elements. This Interleave method will be an iterator method, so
instead of building a collection and returning the collection, you'll use the yield return
syntax shown above.

Here's the implementation of that method:

C#

IEnumerable<T> first, IEnumerable<T> second)
 {
 // Your implementation will go here soon enough
 }
 }
}

public static IEnumerable<T> InterleaveSequenceWith<T> (this IEnumerable<T>
first, IEnumerable<T> second)

public static IEnumerable<T> InterleaveSequenceWith<T>
 (this IEnumerable<T> first, IEnumerable<T> second)
{
 var firstIter = first.GetEnumerator();
 var secondIter = second.GetEnumerator();

 while (firstIter.MoveNext() && secondIter.MoveNext())
 {
 yield return firstIter.Current;

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1.getenumerator

Now that you've written this method, go back to the Main method and shuffle the deck
once:

C#

How many shuffles it takes to set the deck back to its original order? To find out, you'll
need to write a method that determines if two sequences are equal. After you have that
method, you'll need to place the code that shuffles the deck in a loop, and check to see
when the deck is back in order.

Writing a method to determine if the two sequences are equal should be
straightforward. It's a similar structure to the method you wrote to shuffle the deck. Only
this time, instead of yield return ing each element, you'll compare the matching
elements of each sequence. When the entire sequence has been enumerated, if every
element matches, the sequences are the same:

C#

 yield return secondIter.Current;
 }
}

// Program.cs
public static void Main(string[] args)
{
 var startingDeck = from s in Suits()
 from r in Ranks()
 select new { Suit = s, Rank = r };

 foreach (var c in startingDeck)
 {
 Console.WriteLine(c);
 }

 var top = startingDeck.Take(26);
 var bottom = startingDeck.Skip(26);
 var shuffle = top.InterleaveSequenceWith(bottom);

 foreach (var c in shuffle)
 {
 Console.WriteLine(c);
 }
}

Comparisons

This shows a second LINQ idiom: terminal methods. They take a sequence as input (or in
this case, two sequences), and return a single scalar value. When using terminal
methods, they are always the final method in a chain of methods for a LINQ query,
hence the name "terminal".

You can see this in action when you use it to determine when the deck is back in its
original order. Put the shuffle code inside a loop, and stop when the sequence is back in
its original order by applying the SequenceEquals() method. You can see it would always
be the final method in any query, because it returns a single value instead of a
sequence:

C#

public static bool SequenceEquals<T>
 (this IEnumerable<T> first, IEnumerable<T> second)
{
 var firstIter = first.GetEnumerator();
 var secondIter = second.GetEnumerator();

 while (firstIter.MoveNext() && secondIter.MoveNext())
 {
 if (!firstIter.Current.Equals(secondIter.Current))
 {
 return false;
 }
 }

 return true;
}

// Program.cs
static void Main(string[] args)
{
 // Query for building the deck

 // Shuffling using InterleaveSequenceWith<T>();

 var times = 0;
 // We can re-use the shuffle variable from earlier, or you can make a
new one
 shuffle = startingDeck;
 do
 {
 shuffle = shuffle.Take(26).InterleaveSequenceWith(shuffle.Skip(26));

 foreach (var card in shuffle)
 {
 Console.WriteLine(card);
 }
 Console.WriteLine();

Run the code you've got so far and take note of how the deck rearranges on each
shuffle. After 8 shuffles (iterations of the do-while loop), the deck returns to the original
configuration it was in when you first created it from the starting LINQ query.

The sample you've built so far executes an out shuffle, where the top and bottom cards
stay the same on each run. Let's make one change: we'll use an in shuffle instead, where
all 52 cards change position. For an in shuffle, you interleave the deck so that the first
card in the bottom half becomes the first card in the deck. That means the last card in
the top half becomes the bottom card. This is a simple change to a singular line of code.
Update the current shuffle query by switching the positions of Take and Skip. This will
change the order of the top and bottom halves of the deck:

C#

Run the program again, and you'll see that it takes 52 iterations for the deck to reorder
itself. You'll also start to notice some serious performance degradations as the program
continues to run.

There are a number of reasons for this. You can tackle one of the major causes of this
performance drop: inefficient use of lazy evaluation.

Briefly, lazy evaluation states that the evaluation of a statement is not performed until its
value is needed. LINQ queries are statements that are evaluated lazily. The sequences
are generated only as the elements are requested. Usually, that's a major benefit of
LINQ. However, in a use such as this program, this causes exponential growth in
execution time.

Remember that we generated the original deck using a LINQ query. Each shuffle is
generated by performing three LINQ queries on the previous deck. All these are
performed lazily. That also means they are performed again each time the sequence is
requested. By the time you get to the 52nd iteration, you're regenerating the original
deck many, many times. Let's write a log to demonstrate this behavior. Then, you'll fix it.

 times++;

 } while (!startingDeck.SequenceEquals(shuffle));

 Console.WriteLine(times);
}

Optimizations

shuffle = shuffle.Skip(26).InterleaveSequenceWith(shuffle.Take(26));

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-ca/dotnet/standard/linq/deferred-execution-lazy-evaluation

In your Extensions.cs file, type in or copy the method below. This extension method
creates a new file called debug.log within your project directory and records what query
is currently being executed to the log file. This extension method can be appended to
any query to mark that the query executed.

C#

You will see a red squiggle under File , meaning it doesn't exist. It won't compile, since
the compiler doesn't know what File is. To solve this problem, make sure to add the
following line of code under the very first line in Extensions.cs :

C#

This should solve the issue and the red error disappears.

Next, instrument the definition of each query with a log message:

C#

public static IEnumerable<T> LogQuery<T>
 (this IEnumerable<T> sequence, string tag)
{
 // File.AppendText creates a new file if the file doesn't exist.
 using (var writer = File.AppendText("debug.log"))
 {
 writer.WriteLine($"Executing Query {tag}");
 }

 return sequence;
}

using System.IO;

// Program.cs
public static void Main(string[] args)
{
 var startingDeck = (from s in Suits().LogQuery("Suit Generation")
 from r in Ranks().LogQuery("Rank Generation")
 select new { Suit = s, Rank = r
}).LogQuery("Starting Deck");

 foreach (var c in startingDeck)
 {
 Console.WriteLine(c);
 }

 Console.WriteLine();
 var times = 0;
 var shuffle = startingDeck;

Notice that you don't log every time you access a query. You log only when you create
the original query. The program still takes a long time to run, but now you can see why.
If you run out of patience running the in shuffle with logging turned on, switch back to
the out shuffle. You'll still see the lazy evaluation effects. In one run, it executes 2592
queries, including all the value and suit generation.

You can improve the performance of the code here to reduce the number of executions
you make. A simple fix you can make is to cache the results of the original LINQ query
that constructs the deck of cards. Currently, you're executing the queries again and
again every time the do-while loop goes through an iteration, re-constructing the deck
of cards and reshuffling it every time. To cache the deck of cards, you can leverage the
LINQ methods ToArray and ToList; when you append them to the queries, they'll
perform the same actions you've told them to, but now they'll store the results in an
array or a list, depending on which method you choose to call. Append the LINQ
method ToArray to both queries and run the program again:

C#

 do
 {
 // Out shuffle
 /*
 shuffle = shuffle.Take(26)
 .LogQuery("Top Half")
 .InterleaveSequenceWith(shuffle.Skip(26)
 .LogQuery("Bottom Half"))
 .LogQuery("Shuffle");
 */

 // In shuffle
 shuffle = shuffle.Skip(26).LogQuery("Bottom Half")
 .InterleaveSequenceWith(shuffle.Take(26).LogQuery("Top
Half"))
 .LogQuery("Shuffle");

 foreach (var c in shuffle)
 {
 Console.WriteLine(c);
 }

 times++;
 Console.WriteLine(times);
 } while (!startingDeck.SequenceEquals(shuffle));

 Console.WriteLine(times);
}

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray

Now the out shuffle is down to 30 queries. Run again with the in shuffle and you'll see
similar improvements: it now executes 162 queries.

Please note that this example is designed to highlight the use cases where lazy
evaluation can cause performance difficulties. While it's important to see where lazy

public static void Main(string[] args)
{
 var startingDeck = (from s in Suits().LogQuery("Suit Generation")
 from r in Ranks().LogQuery("Value Generation")
 select new { Suit = s, Rank = r })
 .LogQuery("Starting Deck")
 .ToArray();

 foreach (var c in startingDeck)
 {
 Console.WriteLine(c);
 }

 Console.WriteLine();

 var times = 0;
 var shuffle = startingDeck;

 do
 {
 /*
 shuffle = shuffle.Take(26)
 .LogQuery("Top Half")
 .InterleaveSequenceWith(shuffle.Skip(26).LogQuery("Bottom
Half"))
 .LogQuery("Shuffle")
 .ToArray();
 */

 shuffle = shuffle.Skip(26)
 .LogQuery("Bottom Half")
 .InterleaveSequenceWith(shuffle.Take(26).LogQuery("Top Half"))
 .LogQuery("Shuffle")
 .ToArray();

 foreach (var c in shuffle)
 {
 Console.WriteLine(c);
 }

 times++;
 Console.WriteLine(times);
 } while (!startingDeck.SequenceEquals(shuffle));

 Console.WriteLine(times);
}

evaluation can impact code performance, it's equally important to understand that not
all queries should run eagerly. The performance hit you incur without using ToArray is
because each new arrangement of the deck of cards is built from the previous
arrangement. Using lazy evaluation means each new deck configuration is built from the
original deck, even executing the code that built the startingDeck . That causes a large
amount of extra work.

In practice, some algorithms run well using eager evaluation, and others run well using
lazy evaluation. For daily usage, lazy evaluation is usually a better choice when the data
source is a separate process, like a database engine. For databases, lazy evaluation
allows more complex queries to execute only one round trip to the database process
and back to the rest of your code. LINQ is flexible whether you choose to utilize lazy or
eager evaluation, so measure your processes and pick whichever kind of evaluation
gives you the best performance.

In this project, you covered:

using LINQ queries to aggregate data into a meaningful sequence
writing Extension methods to add our own custom functionality to LINQ queries
locating areas in our code where our LINQ queries might run into performance
issues like degraded speed
lazy and eager evaluation in regards to LINQ queries and the implications they
might have on query performance

Aside from LINQ, you learned a bit about a technique magicians use for card tricks.
Magicians use the Faro shuffle because they can control where every card moves in the
deck. Now that you know, don't spoil it for everyone else!

For more information on LINQ, see:

Language Integrated Query (LINQ)
Introduction to LINQ
Basic LINQ Query Operations (C#)
Data Transformations With LINQ (C#)
Query Syntax and Method Syntax in LINQ (C#)
C# Features That Support LINQ

Conclusion

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray

Use Attributes in C#
Article • 2021-09-15 • 7 minutes to read

Attributes provide a way of associating information with code in a declarative way. They
can also provide a reusable element that can be applied to a variety of targets.

Consider the [Obsolete] attribute. It can be applied to classes, structs, methods,
constructors, and more. It declares that the element is obsolete. It's then up to the C#
compiler to look for this attribute, and do some action in response.

In this tutorial, you'll be introduced to how to add attributes to your code, how to create
and use your own attributes, and how to use some attributes that are built into .NET
Core.

You’ll need to set up your machine to run .NET core. You can find the installation
instructions on the .NET Core Downloads page. You can run this application on
Windows, Ubuntu Linux, macOS or in a Docker container. You’ll need to install your
favorite code editor. The descriptions below use Visual Studio Code which is an open
source, cross platform editor. However, you can use whatever tools you are comfortable
with.

Now that you've installed all the tools, create a new .NET Core application. To use the
command line generator, execute the following command in your favorite shell:

dotnet new console

This command will create bare-bones .NET core project files. You will need to execute
dotnet restore to restore the dependencies needed to compile this project.

You don't have to run dotnet restore because it's run implicitly by all commands that
require a restore to occur, such as dotnet new , dotnet build , dotnet run , dotnet test ,
dotnet publish , and dotnet pack . To disable implicit restore, use the --no-restore
option.

The dotnet restore command is still useful in certain scenarios where explicitly
restoring makes sense, such as continuous integration builds in Azure DevOps Services
or in build systems that need to explicitly control when the restore occurs.

Prerequisites

Create the Application

https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-restore
https://learn.microsoft.com/en-us/azure/devops/build-release/apps/aspnet/build-aspnet-core

For information about how to manage NuGet feeds, see the dotnet restore
documentation.

To execute the program, use dotnet run . You should see "Hello, World" output to the
console.

In C#, attributes are classes that inherit from the Attribute base class. Any class that
inherits from Attribute can be used as a sort of "tag" on other pieces of code. For
instance, there is an attribute called ObsoleteAttribute . This is used to signal that code
is obsolete and shouldn't be used anymore. You can place this attribute on a class, for
instance, by using square brackets.

C#

Note that while the class is called ObsoleteAttribute , it's only necessary to use
[Obsolete] in the code. This is a convention that C# follows. You can use the full name
[ObsoleteAttribute] if you choose.

When marking a class obsolete, it's a good idea to provide some information as to why
it's obsolete, and/or what to use instead. Do this by passing a string parameter to the
Obsolete attribute.

C#

The string is being passed as an argument to an ObsoleteAttribute constructor, just as
if you were writing var attr = new ObsoleteAttribute("some string") .

Parameters to an attribute constructor are limited to simple types/literals: bool, int,
double, string, Type, enums, etc and arrays of those types. You can not use an
expression or a variable. You are free to use positional or named parameters.

How to add attributes to code

[Obsolete]
public class MyClass
{
}

[Obsolete("ThisClass is obsolete. Use ThisClass2 instead.")]
public class ThisClass
{
}

https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-restore

Creating an attribute is as simple as inheriting from the Attribute base class.

C#

With the above, I can now use [MySpecial] (or [MySpecialAttribute]) as an attribute
elsewhere in the code base.

C#

Attributes in the .NET base class library like ObsoleteAttribute trigger certain behaviors
within the compiler. However, any attribute you create acts only as metadata, and
doesn't result in any code within the attribute class being executed. It's up to you to act
on that metadata elsewhere in your code (more on that later in the tutorial).

There is a 'gotcha' here to watch out for. As mentioned above, only certain types are
allowed to be passed as arguments when using attributes. However, when creating an
attribute type, the C# compiler won't stop you from creating those parameters. In the
below example, I've created an attribute with a constructor that compiles just fine.

C#

However, you will be unable to use this constructor with attribute syntax.

C#

How to create your own attribute

public class MySpecialAttribute : Attribute
{
}

[MySpecial]
public class SomeOtherClass
{
}

public class GotchaAttribute : Attribute
{
 public GotchaAttribute(Foo myClass, string str)
 {
 }
}

[Gotcha(new Foo(), "test")] // does not compile
public class AttributeFail

The above will cause a compiler error like Attribute constructor parameter 'myClass'
has type 'Foo', which is not a valid attribute parameter type

Attributes can be used on a number of "targets". The above examples show them on
classes, but they can also be used on:

Assembly
Class
Constructor
Delegate
Enum
Event
Field
GenericParameter
Interface
Method
Module
Parameter
Property
ReturnValue
Struct

When you create an attribute class, by default, C# will allow you to use that attribute on
any of the possible attribute targets. If you want to restrict your attribute to certain
targets, you can do so by using the AttributeUsageAttribute on your attribute class.
That's right, an attribute on an attribute!

C#

If you attempt to put the above attribute on something that's not a class or a struct, you
will get a compiler error like Attribute 'MyAttributeForClassAndStructOnly' is not
valid on this declaration type. It is only valid on 'class, struct' declarations

{
}

How to restrict attribute usage

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class MyAttributeForClassAndStructOnly : Attribute
{
}

C#

Attributes act as metadata. Without some outward force, they won't actually do
anything.

To find and act on attributes, Reflection is generally needed. I won't cover Reflection in-
depth in this tutorial, but the basic idea is that Reflection allows you to write code in C#
that examines other code.

For instance, you can use Reflection to get information about a class(add using
System.Reflection; at the head of your code):

C#

That will print out something like: The assembly qualified name of MyClass is
ConsoleApplication.MyClass, attributes, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=null

Once you have a TypeInfo object (or a MemberInfo , FieldInfo , etc), you can use the
GetCustomAttributes method. This will return a collection of Attribute objects. You can
also use GetCustomAttribute and specify an Attribute type.

Here's an example of using GetCustomAttributes on a MemberInfo instance for MyClass
(which we saw earlier has an [Obsolete] attribute on it).

C#

public class Foo
{
 // if the below attribute was uncommented, it would cause a compiler
error
 // [MyAttributeForClassAndStructOnly]
 public Foo()
 { }
}

How to use attributes attached to a code
element

TypeInfo typeInfo = typeof(MyClass).GetTypeInfo();
Console.WriteLine("The assembly qualified name of MyClass is " +
typeInfo.AssemblyQualifiedName);

That will print to console: Attribute on MyClass: ObsoleteAttribute . Try adding other
attributes to MyClass .

It's important to note that these Attribute objects are instantiated lazily. That is, they
won't be instantiated until you use GetCustomAttribute or GetCustomAttributes . They
are also instantiated each time. Calling GetCustomAttributes twice in a row will return
two different instances of ObsoleteAttribute .

Attributes are used by many tools and frameworks. NUnit uses attributes like [Test]
and [TestFixture] that are used by the NUnit test runner. ASP.NET MVC uses attributes
like [Authorize] and provides an action filter framework to perform cross-cutting
concerns on MVC actions. PostSharp uses the attribute syntax to allow aspect-
oriented programming in C#.

Here are a few notable attributes built into the .NET Core base class libraries:

[Obsolete] . This one was used in the above examples, and it lives in the System
namespace. It is useful to provide declarative documentation about a changing
code base. A message can be provided in the form of a string, and another
boolean parameter can be used to escalate from a compiler warning to a compiler
error.

[Conditional] . This attribute is in the System.Diagnostics namespace. This
attribute can be applied to methods (or attribute classes). You must pass a string to
the constructor. If that string doesn't match a #define directive, then any calls to
that method (but not the method itself) will be removed by the C# compiler.
Typically this is used for debugging (diagnostics) purposes.

[CallerMemberName] . This attribute can be used on parameters, and lives in the
System.Runtime.CompilerServices namespace. This is an attribute that is used to
inject the name of the method that is calling another method. This is typically used
as a way to eliminate 'magic strings' when implementing INotifyPropertyChanged
in various UI frameworks. As an example:

var attrs = typeInfo.GetCustomAttributes();
foreach(var attr in attrs)
 Console.WriteLine("Attribute on MyClass: " + attr.GetType().Name);

Common attributes in the base class library
(BCL)

https://www.postsharp.net/

C#

In the above code, you don't have to have a literal "Name" string. This can help prevent
typo-related bugs and also makes for smoother refactoring/renaming.

Attributes bring declarative power to C#, but they are a meta-data form of code and
don't act by themselves.

public class MyUIClass : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 public void RaisePropertyChanged([CallerMemberName] string propertyName
= null)
 {
 PropertyChanged?.Invoke(this, new
PropertyChangedEventArgs(propertyName));
 }

 private string _name;
 public string Name
 {
 get { return _name;}
 set
 {
 if (value != _name)
 {
 _name = value;
 RaisePropertyChanged(); // notice that "Name" is not
needed here explicitly
 }
 }
 }
}

Summary

Nullable reference types
Article • 2022-11-03 • 16 minutes to read

In a nullable oblivious context, all reference types were nullable. Nullable reference types
refers to a group of features enabled in a nullable aware context that minimize the
likelihood that your code causes the runtime to throw System.NullReferenceException.
Nullable reference types includes three features that help you avoid these exceptions,
including the ability to explicitly mark a reference type as nullable:

Improved static flow analysis that determines if a variable may be null before
dereferencing it.
Attributes that annotate APIs so that the flow analysis determines null-state.
Variable annotations that developers use to explicitly declare the intended null-
state for a variable.

Null-state analysis and variable annotations are disabled by default for existing projects
—meaning that all reference types continue to be nullable. Starting in .NET 6, they're
enabled by default for new projects. For information about enabling these features by
declaring a nullable annotation context, see Nullable contexts.

The rest of this article describes how those three feature areas work to produce
warnings when your code may be dereferencing a null value. Dereferencing a variable
means to access one of its members using the . (dot) operator, as shown in the
following example:

C#

When you dereference a variable whose value is null , the runtime throws a
System.NullReferenceException.

You can also explore these concepts in our Learn module on Nullable safety in C#.

Null-state analysis tracks the null-state of references. This static analysis emits warnings
when your code may dereference null . You can address these warnings to minimize
incidences when the runtime throws a System.NullReferenceException. The compiler

string message = "Hello, World!";
int length = message.Length; // dereferencing "message"

Null state analysis

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/training/modules/csharp-null-safety
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

uses static analysis to determine the null-state of a variable. A variable is either not-null
or maybe-null. The compiler determines that a variable is not-null in two ways:

1. The variable has been assigned a value that is known to be not null.
2. The variable has been checked against null and hasn't been modified since that

check.

Any variable that the compiler hasn't determined as not-null is considered maybe-null.
The analysis provides warnings in situations where you may accidentally dereference a
null value. The compiler produces warnings based on the null-state.

When a variable is not-null, that variable may be dereferenced safely.
When a variable is maybe-null, that variable must be checked to ensure that it isn't
null before dereferencing it.

Consider the following example:

C#

In the preceding example, the compiler determines that message is maybe-null when the
first message is printed. There's no warning for the second message. The final line of
code produces a warning because originalMessage might be null. The following
example shows a more practical use for traversing a tree of nodes to the root,
processing each node during the traversal:

C#

string message = null;

// warning: dereference null.
Console.WriteLine($"The length of the message is {message.Length}");

var originalMessage = message;
message = "Hello, World!";

// No warning. Analysis determined "message" is not null.
Console.WriteLine($"The length of the message is {message.Length}");

// warning!
Console.WriteLine(originalMessage.Length);

void FindRoot(Node node, Action<Node> processNode)
{
 for (var current = node; current != null; current = current.Parent)
 {
 processNode(current);

The previous code doesn't generate any warnings for dereferencing the variable
current . Static analysis determines that current is never dereferenced when it's maybe-
null. The variable current is checked against null before current.Parent is accessed,
and before passing current to the ProcessNode action. The previous examples show
how the compiler determines null-state for local variables when initialized, assigned, or
compared to null .

The null state analysis doesn't trace into called methods. As a result, fields initialized in a
common helper method called by constructors will generate a warning with the
following template:

Non-nullable property 'name' must contain a non-null value when exiting
constructor.

You can address these warnings in one of two ways: Constructor chaining, or nullable
attributes on the helper method. The following code shows an example of each. The
Person class uses a common constructor called by all other constructors. The Student
class has a helper method annotated with the
System.Diagnostics.CodeAnalysis.MemberNotNullAttribute attribute:

C#

 }
}

using System.Diagnostics.CodeAnalysis;

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public Person(string firstName, string lastName)
 {
 FirstName = firstName;
 LastName = lastName;
 }

 public Person() : this("John", "Doe") { }
}

public class Student : Person
{
 public string Major { get; set; }

 public Student(string firstName, string lastName, string major)

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullattribute

Nullable state analysis and the warnings the compiler generates help you avoid program
errors by dereferencing null . The article on resolving nullable warnings provides
techniques for correcting the warnings you'll likely see in your code.

The null state analysis needs hints from developers to understand the semantics of APIs.
Some APIs provide null checks, and should change the null-state of a variable from
maybe-null to not-null. Other APIs return expressions that are not-null or maybe-null
depending on the null-state of the input arguments. For example, consider the following
code that displays a message:

C#

 : base(firstName, lastName)
 {
 SetMajor(major);
 }

 public Student(string firstName, string lastName) :
 base(firstName, lastName)
 {
 SetMajor();
 }

 public Student()
 {
 SetMajor();
 }

 [MemberNotNull(nameof(Major))]
 private void SetMajor(string? major = default)
 {
 Major = major ?? "Undeclared";
 }
}

７ Note

A number of improvements to definite assignment and null state analysis were
added in C# 10. When you upgrade to C# 10, you may find fewer nullable warnings
that are false positives. You can learn more about the improvements in the features
specification for definite assignment improvements.

Attributes on API signatures

public void PrintMessage(string message)
{

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/nullable-warnings

Based on inspection, any developer would consider this code safe, and shouldn't
generate warnings. The compiler doesn't know that IsNullOrWhiteSpace provides a null
check. You apply attributes to inform the compiler that message is not-null if and only if
IsNullOrWhiteSpace returns false . In the previous example, the signature includes the
NotNullWhen to indicate the null state of message :

C#

Attributes provide detailed information about the null state of arguments, return values,
and members of the object instance used to invoke a member. The details on each
attribute can be found in the language reference article on nullable reference attributes.
The .NET runtime APIs have all been annotated in .NET 5. You improve the static analysis
by annotating your APIs to provide semantic information about the null-state of
arguments and return values.

The null-state analysis provides robust analysis for most variables. The compiler needs
more information from you for member variables. The compiler can't make assumptions
about the order in which public members are accessed. Any public member could be
accessed in any order. Any of the accessible constructors could be used to initialize the
object. If a member field might ever be set to null , the compiler must assume its null-
state is maybe-null at the start of each method.

You use annotations that can declare whether a variable is a nullable reference type or a
non-nullable reference type. These annotations make important statements about the
null-state for variables:

A reference isn't supposed to be null. The default state of a nonnullable reference
variable is not-null. The compiler enforces rules that ensure it's safe to dereference
these variables without first checking that it isn't null:

The variable must be initialized to a non-null value.
The variable can never be assigned the value null . The compiler issues a
warning when code assigns a maybe-null expression to a variable that shouldn't

 if (!string.IsNullOrWhiteSpace(message))
 {
 Console.WriteLine($"{DateTime.Now}: {message}");
 }
}

public static bool IsNullOrWhiteSpace([NotNullWhen(false)] string message);

Nullable variable annotations

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullwhenattribute

be null.
A reference may be null. The default state of a nullable reference variable is
maybe-null. The compiler enforces rules to ensure that you've correctly checked
for a null reference:

The variable may only be dereferenced when the compiler can guarantee that
the value isn't null .
These variables may be initialized with the default null value and may be
assigned the value null in other code.
The compiler doesn't issue warnings when code assigns a maybe-null
expression to a variable that may be null.

Any reference variable that isn't supposed to be null has a null-state of not-null. Any
reference variable that may be null initially has the null-state of maybe-null.

A nullable reference type is noted using the same syntax as nullable value types: a ? is
appended to the type of the variable. For example, the following variable declaration
represents a nullable string variable, name :

C#

Any variable where the ? isn't appended to the type name is a non-nullable reference
type. That includes all reference type variables in existing code when you've enabled this
feature. However, any implicitly typed local variables (declared using var) are nullable
reference types. As the preceding sections showed, static analysis determines the null-
state of local variables to determine if they're maybe-null.

Sometimes you must override a warning when you know a variable isn't null, but the
compiler determines its null-state is maybe-null. You use the null-forgiving operator !
following a variable name to force the null-state to be not-null. For example, if you know
the name variable isn't null but the compiler issues a warning, you can write the
following code to override the compiler's analysis:

C#

Nullable reference types and nullable value types provide a similar semantic concept: A
variable can represent a value or object, or that variable may be null . However, nullable
reference types and nullable value types are implemented differently: nullable value
types are implemented using System.Nullable<T>, and nullable reference types are

string? name;

name!.Length;

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

implemented by attributes read by the compiler. For example, string? and string are
both represented by the same type: System.String. However, int? and int are
represented by System.Nullable<System.Int32> and System.Int32, respectively.

Nullable reference types are a compile time feature. That means it's possible for callers
to ignore warnings, intentionally use null as an argument to a method expecting a non
nullable reference. Library authors should include runtime checks against null argument
values. The ArgumentNullException.ThrowIfNull is the preferred option for checking a
parameter against null at run time.

Generics require detailed rules to handle T? for any type parameter T . The rules are
necessarily detailed because of history and the different implementation for a nullable
value type and a nullable reference type. Nullable value types are implemented using
the System.Nullable<T> struct. Nullable reference types are implemented as type
annotations that provide semantic rules to the compiler.

If the type argument for T is a reference type, T? references the corresponding
nullable reference type. For example, if T is a string , then T? is a string? .
If the type argument for T is a value type, T? references the same value type, T .
For example, if T is an int , the T? is also an int .
If the type argument for T is a nullable reference type, T? references that same
nullable reference type. For example, if T is a string? , then T? is also a string? .
If the type argument for T is a nullable value type, T? references that same
nullable value type. For example, if T is a int? , then T? is also a int? .

For return values, T? is equivalent to [MaybeNull]T ; for argument values, T? is
equivalent to [AllowNull]T . For more information, see the article on Attributes for null-
state analysis in the language reference.

You can specify different behavior using constraints:

） Important

Enabling nullable annotations can change how Entity Framework Core determines if
a data member is required. You can learn more details in the article on Entity
Framework Core Fundamentals: Working with Nullable Reference Types.

Generics

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.argumentnullexception.throwifnull
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1
https://learn.microsoft.com/en-us/ef/core/miscellaneous/nullable-reference-types

The class constraint means that T must be a non-nullable reference type (for
example string). The compiler produces a warning if you use a nullable reference
type, such as string? for T .
The class? constraint means that T must be a reference type, either non-nullable
(string) or a nullable reference type (for example string?). When the type
parameter is a nullable reference type, such as string? , an expression of T?
references that same nullable reference type, such as string? .
The notnull constraint means that T must be a non-nullable reference type, or a
non-nullable value type. If you use a nullable reference type or a nullable value
type for the type parameter, the compiler produces a warning. Furthermore, when
T is a value type, the return value is that value type, not the corresponding
nullable value type.

These constraints help provide more information to the compiler on how T will be used.
That helps when developers choose the type for T , and provides better null-state
analysis when an instance of the generic type is used.

The new features that protect against throwing a System.NullReferenceException can be
disruptive when turned on in an existing codebase:

All explicitly typed reference variables are interpreted as non-nullable reference
types.
The meaning of the class constraint in generics changed to mean a non-nullable
reference type.
New warnings are generated because of these new rules.

You must explicitly opt in to use these features in your existing projects. That provides a
migration path and preserves backwards compatibility. Nullable contexts enable fine-
grained control for how the compiler interprets reference type variables. The nullable
annotation context determines the compiler's behavior. There are four values for the
nullable annotation context:

disable: The code is nullable oblivious.
Nullable warnings are disabled.
All reference type variables are nullable reference types.
You can't declare a variable as a nullable reference type using the ? suffix on
the type.
You can use the null forgiving operator, ! , but it has no effect.

enable: The compiler enables all null reference analysis and all language features.

Nullable contexts

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

All new nullable warnings are enabled.
You can use the ? suffix to declare a nullable reference type.
All other reference type variables are non-nullable reference types.
The null forgiving operator suppresses warnings for a possible assignment to
null .

warnings: The compiler performs all null analysis and emits warnings when code
might dereference null .

All new nullable warnings are enabled.
Use of the ? suffix to declare a nullable reference type produces a warning.
All reference type variables are allowed to be null. However, members have the
null-state of not-null at the opening brace of all methods unless declared with
the ? suffix.
You can use the null forgiving operator, ! .

annotations: The compiler doesn't perform null analysis or emit warnings when
code might dereference null .

All new nullable warnings are disabled.
You can use the ? suffix to declare a nullable reference type.
All other reference type variables are non-nullable reference types.
You can use the null forgiving operator, ! , but it has no effect.

The nullable annotation context and nullable warning context can be set for a project
using the <Nullable> element in your .csproj file. This element configures how the
compiler interprets the nullability of types and what warnings are emitted. The following
table shows the allowable values and summarizes the contexts they specify.

Context Dereference
warnings

Assignment
warnings

Reference types ? suffix ! operator

disable Disabled Disabled All are nullable Can't be
used

Has no
effect

enable Enabled Enabled Non-nullable unless
declared with ?

Declares
nullable
type

Suppresses
warnings
for possible
null

assignment

warnings Enabled Not
applicable

All are nullable, but
members are considered
not null at opening brace
of methods

Produces
a
warning

Suppresses
warnings
for possible
null

assignment

Context Dereference
warnings

Assignment
warnings

Reference types ? suffix ! operator

annotations Disabled Disabled Non-nullable unless
declared with ?

Declares
nullable
type

Has no
effect

Reference type variables in code compiled in a disabled context are nullable-oblivious.
You can assign a null literal or a maybe-null variable to a variable that is nullable
oblivious. However, the default state of a nullable-oblivious variable is not-null.

You can choose which setting is best for your project:

Choose disable for legacy projects that you don't want to update based on
diagnostics or new features.
Choose warnings to determine where your code may throw
System.NullReferenceExceptions. You can address those warnings before
modifying code to enable non-nullable reference types.
Choose annotations to express your design intent before enabling warnings.
Choose enable for new projects and active projects where you want to protect
against null reference exceptions.

Example:

XML

You can also use directives to set these same contexts anywhere in your source code.
These are most useful when you're migrating a large codebase.

#nullable enable : Sets the nullable annotation context and nullable warning
context to enable.
#nullable disable : Sets the nullable annotation context and nullable warning
context to disable.
#nullable restore : Restores the nullable annotation context and nullable warning
context to the project settings.
#nullable disable warnings : Set the nullable warning context to disable.
#nullable enable warnings : Set the nullable warning context to enable.
#nullable restore warnings : Restores the nullable warning context to the project
settings.
#nullable disable annotations : Set the nullable annotation context to disable.
#nullable enable annotations : Set the nullable annotation context to enable.

<Nullable>enable</Nullable>

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

#nullable restore annotations : Restores the annotation warning context to the
project settings.

For any line of code, you can set any of the following combinations:

Warning context Annotation context Use

project default project default Default

enable disable Fix analysis warnings

enable project default Fix analysis warnings

project default enable Add type annotations

enable enable Code already migrated

disable enable Annotate code before fixing warnings

disable disable Adding legacy code to migrated project

project default disable Rarely

disable project default Rarely

Those nine combinations provide you with fine-grained control over the diagnostics the
compiler emits for your code. You can enable more features in any area you're updating,
without seeing additional warnings you aren't ready to address yet.

） Important

The global nullable context does not apply for generated code files. Under either
strategy, the nullable context is disabled for any source file marked as generated.
This means any APIs in generated files are not annotated. There are four ways a file
is marked as generated:

1. In the .editorconfig, specify generated_code = true in a section that applies to
that file.

2. Put <auto-generated> or <auto-generated/> in a comment at the top of the

file. It can be on any line in that comment, but the comment block must be

the first element in the file.

3. Start the file name with TemporaryGeneratedFile_
4. End the file name with .designer.cs, .generated.cs, .g.cs, or .g.i.cs.

Generators can opt-in using the #nullable preprocessor directive.

By default, nullable annotation and warning contexts are disabled. That means that your
existing code compiles without changes and without generating any new warnings.
Beginning with .NET 6, new projects include the <Nullable>enable</Nullable> element
in all project templates.

These options provide two distinct strategies to update an existing codebase to use
nullable reference types.

Arrays and structs that contain reference types are known pitfalls in nullable references
and the static analysis that determines null safety. In both situations, a non-nullable
reference may be initialized to null , without generating warnings.

A struct that contains non-nullable reference types allows assigning default for it
without any warnings. Consider the following example:

C#

In the preceding example, there's no warning in PrintStudent(default) while the non-
nullable reference types FirstName and LastName are null.

Known pitfalls

Structs

using System;

#nullable enable

public struct Student
{
 public string FirstName;
 public string? MiddleName;
 public string LastName;
}

public static class Program
{
 public static void PrintStudent(Student student)
 {
 Console.WriteLine($"First name: {student.FirstName.ToUpper()}");
 Console.WriteLine($"Middle name: {student.MiddleName?.ToUpper()}");
 Console.WriteLine($"Last name: {student.LastName.ToUpper()}");
 }

 public static void Main() => PrintStudent(default);
}

Another more common case is when you deal with generic structs. Consider the
following example:

C#

In the preceding example, the property Bar is going to be null at run time, and it's
assigned to non-nullable string without any warnings.

Arrays are also a known pitfall in nullable reference types. Consider the following
example that doesn't produce any warnings:

C#

In the preceding example, the declaration of the array shows it holds non-nullable
strings, while its elements are all initialized to null . Then, the variable s is assigned a
null value (the first element of the array). Finally, the variable s is dereferenced causing
a runtime exception.

#nullable enable

public struct Foo<T>
{
 public T Bar { get; set; }
}

public static class Program
{
 public static void Main()
 {
 string s = default(Foo<string>).Bar;
 }
}

Arrays

using System;

#nullable enable

public static class Program
{
 public static void Main()
 {
 string[] values = new string[10];
 string s = values[0];
 Console.WriteLine(s.ToUpper());
 }
}

Nullable reference types proposal
Draft nullable reference types specification
Unconstrained type parameter annotations
Intro to nullable references tutorial
Nullable (C# Compiler option)

See also

Update a codebase with nullable
reference types to improve null
diagnostic warnings
Article • 2022-09-21 • 6 minutes to read

Nullable reference types enable you to declare if variables of a reference type should or
shouldn't be assigned a null value. The compiler's static analysis and warnings when
your code might dereference null are the most important benefit of this feature. Once
enabled, the compiler generates warnings that help you avoid throwing a
System.NullReferenceException when your code runs.

If your codebase is relatively small, you can turn on the feature in your project, address
warnings, and enjoy the benefits of the improved diagnostics. Larger codebases may
require a more structured approach to address warnings over time, enabling the feature
for some as you address warnings in different types or files. This article describes
different strategies to update a codebase and the tradeoffs associated with these
strategies. Before starting your migration, read the conceptual overview of nullable
reference types. It covers the compiler's static analysis, null-state values of maybe-null
and not-null and the nullable annotations. Once you're familiar with those concepts and
terms, you're ready to migrate your code.

Regardless of how you update your codebase, the goal is that nullable warnings and
nullable annotations are enabled in your project. Once you reach that goal, you'll have
the <nullable>Enable</nullable> setting in your project. You won't need any of the
preprocessor directives to adjust settings elsewhere.

The first choice is setting the default for the project. Your choices are:

1. Nullable disable as the default: disable is the default if you don't add a Nullable
element to your project file. Use this default when you're not actively adding new
files to the codebase. The main activity is to update the library to use nullable
reference types. Using this default means you add a nullable preprocessor directive
to each file as you update its code.

2. Nullable enable as the default: Set this default when you're actively developing
new features. You want all new code to benefit from nullable reference types and
nullable static analysis. Using this default means you must add a #nullable

Plan your migration

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

disable to the top of each file. You'll remove these preprocessor directives as you
address the warnings in each file.

3. Nullable warnings as the default: Choose this default for a two-phase migration.
In the first phase, address warnings. In the second phase, turn on annotations for
declaring a variable's expected null-state. Using this default means you must add a
#nullable disable to the top of each file.

4. Nullable annotations as the default. Annotate code before addressing warnings.

Enabling nullable as the default creates more up-front work to add the preprocessor
directives to every file. The advantage is that every new code file added to the project
will be nullable enabled. Any new work will be nullable aware; only existing code must
be updated. Disabling nullable as the default works better if the library is stable, and the
main focus of the development is to adopt nullable reference types. You turn on nullable
reference types as you annotate APIs. When you've finished, you enable nullable
reference types for the entire project. When you create a new file, you must add the
preprocessor directives and make it nullable aware. If any developers on your team
forget, that new code is now in the backlog of work to make all code nullable aware.

Which of these strategies you pick depends on how much active development is taking
place in your project. The more mature and stable your project, the better the second
strategy. The more features being developed, the better the first strategy.

） Important

The global nullable context does not apply for generated code files. Under either
strategy, the nullable context is disabled for any source file marked as generated.
This means any APIs in generated files are not annotated. There are four ways a file
is marked as generated:

1. In the .editorconfig, specify generated_code = true in a section that applies to

that file.

2. Put <auto-generated> or <auto-generated/> in a comment at the top of the

file. It can be on any line in that comment, but the comment block must be
the first element in the file.

3. Start the file name with TemporaryGeneratedFile_

4. End the file name with .designer.cs, .generated.cs, .g.cs, or .g.i.cs.

Generators can opt-in using the #nullable preprocessor directive.

Understand contexts and warnings

Enabling warnings and annotations control how the compiler views reference types and
nullability. Every type has one of three nullabilities:

oblivious: All reference types are nullable oblivious when the annotation context is
disabled.
nonnullable: An unannotated reference type, C is nonnullable when the annotation
context is enabled.
nullable: An annotated reference type, C? , is nullable, but a warning may be issued
when the annotation context is disabled. Variables declared with var are nullable
when the annotation context is enabled.

The compiler generates warnings based on that nullability:

nonnullable types cause warnings if a potential null value is assigned to them.
nullable types cause warnings if they dereferenced when maybe-null.
oblivious types cause warnings if they're dereferenced when maybe-null and the
warning context is enabled.

Each variable has a default nullable state that depends on its nullability:

Nullable variables have a default null-state of maybe-null.
Non-nullable variables have a default null-state of not-null.
Nullable oblivious variables have a default null-state of not-null.

Before you enable nullable reference types, all declarations in your codebase are
nullable oblivious. That's important because it means all reference types have a default
null-state of not-null.

If your project uses Entity Framework Core, you should read their guidance on Working
with nullable reference types.

When you start your migration, you should start by enabling warnings only. All
declarations remain nullable oblivious, but you'll see warnings when you dereference a
value after its null-state changes to maybe-null. As you address these warnings, you'll be
checking against null in more locations, and your codebase becomes more resilient. To
learn specific techniques for different situations, see the article on Techniques to resolve
nullable warnings.

You can address warnings and enable annotations in each file or class before continuing
with other code. However, it's often more efficient to address the warnings generated

Address warnings

https://learn.microsoft.com/en-us/ef/core/miscellaneous/nullable-reference-types
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/nullable-warnings

while the context is warnings before enabling the type annotations. That way, all types
are oblivious until you've addressed the first set of warnings.

After addressing the first set of warnings, you can enable the annotation context. This
changes reference types from oblivious to nonnullable. All variables declared with var
are nullable. This change often introduces new warnings. The first step in addressing the
compiler warnings is to use ? annotations on parameter and return types to indicate
when arguments or return values may be null . As you do this task, your goal isn't just
to fix warnings. The more important goal is to make the compiler understand your
intent for potential null values.

Several attributes have been added to express additional information about the null
state of variables. The rules for your APIs are likely more complicated than not-null or
maybe-null for all parameters and return values. Many of your APIs have more complex
rules for when variables can or can't be null . In these cases, you'll use attributes to
express those rules. The attributes that describe the semantics of your API are found in
the article on Attributes that affect nullable analysis.

Once you've addressed all warnings after enabling annotations, you can set the default
context for your project to enabled. If you added any pragmas in your code for the
nullable annotation or warning context, you can remove them. Over time, you may see
new warnings. You may write code that introduces warnings. A library dependency may
be updated for nullable reference types. Those updates will change the types in that
library from nullable oblivious to either nonnullable or nullable.

You can also explore these concepts in our Learn module on Nullable safety in C#.

Enable type annotations

Attributes extend type annotations

Next steps

https://learn.microsoft.com/en-us/training/modules/csharp-null-safety

Methods in C#
Article • 2022-10-01 • 21 minutes to read

A method is a code block that contains a series of statements. A program causes the
statements to be executed by calling the method and specifying any required method
arguments. In C#, every executed instruction is performed in the context of a method.
The Main method is the entry point for every C# application and it's called by the
common language runtime (CLR) when the program is started.

Methods are declared in a class , record , or struct by specifying:

An optional access level, such as public or private . The default is private .
Optional modifiers such as abstract or sealed .
The return value, or void if the method has none.
The method name.
Any method parameters. Method parameters are enclosed in parentheses and are
separated by commas. Empty parentheses indicate that the method requires no
parameters.

These parts together form the method signature.

The following example defines a class named Motorcycle that contains five methods:

C#

７ Note

This topic discusses named methods. For information about anonymous functions,
see Lambda expressions.

Method signatures

） Important

A return type of a method is not part of the signature of the method for the
purposes of method overloading. However, it is part of the signature of the method
when determining the compatibility between a delegate and the method that it
points to.

The Motorcycle class includes an overloaded method, Drive . Two methods have the
same name, but must be differentiated by their parameter types.

Methods can be either instance or static. Invoking an instance method requires that you
instantiate an object and call the method on that object; an instance method operates
on that instance and its data. You invoke a static method by referencing the name of the
type to which the method belongs; static methods don't operate on instance data.
Attempting to call a static method through an object instance generates a compiler
error.

Calling a method is like accessing a field. After the object name (if you're calling an
instance method) or the type name (if you're calling a static method), add a period,
the name of the method, and parentheses. Arguments are listed within the parentheses
and are separated by commas.

The method definition specifies the names and types of any parameters that are
required. When a caller invokes the method, it provides concrete values, called
arguments, for each parameter. The arguments must be compatible with the parameter
type, but the argument name, if one is used in the calling code, doesn't have to be the
same as the parameter named defined in the method. In the following example, the
Square method includes a single parameter of type int named i. The first method call

using System;

abstract class Motorcycle
{
 // Anyone can call this.
 public void StartEngine() {/* Method statements here */ }

 // Only derived classes can call this.
 protected void AddGas(int gallons) { /* Method statements here */ }

 // Derived classes can override the base class implementation.
 public virtual int Drive(int miles, int speed) { /* Method statements
here */ return 1; }

 // Derived classes can override the base class implementation.
 public virtual int Drive(TimeSpan time, int speed) { /* Method
statements here */ return 0; }

 // Derived classes must implement this.
 public abstract double GetTopSpeed();
}

Method invocation

passes the Square method a variable of type int named num; the second, a numeric
constant; and the third, an expression.

C#

The most common form of method invocation used positional arguments; it supplies
arguments in the same order as method parameters. The methods of the Motorcycle
class can therefore be called as in the following example. The call to the Drive method,
for example, includes two arguments that correspond to the two parameters in the
method's syntax. The first becomes the value of the miles parameter, the second the
value of the speed parameter.

C#

public class SquareExample
{
 public static void Main()
 {
 // Call with an int variable.
 int num = 4;
 int productA = Square(num);

 // Call with an integer literal.
 int productB = Square(12);

 // Call with an expression that evaluates to int.
 int productC = Square(productA * 3);
 }

 static int Square(int i)
 {
 // Store input argument in a local variable.
 int input = i;
 return input * input;
 }
}

class TestMotorcycle : Motorcycle
{
 public override double GetTopSpeed()
 {
 return 108.4;
 }

 static void Main()
 {

 TestMotorcycle moto = new TestMotorcycle();

 moto.StartEngine();

You can also use named arguments instead of positional arguments when invoking a
method. When using named arguments, you specify the parameter name followed by a
colon (":") and the argument. Arguments to the method can appear in any order, as long
as all required arguments are present. The following example uses named arguments to
invoke the TestMotorcycle.Drive method. In this example, the named arguments are
passed in the opposite order from the method's parameter list.

C#

You can invoke a method using both positional arguments and named arguments.
However, positional arguments can only follow named arguments when the named
arguments are in the correct positions. The following example invokes the
TestMotorcycle.Drive method from the previous example using one positional
argument and one named argument.

 moto.AddGas(15);
 moto.Drive(5, 20);
 double speed = moto.GetTopSpeed();
 Console.WriteLine("My top speed is {0}", speed);
 }
}

using System;

class TestMotorcycle : Motorcycle
{
 public override int Drive(int miles, int speed)
 {
 return (int)Math.Round(((double)miles) / speed, 0);
 }

 public override double GetTopSpeed()
 {
 return 108.4;
 }

 static void Main()
 {

 TestMotorcycle moto = new TestMotorcycle();
 moto.StartEngine();
 moto.AddGas(15);
 var travelTime = moto.Drive(speed: 60, miles: 170);
 Console.WriteLine("Travel time: approx. {0} hours", travelTime);
 }
}
// The example displays the following output:
// Travel time: approx. 3 hours

C#

In addition to the members that are explicitly defined in a type, a type inherits members
defined in its base classes. Since all types in the managed type system inherit directly or
indirectly from the Object class, all types inherit its members, such as Equals(Object),
GetType(), and ToString(). The following example defines a Person class, instantiates two
Person objects, and calls the Person.Equals method to determine whether the two
objects are equal. The Equals method, however, isn't defined in the Person class; it's
inherited from Object.

C#

Types can override inherited members by using the override keyword and providing an
implementation for the overridden method. The method signature must be the same as
that of the overridden method. The following example is like the previous one, except
that it overrides the Equals(Object) method. (It also overrides the GetHashCode()
method, since the two methods are intended to provide consistent results.)

C#

var travelTime = moto.Drive(170, speed: 55);

Inherited and overridden methods

using System;

public class Person
{
 public String FirstName;
}

public class ClassTypeExample
{
 public static void Main()
 {
 var p1 = new Person();
 p1.FirstName = "John";
 var p2 = new Person();
 p2.FirstName = "John";
 Console.WriteLine("p1 = p2: {0}", p1.Equals(p2));
 }
}
// The example displays the following output:
// p1 = p2: False

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.gettype#system-object-gettype
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring#system-object-tostring
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode#system-object-gethashcode

Types in C# are either value types or reference types. For a list of built-in value types, see
Types. By default, both value types and reference types are passed to a method by
value.

When a value type is passed to a method by value, a copy of the object instead of the
object itself is passed to the method. Therefore, changes to the object in the called
method have no effect on the original object when control returns to the caller.

using System;

public class Person
{
 public String FirstName;

 public override bool Equals(object obj)
 {
 var p2 = obj as Person;
 if (p2 == null)
 return false;
 else
 return FirstName.Equals(p2.FirstName);
 }

 public override int GetHashCode()
 {
 return FirstName.GetHashCode();
 }
}

public class Example
{
 public static void Main()
 {
 var p1 = new Person();
 p1.FirstName = "John";
 var p2 = new Person();
 p2.FirstName = "John";
 Console.WriteLine("p1 = p2: {0}", p1.Equals(p2));
 }
}
// The example displays the following output:
// p1 = p2: True

Passing parameters

Passing parameters by value

The following example passes a value type to a method by value, and the called method
attempts to change the value type's value. It defines a variable of type int , which is a
value type, initializes its value to 20, and passes it to a method named ModifyValue that
changes the variable's value to 30. When the method returns, however, the variable's
value remains unchanged.

C#

When an object of a reference type is passed to a method by value, a reference to the
object is passed by value. That is, the method receives not the object itself, but an
argument that indicates the location of the object. If you change a member of the
object by using this reference, the change is reflected in the object when control returns
to the calling method. However, replacing the object passed to the method has no
effect on the original object when control returns to the caller.

The following example defines a class (which is a reference type) named SampleRefType .
It instantiates a SampleRefType object, assigns 44 to its value field, and passes the
object to the ModifyObject method. This example does essentially the same thing as the
previous example—it passes an argument by value to a method. But because a
reference type is used, the result is different. The modification that is made in
ModifyObject to the obj.value field also changes the value field of the argument, rt ,
in the Main method to 33, as the output from the example shows.

using System;

public class ByValueExample
{
 public static void Main()
 {
 int value = 20;
 Console.WriteLine("In Main, value = {0}", value);
 ModifyValue(value);
 Console.WriteLine("Back in Main, value = {0}", value);
 }

 static void ModifyValue(int i)
 {
 i = 30;
 Console.WriteLine("In ModifyValue, parameter value = {0}", i);
 return;
 }
}
// The example displays the following output:
// In Main, value = 20
// In ModifyValue, parameter value = 30
// Back in Main, value = 20

C#

You pass a parameter by reference when you want to change the value of an argument
in a method and want to reflect that change when control returns to the calling method.
To pass a parameter by reference, you use the ref or out keyword. You can also pass a
value by reference to avoid copying but still prevent modifications using the in keyword.

The following example is identical to the previous one, except the value is passed by
reference to the ModifyValue method. When the value of the parameter is modified in
the ModifyValue method, the change in value is reflected when control returns to the
caller.

C#

using System;

public class SampleRefType
{
 public int value;
}

public class ByRefTypeExample
{
 public static void Main()
 {
 var rt = new SampleRefType();
 rt.value = 44;
 ModifyObject(rt);
 Console.WriteLine(rt.value);
 }

 static void ModifyObject(SampleRefType obj)
 {
 obj.value = 33;
 }
}

Passing parameters by reference

using System;

public class ByRefExample
{
 public static void Main()
 {
 int value = 20;
 Console.WriteLine("In Main, value = {0}", value);
 ModifyValue(ref value);
 Console.WriteLine("Back in Main, value = {0}", value);

A common pattern that uses by ref parameters involves swapping the values of
variables. You pass two variables to a method by reference, and the method swaps their
contents. The following example swaps integer values.

C#

Passing a reference-type parameter allows you to change the value of the reference
itself, rather than the value of its individual elements or fields.

 }

 static void ModifyValue(ref int i)
 {
 i = 30;
 Console.WriteLine("In ModifyValue, parameter value = {0}", i);
 return;
 }
}
// The example displays the following output:
// In Main, value = 20
// In ModifyValue, parameter value = 30
// Back in Main, value = 30

using System;

public class RefSwapExample
{
 static void Main()
 {
 int i = 2, j = 3;
 System.Console.WriteLine("i = {0} j = {1}" , i, j);

 Swap(ref i, ref j);

 System.Console.WriteLine("i = {0} j = {1}" , i, j);
 }

 static void Swap(ref int x, ref int y)
 {
 int temp = x;
 x = y;
 y = temp;
 }
}
// The example displays the following output:
// i = 2 j = 3
// i = 3 j = 2

Parameter arrays

Sometimes, the requirement that you specify the exact number of arguments to your
method is restrictive. By using the params keyword to indicate that a parameter is a
parameter array, you allow your method to be called with a variable number of
arguments. The parameter tagged with the params keyword must be an array type, and
it must be the last parameter in the method's parameter list.

A caller can then invoke the method in either of four ways:

By passing an array of the appropriate type that contains the desired number of
elements.
By passing a comma-separated list of individual arguments of the appropriate type
to the method.
By passing null .
By not providing an argument to the parameter array.

The following example defines a method named GetVowels that returns all the vowels
from a parameter array. The Main method illustrates all four ways of invoking the
method. Callers aren't required to supply any arguments for parameters that include the
params modifier. In that case, the parameter is an empty array.

C#

using System;
using System.Linq;

class ParamsExample
{
 static void Main()
 {
 string fromArray = GetVowels(new[] { "apple", "banana", "pear" });
 Console.WriteLine($"Vowels from array: '{fromArray}'");

 string fromMultipleArguments = GetVowels("apple", "banana", "pear");
 Console.WriteLine($"Vowels from multiple arguments:
'{fromMultipleArguments}'");

 string fromNull = GetVowels(null);
 Console.WriteLine($"Vowels from null: '{fromNull}'");

 string fromNoValue = GetVowels();
 Console.WriteLine($"Vowels from no value: '{fromNoValue}'");
 }

 static string GetVowels(params string[] input)
 {
 if (input == null || input.Length == 0)
 {
 return string.Empty;
 }

A method definition can specify that its parameters are required or that they're optional.
By default, parameters are required. Optional parameters are specified by including the
parameter's default value in the method definition. When the method is called, if no
argument is supplied for an optional parameter, the default value is used instead.

The parameter's default value must be assigned by one of the following kinds of
expressions:

A constant, such as a literal string or number.

An expression of the form default(SomeType) , where SomeType can be either a
value type or a reference type. If it's a reference type, it's effectively the same as
specifying null . You can use the default literal, as the compiler can infer the type
from the parameter's declaration.

An expression of the form new ValType() , where ValType is a value type. This
invokes the value type's implicit parameterless constructor, which isn't an actual
member of the type.

 var vowels = new char[] { 'A', 'E', 'I', 'O', 'U' };
 return string.Concat(
 input.SelectMany(
 word => word.Where(letter =>
vowels.Contains(char.ToUpper(letter)))));
 }
}

// The example displays the following output:
// Vowels from array: 'aeaaaea'
// Vowels from multiple arguments: 'aeaaaea'
// Vowels from null: ''
// Vowels from no value: ''

Optional parameters and arguments

７ Note

In C# 10 and later, when an expression of the form new ValType() invokes the
explicitly defined parameterless constructor of a value type, the compiler
generates an error as the default parameter value must be a compile-time
constant. Use the default(ValType) expression or the default literal to
provide the default parameter value. For more information about

If a method includes both required and optional parameters, optional parameters are
defined at the end of the parameter list, after all required parameters.

The following example defines a method, ExampleMethod , that has one required and two
optional parameters.

C#

If a method with multiple optional arguments is invoked using positional arguments, the
caller must supply an argument for all optional parameters from the first one to the last
one for which an argument is supplied. In the case of the ExampleMethod method, for
example, if the caller supplies an argument for the description parameter, it must also
supply one for the optionalInt parameter. opt.ExampleMethod(2, 2, "Addition of 2 and
2"); is a valid method call; opt.ExampleMethod(2, , "Addition of 2 and 0"); generates
an "Argument missing" compiler error.

If a method is called using named arguments or a combination of positional and named
arguments, the caller can omit any arguments that follow the last positional argument in
the method call.

The following example calls the ExampleMethod method three times. The first two
method calls use positional arguments. The first omits both optional arguments, while
the second omits the last argument. The third method call supplies a positional
argument for the required parameter but uses a named argument to supply a value to
the description parameter while omitting the optionalInt argument.

C#

parameterless constructors, see the Struct initialization and default values
section of the Structure types article.

using System;

public class Options
{
 public void ExampleMethod(int required, int optionalInt = default,
 string? description = default)
 {
 var msg = $"{description ?? "N/A"}: {required} + {optionalInt} =
{required + optionalInt}";
 Console.WriteLine(msg);
 }
}

The use of optional parameters affects overload resolution, or the way in which the C#
compiler determines which particular overload should be invoked by a method call, as
follows:

A method, indexer, or constructor is a candidate for execution if each of its
parameters either is optional or corresponds, by name or by position, to a single
argument in the calling statement, and that argument can be converted to the
type of the parameter.
If more than one candidate is found, overload resolution rules for preferred
conversions are applied to the arguments that are explicitly specified. Omitted
arguments for optional parameters are ignored.
If two candidates are judged to be equally good, preference goes to a candidate
that doesn't have optional parameters for which arguments were omitted in the
call. This is a consequence of a general preference in overload resolution for
candidates that have fewer parameters.

Methods can return a value to the caller. If the return type (the type listed before the
method name) isn't void , the method can return the value by using the return
keyword. A statement with the return keyword followed by a variable, constant, or
expression that matches the return type will return that value to the method caller.
Methods with a non-void return type are required to use the return keyword to return
a value. The return keyword also stops the execution of the method.

If the return type is void , a return statement without a value is still useful to stop the
execution of the method. Without the return keyword, the method will stop executing
when it reaches the end of the code block.

public class OptionsExample
{
 public static void Main()
 {
 var opt = new Options();
 opt.ExampleMethod(10);
 opt.ExampleMethod(10, 2);
 opt.ExampleMethod(12, description: "Addition with zero:");
 }
}
// The example displays the following output:
// N/A: 10 + 0 = 10
// N/A: 10 + 2 = 12
// Addition with zero:: 12 + 0 = 12

Return values

For example, these two methods use the return keyword to return integers:

C#

To use a value returned from a method, the calling method can use the method call
itself anywhere a value of the same type would be sufficient. You can also assign the
return value to a variable. For example, the following two code examples accomplish the
same goal:

C#

C#

Using a local variable, in this case, result , to store a value is optional. It may help the
readability of the code, or it may be necessary if you need to store the original value of
the argument for the entire scope of the method.

Sometimes, you want your method to return more than a single value. You can do this
easily by using tuple types and tuple literals. The tuple type defines the data types of the
tuple's elements. Tuple literals provide the actual values of the returned tuple. In the
following example, (string, string, string, int) defines the tuple type that is
returned by the GetPersonalInfo method. The expression (per.FirstName,
per.MiddleName, per.LastName, per.Age) is the tuple literal; the method returns the first,
middle, and last name, along with the age, of a PersonInfo object.

class SimpleMath
{
 public int AddTwoNumbers(int number1, int number2)
 {
 return number1 + number2;
 }

 public int SquareANumber(int number)
 {
 return number * number;
 }
}

int result = obj.AddTwoNumbers(1, 2);
result = obj.SquareANumber(result);
// The result is 9.
Console.WriteLine(result);

result = obj.SquareANumber(obj.AddTwoNumbers(1, 2));
// The result is 9.
Console.WriteLine(result);

C#

The caller can then consume the returned tuple with code like the following:

C#

Names can also be assigned to the tuple elements in the tuple type definition. The
following example shows an alternate version of the GetPersonalInfo method that uses
named elements:

C#

The previous call to the GetPersonalInfo method can then be modified as follows:

C#

If a method is passed an array as an argument and modifies the value of individual
elements, it isn't necessary for the method to return the array, although you may choose
to do so for good style or functional flow of values. This is because C# passes all
reference types by value, and the value of an array reference is the pointer to the array.
In the following example, changes to the contents of the values array that are made in
the DoubleValues method are observable by any code that has a reference to the array.

C#

public (string, string, string, int) GetPersonalInfo(string id)
{
 PersonInfo per = PersonInfo.RetrieveInfoById(id);
 return (per.FirstName, per.MiddleName, per.LastName, per.Age);
}

var person = GetPersonalInfo("111111111");
Console.WriteLine($"{person.Item1} {person.Item3}: age = {person.Item4}");

public (string FName, string MName, string LName, int Age)
GetPersonalInfo(string id)
{
 PersonInfo per = PersonInfo.RetrieveInfoById(id);
 return (per.FirstName, per.MiddleName, per.LastName, per.Age);
}

var person = GetPersonalInfo("111111111");
Console.WriteLine($"{person.FName} {person.LName}: age = {person.Age}");

using System;

Ordinarily, there are two ways to add a method to an existing type:

Modify the source code for that type. You can't do this, of course, if you don't own
the type's source code. And this becomes a breaking change if you also add any
private data fields to support the method.
Define the new method in a derived class. A method can't be added in this way
using inheritance for other types, such as structures and enumerations. Nor can it
be used to "add" a method to a sealed class.

Extension methods let you "add" a method to an existing type without modifying the
type itself or implementing the new method in an inherited type. The extension method
also doesn't have to reside in the same assembly as the type it extends. You call an
extension method as if it were a defined member of a type.

For more information, see Extension Methods.

By using the async feature, you can invoke asynchronous methods without using explicit
callbacks or manually splitting your code across multiple methods or lambda
expressions.

public class ArrayValueExample
{
 static void Main(string[] args)
 {
 int[] values = { 2, 4, 6, 8 };
 DoubleValues(values);
 foreach (var value in values)
 Console.Write("{0} ", value);
 }

 public static void DoubleValues(int[] arr)
 {
 for (int ctr = 0; ctr <= arr.GetUpperBound(0); ctr++)
 arr[ctr] = arr[ctr] * 2;
 }
}
// The example displays the following output:
// 4 8 12 16

Extension methods

Async Methods

If you mark a method with the async modifier, you can use the await operator in the
method. When control reaches an await expression in the async method, control
returns to the caller if the awaited task isn't completed, and progress in the method with
the await keyword is suspended until the awaited task completes. When the task is
complete, execution can resume in the method.

An async method typically has a return type of Task<TResult>, Task,
IAsyncEnumerable<T>or void . The void return type is used primarily to define event
handlers, where a void return type is required. An async method that returns void can't
be awaited, and the caller of a void-returning method can't catch exceptions that the
method throws. An async method can have any task-like return type.

In the following example, DelayAsync is an async method that has a return statement
that returns an integer. Because it's an async method, its method declaration must have
a return type of Task<int> . Because the return type is Task<int> , the evaluation of the
await expression in DoSomethingAsync produces an integer, as the following int result
= await delayTask statement demonstrates.

C#

７ Note

An async method returns to the caller when either it encounters the first awaited
object that's not yet complete or it gets to the end of the async method, whichever
occurs first.

class Program
{
 static Task Main() => DoSomethingAsync();

 static async Task DoSomethingAsync()
 {
 Task<int> delayTask = DelayAsync();
 int result = await delayTask;

 // The previous two statements may be combined into
 // the following statement.
 //int result = await DelayAsync();

 Console.WriteLine($"Result: {result}");
 }

 static async Task<int> DelayAsync()
 {
 await Task.Delay(100);
 return 5;

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1

An async method can't declare any in, ref, or out parameters, but it can call methods
that have such parameters.

For more information about async methods, see Asynchronous programming with async
and await and Async return types.

It's common to have method definitions that simply return immediately with the result
of an expression, or that have a single statement as the body of the method. There's a
syntax shortcut for defining such methods using => :

C#

If the method returns void or is an async method, the body of the method must be a
statement expression (same as with lambdas). For properties and indexers, they must be
read-only, and you don't use the get accessor keyword.

An iterator performs a custom iteration over a collection, such as a list or an array. An
iterator uses the yield return statement to return each element one at a time. When a
yield return statement is reached, the current location is remembered so that the
caller can request the next element in the sequence.

The return type of an iterator can be IEnumerable, IEnumerable<T>,
IAsyncEnumerable<T>, IEnumerator, or IEnumerator<T>.

For more information, see Iterators.

 }
}
// Example output:
// Result: 5

Expression-bodied members

public Point Move(int dx, int dy) => new Point(x + dx, y + dy);
public void Print() => Console.WriteLine(First + " " + Last);
// Works with operators, properties, and indexers too.
public static Complex operator +(Complex a, Complex b) => a.Add(b);
public string Name => First + " " + Last;
public Customer this[long id] => store.LookupCustomer(id);

Iterators

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1

Access Modifiers
Static Classes and Static Class Members
Inheritance
Abstract and Sealed Classes and Class Members
params
out
ref
in
Passing Parameters

See also

Properties
Article • 2022-09-29 • 10 minutes to read

Properties are first class citizens in C#. The language defines syntax that enables
developers to write code that accurately expresses their design intent.

Properties behave like fields when they're accessed. However, unlike fields, properties
are implemented with accessors that define the statements executed when a property is
accessed or assigned.

The syntax for properties is a natural extension to fields. A field defines a storage
location:

C#

A property definition contains declarations for a get and set accessor that retrieves
and assigns the value of that property:

C#

The syntax shown above is the auto property syntax. The compiler generates the storage
location for the field that backs up the property. The compiler also implements the body
of the get and set accessors.

Sometimes, you need to initialize a property to a value other than the default for its
type. C# enables that by setting a value after the closing brace for the property. You may

Property syntax

public class Person
{
 public string FirstName;

 // Omitted for brevity.
}

public class Person
{
 public string FirstName { get; set; }

 // Omitted for brevity.
}

prefer the initial value for the FirstName property to be the empty string rather than
null . You would specify that as shown below:

C#

Specific initialization is most useful for read-only properties, as you'll see later in this
article.

You can also define the storage yourself, as shown below:

C#

When a property implementation is a single expression, you can use expression-bodied
members for the getter or setter:

C#

This simplified syntax will be used where applicable throughout this article.

public class Person
{
 public string FirstName { get; set; } = string.Empty;

 // Omitted for brevity.
}

public class Person
{
 public string FirstName
 {
 get { return _firstName; }
 set { _firstName = value; }
 }
 private string _firstName;

 // Omitted for brevity.
}

public class Person
{
 public string FirstName
 {
 get => _firstName;
 set => _firstName = value;
 }
 private string _firstName;

 // Omitted for brevity.
}

The property definition shown above is a read-write property. Notice the keyword value
in the set accessor. The set accessor always has a single parameter named value . The
get accessor must return a value that is convertible to the type of the property (string
in this example).

That's the basics of the syntax. There are many different variations that support various
different design idioms. Let's explore, and learn the syntax options for each.

The examples above showed one of the simplest cases of property definition: a read-
write property with no validation. By writing the code you want in the get and set
accessors, you can create many different scenarios.

You can write code in the set accessor to ensure that the values represented by a
property are always valid. For example, suppose one rule for the Person class is that the
name can't be blank or white space. You would write that as follows:

C#

The preceding example can be simplified by using a throw expression as part of the
property setter validation:

C#

Validation

public class Person
{
 public string FirstName
 {
 get => _firstName;
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 _firstName = value;
 }
 }
 private string _firstName;

 // Omitted for brevity.
}

public class Person
{
 public string FirstName
 {

The example above enforces the rule that the first name must not be blank or white
space. If a developer writes

C#

That assignment throws an ArgumentException . Because a property set accessor must
have a void return type, you report errors in the set accessor by throwing an exception.

You can extend this same syntax to anything needed in your scenario. You can check the
relationships between different properties, or validate against any external conditions.
Any valid C# statements are valid in a property accessor.

Up to this point, all the property definitions you have seen are read/write properties
with public accessors. That's not the only valid accessibility for properties. You can create
read-only properties, or give different accessibility to the set and get accessors. Suppose
that your Person class should only enable changing the value of the FirstName property
from other methods in that class. You could give the set accessor private accessibility
instead of public :

C#

Now, the FirstName property can be accessed from any code, but it can only be
assigned from other code in the Person class.

 get => _firstName;
 set => _firstName = (!string.IsNullOrWhiteSpace(value)) ? value :
throw new ArgumentException("First name must not be blank");
 }
 private string _firstName;

 // Omitted for brevity.
}

hero.FirstName = "";

Access control

public class Person
{
 public string FirstName { get; private set; }

 // Omitted for brevity.
}

You can add any restrictive access modifier to either the set or get accessors. Any access
modifier you place on the individual accessor must be more limited than the access
modifier on the property definition. The above is legal because the FirstName property
is public , but the set accessor is private . You couldn't declare a private property with
a public accessor. Property declarations can also be declared protected , internal ,
protected internal , or, even private .

It's also legal to place the more restrictive modifier on the get accessor. For example,
you could have a public property, but restrict the get accessor to private . That
scenario is rarely done in practice.

You can also restrict modifications to a property so that it can only be set in a
constructor. You can modify the Person class so as follows:

C#

The preceding example requires callers to use the constructor that includes the
FirstName parameter. Callers can't use object initializers to assign a value to the
property. To support initializers, you can make the set accessor an init accessor, as
shown in the following code:

C#

Read-only

public class Person
{
 public Person(string firstName) => FirstName = firstName;

 public string FirstName { get; }

 // Omitted for brevity.
}

Init-only

public class Person
{
 public Person() { }
 public Person(string firstName) => FirstName = firstName;

 public string FirstName { get; init; }

The preceding example allows a caller to create a Person using the default constructor,
even when that code doesn't set the FirstName property. Beginning in C# 11, you can
require callers to set that property:

C#

The preceding code makes two addition to the Person class. First, the FirstName
property declaration includes the required modifier. That means any code that creates a
new Person must set this property. Second, the constructor that takes a firstName
parameter has the System.Diagnostics.CodeAnalysis.SetsRequiredMembersAttribute
attribute. This attribute informs the compiler that this constructor sets all required
members.

Callers must either use the constructor with SetsRequiredMembers or set the FirstName
property using an object initializer, as shown in the following code:

C#

 // Omitted for brevity.
}

public class Person
{
 public Person() { }

 [SetsRequiredMembers]
 public Person(string firstName) => FirstName = firstName;

 public required string FirstName { get; init; }

 // Omitted for brevity.
}

） Important

Don't confuse required with non-nullable. It's valid to set a required property to
null or default . If the type is non-nullable, such as string in these examples, the
compiler issues a warning.

var person = new VersionNinePoint2.Person("John");
person = new VersionNinePoint2.Person{ FirstName = "John"};
// Error CS9035: Required member `Person.FirstName` must be set:
//person = new VersionNinePoint2.Person();

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.setsrequiredmembersattribute

A property doesn't need to simply return the value of a member field. You can create
properties that return a computed value. Let's expand the Person object to return the
full name, computed by concatenating the first and last names:

C#

The example above uses the string interpolation feature to create the formatted string
for the full name.

You can also use an expression-bodied member, which provides a more succinct way to
create the computed FullName property:

C#

Expression-bodied members use the lambda expression syntax to define methods that
contain a single expression. Here, that expression returns the full name for the person
object.

You can mix the concept of a computed property with storage and create a cached
evaluated property. For example, you could update the FullName property so that the
string formatting only happened the first time it was accessed:

C#

Computed properties

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName { get { return $"{FirstName} {LastName}"; } }
}

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName => $"{FirstName} {LastName}";
}

Cached evaluated properties

The above code contains a bug though. If code updates the value of either the
FirstName or LastName property, the previously evaluated fullName field is invalid. You
modify the set accessors of the FirstName and LastName property so that the fullName
field is calculated again:

C#

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 private string _fullName;
 public string FullName
 {
 get
 {
 if (_fullName is null)
 _fullName = $"{FirstName} {LastName}";
 return _fullName;
 }
 }
}

public class Person
{
 private string _firstName;
 public string FirstName
 {
 get => _firstName;
 set
 {
 _firstName = value;
 _fullName = null;
 }
 }

 private string _lastName;
 public string LastName
 {
 get => _lastName;
 set
 {
 _lastName = value;
 _fullName = null;
 }
 }

 private string _fullName;
 public string FullName
 {

This final version evaluates the FullName property only when needed. If the previously
calculated version is valid, it's used. If another state change invalidates the previously
calculated version, it will be recalculated. Developers that use this class don't need to
know the details of the implementation. None of these internal changes affect the use of
the Person object. That's the key reason for using Properties to expose data members of
an object.

Field attributes can be attached to the compiler generated backing field in auto-
implemented properties. For example, consider a revision to the Person class that adds
a unique integer Id property. You write the Id property using an auto-implemented
property, but your design doesn't call for persisting the Id property. The
NonSerializedAttribute can only be attached to fields, not properties. You can attach the
NonSerializedAttribute to the backing field for the Id property by using the field:
specifier on the attribute, as shown in the following example:

C#

This technique works for any attribute you attach to the backing field on the auto-
implemented property.

 get
 {
 if (_fullName is null)
 _fullName = $"{FirstName} {LastName}";
 return _fullName;
 }
 }
}

Attaching attributes to auto-implemented
properties

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 [field:NonSerialized]
 public int Id { get; set; }

 public string FullName => $"{FirstName} {LastName}";
}

https://learn.microsoft.com/en-us/dotnet/api/system.nonserializedattribute
https://learn.microsoft.com/en-us/dotnet/api/system.nonserializedattribute

A final scenario where you need to write code in a property accessor is to support the
INotifyPropertyChanged interface used to notify data binding clients that a value has
changed. When the value of a property changes, the object raises the
INotifyPropertyChanged.PropertyChanged event to indicate the change. The data
binding libraries, in turn, update display elements based on that change. The code
below shows how you would implement INotifyPropertyChanged for the FirstName
property of this person class.

C#

The ?. operator is called the null conditional operator. It checks for a null reference
before evaluating the right side of the operator. The end result is that if there are no
subscribers to the PropertyChanged event, the code to raise the event doesn't execute. It
would throw a NullReferenceException without this check in that case. For more
information, see events. This example also uses the new nameof operator to convert
from the property name symbol to its text representation. Using nameof can reduce
errors where you've mistyped the name of the property.

Again, implementing INotifyPropertyChanged is an example of a case where you can
write code in your accessors to support the scenarios you need.

Implementing INotifyPropertyChanged

public class Person : INotifyPropertyChanged
{
 public string FirstName
 {
 get => _firstName;
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 if (value != _firstName)
 {
 _firstName = value;
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(FirstName)));
 }
 }
 }
 private string _firstName;

 public event PropertyChangedEventHandler PropertyChanged;
}

https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged.propertychanged
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged

Properties are a form of smart fields in a class or object. From outside the object, they
appear like fields in the object. However, properties can be implemented using the full
palette of C# functionality. You can provide validation, different accessibility, lazy
evaluation, or any requirements your scenarios need.

Summing up

Indexers
Article • 2021-12-04 • 9 minutes to read

Indexers are similar to properties. In many ways indexers build on the same language
features as properties. Indexers enable indexed properties: properties referenced using
one or more arguments. Those arguments provide an index into some collection of
values.

You access an indexer through a variable name and square brackets. You place the
indexer arguments inside the brackets:

C#

You declare indexers using the this keyword as the property name, and declaring the
arguments within square brackets. This declaration would match the usage shown in the
previous paragraph:

C#

From this initial example, you can see the relationship between the syntax for properties
and for indexers. This analogy carries through most of the syntax rules for indexers.
Indexers can have any valid access modifiers (public, protected internal, protected,
internal, private or private protected). They may be sealed, virtual, or abstract. As with
properties, you can specify different access modifiers for the get and set accessors in an
indexer. You may also specify read-only indexers (by omitting the set accessor), or write-
only indexers (by omitting the get accessor).

You can apply almost everything you learn from working with properties to indexers.
The only exception to that rule is auto implemented properties. The compiler cannot
always generate the correct storage for an indexer.

Indexer Syntax

var item = someObject["key"];
someObject["AnotherKey"] = item;

public int this[string key]
{
 get { return storage.Find(key); }
 set { storage.SetAt(key, value); }
}

The presence of arguments to reference an item in a set of items distinguishes indexers
from properties. You may define multiple indexers on a type, as long as the argument
lists for each indexer is unique. Let's explore different scenarios where you might use
one or more indexers in a class definition.

You would define indexers in your type when its API models some collection where you
define the arguments to that collection. Your indexers may or may not map directly to
the collection types that are part of the .NET core framework. Your type may have other
responsibilities in addition to modeling a collection. Indexers enable you to provide the
API that matches your type's abstraction without exposing the inner details of how the
values for that abstraction are stored or computed.

Let's walk through some of the common scenarios for using indexers. You can access the
sample folder for indexers . For download instructions, see Samples and Tutorials.

One of the most common scenarios for creating indexers is when your type models an
array, or a vector. You can create an indexer to model an ordered list of data.

The advantage of creating your own indexer is that you can define the storage for that
collection to suit your needs. Imagine a scenario where your type models historical data
that is too large to load into memory at once. You need to load and unload sections of
the collection based on usage. The example following models this behavior. It reports
on how many data points exist. It creates pages to hold sections of the data on demand.
It removes pages from memory to make room for pages needed by more recent
requests.

C#

Scenarios

Arrays and Vectors

public class DataSamples
{
 private class Page
 {
 private readonly List<Measurements> pageData = new
List<Measurements>();
 private readonly int startingIndex;
 private readonly int length;
 private bool dirty;
 private DateTime lastAccess;

 public Page(int startingIndex, int length)
 {

https://github.com/dotnet/samples/tree/main/csharp/indexers
https://learn.microsoft.com/en-ca/dotnet/samples-and-tutorials/#view-and-download-samples

 this.startingIndex = startingIndex;
 this.length = length;
 lastAccess = DateTime.Now;

 // This stays as random stuff:
 var generator = new Random();
 for(int i=0; i < length; i++)
 {
 var m = new Measurements
 {
 HiTemp = generator.Next(50, 95),
 LoTemp = generator.Next(12, 49),
 AirPressure = 28.0 + generator.NextDouble() * 4
 };
 pageData.Add(m);
 }
 }
 public bool HasItem(int index) =>
 ((index >= startingIndex) &&
 (index < startingIndex + length));

 public Measurements this[int index]
 {
 get
 {
 lastAccess = DateTime.Now;
 return pageData[index - startingIndex];
 }
 set
 {
 pageData[index - startingIndex] = value;
 dirty = true;
 lastAccess = DateTime.Now;
 }
 }

 public bool Dirty => dirty;
 public DateTime LastAccess => lastAccess;
 }

 private readonly int totalSize;
 private readonly List<Page> pagesInMemory = new List<Page>();

 public DataSamples(int totalSize)
 {
 this.totalSize = totalSize;
 }

 public Measurements this[int index]
 {
 get
 {
 if (index < 0)
 throw new IndexOutOfRangeException("Cannot index less than
0");

 if (index >= totalSize)
 throw new IndexOutOfRangeException("Cannot index past the
end of storage");

 var page = updateCachedPagesForAccess(index);
 return page[index];
 }
 set
 {
 if (index < 0)
 throw new IndexOutOfRangeException("Cannot index less than
0");
 if (index >= totalSize)
 throw new IndexOutOfRangeException("Cannot index past the
end of storage");
 var page = updateCachedPagesForAccess(index);

 page[index] = value;
 }
 }

 private Page updateCachedPagesForAccess(int index)
 {
 foreach (var p in pagesInMemory)
 {
 if (p.HasItem(index))
 {
 return p;
 }
 }
 var startingIndex = (index / 1000) * 1000;
 var newPage = new Page(startingIndex, 1000);
 addPageToCache(newPage);
 return newPage;
 }

 private void addPageToCache(Page p)
 {
 if (pagesInMemory.Count > 4)
 {
 // remove oldest non-dirty page:
 var oldest = pagesInMemory
 .Where(page => !page.Dirty)
 .OrderBy(page => page.LastAccess)
 .FirstOrDefault();
 // Note that this may keep more than 5 pages in memory
 // if too much is dirty
 if (oldest != null)
 pagesInMemory.Remove(oldest);
 }
 pagesInMemory.Add(p);
 }
}

You can follow this design idiom to model any sort of collection where there are good
reasons not to load the entire set of data into an in-memory collection. Notice that the
Page class is a private nested class that is not part of the public interface. Those details
are hidden from any users of this class.

Another common scenario is when you need to model a dictionary or a map. This
scenario is when your type stores values based on key, typically text keys. This example
creates a dictionary that maps command line arguments to lambda expressions that
manage those options. The following example shows two classes: an ArgsActions class
that maps a command line option to an Action delegate, and an ArgsProcessor that
uses the ArgsActions to execute each Action when it encounters that option.

C#

Dictionaries

public class ArgsProcessor
{
 private readonly ArgsActions actions;

 public ArgsProcessor(ArgsActions actions)
 {
 this.actions = actions;
 }

 public void Process(string[] args)
 {
 foreach(var arg in args)
 {
 actions[arg]?.Invoke();
 }
 }

}
public class ArgsActions
{
 readonly private Dictionary<string, Action> argsActions = new
Dictionary<string, Action>();

 public Action this[string s]
 {
 get
 {
 Action action;
 Action defaultAction = () => {} ;
 return argsActions.TryGetValue(s, out action) ? action :
defaultAction;
 }
 }

In this example, the ArgsAction collection maps closely to the underlying collection. The
get determines if a given option has been configured. If so, it returns the Action
associated with that option. If not, it returns an Action that does nothing. The public
accessor does not include a set accessor. Rather, the design is using a public method
for setting options.

You can create indexers that use multiple arguments. In addition, those arguments are
not constrained to be the same type. Let's look at two examples.

The first example shows a class that generates values for a Mandelbrot set. For more
information on the mathematics behind the set, read this article . The indexer uses two
doubles to define a point in the X, Y plane. The get accessor computes the number of
iterations until a point is determined to be not in the set. If the maximum iterations is
reached, the point is in the set, and the class's maxIterations value is returned. (The
computer generated images popularized for the Mandelbrot set define colors for the
number of iterations necessary to determine that a point is outside the set.)

C#

 public void SetOption(string s, Action a)
 {
 argsActions[s] = a;
 }
}

Multi-Dimensional Maps

public class Mandelbrot
{
 readonly private int maxIterations;

 public Mandelbrot(int maxIterations)
 {
 this.maxIterations = maxIterations;
 }

 public int this [double x, double y]
 {
 get
 {
 var iterations = 0;
 var x0 = x;
 var y0 = y;

 while ((x*x + y * y < 4) &&
 (iterations < maxIterations))

https://en.wikipedia.org/wiki/Mandelbrot_set

The Mandelbrot Set defines values at every (x,y) coordinate for real number values. That
defines a dictionary that could contain an infinite number of values. Therefore, there is
no storage behind the set. Instead, this class computes the value for each point when
code calls the get accessor. There's no underlying storage used.

Let's examine one last use of indexers, where the indexer takes multiple arguments of
different types. Consider a program that manages historical temperature data. This
indexer uses a city and a date to set or get the high and low temperatures for that
location:

C#

 {
 var newX = x * x - y * y + x0;
 y = 2 * x * y + y0;
 x = newX;
 iterations++;
 }
 return iterations;
 }
 }
}

using DateMeasurements =
 System.Collections.Generic.Dictionary<System.DateTime,
IndexersSamples.Common.Measurements>;
using CityDataMeasurements =
 System.Collections.Generic.Dictionary<string,
System.Collections.Generic.Dictionary<System.DateTime,
IndexersSamples.Common.Measurements>>;

public class HistoricalWeatherData
{
 readonly CityDataMeasurements storage = new CityDataMeasurements();

 public Measurements this[string city, DateTime date]
 {
 get
 {
 var cityData = default(DateMeasurements);

 if (!storage.TryGetValue(city, out cityData))
 throw new ArgumentOutOfRangeException(nameof(city), "City
not found");

 // strip out any time portion:
 var index = date.Date;
 var measure = default(Measurements);
 if (cityData.TryGetValue(index, out measure))
 return measure;
 throw new ArgumentOutOfRangeException(nameof(date), "Date not

This example creates an indexer that maps weather data on two different arguments: a
city (represented by a string) and a date (represented by a DateTime). The internal
storage uses two Dictionary classes to represent the two-dimensional dictionary. The
public API no longer represents the underlying storage. Rather, the language features of
indexers enables you to create a public interface that represents your abstraction, even
though the underlying storage must use different core collection types.

There are two parts of this code that may be unfamiliar to some developers. These two
using directives:

C#

create an alias for a constructed generic type. Those statements enable the code later to
use the more descriptive DateMeasurements and CityDataMeasurements names instead of
the generic construction of Dictionary<DateTime, Measurements> and
Dictionary<string, Dictionary<DateTime, Measurements> > . This construct does require
using the fully qualified type names on the right side of the = sign.

The second technique is to strip off the time portions of any DateTime object used to
index into the collections. .NET doesn't include a date-only type. Developers use the

found");
 }
 set
 {
 var cityData = default(DateMeasurements);

 if (!storage.TryGetValue(city, out cityData))
 {
 cityData = new DateMeasurements();
 storage.Add(city, cityData);
 }

 // Strip out any time portion:
 var index = date.Date;
 cityData[index] = value;
 }
 }
}

using DateMeasurements =
System.Collections.Generic.Dictionary<System.DateTime,
IndexersSamples.Common.Measurements>;
using CityDataMeasurements = System.Collections.Generic.Dictionary<string,
System.Collections.Generic.Dictionary<System.DateTime,
IndexersSamples.Common.Measurements>>;

DateTime type, but use the Date property to ensure that any DateTime object from that
day are equal.

You should create indexers anytime you have a property-like element in your class
where that property represents not a single value, but rather a collection of values
where each individual item is identified by a set of arguments. Those arguments can
uniquely identify which item in the collection should be referenced. Indexers extend the
concept of properties, where a member is treated like a data item from outside the class,
but like a method on the inside. Indexers allow arguments to find a single item in a
property that represents a set of items.

Summing Up

Iterators
Article • 2021-11-10 • 6 minutes to read

Almost every program you write will have some need to iterate over a collection. You'll
write code that examines every item in a collection.

You'll also create iterator methods, which are methods that produce an iterator for the
elements of that class. An iterator is an object that traverses a container, particularly lists.
Iterators can be used for:

Performing an action on each item in a collection.
Enumerating a custom collection.
Extending LINQ or other libraries.
Creating a data pipeline where data flows efficiently through iterator methods.

The C# language provides features for both generating and consuming sequences.
These sequences can be produced and consumed synchronously or asynchronously.
This article provides an overview of those features.

Enumerating a collection is simple: The foreach keyword enumerates a collection,
executing the embedded statement once for each element in the collection:

C#

That's all. To iterate over all the contents of a collection, the foreach statement is all you
need. The foreach statement isn't magic, though. It relies on two generic interfaces
defined in the .NET core library to generate the code necessary to iterate a collection:
IEnumerable<T> and IEnumerator<T> . This mechanism is explained in more detail below.

Both of these interfaces also have non-generic counterparts: IEnumerable and
IEnumerator . The generic versions are preferred for modern code.

When a sequence is generated asynchronously, you can use the await foreach
statement to asynchronously consume the sequence:

Iterating with foreach

foreach (var item in collection)
{
 Console.WriteLine(item?.ToString());
}

C#

When a sequence is an System.Collections.Generic.IEnumerable<T>, you use foreach .
When a sequence is an System.Collections.Generic.IAsyncEnumerable<T>, you use
await foreach . In the latter case, the sequence is generated asynchronously.

Another great feature of the C# language enables you to build methods that create a
source for an enumeration. These methods are referred to as iterator methods. An
iterator method defines how to generate the objects in a sequence when requested. You
use the yield return contextual keywords to define an iterator method.

You could write this method to produce the sequence of integers from 0 through 9:

C#

The code above shows distinct yield return statements to highlight the fact that you
can use multiple discrete yield return statements in an iterator method. You can (and
often do) use other language constructs to simplify the code of an iterator method. The
method definition below produces the exact same sequence of numbers:

C#

await foreach (var item in asyncSequence)
{
Console.WriteLine(item?.ToString());
}

Enumeration sources with iterator methods

public IEnumerable<int> GetSingleDigitNumbers()
{
 yield return 0;
 yield return 1;
 yield return 2;
 yield return 3;
 yield return 4;
 yield return 5;
 yield return 6;
 yield return 7;
 yield return 8;
 yield return 9;
}

public IEnumerable<int> GetSingleDigitNumbersLoop()
{
 int index = 0;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1

You don't have to decide one or the other. You can have as many yield return
statements as necessary to meet the needs of your method:

C#

All of these preceding examples would have an asynchronous counterpart. In each case,
you'd replace the return type of IEnumerable<T> with an IAsyncEnumerable<T> . For
example, the previous example would have the following asynchronous version:

C#

That's the syntax for both synchronous and asynchronous iterators. Let's consider a real
world example. Imagine you're on an IoT project and the device sensors generate a very

 while (index < 10)
 yield return index++;
}

public IEnumerable<int> GetSetsOfNumbers()
{
 int index = 0;
 while (index < 10)
 yield return index++;

 yield return 50;

 index = 100;
 while (index < 110)
 yield return index++;
}

public async IAsyncEnumerable<int> GetSetsOfNumbersAsync()
{
 int index = 0;
 while (index < 10)
 yield return index++;

 await Task.Delay(500);

 yield return 50;

 await Task.Delay(500);

 index = 100;
 while (index < 110)
 yield return index++;
}

large stream of data. To get a feel for the data, you might write a method that samples
every Nth data element. This small iterator method does the trick:

C#

If reading from the IoT device produces an asynchronous sequence, you'd modify the
method as the following method shows:

C#

There's one important restriction on iterator methods: you can't have both a return
statement and a yield return statement in the same method. The following code won't
compile:

C#

public static IEnumerable<T> Sample<T>(this IEnumerable<T> sourceSequence,
int interval)
{
 int index = 0;
 foreach (T item in sourceSequence)
 {
 if (index++ % interval == 0)
 yield return item;
 }
}

public static async IAsyncEnumerable<T> Sample<T>(this IAsyncEnumerable<T>
sourceSequence, int interval)
{
 int index = 0;
 await foreach (T item in sourceSequence)
 {
 if (index++ % interval == 0)
 yield return item;
 }
}

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index < 10)
 yield return index++;

 yield return 50;

 // generates a compile time error:
 var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109
};

This restriction normally isn't a problem. You have a choice of either using yield return
throughout the method, or separating the original method into multiple methods, some
using return , and some using yield return .

You can modify the last method slightly to use yield return everywhere:

C#

Sometimes, the right answer is to split an iterator method into two different methods.
One that uses return , and a second that uses yield return . Consider a situation where
you might want to return an empty collection, or the first five odd numbers, based on a
boolean argument. You could write that as these two methods:

C#

 return items;
}

public IEnumerable<int> GetFirstDecile()
{
 int index = 0;
 while (index < 10)
 yield return index++;

 yield return 50;

 var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109
};
 foreach (var item in items)
 yield return item;
}

public IEnumerable<int> GetSingleDigitOddNumbers(bool getCollection)
{
 if (getCollection == false)
 return new int[0];
 else
 return IteratorMethod();
}

private IEnumerable<int> IteratorMethod()
{
 int index = 0;
 while (index < 10)
 {
 if (index % 2 == 1)
 yield return index;
 index++;

Look at the methods above. The first uses the standard return statement to return
either an empty collection, or the iterator created by the second method. The second
method uses the yield return statement to create the requested sequence.

The foreach statement expands into a standard idiom that uses the IEnumerable<T> and
IEnumerator<T> interfaces to iterate across all elements of a collection. It also minimizes
errors developers make by not properly managing resources.

The compiler translates the foreach loop shown in the first example into something
similar to this construct:

C#

The exact code generated by the compiler is more complicated, and handles situations
where the object returned by GetEnumerator() implements the IDisposable interface.
The full expansion generates code more like this:

C#

 }
}

Deeper dive into foreach

IEnumerator<int> enumerator = collection.GetEnumerator();
while (enumerator.MoveNext())
{
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
}

{
 var enumerator = collection.GetEnumerator();
 try
 {
 while (enumerator.MoveNext())
 {
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
 }
 }
 finally
 {
 // dispose of enumerator.
 }
}

The compiler translates the first asynchronous sample into something similar to this
construct:

C#

The manner in which the enumerator is disposed of depends on the characteristics of
the type of enumerator . In the general synchronous case, the finally clause expands to:

C#

The general asynchronous case expands to:

C#

However, if the type of enumerator is a sealed type and there's no implicit conversion
from the type of enumerator to IDisposable or IAsyncDisposable , the finally clause
expands to an empty block:

C#

{
 var enumerator = collection.GetAsyncEnumerator();
 try
 {
 while (await enumerator.MoveNextAsync())
 {
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
 }
 }
 finally
 {
 // dispose of async enumerator.
 }
}

finally
{
 (enumerator as IDisposable)?.Dispose();
}

finally
{
 if (enumerator is IAsyncDisposable asyncDisposable)
 await asyncDisposable.DisposeAsync();
}

If there's an implicit conversion from the type of enumerator to IDisposable , and
enumerator is a non-nullable value type, the finally clause expands to:

C#

Thankfully, you don't need to remember all these details. The foreach statement
handles all those nuances for you. The compiler will generate the correct code for any of
these constructs.

finally
{
}

finally
{
 ((IDisposable)enumerator).Dispose();
}

Introduction to delegates and events in
C#
Article • 2022-03-31 • 2 minutes to read

Delegates provide a late binding mechanism in .NET. Late Binding means that you create
an algorithm where the caller also supplies at least one method that implements part of
the algorithm.

For example, consider sorting a list of stars in an astronomy application. You may
choose to sort those stars by their distance from the earth, or the magnitude of the star,
or their perceived brightness.

In all those cases, the Sort() method does essentially the same thing: arranges the items
in the list based on some comparison. The code that compares two stars is different for
each of the sort orderings.

These kinds of solutions have been used in software for half a century. The C# language
delegate concept provides first class language support, and type safety around the
concept.

As you'll see later in this series, the C# code you write for algorithms like this is type
safe. The compiler ensures that the types match for arguments and return types.

Function pointers were added to C# 9 for similar scenarios, where you need more
control over the calling convention. The code associated with a delegate is invoked
using a virtual method added to a delegate type. Using function pointers, you can
specify different conventions.

The language designers enumerated several goals for the feature that eventually
became delegates.

The team wanted a common language construct that could be used for any late binding
algorithms. Delegates enable developers to learn one concept, and use that same
concept across many different software problems.

Second, the team wanted to support both single and multicast method calls. (Multicast
delegates are delegates that chain together multiple method calls. You'll see examples
later in this series.)

Language Design Goals for Delegates

The team wanted delegates to support the same type safety that developers expect
from all C# constructs.

Finally, the team recognized an event pattern is one specific pattern where delegates, or
any late binding algorithm, is useful. The team wanted to ensure the code for delegates
could provide the basis for the .NET event pattern.

The result of all that work was the delegate and event support in C# and .NET.

The remaining articles in this series will cover language features, library support, and
common idioms used when you work with delegates and events. You'll learn about:

The delegate keyword and what code it generates.
The features in the System.Delegate class, and how those features are used.
How to create type-safe delegates.
How to create methods that can be invoked through delegates.
How to work with delegates and events by using lambda expressions.
How delegates become one of the building blocks for LINQ.
How delegates are the basis for the .NET event pattern, and how they're different.

Let's get started.

Next

System.Delegate and the delegate
keyword
Article • 2021-09-15 • 6 minutes to read

Previous

This article covers the classes in .NET that support delegates, and how those map to the
delegate keyword.

Let's start with the 'delegate' keyword, because that's primarily what you will use as you
work with delegates. The code that the compiler generates when you use the delegate
keyword will map to method calls that invoke members of the Delegate and
MulticastDelegate classes.

You define a delegate type using syntax that is similar to defining a method signature.
You just add the delegate keyword to the definition.

Let's continue to use the List.Sort() method as our example. The first step is to create a
type for the comparison delegate:

C#

The compiler generates a class, derived from System.Delegate that matches the
signature used (in this case, a method that returns an integer, and has two arguments).
The type of that delegate is Comparison . The Comparison delegate type is a generic type.
For details on generics see here.

Notice that the syntax may appear as though it is declaring a variable, but it is actually
declaring a type. You can define delegate types inside classes, directly inside
namespaces, or even in the global namespace.

Define delegate types

// From the .NET Core library

// Define the delegate type:
public delegate int Comparison<in T>(T left, T right);

７ Note

https://learn.microsoft.com/en-us/dotnet/api/system.delegate
https://learn.microsoft.com/en-us/dotnet/api/system.multicastdelegate

The compiler also generates add and remove handlers for this new type so that clients
of this class can add and remove methods from an instance's invocation list. The
compiler will enforce that the signature of the method being added or removed
matches the signature used when declaring the method.

After defining the delegate, you can create an instance of that type. Like all variables in
C#, you cannot declare delegate instances directly in a namespace, or in the global
namespace.

C#

The type of the variable is Comparison<T> , the delegate type defined earlier. The name of
the variable is comparator .

That code snippet above declared a member variable inside a class. You can also declare
delegate variables that are local variables, or arguments to methods.

You invoke the methods that are in the invocation list of a delegate by calling that
delegate. Inside the Sort() method, the code will call the comparison method to
determine which order to place objects:

C#

In the line above, the code invokes the method attached to the delegate. You treat the
variable as a method name, and invoke it using normal method call syntax.

That line of code makes an unsafe assumption: There's no guarantee that a target has
been added to the delegate. If no targets have been attached, the line above would

Declaring delegate types (or other types) directly in the global namespace is not
recommended.

Declare instances of delegates

// inside a class definition:

// Declare an instance of that type:
public Comparison<T> comparator;

Invoke delegates

int result = comparator(left, right);

cause a NullReferenceException to be thrown. The idioms used to address this problem
are more complicated than a simple null-check, and are covered later in this series.

That's how a delegate type is defined, and how delegate instances are declared and
invoked.

Developers that want to use the List.Sort() method need to define a method whose
signature matches the delegate type definition, and assign it to the delegate used by
the sort method. This assignment adds the method to the invocation list of that
delegate object.

Suppose you wanted to sort a list of strings by their length. Your comparison function
might be the following:

C#

The method is declared as a private method. That's fine. You may not want this method
to be part of your public interface. It can still be used as the comparison method when
attached to a delegate. The calling code will have this method attached to the target list
of the delegate object, and can access it through that delegate.

You create that relationship by passing that method to the List.Sort() method:

C#

Notice that the method name is used, without parentheses. Using the method as an
argument tells the compiler to convert the method reference into a reference that can
be used as a delegate invocation target, and attach that method as an invocation target.

You could also have been explicit by declaring a variable of type Comparison<string>
and doing an assignment:

C#

Assign, add, and remove invocation targets

private static int CompareLength(string left, string right) =>
 left.Length.CompareTo(right.Length);

phrases.Sort(CompareLength);

Comparison<string> comparer = CompareLength;
phrases.Sort(comparer);

In uses where the method being used as a delegate target is a small method, it's
common to use lambda expression syntax to perform the assignment:

C#

Using lambda expressions for delegate targets is covered more in a later section.

The Sort() example typically attaches a single target method to the delegate. However,
delegate objects do support invocation lists that have multiple target methods attached
to a delegate object.

The language support described above provides the features and support you'll typically
need to work with delegates. These features are built on two classes in the .NET Core
framework: Delegate and MulticastDelegate.

The System.Delegate class and its single direct subclass, System.MulticastDelegate ,
provide the framework support for creating delegates, registering methods as delegate
targets, and invoking all methods that are registered as a delegate target.

Interestingly, the System.Delegate and System.MulticastDelegate classes are not
themselves delegate types. They do provide the basis for all specific delegate types. That
same language design process mandated that you cannot declare a class that derives
from Delegate or MulticastDelegate . The C# language rules prohibit it.

Instead, the C# compiler creates instances of a class derived from MulticastDelegate
when you use the C# language keyword to declare delegate types.

This design has its roots in the first release of C# and .NET. One goal for the design team
was to ensure that the language enforced type safety when using delegates. That meant
ensuring that delegates were invoked with the right type and number of arguments.
And, that any return type was correctly indicated at compile time. Delegates were part of
the 1.0 .NET release, which was before generics.

The best way to enforce this type safety was for the compiler to create the concrete
delegate classes that represented the method signature being used.

Comparison<string> comparer = (left, right) =>
left.Length.CompareTo(right.Length);
phrases.Sort(comparer);

Delegate and MulticastDelegate classes

https://learn.microsoft.com/en-us/dotnet/api/system.delegate
https://learn.microsoft.com/en-us/dotnet/api/system.multicastdelegate

Even though you cannot create derived classes directly, you will use the methods
defined on these classes. Let's go through the most common methods that you will use
when you work with delegates.

The first, most important fact to remember is that every delegate you work with is
derived from MulticastDelegate . A multicast delegate means that more than one
method target can be invoked when invoking through a delegate. The original design
considered making a distinction between delegates where only one target method
could be attached and invoked, and delegates where multiple target methods could be
attached and invoked. That distinction proved to be less useful in practice than originally
thought. The two different classes were already created, and have been in the
framework since its initial public release.

The methods that you will use the most with delegates are Invoke() and BeginInvoke()
/ EndInvoke() . Invoke() will invoke all the methods that have been attached to a
particular delegate instance. As you saw above, you typically invoke delegates using the
method call syntax on the delegate variable. As you'll see later in this series, there are
patterns that work directly with these methods.

Now that you've seen the language syntax and the classes that support delegates, let's
examine how strongly typed delegates are used, created, and invoked.

Next

Strongly Typed Delegates
Article • 2021-09-15 • 2 minutes to read

Previous

In the previous article, you saw that you create specific delegate types using the
delegate keyword.

The abstract Delegate class provides the infrastructure for loose coupling and
invocation. Concrete Delegate types become much more useful by embracing and
enforcing type safety for the methods that are added to the invocation list for a
delegate object. When you use the delegate keyword and define a concrete delegate
type, the compiler generates those methods.

In practice, this would lead to creating new delegate types whenever you need a
different method signature. This work could get tedious after a time. Every new feature
requires new delegate types.

Thankfully, this isn't necessary. The .NET Core framework contains several types that you
can reuse whenever you need delegate types. These are generic definitions so you can
declare customizations when you need new method declarations.

The first of these types is the Action type, and several variations:

C#

The in modifier on the generic type argument is covered in the article on covariance.

There are variations of the Action delegate that contain up to 16 arguments such as
Action<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16>. It's important that
these definitions use different generic arguments for each of the delegate arguments:
That gives you maximum flexibility. The method arguments need not be, but may be,
the same type.

Use one of the Action types for any delegate type that has a void return type.

The framework also includes several generic delegate types that you can use for
delegate types that return values:

public delegate void Action();
public delegate void Action<in T>(T arg);
public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);
// Other variations removed for brevity.

https://learn.microsoft.com/en-us/dotnet/api/system.action
https://learn.microsoft.com/en-us/dotnet/api/system.action-16

C#

The out modifier on the result generic type argument is covered in the article on
covariance.

There are variations of the Func delegate with up to 16 input arguments such as
Func<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,TResult>. The type of the
result is always the last type parameter in all the Func declarations, by convention.

Use one of the Func types for any delegate type that returns a value.

There's also a specialized Predicate<T> type for a delegate that returns a test on a
single value:

C#

You may notice that for any Predicate type, a structurally equivalent Func type exists
For example:

C#

You might think these two types are equivalent. They are not. These two variables
cannot be used interchangeably. A variable of one type cannot be assigned the other
type. The C# type system uses the names of the defined types, not the structure.

All these delegate type definitions in the .NET Core Library should mean that you do not
need to define a new delegate type for any new feature you create that requires
delegates. These generic definitions should provide all the delegate types you need
under most situations. You can simply instantiate one of these types with the required
type parameters. In the case of algorithms that can be made generic, these delegates
can be used as generic types.

This should save time, and minimize the number of new types that you need to create in
order to work with delegates.

public delegate TResult Func<out TResult>();
public delegate TResult Func<in T1, out TResult>(T1 arg);
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);
// Other variations removed for brevity

public delegate bool Predicate<in T>(T obj);

Func<string, bool> TestForString;
Predicate<string> AnotherTestForString;

https://learn.microsoft.com/en-us/dotnet/api/system.func-17
https://learn.microsoft.com/en-us/dotnet/api/system.predicate-1

In the next article, you'll see several common patterns for working with delegates in
practice.

Next

Common patterns for delegates
Article • 2021-09-15 • 8 minutes to read

Previous

Delegates provide a mechanism that enables software designs involving minimal
coupling between components.

One excellent example for this kind of design is LINQ. The LINQ Query Expression
Pattern relies on delegates for all of its features. Consider this simple example:

C#

This filters the sequence of numbers to only those less than the value 10. The Where
method uses a delegate that determines which elements of a sequence pass the filter.
When you create a LINQ query, you supply the implementation of the delegate for this
specific purpose.

The prototype for the Where method is:

C#

This example is repeated with all the methods that are part of LINQ. They all rely on
delegates for the code that manages the specific query. This API design pattern is a
powerful one to learn and understand.

This simple example illustrates how delegates require very little coupling between
components. You don't need to create a class that derives from a particular base class.
You don't need to implement a specific interface. The only requirement is to provide the
implementation of one method that is fundamental to the task at hand.

Let's build on that example by creating a component using a design that relies on
delegates.

var smallNumbers = numbers.Where(n => n < 10);

public static IEnumerable<TSource> Where<TSource> (this IEnumerable<TSource>
source, Func<TSource, bool> predicate);

Build Your Own Components with Delegates

Let's define a component that could be used for log messages in a large system. The
library components could be used in many different environments, on multiple different
platforms. There are a lot of common features in the component that manages the logs.
It will need to accept messages from any component in the system. Those messages will
have different priorities, which the core component can manage. The messages should
have timestamps in their final archived form. For more advanced scenarios, you could
filter messages by the source component.

There is one aspect of the feature that will change often: where messages are written. In
some environments, they may be written to the error console. In others, a file. Other
possibilities include database storage, OS event logs, or other document storage.

There are also combinations of output that might be used in different scenarios. You
may want to write messages to the console and to a file.

A design based on delegates will provide a great deal of flexibility, and make it easy to
support storage mechanisms that may be added in the future.

Under this design, the primary log component can be a non-virtual, even sealed class.
You can plug in any set of delegates to write the messages to different storage media.
The built-in support for multicast delegates makes it easy to support scenarios where
messages must be written to multiple locations (a file, and a console).

Let's start small: the initial implementation will accept new messages, and write them
using any attached delegate. You can start with one delegate that writes messages to
the console.

C#

The static class above is the simplest thing that can work. We need to write the single
implementation for the method that writes messages to the console:

A First Implementation

public static class Logger
{
 public static Action<string> WriteMessage;

 public static void LogMessage(string msg)
 {
 WriteMessage(msg);
 }
}

C#

Finally, you need to hook up the delegate by attaching it to the WriteMessage delegate
declared in the logger:

C#

Our sample so far is fairly simple, but it still demonstrates some of the important
guidelines for designs involving delegates.

Using the delegate types defined in the core framework makes it easier for users to
work with the delegates. You don't need to define new types, and developers using your
library do not need to learn new, specialized delegate types.

The interfaces used are as minimal and as flexible as possible: To create a new output
logger, you must create one method. That method may be a static method, or an
instance method. It may have any access.

Let's make this first version a bit more robust, and then start creating other logging
mechanisms.

Next, let's add a few arguments to the LogMessage() method so that your log class
creates more structured messages:

C#

public static class LoggingMethods
{
 public static void LogToConsole(string message)
 {
 Console.Error.WriteLine(message);
 }
}

Logger.WriteMessage += LoggingMethods.LogToConsole;

Practices

Format Output

public enum Severity
{
 Verbose,
 Trace,
 Information,

C#

Next, let's make use of that Severity argument to filter the messages that are sent to
the log's output.

C#

You've added new features to the logging infrastructure. Because the logger component
is very loosely coupled to any output mechanism, these new features can be added with
no impact on any of the code implementing the logger delegate.

As you keep building this, you'll see more examples of how this loose coupling enables
greater flexibility in updating parts of the site without any changes to other locations. In

 Warning,
 Error,
 Critical
}

public static class Logger
{
 public static Action<string> WriteMessage;

 public static void LogMessage(Severity s, string component, string msg)
 {
 var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
 WriteMessage(outputMsg);
 }
}

public static class Logger
{
 public static Action<string> WriteMessage;

 public static Severity LogLevel {get;set;} = Severity.Warning;

 public static void LogMessage(Severity s, string component, string msg)
 {
 if (s < LogLevel)
 return;

 var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
 WriteMessage(outputMsg);
 }
}

Practices

fact, in a larger application, the logger output classes might be in a different assembly,
and not even need to be rebuilt.

The Log component is coming along well. Let's add one more output engine that logs
messages to a file. This will be a slightly more involved output engine. It will be a class
that encapsulates the file operations, and ensures that the file is always closed after each
write. That ensures that all the data is flushed to disk after each message is generated.

Here is that file-based logger:

C#

Once you've created this class, you can instantiate it and it attaches its LogMessage
method to the Logger component:

Build a Second Output Engine

public class FileLogger
{
 private readonly string logPath;
 public FileLogger(string path)
 {
 logPath = path;
 Logger.WriteMessage += LogMessage;
 }

 public void DetachLog() => Logger.WriteMessage -= LogMessage;
 // make sure this can't throw.
 private void LogMessage(string msg)
 {
 try
 {
 using (var log = File.AppendText(logPath))
 {
 log.WriteLine(msg);
 log.Flush();
 }
 }
 catch (Exception)
 {
 // Hmm. We caught an exception while
 // logging. We can't really log the
 // problem (since it's the log that's failing).
 // So, while normally, catching an exception
 // and doing nothing isn't wise, it's really the
 // only reasonable option here.
 }
 }
}

C#

These two are not mutually exclusive. You could attach both log methods and generate
messages to the console and a file:

C#

Later, even in the same application, you can remove one of the delegates without any
other issues to the system:

C#

Now, you've added a second output handler for the logging subsystem. This one needs
a bit more infrastructure to correctly support the file system. The delegate is an instance
method. It's also a private method. There's no need for greater accessibility because the
delegate infrastructure can connect the delegates.

Second, the delegate-based design enables multiple output methods without any extra
code. You don't need to build any additional infrastructure to support multiple output
methods. They simply become another method on the invocation list.

Pay special attention to the code in the file logging output method. It is coded to ensure
that it does not throw any exceptions. While this isn't always strictly necessary, it's often
a good practice. If either of the delegate methods throws an exception, the remaining
delegates that are on the invocation won't be invoked.

As a last note, the file logger must manage its resources by opening and closing the file
on each log message. You could choose to keep the file open and implement
IDisposable to close the file when you are completed. Either method has its advantages
and disadvantages. Both do create a bit more coupling between the classes.

None of the code in the Logger class would need to be updated in order to support
either scenario.

var file = new FileLogger("log.txt");

var fileOutput = new FileLogger("log.txt");
Logger.WriteMessage += LoggingMethods.LogToConsole; // LoggingMethods is the
static class we utilized earlier

Logger.WriteMessage -= LoggingMethods.LogToConsole;

Practices

Finally, let's update the LogMessage method so that it is robust for those cases when no
output mechanism is selected. The current implementation will throw a
NullReferenceException when the WriteMessage delegate does not have an invocation
list attached. You may prefer a design that silently continues when no methods have
been attached. This is easy using the null conditional operator, combined with the
Delegate.Invoke() method:

C#

The null conditional operator (?.) short-circuits when the left operand (WriteMessage in
this case) is null, which means no attempt is made to log a message.

You won't find the Invoke() method listed in the documentation for System.Delegate or
System.MulticastDelegate . The compiler generates a type safe Invoke method for any
delegate type declared. In this example, that means Invoke takes a single string
argument, and has a void return type.

You've seen the beginnings of a log component that could be expanded with other
writers, and other features. By using delegates in the design, these different components
are loosely coupled. This provides several advantages. It's easy to create new output
mechanisms and attach them to the system. These other mechanisms only need one
method: the method that writes the log message. It's a design that's resilient when new
features are added. The contract required for any writer is to implement one method.
That method could be a static or instance method. It could be public, private, or any
other legal access.

The Logger class can make any number of enhancements or changes without
introducing breaking changes. Like any class, you cannot modify the public API without
the risk of breaking changes. But, because the coupling between the logger and any
output engines is only through the delegate, no other types (like interfaces or base
classes) are involved. The coupling is as small as possible.

Next

Handle Null Delegates

public static void LogMessage(string msg)
{
 WriteMessage?.Invoke(msg);
}

Summary of Practices

Introduction to events
Article • 2021-09-15 • 3 minutes to read

Previous

Events are, like delegates, a late binding mechanism. In fact, events are built on the
language support for delegates.

Events are a way for an object to broadcast (to all interested components in the system)
that something has happened. Any other component can subscribe to the event, and be
notified when an event is raised.

You've probably used events in some of your programming. Many graphical systems
have an event model to report user interaction. These events would report mouse
movement, button presses and similar interactions. That's one of the most common, but
certainly not the only scenario where events are used.

You can define events that should be raised for your classes. One important
consideration when working with events is that there may not be any object registered
for a particular event. You must write your code so that it does not raise events when no
listeners are configured.

Subscribing to an event also creates a coupling between two objects (the event source,
and the event sink). You need to ensure that the event sink unsubscribes from the event
source when no longer interested in events.

The language design for events targets these goals:

Enable very minimal coupling between an event source and an event sink. These
two components may not be written by the same organization, and may even be
updated on totally different schedules.

It should be very simple to subscribe to an event, and to unsubscribe from that
same event.

Event sources should support multiple event subscribers. It should also support
having no event subscribers attached.

You can see that the goals for events are very similar to the goals for delegates. That's
why the event language support is built on the delegate language support.

Design goals for event support

The syntax for defining events, and subscribing or unsubscribing from events is an
extension of the syntax for delegates.

To define an event you use the event keyword:

C#

The type of the event (EventHandler<FileListArgs> in this example) must be a delegate
type. There are a number of conventions that you should follow when declaring an
event. Typically, the event delegate type has a void return. Event declarations should be
a verb, or a verb phrase. Use past tense when the event reports something that has
happened. Use a present tense verb (for example, Closing) to report something that is
about to happen. Often, using present tense indicates that your class supports some
kind of customization behavior. One of the most common scenarios is to support
cancellation. For example, a Closing event may include an argument that would indicate
if the close operation should continue, or not. Other scenarios may enable callers to
modify behavior by updating properties of the event arguments. You may raise an event
to indicate a proposed next action an algorithm will take. The event handler may
mandate a different action by modifying properties of the event argument.

When you want to raise the event, you call the event handlers using the delegate
invocation syntax:

C#

As discussed in the section on delegates, the ?. operator makes it easy to ensure that
you do not attempt to raise the event when there are no subscribers to that event.

You subscribe to an event by using the += operator:

C#

Language support for events

public event EventHandler<FileListArgs> Progress;

Progress?.Invoke(this, new FileListArgs(file));

EventHandler<FileListArgs> onProgress = (sender, eventArgs) =>
 Console.WriteLine(eventArgs.FoundFile);

fileLister.Progress += onProgress;

The handler method typically has the prefix 'On' followed by the event name, as shown
above.

You unsubscribe using the -= operator:

C#

It's important that you declare a local variable for the expression that represents the
event handler. That ensures the unsubscribe removes the handler. If, instead, you used
the body of the lambda expression, you are attempting to remove a handler that has
never been attached, which does nothing.

In the next article, you'll learn more about typical event patterns, and different variations
on this example.

Next

fileLister.Progress -= onProgress;

Standard .NET event patterns
Article • 2022-09-08 • 8 minutes to read

Previous

.NET events generally follow a few known patterns. Standardizing on these patterns
means that developers can leverage knowledge of those standard patterns, which can
be applied to any .NET event program.

Let's go through these standard patterns so you will have all the knowledge you need to
create standard event sources, and subscribe and process standard events in your code.

The standard signature for a .NET event delegate is:

C#

The return type is void. Events are based on delegates and are multicast delegates. That
supports multiple subscribers for any event source. The single return value from a
method doesn't scale to multiple event subscribers. Which return value does the event
source see after raising an event? Later in this article you'll see how to create event
protocols that support event subscribers that report information to the event source.

The argument list contains two arguments: the sender, and the event arguments. The
compile-time type of sender is System.Object , even though you likely know a more
derived type that would always be correct. By convention, use object .

The second argument has typically been a type that is derived from System.EventArgs .
(You'll see in the next section that this convention is no longer enforced.) If your event
type does not need any additional arguments, you will still provide both arguments.
There is a special value, EventArgs.Empty that you should use to denote that your event
does not contain any additional information.

Let's build a class that lists files in a directory, or any of its subdirectories that follow a
pattern. This component raises an event for each file found that matches the pattern.

Using an event model provides some design advantages. You can create multiple event
listeners that perform different actions when a sought file is found. Combining the
different listeners can create more robust algorithms.

Event delegate signatures

void EventRaised(object sender, EventArgs args);

Here is the initial event argument declaration for finding a sought file:

C#

Even though this type looks like a small, data-only type, you should follow the
convention and make it a reference (class) type. That means the argument object will
be passed by reference, and any updates to the data will be viewed by all subscribers.
The first version is an immutable object. You should prefer to make the properties in
your event argument type immutable. That way, one subscriber cannot change the
values before another subscriber sees them. (There are exceptions to this, as you'll see
below.)

Next, we need to create the event declaration in the FileSearcher class. Leveraging the
EventHandler<T> type means that you don't need to create yet another type definition.
You simply use a generic specialization.

Let's fill out the FileSearcher class to search for files that match a pattern, and raise the
correct event when a match is discovered.

C#

public class FileFoundArgs : EventArgs
{
 public string FoundFile { get; }

 public FileFoundArgs(string fileName) => FoundFile = fileName;
}

public class FileSearcher
{
 public event EventHandler<FileFoundArgs> FileFound;

 public void Search(string directory, string searchPattern)
 {
 foreach (var file in Directory.EnumerateFiles(directory,
searchPattern))
 {
 RaiseFileFound(file);
 }
 }

 private void RaiseFileFound(string file) =>
 FileFound?.Invoke(this, new FileFoundArgs(file));
}

Define and raise field-like events

The simplest way to add an event to your class is to declare that event as a public field,
as in the preceding example:

C#

This looks like it's declaring a public field, which would appear to be bad object-oriented
practice. You want to protect data access through properties, or methods. While this
may look like a bad practice, the code generated by the compiler does create wrappers
so that the event objects can only be accessed in safe ways. The only operations
available on a field-like event are add handler:

C#

and remove handler:

C#

Note that there's a local variable for the handler. If you used the body of the lambda,
the remove would not work correctly. It would be a different instance of the delegate,
and silently do nothing.

Code outside the class cannot raise the event, nor can it perform any other operations.

Your simple version is working fine. Let's add another feature: Cancellation.

When you raise the found event, listeners should be able to stop further processing, if
this file is the last one sought.

public event EventHandler<FileFoundArgs> FileFound;

var fileLister = new FileSearcher();
int filesFound = 0;

EventHandler<FileFoundArgs> onFileFound = (sender, eventArgs) =>
{
 Console.WriteLine(eventArgs.FoundFile);
 filesFound++;
};

fileLister.FileFound += onFileFound;

fileLister.FileFound -= onFileFound;

Return values from event subscribers

The event handlers do not return a value, so you need to communicate that in another
way. The standard event pattern uses the EventArgs object to include fields that event
subscribers can use to communicate cancel.

Two different patterns could be used, based on the semantics of the Cancel contract. In
both cases, you'll add a boolean field to the EventArguments for the found file event.

One pattern would allow any one subscriber to cancel the operation. For this pattern,
the new field is initialized to false . Any subscriber can change it to true . After all
subscribers have seen the event raised, the FileSearcher component examines the
boolean value and takes action.

The second pattern would only cancel the operation if all subscribers wanted the
operation canceled. In this pattern, the new field is initialized to indicate the operation
should cancel, and any subscriber could change it to indicate the operation should
continue. After all subscribers have seen the event raised, the FileSearcher component
examines the boolean and takes action. There is one extra step in this pattern: the
component needs to know if any subscribers have seen the event. If there are no
subscribers, the field would indicate a cancel incorrectly.

Let's implement the first version for this sample. You need to add a boolean field named
CancelRequested to the FileFoundArgs type:

C#

This new field is automatically initialized to false , the default value for a Boolean field,
so you don't cancel accidentally. The only other change to the component is to check
the flag after raising the event to see if any of the subscribers have requested a
cancellation:

C#

public class FileFoundArgs : EventArgs
{
 public string FoundFile { get; }
 public bool CancelRequested { get; set; }

 public FileFoundArgs(string fileName) => FoundFile = fileName;
}

private void SearchDirectory(string directory, string searchPattern)
{
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 FileFoundArgs args = RaiseFileFound(file);
 if (args.CancelRequested)

One advantage of this pattern is that it isn't a breaking change. None of the subscribers
requested cancellation before, and they still are not. None of the subscriber code needs
updating unless they want to support the new cancel protocol. It's very loosely coupled.

Let's update the subscriber so that it requests a cancellation once it finds the first
executable:

C#

Let's add one more feature, and demonstrate other language idioms for events. Let's
add an overload of the Search method that traverses all subdirectories in search of files.

This could get to be a lengthy operation in a directory with many sub-directories. Let's
add an event that gets raised when each new directory search begins. This enables
subscribers to track progress, and update the user as to progress. All the samples you've
created so far are public. Let's make this one an internal event. That means you can also
make the types used for the arguments internal as well.

You'll start by creating the new EventArgs derived class for reporting the new directory
and progress.

C#

 {
 break;
 }
 }
}

private FileFoundArgs RaiseFileFound(string file)
{
 var args = new FileFoundArgs(file);
 FileFound?.Invoke(this, args);
 return args;
}

EventHandler<FileFoundArgs> onFileFound = (sender, eventArgs) =>
{
 Console.WriteLine(eventArgs.FoundFile);
 eventArgs.CancelRequested = true;
};

Adding another event declaration

internal class SearchDirectoryArgs : EventArgs
{

Again, you can follow the recommendations to make an immutable reference type for
the event arguments.

Next, define the event. This time, you'll use a different syntax. In addition to using the
field syntax, you can explicitly create the property, with add and remove handlers. In this
sample, you won't need extra code in those handlers, but this shows how you would
create them.

C#

In many ways, the code you write here mirrors the code the compiler generates for the
field event definitions you've seen earlier. You create the event using syntax very similar
to that used for properties. Notice that the handlers have different names: add and
remove . These are called to subscribe to the event, or unsubscribe from the event.
Notice that you also must declare a private backing field to store the event variable. It is
initialized to null.

Next, let's add the overload of the Search method that traverses subdirectories and
raises both events. The easiest way to accomplish this is to use a default argument to
specify that you want to search all directories:

C#

 internal string CurrentSearchDirectory { get; }
 internal int TotalDirs { get; }
 internal int CompletedDirs { get; }

 internal SearchDirectoryArgs(string dir, int totalDirs, int
completedDirs)
 {
 CurrentSearchDirectory = dir;
 TotalDirs = totalDirs;
 CompletedDirs = completedDirs;
 }
}

internal event EventHandler<SearchDirectoryArgs> DirectoryChanged
{
 add { _directoryChanged += value; }
 remove { _directoryChanged -= value; }
}
private EventHandler<SearchDirectoryArgs> _directoryChanged;

public void Search(string directory, string searchPattern, bool
searchSubDirs = false)
{
 if (searchSubDirs)

At this point, you can run the application calling the overload for searching all sub-
directories. There are no subscribers on the new DirectoryChanged event, but using the
?.Invoke() idiom ensures that this works correctly.

Let's add a handler to write a line that shows the progress in the console window.

 {
 var allDirectories = Directory.GetDirectories(directory, "*.*",
SearchOption.AllDirectories);
 var completedDirs = 0;
 var totalDirs = allDirectories.Length + 1;
 foreach (var dir in allDirectories)
 {
 RaiseSearchDirectoryChanged(dir, totalDirs, completedDirs++);
 // Search 'dir' and its subdirectories for files that match the
search pattern:
 SearchDirectory(dir, searchPattern);
 }
 // Include the Current Directory:
 RaiseSearchDirectoryChanged(directory, totalDirs, completedDirs++);

 SearchDirectory(directory, searchPattern);
 }
 else
 {
 SearchDirectory(directory, searchPattern);
 }
}

private void SearchDirectory(string directory, string searchPattern)
{
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 FileFoundArgs args = RaiseFileFound(file);
 if (args.CancelRequested)
 {
 break;
 }
 }
}

private void RaiseSearchDirectoryChanged(
 string directory, int totalDirs, int completedDirs) =>
 _directoryChanged?.Invoke(
 this,
 new SearchDirectoryArgs(directory, totalDirs, completedDirs));

private FileFoundArgs RaiseFileFound(string file)
{
 var args = new FileFoundArgs(file);
 FileFound?.Invoke(this, args);
 return args;
}

C#

You've seen patterns that are followed throughout the .NET ecosystem. By learning
these patterns and conventions, you'll be writing idiomatic C# and .NET quickly.

Introduction to events
Event design
Handle and raise events

Next, you'll see some changes in these patterns in the most recent release of .NET.

fileLister.DirectoryChanged += (sender, eventArgs) =>
{
 Console.Write($"Entering '{eventArgs.CurrentSearchDirectory}'.");
 Console.WriteLine($" {eventArgs.CompletedDirs} of {eventArgs.TotalDirs}
completed...");
};

See also

Next

https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/event
https://learn.microsoft.com/en-ca/dotnet/standard/events/

The Updated .NET Core Event Pattern
Article • 2021-09-15 • 3 minutes to read

Previous

The previous article discussed the most common event patterns. .NET Core has a more
relaxed pattern. In this version, the EventHandler<TEventArgs> definition no longer has
the constraint that TEventArgs must be a class derived from System.EventArgs .

This increases flexibility for you, and is backwards compatible. Let's start with the
flexibility. The class System.EventArgs introduces one method: MemberwiseClone() , which
creates a shallow copy of the object. That method must use reflection in order to
implement its functionality for any class derived from EventArgs . That functionality is
easier to create in a specific derived class. That effectively means that deriving from
System.EventArgs is a constraint that limits your designs, but does not provide any
additional benefit. In fact, you can change the definitions of FileFoundArgs and
SearchDirectoryArgs so that they do not derive from EventArgs . The program will work
exactly the same.

You could also change the SearchDirectoryArgs to a struct, if you make one more
change:

C#

The additional change is to call the parameterless constructor before entering the
constructor that initializes all the fields. Without that addition, the rules of C# would
report that the properties are being accessed before they have been assigned.

internal struct SearchDirectoryArgs
{
 internal string CurrentSearchDirectory { get; }
 internal int TotalDirs { get; }
 internal int CompletedDirs { get; }

 internal SearchDirectoryArgs(string dir, int totalDirs, int
completedDirs) : this()
 {
 CurrentSearchDirectory = dir;
 TotalDirs = totalDirs;
 CompletedDirs = completedDirs;
 }
}

You should not change the FileFoundArgs from a class (reference type) to a struct (value
type). That's because the protocol for handling cancel requires that the event arguments
are passed by reference. If you made the same change, the file search class could never
observe any changes made by any of the event subscribers. A new copy of the structure
would be used for each subscriber, and that copy would be a different copy than the
one seen by the file search object.

Next, let's consider how this change can be backwards compatible. The removal of the
constraint does not affect any existing code. Any existing event argument types do still
derive from System.EventArgs . Backwards compatibility is one major reason why they
will continue to derive from System.EventArgs . Any existing event subscribers will be
subscribers to an event that followed the classic pattern.

Following similar logic, any event argument type created now would not have any
subscribers in any existing codebases. New event types that do not derive from
System.EventArgs will not break those codebases.

You have one final pattern to learn: How to correctly write event subscribers that call
async code. The challenge is described in the article on async and await. Async methods
can have a void return type, but that is strongly discouraged. When your event
subscriber code calls an async method, you have no choice but to create an async void
method. The event handler signature requires it.

You need to reconcile this opposing guidance. Somehow, you must create a safe async
void method. The basics of the pattern you need to implement are below:

C#

Events with Async subscribers

worker.StartWorking += async (sender, eventArgs) =>
{
 try
 {
 await DoWorkAsync();
 }
 catch (Exception e)
 {
 //Some form of logging.
 Console.WriteLine($"Async task failure: {e.ToString()}");
 // Consider gracefully, and quickly exiting.
 }
};

First, notice that the handler is marked as an async handler. Because it is being assigned
to an event handler delegate type, it will have a void return type. That means you must
follow the pattern shown in the handler, and not allow any exceptions to be thrown out
of the context of the async handler. Because it does not return a task, there is no task
that can report the error by entering the faulted state. Because the method is async, the
method can't simply throw the exception. (The calling method has continued execution
because it is async .) The actual runtime behavior will be defined differently for different
environments. It may terminate the thread or the process that owns the thread, or leave
the process in an indeterminate state. All of these potential outcomes are highly
undesirable.

That's why you should wrap the await statement for the async Task in your own try
block. If it does cause a faulted task, you can log the error. If it is an error from which
your application cannot recover, you can exit the program quickly and gracefully

Those are the major updates to the .NET event pattern. You will see many examples of
the earlier versions in the libraries you work with. However, you should understand what
the latest patterns are as well.

The next article in this series helps you distinguish between using delegates and events
in your designs. They are similar concepts, and that article will help you make the best
decision for your programs.

Next

Distinguishing Delegates and Events
Article • 2021-11-05 • 3 minutes to read

Previous

Developers that are new to the .NET Core platform often struggle when deciding
between a design based on delegates and a design based on events . The choice of
delegates or events is often difficult, because the two language features are similar.
Events are even built using the language support for delegates.

They both offer a late binding scenario: they enable scenarios where a component
communicates by calling a method that is only known at run time. They both support
single and multiple subscriber methods. You may find this referred to as singlecast and
multicast support. They both support similar syntax for adding and removing handlers.
Finally, raising an event and calling a delegate use exactly the same method call syntax.
They even both support the same Invoke() method syntax for use with the ?. operator.

With all those similarities, it is easy to have trouble determining when to use which.

The most important consideration in determining which language feature to use is
whether or not there must be an attached subscriber. If your code must call the code
supplied by the subscriber, you should use a design based on delegates when you need
to implement callback. If your code can complete all its work without calling any
subscribers, you should use a design based on events.

Consider the examples built during this section. The code you built using List.Sort()
must be given a comparer function in order to properly sort the elements. LINQ queries
must be supplied with delegates in order to determine what elements to return. Both
used a design built with delegates.

Consider the Progress event. It reports progress on a task. The task continues to
proceed whether or not there are any listeners. The FileSearcher is another example. It
would still search and find all the files that were sought, even with no event subscribers
attached. UX controls still work correctly, even when there are no subscribers listening to
the events. They both use designs based on events.

Listening to Events is Optional

Return Values Require Delegates

Another consideration is the method prototype you would want for your delegate
method. As you've seen, the delegates used for events all have a void return type.
You've also seen that there are idioms to create event handlers that do pass information
back to event sources through modifying properties of the event argument object.
While these idioms do work, they are not as natural as returning a value from a method.

Notice that these two heuristics may often both be present: If your delegate method
returns a value, it will likely impact the algorithm in some way.

Classes other than the one in which an event is contained can only add and remove
event listeners; only the class containing the event can invoke the event. Events are
typically public class members. By comparison, delegates are often passed as
parameters and stored as private class members, if they are stored at all.

That event listeners have longer lifetimes is a slightly weaker justification. However, you
may find that event-based designs are more natural when the event source will be
raising events over a long period of time. You can see examples of event-based design
for UX controls on many systems. Once you subscribe to an event, the event source may
raise events throughout the lifetime of the program. (You can unsubscribe from events
when you no longer need them.)

Contrast that with many delegate-based designs, where a delegate is used as an
argument to a method, and the delegate is not used after that method returns.

The above considerations are not hard and fast rules. Instead, they represent guidance
that can help you decide which choice is best for your particular usage. Because they are
similar, you can even prototype both, and consider which would be more natural to
work with. They both handle late binding scenarios well. Use the one that communicates
your design the best.

Events Have Private Invocation

Event Listeners Often Have Longer Lifetimes

Evaluate Carefully

Language Integrated Query (LINQ)
Article • 2022-10-13 • 3 minutes to read

Language-Integrated Query (LINQ) is the name for a set of technologies based on the
integration of query capabilities directly into the C# language. Traditionally, queries
against data are expressed as simple strings without type checking at compile time or
IntelliSense support. Furthermore, you have to learn a different query language for each
type of data source: SQL databases, XML documents, various Web services, and so on.
With LINQ, a query is a first-class language construct, just like classes, methods, events.

For a developer who writes queries, the most visible "language-integrated" part of LINQ
is the query expression. Query expressions are written in a declarative query syntax. By
using query syntax, you can perform filtering, ordering, and grouping operations on
data sources with a minimum of code. You use the same basic query expression patterns
to query and transform data in SQL databases, ADO .NET Datasets, XML documents and
streams, and .NET collections.

The following example shows the complete query operation. The complete operation
includes creating a data source, defining the query expression, and executing the query
in a foreach statement.

C#

Query expressions can be used to query and to transform data from any LINQ-
enabled data source. For example, a single query can retrieve data from a SQL

// Specify the data source.
int[] scores = { 97, 92, 81, 60 };

// Define the query expression.
IEnumerable<int> scoreQuery =
 from score in scores
 where score > 80
 select score;

// Execute the query.
foreach (int i in scoreQuery)
{
 Console.Write(i + " ");
}

// Output: 97 92 81

Query expression overview

database, and produce an XML stream as output.

Query expressions are easy to grasp because they use many familiar C# language
constructs.

The variables in a query expression are all strongly typed, although in many cases
you do not have to provide the type explicitly because the compiler can infer it. For
more information, see Type relationships in LINQ query operations.

A query is not executed until you iterate over the query variable, for example, in a
foreach statement. For more information, see Introduction to LINQ queries.

At compile time, query expressions are converted to Standard Query Operator
method calls according to the rules set forth in the C# specification. Any query that
can be expressed by using query syntax can also be expressed by using method
syntax. However, in most cases query syntax is more readable and concise. For
more information, see C# language specification and Standard query operators
overview.

As a rule when you write LINQ queries, we recommend that you use query syntax
whenever possible and method syntax whenever necessary. There is no semantic
or performance difference between the two different forms. Query expressions are
often more readable than equivalent expressions written in method syntax.

Some query operations, such as Count or Max, have no equivalent query
expression clause and must therefore be expressed as a method call. Method
syntax can be combined with query syntax in various ways. For more information,
see Query syntax and method syntax in LINQ.

Query expressions can be compiled to expression trees or to delegates, depending
on the type that the query is applied to. IEnumerable<T> queries are compiled to
delegates. IQueryable and IQueryable<T> queries are compiled to expression
trees. For more information, see Expression trees.

To learn more details about LINQ, start by becoming familiar with some basic concepts
in Query expression basics, and then read the documentation for the LINQ technology
in which you are interested:

XML documents: LINQ to XML

ADO.NET Entity Framework: LINQ to entities

Next steps

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-ca/dotnet/standard/linq/linq-xml-overview
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/ef/language-reference/linq-to-entities

.NET collections, files, strings and so on: LINQ to objects

To gain a deeper understanding of LINQ in general, see LINQ in C#.

To start working with LINQ in C#, see the tutorial Working with LINQ.

Query expression basics
Article • 2022-09-21 • 12 minutes to read

This article introduces the basic concepts related to query expressions in C#.

A query is a set of instructions that describes what data to retrieve from a given data
source (or sources) and what shape and organization the returned data should have. A
query is distinct from the results that it produces.

Generally, the source data is organized logically as a sequence of elements of the same
kind. For example, a SQL database table contains a sequence of rows. In an XML file,
there is a "sequence" of XML elements (although these are organized hierarchically in a
tree structure). An in-memory collection contains a sequence of objects.

From an application's viewpoint, the specific type and structure of the original source
data is not important. The application always sees the source data as an
IEnumerable<T> or IQueryable<T> collection. For example, in LINQ to XML, the source
data is made visible as an IEnumerable<XElement>.

Given this source sequence, a query may do one of three things:

Retrieve a subset of the elements to produce a new sequence without modifying
the individual elements. The query may then sort or group the returned sequence
in various ways, as shown in the following example (assume scores is an int[]):

C#

Retrieve a sequence of elements as in the previous example but transform them to
a new type of object. For example, a query may retrieve only the last names from
certain customer records in a data source. Or it may retrieve the complete record
and then use it to construct another in-memory object type or even XML data
before generating the final result sequence. The following example shows a
projection from an int to a string . Note the new type of highScoresQuery .

What is a query and what does it do?

IEnumerable<int> highScoresQuery =
 from score in scores
 where score > 80
 orderby score descending
 select score;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.xml.linq.xelement

C#

Retrieve a singleton value about the source data, such as:

The number of elements that match a certain condition.

The element that has the greatest or least value.

The first element that matches a condition, or the sum of particular values in a
specified set of elements. For example, the following query returns the number
of scores greater than 80 from the scores integer array:

C#

In the previous example, note the use of parentheses around the query
expression before the call to the Count method. You can also express this by
using a new variable to store the concrete result. This technique is more
readable because it keeps the variable that stores the query separate from the
query that stores a result.

C#

In the previous example, the query is executed in the call to Count , because Count must
iterate over the results in order to determine the number of elements returned by
highScoresQuery .

IEnumerable<string> highScoresQuery2 =
 from score in scores
 where score > 80
 orderby score descending
 select $"The score is {score}";

int highScoreCount = (
 from score in scores
 where score > 80
 select score
).Count();

IEnumerable<int> highScoresQuery3 =
 from score in scores
 where score > 80
 select score;

int scoreCount = highScoresQuery3.Count();

A query expression is a query expressed in query syntax. A query expression is a first-
class language construct. It is just like any other expression and can be used in any
context in which a C# expression is valid. A query expression consists of a set of clauses
written in a declarative syntax similar to SQL or XQuery. Each clause in turn contains one
or more C# expressions, and these expressions may themselves be either a query
expression or contain a query expression.

A query expression must begin with a from clause and must end with a select or group
clause. Between the first from clause and the last select or group clause, it can contain
one or more of these optional clauses: where, orderby, join, let and even additional from
clauses. You can also use the into keyword to enable the result of a join or group
clause to serve as the source for additional query clauses in the same query expression.

In LINQ, a query variable is any variable that stores a query instead of the results of a
query. More specifically, a query variable is always an enumerable type that will produce
a sequence of elements when it is iterated over in a foreach statement or a direct call to
its IEnumerator.MoveNext method.

The following code example shows a simple query expression with one data source, one
filtering clause, one ordering clause, and no transformation of the source elements. The
select clause ends the query.

C#

What is a query expression?

Query variable

// Data source.
int[] scores = { 90, 71, 82, 93, 75, 82 };

// Query Expression.
IEnumerable<int> scoreQuery = //query variable
 from score in scores //required
 where score > 80 // optional
 orderby score descending // optional
 select score; //must end with select or group

// Execute the query to produce the results
foreach (int testScore in scoreQuery)
{
 Console.WriteLine(testScore);
}

// Output: 93 90 82 82

In the previous example, scoreQuery is a query variable, which is sometimes referred to
as just a query. The query variable stores no actual result data, which is produced in the
foreach loop. And when the foreach statement executes, the query results are not
returned through the query variable scoreQuery . Rather, they are returned through the
iteration variable testScore . The scoreQuery variable can be iterated in a second
foreach loop. It will produce the same results as long as neither it nor the data source
has been modified.

A query variable may store a query that is expressed in query syntax or method syntax,
or a combination of the two. In the following examples, both queryMajorCities and
queryMajorCities2 are query variables:

C#

On the other hand, the following two examples show variables that are not query
variables even though each is initialized with a query. They are not query variables
because they store results:

C#

C#

//Query syntax
IEnumerable<City> queryMajorCities =
 from city in cities
 where city.Population > 100000
 select city;

// Method-based syntax
IEnumerable<City> queryMajorCities2 = cities.Where(c => c.Population >
100000);

int highestScore = (
 from score in scores
 select score
).Max();

// or split the expression
IEnumerable<int> scoreQuery =
 from score in scores
 select score;

int highScore = scoreQuery.Max();
// the following returns the same result
highScore = scores.Max();

For more information about the different ways to express queries, see Query syntax and
method syntax in LINQ.

This documentation usually provides the explicit type of the query variable in order to
show the type relationship between the query variable and the select clause. However,
you can also use the var keyword to instruct the compiler to infer the type of a query
variable (or any other local variable) at compile time. For example, the query example
that was shown previously in this topic can also be expressed by using implicit typing:

C#

For more information, see Implicitly typed local variables and Type relationships in LINQ
query operations.

A query expression must begin with a from clause. It specifies a data source together
with a range variable. The range variable represents each successive element in the
source sequence as the source sequence is being traversed. The range variable is

List<City> largeCitiesList = (
 from country in countries
 from city in country.Cities
 where city.Population > 10000
 select city
).ToList();

// or split the expression
IEnumerable<City> largeCitiesQuery =
 from country in countries
 from city in country.Cities
 where city.Population > 10000
 select city;

List<City> largeCitiesList2 = largeCitiesQuery.ToList();

Explicit and implicit typing of query variables

// Use of var is optional here and in all queries.
// queryCities is an IEnumerable<City> just as
// when it is explicitly typed.
var queryCities =
 from city in cities
 where city.Population > 100000
 select city;

Starting a query expression

strongly typed based on the type of elements in the data source. In the following
example, because countries is an array of Country objects, the range variable is also
typed as Country . Because the range variable is strongly typed, you can use the dot
operator to access any available members of the type.

C#

The range variable is in scope until the query is exited either with a semicolon or with a
continuation clause.

A query expression may contain multiple from clauses. Use additional from clauses
when each element in the source sequence is itself a collection or contains a collection.
For example, assume that you have a collection of Country objects, each of which
contains a collection of City objects named Cities . To query the City objects in each
Country , use two from clauses as shown here:

C#

For more information, see from clause.

A query expression must end with either a group clause or a select clause.

Use the group clause to produce a sequence of groups organized by a key that you
specify. The key can be any data type. For example, the following query creates a
sequence of groups that contains one or more Country objects and whose key is a char
type with value being the first letter of countries' names.

C#

IEnumerable<Country> countryAreaQuery =
 from country in countries
 where country.Area > 500000 //sq km
 select country;

IEnumerable<City> cityQuery =
 from country in countries
 from city in country.Cities
 where city.Population > 10000
 select city;

Ending a query expression

group clause

For more information about grouping, see group clause.

Use the select clause to produce all other types of sequences. A simple select clause
just produces a sequence of the same type of objects as the objects that are contained
in the data source. In this example, the data source contains Country objects. The
orderby clause just sorts the elements into a new order and the select clause produces
a sequence of the reordered Country objects.

C#

The select clause can be used to transform source data into sequences of new types.
This transformation is also named a projection. In the following example, the select
clause projects a sequence of anonymous types which contains only a subset of the
fields in the original element. Note that the new objects are initialized by using an object
initializer.

C#

For more information about all the ways that a select clause can be used to transform
source data, see select clause.

var queryCountryGroups =
 from country in countries
 group country by country.Name[0];

select clause

IEnumerable<Country> sortedQuery =
 from country in countries
 orderby country.Area
 select country;

// Here var is required because the query
// produces an anonymous type.
var queryNameAndPop =
 from country in countries
 select new
 {
 Name = country.Name,
 Pop = country.Population
 };

Continuations with into

You can use the into keyword in a select or group clause to create a temporary
identifier that stores a query. Do this when you must perform additional query
operations on a query after a grouping or select operation. In the following example
countries are grouped according to population in ranges of 10 million. After these
groups are created, additional clauses filter out some groups, and then to sort the
groups in ascending order. To perform those additional operations, the continuation
represented by countryGroup is required.

C#

For more information, see into.

Between the starting from clause, and the ending select or group clause, all other
clauses (where , join , orderby , from , let) are optional. Any of the optional clauses may
be used zero times or multiple times in a query body.

Use the where clause to filter out elements from the source data based on one or more
predicate expressions. The where clause in the following example has one predicate with
two conditions.

C#

// percentileQuery is an IEnumerable<IGrouping<int, Country>>
var percentileQuery =
 from country in countries
 let percentile = (int)country.Population / 10_000_000
 group country by percentile into countryGroup
 where countryGroup.Key >= 20
 orderby countryGroup.Key
 select countryGroup;

// grouping is an IGrouping<int, Country>
foreach (var grouping in percentileQuery)
{
 Console.WriteLine(grouping.Key);
 foreach (var country in grouping)
 {
 Console.WriteLine(country.Name + ":" + country.Population);
 }
}

Filtering, ordering, and joining

where clause

For more information, see where clause.

Use the orderby clause to sort the results in either ascending or descending order. You
can also specify secondary sort orders. The following example performs a primary sort
on the country objects by using the Area property. It then performs a secondary sort by
using the Population property.

C#

The ascending keyword is optional; it is the default sort order if no order is specified. For
more information, see orderby clause.

Use the join clause to associate and/or combine elements from one data source with
elements from another data source based on an equality comparison between specified
keys in each element. In LINQ, join operations are performed on sequences of objects
whose elements are different types. After you have joined two sequences, you must use
a select or group statement to specify which element to store in the output sequence.
You can also use an anonymous type to combine properties from each set of associated
elements into a new type for the output sequence. The following example associates
prod objects whose Category property matches one of the categories in the categories
string array. Products whose Category does not match any string in categories are
filtered out. The select statement projects a new type whose properties are taken from
both cat and prod .

C#

IEnumerable<City> queryCityPop =
 from city in cities
 where city.Population < 200000 && city.Population > 100000
 select city;

orderby clause

IEnumerable<Country> querySortedCountries =
 from country in countries
 orderby country.Area, country.Population descending
 select country;

join clause

var categoryQuery =
 from cat in categories

You can also perform a group join by storing the results of the join operation into a
temporary variable by using the into keyword. For more information, see join clause.

Use the let clause to store the result of an expression, such as a method call, in a new
range variable. In the following example, the range variable firstName stores the first
element of the array of strings that is returned by Split .

C#

For more information, see let clause.

A query clause may itself contain a query expression, which is sometimes referred to as
a subquery. Each subquery starts with its own from clause that does not necessarily
point to the same data source in the first from clause. For example, the following query
shows a query expression that is used in the select statement to retrieve the results of a
grouping operation.

C#

 join prod in products on cat equals prod.Category
 select new
 {
 Category = cat,
 Name = prod.Name
 };

let clause

string[] names = { "Svetlana Omelchenko", "Claire O'Donnell", "Sven
Mortensen", "Cesar Garcia" };
IEnumerable<string> queryFirstNames =
 from name in names
 let firstName = name.Split(' ')[0]
 select firstName;

foreach (string s in queryFirstNames)
{
 Console.Write(s + " ");
}

//Output: Svetlana Claire Sven Cesar

Subqueries in a query expression

var queryGroupMax =
 from student in students

For more information, see Perform a subquery on a grouping operation.

C# programming guide
Language Integrated Query (LINQ)
Query keywords (LINQ)
Standard query operators overview

 group student by student.Year into studentGroup
 select new
 {
 Level = studentGroup.Key,
 HighestScore = (
 from student2 in studentGroup
 select student2.ExamScores.Average()
).Max()
 };

See also

LINQ in C#
Article • 2021-09-15 • 2 minutes to read

This section contains links to topics that provide more detailed information about LINQ.

Introduction to LINQ queries
Describes the three parts of the basic LINQ query operation that are common across all
languages and data sources.

LINQ and generic types
Provides a brief introduction to generic types as they are used in LINQ.

Data transformations with LINQ
Describes the various ways that you can transform data retrieved in queries.

Type relationships in LINQ query operations
Describes how types are preserved and/or transformed in the three parts of a LINQ
query operation

Query syntax and method syntax in LINQ
Compares method syntax and query syntax as two ways to express a LINQ query.

C# features that support LINQ
Describes the language constructs in C# that support LINQ.

LINQ query expressions
Includes an overview of queries in LINQ and provides links to additional resources.

Standard query operators overview
Introduces the standard methods used in LINQ.

In this section

Related sections

Write LINQ queries in C#
Article • 2022-09-21 • 4 minutes to read

This article shows the three ways in which you can write a LINQ query in C#:

1. Use query syntax.

2. Use method syntax.

3. Use a combination of query syntax and method syntax.

The following examples demonstrate some simple LINQ queries by using each approach
listed previously. In general, the rule is to use (1) whenever possible, and use (2) and (3)
whenever necessary.

The recommended way to write most queries is to use query syntax to create query
expressions. The following example shows three query expressions. The first query
expression demonstrates how to filter or restrict results by applying conditions with a
where clause. It returns all elements in the source sequence whose values are greater
than 7 or less than 3. The second expression demonstrates how to order the returned
results. The third expression demonstrates how to group results according to a key. This
query returns two groups based on the first letter of the word.

C#

７ Note

These queries operate on simple in-memory collections; however, the basic syntax
is identical to that used in LINQ to Entities and LINQ to XML.

Example - Query syntax

List<int> numbers = new() { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

// The query variables can also be implicitly typed by using var

// Query #1.
IEnumerable<int> filteringQuery =
 from num in numbers
 where num < 3 || num > 7
 select num;

// Query #2.
IEnumerable<int> orderingQuery =

Note that the type of the queries is IEnumerable<T>. All of these queries could be
written using var as shown in the following example:

var query = from num in numbers...

In each previous example, the queries do not actually execute until you iterate over the
query variable in a foreach statement or other statement. For more information, see
Introduction to LINQ Queries.

Some query operations must be expressed as a method call. The most common such
methods are those that return singleton numeric values, such as Sum, Max, Min,
Average, and so on. These methods must always be called last in any query because
they represent only a single value and cannot serve as the source for an additional query
operation. The following example shows a method call in a query expression:

C#

If the method has Action or Func parameters, these are provided in the form of a
lambda expression, as shown in the following example:

C#

 from num in numbers
 where num < 3 || num > 7
 orderby num ascending
 select num;

// Query #3.
string[] groupingQuery = { "carrots", "cabbage", "broccoli", "beans",
"barley" };
IEnumerable<IGrouping<char, string>> queryFoodGroups =
 from item in groupingQuery
 group item by item[0];

Example - Method syntax

List<int> numbers1 = new() { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };
List<int> numbers2 = new() { 15, 14, 11, 13, 19, 18, 16, 17, 12, 10 };

// Query #4.
double average = numbers1.Average();

// Query #5.
IEnumerable<int> concatenationQuery = numbers1.Concat(numbers2);

// Query #6.
IEnumerable<int> largeNumbersQuery = numbers2.Where(c => c > 15);

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sum
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.min
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.average

In the previous queries, only Query #4 executes immediately. This is because it returns a
single value, and not a generic IEnumerable<T> collection. The method itself has to use
foreach in order to compute its value.

Each of the previous queries can be written by using implicit typing with var, as shown in
the following example:

C#

This example shows how to use method syntax on the results of a query clause. Just
enclose the query expression in parentheses, and then apply the dot operator and call
the method. In the following example, query #7 returns a count of the numbers whose
value is between 3 and 7. In general, however, it is better to use a second variable to
store the result of the method call. In this manner, the query is less likely to be confused
with the results of the query.

C#

Because Query #7 returns a single value and not a collection, the query executes
immediately.

// var is used for convenience in these queries
var average = numbers1.Average();
var concatenationQuery = numbers1.Concat(numbers2);
var largeNumbersQuery = numbers2.Where(c => c > 15);

Example - Mixed query and method syntax

// Query #7.

// Using a query expression with method syntax
int numCount1 = (
 from num in numbers1
 where num < 3 || num > 7
 select num
).Count();

// Better: Create a new variable to store
// the method call result
IEnumerable<int> numbersQuery =
 from num in numbers1
 where num < 3 || num > 7
 select num;

int numCount2 = numbersQuery.Count();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The previous query can be written by using implicit typing with var , as follows:

C#

It can be written in method syntax as follows:

C#

It can be written by using explicit typing, as follows:

C#

Walkthrough: Writing Queries in C#
Language Integrated Query (LINQ)
where clause

var numCount = (from num in numbers...

var numCount = numbers.Where(n => n < 3 || n > 7).Count();

int numCount = numbers.Where(n => n < 3 || n > 7).Count();

See also

Query a collection of objects
Article • 2022-02-18 • 2 minutes to read

This topic shows an example of how to perform a simple query over a list of Student
objects. Each Student object contains some basic information about the student, and a
list that represents the student's scores on four examinations.

C#

７ Note

Many other examples in this section use the same Student class and students
collection.

class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int ID { get; set; }
 public GradeLevel? Year { get; set; }
 public List<int> ExamScores { get; set; }

 public Student(string FirstName, string LastName, int ID, GradeLevel
Year, List<int> ExamScores)
 {
 this.FirstName = FirstName;
 this.LastName = LastName;
 this.ID = ID;
 this.Year = Year;
 this.ExamScores = ExamScores;
 }

 public Student(string FirstName, string LastName, int StudentID,
List<int>? ExamScores = null)
 {
 this.FirstName = FirstName;
 this.LastName = LastName;
 ID = StudentID;
 this.ExamScores = ExamScores ?? Enumerable.Empty<int>().ToList();
 }

 public static List<Student> students = new()
 {
 new(
 FirstName: "Terry", LastName: "Adams", ID: 120,
 Year: GradeLevel.SecondYear,
 ExamScores: new() { 99, 82, 81, 79 }
),

 new(
 "Fadi", "Fakhouri", 116,
 GradeLevel.ThirdYear,
 new() { 99, 86, 90, 94 }
),
 new(
 "Hanying", "Feng", 117,
 GradeLevel.FirstYear,
 new() { 93, 92, 80, 87 }
),
 new(
 "Cesar", "Garcia", 114,
 GradeLevel.FourthYear,
 new() { 97, 89, 85, 82 }
),
 new(
 "Debra", "Garcia", 115,
 GradeLevel.ThirdYear,
 new() { 35, 72, 91, 70 }
),
 new(
 "Hugo", "Garcia", 118,
 GradeLevel.SecondYear,
 new() { 92, 90, 83, 78 }
),
 new(
 "Sven", "Mortensen", 113,
 GradeLevel.FirstYear,
 new() { 88, 94, 65, 91 }
),
 new(
 "Claire", "O'Donnell", 112,
 GradeLevel.FourthYear,
 new() { 75, 84, 91, 39 }
),
 new(
 "Svetlana", "Omelchenko", 111,
 GradeLevel.SecondYear,
 new() { 97, 92, 81, 60 }
),
 new(
 "Lance", "Tucker", 119,
 GradeLevel.ThirdYear,
 new() { 68, 79, 88, 92 }
),
 new(
 "Michael", "Tucker", 122,
 GradeLevel.FirstYear,
 new() { 94, 92, 91, 91 }
),
 new(
 "Eugene", "Zabokritski", 121,
 GradeLevel.FourthYear,
 new() { 96, 85, 91, 60 }
)

The following query returns the students who received a score of 90 or greater on their
first exam.

C#

This query is intentionally simple to enable you to experiment. For example, you can try
more conditions in the where clause, or use an orderby clause to sort the results.

Language Integrated Query (LINQ)
String interpolation

 };
}

enum GradeLevel
{
 FirstYear = 1,
 SecondYear,
 ThirdYear,
 FourthYear
};

Example

void QueryHighScores(int exam, int score)
{
 var highScores =
 from student in students
 where student.ExamScores[exam] > score
 select new
 {
 Name = student.FirstName,
 Score = student.ExamScores[exam]
 };

 foreach (var item in highScores)
 {
 Console.WriteLine($"{item.Name,-15}{item.Score}");
 }
}

QueryHighScores(1, 90);

See also

How to return a query from a method
Article • 2022-02-18 • 2 minutes to read

This example shows how to return a query from a method as the return value and as an
out parameter.

Query objects are composable, meaning that you can return a query from a method.
Objects that represent queries do not store the resulting collection, but rather the steps
to produce the results when needed. The advantage of returning query objects from
methods is that they can be further composed or modified. Therefore any return value
or out parameter of a method that returns a query must also have that type. If a
method materializes a query into a concrete List<T> or Array type, it is considered to be
returning the query results instead of the query itself. A query variable that is returned
from a method can still be composed or modified.

In the following example, the first method returns a query as a return value, and the
second method returns a query as an out parameter. Note that in both cases it is a
query that is returned, not query results.

C#

Example

// QueryMethod1 returns a query as its value.
IEnumerable<string> QueryMethod1(int[] ints) =>
 from i in ints
 where i > 4
 select i.ToString();

// QueryMethod2 returns a query as the value of the out parameter returnQ
void QueryMethod2(int[] ints, out IEnumerable<string> returnQ) =>
 returnQ =
 from i in ints
 where i < 4
 select i.ToString();

int[] nums = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// QueryMethod1 returns a query as the value of the method.
var myQuery1 = QueryMethod1(nums);

// Query myQuery1 is executed in the following foreach loop.
Console.WriteLine("Results of executing myQuery1:");
// Rest the mouse pointer over myQuery1 to see its type.
foreach (var s in myQuery1)
{

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.array

Language Integrated Query (LINQ)

 Console.WriteLine(s);
}

// You also can execute the query returned from QueryMethod1
// directly, without using myQuery1.
Console.WriteLine("\nResults of executing myQuery1 directly:");
// Rest the mouse pointer over the call to QueryMethod1 to see its
// return type.
foreach (var s in QueryMethod1(nums))
{
 Console.WriteLine(s);
}

// QueryMethod2 returns a query as the value of its out parameter.
QueryMethod2(nums, out IEnumerable<string> myQuery2);

// Execute the returned query.
Console.WriteLine("\nResults of executing myQuery2:");
foreach (var s in myQuery2)
{
 Console.WriteLine(s);
}

// You can modify a query by using query composition. In this case, the
// previous query object is used to create a new query object; this new
object
// will return different results than the original query object.
myQuery1 =
 from item in myQuery1
 orderby item descending
 select item;

// Execute the modified query.
Console.WriteLine("\nResults of executing modified myQuery1:");
foreach (var s in myQuery1)
{
 Console.WriteLine(s);
}

See also

Store the results of a query in memory
Article • 2022-02-18 • 2 minutes to read

A query is basically a set of instructions for how to retrieve and organize data. Queries
are executed lazily, as each subsequent item in the result is requested. When you use
foreach to iterate the results, items are returned as accessed. To evaluate a query and
store its results without executing a foreach loop, just call one of the following methods
on the query variable:

ToList

ToArray

ToDictionary

ToLookup

We recommend that when you store the query results, you assign the returned
collection object to a new variable as shown in the following example:

C#

Language Integrated Query (LINQ)

Example

List<int> numbers = new() { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 };

IEnumerable<int> queryFactorsOfFour =
 from num in numbers
 where num % 4 == 0
 select num;

// Store the results in a new variable
// without executing a foreach loop.
List<int> factorsofFourList = queryFactorsOfFour.ToList();

// Read and write from the newly created list to demonstrate that it holds
data.
Console.WriteLine(factorsofFourList[2]);
factorsofFourList[2] = 0;
Console.WriteLine(factorsofFourList[2]);

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.todictionary
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolookup

Group query results
Article • 2022-02-18 • 4 minutes to read

Grouping is one of the most powerful capabilities of LINQ. The following examples show
how to group data in various ways:

By a single property.

By the first letter of a string property.

By a computed numeric range.

By Boolean predicate or other expression.

By a compound key.

In addition, the last two queries project their results into a new anonymous type that
contains only the student's first and last name. For more information, see the group
clause.

The following example shows how to group source elements by using a single property
of the element as the group key. In this case the key is a string , the student's last name.
It is also possible to use a substring for the key; see the next example. The grouping
operation uses the default equality comparer for the type.

C#

７ Note

The examples in this topic use the Student class and students list from the sample
code in Query a collection of objects.

Group by single property example

// Variable groupByLastNamesQuery is an IEnumerable<IGrouping<string,
// DataClass.Student>>.
var groupByLastNamesQuery =
 from student in students
 group student by student.LastName into newGroup
 orderby newGroup.Key
 select newGroup;

foreach (var nameGroup in groupByLastNamesQuery)
{

The following example shows how to group source elements by using something other
than a property of the object for the group key. In this example, the key is the first letter
of the student's last name.

C#

 Console.WriteLine($"Key: {nameGroup.Key}");
 foreach (var student in nameGroup)
 {
 Console.WriteLine($"\t{student.LastName}, {student.FirstName}");
 }
}

/* Output:
 Key: Adams
 Adams, Terry
 Key: Fakhouri
 Fakhouri, Fadi
 Key: Feng
 Feng, Hanying
 Key: Garcia
 Garcia, Cesar
 Garcia, Debra
 Garcia, Hugo
 Key: Mortensen
 Mortensen, Sven
 Key: O'Donnell
 O'Donnell, Claire
 Key: Omelchenko
 Omelchenko, Svetlana
 Key: Tucker
 Tucker, Lance
 Tucker, Michael
 Key: Zabokritski
 Zabokritski, Eugene
*/

Group by value example

var groupByFirstLetterQuery =
 from student in students
 group student by student.LastName[0];

foreach (var studentGroup in groupByFirstLetterQuery)
{
 Console.WriteLine($"Key: {studentGroup.Key}");
 // Nested foreach is required to access group items.
 foreach (var student in studentGroup)
 {
 Console.WriteLine($"\t{student.LastName}, {student.FirstName}");
 }

The following example shows how to group source elements by using a numeric range
as a group key. The query then projects the results into an anonymous type that
contains only the first and last name and the percentile range to which the student
belongs. An anonymous type is used because it is not necessary to use the complete
Student object to display the results. GetPercentile is a helper function that calculates a
percentile based on the student's average score. The method returns an integer
between 0 and 10.

C#

}

/* Output:
 Key: A
 Adams, Terry
 Key: F
 Fakhouri, Fadi
 Feng, Hanying
 Key: G
 Garcia, Cesar
 Garcia, Debra
 Garcia, Hugo
 Key: M
 Mortensen, Sven
 Key: O
 O'Donnell, Claire
 Omelchenko, Svetlana
 Key: T
 Tucker, Lance
 Tucker, Michael
 Key: Z
 Zabokritski, Eugene
*/

Group by a range example

int GetPercentile(Student s)
{
 double avg = s.ExamScores.Average();
 return avg > 0 ? (int)avg / 10 : 0;
}

var groupByPercentileQuery =
 from student in students
 let percentile = GetPercentile(student)
 group new
 {
 student.FirstName,
 student.LastName

The following example shows how to group source elements by using a Boolean
comparison expression. In this example, the Boolean expression tests whether a
student's average exam score is greater than 75. As in previous examples, the results are
projected into an anonymous type because the complete source element is not needed.
Note that the properties in the anonymous type become properties on the Key member
and can be accessed by name when the query is executed.

C#

 } by percentile into percentGroup
 orderby percentGroup.Key
 select percentGroup;

// Nested foreach required to iterate over groups and group items.
foreach (var studentGroup in groupByPercentileQuery)
{
 Console.WriteLine($"Key: {studentGroup.Key * 10}");
 foreach (var item in studentGroup)
 {
 Console.WriteLine($"\t{item.LastName}, {item.FirstName}");
 }
}

/* Output:
 Key: 60
 Garcia, Debra
 Key: 70
 O'Donnell, Claire
 Key: 80
 Adams, Terry
 Feng, Hanying
 Garcia, Cesar
 Garcia, Hugo
 Mortensen, Sven
 Omelchenko, Svetlana
 Tucker, Lance
 Zabokritski, Eugene
 Key: 90
 Fakhouri, Fadi
 Tucker, Michael
*/

Group by comparison example

var groupByHighAverageQuery =
 from student in students
 group new
 {
 student.FirstName,
 student.LastName

The following example shows how to use an anonymous type to encapsulate a key that
contains multiple values. In this example, the first key value is the first letter of the
student's last name. The second key value is a Boolean that specifies whether the
student scored over 85 on the first exam. You can order the groups by any property in
the key.

C#

 } by student.ExamScores.Average() > 75 into studentGroup
 select studentGroup;

foreach (var studentGroup in groupByHighAverageQuery)
{
 Console.WriteLine($"Key: {studentGroup.Key}");
 foreach (var student in studentGroup)
 {
 Console.WriteLine($"\t{student.FirstName} {student.LastName}");
 }
}

/* Output:
 Key: True
 Terry Adams
 Fadi Fakhouri
 Hanying Feng
 Cesar Garcia
 Hugo Garcia
 Sven Mortensen
 Svetlana Omelchenko
 Lance Tucker
 Michael Tucker
 Eugene Zabokritski
 Key: False
 Debra Garcia
 Claire O'Donnell
*/

Group by anonymous type

var groupByCompoundKey =
 from student in students
 group student by new
 {
 FirstLetter = student.LastName[0],
 IsScoreOver85 = student.ExamScores[0] > 85
 } into studentGroup
 orderby studentGroup.Key.FirstLetter
 select studentGroup;

foreach (var scoreGroup in groupByCompoundKey)

GroupBy
IGrouping<TKey,TElement>
Language Integrated Query (LINQ)
group clause
Anonymous Types
Perform a Subquery on a Grouping Operation
Create a Nested Group
Grouping Data

{
 string s = scoreGroup.Key.IsScoreOver85 == true ? "more than 85" : "less
than 85";
 Console.WriteLine($"Name starts with {scoreGroup.Key.FirstLetter} who
scored {s}");
 foreach (var item in scoreGroup)
 {
 Console.WriteLine($"\t{item.FirstName} {item.LastName}");
 }
}

/* Output:
 Name starts with A who scored more than 85
 Terry Adams
 Name starts with F who scored more than 85
 Fadi Fakhouri
 Hanying Feng
 Name starts with G who scored more than 85
 Cesar Garcia
 Hugo Garcia
 Name starts with G who scored less than 85
 Debra Garcia
 Name starts with M who scored more than 85
 Sven Mortensen
 Name starts with O who scored less than 85
 Claire O'Donnell
 Name starts with O who scored more than 85
 Svetlana Omelchenko
 Name starts with T who scored less than 85
 Lance Tucker
 Name starts with T who scored more than 85
 Michael Tucker
 Name starts with Z who scored more than 85
 Eugene Zabokritski
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2

Create a nested group
Article • 2022-02-18 • 2 minutes to read

The following example shows how to create nested groups in a LINQ query expression.
Each group that is created according to student year or grade level is then further
subdivided into groups based on the individuals' names.

C#

Example

７ Note

The example in this topic uses the Student class and students list from the sample
code in Query a collection of objects.

var nestedGroupsQuery =
 from student in students
 group student by student.Year into newGroup1
 from newGroup2 in (
 from student in newGroup1
 group student by student.LastName
)
 group newGroup2 by newGroup1.Key;

// Three nested foreach loops are required to iterate
// over all elements of a grouped group. Hover the mouse
// cursor over the iteration variables to see their actual type.
foreach (var outerGroup in nestedGroupsQuery)
{
 Console.WriteLine($"DataClass.Student Level = {outerGroup.Key}");
 foreach (var innerGroup in outerGroup)
 {
 Console.WriteLine($"\tNames that begin with: {innerGroup.Key}");
 foreach (var innerGroupElement in innerGroup)
 {
 Console.WriteLine($"\t\t{innerGroupElement.LastName}
{innerGroupElement.FirstName}");
 }
 }
}

/* Output:
 DataClass.Student Level = SecondYear
 Names that begin with: Adams
 Adams Terry
 Names that begin with: Garcia

Note that three nested foreach loops are required to iterate over the inner elements of
a nested group.

Language Integrated Query (LINQ)

 Garcia Hugo
 Names that begin with: Omelchenko
 Omelchenko Svetlana
 DataClass.Student Level = ThirdYear
 Names that begin with: Fakhouri
 Fakhouri Fadi
 Names that begin with: Garcia
 Garcia Debra
 Names that begin with: Tucker
 Tucker Lance
 DataClass.Student Level = FirstYear
 Names that begin with: Feng
 Feng Hanying
 Names that begin with: Mortensen
 Mortensen Sven
 Names that begin with: Tucker
 Tucker Michael
 DataClass.Student Level = FourthYear
 Names that begin with: Garcia
 Garcia Cesar
 Names that begin with: O'Donnell
 O'Donnell Claire
 Names that begin with: Zabokritski
 Zabokritski Eugene
 */

See also

Perform a subquery on a grouping
operation
Article • 2022-02-18 • 2 minutes to read

This article shows two different ways to create a query that orders the source data into
groups, and then performs a subquery over each group individually. The basic technique
in each example is to group the source elements by using a continuation named
newGroup , and then generating a new subquery against newGroup . This subquery is run
against each new group that is created by the outer query. Note that in this particular
example the final output is not a group, but a flat sequence of anonymous types.

For more information about how to group, see group clause.

For more information about continuations, see into. The following example uses an in-
memory data structure as the data source, but the same principles apply for any kind of
LINQ data source.

C#

Example

７ Note

The examples in this topic use the Student class and students list from the sample
code in Query a collection of objects.

var queryGroupMax =
 from student in students
 group student by student.Year into studentGroup
 select new
 {
 Level = studentGroup.Key,
 HighestScore = (
 from student2 in studentGroup
 select student2.ExamScores.Average()
).Max()
 };

int count = queryGroupMax.Count();
Console.WriteLine($"Number of groups = {count}");

foreach (var item in queryGroupMax)
{

The query in the snippet above can also be written using method syntax. The following
code snippet has a semantically equivalent query written using method syntax.

C#

Language Integrated Query (LINQ)

 Console.WriteLine($" {item.Level} Highest Score={item.HighestScore}");
}

var queryGroupMax =
 students
 .GroupBy(student => student.Year)
 .Select(studentGroup => new
 {
 Level = studentGroup.Key,
 HighestScore = studentGroup.Select(student2 =>
student2.ExamScores.Average()).Max()
 });

int count = queryGroupMax.Count();
Console.WriteLine($"Number of groups = {count}");

foreach (var item in queryGroupMax)
{
 Console.WriteLine($" {item.Level} Highest Score={item.HighestScore}");
}

See also

Group results by contiguous keys
Article • 2022-02-18 • 6 minutes to read

The following example shows how to group elements into chunks that represent
subsequences of contiguous keys. For example, assume that you are given the following
sequence of key-value pairs:

Key Value

A We

A think

A that

B Linq

C is

A really

B cool

B !

The following groups will be created in this order:

1. We, think, that
2. Linq
3. is
4. really
5. cool, !

The solution is implemented as an extension method that is thread-safe and that returns
its results in a streaming manner. In other words, it produces its groups as it moves
through the source sequence. Unlike the group or orderby operators, it can begin
returning groups to the caller before all of the sequence has been read.

Thread-safety is accomplished by making a copy of each group or chunk as the source
sequence is iterated, as explained in the source code comments. If the source sequence
has a large sequence of contiguous items, the common language runtime may throw an
OutOfMemoryException.

Example

https://learn.microsoft.com/en-us/dotnet/api/system.outofmemoryexception

The following example shows both the extension method and the client code that uses
it:

C#

public static class ChunkExtensions
{
 public static IEnumerable<IGrouping<TKey, TSource>> ChunkBy<TSource,
TKey>(
 this IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
) =>
 source.ChunkBy(keySelector, EqualityComparer<TKey>.Default);

 public static IEnumerable<IGrouping<TKey, TSource>> ChunkBy<TSource,
TKey>(
 this IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector,
 IEqualityComparer<TKey> comparer
)
 {
 // Flag to signal end of source sequence.
 const bool noMoreSourceElements = true;

 // Auto-generated iterator for the source array.
 var enumerator = source.GetEnumerator();

 // Move to the first element in the source sequence.
 if (!enumerator.MoveNext())
 {
 yield break;
 }

 // Iterate through source sequence and create a copy of each Chunk.
 // On each pass, the iterator advances to the first element of the
next "Chunk"
 // in the source sequence. This loop corresponds to the outer
foreach loop that
 // executes the query.
 Chunk<TKey, TSource> current = null;
 while (true)
 {
 // Get the key for the current Chunk. The source iterator will
churn through
 // the source sequence until it finds an element with a key that
doesn't match.
 var key = keySelector(enumerator.Current);

 // Make a new Chunk (group) object that initially has one
GroupItem, which is a copy of the current source element.
 current = new Chunk<TKey, TSource>(key, enumerator, value =>
comparer.Equals(key, keySelector(value)));

 // Return the Chunk. A Chunk is an IGrouping<TKey,TSource>,

which is the return value of the ChunkBy method.
 // At this point the Chunk only has the first element in its
source sequence. The remaining elements will be
 // returned only when the client code foreach's over this chunk.
See Chunk.GetEnumerator for more info.
 yield return current;

 // Check to see whether (a) the chunk has made a copy of all its
source elements or
 // (b) the iterator has reached the end of the source sequence.
If the caller uses an inner
 // foreach loop to iterate the chunk items, and that loop ran to
completion,
 // then the Chunk.GetEnumerator method will already have made
 // copies of all chunk items before we get here. If the
Chunk.GetEnumerator loop did not
 // enumerate all elements in the chunk, we need to do it here to
avoid corrupting the iterator
 // for clients that may be calling us on a separate thread.
 if (current.CopyAllChunkElements() == noMoreSourceElements)
 {
 yield break;
 }
 }

 }
}

// A Chunk is a contiguous group of one or more source elements that have
the same key. A Chunk
// has a key and a list of ChunkItem objects, which are copies of the
elements in the source sequence.
class Chunk<TKey, TSource> : IGrouping<TKey, TSource>
{
 // INVARIANT: DoneCopyingChunk == true ||
 // (predicate != null && predicate(enumerator.Current) &&
current.Value == enumerator.Current)

 // A Chunk has a linked list of ChunkItems, which represent the elements
in the current chunk. Each ChunkItem
 // has a reference to the next ChunkItem in the list.
 class ChunkItem
 {
 public ChunkItem(TSource value)
 {
 Value = value;
 }
 public readonly TSource Value;
 public ChunkItem? Next = null;
 }

 // Stores a reference to the enumerator for the source sequence
 private IEnumerator<TSource> enumerator;

 // A reference to the predicate that is used to compare keys.

 private Func<TSource, bool> predicate;

 // Stores the contents of the first source element that
 // belongs with this chunk.
 private readonly ChunkItem head;

 // End of the list. It is repositioned each time a new
 // ChunkItem is added.
 private ChunkItem tail;

 // Flag to indicate the source iterator has reached the end of the
source sequence.
 internal bool isLastSourceElement = false;

 // Private object for thread syncronization
 private readonly object m_Lock;

 // REQUIRES: enumerator != null && predicate != null
 public Chunk(TKey key, IEnumerator<TSource> enumerator, Func<TSource,
bool> predicate)
 {
 Key = key;
 this.enumerator = enumerator;
 this.predicate = predicate;

 // A Chunk always contains at least one element.
 head = new ChunkItem(enumerator.Current);

 // The end and beginning are the same until the list contains > 1
elements.
 tail = head;

 m_Lock = new object();
 }

 // Indicates that all chunk elements have been copied to the list of
ChunkItems,
 // and the source enumerator is either at the end, or else on an element
with a new key.
 // the tail of the linked list is set to null in the
CopyNextChunkElement method if the
 // key of the next element does not match the current chunk's key, or
there are no more elements in the source.
 private bool DoneCopyingChunk => tail == null;

 // Adds one ChunkItem to the current group
 // REQUIRES: !DoneCopyingChunk && lock(this)
 private void CopyNextChunkElement()
 {
 // Try to advance the iterator on the source sequence.
 // If MoveNext returns false we are at the end, and
isLastSourceElement is set to true
 isLastSourceElement = !enumerator.MoveNext();

 // If we are (a) at the end of the source, or (b) at the end of the

current chunk
 // then null out the enumerator and predicate for reuse with the
next chunk.
 if (isLastSourceElement || !predicate(enumerator.Current))
 {
 enumerator = null;
 predicate = null;
 }
 else
 {
 tail.Next = new ChunkItem(enumerator.Current);
 }

 // tail will be null if we are at the end of the chunk elements
 // This check is made in DoneCopyingChunk.
 tail = tail.Next!;
 }

 // Called after the end of the last chunk was reached. It first checks
whether
 // there are more elements in the source sequence. If there are, it
 // Returns true if enumerator for this chunk was exhausted.
 internal bool CopyAllChunkElements()
 {
 while (true)
 {
 lock (m_Lock)
 {
 if (DoneCopyingChunk)
 {
 // If isLastSourceElement is false,
 // it signals to the outer iterator
 // to continue iterating.
 return isLastSourceElement;
 }
 else
 {
 CopyNextChunkElement();
 }
 }
 }
 }

 public TKey Key { get; }

 // Invoked by the inner foreach loop. This method stays just one step
ahead
 // of the client requests. It adds the next element of the chunk only
after
 // the clients requests the last element in the list so far.
 public IEnumerator<TSource> GetEnumerator()
 {
 //Specify the initial element to enumerate.
 ChunkItem current = head;

 // There should always be at least one ChunkItem in a Chunk.
 while (current != null)
 {
 // Yield the current item in the list.
 yield return current.Value;

 // Copy the next item from the source sequence,
 // if we are at the end of our local list.
 lock (m_Lock)
 {
 if (current == tail)
 {
 CopyNextChunkElement();
 }
 }

 // Move to the next ChunkItem in the list.
 current = current.Next;
 }
 }

 System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator() => GetEnumerator();
}

public static class GroupByContiguousKeys
{
 // The source sequence.
 static readonly KeyValuePair<string, string>[] list = {
 new("A","We"),
 new("A","think"),
 new("A","that"),
 new("B","LINQ"),
 new("C","is"),
 new ("A","really"),
 new("B","cool"),
 new("B","!")
 };

 // Query variable declared as class member to be available
 // on different threads.
 static readonly IEnumerable<IGrouping<string, KeyValuePair<string,
string>>> query =
 list.ChunkBy(p => p.Key);

 public static void GroupByContiguousKeys1()
 {
 // ChunkBy returns IGrouping objects, therefore a nested
 // foreach loop is required to access the elements in each "chunk".
 foreach (var item in query)
 {
 Console.WriteLine($"Group key = {item.Key}");
 foreach (var inner in item)
 {
 Console.WriteLine($"\t{inner.Value}");

Language Integrated Query (LINQ)

 }
 }
 }
}

See also

Dynamically specify predicate filters at
run time
Article • 2022-02-18 • 2 minutes to read

In some cases, you don't know until run time how many predicates you have to apply to
source elements in the where clause. One way to dynamically specify multiple predicate
filters is to use the Contains method, as shown in the following example. The query will
return different results based on the value of id when the query is executed.

C#

int[] ids = { 111, 114, 112 };

var queryNames =
 from student in students
 where ids.Contains(student.ID)
 select new
 {
 student.LastName,
 student.ID
 };

foreach (var name in queryNames)
{
 Console.WriteLine($"{name.LastName}: {name.ID}");
}

/* Output:
 Garcia: 114
 O'Donnell: 112
 Omelchenko: 111
 */

// Change the ids.
ids = new[] { 122, 117, 120, 115 };

// The query will now return different results
foreach (var name in queryNames)
{
 Console.WriteLine($"{name.LastName}: {name.ID}");
}

/* Output:
 Adams: 120
 Feng: 117
 Garcia: 115
 Tucker: 122
 */

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.contains

You can use control flow statements, such as if... else or switch , to select among
predetermined alternative queries. In the following example, studentQuery uses a
different where clause if the runtime value of oddYear is true or false .

C#

Using different queries at runtime

void FilterByYearType(bool oddYear)
{
 IEnumerable<Student> studentQuery;
 if (oddYear)
 {
 studentQuery =
 from student in students
 where student.Year == GradeLevel.FirstYear || student.Year ==
GradeLevel.ThirdYear
 select student;
 }
 else
 {
 studentQuery =
 from student in students
 where student.Year == GradeLevel.SecondYear || student.Year ==
GradeLevel.FourthYear
 select student;
 }

 string descr = oddYear ? "odd" : "even";
 Console.WriteLine($"The following students are at an {descr} year
level:");
 foreach (Student name in studentQuery)
 {
 Console.WriteLine($"{name.LastName}: {name.ID}");
 }
}

FilterByYearType(true);

/* Output:
 The following students are at an odd year level:
 Fakhouri: 116
 Feng: 117
 Garcia: 115
 Mortensen: 113
 Tucker: 119
 Tucker: 122
 */

FilterByYearType(false);

/* Output:

Language Integrated Query (LINQ)
where clause
Querying based on runtime state

 The following students are at an even year level:
 Adams: 120
 Garcia: 114
 Garcia: 118
 O'Donnell: 112
 Omelchenko: 111
 Zabokritski: 121
 */

See also

Perform inner joins
Article • 2022-02-18 • 7 minutes to read

In relational database terms, an inner join produces a result set in which each element of
the first collection appears one time for every matching element in the second
collection. If an element in the first collection has no matching elements, it does not
appear in the result set. The Join method, which is called by the join clause in C#,
implements an inner join.

This article shows you how to perform four variations of an inner join:

A simple inner join that correlates elements from two data sources based on a
simple key.

An inner join that correlates elements from two data sources based on a composite
key. A composite key, which is a key that consists of more than one value, enables
you to correlate elements based on more than one property.

A multiple join in which successive join operations are appended to each other.

An inner join that is implemented by using a group join.

The following example creates two collections that contain objects of two user-defined
types, Person and Pet . The query uses the join clause in C# to match Person objects
with Pet objects whose Owner is that Person . The select clause in C# defines how the

７ Note

The examples in this topic use the following data classes:

C#

as well as the Student class from Query a collection of objects.

record Person(string FirstName, string LastName);
record Pet(string Name, Person Owner);
record Employee(string FirstName, string LastName, int EmployeeID);
record Cat(string Name, Person Owner) : Pet(Name, Owner);
record Dog(string Name, Person Owner) : Pet(Name, Owner);

Example - Simple key join

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join

resulting objects will look. In this example the resulting objects are anonymous types
that consist of the owner's first name and the pet's name.

C#

Note that the Person object whose LastName is "Huff" does not appear in the result set
because there is no Pet object that has Pet.Owner equal to that Person .

Person magnus = new(FirstName: "Magnus", LastName: "Hedlund");
Person terry = new("Terry", "Adams");
Person charlotte = new("Charlotte", "Weiss");
Person arlene = new("Arlene", "Huff");
Person rui = new("Rui", "Raposo");

List<Person> people = new() { magnus, terry, charlotte, arlene, rui };

List<Pet> pets = new()
{
 new(Name: "Barley", Owner: terry),
 new("Boots", terry),
 new("Whiskers", charlotte),
 new("Blue Moon", rui),
 new("Daisy", magnus),
};

// Create a collection of person-pet pairs. Each element in the collection
// is an anonymous type containing both the person's name and their pet's
name.
var query =
 from person in people
 join pet in pets on person equals pet.Owner
 select new
 {
 OwnerName = person.FirstName,
 PetName = pet.Name
 };

foreach (var ownerAndPet in query)
{
 Console.WriteLine($"\"{ownerAndPet.PetName}\" is owned by
{ownerAndPet.OwnerName}");
}

/* Output:
 "Daisy" is owned by Magnus
 "Barley" is owned by Terry
 "Boots" is owned by Terry
 "Whiskers" is owned by Charlotte
 "Blue Moon" is owned by Rui
*/

Instead of correlating elements based on just one property, you can use a composite
key to compare elements based on multiple properties. To do this, specify the key
selector function for each collection to return an anonymous type that consists of the
properties you want to compare. If you label the properties, they must have the same
label in each key's anonymous type. The properties must also appear in the same order.

The following example uses a list of Employee objects and a list of Student objects to
determine which employees are also students. Both of these types have a FirstName
and a LastName property of type String. The functions that create the join keys from
each list's elements return an anonymous type that consists of the FirstName and
LastName properties of each element. The join operation compares these composite
keys for equality and returns pairs of objects from each list where both the first name
and the last name match.

C#

Example - Composite key join

List<Employee> employees = new()
{
 new(FirstName: "Terry", LastName: "Adams", EmployeeID: 522459),
 new("Charlotte", "Weiss", 204467),
 new("Magnus", "Hedland", 866200),
 new("Vernette", "Price", 437139)
};

List<Student> students = new()
{
 new(FirstName: "Vernette", LastName: "Price", StudentID: 9562),
 new("Terry", "Earls", 9870),
 new("Terry", "Adams", 9913)
};

// Join the two data sources based on a composite key consisting of first
and last name,
// to determine which employees are also students.
var query =
 from employee in employees
 join student in students on new
 {
 employee.FirstName,
 employee.LastName
 } equals new
 {
 student.FirstName,
 student.LastName
 }
 select employee.FirstName + " " + employee.LastName;

https://learn.microsoft.com/en-us/dotnet/api/system.string

Any number of join operations can be appended to each other to perform a multiple
join. Each join clause in C# correlates a specified data source with the results of the
previous join.

The following example creates three collections: a list of Person objects, a list of Cat
objects, and a list of Dog objects.

The first join clause in C# matches people and cats based on a Person object matching
Cat.Owner . It returns a sequence of anonymous types that contain the Person object
and Cat.Name .

The second join clause in C# correlates the anonymous types returned by the first join
with Dog objects in the supplied list of dogs, based on a composite key that consists of
the Owner property of type Person , and the first letter of the animal's name. It returns a
sequence of anonymous types that contain the Cat.Name and Dog.Name properties from
each matching pair. Because this is an inner join, only those objects from the first data
source that have a match in the second data source are returned.

C#

Console.WriteLine("The following people are both employees and students:");
foreach (string name in query)
{
 Console.WriteLine(name);
}

/* Output:
 The following people are both employees and students:
 Terry Adams
 Vernette Price
 */

Example - Multiple join

Person magnus = new(FirstName: "Magnus", LastName: "Hedlund");
Person terry = new("Terry", "Adams");
Person charlotte = new("Charlotte", "Weiss");
Person arlene = new("Arlene", "Huff");
Person rui = new("Rui", "Raposo");
Person phyllis = new("Phyllis", "Harris");

List<Person> people = new() { magnus, terry, charlotte, arlene, rui, phyllis
};

List<Cat> cats = new()
{
 new(Name: "Barley", Owner: terry),

 new("Boots", terry),
 new("Whiskers", charlotte),
 new("Blue Moon", rui),
 new("Daisy", magnus),
};

List<Dog> dogs = new()
{
 new(Name: "Four Wheel Drive", Owner: phyllis),
 new("Duke", magnus),
 new("Denim", terry),
 new("Wiley", charlotte),
 new("Snoopy", rui),
 new("Snickers", arlene),
};

// The first join matches Person and Cat.Owner from the list of people and
// cats, based on a common Person. The second join matches dogs whose names
start
// with the same letter as the cats that have the same owner.
var query =
 from person in people
 join cat in cats on person equals cat.Owner
 join dog in dogs on new
 {
 Owner = person,
 Letter = cat.Name.Substring(0, 1)
 } equals new
 {
 dog.Owner,
 Letter = dog.Name.Substring(0, 1)
 }
 select new
 {
 CatName = cat.Name,
 DogName = dog.Name
 };

foreach (var obj in query)
{
 Console.WriteLine(
 $"The cat \"{obj.CatName}\" shares a house, and the first letter of
their name, with \"{obj.DogName}\"."
);
}

/* Output:
 The cat "Daisy" shares a house, and the first letter of their name,
with "Duke".
 The cat "Whiskers" shares a house, and the first letter of their name,
with "Wiley".
 */

The following example shows you how to implement an inner join by using a group join.

In query1 , the list of Person objects is group-joined to the list of Pet objects based on
the Person matching the Pet.Owner property. The group join creates a collection of
intermediate groups, where each group consists of a Person object and a sequence of
matching Pet objects.

By adding a second from clause to the query, this sequence of sequences is combined
(or flattened) into one longer sequence. The type of the elements of the final sequence
is specified by the select clause. In this example, that type is an anonymous type that
consists of the Person.FirstName and Pet.Name properties for each matching pair.

The result of query1 is equivalent to the result set that would have been obtained by
using the join clause without the into clause to perform an inner join. The query2
variable demonstrates this equivalent query.

C#

Example - Inner join by using grouped join

Person magnus = new(FirstName: "Magnus", LastName: "Hedlund");
Person terry = new("Terry", "Adams");
Person charlotte = new("Charlotte", "Weiss");
Person arlene = new("Arlene", "Huff");

List<Person> people = new() { magnus, terry, charlotte, arlene };

List<Pet> pets = new()
{
 new(Name: "Barley", Owner: terry),
 new("Boots", terry),
 new("Whiskers", charlotte),
 new("Blue Moon", terry),
 new("Daisy", magnus),
};

var query1 =
 from person in people
 join pet in pets on person equals pet.Owner into gj
 from subpet in gj
 select new
 {
 OwnerName = person.FirstName,
 PetName = subpet.Name
 };

Console.WriteLine("Inner join using GroupJoin():");
foreach (var v in query1)
{

Join
GroupJoin
Perform grouped joins
Perform left outer joins
Anonymous types

 Console.WriteLine($"{v.OwnerName} - {v.PetName}");
}

var query2 =
 from person in people
 join pet in pets on person equals pet.Owner
 select new
 {
 OwnerName = person.FirstName,
 PetName = pet.Name
 };

Console.WriteLine();
Console.WriteLine("The equivalent operation using Join():");
foreach (var v in query2)
{
 Console.WriteLine($"{v.OwnerName} - {v.PetName}");
}

/* Output:
 Inner join using GroupJoin():
 Magnus - Daisy
 Terry - Barley
 Terry - Boots
 Terry - Blue Moon
 Charlotte - Whiskers

 The equivalent operation using Join():
 Magnus - Daisy
 Terry - Barley
 Terry - Boots
 Terry - Blue Moon
 Charlotte - Whiskers
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin

Perform grouped joins
Article • 2022-02-18 • 3 minutes to read

The group join is useful for producing hierarchical data structures. It pairs each element
from the first collection with a set of correlated elements from the second collection.

For example, a class or a relational database table named Student might contain two
fields: Id and Name . A second class or relational database table named Course might
contain two fields: StudentId and CourseTitle . A group join of these two data sources,
based on matching Student.Id and Course.StudentId , would group each Student with
a collection of Course objects (which might be empty).

The first example in this article shows you how to perform a group join. The second
example shows you how to use a group join to create XML elements.

７ Note

Each element of the first collection appears in the result set of a group join
regardless of whether correlated elements are found in the second collection. In the
case where no correlated elements are found, the sequence of correlated elements
for that element is empty. The result selector therefore has access to every element
of the first collection. This differs from the result selector in a non-group join, which
cannot access elements from the first collection that have no match in the second
collection.

２ Warning

Enumerable.GroupJoin has no direct equivalent in traditional relational database
terms. However, this method does implement a superset of inner joins and left
outer joins. Both of these operations can be written in terms of a grouped join. For
more information, see Join Operations and Entity Framework Core, GroupJoin.

７ Note

The examples in this topic use the Person and Pet data classes from Perform inner
joins.

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin
https://learn.microsoft.com/en-us/ef/core/querying/complex-query-operators#groupjoin

The following example performs a group join of objects of type Person and Pet based
on the Person matching the Pet.Owner property. Unlike a non-group join, which would
produce a pair of elements for each match, the group join produces only one resulting
object for each element of the first collection, which in this example is a Person object.
The corresponding elements from the second collection, which in this example are Pet
objects, are grouped into a collection. Finally, the result selector function creates an
anonymous type for each match that consists of Person.FirstName and a collection of
Pet objects.

C#

Example - Group join

Person magnus = new(FirstName: "Magnus", LastName: "Hedlund");
Person terry = new("Terry", "Adams");
Person charlotte = new("Charlotte", "Weiss");
Person arlene = new("Arlene", "Huff");

List<Person> people = new() { magnus, terry, charlotte, arlene };

List<Pet> pets = new()
{
 new(Name: "Barley", Owner: terry),
 new("Boots", terry),
 new("Whiskers", charlotte),
 new("Blue Moon", terry),
 new("Daisy", magnus),
};

// Create a list where each element is an anonymous type
// that contains the person's first name and a collection of
// pets that are owned by them.
var query =
 from person in people
 join pet in pets on person equals pet.Owner into gj
 select new
 {
 OwnerName = person.FirstName,
 Pets = gj
 };

foreach (var v in query)
{
 // Output the owner's name.
 Console.WriteLine($"{v.OwnerName}:");

 // Output each of the owner's pet's names.
 foreach (var pet in v.Pets)
 {
 Console.WriteLine($" {pet.Name}");

Group joins are ideal for creating XML by using LINQ to XML. The following example is
similar to the previous example except that instead of creating anonymous types, the
result selector function creates XML elements that represent the joined objects.

C#

 }
}

/* Output:
 Magnus:
 Daisy
 Terry:
 Barley
 Boots
 Blue Moon
 Charlotte:
 Whiskers
 Arlene:
 */

Example - Group join to create XML

// using System.Xml.Linq;

Person magnus = new(FirstName: "Magnus", LastName: "Hedlund");
Person terry = new("Terry", "Adams");
Person charlotte = new("Charlotte", "Weiss");
Person arlene = new("Arlene", "Huff");

List<Person> people = new() { magnus, terry, charlotte, arlene };

List<Pet> pets = new()
{
 new(Name: "Barley", Owner: terry),
 new("Boots", terry),
 new("Whiskers", charlotte),
 new("Blue Moon", terry),
 new("Daisy", magnus),
};

XElement ownersAndPets = new("PetOwners",
 from person in people
 join pet in pets on person equals pet.Owner into gj
 select new XElement("Person",
 new XAttribute("FirstName", person.FirstName),
 new XAttribute("LastName", person.LastName),
 from subpet in gj
 select new XElement("Pet", subpet.Name)
)
);

Join
GroupJoin
Perform inner joins
Perform left outer joins
Anonymous types

Console.WriteLine(ownersAndPets);

/* Output:
 <PetOwners>
 <Person FirstName="Magnus" LastName="Hedlund">
 <Pet>Daisy</Pet>
 </Person>
 <Person FirstName="Terry" LastName="Adams">
 <Pet>Barley</Pet>
 <Pet>Boots</Pet>
 <Pet>Blue Moon</Pet>
 </Person>
 <Person FirstName="Charlotte" LastName="Weiss">
 <Pet>Whiskers</Pet>
 </Person>
 <Person FirstName="Arlene" LastName="Huff" />
 </PetOwners>
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin

Perform left outer joins
Article • 2022-03-11 • 2 minutes to read

A left outer join is a join in which each element of the first collection is returned,
regardless of whether it has any correlated elements in the second collection. You can
use LINQ to perform a left outer join by calling the DefaultIfEmpty method on the
results of a group join.

The following example demonstrates how to use the DefaultIfEmpty method on the
results of a group join to perform a left outer join.

The first step in producing a left outer join of two collections is to perform an inner join
by using a group join. (See Perform inner joins for an explanation of this process.) In this
example, the list of Person objects is inner-joined to the list of Pet objects based on a
Person object that matches Pet.Owner .

The second step is to include each element of the first (left) collection in the result set
even if that element has no matches in the right collection. This is accomplished by
calling DefaultIfEmpty on each sequence of matching elements from the group join. In
this example, DefaultIfEmpty is called on each sequence of matching Pet objects. The
method returns a collection that contains a single, default value if the sequence of
matching Pet objects is empty for any Person object, thereby ensuring that each
Person object is represented in the result collection.

C#

７ Note

The example in this topic uses the Pet and Person data classes from Perform inner
joins.

Example

７ Note

The default value for a reference type is null ; therefore, the example checks for a
null reference before accessing each element of each Pet collection.

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.defaultifempty
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.defaultifempty
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.defaultifempty
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.defaultifempty

Join
GroupJoin
Perform inner joins
Perform grouped joins
Anonymous types

Person magnus = new("Magnus", "Hedlund");
Person terry = new("Terry", "Adams");
Person charlotte = new("Charlotte", "Weiss");
Person arlene = new("Arlene", "Huff");

Pet barley = new("Barley", terry);
Pet boots = new("Boots", terry);
Pet whiskers = new("Whiskers", charlotte);
Pet bluemoon = new("Blue Moon", terry);
Pet daisy = new("Daisy", magnus);

// Create two lists.
List<Person> people = new() { magnus, terry, charlotte, arlene };
List<Pet> pets = new() { barley, boots, whiskers, bluemoon, daisy };

var query =
 from person in people
 join pet in pets on person equals pet.Owner into gj
 from subpet in gj.DefaultIfEmpty()
 select new
 {
 person.FirstName,
 PetName = subpet?.Name ?? string.Empty
 };

foreach (var v in query)
{
 Console.WriteLine($"{v.FirstName + ":",-15}{v.PetName}");
}

record class Person(string FirstName, string LastName);
record class Pet(string Name, Person Owner);

// This code produces the following output:
//
// Magnus: Daisy
// Terry: Barley
// Terry: Boots
// Terry: Blue Moon
// Charlotte: Whiskers
// Arlene:

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin

Order the results of a join clause
Article • 2022-02-18 • 2 minutes to read

This example shows how to order the results of a join operation. Note that the ordering
is performed after the join. Although you can use an orderby clause with one or more of
the source sequences before the join, generally we do not recommend it. Some LINQ
providers might not preserve that ordering after the join.

This query creates a group join, and then sorts the groups based on the category
element, which is still in scope. Inside the anonymous type initializer, a sub-query orders
all the matching elements from the products sequence.

C#

７ Note

The example in this topic uses the following data classes:

C#

record Product(string Name, int CategoryID);
record Category(string Name, int ID);

Example

List<Category> categories = new()
{
 new(Name: "Beverages", ID: 001),
 new("Condiments", 002),
 new("Vegetables", 003),
 new("Grains", 004),
 new("Fruit", 005)
};

List<Product> products = new()
{
 new(Name: "Cola", CategoryID: 001),
 new("Tea", 001),
 new("Mustard", 002),
 new("Pickles", 002),
 new("Carrots", 003),
 new("Bok Choy", 003),
 new("Peaches", 005),
 new("Melons", 005),
};

Language Integrated Query (LINQ)
orderby clause
join clause

var groupJoinQuery2 =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 orderby category.Name
 select new
 {
 Category = category.Name,
 Products =
 from prod2 in prodGroup
 orderby prod2.Name
 select prod2
 };

foreach (var productGroup in groupJoinQuery2)
{
 Console.WriteLine(productGroup.Category);
 foreach (var prodItem in productGroup.Products)
 {
 Console.WriteLine($" {prodItem.Name,-10} {prodItem.CategoryID}");
 }
}

/* Output:
 Beverages
 Cola 1
 Tea 1
 Condiments
 Mustard 2
 Pickles 2
 Fruit
 Melons 5
 Peaches 5
 Grains
 Vegetables
 Bok Choy 3
 Carrots 3
 */

See also

Join by using composite keys
Article • 2021-09-15 • 2 minutes to read

This example shows how to perform join operations in which you want to use more than
one key to define a match. This is accomplished by using a composite key. You create a
composite key as an anonymous type or named typed with the values that you want to
compare. If the query variable will be passed across method boundaries, use a named
type that overrides Equals and GetHashCode for the key. The names of the properties,
and the order in which they occur, must be identical in each key.

The following example demonstrates how to use a composite key to join data from
three tables:

C#

Type inference on composite keys depends on the names of the properties in the keys,
and the order in which they occur. If the properties in the source sequences don't have
the same names, you must assign new names in the keys. For example, if the Orders
table and OrderDetails table each used different names for their columns, you could
create composite keys by assigning identical names in the anonymous types:

C#

Composite keys can be also used in a group clause.

Language Integrated Query (LINQ)

Example

var query = from o in db.Orders
 from p in db.Products
 join d in db.OrderDetails
 on new {o.OrderID, p.ProductID} equals new {d.OrderID, d.ProductID}
into details
 from d in details
 select new {o.OrderID, p.ProductID, d.UnitPrice};

join...on new {Name = o.CustomerName, ID = o.CustID} equals
 new {Name = d.CustName, ID = d.CustID }

See also

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode

join clause
group clause

Perform custom join operations
Article • 2022-02-18 • 4 minutes to read

This example shows how to perform join operations that aren't possible with the join
clause. In a query expression, the join clause is limited to, and optimized for, equijoins,
which are by far the most common type of join operation. When performing an equijoin,
you will probably always get the best performance by using the join clause.

However, the join clause cannot be used in the following cases:

When the join is predicated on an expression of inequality (a non-equijoin).

When the join is predicated on more than one expression of equality or inequality.

When you have to introduce a temporary range variable for the right side (inner)
sequence before the join operation.

To perform joins that aren't equijoins, you can use multiple from clauses to introduce
each data source independently. You then apply a predicate expression in a where
clause to the range variable for each source. The expression also can take the form of a
method call.

This query shows a simple cross join. Cross joins must be used with caution because
they can produce very large result sets. However, they can be useful in some scenarios
for creating source sequences against which additional queries are run.

C#

７ Note

Don't confuse this kind of custom join operation with the use of multiple from
clauses to access inner collections. For more information, see join clause.

Cross-join

７ Note

This example and the one after use the Product and Category definitions from
Order the results of a join clause.

List<Category> categories = new()
{
 new(Name: "Beverages", ID: 001),
 new("Condiments", 002),
 new("Vegetables", 003)
};

List<Product> products = new()
{
 new(Name: "Tea", CategoryID: 001),
 new("Mustard", 002),
 new("Pickles", 002),
 new("Carrots", 003),
 new("Bok Choy", 003),
 new("Peaches", 005),
 new("Melons", 005),
 new("Ice Cream", 007),
 new("Mackerel", 012)
};

var crossJoinQuery =
 from c in categories
 from p in products
 select new
 {
 c.ID,
 p.Name
 };

Console.WriteLine("Cross Join Query:");
foreach (var v in crossJoinQuery)
{
 Console.WriteLine($"{v.ID,-5}{v.Name}");
}
/* Output:
 Cross Join Query:
 1 Tea
 1 Mustard
 1 Pickles
 1 Carrots
 1 Bok Choy
 1 Peaches
 1 Melons
 1 Ice Cream
 1 Mackerel
 2 Tea
 2 Mustard
 2 Pickles
 2 Carrots
 2 Bok Choy
 2 Peaches
 2 Melons
 2 Ice Cream
 2 Mackerel

This query produces a sequence of all the products whose category ID is listed in the
category list on the left side. Note the use of the let clause and the Contains method
to create a temporary array. It also is possible to create the array before the query and
eliminate the first from clause.

C#

 3 Tea
 3 Mustard
 3 Pickles
 3 Carrots
 3 Bok Choy
 3 Peaches
 3 Melons
 3 Ice Cream
 3 Mackerel
*/

Non-equijoin

var nonEquijoinQuery =
 from p in products
 let catIds =
 from c in categories
 select c.ID
 where catIds.Contains(p.CategoryID) == true
 select new
 {
 Product = p.Name,
 p.CategoryID
 };

Console.WriteLine("Non-equijoin query:");
foreach (var v in nonEquijoinQuery)
{
 Console.WriteLine($"{v.CategoryID,-5}{v.Product}");
}

/* Output:
 Non-equijoin query:
 1 Tea
 2 Mustard
 2 Pickles
 3 Carrots
 3 Bok Choy
*/

Merge CSV files

In the following example, the query must join two sequences based on matching keys
that, in the case of the inner (right side) sequence, cannot be obtained prior to the join
clause itself. If this join were performed with a join clause, then the Split method
would have to be called for each element. The use of multiple from clauses enables the
query to avoid the overhead of the repeated method call. However, since join is
optimized, in this particular case it might still be faster than using multiple from clauses.
The results will vary depending primarily on how expensive the method call is.

C#

string[] names = File.ReadAllLines(@"csv/names.csv");
string[] scores = File.ReadAllLines(@"csv/scores.csv");

// Merge the data sources using a named type.
// You could use var instead of an explicit type for the query.
IEnumerable<Student> queryNamesScores =
 // Split each line in the data files into an array of strings.
 from name in names
 let x = name.Split(',')
 from score in scores
 let s = score.Split(',')
 // Look for matching IDs from the two data files.
 where x[2] == s[0]
 // If the IDs match, build a Student object.
 select new Student(
 FirstName: x[0],
 LastName: x[1],
 StudentID: int.Parse(x[2]),
 ExamScores: (
 from scoreAsText in s.Skip(1)
 select int.Parse(scoreAsText)
).ToList()
);

// Optional. Store the newly created student objects in memory
// for faster access in future queries
List<Student> students = queryNamesScores.ToList();

foreach (var student in students)
{
 Console.WriteLine($"The average score of {student.FirstName}
{student.LastName} is {student.ExamScores.Average()}.");
}

/* Output:
 The average score of Omelchenko Svetlana is 82.5.
 The average score of O'Donnell Claire is 72.25.
 The average score of Mortensen Sven is 84.5.
 The average score of Garcia Cesar is 88.25.
 The average score of Garcia Debra is 67.
 The average score of Fakhouri Fadi is 92.25.
 The average score of Feng Hanying is 88.

Language Integrated Query (LINQ)
join clause
Order the results of a join clause

 The average score of Garcia Hugo is 85.75.
 The average score of Tucker Lance is 81.75.
 The average score of Adams Terry is 85.25.
 The average score of Zabokritski Eugene is 83.
 The average score of Tucker Michael is 92.
 */

See also

Handle null values in query expressions
Article • 2022-02-18 • 2 minutes to read

This example shows how to handle possible null values in source collections. An object
collection such as an IEnumerable<T> can contain elements whose value is null. If a
source collection is null or contains an element whose value is null , and your query
doesn't handle null values, a NullReferenceException will be thrown when you execute
the query.

You can code defensively to avoid a null reference exception as shown in the following
example:

C#

In the previous example, the where clause filters out all null elements in the categories
sequence. This technique is independent of the null check in the join clause. The
conditional expression with null in this example works because Products.CategoryID is
of type int? , which is shorthand for Nullable<int> .

In a join clause, if only one of the comparison keys is a nullable value type, you can cast
the other to a nullable value type in the query expression. In the following example,
assume that EmployeeID is a column that contains values of type int? :

C#

var query1 =
 from c in categories
 where c != null
 join p in products on c.ID equals p?.CategoryID
 select new
 {
 Category = c.Name,
 Name = p.Name
 };

void TestMethod(Northwind db)
{
 var query =
 from o in db.Orders
 join e in db.Employees
 on o.EmployeeID equals (int?)e.EmployeeID
 select new { o.OrderID, e.FirstName };
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

In each of the examples, the equals query keyword is used. C# 9 adds pattern matching,
which includes patterns for is null and is not null . These patterns aren't
recommended in LINQ queries because query providers may not interpret the new C#
syntax correctly. A query provider is a library that translates C# query expressions into a
native data format, such as Entity Framework Core. Query providers implement the
System.Linq.IQueryProvider interface to create data sources that implement the
System.Linq.IQueryable<T> interface.

Nullable<T>
Language Integrated Query (LINQ)
Nullable value types

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryprovider
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

Handle exceptions in query expressions
Article • 2022-02-18 • 2 minutes to read

It's possible to call any method in the context of a query expression. However, we
recommend that you avoid calling any method in a query expression that can create a
side effect such as modifying the contents of the data source or throwing an exception.
This example shows how to avoid raising exceptions when you call methods in a query
expression without violating the general .NET guidelines on exception handling. Those
guidelines state that it's acceptable to catch a specific exception when you understand
why it's thrown in a given context. For more information, see Best Practices for
Exceptions.

The final example shows how to handle those cases when you must throw an exception
during execution of a query.

The following example shows how to move exception handling code outside a query
expression. This is only possible when the method does not depend on any variables
local to the query.

C#

Example 1

// A data source that is very likely to throw an exception!
IEnumerable<int> GetData() => throw new InvalidOperationException();

// DO THIS with a datasource that might
// throw an exception. It is easier to deal with
// outside of the query expression.
IEnumerable<int>? dataSource = null;
try
{
 dataSource = GetData();
}
catch (InvalidOperationException)
{
 // Handle (or don't handle) the exception
 // in the way that is appropriate for your application.
 Console.WriteLine("Invalid operation");
}

if (dataSource is not null)
{
 // If we get here, it is safe to proceed.
 var query =
 from i in dataSource

https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/best-practices-for-exceptions

In some cases, the best response to an exception that is thrown from within a query
might be to stop the query execution immediately. The following example shows how to
handle exceptions that might be thrown from inside a query body. Assume that
SomeMethodThatMightThrow can potentially cause an exception that requires the query
execution to stop.

Note that the try block encloses the foreach loop, and not the query itself. This is
because the foreach loop is the point at which the query is actually executed. For more
information, see Introduction to LINQ queries.

C#

 select i * i;

 foreach (var i in query)
 {
 Console.WriteLine(i.ToString());
 }
}

Example 2

// Not very useful as a general purpose method.
string SomeMethodThatMightThrow(string s) =>
 s[4] == 'C' ?
 throw new InvalidOperationException() :
 @"C:\newFolder\" + s;

// Data source.
string[] files = { "fileA.txt", "fileB.txt", "fileC.txt" };

// Demonstration query that throws.
var exceptionDemoQuery =
 from file in files
 let n = SomeMethodThatMightThrow(file)
 select n;

// The runtime exception will only be thrown when the query is executed.
// Therefore they must be handled in the foreach loop.
try
{
 foreach (var item in exceptionDemoQuery)
 {
 Console.WriteLine($"Processing {item}");
 }
}

// Catch whatever exception you expect to raise
// and/or do any necessary cleanup in a finally block

Language Integrated Query (LINQ)

catch (InvalidOperationException e)
{
 Console.WriteLine(e.Message);
}

/* Output:
 Processing C:\newFolder\fileA.txt
 Processing C:\newFolder\fileB.txt
 Operation is not valid due to the current state of the object.
 */

See also

Write safe and efficient C# code
Article • 2022-09-29 • 16 minutes to read

C# provides features that enable you to write verifiable safe code with better
performance. If you carefully apply these techniques, fewer scenarios require unsafe
code. These features make it easier to use references to value types as method
arguments and method returns. When done safely, these techniques minimize copying
value types. By using value types, you can minimize the number of allocations and
garbage collection passes.

One advantage to using value types is that they often avoid heap allocations. The
disadvantage is that they're copied by value. This trade-off makes it harder to optimize
algorithms that operate on large amounts of data. The language features highlighted in
this article provide mechanisms that enable safe efficient code using references to value
types. Use these features wisely to minimize both allocations and copy operations.

Some of the guidance in this article refers to coding practices that are always advisable,
not only for the performance benefit. Use the readonly keyword when it accurately
expresses design intent:

Declare immutable structs as readonly.
Declare readonly members for mutable structs.

The article also explains some low-level optimizations that are advisable when you've
run a profiler and have identified bottlenecks:

Use the in parameter modifier.
Use ref readonly return statements.
Use ref struct types.
Use nint and nuint types.

These techniques balance two competing goals:

Minimize allocations on the heap.

Variables that are reference types hold a reference to a location in memory and are
allocated on the managed heap. Only the reference is copied when a reference
type is passed as an argument to a method or returned from a method. Each new
object requires a new allocation, and later must be reclaimed. Garbage collection
takes time.

Minimize the copying of values.

Variables that are value types directly contain their value, and the value is typically
copied when passed to a method or returned from a method. This behavior
includes copying the value of this when calling iterators and async instance
methods of structs. The copy operation takes time, depending on the size of the
type.

This article uses the following example concept of the 3D-point structure to explain its
recommendations:

C#

Different examples use different implementations of this concept.

Declare a readonly struct to indicate that a type is immutable. The readonly modifier
informs the compiler that your intent is to create an immutable type. The compiler
enforces that design decision with the following rules:

All field members must be read-only.
All properties must be read-only, including auto-implemented properties.

These two rules are sufficient to ensure that no member of a readonly struct modifies
the state of that struct. The struct is immutable. The Point3D structure could be
defined as an immutable struct as shown in the following example:

C#

public struct Point3D
{
 public double X;
 public double Y;
 public double Z;
}

Declare immutable structs as readonly

readonly public struct ReadonlyPoint3D
{
 public ReadonlyPoint3D(double x, double y, double z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }

 public double X { get; }
 public double Y { get; }

Follow this recommendation whenever your design intent is to create an immutable
value type. Any performance improvements are an added benefit. The readonly struct
keywords clearly express your design intent.

When a struct type is mutable, declare members that don't modify state as readonly
members.

Consider a different application that needs a 3D point structure, but must support
mutability. The following version of the 3D point structure adds the readonly modifier
only to those members that don't modify the structure. Follow this example when your
design must support modifications to the struct by some members, but you still want
the benefits of enforcing readonly on some members:

C#

 public double Z { get; }
}

Declare readonly members for mutable structs

public struct Point3D
{
 public Point3D(double x, double y, double z)
 {
 _x = x;
 _y = y;
 _z = z;
 }

 private double _x;
 public double X
 {
 readonly get => _x;
 set => _x = value;
 }

 private double _y;
 public double Y
 {
 readonly get => _y;
 set => _y = value;
 }

 private double _z;
 public double Z
 {
 readonly get => _z;
 set => _z = value;

The preceding sample shows many of the locations where you can apply the readonly
modifier: methods, properties, and property accessors. If you use auto-implemented
properties, the compiler adds the readonly modifier to the get accessor for read-write
properties. The compiler adds the readonly modifier to the auto-implemented property
declarations for properties with only a get accessor.

Adding the readonly modifier to members that don't mutate state provides two related
benefits. First, the compiler enforces your intent. That member can't mutate the struct's
state. Second, the compiler won't create defensive copies of in parameters when
accessing a readonly member. The compiler can make this optimization safely because
it guarantees that the struct is not modified by a readonly member.

Use a ref readonly return when both of the following conditions are true:

The return value is a struct larger than IntPtr.Size.
The storage lifetime is greater than the method returning the value.

You can return values by reference when the value being returned isn't local to the
returning method. Returning by reference means that only the reference is copied, not
the structure. In the following example, the Origin property can't use a ref return
because the value being returned is a local variable:

C#

However, the following property definition can be returned by reference because the
returned value is a static member:

C#

 }

 public readonly double Distance => Math.Sqrt(X * X + Y * Y + Z * Z);

 public readonly override string ToString() => $"{X}, {Y}, {Z}";
}

Use ref readonly return statements

public Point3D Origin => new Point3D(0,0,0);

public struct Point3D
{
 private static Point3D origin = new Point3D(0,0,0);

https://learn.microsoft.com/en-us/dotnet/api/system.intptr.size

You don't want callers modifying the origin, so you should return the value by ref
readonly :

C#

Returning ref readonly enables you to save copying larger structures and preserve the
immutability of your internal data members.

At the call site, callers make the choice to use the Origin property as a ref readonly or
as a value:

C#

The first assignment in the preceding code makes a copy of the Origin constant and
assigns that copy. The second assigns a reference. Notice that the readonly modifier
must be part of the declaration of the variable. The reference to which it refers can't be
modified. Attempts to do so result in a compile-time error.

The readonly modifier is required on the declaration of originReference .

The compiler enforces that the caller can't modify the reference. Attempts to assign the
value directly generate a compile-time error. In other cases, the compiler allocates a
defensive copy unless it can safely use the readonly reference. Static analysis rules
determine if the struct could be modified. The compiler doesn't create a defensive copy
when the struct is a readonly struct or the member is a readonly member of the struct.
Defensive copies aren't needed to pass the struct as an in argument.

 // Dangerous! returning a mutable reference to internal storage
 public ref Point3D Origin => ref origin;

 // other members removed for space
}

public struct Point3D
{
 private static Point3D origin = new Point3D(0,0,0);

 public static ref readonly Point3D Origin => ref origin;

 // other members removed for space
}

var originValue = Point3D.Origin;
ref readonly var originReference = ref Point3D.Origin;

The following sections explain what the in modifier does, how to use it, and when to
use it for performance optimization:

The out, ref, and in keywords
Use in parameters for large structs
Optional use of in at call site
Avoid defensive copies

The in keyword complements the ref and out keywords to pass arguments by
reference. The in keyword specifies that the argument is passed by reference, but the
called method doesn't modify the value. The in modifier can be applied to any member
that takes parameters, such as methods, delegates, lambdas, local functions, indexers,
and operators.

With the addition of the in keyword, C# provides a full vocabulary to express your
design intent. Value types are copied when passed to a called method when you don't
specify any of the following modifiers in the method signature. Each of these modifiers
specifies that a variable is passed by reference, avoiding the copy. Each modifier
expresses a different intent:

out : This method sets the value of the argument used as this parameter.
ref : This method may modify the value of the argument used as this parameter.
in : This method doesn't modify the value of the argument used as this parameter.

Add the in modifier to pass an argument by reference and declare your design intent
to pass arguments by reference to avoid unnecessary copying. You don't intend to
modify the object used as that argument.

The in modifier complements out and ref in other ways as well. You can't create
overloads of a method that differ only in the presence of in , out , or ref . These new
rules extend the same behavior that had always been defined for out and ref
parameters. Like the out and ref modifiers, value types aren't boxed because the in
modifier is applied. Another feature of in parameters is that you can use literal values
or constants for the argument to an in parameter.

The in modifier can also be used with reference types or numeric values. However, the
benefits in those cases are minimal, if any.

Use the in parameter modifier

The out , ref , and in keywords

There are several ways in which the compiler enforces the read-only nature of an in
argument. First of all, the called method can't directly assign to an in parameter. It can't
directly assign to any field of an in parameter when that value is a struct type. In
addition, you can't pass an in parameter to any method using the ref or out modifier.
These rules apply to any field of an in parameter, provided the field is a struct type
and the parameter is also a struct type. In fact, these rules apply for multiple layers of
member access provided the types at all levels of member access are structs . The
compiler enforces that struct types passed as in arguments and their struct
members are read-only variables when used as arguments to other methods.

You can apply the in modifier to any readonly struct parameter, but this practice is
likely to improve performance only for value types that are substantially larger than
IntPtr.Size. For simple types (such as sbyte , byte , short , ushort , int , uint , long ,
ulong , char , float , double , decimal and bool , and enum types), any potential
performance gains are minimal. Some simple types, such as decimal at 16 bytes in size,
are larger than either 4-byte or 8-byte references but not by enough to make a
measurable difference in performance in most scenarios. And performance may degrade
by using pass-by-reference for types smaller than IntPtr.Size.

The following code shows an example of a method that calculates the distance between
two points in 3D space.

C#

The arguments are two structures that each contain three doubles. A double is 8 bytes,
so each argument is 24 bytes. By specifying the in modifier, you pass a 4-byte or 8-byte
reference to those arguments, depending on the architecture of the machine. The
difference in size is small, but it can add up when your application calls this method in a
tight loop using many different values.

Use in parameters for large structs

private static double CalculateDistance(in Point3D point1, in Point3D
point2)
{
 double xDifference = point1.X - point2.X;
 double yDifference = point1.Y - point2.Y;
 double zDifference = point1.Z - point2.Z;

 return Math.Sqrt(xDifference * xDifference + yDifference * yDifference +
zDifference * zDifference);
}

https://learn.microsoft.com/en-us/dotnet/api/system.intptr.size
https://learn.microsoft.com/en-us/dotnet/api/system.intptr.size#system-intptr-size

However, the impact of any low-level optimizations like using the in modifier should be
measured to validate a performance benefit. For example, you might think that using in
on a Guid parameter would be beneficial. The Guid type is 16 bytes in size, twice the
size of an 8-byte reference. But such a small difference isn't likely to result in a
measurable performance benefit unless it's in a method that's in a time critical hot path
for your application.

Unlike a ref or out parameter, you don't need to apply the in modifier at the call site.
The following code shows two examples of calling the CalculateDistance method. The
first uses two local variables passed by reference. The second includes a temporary
variable created as part of the method call.

C#

Omitting the in modifier at the call site informs the compiler that it's allowed to make a
copy of the argument for any of the following reasons:

There exists an implicit conversion but not an identity conversion from the
argument type to the parameter type.
The argument is an expression but doesn't have a known storage variable.
An overload exists that differs by the presence or absence of in . In that case, the
by value overload is a better match.

These rules are useful as you update existing code to use read-only reference
arguments. Inside the called method, you can call any instance method that uses by-
value parameters. In those instances, a copy of the in parameter is created.

Because the compiler may create a temporary variable for any in parameter, you can
also specify default values for any in parameter. The following code specifies the origin
(point 0,0,0) as the default value for the second point:

C#

Optional use of in at call site

var distance = CalculateDistance(pt1, pt2);
var fromOrigin = CalculateDistance(pt1, new Point3D());

private static double CalculateDistance2(in Point3D point1, in Point3D
point2 = default)
{
 double xDifference = point1.X - point2.X;
 double yDifference = point1.Y - point2.Y;
 double zDifference = point1.Z - point2.Z;

https://learn.microsoft.com/en-us/dotnet/api/system.guid

To force the compiler to pass read-only arguments by reference, specify the in modifier
on the arguments at the call site, as shown in the following code:

C#

This behavior makes it easier to adopt in parameters over time in large codebases
where performance gains are possible. You add the in modifier to method signatures
first. Then you can add the in modifier at call sites and create readonly struct types to
enable the compiler to avoid creating defensive copies of in parameters in more
locations.

Pass a struct as the argument for an in parameter only if it's declared with the
readonly modifier or the method accesses only readonly members of the struct.
Otherwise, the compiler must create defensive copies in many situations to ensure that
arguments are not mutated. Consider the following example that calculates the distance
of a 3D point from the origin:

C#

The Point3D structure is not a read-only struct. There are six different property access
calls in the body of this method. On first examination, you may think these accesses are
safe. After all, a get accessor shouldn't modify the state of the object. But there's no

 return Math.Sqrt(xDifference * xDifference + yDifference * yDifference +
zDifference * zDifference);
}

distance = CalculateDistance(in pt1, in pt2);
distance = CalculateDistance(in pt1, new Point3D());
distance = CalculateDistance(pt1, in Point3D.Origin);

Avoid defensive copies

private static double CalculateDistance(in Point3D point1, in Point3D
point2)
{
 double xDifference = point1.X - point2.X;
 double yDifference = point1.Y - point2.Y;
 double zDifference = point1.Z - point2.Z;

 return Math.Sqrt(xDifference * xDifference + yDifference * yDifference +
zDifference * zDifference);
}

language rule that enforces that. It's only a common convention. Any type could
implement a get accessor that modified the internal state.

Without some language guarantee, the compiler must create a temporary copy of the
argument before calling any member not marked with the readonly modifier. The
temporary storage is created on the stack, the values of the argument are copied to the
temporary storage, and the value is copied to the stack for each member access as the
this argument. In many situations, these copies harm performance enough that pass-
by-value is faster than pass-by-read-only-reference when the argument type isn't a
readonly struct and the method calls members that aren't marked readonly . If you
mark all methods that don't modify the struct state as readonly , the compiler can safely
determine that the struct state isn't modified, and a defensive copy is not needed.

If the distance calculation uses the immutable struct, ReadonlyPoint3D , temporary
objects aren't needed:

C#

The compiler generates more efficient code when you call members of a readonly
struct . The this reference, instead of a copy of the receiver, is always an in parameter
passed by reference to the member method. This optimization saves copying when you
use a readonly struct as an in argument.

Don't pass a nullable value type as an in argument. The Nullable<T> type isn't declared
as a read-only struct. That means the compiler must generate defensive copies for any
nullable value type argument passed to a method using the in modifier on the
parameter declaration.

You can see an example program that demonstrates the performance differences using
BenchmarkDotNet in our samples repository on GitHub. It compares passing a
mutable struct by value and by reference with passing an immutable struct by value and
by reference. The use of the immutable struct and pass by reference is fastest.

private static double CalculateDistance3(in ReadonlyPoint3D point1, in
ReadonlyPoint3D point2 = default)
{
 double xDifference = point1.X - point2.X;
 double yDifference = point1.Y - point2.Y;
 double zDifference = point1.Z - point2.Z;

 return Math.Sqrt(xDifference * xDifference + yDifference * yDifference +
zDifference * zDifference);
}

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1
https://www.nuget.org/packages/BenchmarkDotNet/
https://github.com/dotnet/samples/tree/main/csharp/safe-efficient-code/benchmark

Use a ref struct or a readonly ref struct , such as Span<T> or ReadOnlySpan<T>, to
work with blocks of memory as a sequence of bytes. The memory used by the span is
constrained to a single stack frame. This restriction enables the compiler to make several
optimizations. The primary motivation for this feature was Span<T> and related
structures. You'll achieve performance improvements from these enhancements by using
new and updated .NET APIs that make use of the Span<T> type.

Declaring a struct as readonly ref combines the benefits and restrictions of ref struct
and readonly struct declarations. The memory used by the readonly span is restricted
to a single stack frame, and the memory used by the readonly span can't be modified.

You may have similar requirements working with memory created using stackalloc or
when using memory from interop APIs. You can define your own ref struct types for
those needs.

Native-sized integer types are 32-bit integers in a 32-bit process or 64-bit integers in a
64-bit process. Use them for interop scenarios, low-level libraries, and to optimize
performance in scenarios where integer math is used extensively.

Using value types minimizes the number of allocation operations:

Storage for value types is stack-allocated for local variables and method
arguments.
Storage for value types that are members of other objects is allocated as part of
that object, not as a separate allocation.
Storage for value type return values is stack allocated.

Contrast that with reference types in those same situations:

Storage for reference types is heap allocated for local variables and method
arguments. The reference is stored on the stack.
Storage for reference types that are members of other objects are separately
allocated on the heap. The containing object stores the reference.
Storage for reference type return values is heap allocated. The reference to that
storage is stored on the stack.

Use ref struct types

Use nint and nuint types

Conclusions

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1

Minimizing allocations comes with tradeoffs. You copy more memory when the size of
the struct is larger than the size of a reference. A reference is typically 64 bits or 32
bits, and depends on the target machine CPU.

These tradeoffs generally have minimal performance impact. However, for large structs
or larger collections, the performance impact increases. The impact can be large in tight
loops and hot paths for programs.

These enhancements to the C# language are designed for performance critical
algorithms where minimizing memory allocations is a major factor in achieving the
necessary performance. You may find that you don't often use these features in the code
you write. However, these enhancements have been adopted throughout .NET. As more
APIs make use of these features, you'll see the performance of your applications
improve.

in parameter modifier (C# Reference)
ref keyword
Ref returns
Ref locals

See also

Expression Trees
Article • 2021-09-15 • 2 minutes to read

If you have used LINQ, you have experience with a rich library where the Func types are
part of the API set. (If you are not familiar with LINQ, you probably want to read the
LINQ tutorial and the article about lambda expressions before this one.) Expression Trees
provide richer interaction with the arguments that are functions.

You write function arguments, typically using Lambda Expressions, when you create
LINQ queries. In a typical LINQ query, those function arguments are transformed into a
delegate the compiler creates.

When you want to have a richer interaction, you need to use Expression Trees. Expression
Trees represent code as a structure that you can examine, modify, or execute. These
tools give you the power to manipulate code during run time. You can write code that
examines running algorithms, or injects new capabilities. In more advanced scenarios,
you can modify running algorithms, and even translate C# expressions into another
form for execution in another environment.

You've likely already written code that uses Expression Trees. Entity Framework's LINQ
APIs accept Expression Trees as the arguments for the LINQ Query Expression Pattern.
That enables Entity Framework to translate the query you wrote in C# into SQL that
executes in the database engine. Another example is Moq , which is a popular
mocking framework for .NET.

The remaining sections of this tutorial will explore what Expression Trees are, examine
the framework classes that support expression trees, and show you how to work with
expression trees. You'll learn how to read expression trees, how to create expression
trees, how to create modified expression trees, and how to execute the code
represented by expression trees. After reading, you will be ready to use these structures
to create rich adaptive algorithms.

1. Expression Trees Explained

Understand the structure and concepts behind Expression Trees.

2. Framework Types Supporting Expression Trees

Learn about the structures and classes that define and manipulate expression
trees.

3. Executing Expressions

https://learn.microsoft.com/en-us/ef/
https://github.com/Moq/moq

Learn how to convert an expression tree represented as a Lambda Expression into
a delegate and execute the resulting delegate.

4. Interpreting Expressions

Learn how to traverse and examine expression trees to understand what code the
expression tree represents.

5. Building Expressions

Learn how to construct the nodes for an expression tree and build expression
trees.

6. Translating Expressions

Learn how to build a modified copy of an expression tree, or translate an
expression tree into a different format.

7. Summing up

Review the information on expression trees.

Expression Trees Explained
Article • 2021-09-15 • 4 minutes to read

Previous -- Overview

An Expression Tree is a data structure that defines code. They are based on the same
structures that a compiler uses to analyze code and generate the compiled output. As
you read through this tutorial, you will notice quite a bit of similarity between Expression
Trees and the types used in the Roslyn APIs to build Analyzers and CodeFixes .
(Analyzers and CodeFixes are NuGet packages that perform static analysis on code and
can suggest potential fixes for a developer.) The concepts are similar, and the end result
is a data structure that allows examination of the source code in a meaningful way.
However, Expression Trees are based on a totally different set of classes and APIs than
the Roslyn APIs.

Let's look at a simple example. Here's a line of code:

C#

If you were to analyze this as an expression tree, the tree contains several nodes. The
outermost node is a variable declaration statement with assignment (var sum = 1 + 2;)
That outermost node contains several child nodes: a variable declaration, an assignment
operator, and an expression representing the right hand side of the equals sign. That
expression is further subdivided into expressions that represent the addition operation,
and left and right operands of the addition.

Let's drill down a bit more into the expressions that make up the right side of the equals
sign. The expression is 1 + 2 . That's a binary expression. More specifically, it's a binary
addition expression. A binary addition expression has two children, representing the left
and right nodes of the addition expression. Here, both nodes are constant expressions:
The left operand is the value 1 , and the right operand is the value 2 .

Visually, the entire statement is a tree: You could start at the root node, and travel to
each node in the tree to see the code that makes up the statement:

Variable declaration statement with assignment (var sum = 1 + 2;)
Implicit variable type declaration (var sum)

Implicit var keyword (var)
Variable name declaration (sum)

var sum = 1 + 2;

https://github.com/dotnet/roslyn-analyzers

Assignment operator (=)
Binary addition expression (1 + 2)

Left operand (1)
Addition operator (+)
Right operand (2)

This may look complicated, but it is very powerful. Following the same process, you can
decompose much more complicated expressions. Consider this expression:

C#

The expression above is also a variable declaration with an assignment. In this instance,
the right hand side of the assignment is a much more complicated tree. I'm not going to
decompose this expression, but consider what the different nodes might be. There are
method calls using the current object as a receiver, one that has an explicit this
receiver, one that does not. There are method calls using other receiver objects, there
are constant arguments of different types. And finally, there is a binary addition
operator. Depending on the return type of SecretSauceFunction() or
MoreSecretSauce() , that binary addition operator may be a method call to an overridden
addition operator, resolving to a static method call to the binary addition operator
defined for a class.

Despite this perceived complexity, the expression above creates a tree structure that can
be navigated as easily as the first sample. You can keep traversing child nodes to find
leaf nodes in the expression. Parent nodes will have references to their children, and
each node has a property that describes what kind of node it is.

The structure of an expression tree is very consistent. Once you've learned the basics,
you can understand even the most complex code when it is represented as an
expression tree. The elegance in the data structure explains how the C# compiler can
analyze the most complex C# programs and create proper output from that complicated
source code.

Once you become familiar with the structure of expression trees, you will find that
knowledge you've gained quickly enables you to work with many more and more
advanced scenarios. There is incredible power to expression trees.

var finalAnswer = this.SecretSauceFunction(
 currentState.createInterimResult(), currentState.createSecondValue(1,
2),
 decisionServer.considerFinalOptions("hello")) +
 MoreSecretSauce('A', DateTime.Now, true);

In addition to translating algorithms to execute in other environments, expression trees
can be used to make it easier to write algorithms that inspect code before executing it.
You can write a method whose arguments are expressions and then examine those
expressions before executing the code. The Expression Tree is a full representation of
the code: you can see values of any sub-expression. You can see method and property
names. You can see the value of any constant expressions. You can also convert an
expression tree into an executable delegate, and execute the code.

The APIs for Expression Trees enable you to create trees that represent almost any valid
code construct. However, to keep things as simple as possible, some C# idioms cannot
be created in an expression tree. One example is asynchronous expressions (using the
async and await keywords). If your needs require asynchronous algorithms, you would
need to manipulate the Task objects directly, rather than rely on the compiler support.
Another is in creating loops. Typically, you create these by using for , foreach , while or
do loops. As you'll see later in this series, the APIs for expression trees support a single
loop expression, with break and continue expressions that control repeating the loop.

The one thing you can't do is modify an expression tree. Expression Trees are immutable
data structures. If you want to mutate (change) an expression tree, you must create a
new tree that is a copy of the original, but with your desired changes.

Next -- Framework Types Supporting Expression Trees

Framework Types Supporting
Expression Trees
Article • 2021-09-15 • 3 minutes to read

Previous -- Expression Trees Explained

There is a large list of classes in the .NET Core framework that work with Expression
Trees. You can see the full list at System.Linq.Expressions. Rather than run through the
full list, let's understand how the framework classes have been designed.

In language design, an expression is a body of code that evaluates and returns a value.
Expressions may be very simple: the constant expression 1 returns the constant value of
1. They may be more complicated: The expression (-B + Math.Sqrt(B*B - 4 * A * C)) /
(2 * A) returns one root for a quadratic equation (in the case where the equation has a
solution).

One of the complexities of working with expression trees is that many different kinds of
expressions are valid in many places in programs. Consider an assignment expression.
The right hand side of an assignment could be a constant value, a variable, a method
call expression, or others. That language flexibility means that you may encounter many
different expression types anywhere in the nodes of a tree when you traverse an
expression tree. Therefore, when you can work with the base expression type, that's the
simplest way to work. However, sometimes you need to know more. The base
Expression class contains a NodeType property for this purpose. It returns an
ExpressionType which is an enumeration of possible expression types. Once you know
the type of the node, you can cast it to that type, and perform specific actions knowing
the type of the expression node. You can search for certain node types, and then work
with the specific properties of that kind of expression.

For example, this code will print the name of a variable for a variable access expression.
I've followed the practice of checking the node type, then casting to a variable access
expression and then checking the properties of the specific expression type:

C#

It all starts with System.Linq.Expression

Expression<Func<int, int>> addFive = (num) => num + 5;

if (addFive.NodeType == ExpressionType.Lambda)
{

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions

The System.Linq.Expression class also contains many static methods to create
expressions. These methods create an expression node using the arguments supplied
for its children. In this way, you build an expression up from its leaf nodes. For example,
this code builds an Add expression:

C#

You can see from this simple example that many types are involved in creating and
working with expression trees. That complexity is necessary to provide the capabilities of
the rich vocabulary provided by the C# language.

There are Expression node types that map to almost all of the syntax elements of the C#
language. Each type has specific methods for that type of language element. It's a lot to
keep in your head at one time. Rather than try to memorize everything, here are the
techniques I use to work with Expression trees:

1. Look at the members of the ExpressionType enum to determine possible nodes
you should be examining. This really helps when you want to traverse and
understand an expression tree.

2. Look at the static members of the Expression class to build an expression. Those
methods can build any expression type from a set of its child nodes.

3. Look at the ExpressionVisitor class to build a modified expression tree.

You'll find more as you look at each of those three areas. Invariably, you will find what
you need when you start with one of those three steps.

 var lambdaExp = (LambdaExpression)addFive;

 var parameter = lambdaExp.Parameters.First();

 Console.WriteLine(parameter.Name);
 Console.WriteLine(parameter.Type);
}

Creating Expression Trees

// Addition is an add expression for "1 + 2"
var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);

Navigating the APIs

Next -- Executing Expression Trees

Executing Expression Trees
Article • 2021-11-06 • 6 minutes to read

Previous -- Framework Types Supporting Expression Trees

An expression tree is a data structure that represents some code. It is not compiled and
executable code. If you want to execute the .NET code that is represented by an
expression tree, you must convert it into executable IL instructions.

You can convert any LambdaExpression, or any type derived from LambdaExpression
into executable IL. Other expression types cannot be directly converted into code. This
restriction has little effect in practice. Lambda expressions are the only types of
expressions that you would want to execute by converting to executable intermediate
language (IL). (Think about what it would mean to directly execute a
ConstantExpression . Would it mean anything useful?) Any expression tree that is a
LambdaExpression , or a type derived from LambdaExpression can be converted to IL. The
expression type Expression<TDelegate> is the only concrete example in the .NET Core
libraries. It's used to represent an expression that maps to any delegate type. Because
this type maps to a delegate type, .NET can examine the expression, and generate IL for
an appropriate delegate that matches the signature of the lambda expression.

In most cases, this creates a simple mapping between an expression, and its
corresponding delegate. For example, an expression tree that is represented by
Expression<Func<int>> would be converted to a delegate of the type Func<int> . For a
lambda expression with any return type and argument list, there exists a delegate type
that is the target type for the executable code represented by that lambda expression.

The LambdaExpression type contains Compile and CompileToMethod members that you
would use to convert an expression tree to executable code. The Compile method
creates a delegate. The CompileToMethod method updates a MethodBuilder object with
the IL that represents the compiled output of the expression tree. Note that
CompileToMethod is only available in the full desktop framework, not in the .NET Core.

Optionally, you can also provide a DebugInfoGenerator that will receive the symbol
debugging information for the generated delegate object. This enables you to convert
the expression tree into a delegate object, and have full debugging information about
the generated delegate.

Lambda Expressions to Functions

You would convert an expression into a delegate using the following code:

C#

Notice that the delegate type is based on the expression type. You must know the return
type and the argument list if you want to use the delegate object in a strongly typed
manner. The LambdaExpression.Compile() method returns the Delegate type. You will
have to cast it to the correct delegate type to have any compile-time tools check the
argument list or return type.

You execute the code by invoking the delegate created when you called
LambdaExpression.Compile() . You can see this above where add.Compile() returns a
delegate. Invoking that delegate, by calling func() executes the code.

That delegate represents the code in the expression tree. You can retain the handle to
that delegate and invoke it later. You don't need to compile the expression tree each
time you want to execute the code it represents. (Remember that expression trees are
immutable, and compiling the same expression tree later will create a delegate that
executes the same code.)

I will caution you against trying to create any more sophisticated caching mechanisms
to increase performance by avoiding unnecessary compile calls. Comparing two
arbitrary expression trees to determine if they represent the same algorithm will also be
time consuming to execute. You'll likely find that the compute time you save avoiding
any extra calls to LambdaExpression.Compile() will be more than consumed by the time
executing code that determines of two different expression trees result in the same
executable code.

Compiling a lambda expression to a delegate and invoking that delegate is one of the
simplest operations you can perform with an expression tree. However, even with this
simple operation, there are caveats you must be aware of.

Expression<Func<int>> add = () => 1 + 2;
var func = add.Compile(); // Create Delegate
var answer = func(); // Invoke Delegate
Console.WriteLine(answer);

Execution and Lifetimes

Caveats

Lambda Expressions create closures over any local variables that are referenced in the
expression. You must guarantee that any variables that would be part of the delegate
are usable at the location where you call Compile , and when you execute the resulting
delegate.

In general, the compiler will ensure that this is true. However, if your expression accesses
a variable that implements IDisposable , it's possible that your code might dispose of
the object while it is still held by the expression tree.

For example, this code works fine, because int does not implement IDisposable :

C#

The delegate has captured a reference to the local variable constant . That variable is
accessed at any time later, when the function returned by CreateBoundFunc executes.

However, consider this (rather contrived) class that implements IDisposable :

C#

private static Func<int, int> CreateBoundFunc()
{
 var constant = 5; // constant is captured by the expression tree
 Expression<Func<int, int>> expression = (b) => constant + b;
 var rVal = expression.Compile();
 return rVal;
}

public class Resource : IDisposable
{
 private bool isDisposed = false;
 public int Argument
 {
 get
 {
 if (!isDisposed)
 return 5;
 else throw new ObjectDisposedException("Resource");
 }
 }

 public void Dispose()
 {
 isDisposed = true;
 }
}

If you use it in an expression as shown below, you'll get an ObjectDisposedException
when you execute the code referenced by the Resource.Argument property:

C#

The delegate returned from this method has closed over the constant object, which has
been disposed of. (It's been disposed, because it was declared in a using statement.)

Now, when you execute the delegate returned from this method, you'll have an
ObjectDisposedException thrown at the point of execution.

It does seem strange to have a runtime error representing a compile-time construct, but
that's the world we enter when we work with expression trees.

There are a lot of permutations of this problem, so it's hard to offer general guidance to
avoid it. Be careful about accessing local variables when defining expressions, and be
careful about accessing state in the current object (represented by this) when creating
an expression tree that can be returned by a public API.

The code in your expression may reference methods or properties in other assemblies.
That assembly must be accessible when the expression is defined, and when it is
compiled, and when the resulting delegate is invoked. You'll be met with a
ReferencedAssemblyNotFoundException in cases where it is not present.

Expression Trees that represent lambda expressions can be compiled to create a
delegate that you can execute. This provides one mechanism to execute the code
represented by an expression tree.

The Expression Tree does represent the code that would execute for any given construct
you create. As long as the environment where you compile and execute the code
matches the environment where you create the expression, everything works as

private static Func<int, int> CreateBoundResource()
{
 using (var constant = new Resource()) // constant is captured by the
expression tree
 {
 Expression<Func<int, int>> expression = (b) => constant.Argument +
b;
 var rVal = expression.Compile();
 return rVal;
 }
}

Summary

expected. When that doesn't happen, the errors are very predictable, and they will be
caught in your first tests of any code using the expression trees.

Next -- Interpreting Expressions

Interpreting Expressions
Article • 2021-09-15 • 14 minutes to read

Previous -- Executing Expressions

Now, let's write some code to examine the structure of an expression tree. Every node in
an expression tree will be an object of a class that is derived from Expression .

That design makes visiting all the nodes in an expression tree a relatively straight
forward recursive operation. The general strategy is to start at the root node and
determine what kind of node it is.

If the node type has children, recursively visit the children. At each child node, repeat the
process used at the root node: determine the type, and if the type has children, visit
each of the children.

Let's start by visiting each node in a simple expression tree. Here's the code that creates
a constant expression and then examines its properties:

C#

This will print the following:

Output

Now, let's write the code that would examine this expression and write out some
important properties about it. Here's that code:

Examining an Expression with No Children

var constant = Expression.Constant(24, typeof(int));

Console.WriteLine($"This is a/an {constant.NodeType} expression type");
Console.WriteLine($"The type of the constant value is {constant.Type}");
Console.WriteLine($"The value of the constant value is {constant.Value}");

This is an Constant expression type
The type of the constant value is System.Int32
The value of the constant value is 24

Examining a simple Addition Expression

Let's start with the addition sample from the introduction to this section.

C#

I'm not using var to declare this expression tree, as it is not possible because the
right-hand side of the assignment is implicitly typed.

The root node is a LambdaExpression . In order to get the interesting code on the right-
hand side of the => operator, you need to find one of the children of the
LambdaExpression . We'll do that with all the expressions in this section. The parent node
does help us find the return type of the LambdaExpression .

To examine each node in this expression, we'll need to recursively visit a number of
nodes. Here's a simple first implementation:

C#

This sample prints the following output:

Expression<Func<int>> sum = () => 1 + 2;

Expression<Func<int, int, int>> addition = (a, b) => a + b;

Console.WriteLine($"This expression is a {addition.NodeType} expression
type");
Console.WriteLine($"The name of the lambda is {((addition.Name == null) ? "
<null>" : addition.Name)}");
Console.WriteLine($"The return type is {addition.ReturnType.ToString()}");
Console.WriteLine($"The expression has {addition.Parameters.Count}
arguments. They are:");
foreach(var argumentExpression in addition.Parameters)
{
 Console.WriteLine($"\tParameter Type:
{argumentExpression.Type.ToString()}, Name: {argumentExpression.Name}");
}

var additionBody = (BinaryExpression)addition.Body;
Console.WriteLine($"The body is a {additionBody.NodeType} expression");
Console.WriteLine($"The left side is a {additionBody.Left.NodeType}
expression");
var left = (ParameterExpression)additionBody.Left;
Console.WriteLine($"\tParameter Type: {left.Type.ToString()}, Name:
{left.Name}");
Console.WriteLine($"The right side is a {additionBody.Right.NodeType}
expression");
var right= (ParameterExpression)additionBody.Right;
Console.WriteLine($"\tParameter Type: {right.Type.ToString()}, Name:
{right.Name}");

Output

You'll notice a lot of repetition in the code sample above. Let's clean that up and build a
more general purpose expression node visitor. That's going to require us to write a
recursive algorithm. Any node could be of a type that might have children. Any node
that has children requires us to visit those children and determine what that node is.
Here's the cleaned up version that utilizes recursion to visit the addition operations:

C#

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 arguments. They are:
 Parameter Type: System.Int32, Name: a
 Parameter Type: System.Int32, Name: b
The body is a/an Add expression
The left side is a Parameter expression
 Parameter Type: System.Int32, Name: a
The right side is a Parameter expression
 Parameter Type: System.Int32, Name: b

// Base Visitor class:
public abstract class Visitor
{
 private readonly Expression node;

 protected Visitor(Expression node)
 {
 this.node = node;
 }

 public abstract void Visit(string prefix);

 public ExpressionType NodeType => this.node.NodeType;
 public static Visitor CreateFromExpression(Expression node)
 {
 switch(node.NodeType)
 {
 case ExpressionType.Constant:
 return new ConstantVisitor((ConstantExpression)node);
 case ExpressionType.Lambda:
 return new LambdaVisitor((LambdaExpression)node);
 case ExpressionType.Parameter:
 return new ParameterVisitor((ParameterExpression)node);
 case ExpressionType.Add:
 return new BinaryVisitor((BinaryExpression)node);
 default:
 Console.Error.WriteLine($"Node not processed yet:
{node.NodeType}");
 return default(Visitor);

 }
 }
}

// Lambda Visitor
public class LambdaVisitor : Visitor
{
 private readonly LambdaExpression node;
 public LambdaVisitor(LambdaExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType}
expression type");
 Console.WriteLine($"{prefix}The name of the lambda is {((node.Name
== null) ? "<null>" : node.Name)}");
 Console.WriteLine($"{prefix}The return type is
{node.ReturnType.ToString()}");
 Console.WriteLine($"{prefix}The expression has
{node.Parameters.Count} argument(s). They are:");
 // Visit each parameter:
 foreach (var argumentExpression in node.Parameters)
 {
 var argumentVisitor =
Visitor.CreateFromExpression(argumentExpression);
 argumentVisitor.Visit(prefix + "\t");
 }
 Console.WriteLine($"{prefix}The expression body is:");
 // Visit the body:
 var bodyVisitor = Visitor.CreateFromExpression(node.Body);
 bodyVisitor.Visit(prefix + "\t");
 }
}

// Binary Expression Visitor:
public class BinaryVisitor : Visitor
{
 private readonly BinaryExpression node;
 public BinaryVisitor(BinaryExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This binary expression is a {NodeType}
expression");
 var left = Visitor.CreateFromExpression(node.Left);
 Console.WriteLine($"{prefix}The Left argument is:");
 left.Visit(prefix + "\t");
 var right = Visitor.CreateFromExpression(node.Right);
 Console.WriteLine($"{prefix}The Right argument is:");

This algorithm is the basis of an algorithm that can visit any arbitrary LambdaExpression .
There are many holes, namely that the code I created only looks for a very small sample
of the possible sets of expression tree nodes that it may encounter. However, you can
still learn quite a bit from what it produces. (The default case in the
Visitor.CreateFromExpression method prints a message to the error console when a
new node type is encountered. That way, you know to add a new expression type.)

When you run this visitor on the addition expression shown above, you get the
following output:

Output

 right.Visit(prefix + "\t");
 }
}

// Parameter visitor:
public class ParameterVisitor : Visitor
{
 private readonly ParameterExpression node;
 public ParameterVisitor(ParameterExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This is an {NodeType} expression type");
 Console.WriteLine($"{prefix}Type: {node.Type.ToString()}, Name:
{node.Name}, ByRef: {node.IsByRef}");
 }
}

// Constant visitor:
public class ConstantVisitor : Visitor
{
 private readonly ConstantExpression node;
 public ConstantVisitor(ConstantExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This is an {NodeType} expression type");
 Console.WriteLine($"{prefix}The type of the constant value is
{node.Type}");
 Console.WriteLine($"{prefix}The value of the constant value is
{node.Value}");
 }
}

Now that you've built a more general visitor implementation, you can visit and process
many more different types of expressions.

Let's try a more complicated example, yet still limit the node types to addition only:

C#

Before you run this on the visitor algorithm, try a thought exercise to work out what the
output might be. Remember that the + operator is a binary operator: it must have two
children, representing the left and right operands. There are several possible ways to
construct a tree that could be correct:

C#

You can see the separation into two possible answers to highlight the most promising.
The first represents right associative expressions. The second represent left associative

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False

Examining an Addition Expression with Many
Levels

Expression<Func<int>> sum = () => 1 + 2 + 3 + 4;

Expression<Func<int>> sum1 = () => 1 + (2 + (3 + 4));
Expression<Func<int>> sum2 = () => ((1 + 2) + 3) + 4;

Expression<Func<int>> sum3 = () => (1 + 2) + (3 + 4);
Expression<Func<int>> sum4 = () => 1 + ((2 + 3) + 4);
Expression<Func<int>> sum5 = () => (1 + (2 + 3)) + 4;

expressions. The advantage of both of those two formats is that the format scales to any
arbitrary number of addition expressions.

If you do run this expression through the visitor, you will see this output, verifying that
the simple addition expression is left associative.

In order to run this sample, and see the full expression tree, I had to make one change
to the source expression tree. When the expression tree contains all constants, the
resulting tree simply contains the constant value of 10 . The compiler performs all the
addition and reduces the expression to its simplest form. Simply adding one variable in
the expression is sufficient to see the original tree:

C#

Create a visitor for this sum and run the visitor you'll see this output:

Output

Expression<Func<int, int>> sum = (a) => 1 + a + 3 + 4;

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is
System.Int32
 The value of the constant value is 1
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 3
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 4

You can also run any of the other samples through the visitor code and see what tree it
represents. Here's an example of the sum3 expression above (with an additional
parameter to prevent the compiler from computing the constant):

C#

Here's the output from the visitor:

Output

Notice that the parentheses are not part of the output. There are no nodes in the
expression tree that represent the parentheses in the input expression. The structure of
the expression tree contains all the information necessary to communicate the
precedence.

Expression<Func<int, int, int>> sum3 = (a, b) => (1 + a) + (3 + b);

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 3
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False

Extending from this sample

The sample deals with only the most rudimentary expression trees. The code you've
seen in this section only handles constant integers and the binary + operator. As a final
sample, let's update the visitor to handle a more complicated expression. Let's make it
work for this:

C#

This code represents one possible implementation for the mathematical factorial
function. The way I've written this code highlights two limitations of building expression
trees by assigning lambda expressions to Expressions. First, statement lambdas are not
allowed. That means I can't use loops, blocks, if / else statements, and other control
structures common in C#. I'm limited to using expressions. Second, I can't recursively
call the same expression. I could if it were already a delegate, but I can't call it in its
expression tree form. In the section on building expression trees, you'll learn techniques
to overcome these limitations.

In this expression, you'll encounter nodes of all these types:

1. Equal (binary expression)
2. Multiply (binary expression)
3. Conditional (the ? : expression)
4. Method Call Expression (calling Range() and Aggregate())

One way to modify the visitor algorithm is to keep executing it, and write the node type
every time you reach your default clause. After a few iterations, you'll have seen each
of the potential nodes. Then, you have all you need. The result would be something like
this:

C#

Expression<Func<int, int>> factorial = (n) =>
 n == 0 ?
 1 :
 Enumerable.Range(1, n).Aggregate((product, factor) => product * factor);

public static Visitor CreateFromExpression(Expression node)
{
 switch(node.NodeType)
 {
 case ExpressionType.Constant:
 return new ConstantVisitor((ConstantExpression)node);
 case ExpressionType.Lambda:
 return new LambdaVisitor((LambdaExpression)node);
 case ExpressionType.Parameter:
 return new ParameterVisitor((ParameterExpression)node);
 case ExpressionType.Add:

The ConditionalVisitor and MethodCallVisitor process those two nodes:

C#

 case ExpressionType.Equal:
 case ExpressionType.Multiply:
 return new BinaryVisitor((BinaryExpression)node);
 case ExpressionType.Conditional:
 return new ConditionalVisitor((ConditionalExpression)node);
 case ExpressionType.Call:
 return new MethodCallVisitor((MethodCallExpression)node);
 default:
 Console.Error.WriteLine($"Node not processed yet:
{node.NodeType}");
 return default(Visitor);
 }
}

public class ConditionalVisitor : Visitor
{
 private readonly ConditionalExpression node;
 public ConditionalVisitor(ConditionalExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType}
expression");
 var testVisitor = Visitor.CreateFromExpression(node.Test);
 Console.WriteLine($"{prefix}The Test for this expression is:");
 testVisitor.Visit(prefix + "\t");
 var trueVisitor = Visitor.CreateFromExpression(node.IfTrue);
 Console.WriteLine($"{prefix}The True clause for this expression
is:");
 trueVisitor.Visit(prefix + "\t");
 var falseVisitor = Visitor.CreateFromExpression(node.IfFalse);
 Console.WriteLine($"{prefix}The False clause for this expression
is:");
 falseVisitor.Visit(prefix + "\t");
 }
}

public class MethodCallVisitor : Visitor
{
 private readonly MethodCallExpression node;
 public MethodCallVisitor(MethodCallExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)

And the output for the expression tree would be:

Output

 {
 Console.WriteLine($"{prefix}This expression is a {NodeType}
expression");
 if (node.Object == null)
 Console.WriteLine($"{prefix}This is a static method call");
 else
 {
 Console.WriteLine($"{prefix}The receiver (this) is:");
 var receiverVisitor = Visitor.CreateFromExpression(node.Object);
 receiverVisitor.Visit(prefix + "\t");
 }

 var methodInfo = node.Method;
 Console.WriteLine($"{prefix}The method name is
{methodInfo.DeclaringType}.{methodInfo.Name}");
 // There is more here, like generic arguments, and so on.
 Console.WriteLine($"{prefix}The Arguments are:");
 foreach(var arg in node.Arguments)
 {
 var argVisitor = Visitor.CreateFromExpression(arg);
 argVisitor.Visit(prefix + "\t");
 }
 }
}

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
The expression body is:
 This expression is a Conditional expression
 The Test for this expression is:
 This binary expression is a Equal expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 0
 The True clause for this expression is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The False clause for this expression is:
 This expression is a Call expression
 This is a static method call

The samples in this section show the core techniques to visit and examine nodes in an
expression tree. I glossed over many actions you might need in order to concentrate on
the core tasks of visiting and accessing nodes in an expression tree.

First, the visitors only handle constants that are integers. Constant values could be any
other numeric type, and the C# language supports conversions and promotions
between those types. A more robust version of this code would mirror all those
capabilities.

Even the last example recognizes a subset of the possible node types. You can still feed
it many expressions that will cause it to fail. A full implementation is included in .NET
Standard under the name ExpressionVisitor and can handle all the possible node types.

 The method name is System.Linq.Enumerable.Aggregate
 The Arguments are:
 This expression is a Call expression
 This is a static method call
 The method name is System.Linq.Enumerable.Range
 The Arguments are:
 This is an Constant expression type
 The type of the constant value is
System.Int32
 The value of the constant value is 1
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
 This expression is a Lambda expression type
 The name of the lambda is <null>
 The return type is System.Int32
 The expression has 2 arguments. They are:
 This is an Parameter expression type
 Type: System.Int32, Name: product, ByRef:
False
 This is an Parameter expression type
 Type: System.Int32, Name: factor, ByRef:
False
 The expression body is:
 This binary expression is a Multiply
expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: product,
ByRef: False
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: factor,
ByRef: False

Extending the Sample Library

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expressionvisitor

Finally, the library I used in this article was built for demonstration and learning. It's not
optimized. I wrote it to make the structures used clear, and to highlight the techniques
used to visit the nodes and analyze what's there. A production implementation would
pay more attention to performance than I have.

Even with those limitations, you should be well on your way to writing algorithms that
read and understand expression trees.

Next -- Building Expressions

Building Expression Trees
Article • 2022-09-29 • 5 minutes to read

Previous -- Interpreting Expressions

All the expression trees you've seen so far have been created by the C# compiler. All you
had to do was create a lambda expression that was assigned to a variable typed as an
Expression<Func<T>> or some similar type. That's not the only way to create an
expression tree. For many scenarios you may find that you need to build an expression
in memory at run time.

Building Expression Trees is complicated by the fact that those expression trees are
immutable. Being immutable means that you must build the tree from the leaves up to
the root. The APIs you'll use to build expression trees reflect this fact: The methods you'll
use to build a node take all its children as arguments. Let's walk through a few examples
to show you the techniques.

Let's start relatively simply again. We'll use the addition expression I've been working
with throughout these sections:

C#

To construct that expression tree, you must construct the leaf nodes. The leaf nodes are
constants, so you can use the Expression.Constant method to create the nodes:

C#

Next, you'll build the addition expression:

C#

Once you've got the addition expression, you can create the lambda expression:

Creating Nodes

Expression<Func<int>> sum = () => 1 + 2;

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));

var addition = Expression.Add(one, two);

C#

This is a very simple lambda expression, because it contains no arguments. Later in this
section, you'll see how to map arguments to parameters and build more complicated
expressions.

For expressions that are as simple as this one, you may combine all the calls into a single
statement:

C#

That's the basics of building an expression tree in memory. More complex trees
generally mean more node types, and more nodes in the tree. Let's run through one
more example and show two more node types that you will typically build when you
create expression trees: the argument nodes, and method call nodes.

Let's build an expression tree to create this expression:

C#

You'll start by creating parameter expressions for x and y :

C#

Creating the multiplication and addition expressions follows the pattern you've already
seen:

var lambda = Expression.Lambda(addition);

var lambda = Expression.Lambda(
 Expression.Add(
 Expression.Constant(1, typeof(int)),
 Expression.Constant(2, typeof(int))
)
);

Building a Tree

Expression<Func<double, double, double>> distanceCalc =
 (x, y) => Math.Sqrt(x * x + y * y);

var xParameter = Expression.Parameter(typeof(double), "x");
var yParameter = Expression.Parameter(typeof(double), "y");

C#

Next, you need to create a method call expression for the call to Math.Sqrt .

C#

And then finally, you put the method call into a lambda expression, and make sure to
define the arguments to the lambda expression:

C#

In this more complicated example, you see a couple more techniques that you will often
need to create expression trees.

First, you need to create the objects that represent parameters or local variables before
you use them. Once you've created those objects, you can use them in your expression
tree wherever you need.

Second, you need to use a subset of the Reflection APIs to create a MethodInfo object so
that you can create an expression tree to access that method. You must limit yourself to
the subset of the Reflection APIs that are available on the .NET Core platform. Again,
these techniques will extend to other expression trees.

You aren't limited in what you can build using these APIs. However, the more
complicated expression tree that you want to build, the more difficult the code is to
manage and to read.

Let's build an expression tree that is the equivalent of this code:

C#

var xSquared = Expression.Multiply(xParameter, xParameter);
var ySquared = Expression.Multiply(yParameter, yParameter);
var sum = Expression.Add(xSquared, ySquared);

var sqrtMethod = typeof(Math).GetMethod("Sqrt", new[] { typeof(double) });
var distance = Expression.Call(sqrtMethod, sum);

var distanceLambda = Expression.Lambda(
 distance,
 xParameter,
 yParameter);

Building Code In Depth

Notice above that I did not build the expression tree, but simply the delegate. Using the
Expression class, you can't build statement lambdas. Here's the code that is required to
build the same functionality. It's complicated by the fact that there isn't an API to build a
while loop, instead you need to build a loop that contains a conditional test, and a label
target to break out of the loop.

C#

Func<int, int> factorialFunc = (n) =>
{
 var res = 1;
 while (n > 1)
 {
 res = res * n;
 n--;
 }
 return res;
};

var nArgument = Expression.Parameter(typeof(int), "n");
var result = Expression.Variable(typeof(int), "result");

// Creating a label that represents the return value
LabelTarget label = Expression.Label(typeof(int));

var initializeResult = Expression.Assign(result, Expression.Constant(1));

// This is the inner block that performs the multiplication,
// and decrements the value of 'n'
var block = Expression.Block(
 Expression.Assign(result,
 Expression.Multiply(result, nArgument)),
 Expression.PostDecrementAssign(nArgument)
);

// Creating a method body.
BlockExpression body = Expression.Block(
 new[] { result },
 initializeResult,
 Expression.Loop(
 Expression.IfThenElse(
 Expression.GreaterThan(nArgument, Expression.Constant(1)),
 block,
 Expression.Break(label, result)
),
 label
)
);

The code to build the expression tree for the factorial function is quite a bit longer,
more complicated, and it's riddled with labels and break statements and other elements
we'd like to avoid in our everyday coding tasks.

For this section, I've also updated the visitor code to visit every node in this expression
tree and write out information about the nodes that are created in this sample. You can
view or download the sample code at the dotnet/docs GitHub repository. Experiment
for yourself by building and running the samples. For download instructions, see
Samples and Tutorials.

The expression tree APIs are some of the more difficult to navigate in .NET Core, but
that's fine. Their purpose is a rather complex undertaking: writing code that generates
code at run time. They are necessarily complicated to provide a balance between
supporting all the control structures available in the C# language and keeping the
surface area of the APIs as small as reasonable. This balance means that many control
structures are represented not by their C# constructs, but by constructs that represent
the underlying logic that the compiler generates from these higher level constructs.

Also, at this time, there are C# expressions that cannot be built directly using
Expression class methods. In general, these will be the any operators and expressions
added in C# 5 and more recent versions. (For example, async expressions cannot be
built, and the new ?. operator cannot be directly created.)

Next -- Translating Expressions

Examining the APIs

https://github.com/dotnet/samples/tree/main/csharp/expression-trees
https://learn.microsoft.com/en-ca/dotnet/samples-and-tutorials/#view-and-download-samples

Translate expression trees
Article • 2021-09-15 • 6 minutes to read

Previous -- Building Expressions

In this final section, you'll learn how to visit each node in an expression tree while
building a modified copy of that expression tree. These are the techniques that you will
use in two important scenarios. The first is to understand the algorithms expressed by
an expression tree so that it can be translated into another environment. The second is
when you want to change the algorithm that has been created. This might be to add
logging, intercept method calls and track them, or other purposes.

The code you build to translate an expression tree is an extension of what you've
already seen to visit all the nodes in a tree. When you translate an expression tree, you
visit all the nodes, and while visiting them, build the new tree. The new tree may contain
references to the original nodes, or new nodes that you have placed in the tree.

Let's see this in action by visiting an expression tree, and creating a new tree with some
replacement nodes. In this example, let's replace any constant with a constant that is ten
times larger. Otherwise, we'll leave the expression tree intact. Rather than reading the
value of the constant, and replacing it with a new constant, we'll make this replacement
by replacing the constant node with a new node that performs the multiplication.

Here, once you find a constant node, you create a new multiplication node whose
children are the original constant, and the constant 10 :

C#

Translating is Visiting

private static Expression ReplaceNodes(Expression original)
{
 if (original.NodeType == ExpressionType.Constant)
 {
 return Expression.Multiply(original, Expression.Constant(10));
 }
 else if (original.NodeType == ExpressionType.Add)
 {
 var binaryExpression = (BinaryExpression)original;
 return Expression.Add(
 ReplaceNodes(binaryExpression.Left),
 ReplaceNodes(binaryExpression.Right));
 }
 return original;
}

By replacing the original node with the substitute, a new tree is formed that contains our
modifications. We can verify that by compiling and executing the replaced tree.

C#

Building a new tree is a combination of visiting the nodes in the existing tree, and
creating new nodes and inserting them into the tree.

This example shows the importance of expression trees being immutable. Notice that
the new tree created above contains a mixture of newly created nodes, and nodes from
the existing tree. That's safe, because the nodes in the existing tree cannot be modified.
This can result in significant memory efficiencies. The same nodes can be used
throughout a tree, or in multiple expression trees. Since nodes can't be modified, the
same node can be reused whenever it's needed.

Let's verify this by building a second visitor that walks the tree of addition nodes and
computes the result. You can do this by making a couple modifications to the visitor that
you've seen so far. In this new version, the visitor will return the partial sum of the
addition operation up to this point. For a constant expression, that is simply the value of
the constant expression. For an addition expression, the result is the sum of the left and
right operands, once those trees have been traversed.

C#

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);
var sum = ReplaceNodes(addition);
var executableFunc = Expression.Lambda(sum);

var func = (Func<int>)executableFunc.Compile();
var answer = func();
Console.WriteLine(answer);

Traversing and Executing an Addition

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var three= Expression.Constant(3, typeof(int));
var four = Expression.Constant(4, typeof(int));
var addition = Expression.Add(one, two);
var add2 = Expression.Add(three, four);
var sum = Expression.Add(addition, add2);

// Declare the delegate, so we can call it

There's quite a bit of code here, but the concepts are very approachable. This code visits
children in a depth first search. When it encounters a constant node, the visitor returns
the value of the constant. After the visitor has visited both children, those children will
have computed the sum computed for that subtree. The addition node can now
compute its sum. Once all the nodes in the expression tree have been visited, the sum
will have been computed. You can trace the execution by running the sample in the
debugger and tracing the execution.

Let's make it easier to trace how the nodes are analyzed and how the sum is computed
by traversing the tree. Here's an updated version of the Aggregate method that includes
quite a bit of tracing information:

C#

// from itself recursively:
Func<Expression, int> aggregate = null;
// Aggregate, return constants, or the sum of the left and right operand.
// Major simplification: Assume every binary expression is an addition.
aggregate = (exp) =>
 exp.NodeType == ExpressionType.Constant ?
 (int)((ConstantExpression)exp).Value :
 aggregate(((BinaryExpression)exp).Left) +
aggregate(((BinaryExpression)exp).Right);

var theSum = aggregate(sum);
Console.WriteLine(theSum);

private static int Aggregate(Expression exp)
{
 if (exp.NodeType == ExpressionType.Constant)
 {
 var constantExp = (ConstantExpression)exp;
 Console.Error.WriteLine($"Found Constant: {constantExp.Value}");
 return (int)constantExp.Value;
 }
 else if (exp.NodeType == ExpressionType.Add)
 {
 var addExp = (BinaryExpression)exp;
 Console.Error.WriteLine("Found Addition Expression");
 Console.Error.WriteLine("Computing Left node");
 var leftOperand = Aggregate(addExp.Left);
 Console.Error.WriteLine($"Left is: {leftOperand}");
 Console.Error.WriteLine("Computing Right node");
 var rightOperand = Aggregate(addExp.Right);
 Console.Error.WriteLine($"Right is: {rightOperand}");
 var sum = leftOperand + rightOperand;
 Console.Error.WriteLine($"Computed sum: {sum}");
 return sum;
 }

Running it on the same expression yields the following output:

Output

Trace the output and follow along in the code above. You should be able to work out
how the code visits each node and computes the sum as it goes through the tree and
finds the sum.

Now, let's look at a different run, with the expression given by sum1 :

C#

Here's the output from examining this expression:

Output

 else throw new NotSupportedException("Haven't written this yet");
}

10
Found Addition Expression
Computing Left node
Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Constant: 2
Right is: 2
Computed sum: 3
Left is: 3
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 10
10

Expression<Func<int> sum1 = () => 1 + (2 + (3 + 4));

Found Addition Expression
Computing Left node
Found Constant: 1

While the final answer is the same, the tree traversal is completely different. The nodes
are traveled in a different order, because the tree was constructed with different
operations occurring first.

This sample shows a small subset of the code you would build to traverse and interpret
the algorithms represented by an expression tree. For a complete discussion of all the
work necessary to build a general purpose library that translates expression trees into
another language, please read this series by Matt Warren. It goes into great detail on
how to translate any of the code you might find in an expression tree.

I hope you've now seen the true power of expression trees. You can examine a set of
code, make any changes you'd like to that code, and execute the changed version.
Because the expression trees are immutable, you can create new trees by using the
components of existing trees. This minimizes the amount of memory needed to create
modified expression trees.

Next -- Summing up

Left is: 1
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 2
Left is: 2
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 9
Right is: 9
Computed sum: 10
10

Learning More

https://learn.microsoft.com/en-us/archive/blogs/mattwar/linq-building-an-iqueryable-provider-series

Expression Trees Summary
Article • 2022-10-04 • 2 minutes to read

Previous -- Translating Expressions

In this series, you've seen how you can use expression trees to create dynamic programs
that interpret code as data and build new functionality based on that code.

You can examine expression trees to understand the intent of an algorithm. Not only
can you examine the code, but you can build new expression trees that represent
modified versions of the original code.

You can also use expression trees to look at an algorithm and translate that algorithm
into another language or environment.

There are some newer C# language elements that don't translate well into expression
trees. Expression trees can't contain await expressions, or async lambda expressions.
Many of the features added in C# 6 and later don't appear exactly as written in
expression trees. Instead, newer features will be exposed in expressions trees in the
equivalent, earlier syntax. This may not be as much of a limitation as you might think. In
fact, it means that your code that interprets expression trees will likely still work the
same when new language features are introduced.

Even with these limitations, expression trees do enable you to create dynamic
algorithms that rely on interpreting and modifying code that is represented as a data
structure. It's a powerful tool, and it's one of the features of the .NET ecosystem that
enables rich libraries such as Entity Framework to accomplish what they do.

Limitations

Interoperability (C# Programming
Guide)
Article • 2022-01-12 • 2 minutes to read

Interoperability enables you to preserve and take advantage of existing investments in
unmanaged code. Code that runs under the control of the common language runtime
(CLR) is called managed code, and code that runs outside the CLR is called unmanaged
code. COM, COM+, C++ components, ActiveX components, and Microsoft Windows API
are examples of unmanaged code.

.NET enables interoperability with unmanaged code through platform invoke services,
the System.Runtime.InteropServices namespace, C++ interoperability, and COM
interoperability (COM interop).

Interoperability Overview
Describes methods to interoperate between C# managed code and unmanaged code.

How to access Office interop objects by using C# features
Describes features that are introduced in Visual C# to facilitate Office programming.

How to use indexed properties in COM interop programming
Describes how to use indexed properties to access COM properties that have
parameters.

How to use platform invoke to play a WAV file
Describes how to use platform invoke services to play a .wav sound file on the Windows
operating system.

Walkthrough: Office Programming
Shows how to create an Excel workbook and a Word document that contains a link to
the workbook.

Example COM Class
Demonstrates how to expose a C# class as a COM object.

In This Section

C# Language Specification

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices

For more information, see Unsafe code in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

Marshal.ReleaseComObject
C# Programming Guide
Interoperating with Unmanaged Code
Walkthrough: Office Programming

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.releasecomobject
https://learn.microsoft.com/en-ca/dotnet/framework/interop/

Versioning in C#
Article • 2021-09-15 • 5 minutes to read

In this tutorial you'll learn what versioning means in .NET. You'll also learn the factors to
consider when versioning your library as well as upgrading to a new version of a library.

As a developer who has created .NET libraries for public use, you've most likely been in
situations where you have to roll out new updates. How you go about this process
matters a lot as you need to ensure that there's a seamless transition of existing code to
the new version of your library. Here are several things to consider when creating a new
release:

Semantic versioning (SemVer for short) is a naming convention applied to versions of
your library to signify specific milestone events. Ideally, the version information you give
your library should help developers determine the compatibility with their projects that
make use of older versions of that same library.

The most basic approach to SemVer is the 3 component format MAJOR.MINOR.PATCH ,
where:

MAJOR is incremented when you make incompatible API changes
MINOR is incremented when you add functionality in a backwards-compatible
manner
PATCH is incremented when you make backwards-compatible bug fixes

There are also ways to specify other scenarios like pre-release versions etc. when
applying version information to your .NET library.

As you release new versions of your library, backwards compatibility with previous
versions will most likely be one of your major concerns. A new version of your library is
source compatible with a previous version if code that depends on the previous version
can, when recompiled, work with the new version. A new version of your library is binary
compatible if an application that depended on the old version can, without
recompilation, work with the new version.

Authoring Libraries

Semantic Versioning

Backwards Compatibility

https://semver.org/

Here are some things to consider when trying to maintain backwards compatibility with
older versions of your library:

Virtual methods: When you make a virtual method non-virtual in your new version
it means that projects that override that method will have to be updated. This is a
huge breaking change and is strongly discouraged.
Method signatures: When updating a method behavior requires you to change its
signature as well, you should instead create an overload so that code calling into
that method will still work. You can always manipulate the old method signature to
call into the new method signature so that implementation remains consistent.
Obsolete attribute: You can use this attribute in your code to specify classes or
class members that are deprecated and likely to be removed in future versions.
This ensures developers utilizing your library are better prepared for breaking
changes.
Optional Method Arguments: When you make previously optional method
arguments compulsory or change their default value then all code that does not
supply those arguments will need to be updated.

The easier you make it for your users to upgrade to the new version of your library, the
more likely that they will upgrade sooner.

As a .NET developer there's a very high chance you've encountered the app.config file
present in most project types. This simple configuration file can go a long way into
improving the rollout of new updates. You should generally design your libraries in such
a way that information that is likely to change regularly is stored in the app.config file,
this way when such information is updated, the config file of older versions just needs to
be replaced with the new one without the need for recompilation of the library.

As a developer that consumes .NET libraries built by other developers you're most likely
aware that a new version of a library might not be fully compatible with your project and
you might often find yourself having to update your code to work with those changes.

７ Note

Making compulsory arguments optional should have very little effect especially if it
doesn't change the method's behavior.

Application Configuration File

Consuming Libraries

https://learn.microsoft.com/en-ca/dotnet/framework/configure-apps/file-schema/

Lucky for you, C# and the .NET ecosystem comes with features and techniques that
allow us to easily update our app to work with new versions of libraries that might
introduce breaking changes.

You can use the app.config file to update the version of a library your app uses. By
adding what is called a binding redirect, you can use the new library version without
having to recompile your app. The following example shows how you would update
your app's app.config file to use the 1.0.1 patch version of ReferencedLibrary instead
of the 1.0.0 version it was originally compiled with.

XML

You use the new modifier to hide inherited members of a base class. This is one way
derived classes can respond to updates in base classes.

Take the following example:

C#

Assembly Binding Redirection

<dependentAssembly>
 <assemblyIdentity name="ReferencedLibrary"
publicKeyToken="32ab4ba45e0a69a1" culture="en-us" />
 <bindingRedirect oldVersion="1.0.0" newVersion="1.0.1" />
</dependentAssembly>

７ Note

This approach will only work if the new version of ReferencedLibrary is binary
compatible with your app. See the Backwards Compatibility section above for
changes to look out for when determining compatibility.

new

public class BaseClass
{
 public void MyMethod()
 {
 Console.WriteLine("A base method");
 }
}

public class DerivedClass : BaseClass

https://learn.microsoft.com/en-ca/dotnet/framework/configure-apps/redirect-assembly-versions

Output

Console

From the example above you can see how DerivedClass hides the MyMethod method
present in BaseClass . This means that when a base class in the new version of a library
adds a member that already exists in your derived class, you can simply use the new
modifier on your derived class member to hide the base class member.

When no new modifier is specified, a derived class will by default hide conflicting
members in a base class, although a compiler warning will be generated the code will
still compile. This means that simply adding new members to an existing class makes
that new version of your library both source and binary compatible with code that
depends on it.

The override modifier means a derived implementation extends the implementation of
a base class member rather than hides it. The base class member needs to have the
virtual modifier applied to it.

C#

{
 public new void MyMethod()
 {
 Console.WriteLine("A derived method");
 }
}

public static void Main()
{
 BaseClass b = new BaseClass();
 DerivedClass d = new DerivedClass();

 b.MyMethod();
 d.MyMethod();
}

A base method
A derived method

override

public class MyBaseClass
{
 public virtual string MethodOne()
 {

Output

Console

The override modifier is evaluated at compile time and the compiler will throw an error
if it doesn't find a virtual member to override.

Your knowledge of the discussed techniques and your understanding of the situations in
which to use them, will go a long way towards easing the transition between versions of
a library.

 return "Method One";
 }
}

public class MyDerivedClass : MyBaseClass
{
 public override string MethodOne()
 {
 return "Derived Method One";
 }
}

public static void Main()
{
 MyBaseClass b = new MyBaseClass();
 MyDerivedClass d = new MyDerivedClass();

 Console.WriteLine("Base Method One: {0}", b.MethodOne());
 Console.WriteLine("Derived Method One: {0}", d.MethodOne());
}

Base Method One: Method One
Derived Method One: Derived Method One

How to (C#)
Article • 2022-09-21 • 3 minutes to read

In the How to section of the C# Guide, you can find quick answers to common
questions. In some cases, articles may be listed in multiple sections. We wanted to make
them easy to find for multiple search paths.

There are several tips and tricks that are common C# developer practices:

Initialize objects using an object initializer.
Use operator overloading.
Implement and call a custom extension method.
Create a new method for an enum type using extension methods.

You create classes, records, and structs to implement your program. These techniques
are commonly used when writing classes, records, or structs.

Declare auto implemented properties.
Declare and use read/write properties.
Define constants.
Override the ToString method to provide string output.
Define abstract properties.
Use the xml documentation features to document your code.
Explicitly implement interface members to keep your public interface concise.
Explicitly implement members of two interfaces.

These articles help you work with collections of data.

Initialize a dictionary with a collection initializer.

Strings are the fundamental data type used to display or manipulate text. These articles
demonstrate common practices with strings.

General C# concepts

Class, record, and struct members

Working with collections

Working with strings

Compare strings.
Modify the contents of a string.
Determine if a string represents a number.
Use String.Split to separate strings.
Combine multiple strings into one.
Search for text in a string.

You may need to convert an object to a different type.

Determine if a string represents a number.
Convert between strings that represent hexadecimal numbers and the number.
Convert a string to a DateTime.
Convert a byte array to an int.
Convert a string to a number.
Use pattern matching, the as and is operators to safely cast to a different type.
Define custom type conversions.
Determine if a type is a nullable value type.
Convert between nullable and non-nullable value types.

You may create types that define their own rules for equality or define a natural ordering
among objects of that type.

Test for reference-based equality.
Define value-based equality for a type.

.NET programs report that methods did not successfully complete their work by
throwing exceptions. In these articles you'll learn to work with exceptions.

Handle exceptions using try and catch.
Cleanup resources using finally clauses.
Recover from non-CLS (Common Language Specification) exceptions.

Convert between types

Equality and ordering comparisons

Exception handling

Delegates and events

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/parsing-datetime

Delegates and events provide a capability for strategies that involve loosely coupled
blocks of code.

Declare, instantiate, and use delegates.
Combine multicast delegates.

Events provide a mechanism to publish or subscribe to notifications.

Subscribe and unsubscribe from events.
Implement events declared in interfaces.
Conform to .NET guidelines when your code publishes events.
Raise events defined in base classes from derived classes.
Implement custom event accessors.

LINQ enables you to write code to query any data source that supports the LINQ query
expression pattern. These articles help you understand the pattern and work with
different data sources.

Query a collection.
Use var in query expressions.
Return subsets of element properties from a query.
Write queries with complex filtering.
Sort elements of a data source.
Sort elements on multiple keys.
Control the type of a projection.
Count occurrences of a value in a source sequence.
Calculate intermediate values.
Merge data from multiple sources.
Find the set difference between two sequences.
Debug empty query results.
Add custom methods to LINQ queries.

Modern programs often use asynchronous operations. These articles will help you learn
to use these techniques.

Improve async performance using System.Threading.Tasks.Task.WhenAll.
Make multiple web requests in parallel using async and await.
Use a thread pool.

LINQ practices

Multiple threads and async processing

https://learn.microsoft.com/en-ca/dotnet/standard/linq/write-queries-complex-filtering
https://learn.microsoft.com/en-ca/dotnet/standard/linq/sort-elements
https://learn.microsoft.com/en-ca/dotnet/standard/linq/sort-elements-multiple-keys
https://learn.microsoft.com/en-ca/dotnet/standard/linq/control-type-projection
https://learn.microsoft.com/en-ca/dotnet/standard/linq/calculate-intermediate-values
https://learn.microsoft.com/en-ca/dotnet/standard/linq/debug-empty-query-results-sets
https://learn.microsoft.com/en-ca/dotnet/standard/threading/the-managed-thread-pool#using-the-thread-pool

Typically, C# programs have command line arguments. These articles teach you to
access and process those command line arguments.

Retrieve all command line arguments with for.

Command line args to your program

How to separate strings using
String.Split in C#
Article • 2021-09-15 • 2 minutes to read

The String.Split method creates an array of substrings by splitting the input string based
on one or more delimiters. This method is often the easiest way to separate a string on
word boundaries. It's also used to split strings on other specific characters or strings.

The following code splits a common phrase into an array of strings for each word.

C#

Every instance of a separator character produces a value in the returned array.
Consecutive separator characters produce the empty string as a value in the returned
array. You can see how an empty string is created in the following example, which uses
the space character as a separator.

C#

７ Note

The C# examples in this article run in the Try.NET inline code runner and
playground. Select the Run button to run an example in an interactive window.
Once you execute the code, you can modify it and run the modified code by
selecting Run again. The modified code either runs in the interactive window or, if
compilation fails, the interactive window displays all C# compiler error messages.

string phrase = "The quick brown fox jumps over the lazy dog.";
string[] words = phrase.Split(' ');

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

string phrase = "The quick brown fox jumps over the lazy dog.";
string[] words = phrase.Split(' ');

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://dotnet.microsoft.com/platform/try-dotnet

This behavior makes it easier for formats like comma-separated values (CSV) files
representing tabular data. Consecutive commas represent a blank column.

You can pass an optional StringSplitOptions.RemoveEmptyEntries parameter to exclude
any empty strings in the returned array. For more complicated processing of the
returned collection, you can use LINQ to manipulate the result sequence.

String.Split can use multiple separator characters. The following example uses spaces,
commas, periods, colons, and tabs as separating characters, which are passed to Split in
an array . The loop at the bottom of the code displays each of the words in the returned
array.

C#

Consecutive instances of any separator produce the empty string in the output array:

C#

String.Split can take an array of strings (character sequences that act as separators for
parsing the target string, instead of single characters).

C#

char[] delimiterChars = { ' ', ',', '.', ':', '\t' };

string text = "one\ttwo three:four,five six seven";
System.Console.WriteLine($"Original text: '{text}'");

string[] words = text.Split(delimiterChars);
System.Console.WriteLine($"{words.Length} words in text:");

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

char[] delimiterChars = { ' ', ',', '.', ':', '\t' };

string text = "one\ttwo :,five six seven";
System.Console.WriteLine($"Original text: '{text}'");

string[] words = text.Split(delimiterChars);
System.Console.WriteLine($"{words.Length} words in text:");

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

https://learn.microsoft.com/en-us/dotnet/api/system.stringsplitoptions#system-stringsplitoptions-removeemptyentries
https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-us/dotnet/api/system.string.split

Extract elements from a string
C# programming guide
Strings
.NET regular expressions

string[] separatingStrings = { "<<", "..." };

string text = "one<<two......three<four";
System.Console.WriteLine($"Original text: '{text}'");

string[] words = text.Split(separatingStrings,
System.StringSplitOptions.RemoveEmptyEntries);
System.Console.WriteLine($"{words.Length} substrings in text:");

foreach (var word in words)
{
 System.Console.WriteLine(word);
}

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/divide-up-strings
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expressions

How to concatenate multiple strings (C#
Guide)
Article • 2021-09-15 • 4 minutes to read

Concatenation is the process of appending one string to the end of another string. You
concatenate strings by using the + operator. For string literals and string constants,
concatenation occurs at compile time; no run-time concatenation occurs. For string
variables, concatenation occurs only at run time.

The following example splits a long string literal into smaller strings to improve
readability in the source code. The code concatenates the smaller strings to create the
long string literal. The parts are concatenated into a single string at compile time.
There's no run-time performance cost regardless of the number of strings involved.

C#

７ Note

The C# examples in this article run in the Try.NET inline code runner and
playground. Select the Run button to run an example in an interactive window.
Once you execute the code, you can modify it and run the modified code by
selecting Run again. The modified code either runs in the interactive window or, if
compilation fails, the interactive window displays all C# compiler error messages.

String literals

// Concatenation of literals is performed at compile time, not run time.
string text = "Historically, the world of data and the world of objects " +
"have not been well integrated. Programmers work in C# or Visual Basic " +
"and also in SQL or XQuery. On the one side are concepts such as classes, "
+
"objects, fields, inheritance, and .NET Framework APIs. On the other side "
+
"are tables, columns, rows, nodes, and separate languages for dealing with "
+
"them. Data types often require translation between the two worlds; there
are " +
"different standard functions. Because the object world has no notion of
query, a " +
"query can only be represented as a string without compile-time type
checking or " +
"IntelliSense support in the IDE. Transferring data from SQL tables or XML
trees to " +

https://dotnet.microsoft.com/platform/try-dotnet

To concatenate string variables, you can use the + or += operators, string interpolation
or the String.Format, String.Concat, String.Join or StringBuilder.Append methods. The +
operator is easy to use and makes for intuitive code. Even if you use several + operators
in one statement, the string content is copied only once. The following code shows
examples of using the + and += operators to concatenate strings:

C#

In some expressions, it's easier to concatenate strings using string interpolation, as the
following code shows:

C#

"objects in memory is often tedious and error-prone.";

System.Console.WriteLine(text);

+ and += operators

string userName = "<Type your name here>";
string dateString = DateTime.Today.ToShortDateString();

// Use the + and += operators for one-time concatenations.
string str = "Hello " + userName + ". Today is " + dateString + ".";
System.Console.WriteLine(str);

str += " How are you today?";
System.Console.WriteLine(str);

String interpolation

string userName = "<Type your name here>";
string date = DateTime.Today.ToShortDateString();

// Use string interpolation to concatenate strings.
string str = $"Hello {userName}. Today is {date}.";
System.Console.WriteLine(str);

str = $"{str} How are you today?";
System.Console.WriteLine(str);

７ Note

https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.string.concat
https://learn.microsoft.com/en-us/dotnet/api/system.string.join
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder.append

Beginning with C# 10, you can use string interpolation to initialize a constant string
when all the expressions used for placeholders are also constant strings.

Another method to concatenate strings is String.Format. This method works well when
you're building a string from a small number of component strings.

In other cases, you may be combining strings in a loop where you don't know how many
source strings you're combining, and the actual number of source strings may be large.
The StringBuilder class was designed for these scenarios. The following code uses the
Append method of the StringBuilder class to concatenate strings.

C#

You can read more about the reasons to choose string concatenation or the
StringBuilder class.

Another option to join strings from a collection is to use String.Concat method. Use
String.Join method if source strings should be separated by a delimiter. The following
code combines an array of words using both methods:

C#

In string concatenation operations, the C# compiler treats a null string the same as
an empty string.

String.Format

StringBuilder

// Use StringBuilder for concatenation in tight loops.
var sb = new System.Text.StringBuilder();
for (int i = 0; i < 20; i++)
{
 sb.AppendLine(i.ToString());
}
System.Console.WriteLine(sb.ToString());

String.Concat or String.Join

string[] words = { "The", "quick", "brown", "fox", "jumps", "over", "the",
"lazy", "dog." };

var unreadablePhrase = string.Concat(words);

https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder.append
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder#the-string-and-stringbuilder-types
https://learn.microsoft.com/en-us/dotnet/api/system.string.concat
https://learn.microsoft.com/en-us/dotnet/api/system.string.join

At last, you can use LINQ and the Enumerable.Aggregate method to join strings from a
collection. This method combines the source strings using a lambda expression. The
lambda expression does the work to add each string to the existing accumulation. The
following example combines an array of words, adding a space between each word in
the array:

C#

This option can cause more allocations than other methods for concatenating
collections, as it creates an intermediate string for each iteration. If optimizing
performance is critical, consider the StringBuilder class or the String.Concat or String.Join
method to concatenate a collection, instead of Enumerable.Aggregate .

String
StringBuilder
C# programming guide
Strings

System.Console.WriteLine(unreadablePhrase);

var readablePhrase = string.Join(" ", words);
System.Console.WriteLine(readablePhrase);

LINQ and Enumerable.Aggregate

string[] words = { "The", "quick", "brown", "fox", "jumps", "over", "the",
"lazy", "dog." };

var phrase = words.Aggregate((partialPhrase, word) =>$"{partialPhrase}
{word}");
System.Console.WriteLine(phrase);

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.aggregate
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

How to search strings
Article • 2021-09-15 • 4 minutes to read

You can use two main strategies to search for text in strings. Methods of the String class
search for specific text. Regular expressions search for patterns in text.

The string type, which is an alias for the System.String class, provides a number of useful
methods for searching the contents of a string. Among them are Contains, StartsWith,
EndsWith, IndexOf, LastIndexOf. The System.Text.RegularExpressions.Regex class
provides a rich vocabulary to search for patterns in text. In this article, you learn these
techniques and how to choose the best method for your needs.

The String.Contains, String.StartsWith, and String.EndsWith methods search a string for
specific text. The following example shows each of these methods and a variation that
uses a case-insensitive search:

C#

７ Note

The C# examples in this article run in the Try.NET inline code runner and
playground. Select the Run button to run an example in an interactive window.
Once you execute the code, you can modify it and run the modified code by
selecting Run again. The modified code either runs in the interactive window or, if
compilation fails, the interactive window displays all C# compiler error messages.

Does a string contain text?

string factMessage = "Extension methods have all the capabilities of regular
static methods.";

// Write the string and include the quotation marks.
Console.WriteLine($"\"{factMessage}\"");

// Simple comparisons are always case sensitive!
bool containsSearchResult = factMessage.Contains("extension");
Console.WriteLine($"Contains \"extension\"? {containsSearchResult}");

// For user input and strings that will be displayed to the end user,
// use the StringComparison parameter on methods that have it to specify how
to match strings.
bool ignoreCaseSearchResult = factMessage.StartsWith("extension",
System.StringComparison.CurrentCultureIgnoreCase);
Console.WriteLine($"Starts with \"extension\"? {ignoreCaseSearchResult}

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.string.contains
https://learn.microsoft.com/en-us/dotnet/api/system.string.startswith
https://learn.microsoft.com/en-us/dotnet/api/system.string.endswith
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof
https://learn.microsoft.com/en-us/dotnet/api/system.string.lastindexof
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://learn.microsoft.com/en-us/dotnet/api/system.string.contains
https://learn.microsoft.com/en-us/dotnet/api/system.string.startswith
https://learn.microsoft.com/en-us/dotnet/api/system.string.endswith
https://dotnet.microsoft.com/platform/try-dotnet

The preceding example demonstrates an important point for using these methods.
Searches are case-sensitive by default. You use the
StringComparison.CurrentCultureIgnoreCase enumeration value to specify a case-
insensitive search.

The IndexOf and LastIndexOf methods also search for text in strings. These methods
return the location of the text being sought. If the text isn't found, they return -1 . The
following example shows a search for the first and last occurrence of the word
"methods" and displays the text in between.

C#

The System.Text.RegularExpressions.Regex class can be used to search strings. These
searches can range in complexity from simple to complicated text patterns.

The following code example searches for the word "the" or "their" in a sentence,
ignoring case. The static method Regex.IsMatch performs the search. You give it the
string to search and a search pattern. In this case, a third argument specifies case-
insensitive search. For more information, see
System.Text.RegularExpressions.RegexOptions.

(ignoring case)");

bool endsWithSearchResult = factMessage.EndsWith(".",
System.StringComparison.CurrentCultureIgnoreCase);
Console.WriteLine($"Ends with '.'? {endsWithSearchResult}");

Where does the sought text occur in a string?

string factMessage = "Extension methods have all the capabilities of regular
static methods.";

// Write the string and include the quotation marks.
Console.WriteLine($"\"{factMessage}\"");

// This search returns the substring between two strings, so
// the first index is moved to the character just after the first string.
int first = factMessage.IndexOf("methods") + "methods".Length;
int last = factMessage.LastIndexOf("methods");
string str2 = factMessage.Substring(first, last - first);
Console.WriteLine($"Substring between \"methods\" and \"methods\":
'{str2}'");

Finding specific text using regular expressions

https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison#system-stringcomparison-currentcultureignorecase
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof
https://learn.microsoft.com/en-us/dotnet/api/system.string.lastindexof
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.ismatch
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions

The search pattern describes the text you search for. The following table describes each
element of the search pattern. (The table below uses the single \ , which must be
escaped as \\ in a C# string).

Pattern Meaning

the match the text "the"

(eir)? match 0 or 1 occurrence of "eir"

\s match a white-space character

C#

string[] sentences =
{
 "Put the water over there.",
 "They're quite thirsty.",
 "Their water bottles broke."
};

string sPattern = "the(ir)?\\s";

foreach (string s in sentences)
{
 Console.Write($"{s,24}");

 if (System.Text.RegularExpressions.Regex.IsMatch(s, sPattern,
System.Text.RegularExpressions.RegexOptions.IgnoreCase))
 {
 Console.WriteLine($" (match for '{sPattern}' found)");
 }
 else
 {
 Console.WriteLine();
 }
}

 Tip

The string methods are usually better choices when you are searching for an exact
string. Regular expressions are better when you are searching for some pattern in a
source string.

Does a string follow a pattern?

The following code uses regular expressions to validate the format of each string in an
array. The validation requires that each string have the form of a telephone number in
which three groups of digits are separated by dashes, the first two groups contain three
digits, and the third group contains four digits. The search pattern uses the regular
expression ^\\d{3}-\\d{3}-\\d{4}$. For more information, see Regular Expression
Language - Quick Reference.

Pattern Meaning

^ matches the beginning of the string

\d{3} matches exactly 3 digit characters

- matches the '-' character

\d{4} matches exactly 4 digit characters

$ matches the end of the string

C#

string[] numbers =
{
 "123-555-0190",
 "444-234-22450",
 "690-555-0178",
 "146-893-232",
 "146-555-0122",
 "4007-555-0111",
 "407-555-0111",
 "407-2-5555",
 "407-555-8974",
 "407-2ab-5555",
 "690-555-8148",
 "146-893-232-"
};

string sPattern = "^\\d{3}-\\d{3}-\\d{4}$";

foreach (string s in numbers)
{
 Console.Write($"{s,14}");

 if (System.Text.RegularExpressions.Regex.IsMatch(s, sPattern))
 {
 Console.WriteLine(" - valid");
 }
 else
 {
 Console.WriteLine(" - invalid");

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expression-language-quick-reference

This single search pattern matches many valid strings. Regular expressions are better to
search for or validate against a pattern, rather than a single text string.

C# programming guide
Strings
LINQ and strings
System.Text.RegularExpressions.Regex
.NET regular expressions
Regular expression language - quick reference
Best practices for using strings in .NET

 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expressions
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expression-language-quick-reference
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/best-practices-strings

How to modify string contents in C#
Article • 2021-09-15 • 5 minutes to read

This article demonstrates several techniques to produce a string by modifying an
existing string . All the techniques demonstrated return the result of the modifications
as a new string object. To demonstrate that the original and modified strings are
distinct instances, the examples store the result in a new variable. You can examine the
original string and the new, modified string when you run each example.

There are several techniques demonstrated in this article. You can replace existing text.
You can search for patterns and replace matching text with other text. You can treat a
string as a sequence of characters. You can also use convenience methods that remove
white space. Choose the techniques that most closely match your scenario.

The following code creates a new string by replacing existing text with a substitute.

C#

The preceding code demonstrates this immutable property of strings. You can see in the
preceding example that the original string, source , is not modified. The String.Replace
method creates a new string containing the modifications.

７ Note

The C# examples in this article run in the Try.NET inline code runner and
playground. Select the Run button to run an example in an interactive window.
Once you execute the code, you can modify it and run the modified code by
selecting Run again. The modified code either runs in the interactive window or, if
compilation fails, the interactive window displays all C# compiler error messages.

Replace text

string source = "The mountains are behind the clouds today.";

// Replace one substring with another with String.Replace.
// Only exact matches are supported.
var replacement = source.Replace("mountains", "peaks");
Console.WriteLine($"The source string is <{source}>");
Console.WriteLine($"The updated string is <{replacement}>");

https://learn.microsoft.com/en-us/dotnet/api/system.string.replace
https://dotnet.microsoft.com/platform/try-dotnet

The Replace method can replace either strings or single characters. In both cases, every
occurrence of the sought text is replaced. The following example replaces all ' '
characters with '_':

C#

The source string is unchanged, and a new string is returned with the replacement.

You can use the String.Trim, String.TrimStart, and String.TrimEnd methods to remove any
leading or trailing white space. The following code shows an example of each. The
source string does not change; these methods return a new string with the modified
contents.

C#

You can remove text from a string using the String.Remove method. This method
removes a number of characters starting at a specific index. The following example
shows how to use String.IndexOf followed by Remove to remove text from a string:

C#

string source = "The mountains are behind the clouds today.";

// Replace all occurrences of one char with another.
var replacement = source.Replace(' ', '_');
Console.WriteLine(source);
Console.WriteLine(replacement);

Trim white space

// Remove trailing and leading white space.
string source = " I'm wider than I need to be. ";
// Store the results in a new string variable.
var trimmedResult = source.Trim();
var trimLeading = source.TrimStart();
var trimTrailing = source.TrimEnd();
Console.WriteLine($"<{source}>");
Console.WriteLine($"<{trimmedResult}>");
Console.WriteLine($"<{trimLeading}>");
Console.WriteLine($"<{trimTrailing}>");

Remove text

string source = "Many mountains are behind many clouds today.";
// Remove a substring from the middle of the string.

https://learn.microsoft.com/en-us/dotnet/api/system.string.replace
https://learn.microsoft.com/en-us/dotnet/api/system.string.trim
https://learn.microsoft.com/en-us/dotnet/api/system.string.trimstart
https://learn.microsoft.com/en-us/dotnet/api/system.string.trimend
https://learn.microsoft.com/en-us/dotnet/api/system.string.remove
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof
https://learn.microsoft.com/en-us/dotnet/api/system.string.remove

You can use regular expressions to replace text matching patterns with new text,
possibly defined by a pattern. The following example uses the
System.Text.RegularExpressions.Regex class to find a pattern in a source string and
replace it with proper capitalization. The Regex.Replace(String, String, MatchEvaluator,
RegexOptions) method takes a function that provides the logic of the replacement as
one of its arguments. In this example, that function, LocalReplaceMatchCase is a local
function declared inside the sample method. LocalReplaceMatchCase uses the
System.Text.StringBuilder class to build the replacement string with proper capitalization.

Regular expressions are most useful for searching and replacing text that follows a
pattern, rather than known text. For more information, see How to search strings. The
search pattern, "the\s" searches for the word "the" followed by a white-space character.
That part of the pattern ensures that it doesn't match "there" in the source string. For
more information on regular expression language elements, see Regular Expression
Language - Quick Reference.

C#

string toRemove = "many ";
string result = string.Empty;
int i = source.IndexOf(toRemove);
if (i >= 0)
{
 result= source.Remove(i, toRemove.Length);
}
Console.WriteLine(source);
Console.WriteLine(result);

Replace matching patterns

string source = "The mountains are still there behind the clouds today.";

// Use Regex.Replace for more flexibility.
// Replace "the" or "The" with "many" or "Many".
// using System.Text.RegularExpressions
string replaceWith = "many ";
source = System.Text.RegularExpressions.Regex.Replace(source, "the\\s",
LocalReplaceMatchCase,
 System.Text.RegularExpressions.RegexOptions.IgnoreCase);
Console.WriteLine(source);

string LocalReplaceMatchCase(System.Text.RegularExpressions.Match
matchExpression)
{
 // Test whether the match is capitalized
 if (Char.IsUpper(matchExpression.Value[0]))
 {

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expressions
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.replace#system-text-regularexpressions-regex-replace(system-string-system-string-system-text-regularexpressions-matchevaluator-system-text-regularexpressions-regexoptions)
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expression-language-quick-reference

The StringBuilder.ToString method returns an immutable string with the contents in the
StringBuilder object.

You can produce a character array from a string, modify the contents of the array, and
then create a new string from the modified contents of the array.

The following example shows how to replace a set of characters in a string. First, it uses
the String.ToCharArray() method to create an array of characters. It uses the IndexOf
method to find the starting index of the word "fox." The next three characters are
replaced with a different word. Finally, a new string is constructed from the updated
character array.

C#

 // Capitalize the replacement string
 System.Text.StringBuilder replacementBuilder = new
System.Text.StringBuilder(replaceWith);
 replacementBuilder[0] = Char.ToUpper(replacementBuilder[0]);
 return replacementBuilder.ToString();
 }
 else
 {
 return replaceWith;
 }
}

Modifying individual characters

string phrase = "The quick brown fox jumps over the fence";
Console.WriteLine(phrase);

char[] phraseAsChars = phrase.ToCharArray();
int animalIndex = phrase.IndexOf("fox");
if (animalIndex != -1)
{
 phraseAsChars[animalIndex++] = 'c';
 phraseAsChars[animalIndex++] = 'a';
 phraseAsChars[animalIndex] = 't';
}

string updatedPhrase = new string(phraseAsChars);
Console.WriteLine(updatedPhrase);

Programmatically build up string content

https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder.tostring
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.string.tochararray#system-string-tochararray
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof

Since strings are immutable, the previous examples all create temporary strings or
character arrays. In high-performance scenarios, it may be desirable to avoid these heap
allocations. .NET Core provides a String.Create method that allows you to
programmatically fill in the character content of a string via a callback while avoiding the
intermediate temporary string allocations.

C#

You could modify a string in a fixed block with unsafe code, but it is strongly
discouraged to modify the string content after a string is created. Doing so will break
things in unpredictable ways. For example, if someone interns a string that has the same
content as yours, they'll get your copy and won't expect that you are modifying their
string.

.NET regular expressions
Regular expression language - quick reference

// constructing a string from a char array, prefix it with some additional
characters
char[] chars = { 'a', 'b', 'c', 'd', '\0' };
int length = chars.Length + 2;
string result = string.Create(length, chars, (Span<char> strContent, char[]
charArray) =>
{
 strContent[0] = '0';
 strContent[1] = '1';
 for (int i = 0; i < charArray.Length; i++)
 {
 strContent[i + 2] = charArray[i];
 }
});

Console.WriteLine(result);

See also

https://learn.microsoft.com/en-us/dotnet/api/system.string.create
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expressions
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/regular-expression-language-quick-reference

How to compare strings in C#
Article • 2022-02-18 • 10 minutes to read

You compare strings to answer one of two questions: "Are these two strings equal?" or
"In what order should these strings be placed when sorting them?"

Those two questions are complicated by factors that affect string comparisons:

You can choose an ordinal or linguistic comparison.
You can choose if case matters.
You can choose culture-specific comparisons.
Linguistic comparisons are culture and platform-dependent.

When you compare strings, you define an order among them. Comparisons are used to
sort a sequence of strings. Once the sequence is in a known order, it is easier to search,
both for software and for humans. Other comparisons may check if strings are the same.
These sameness checks are similar to equality, but some differences, such as case
differences, may be ignored.

By default, the most common operations:

String.Equals
String.Equality and String.Inequality, that is, equality operators == and !=,
respectively

perform a case-sensitive, ordinal comparison. In the case of String.Equals, a
StringComparison argument can be provided to alter its sorting rules. The following
example demonstrates that:

C#

７ Note

The C# examples in this article run in the Try.NET inline code runner and
playground. Select the Run button to run an example in an interactive window.
Once you execute the code, you can modify it and run the modified code by
selecting Run again. The modified code either runs in the interactive window or, if
compilation fails, the interactive window displays all C# compiler error messages.

Default ordinal comparisons

https://learn.microsoft.com/en-us/dotnet/api/system.string.equals
https://learn.microsoft.com/en-us/dotnet/api/system.string.op_equality
https://learn.microsoft.com/en-us/dotnet/api/system.string.op_inequality
https://learn.microsoft.com/en-us/dotnet/api/system.string.equals
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison
https://dotnet.microsoft.com/platform/try-dotnet

The default ordinal comparison doesn't take linguistic rules into account when
comparing strings. It compares the binary value of each Char object in two strings. As a
result, the default ordinal comparison is also case-sensitive.

The test for equality with String.Equals and the == and != operators differs from string
comparison using the String.CompareTo and Compare(String, String) methods. They all
perform a case-sensitive comparison. However, while the tests for equality perform an
ordinal comparison, the CompareTo and Compare methods perform a culture-aware
linguistic comparison using the current culture. Because these default comparison
methods differ in the ways they compare strings, we recommend that you always make
the intent of your code clear by calling an overload that explicitly specifies the type of
comparison to perform.

The String.Equals(String, StringComparison) method enables you to specify a
StringComparison value of StringComparison.OrdinalIgnoreCase for a case-insensitive
ordinal comparison. There is also a static String.Compare(String, String,
StringComparison) method that performs a case-insensitive ordinal comparison if you
specify a value of StringComparison.OrdinalIgnoreCase for the StringComparison
argument. These are shown in the following code:

C#

string root = @"C:\users";
string root2 = @"C:\Users";

bool result = root.Equals(root2);
Console.WriteLine($"Ordinal comparison: <{root}> and <{root2}> are {(result
? "equal." : "not equal.")}");

result = root.Equals(root2, StringComparison.Ordinal);
Console.WriteLine($"Ordinal comparison: <{root}> and <{root2}> are {(result
? "equal." : "not equal.")}");

Console.WriteLine($"Using == says that <{root}> and <{root2}> are {(root ==
root2 ? "equal" : "not equal")}");

Case-insensitive ordinal comparisons

string root = @"C:\users";
string root2 = @"C:\Users";

bool result = root.Equals(root2, StringComparison.OrdinalIgnoreCase);
bool areEqual = String.Equals(root, root2,
StringComparison.OrdinalIgnoreCase);
int comparison = String.Compare(root, root2, comparisonType:

https://learn.microsoft.com/en-us/dotnet/api/system.char
https://learn.microsoft.com/en-us/dotnet/api/system.string.equals
https://learn.microsoft.com/en-us/dotnet/api/system.string.compareto
https://learn.microsoft.com/en-us/dotnet/api/system.string.compare#system-string-compare(system-string-system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.string.equals#system-string-equals(system-string-system-stringcomparison)
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison#system-stringcomparison-ordinalignorecase
https://learn.microsoft.com/en-us/dotnet/api/system.string.compare#system-string-compare(system-string-system-string-system-stringcomparison)
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison#system-stringcomparison-ordinalignorecase
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison

When performing a case-insensitive ordinal comparison, these methods use the casing
conventions of the invariant culture.

Strings can also be ordered using linguistic rules for the current culture. This is
sometimes referred to as "word sort order." When you perform a linguistic comparison,
some nonalphanumeric Unicode characters might have special weights assigned. For
example, the hyphen "-" may have a small weight assigned to it so that "co-op" and
"coop" appear next to each other in sort order. In addition, some Unicode characters
may be equivalent to a sequence of Char instances. The following example uses the
phrase "They dance in the street." in German with the "ss" (U+0073 U+0073) in one
string and 'ß' (U+00DF) in another. Linguistically (in Windows), "ss" is equal to the
German Esszet: 'ß' character in both the "en-US" and "de-DE" cultures.

C#

StringComparison.OrdinalIgnoreCase);

Console.WriteLine($"Ordinal ignore case: <{root}> and <{root2}> are {(result
? "equal." : "not equal.")}");
Console.WriteLine($"Ordinal static ignore case: <{root}> and <{root2}> are
{(areEqual ? "equal." : "not equal.")}");
if (comparison < 0)
 Console.WriteLine($"<{root}> is less than <{root2}>");
else if (comparison > 0)
 Console.WriteLine($"<{root}> is greater than <{root2}>");
else
 Console.WriteLine($"<{root}> and <{root2}> are equivalent in order");

Linguistic comparisons

string first = "Sie tanzen auf der Straße.";
string second = "Sie tanzen auf der Strasse.";

Console.WriteLine($"First sentence is <{first}>");
Console.WriteLine($"Second sentence is <{second}>");

bool equal = String.Equals(first, second,
StringComparison.InvariantCulture);
Console.WriteLine($"The two strings {(equal == true ? "are" : "are not")}
equal.");
showComparison(first, second);

string word = "coop";
string words = "co-op";
string other = "cop";

showComparison(word, words);
showComparison(word, other);

https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.invariantculture#system-globalization-cultureinfo-invariantculture
https://learn.microsoft.com/en-us/dotnet/api/system.char

On Windows, prior to .NET 5, the sort order of "cop", "coop", and "co-op" changes when
you change from a linguistic comparison to an ordinal comparison. The two German
sentences also compare differently using the different comparison types. This is because
prior to .NET 5, the .NET globalization APIs used National Language Support (NLS)
libraries. In .NET 5 and later versions, the .NET globalization APIs use International
Components for Unicode (ICU) libraries, which unifies .NET's globalization behavior
across all supported operating systems.

This sample stores CultureInfo objects for the en-US and de-DE cultures. The
comparisons are performed using a CultureInfo object to ensure a culture-specific
comparison.

The culture used affects linguistic comparisons. The following example shows the results
of comparing the two German sentences using the "en-US" culture and the "de-DE"
culture:

C#

showComparison(words, other);
void showComparison(string one, string two)
{
 int compareLinguistic = String.Compare(one, two,
StringComparison.InvariantCulture);
 int compareOrdinal = String.Compare(one, two, StringComparison.Ordinal);
 if (compareLinguistic < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using invariant
culture");
 else if (compareLinguistic > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using invariant
culture");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order
using invariant culture");
 if (compareOrdinal < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using ordinal
comparison");
 else if (compareOrdinal > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using ordinal
comparison");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order
using ordinal comparison");
}

Comparisons using specific cultures

string first = "Sie tanzen auf der Straße.";
string second = "Sie tanzen auf der Strasse.";

https://learn.microsoft.com/en-us/windows/win32/intl/national-language-support
http://site.icu-project.org/home
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo

Console.WriteLine($"First sentence is <{first}>");
Console.WriteLine($"Second sentence is <{second}>");

var en = new System.Globalization.CultureInfo("en-US");

// For culture-sensitive comparisons, use the String.Compare
// overload that takes a StringComparison value.
int i = String.Compare(first, second, en,
System.Globalization.CompareOptions.None);
Console.WriteLine($"Comparing in {en.Name} returns {i}.");

var de = new System.Globalization.CultureInfo("de-DE");
i = String.Compare(first, second, de,
System.Globalization.CompareOptions.None);
Console.WriteLine($"Comparing in {de.Name} returns {i}.");

bool b = String.Equals(first, second, StringComparison.CurrentCulture);
Console.WriteLine($"The two strings {(b ? "are" : "are not")} equal.");

string word = "coop";
string words = "co-op";
string other = "cop";

showComparison(word, words, en);
showComparison(word, other, en);
showComparison(words, other, en);
void showComparison(string one, string two, System.Globalization.CultureInfo
culture)
{
 int compareLinguistic = String.Compare(one, two, en,
System.Globalization.CompareOptions.None);
 int compareOrdinal = String.Compare(one, two, StringComparison.Ordinal);
 if (compareLinguistic < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using en-US
culture");
 else if (compareLinguistic > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using en-US
culture");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order
using en-US culture");
 if (compareOrdinal < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using ordinal
comparison");
 else if (compareOrdinal > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using ordinal
comparison");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order
using ordinal comparison");
}

Culture-sensitive comparisons are typically used to compare and sort strings input by
users with other strings input by users. The characters and sorting conventions of these
strings might vary depending on the locale of the user's computer. Even strings that
contain identical characters might sort differently depending on the culture of the
current thread.

The following examples show how to sort and search for strings in an array using a
linguistic comparison dependent on the current culture. You use the static Array
methods that take a System.StringComparer parameter.

This example shows how to sort an array of strings using the current culture:

C#

Once the array is sorted, you can search for entries using a binary search. A binary
search starts in the middle of the collection to determine which half of the collection
would contain the sought string. Each subsequent comparison subdivides the remaining
part of the collection in half. The array is sorted using the
StringComparer.CurrentCulture. The local function ShowWhere displays information about

Linguistic sorting and searching strings in
arrays

string[] lines = new string[]
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};

Console.WriteLine("Non-sorted order:");
foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

Console.WriteLine("\n\rSorted order:");

// Specify Ordinal to demonstrate the different behavior.
Array.Sort(lines, StringComparer.CurrentCulture);

foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparer
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparer.currentculture#system-stringcomparer-currentculture

where the string was found. If the string wasn't found, the returned value indicates
where it would be if it were found.

C#

The following code uses the System.Collections.Generic.List<T> collection class to store
strings. The strings are sorted using the List<T>.Sort method. This method needs a

string[] lines = new string[]
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};
Array.Sort(lines, StringComparer.CurrentCulture);

string searchString = @"c:\public\TEXTFILE.TXT";
Console.WriteLine($"Binary search for <{searchString}>");
int result = Array.BinarySearch(lines, searchString,
StringComparer.CurrentCulture);
ShowWhere<string>(lines, result);

Console.WriteLine($"{(result > 0 ? "Found" : "Did not find")}
{searchString}");

void ShowWhere<T>(T[] array, int index)
{
 if (index < 0)
 {
 index = ~index;

 Console.Write("Not found. Sorts between: ");

 if (index == 0)
 Console.Write("beginning of sequence and ");
 else
 Console.Write($"{array[index - 1]} and ");

 if (index == array.Length)
 Console.WriteLine("end of sequence.");
 else
 Console.WriteLine($"{array[index]}.");
 }
 else
 {
 Console.WriteLine($"Found at index {index}.");
 }
}

Ordinal sorting and searching in collections

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.sort

delegate that compares and orders two strings. The String.CompareTo method provides
that comparison function. Run the sample and observe the order. This sort operation
uses an ordinal case-sensitive sort. You would use the static String.Compare methods to
specify different comparison rules.

C#

Once sorted, the list of strings can be searched using a binary search. The following
sample shows how to search the sorted list using the same comparison function. The
local function ShowWhere shows where the sought text is or would be:

C#

List<string> lines = new List<string>
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};

Console.WriteLine("Non-sorted order:");
foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

Console.WriteLine("\n\rSorted order:");

lines.Sort((left, right) => left.CompareTo(right));
foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

List<string> lines = new List<string>
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};
lines.Sort((left, right) => left.CompareTo(right));

string searchString = @"c:\public\TEXTFILE.TXT";
Console.WriteLine($"Binary search for <{searchString}>");
int result = lines.BinarySearch(searchString);
ShowWhere<string>(lines, result);

Console.WriteLine($"{(result > 0 ? "Found" : "Did not find")}
{searchString}");

https://learn.microsoft.com/en-us/dotnet/api/system.string.compareto
https://learn.microsoft.com/en-us/dotnet/api/system.string.compare

Always make sure to use the same type of comparison for sorting and searching. Using
different comparison types for sorting and searching produces unexpected results.

Collection classes such as System.Collections.Hashtable,
System.Collections.Generic.Dictionary<TKey,TValue>, and
System.Collections.Generic.List<T> have constructors that take a System.StringComparer
parameter when the type of the elements or keys is string . In general, you should use
these constructors whenever possible, and specify either StringComparer.Ordinal or
StringComparer.OrdinalIgnoreCase.

None of the samples have used ReferenceEquals. This method determines if two strings
are the same object, which can lead to inconsistent results in string comparisons. The
following example demonstrates the string interning feature of C#. When a program
declares two or more identical string variables, the compiler stores them all in the same
location. By calling the ReferenceEquals method, you can see that the two strings
actually refer to the same object in memory. Use the String.Copy method to avoid
interning. After the copy has been made, the two strings have different storage
locations, even though they have the same value. Run the following sample to show that

void ShowWhere<T>(IList<T> collection, int index)
{
 if (index < 0)
 {
 index = ~index;

 Console.Write("Not found. Sorts between: ");

 if (index == 0)
 Console.Write("beginning of sequence and ");
 else
 Console.Write($"{collection[index - 1]} and ");

 if (index == collection.Count)
 Console.WriteLine("end of sequence.");
 else
 Console.WriteLine($"{collection[index]}.");
 }
 else
 {
 Console.WriteLine($"Found at index {index}.");
 }
}

Reference equality and string interning

https://learn.microsoft.com/en-us/dotnet/api/system.collections.hashtable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparer
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparer.ordinal#system-stringcomparer-ordinal
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparer.ordinalignorecase#system-stringcomparer-ordinalignorecase
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals
https://learn.microsoft.com/en-us/dotnet/api/system.string.copy

strings a and b are interned meaning they share the same storage. The strings a and c
are not.

C#

You can intern a string or retrieve a reference to an existing interned string by calling the
String.Intern method. To determine whether a string is interned, call the String.IsInterned
method.

System.Globalization.CultureInfo
System.StringComparer
Strings
Comparing strings
Globalizing and localizing applications

string a = "The computer ate my source code.";
string b = "The computer ate my source code.";

if (String.ReferenceEquals(a, b))
 Console.WriteLine("a and b are interned.");
else
 Console.WriteLine("a and b are not interned.");

string c = String.Copy(a);

if (String.ReferenceEquals(a, c))
 Console.WriteLine("a and c are interned.");
else
 Console.WriteLine("a and c are not interned.");

７ Note

When you test for equality of strings, you should use the methods that explicitly
specify what kind of comparison you intend to perform. Your code is much more
maintainable and readable. Use the overloads of the methods of the System.String
and System.Array classes that take a StringComparison enumeration parameter.
You specify which type of comparison to perform. Avoid using the == and !=
operators when you test for equality. The String.CompareTo instance methods
always perform an ordinal case-sensitive comparison. They are primarily suited for
ordering strings alphabetically.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.string.intern
https://learn.microsoft.com/en-us/dotnet/api/system.string.isinterned
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparer
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/comparing
https://learn.microsoft.com/en-us/visualstudio/ide/globalizing-and-localizing-applications
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.stringcomparison
https://learn.microsoft.com/en-us/dotnet/api/system.string.compareto

How to catch a non-CLS exception
Article • 2021-09-15 • 2 minutes to read

Some .NET languages, including C++/CLI, allow objects to throw exceptions that do not
derive from Exception. Such exceptions are called non-CLS exceptions or non-Exceptions.
In C# you cannot throw non-CLS exceptions, but you can catch them in two ways:

Within a catch (RuntimeWrappedException e) block.

By default, a Visual C# assembly catches non-CLS exceptions as wrapped
exceptions. Use this method if you need access to the original exception, which
can be accessed through the RuntimeWrappedException.WrappedException
property. The procedure later in this topic explains how to catch exceptions in this
manner.

Within a general catch block (a catch block without an exception type specified)
that is put after all other catch blocks.

Use this method when you want to perform some action (such as writing to a log
file) in response to non-CLS exceptions, and you do not need access to the
exception information. By default the common language runtime wraps all
exceptions. To disable this behavior, add this assembly-level attribute to your code,
typically in the AssemblyInfo.cs file: [assembly:
RuntimeCompatibilityAttribute(WrapNonExceptionThrows = false)] .

Within a catch(RuntimeWrappedException e) block, access the original exception through
the RuntimeWrappedException.WrappedException property.

The following example shows how to catch a non-CLS exception that was thrown from a
class library written in C++/CLI. Note that in this example, the C# client code knows in
advance that the exception type being thrown is a System.String. You can cast the
RuntimeWrappedException.WrappedException property back its original type as long as
that type is accessible from your code.

C#

To catch a non-CLS exception

Example

https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.runtimewrappedexception.wrappedexception
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.runtimewrappedexception.wrappedexception
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.runtimewrappedexception.wrappedexception

RuntimeWrappedException
Exceptions and Exception Handling

// Class library written in C++/CLI.
var myClass = new ThrowNonCLS.Class1();

try
{
 // throws gcnew System::String(
 // "I do not derive from System.Exception!");
 myClass.TestThrow();
}
catch (RuntimeWrappedException e)
{
 String s = e.WrappedException as String;
 if (s != null)
 {
 Console.WriteLine(s);
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.runtimewrappedexception

The .NET Compiler Platform SDK
Article • 2021-09-15 • 6 minutes to read

Compilers build a detailed model of application code as they validate the syntax and
semantics of that code. They use this model to build the executable output from the
source code. The .NET Compiler Platform SDK provides access to this model.
Increasingly, we rely on integrated development environment (IDE) features such as
IntelliSense, refactoring, intelligent rename, "Find all references," and "Go to definition"
to increase our productivity. We rely on code analysis tools to improve our code quality,
and code generators to aid in application construction. As these tools get smarter, they
need access to more and more of the model that only compilers create as they process
application code. This is the core mission of the Roslyn APIs: opening up the opaque
boxes and allowing tools and end users to share in the wealth of information compilers
have about our code. Instead of being opaque source-code-in and object-code-out
translators, through Roslyn, compilers become platforms: APIs that you can use for
code-related tasks in your tools and applications.

The .NET Compiler Platform SDK dramatically lowers the barrier to entry for creating
code focused tools and applications. It creates many opportunities for innovation in
areas such as meta-programming, code generation and transformation, interactive use
of the C# and Visual Basic languages, and embedding of C# and Visual Basic in domain-
specific languages.

The .NET Compiler Platform SDK enables you to build analyzers and code fixes that find
and correct coding mistakes. Analyzers understand the syntax (structure of code) and
semantics to detect practices that should be corrected. Code fixes provide one or more
suggested fixes for addressing coding mistakes found by analyzers or compiler
diagnostics. Typically, an analyzer and the associated code fixes are packaged together
in a single project.

Analyzers and code fixes use static analysis to understand code. They do not run the
code or provide other testing benefits. They can, however, point out practices that often
lead to bugs, unmaintainable code, or standard guideline violation.

In addition to analyzers and code fixes, The .NET Compiler Platform SDK also enables
you to build code refactorings. It also provides a single set of APIs that enable you to
examine and understand a C# or Visual Basic codebase. Because you can use this single
codebase, you can write analyzers and code fixes more easily by leveraging the syntactic

.NET Compiler Platform SDK concepts

and semantic analysis APIs provided by the .NET Compiler Platform SDK. Freed from the
large task of replicating the analysis done by the compiler, you can concentrate on the
more focused task of finding and fixing common coding errors for your project or
library.

A smaller benefit is that your analyzers and code fixes are smaller and use much less
memory when loaded in Visual Studio than they would if you wrote your own codebase
to understand the code in a project. By leveraging the same classes used by the
compiler and Visual Studio, you can create your own static analysis tools. This means
your team can use analyzers and code fixes without a noticeable impact on the IDE's
performance.

There are three main scenarios for writing analyzers and code fixes:

1. Enforce team coding standards
2. Provide guidance with library packages
3. Provide general guidance

Many teams have coding standards that are enforced through code reviews with other
team members. Analyzers and code fixes can make this process much more efficient.
Code reviews happen when a developer shares their work with others on the team. The
developer will have invested all the time needed to complete a new feature before
getting any comments. Weeks may go by while the developer reinforces habits that
don't match the team's practices.

Analyzers run as a developer writes code. The developer gets immediate feedback that
encourages following the guidance immediately. The developer builds habits to write
compliant code as soon as they begin prototyping. When the feature is ready for
humans to review, all the standard guidance has been enforced.

Teams can build analyzers and code fixes that look for the most common practices that
violate team coding practices. These can be installed on each developer's machine to
enforce the standards.

Enforce team coding standards

 Tip

Before building your own analyzer, check out the built-in ones. For more
information, see Code-style rules.

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/overview#code-style-analysis

There is a wealth of libraries available for .NET developers on NuGet. Some of these
come from Microsoft, some from third-party companies, and others from community
members and volunteers. These libraries get more adoption and higher reviews when
developers can succeed with those libraries.

In addition to providing documentation, you can provide analyzers and code fixes that
find and correct common mis-uses of your library. These immediate corrections will help
developers succeed more quickly.

You can package analyzers and code fixes with your library on NuGet. In that scenario,
every developer who installs your NuGet package will also install the analyzer package.
All developers using your library will immediately get guidance from your team in the
form of immediate feedback on mistakes and suggested corrections.

The .NET developer community has discovered, through experience, patterns that work
well and patterns that are best avoided. Several community members have created
analyzers that enforce those recommended patterns. As we learn more, there is always
room for new ideas.

These analyzers can be uploaded to the Visual Studio Marketplace and downloaded
by developers using Visual Studio. Newcomers to the language and the platform learn
accepted practices quickly and become productive earlier in their .NET journey. As these
become more widely used, the community adopts these practices.

The .NET Compiler Platform SDK includes the latest language object models for code
generation, analysis, and refactoring. This section provides a conceptual overview of the
.NET Compiler Platform SDK. Further details can be found in the quickstarts, samples,
and tutorials sections.

You can learn more about the concepts in the .NET Compiler Platform SDK in these five
topics:

Explore code with the syntax visualizer
Understand the compiler API model
Work with syntax
Work with semantics

Provide guidance with library packages

Provide general guidance

Next steps

https://marketplace.visualstudio.com/vs

Work with a workspace

To get started, you'll need to install the .NET Compiler Platform SDK:

There are two different ways to find the .NET Compiler Platform SDK in the Visual
Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual
Studio extension development workload. You must select it as an optional component.

1. Run Visual Studio Installer
2. Select Modify
3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the

optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer
2. Select Modify
3. Select the Individual components tab
4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the

Compilers, build tools, and runtimes section.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Check the box for DGML editor. You'll find it under the Code tools section.

Installation instructions - Visual Studio Installer

Install using the Visual Studio Installer - Workloads view

Install using the Visual Studio Installer - Individual
components tab

Understand the .NET Compiler Platform
SDK model
Article • 2021-09-15 • 3 minutes to read

Compilers process the code you write following structured rules that often differ from
the way humans read and understand code. A basic understanding of the model used
by compilers is essential to understanding the APIs you use when building Roslyn-based
tools.

The .NET Compiler Platform SDK exposes the C# and Visual Basic compilers' code
analysis to you as a consumer by providing an API layer that mirrors a traditional
compiler pipeline.

Each phase of this pipeline is a separate component. First, the parse phase tokenizes
and parses source text into syntax that follows the language grammar. Second, the
declaration phase analyzes source and imported metadata to form named symbols.
Next, the bind phase matches identifiers in the code to symbols. Finally, the emit phase
emits an assembly with all the information built up by the compiler.

Corresponding to each of those phases, the .NET Compiler Platform SDK exposes an
object model that allows access to the information at that phase. The parsing phase
exposes a syntax tree, the declaration phase exposes a hierarchical symbol table, the
binding phase exposes the result of the compiler's semantic analysis, and the emit phase
is an API that produces IL byte codes.

Compiler pipeline functional areas

Each compiler combines these components together as a single end-to-end whole.

These APIs are the same ones used by Visual Studio. For instance, the code outlining
and formatting features use the syntax trees, the Object Browser, and navigation
features use the symbol table, refactorings and Go to Definition use the semantic
model, and Edit and Continue uses all of these, including the Emit API.

The .NET compiler SDK consists of several layers of APIs: compiler APIs, diagnostic APIs,
scripting APIs, and workspaces APIs.

The compiler layer contains the object models that correspond to information exposed
at each phase of the compiler pipeline, both syntactic and semantic. The compiler layer
also contains an immutable snapshot of a single invocation of a compiler, including
assembly references, compiler options, and source code files. There are two distinct APIs
that represent the C# language and the Visual Basic language. The two APIs are similar
in shape but tailored for high-fidelity to each individual language. This layer has no
dependencies on Visual Studio components.

As part of its analysis, the compiler may produce a set of diagnostics covering
everything from syntax, semantic, and definite assignment errors to various warnings
and informational diagnostics. The Compiler API layer exposes diagnostics through an

API layers

Compiler APIs

Diagnostic APIs

extensible API that allows user-defined analyzers to be plugged into the compilation
process. It allows user-defined diagnostics, such as those produced by tools like
StyleCop, to be produced alongside compiler-defined diagnostics. Producing
diagnostics in this way has the benefit of integrating naturally with tools such as
MSBuild and Visual Studio, which depend on diagnostics for experiences such as halting
a build based on policy and showing live squiggles in the editor and suggesting code
fixes.

Hosting and scripting APIs are part of the compiler layer. You can use them for
executing code snippets and accumulating a runtime execution context. The C#
interactive REPL (Read-Evaluate-Print Loop) uses these APIs. The REPL enables you to
use C# as a scripting language, executing the code interactively as you write it.

The Workspaces layer contains the Workspace API, which is the starting point for doing
code analysis and refactoring over entire solutions. It assists you in organizing all the
information about the projects in a solution into a single object model, offering you
direct access to the compiler layer object models without needing to parse files,
configure options, or manage project-to-project dependencies.

In addition, the Workspaces layer surfaces a set of APIs used when implementing code
analysis and refactoring tools that function within a host environment like the Visual
Studio IDE. Examples include the Find All References, Formatting, and Code Generation
APIs.

This layer has no dependencies on Visual Studio components.

Scripting APIs

Workspaces APIs

Work with syntax
Article • 2021-09-15 • 8 minutes to read

The syntax tree is a fundamental immutable data structure exposed by the compiler
APIs. These trees represent the lexical and syntactic structure of source code. They serve
two important purposes:

To allow tools - such as an IDE, add-ins, code analysis tools, and refactorings - to
see and process the syntactic structure of source code in a user's project.
To enable tools - such as refactorings and an IDE - to create, modify, and rearrange
source code in a natural manner without having to use direct text edits. By creating
and manipulating trees, tools can easily create and rearrange source code.

Syntax trees are the primary structure used for compilation, code analysis, binding,
refactoring, IDE features, and code generation. No part of the source code is understood
without it first being identified and categorized into one of many well-known structural
language elements.

Syntax trees have three key attributes:

They hold all the source information in full fidelity. Full fidelity means that the
syntax tree contains every piece of information found in the source text, every
grammatical construct, every lexical token, and everything else in between,
including white space, comments, and preprocessor directives. For example, each
literal mentioned in the source is represented exactly as it was typed. Syntax trees
also capture errors in source code when the program is incomplete or malformed
by representing skipped or missing tokens.
They can produce the exact text that they were parsed from. From any syntax
node, it's possible to get the text representation of the subtree rooted at that
node. This ability means that syntax trees can be used as a way to construct and
edit source text. By creating a tree you have, by implication, created the equivalent
text, and by making a new tree out of changes to an existing tree, you have
effectively edited the text.
They are immutable and thread-safe. After a tree is obtained, it's a snapshot of the
current state of the code and never changes. This allows multiple users to interact
with the same syntax tree at the same time in different threads without locking or
duplication. Because the trees are immutable and no modifications can be made
directly to a tree, factory methods help create and modify syntax trees by creating

Syntax trees

additional snapshots of the tree. The trees are efficient in the way they reuse
underlying nodes, so a new version can be rebuilt fast and with little extra memory.

A syntax tree is literally a tree data structure, where non-terminal structural elements
parent other elements. Each syntax tree is made up of nodes, tokens, and trivia.

Syntax nodes are one of the primary elements of syntax trees. These nodes represent
syntactic constructs such as declarations, statements, clauses, and expressions. Each
category of syntax nodes is represented by a separate class derived from
Microsoft.CodeAnalysis.SyntaxNode. The set of node classes is not extensible.

All syntax nodes are non-terminal nodes in the syntax tree, which means they always
have other nodes and tokens as children. As a child of another node, each node has a
parent node that can be accessed through the SyntaxNode.Parent property. Because
nodes and trees are immutable, the parent of a node never changes. The root of the
tree has a null parent.

Each node has a SyntaxNode.ChildNodes() method, which returns a list of child nodes in
sequential order based on their position in the source text. This list does not contain
tokens. Each node also has methods to examine Descendants, such as
DescendantNodes, DescendantTokens, or DescendantTrivia - that represent a list of all
the nodes, tokens, or trivia that exist in the subtree rooted by that node.

In addition, each syntax node subclass exposes all the same children through strongly
typed properties. For example, a BinaryExpressionSyntax node class has three additional
properties specific to binary operators: Left, OperatorToken, and Right. The type of Left
and Right is ExpressionSyntax, and the type of OperatorToken is SyntaxToken.

Some syntax nodes have optional children. For example, an IfStatementSyntax has an
optional ElseClauseSyntax. If the child is not present, the property returns null.

Syntax tokens are the terminals of the language grammar, representing the smallest
syntactic fragments of the code. They are never parents of other nodes or tokens. Syntax
tokens consist of keywords, identifiers, literals, and punctuation.

For efficiency purposes, the SyntaxToken type is a CLR value type. Therefore, unlike
syntax nodes, there is only one structure for all kinds of tokens with a mix of properties
that have meaning depending on the kind of token that is being represented.

Syntax nodes

Syntax tokens

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.parent#microsoft-codeanalysis-syntaxnode-parent
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.childnodes#microsoft-codeanalysis-syntaxnode-childnodes
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.descendantnodes
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.descendanttokens
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.descendanttrivia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.left#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-left
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.operatortoken#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-operatortoken
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.right#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-right
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.left#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-left
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.right#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-right
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.expressionsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.operatortoken#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-operatortoken
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.ifstatementsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.elseclausesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken

For example, an integer literal token represents a numeric value. In addition to the raw
source text the token spans, the literal token has a Value property that tells you the
exact decoded integer value. This property is typed as Object because it may be one of
many primitive types.

The ValueText property tells you the same information as the Value property; however
this property is always typed as String. An identifier in C# source text may include
Unicode escape characters, yet the syntax of the escape sequence itself is not
considered part of the identifier name. So although the raw text spanned by the token
does include the escape sequence, the ValueText property does not. Instead, it includes
the Unicode characters identified by the escape. For example, if the source text contains
an identifier written as \u03C0 , then the ValueText property for this token will return π .

Syntax trivia represent the parts of the source text that are largely insignificant for
normal understanding of the code, such as white space, comments, and preprocessor
directives. Like syntax tokens, trivia are value types. The single
Microsoft.CodeAnalysis.SyntaxTrivia type is used to describe all kinds of trivia.

Because trivia are not part of the normal language syntax and can appear anywhere
between any two tokens, they are not included in the syntax tree as a child of a node.
Yet, because they are important when implementing a feature like refactoring and to
maintain full fidelity with the source text, they do exist as part of the syntax tree.

You can access trivia by inspecting a token's SyntaxToken.LeadingTrivia or
SyntaxToken.TrailingTrivia collections. When source text is parsed, sequences of trivia are
associated with tokens. In general, a token owns any trivia after it on the same line up to
the next token. Any trivia after that line is associated with the following token. The first
token in the source file gets all the initial trivia, and the last sequence of trivia in the file
is tacked onto the end-of-file token, which otherwise has zero width.

Unlike syntax nodes and tokens, syntax trivia do not have parents. Yet, because they are
part of the tree and each is associated with a single token, you may access the token it is
associated with using the SyntaxTrivia.Token property.

Each node, token, or trivia knows its position within the source text and the number of
characters it consists of. A text position is represented as a 32-bit integer, which is a
zero-based char index. A TextSpan object is the beginning position and a count of

Syntax trivia

Spans

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.value#microsoft-codeanalysis-syntaxtoken-value
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.valuetext#microsoft-codeanalysis-syntaxtoken-valuetext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.value#microsoft-codeanalysis-syntaxtoken-value
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.valuetext#microsoft-codeanalysis-syntaxtoken-valuetext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.valuetext#microsoft-codeanalysis-syntaxtoken-valuetext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtrivia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.leadingtrivia#microsoft-codeanalysis-syntaxtoken-leadingtrivia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.trailingtrivia#microsoft-codeanalysis-syntaxtoken-trailingtrivia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtrivia.token#microsoft-codeanalysis-syntaxtrivia-token
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.text.textspan

characters, both represented as integers. If TextSpan has a zero length, it refers to a
location between two characters.

Each node has two TextSpan properties: Span and FullSpan.

The Span property is the text span from the start of the first token in the node's subtree
to the end of the last token. This span does not include any leading or trailing trivia.

The FullSpan property is the text span that includes the node's normal span, plus the
span of any leading or trailing trivia.

For example:

C#

The statement node inside the block has a span indicated by the single vertical bars (|). It
includes the characters throw new Exception("Not right."); . The full span is indicated
by the double vertical bars (||). It includes the same characters as the span and the
characters associated with the leading and trailing trivia.

Each node, token, or trivia has a SyntaxNode.RawKind property, of type System.Int32,
that identifies the exact syntax element represented. This value can be cast to a
language-specific enumeration. Each language, C# or Visual Basic, has a single
SyntaxKind enumeration (Microsoft.CodeAnalysis.CSharp.SyntaxKind and
Microsoft.CodeAnalysis.VisualBasic.SyntaxKind, respectively) that lists all the possible
nodes, tokens, and trivia elements in the grammar. This conversion can be done
automatically by accessing the CSharpExtensions.Kind or VisualBasicExtensions.Kind
extension methods.

The RawKind property allows for easy disambiguation of syntax node types that share
the same node class. For tokens and trivia, this property is the only way to distinguish
one type of element from another.

For example, a single BinaryExpressionSyntax class has Left, OperatorToken, and Right as
children. The Kind property distinguishes whether it is an AddExpression,
SubtractExpression, or MultiplyExpression kind of syntax node.

 if (x > 3)
 {
|| // this is bad
 |throw new Exception("Not right.");| // better exception?||
 }

Kinds

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.text.textspan
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.text.textspan
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.span
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.fullspan
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.span
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.fullspan
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.rawkind#microsoft-codeanalysis-syntaxnode-rawkind
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxkind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.visualbasic.syntaxkind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpextensions.kind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.visualbasic.visualbasicextensions.kind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken.rawkind#microsoft-codeanalysis-syntaxtoken-rawkind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.left#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-left
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.operatortoken#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-operatortoken
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.binaryexpressionsyntax.right#microsoft-codeanalysis-csharp-syntax-binaryexpressionsyntax-right
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpextensions.kind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxkind#microsoft-codeanalysis-csharp-syntaxkind-addexpression
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxkind#microsoft-codeanalysis-csharp-syntaxkind-subtractexpression
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxkind#microsoft-codeanalysis-csharp-syntaxkind-multiplyexpression

Even when the source text contains syntax errors, a full syntax tree that is round-
trippable to the source is exposed. When the parser encounters code that does not
conform to the defined syntax of the language, it uses one of two techniques to create a
syntax tree:

If the parser expects a particular kind of token but does not find it, it may insert a
missing token into the syntax tree in the location that the token was expected. A
missing token represents the actual token that was expected, but it has an empty
span, and its SyntaxNode.IsMissing property returns true .

The parser may skip tokens until it finds one where it can continue parsing. In this
case, the skipped tokens are attached as a trivia node with the kind
SkippedTokensTrivia.

 Tip

It's recommended to check kinds using IsKind (for C#) or IsKind (for VB) extension
methods.

Errors

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.ismissing#microsoft-codeanalysis-syntaxnode-ismissing
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxkind#microsoft-codeanalysis-csharp-syntaxkind-skippedtokenstrivia
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharpextensions.iskind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.visualbasicextensions.iskind

Work with semantics
Article • 2021-09-15 • 3 minutes to read

Syntax trees represent the lexical and syntactic structure of source code. Although this
information alone is enough to describe all the declarations and logic in the source, it is
not enough information to identify what is being referenced. A name may represent:

a type
a field
a method
a local variable

Although each of these is uniquely different, determining which one an identifier
actually refers to often requires a deep understanding of the language rules.

There are program elements represented in source code, and programs can also refer to
previously compiled libraries, packaged in assembly files. Although no source code, and
therefore no syntax nodes or trees, are available for assemblies, programs can still refer
to elements inside them.

For those tasks, you need the Semantic model.

In addition to a syntactic model of the source code, a semantic model encapsulates the
language rules, giving you an easy way to correctly match identifiers with the correct
program element being referenced.

A compilation is a representation of everything needed to compile a C# or Visual Basic
program, which includes all the assembly references, compiler options, and source files.

Because all this information is in one place, the elements contained in the source code
can be described in more detail. The compilation represents each declared type,
member, or variable as a symbol. The compilation contains a variety of methods that
help you find and relate the symbols that have either been declared in the source code
or imported as metadata from an assembly.

Similar to syntax trees, compilations are immutable. After you create a compilation, it
cannot be changed by you or anyone else you might be sharing it with. However, you
can create a new compilation from an existing compilation, specifying a change as you
do so. For example, you might create a compilation that is the same in every way as an

Compilation

existing compilation, except it may include an additional source file or assembly
reference.

A symbol represents a distinct element declared by the source code or imported from
an assembly as metadata. Every namespace, type, method, property, field, event,
parameter, or local variable is represented by a symbol.

A variety of methods and properties on the Compilation type help you find symbols. For
example, you can find a symbol for a declared type by its common metadata name. You
can also access the entire symbol table as a tree of symbols rooted by the global
namespace.

Symbols also contain additional information that the compiler determines from the
source or metadata, such as other referenced symbols. Each kind of symbol is
represented by a separate interface derived from ISymbol, each with its own methods
and properties detailing the information the compiler has gathered. Many of these
properties directly reference other symbols. For example, the
IMethodSymbol.ReturnType property tells you the actual type symbol that the method
returns.

Symbols present a common representation of namespaces, types, and members,
between source code and metadata. For example, a method that was declared in source
code and a method that was imported from metadata are both represented by an
IMethodSymbol with the same properties.

Symbols are similar in concept to the CLR type system as represented by the
System.Reflection API, yet they are richer in that they model more than just types.
Namespaces, local variables, and labels are all symbols. In addition, symbols are a
representation of language concepts, not CLR concepts. There is a lot of overlap, but
there are many meaningful distinctions as well. For instance, an iterator method in C# or
Visual Basic is a single symbol. However, when the iterator method is translated to CLR
metadata, it is a type and multiple methods.

A semantic model represents all the semantic information for a single source file. You
can use it to discover the following:

The symbols referenced at a specific location in source.
The resultant type of any expression.

Symbols

Semantic model

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isymbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.imethodsymbol.returntype#microsoft-codeanalysis-imethodsymbol-returntype
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.imethodsymbol
https://learn.microsoft.com/en-us/dotnet/api/system.reflection

All diagnostics, which are errors and warnings.
How variables flow in and out of regions of source.
The answers to more speculative questions.

Work with a workspace
Article • 2021-09-15 • 2 minutes to read

The Workspaces layer is the starting point for doing code analysis and refactoring over
entire solutions. Within this layer, the Workspace API assists you in organizing all the
information about the projects in a solution into a single object model, offering you
direct access to compiler layer object models like source text, syntax trees, semantic
models, and compilations without needing to parse files, configure options, or manage
inter-project dependencies.

Host environments, like an IDE, provide a workspace for you corresponding to the open
solution. It is also possible to use this model outside of an IDE by simply loading a
solution file.

A workspace is an active representation of your solution as a collection of projects, each
with a collection of documents. A workspace is typically tied to a host environment that
is constantly changing as a user types or manipulates properties.

The Workspace provides access to the current model of the solution. When a change in
the host environment occurs, the workspace fires corresponding events, and the
Workspace.CurrentSolution property is updated. For example, when the user types in a
text editor corresponding to one of the source documents, the workspace uses an event
to signal that the overall model of the solution has changed and which document was
modified. You can then react to those changes by analyzing the new model for
correctness, highlighting areas of significance, or making a suggestion for a code
change.

You can also create stand-alone workspaces that are disconnected from the host
environment or used in an application that has no host environment.

Although a workspace may change every time a key is pressed, you can work with the
model of the solution in isolation.

A solution is an immutable model of the projects and documents. This means that the
model can be shared without locking or duplication. After you obtain a solution instance
from the Workspace.CurrentSolution property, that instance will never change. However,

Workspace

Solutions, projects, and documents

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.workspace
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.workspace.currentsolution#microsoft-codeanalysis-workspace-currentsolution
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.workspace.currentsolution#microsoft-codeanalysis-workspace-currentsolution

like with syntax trees and compilations, you can modify solutions by constructing new
instances based on existing solutions and specific changes. To get the workspace to
reflect your changes, you must explicitly apply the changed solution back to the
workspace.

A project is a part of the overall immutable solution model. It represents all the source
code documents, parse and compilation options, and both assembly and project-to-
project references. From a project, you can access the corresponding compilation
without needing to determine project dependencies or parse any source files.

A document is also a part of the overall immutable solution model. A document
represents a single source file from which you can access the text of the file, the syntax
tree, and the semantic model.

The following diagram is a representation of how the Workspace relates to the host
environment, tools, and how edits are made.

Roslyn exposes a set of compiler APIs and Workspaces APIs that provides rich
information about your source code and that has full fidelity with the C# and Visual
Basic languages. The .NET Compiler Platform SDK dramatically lowers the barrier to
entry for creating code-focused tools and applications. It creates many opportunities for
innovation in areas such as meta-programming, code generation and transformation,
interactive use of the C# and Visual Basic languages, and embedding of C# and Visual
Basic in domain-specific languages.

Summary

Explore code with the Roslyn syntax
visualizer in Visual Studio
Article • 2022-10-11 • 9 minutes to read

This article provides an overview of the Syntax Visualizer tool that ships as part of the
.NET Compiler Platform ("Roslyn") SDK. The Syntax Visualizer is a tool window that helps
you inspect and explore syntax trees. It's an essential tool to understand the models for
code you want to analyze. It's also a debugging aid when you develop your own
applications using the .NET Compiler Platform (“Roslyn”) SDK. Open this tool as you
create your first analyzers. The visualizer helps you understand the models used by the
APIs. You can also use tools like SharpLab or LINQPad to inspect code and
understand syntax trees.

There are two different ways to find the .NET Compiler Platform SDK in the Visual
Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual
Studio extension development workload. You must select it as an optional component.

1. Run Visual Studio Installer
2. Select Modify
3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the

optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer

Installation instructions - Visual Studio Installer

Install using the Visual Studio Installer - Workloads view

Install using the Visual Studio Installer - Individual
components tab

https://sharplab.io/
https://www.linqpad.net/

2. Select Modify
3. Select the Individual components tab
4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the

Compilers, build tools, and runtimes section.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Check the box for DGML editor. You'll find it under the Code tools section.

Familiarize yourself with the concepts used in the .NET Compiler Platform SDK by
reading the overview article. It provides an introduction to syntax trees, nodes, tokens,
and trivia.

The Syntax Visualizer enables inspection of the syntax tree for the C# or Visual Basic
code file in the current active editor window inside the Visual Studio IDE. The visualizer
can be launched by clicking on View > Other Windows > Syntax Visualizer. You can
also use the Quick Launch toolbar in the upper right corner. Type "syntax", and the
command to open the Syntax Visualizer should appear.

This command opens the Syntax Visualizer as a floating tool window. If you don't have a
code editor window open, the display is blank, as shown in the following figure.

Syntax Visualizer

Dock this tool window at a convenient location inside Visual Studio, such as the left side.
The Visualizer shows information about the current code file.

Create a new project using the File > New Project command. You can create either a
Visual Basic or C# project. When Visual Studio opens the main code file for this project,
the visualizer displays the syntax tree for it. You can open any existing C# / Visual Basic
file in this Visual Studio instance, and the visualizer displays that file's syntax tree. If you
have multiple code files open inside Visual Studio, the visualizer displays the syntax tree
for the currently active code file, (the code file that has keyboard focus.)

C#

As shown in the preceding images, the visualizer tool window displays the syntax tree at
the top and a property grid at the bottom. The property grid displays the properties of
the item that is currently selected in the tree, including the .NET Type and the Kind
(SyntaxKind) of the item.

Syntax trees comprise three types of items – nodes, tokens, and trivia. You can read more
about these types in the Work with syntax article. Items of each type are represented
using a different color. Click on the ‘Legend’ button for an overview of the colors used.

Each item in the tree also displays its own span. The span is the indices (the starting and
ending position) of that node in the text file. In the preceding C# example, the selected
“UsingKeyword [0..5)” token has a Span that is five characters wide, [0..5). The "[..)"
notation means that the starting index is part of the span, but the ending index is not.

There are two ways to navigate the tree:

Expand or click on items in the tree. The visualizer automatically selects the text
corresponding to this item’s span in the code editor.
Click or select text in the code editor. In the preceding Visual Basic example, if you
select the line containing "Module Module1" in the code editor, the visualizer
automatically navigates to the corresponding ModuleStatement node in the tree.

The visualizer highlights the item in the tree whose span best matches the span of the
text selected in the editor.

The visualizer refreshes the tree to match modifications in the active code file. Add a call
to Console.WriteLine() inside Main() . As you type, the visualizer refreshes the tree.

Pause typing once you have typed Console. . The tree has some items colored in pink. At
this point, there are errors (also referred to as ‘Diagnostics’) in the typed code. These
errors are attached to nodes, tokens, and trivia in the syntax tree. The visualizer shows
you which items have errors attached to them highlighting the background in pink. You
can inspect the errors on any item colored pink by hovering over the item. The visualizer
only displays syntactic errors (those errors related to the syntax of the typed code); it
doesn't display any semantic errors.

Right click on any item in the tree and click on View Directed Syntax Graph.

The visualizer displays a graphical representation of the subtree rooted at the
selected item. Try these steps for the MethodDeclaration node corresponding to
the Main() method in the C# example. The visualizer displays a syntax graph that
looks as follows:

The syntax graph viewer has an option to display a legend for its coloring scheme. You
can also hover over individual items in the syntax graph with the mouse to view the
properties corresponding to that item.

You can view syntax graphs for different items in the tree repeatedly and the graphs will
always be displayed in the same window inside Visual Studio. You can dock this window

Syntax Graphs

C#

at a convenient location inside Visual Studio so that you don’t have to switch between
tabs to view a new syntax graph. The bottom, below code editor windows, is often
convenient.

Here is the docking layout to use with the visualizer tool window and the syntax graph
window:

Another option is to put the syntax graph window on a second monitor, in a dual
monitor setup.

The Syntax Visualizer enables rudimentary inspection of symbols and semantic
information. Type double x = 1 + 1; inside Main() in the C# example. Then, select the
expression 1 + 1 in the code editor window. The visualizer highlights the
AddExpression node in the visualizer. Right click on this AddExpression and click on
View Symbol (if any). Notice that most of the menu items have the "if any" qualifier. The
Syntax Visualizer inspects properties of a Node, including properties that may not be
present for all nodes.

The property grid in the visualizer updates as shown in the following figure: The symbol
for the expression is a SynthesizedIntrinsicOperatorSymbol with Kind = Method.

Inspecting semantics

Try View TypeSymbol (if any) for the same AddExpression node. The property grid in
the visualizer updates as shown in the following figure, indicating that the type of the
selected expression is Int32 .

Try View Converted TypeSymbol (if any) for the same AddExpression node. The
property grid updates indicating that although the type of the expression is Int32 , the

converted type of the expression is Double as shown in the following figure. This node
includes converted type symbol information because the Int32 expression occurs in a
context where it must be converted to a Double . This conversion satisfies the Double
type specified for the variable x on the left-hand side of the assignment operator.

Finally, try View Constant Value (if any) for the same AddExpression node. The property
grid shows that the value of the expression is a compile time constant with value 2 .

The preceding example can also be replicated in Visual Basic. Type Dim x As Double = 1
+ 1 in a Visual Basic file. Select the expression 1 + 1 in the code editor window. The
visualizer highlights the corresponding AddExpression node in the visualizer. Repeat the
preceding steps for this AddExpression and you should see identical results.

Examine more code in Visual Basic. Update your main Visual Basic file with the following
code:

VB

This code introduces an alias named C that maps to the type System.Console at the top
of the file and uses this alias inside Main() . Select the use of this alias, the C in
C.WriteLine() , inside the Main() method. The visualizer selects the corresponding
IdentifierName node in the visualizer. Right-click this node and click on View Symbol (if
any). The property grid indicates that this identifier is bound to the type System.Console
as shown in the following figure:

Imports C = System.Console

Module Program
 Sub Main(args As String())
 C.WriteLine()
 End Sub
End Module

Try View AliasSymbol (if any) for the same IdentifierName node. The property grid
indicates the identifier is an alias with name C that is bound to the System.Console
target. In other words, the property grid provides information regarding the
AliasSymbol corresponding to the identifier C .

Inspect the symbol corresponding to any declared type, method, property. Select the
corresponding node in the visualizer and click on View Symbol (if any). Select the

method Sub Main() , including the body of the method. Click on View Symbol (if any)
for the corresponding SubBlock node in the visualizer. The property grid shows the
MethodSymbol for this SubBlock has name Main with return type Void .

The above Visual Basic examples can be easily replicated in C#. Type using C =
System.Console; in place of Imports C = System.Console for the alias. The preceding
steps in C# yield identical results in the visualizer window.

Semantic inspection operations are only available on nodes. They are not available on
tokens or trivia. Not all nodes have interesting semantic information to inspect. When a
node doesn't have interesting semantic information, clicking on View * Symbol (if any)
shows a blank property grid.

You can read more about APIs for performing semantic analysis in the Work with
semantics overview document.

You can close the visualizer window when you are not using it to examine source code.
The syntax visualizer updates its display as you navigate through code, editing and
changing the source. It can get distracting when you are not using it.

Closing the syntax visualizer

Source Generators
Article • 2022-06-11 • 8 minutes to read

This article provides an overview of Source Generators that ships as part of the .NET
Compiler Platform ("Roslyn") SDK. Source Generators let C# developers inspect user
code as it is being compiled. The generator can create new C# source files on the fly
that are added to the user's compilation. In this way, you have code that runs during
compilation. It inspects your program to produce additional source files that are
compiled together with the rest of your code.

A Source Generator is a new kind of component that C# developers can write that lets
you do two major things:

1. Retrieve a compilation object that represents all user code that is being compiled.
This object can be inspected, and you can write code that works with the syntax
and semantic models for the code being compiled, just like with analyzers today.

2. Generate C# source files that can be added to a compilation object during
compilation. In other words, you can provide additional source code as input to a
compilation while the code is being compiled.

When combined, these two things are what make Source Generators so useful. You can
inspect user code with all of the rich metadata that the compiler builds up during
compilation. Your generator then emits C# code back into the same compilation that is
based on the data you've analyzed. If you're familiar with Roslyn Analyzers, you can
think of Source Generators as analyzers that can emit C# source code.

Source generators run as a phase of compilation visualized below:

A Source Generator is a .NET Standard 2.0 assembly that is loaded by the compiler along
with any analyzers. It's usable in environments where .NET Standard components can be

https://learn.microsoft.com/en-ca/dotnet/csharp/roslyn-sdk/media/source-generators/source-generator-visualization.png#lightbox

loaded and run.

There are three general approaches to inspecting user code and generating information
or code based on that analysis used by technologies today:

Runtime reflection.
Juggling MSBuild tasks.
Intermediate Language (IL) weaving (not discussed in this article).

Source Generators can be an improvement over each approach.

Runtime reflection is a powerful technology that was added to .NET a long time ago.
There are countless scenarios for using it. A common scenario is to perform some
analysis of user code when an app starts up and use that data to generate things.

For example, ASP.NET Core uses reflection when your web service first runs to discover
constructs you've defined so that it can "wire up" things like controllers and razor pages.
Although this enables you to write straightforward code with powerful abstractions, it
comes with a performance penalty at run time: when your web service or app first starts
up, it can’t accept any requests until all the runtime reflection code that discovers
information about your code is finished running. Although this performance penalty
isn't enormous, it's somewhat of a fixed cost that you can’t improve yourself in your own
app.

With a Source Generator, the controller discovery phase of startup could instead happen
at compile time. A generator can analyze your source code and emit the code it needs
to "wire up" your app. Using source generators could result in some faster startup times,
since an action happening at run time today could get pushed into compile time.

Source Generators can improve performance in ways that aren't limited to reflection at
run time to discover types as well. Some scenarios involve calling the MSBuild C# task

） Important

Currently only .NET Standard 2.0 assemblies can be used as Source Generators.

Common scenarios

Runtime reflection

Juggling MSBuild tasks

(called CSC) multiple times so they can inspect data from a compilation. As you might
imagine, calling the compiler more than once affects the total time it takes to build your
app. We're investigating how Source Generators can be used to obviate the need for
juggling MSBuild tasks like this, since Source generators don't just offer some
performance benefits, but also allows tools to operate at the right level of abstraction.

Another capability Source Generators can offer is obviating the use of some "stringly
typed" APIs, such as how ASP.NET Core routing between controllers and razor pages
work. With a Source Generator, routing can be strongly typed with the necessary strings
being generated as a compile-time detail. This would reduce the number of times a
mistyped string literal leads to a request not hitting the correct controller.

In this guide, you'll explore the creation of a source generator using the
ISourceGenerator API.

1. Create a .NET console application. This example uses .NET 6.

2. Replace the Program class with the following code. The following code doesn't use
top level statements. The classic form is required because this first source
generator writes a partial method in that Program class:

C#

3. Next, we'll create a source generator project that will implement the partial void
HelloFrom method counterpart.

Get started with source generators

namespace ConsoleApp;

partial class Program
{
 static void Main(string[] args)
 {
 HelloFrom("Generated Code");
 }

 static partial void HelloFrom(string name);
}

７ Note

You can run this sample as-is, but nothing will happen yet.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isourcegenerator

4. Create a .NET standard library project that targets the netstandard2.0 target
framework moniker (TFM). Add the NuGet packages
Microsoft.CodeAnalysis.Analyzers and Microsoft.CodeAnalysis.CSharp:

XML

5. Create a new C# file named HelloSourceGenerator.cs that specifies your own Source
Generator like so:

C#

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.CodeAnalysis.CSharp"
Version="4.4.0" PrivateAssets="all" />
 <PackageReference Include="Microsoft.CodeAnalysis.Analyzers"
Version="3.3.3" PrivateAssets="all" />
 </ItemGroup>

</Project>

 Tip

The source generator project needs to target the netstandard2.0 TFM,
otherwise it will not work.

using Microsoft.CodeAnalysis;

namespace SourceGenerator
{
 [Generator]
 public class HelloSourceGenerator : ISourceGenerator
 {
 public void Execute(GeneratorExecutionContext context)
 {
 // Code generation goes here
 }

 public void Initialize(GeneratorInitializationContext context)
 {
 // No initialization required for this one
 }
 }
}

A source generator needs to both implement the
Microsoft.CodeAnalysis.ISourceGenerator interface, and have the
Microsoft.CodeAnalysis.GeneratorAttribute. Not all source generators require
initialization, and that is the case with this example implementation—where
ISourceGenerator.Initialize is empty.

6. Replace the contents of the ISourceGenerator.Execute method, with the following
implementation:

C#

using Microsoft.CodeAnalysis;

namespace SourceGenerator
{
 [Generator]
 public class HelloSourceGenerator : ISourceGenerator
 {
 public void Execute(GeneratorExecutionContext context)
 {
 // Find the main method
 var mainMethod =
context.Compilation.GetEntryPoint(context.CancellationToken);

 // Build up the source code
 string source = $@"// <auto-generated/>
using System;

namespace {mainMethod.ContainingNamespace.ToDisplayString()}
{{
 public static partial class {mainMethod.ContainingType.Name}
 {{
 static partial void HelloFrom(string name) =>
 Console.WriteLine($""Generator says: Hi from '{{name}}'"");
 }}
}}
";
 var typeName = mainMethod.ContainingType.Name;

 // Add the source code to the compilation
 context.AddSource($"{typeName}.g.cs", source);
 }

 public void Initialize(GeneratorInitializationContext context)
 {
 // No initialization required for this one
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isourcegenerator
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.generatorattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isourcegenerator.initialize
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isourcegenerator.execute

From the context object we can access the compilations' entry point, or Main
method. The mainMethod instance is an IMethodSymbol, and it represents a
method or method-like symbol (including constructor, destructor, operator, or
property/event accessor). The Microsoft.CodeAnalysis.Compilation.GetEntryPoint
method returns the IMethodSymbol for the program's entry point. Other methods
enable you to find any method symbol in a project. From this object, we can
reason about the containing namespace (if one is present) and the type. The
source in this example is an interpolated string that templates the source code to
be generated, where the interpolated holes are filled with the containing
namespace and type information. The source is added to the context with a hint
name. For this example, the generator creates a new generated source file that
contains an implementation of the partial method in the console application. You
can write source generators to add any source you'd like.

7. We now have a functioning generator, but need to connect it to our console
application. Edit the original console application project and add the following,
replacing the project path with the one from the .NET Standard project you created
above:

XML

This new reference isn't a traditional project reference, and has to be manually
edited to include the OutputItemType and ReferenceOutputAssembly attributes. For
more information on the OutputItemType and ReferenceOutputAssembly attributes
of ProjectReference , see Common MSBuild project items: ProjectReference.

 Tip

The hintName parameter from the GeneratorExecutionContext.AddSource
method can be any unique name. It's common to provide an explicit C# file
extension such as ".g.cs" or ".generated.cs" for the name. The file name
helps identify the file as being source generated.

<!-- Add this as a new ItemGroup, replacing paths and names
appropriately -->
<ItemGroup>
 <ProjectReference Include="..\PathTo\SourceGenerator.csproj"
 OutputItemType="Analyzer"
 ReferenceOutputAssembly="false" />
</ItemGroup>

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.imethodsymbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation.getentrypoint
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.imethodsymbol
https://learn.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-items#projectreference
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.generatorexecutioncontext.addsource

8. Now, when you run the console application, you should see that the generated
code gets run and prints to the screen. The console application itself doesn't
implement the HelloFrom method, instead it's source generated during
compilation from the Source Generator project. The following text is an example
output from the application:

Console

9. If you're using Visual Studio, you can see the source generated files. From the
Solution Explorer window, expand the Dependencies > Analyzers >
SourceGenerator > SourceGenerator.HelloSourceGenerator, and double-click the
Program.g.cs file.

When you open this generated file, Visual Studio will indicate that the file is auto-
generated and that it can't be edited.

Generator says: Hi from 'Generated Code'

７ Note

You might need to restart Visual Studio to see IntelliSense and get rid of
errors as the tooling experience is actively being improved.

https://learn.microsoft.com/en-ca/dotnet/csharp/roslyn-sdk/media/source-generators/solution-explorer-program.png#lightbox

10. You can also set build properties to save the generated file and control where the
generated files are stored. In the console application's project file, add the
<EmitCompilerGeneratedFiles> element to a <PropertyGroup> , and set its value to
true . Build your project again. Now, the generated files are created under
obj/Debug/net6.0/generated/SourceGenerator/SourceGenerator.HelloSourceGenerat
or. The components of the path map to the build configuration, target framework,
source generator project name, and fully qualified type name of the generator. You
can choose a more convenient output folder by adding the
<CompilerGeneratedFilesOutputPath> element to the application's project file.

The Source Generators Cookbook goes over some of these examples with some
recommended approaches to solving them. Additionally, we have a set of samples
available on GitHub that you can try on your own.

You can learn more about Source Generators in these articles:

Source Generators design document
Source Generators cookbook

Next steps

https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.cookbook.md
https://github.com/dotnet/roslyn-sdk/tree/main/samples/CSharp/SourceGenerators
https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.md
https://github.com/dotnet/roslyn/blob/main/docs/features/source-generators.cookbook.md
https://learn.microsoft.com/en-ca/dotnet/csharp/roslyn-sdk/media/source-generators/source-generated-program.png#lightbox

Get started with syntax analysis
Article • 2021-09-15 • 13 minutes to read

In this tutorial, you'll explore the Syntax API. The Syntax API provides access to the data
structures that describe a C# or Visual Basic program. These data structures have
enough detail that they can fully represent any program of any size. These structures
can describe complete programs that compile and run correctly. They can also describe
incomplete programs, as you write them, in the editor.

To enable this rich expression, the data structures and APIs that make up the Syntax API
are necessarily complex. Let's start with what the data structure looks like for the typical
"Hello World" program:

C#

Look at the text of the previous program. You recognize familiar elements. The entire
text represents a single source file, or a compilation unit. The first three lines of that
source file are using directives. The remaining source is contained in a namespace
declaration. The namespace declaration contains a child class declaration. The class
declaration contains one method declaration.

The Syntax API creates a tree structure with the root representing the compilation unit.
Nodes in the tree represent the using directives, namespace declaration and all the
other elements of the program. The tree structure continues down to the lowest levels:
the string "Hello World!" is a string literal token that is a descendent of an argument.
The Syntax API provides access to the structure of the program. You can query for
specific code practices, walk the entire tree to understand the code, and create new
trees by modifying the existing tree.

using System;
using System.Collections.Generic;
using System.Linq;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

That brief description provides an overview of the kind of information accessible using
the Syntax API. The Syntax API is nothing more than a formal API that describes the
familiar code constructs you know from C#. The full capabilities include information
about how the code is formatted including line breaks, white space, and indenting.
Using this information, you can fully represent the code as written and read by human
programmers or the compiler. Using this structure enables you to interact with the
source code on a deeply meaningful level. It's no longer text strings, but data that
represents the structure of a C# program.

To get started, you'll need to install the .NET Compiler Platform SDK:

There are two different ways to find the .NET Compiler Platform SDK in the Visual
Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual
Studio extension development workload. You must select it as an optional component.

1. Run Visual Studio Installer
2. Select Modify
3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the

optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer
2. Select Modify
3. Select the Individual components tab
4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the

Compilers, build tools, and runtimes section.

Installation instructions - Visual Studio Installer

Install using the Visual Studio Installer - Workloads view

Install using the Visual Studio Installer - Individual
components tab

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Check the box for DGML editor. You'll find it under the Code tools section.

You use the Syntax API for any analysis of the structure of C# code. The Syntax API
exposes the parsers, the syntax trees, and utilities for analyzing and constructing syntax
trees. It's how you search code for specific syntax elements or read the code for a
program.

A syntax tree is a data structure used by the C# and Visual Basic compilers to
understand C# and Visual Basic programs. Syntax trees are produced by the same parser
that runs when a project is built or a developer hits F5. The syntax trees have full-fidelity
with the language; every bit of information in a code file is represented in the tree.
Writing a syntax tree to text reproduces the exact original text that was parsed. The
syntax trees are also immutable; once created a syntax tree can never be changed.
Consumers of the trees can analyze the trees on multiple threads, without locks or other
concurrency measures, knowing the data never changes. You can use APIs to create new
trees that are the result of modifying an existing tree.

The four primary building blocks of syntax trees are:

The Microsoft.CodeAnalysis.SyntaxTree class, an instance of which represents an
entire parse tree. SyntaxTree is an abstract class that has language-specific
derivatives. You use the parse methods of the
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxTree (or
Microsoft.CodeAnalysis.VisualBasic.VisualBasicSyntaxTree) class to parse text in C#
(or Visual Basic).
The Microsoft.CodeAnalysis.SyntaxNode class, instances of which represent
syntactic constructs such as declarations, statements, clauses, and expressions.
The Microsoft.CodeAnalysis.SyntaxToken structure, which represents an individual
keyword, identifier, operator, or punctuation.
And lastly the Microsoft.CodeAnalysis.SyntaxTrivia structure, which represents
syntactically insignificant bits of information such as the white space between
tokens, preprocessing directives, and comments.

Trivia, tokens, and nodes are composed hierarchically to form a tree that completely
represents everything in a fragment of Visual Basic or C# code. You can see this
structure using the Syntax Visualizer window. In Visual Studio, choose View > Other
Windows > Syntax Visualizer. For example, the preceding C# source file examined
using the Syntax Visualizer looks like the following figure:

Understanding syntax trees

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.visualbasic.visualbasicsyntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtoken
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtrivia

SyntaxNode: Blue | SyntaxToken: Green | SyntaxTrivia: Red

By navigating this tree structure, you can find any statement, expression, token, or bit of
white space in a code file.

While you can find anything in a code file using the Syntax APIs, most scenarios involve
examining small snippets of code, or searching for particular statements or fragments.
The two examples that follow show typical uses to browse the structure of code, or
search for single statements.

You can examine the nodes in a syntax tree in two ways. You can traverse the tree to
examine each node, or you can query for specific elements or nodes.

Traversing trees

You can see the finished code for this sample in our GitHub repository .

Create a new C# Stand-Alone Code Analysis Tool project:

In Visual Studio, choose File > New > Project to display the New Project dialog.
Under Visual C# > Extensibility, choose Stand-Alone Code Analysis Tool.
Name your project "SyntaxTreeManualTraversal" and click OK.

You're going to analyze the basic "Hello World!" program shown earlier. Add the text for
the Hello World program as a constant in your Program class:

C#

Next, add the following code to build the syntax tree for the code text in the
programText constant. Add the following line to your Main method:

Manual traversal

７ Note

The Syntax Tree types use inheritance to describe the different syntax elements that
are valid at different locations in the program. Using these APIs often means
casting properties or collection members to specific derived types. In the following
examples, the assignment and the casts are separate statements, using explicitly
typed variables. You can read the code to see the return types of the API and the
runtime type of the objects returned. In practice, it's more common to use implicitly
typed variables and rely on API names to describe the type of objects being
examined.

 const string programText =
@"using System;
using System.Collections;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(""Hello, World!"");
 }
 }
}";

https://github.com/dotnet/samples/tree/main/csharp/roslyn-sdk/SyntaxQuickStart

C#

Those two lines create the tree and retrieve the root node of that tree. You can now
examine the nodes in the tree. Add these lines to your Main method to display some of
the properties of the root node in the tree:

C#

Run the application to see what your code has discovered about the root node in this
tree.

Typically, you'd traverse the tree to learn about the code. In this example, you're
analyzing code you know to explore the APIs. Add the following code to examine the
first member of the root node:

C#

That member is a Microsoft.CodeAnalysis.CSharp.Syntax.NamespaceDeclarationSyntax. It
represents everything in the scope of the namespace HelloWorld declaration. Add the
following code to examine what nodes are declared inside the HelloWorld namespace:

C#

Run the program to see what you've learned.

Now that you know the declaration is a
Microsoft.CodeAnalysis.CSharp.Syntax.ClassDeclarationSyntax, declare a new variable of

SyntaxTree tree = CSharpSyntaxTree.ParseText(programText);
CompilationUnitSyntax root = tree.GetCompilationUnitRoot();

WriteLine($"The tree is a {root.Kind()} node.");
WriteLine($"The tree has {root.Members.Count} elements in it.");
WriteLine($"The tree has {root.Usings.Count} using statements. They are:");
foreach (UsingDirectiveSyntax element in root.Usings)
 WriteLine($"\t{element.Name}");

MemberDeclarationSyntax firstMember = root.Members[0];
WriteLine($"The first member is a {firstMember.Kind()}.");
var helloWorldDeclaration = (NamespaceDeclarationSyntax)firstMember;

WriteLine($"There are {helloWorldDeclaration.Members.Count} members declared
in this namespace.");
WriteLine($"The first member is a
{helloWorldDeclaration.Members[0].Kind()}.");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namespacedeclarationsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.classdeclarationsyntax

that type to examine the class declaration. This class only contains one member: the
Main method. Add the following code to find the Main method, and cast it to a
Microsoft.CodeAnalysis.CSharp.Syntax.MethodDeclarationSyntax.

C#

The method declaration node contains all the syntactic information about the method.
Let's display the return type of the Main method, the number and types of the
arguments, and the body text of the method. Add the following code:

C#

Run the program to see all the information you've discovered about this program:

text

var programDeclaration =
(ClassDeclarationSyntax)helloWorldDeclaration.Members[0];
WriteLine($"There are {programDeclaration.Members.Count} members declared in
the {programDeclaration.Identifier} class.");
WriteLine($"The first member is a {programDeclaration.Members[0].Kind()}.");
var mainDeclaration =
(MethodDeclarationSyntax)programDeclaration.Members[0];

WriteLine($"The return type of the {mainDeclaration.Identifier} method is
{mainDeclaration.ReturnType}.");
WriteLine($"The method has {mainDeclaration.ParameterList.Parameters.Count}
parameters.");
foreach (ParameterSyntax item in mainDeclaration.ParameterList.Parameters)
 WriteLine($"The type of the {item.Identifier} parameter is
{item.Type}.");
WriteLine($"The body text of the {mainDeclaration.Identifier} method
follows:");
WriteLine(mainDeclaration.Body.ToFullString());

var argsParameter = mainDeclaration.ParameterList.Parameters[0];

The tree is a CompilationUnit node.
The tree has 1 elements in it.
The tree has 4 using statements. They are:
 System
 System.Collections
 System.Linq
 System.Text
The first member is a NamespaceDeclaration.
There are 1 members declared in this namespace.
The first member is a ClassDeclaration.
There are 1 members declared in the Program class.
The first member is a MethodDeclaration.
The return type of the Main method is void.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.methoddeclarationsyntax

In addition to traversing trees, you can also explore the syntax tree using the query
methods defined on Microsoft.CodeAnalysis.SyntaxNode. These methods should be
immediately familiar to anyone familiar with XPath. You can use these methods with
LINQ to quickly find things in a tree. The SyntaxNode has query methods such as
DescendantNodes, AncestorsAndSelf and ChildNodes.

You can use these query methods to find the argument to the Main method as an
alternative to navigating the tree. Add the following code to the bottom of your Main
method:

C#

The first statement uses a LINQ expression and the DescendantNodes method to locate
the same parameter as in the previous example.

Run the program, and you can see that the LINQ expression found the same parameter
as manually navigating the tree.

The sample uses WriteLine statements to display information about the syntax trees as
they are traversed. You can also learn much more by running the finished program
under the debugger. You can examine more of the properties and methods that are part
of the syntax tree created for the hello world program.

The method has 1 parameters.
The type of the args parameter is string[].
The body text of the Main method follows:
 {
 Console.WriteLine("Hello, World!");
 }

Query methods

var firstParameters = from methodDeclaration in root.DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 where methodDeclaration.Identifier.ValueText == "Main"
 select
methodDeclaration.ParameterList.Parameters.First();

var argsParameter2 = firstParameters.Single();

WriteLine(argsParameter == argsParameter2);

Syntax walkers

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.descendantnodes
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.ancestorsandself
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.childnodes
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode.descendantnodes

Often you want to find all nodes of a specific type in a syntax tree, for example, every
property declaration in a file. By extending the
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxWalker class and overriding the
VisitPropertyDeclaration(PropertyDeclarationSyntax) method, you process every
property declaration in a syntax tree without knowing its structure beforehand.
CSharpSyntaxWalker is a specific kind of CSharpSyntaxVisitor that recursively visits a
node and each of its children.

This example implements a CSharpSyntaxWalker that examines a syntax tree. It collects
using directives it finds that aren't importing a System namespace.

Create a new C# Stand-Alone Code Analysis Tool project; name it "SyntaxWalker."

You can see the finished code for this sample in our GitHub repository . The sample on
GitHub contains both projects described in this tutorial.

As in the previous sample, you can define a string constant to hold the text of the
program you're going to analyze:

C#

 const string programText =
@"using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;

namespace TopLevel
{
 using Microsoft;
 using System.ComponentModel;

 namespace Child1
 {
 using Microsoft.Win32;
 using System.Runtime.InteropServices;

 class Foo { }
 }

 namespace Child2
 {
 using System.CodeDom;
 using Microsoft.CSharp;

 class Bar { }
 }
}";

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxvisitor.visitpropertydeclaration#microsoft-codeanalysis-csharp-csharpsyntaxvisitor-visitpropertydeclaration(microsoft-codeanalysis-csharp-syntax-propertydeclarationsyntax)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxvisitor
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://github.com/dotnet/samples/tree/main/csharp/roslyn-sdk/SyntaxQuickStart

This source text contains using directives scattered across four different locations: the
file-level, in the top-level namespace, and in the two nested namespaces. This example
highlights a core scenario for using the CSharpSyntaxWalker class to query code. It
would be cumbersome to visit every node in the root syntax tree to find using
declarations. Instead, you create a derived class and override the method that gets
called only when the current node in the tree is a using directive. Your visitor does not
do any work on any other node types. This single method examines each of the using
statements and builds a collection of the namespaces that aren't in the System
namespace. You build a CSharpSyntaxWalker that examines all the using statements,
but only the using statements.

Now that you've defined the program text, you need to create a SyntaxTree and get the
root of that tree:

C#

Next, create a new class. In Visual Studio, choose Project > Add New Item. In the Add
New Item dialog type UsingCollector.cs as the filename.

You implement the using visitor functionality in the UsingCollector class. Start by
making the UsingCollector class derive from CSharpSyntaxWalker.

C#

You need storage to hold the namespace nodes that you're collecting. Declare a public
read-only property in the UsingCollector class; you use this variable to store the
UsingDirectiveSyntax nodes you find:

C#

The base class, CSharpSyntaxWalker implements the logic to visit each node in the
syntax tree. The derived class overrides the methods called for the specific nodes you're
interested in. In this case, you're interested in any using directive. That means you must

SyntaxTree tree = CSharpSyntaxTree.ParseText(programText);
CompilationUnitSyntax root = tree.GetCompilationUnitRoot();

class UsingCollector : CSharpSyntaxWalker

public ICollection<UsingDirectiveSyntax> Usings { get; } = new
List<UsingDirectiveSyntax>();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker

override the VisitUsingDirective(UsingDirectiveSyntax) method. The one argument to
this method is a Microsoft.CodeAnalysis.CSharp.Syntax.UsingDirectiveSyntax object.
That's an important advantage to using the visitors: they call the overridden methods
with arguments already cast to the specific node type. The
Microsoft.CodeAnalysis.CSharp.Syntax.UsingDirectiveSyntax class has a Name property
that stores the name of the namespace being imported. It is a
Microsoft.CodeAnalysis.CSharp.Syntax.NameSyntax. Add the following code in the
VisitUsingDirective(UsingDirectiveSyntax) override:

C#

As with the earlier example, you've added a variety of WriteLine statements to aid in
understanding of this method. You can see when it's called, and what arguments are
passed to it each time.

Finally, you need to add two lines of code to create the UsingCollector and have it visit
the root node, collecting all the using statements. Then, add a foreach loop to display
all the using statements your collector found:

C#

Compile and run the program. You should see the following output:

Console

public override void VisitUsingDirective(UsingDirectiveSyntax node)
{
 WriteLine($"\tVisitUsingDirective called with {node.Name}.");
 if (node.Name.ToString() != "System" &&
 !node.Name.ToString().StartsWith("System."))
 {
 WriteLine($"\t\tSuccess. Adding {node.Name}.");
 this.Usings.Add(node);
 }
}

var collector = new UsingCollector();
collector.Visit(root);
foreach (var directive in collector.Usings)
{
 WriteLine(directive.Name);
}

 VisitUsingDirective called with System.
 VisitUsingDirective called with System.Collections.Generic.
 VisitUsingDirective called with System.Linq.
 VisitUsingDirective called with System.Text.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxvisitor.visitusingdirective#microsoft-codeanalysis-csharp-csharpsyntaxvisitor-visitusingdirective(microsoft-codeanalysis-csharp-syntax-usingdirectivesyntax)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax.name#microsoft-codeanalysis-csharp-syntax-usingdirectivesyntax-name
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxvisitor.visitusingdirective#microsoft-codeanalysis-csharp-csharpsyntaxvisitor-visitusingdirective(microsoft-codeanalysis-csharp-syntax-usingdirectivesyntax)

Congratulations! You've used the Syntax API to locate specific kinds of C# statements
and declarations in C# source code.

 VisitUsingDirective called with Microsoft.CodeAnalysis.
 Success. Adding Microsoft.CodeAnalysis.
 VisitUsingDirective called with Microsoft.CodeAnalysis.CSharp.
 Success. Adding Microsoft.CodeAnalysis.CSharp.
 VisitUsingDirective called with Microsoft.
 Success. Adding Microsoft.
 VisitUsingDirective called with System.ComponentModel.
 VisitUsingDirective called with Microsoft.Win32.
 Success. Adding Microsoft.Win32.
 VisitUsingDirective called with System.Runtime.InteropServices.
 VisitUsingDirective called with System.CodeDom.
 VisitUsingDirective called with Microsoft.CSharp.
 Success. Adding Microsoft.CSharp.
Microsoft.CodeAnalysis
Microsoft.CodeAnalysis.CSharp
Microsoft
Microsoft.Win32
Microsoft.CSharp
Press any key to continue . . .

Get started with semantic analysis
Article • 2021-09-15 • 8 minutes to read

This tutorial assumes you're familiar with the Syntax API. The get started with syntax
analysis article provides sufficient introduction.

In this tutorial, you explore the Symbol and Binding APIs. These APIs provide
information about the semantic meaning of a program. They enable you to ask and
answer questions about the types represented by any symbol in your program.

You'll need to install the .NET Compiler Platform SDK:

There are two different ways to find the .NET Compiler Platform SDK in the Visual
Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual
Studio extension development workload. You must select it as an optional component.

1. Run Visual Studio Installer
2. Select Modify
3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the

optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer
2. Select Modify
3. Select the Individual components tab

Installation instructions - Visual Studio Installer

Install using the Visual Studio Installer - Workloads view

Install using the Visual Studio Installer - Individual
components tab

4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the
Compilers, build tools, and runtimes section.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Check the box for DGML editor. You'll find it under the Code tools section.

As you work more with the .NET Compiler SDK, you become familiar with the
distinctions between Syntax API and the Semantic API. The Syntax API allows you to
look at the structure of a program. However, often you want richer information about
the semantics or meaning of a program. While a loose code file or snippet of Visual
Basic or C# code can be syntactically analyzed in isolation, it's not meaningful to ask
questions such as "what's the type of this variable" in a vacuum. The meaning of a type
name may be dependent on assembly references, namespace imports, or other code
files. Those questions are answered using the Semantic API, specifically the
Microsoft.CodeAnalysis.Compilation class.

An instance of Compilation is analogous to a single project as seen by the compiler and
represents everything needed to compile a Visual Basic or C# program. The compilation
includes the set of source files to be compiled, assembly references, and compiler
options. You can reason about the meaning of the code using all the other information
in this context. A Compilation allows you to find Symbols - entities such as types,
namespaces, members, and variables which names and other expressions refer to. The
process of associating names and expressions with Symbols is called Binding.

Like Microsoft.CodeAnalysis.SyntaxTree, Compilation is an abstract class with language-
specific derivatives. When creating an instance of Compilation, you must invoke a
factory method on the Microsoft.CodeAnalysis.CSharp.CSharpCompilation (or
Microsoft.CodeAnalysis.VisualBasic.VisualBasicCompilation) class.

In this tutorial, you look at the "Hello World" program again. This time, you query the
symbols in the program to understand what types those symbols represent. You query
for the types in a namespace, and learn to find the methods available on a type.

You can see the finished code for this sample in our GitHub repository .

Understanding Compilations and Symbols

Querying symbols

７ Note

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpcompilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.visualbasic.visualbasiccompilation
https://github.com/dotnet/samples/tree/main/csharp/roslyn-sdk/SemanticQuickStart

Create a new C# Stand-Alone Code Analysis Tool project:

In Visual Studio, choose File > New > Project to display the New Project dialog.
Under Visual C# > Extensibility, choose Stand-Alone Code Analysis Tool.
Name your project "SemanticQuickStart" and click OK.

You're going to analyze the basic "Hello World!" program shown earlier. Add the text for
the Hello World program as a constant in your Program class:

C#

Next, add the following code to build the syntax tree for the code text in the
programText constant. Add the following line to your Main method:

C#

The Syntax Tree types use inheritance to describe the different syntax elements that
are valid at different locations in the program. Using these APIs often means
casting properties or collection members to specific derived types. In the following
examples, the assignment and the casts are separate statements, using explicitly
typed variables. You can read the code to see the return types of the API and the
runtime type of the objects returned. In practice, it's more common to use implicitly
typed variables and rely on API names to describe the type of objects being
examined.

 const string programText =
@"using System;
using System.Collections.Generic;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(""Hello, World!"");
 }
 }
}";

SyntaxTree tree = CSharpSyntaxTree.ParseText(programText);

CompilationUnitSyntax root = tree.GetCompilationUnitRoot();

Next, build a CSharpCompilation from the tree you already created. The "Hello World"
sample relies on the String and Console types. You need to reference the assembly that
declares those two types in your compilation. Add the following line to your Main
method to create a compilation of your syntax tree, including the reference to the
appropriate assembly:

C#

The CSharpCompilation.AddReferences method adds references to the compilation. The
MetadataReference.CreateFromFile method loads an assembly as a reference.

Once you have a Compilation you can ask it for a SemanticModel for any SyntaxTree
contained in that Compilation. You can think of the semantic model as the source for all
the information you would normally get from intellisense. A SemanticModel can answer
questions like "What names are in scope at this location?", "What members are
accessible from this method?", "What variables are used in this block of text?", and
"What does this name/expression refer to?" Add this statement to create the semantic
model:

C#

The Compilation creates the SemanticModel from the SyntaxTree. After creating the
model, you can query it to find the first using directive, and retrieve the symbol
information for the System namespace. Add these two lines to your Main method to
create the semantic model and retrieve the symbol for the first using statement:

C#

var compilation = CSharpCompilation.Create("HelloWorld")
 .AddReferences(MetadataReference.CreateFromFile(
 typeof(string).Assembly.Location))
 .AddSyntaxTrees(tree);

Querying the semantic model

SemanticModel model = compilation.GetSemanticModel(tree);

Binding a name

// Use the syntax tree to find "using System;"
UsingDirectiveSyntax usingSystem = root.Usings[0];
NameSyntax systemName = usingSystem.Name;

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpcompilation
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.console
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpcompilation.addreferences
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.metadatareference.createfromfile
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtree

The preceding code shows how to bind the name in the first using directive to retrieve
a Microsoft.CodeAnalysis.SymbolInfo for the System namespace. The preceding code
also illustrates that you use the syntax model to find the structure of the code; you use
the semantic model to understand its meaning. The syntax model finds the string
System in the using statement. The semantic model has all the information about the
types defined in the System namespace.

From the SymbolInfo object you can obtain the Microsoft.CodeAnalysis.ISymbol using
the SymbolInfo.Symbol property. This property returns the symbol this expression refers
to. For expressions that don't refer to anything (such as numeric literals) this property is
null . When the SymbolInfo.Symbol is not null, the ISymbol.Kind denotes the type of the
symbol. In this example, the ISymbol.Kind property is a SymbolKind.Namespace. Add the
following code to your Main method. It retrieves the symbol for the System namespace
and then displays all the child namespaces declared in the System namespace:

C#

Run the program and you should see the following output:

Output

// Use the semantic model for symbol information:
SymbolInfo nameInfo = model.GetSymbolInfo(systemName);

var systemSymbol = (INamespaceSymbol)nameInfo.Symbol;
foreach (INamespaceSymbol ns in systemSymbol.GetNamespaceMembers())
{
 Console.WriteLine(ns);
}

System.Collections
System.Configuration
System.Deployment
System.Diagnostics
System.Globalization
System.IO
System.Numerics
System.Reflection
System.Resources
System.Runtime
System.Security
System.StubHelpers
System.Text
System.Threading
Press any key to continue . . .

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.symbolinfo
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.symbolinfo
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isymbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.symbolinfo.symbol#microsoft-codeanalysis-symbolinfo-symbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.symbolinfo.symbol#microsoft-codeanalysis-symbolinfo-symbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isymbol.kind#microsoft-codeanalysis-isymbol-kind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.isymbol.kind#microsoft-codeanalysis-isymbol-kind
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.symbolkind#microsoft-codeanalysis-symbolkind-namespace

The preceding code shows how to find a symbol by binding to a name. There are other
expressions in a C# program that can be bound that aren't names. To demonstrate this
capability, let's access the binding to a simple string literal.

The "Hello World" program contains a
Microsoft.CodeAnalysis.CSharp.Syntax.LiteralExpressionSyntax, the "Hello, World!" string
displayed to the console.

You find the "Hello, World!" string by locating the single string literal in the program.
Then, once you've located the syntax node, get the type info for that node from the
semantic model. Add the following code to your Main method:

C#

The Microsoft.CodeAnalysis.TypeInfo struct includes a TypeInfo.Type property that
enables access to the semantic information about the type of the literal. In this example,
that's the string type. Add a declaration that assigns this property to a local variable:

C#

To finish this tutorial, let's build a LINQ query that creates a sequence of all the public
methods declared on the string type that return a string . This query gets complex, so

７ Note

The output does not include every namespace that is a child namespace of the
System namespace. It displays every namespace that is present in this compilation,
which only references the assembly where System.String is declared. Any
namespaces declared in other assemblies are not known to this compilation

Binding an expression

// Use the syntax model to find the literal string:
LiteralExpressionSyntax helloWorldString = root.DescendantNodes()
 .OfType<LiteralExpressionSyntax>()
 .Single();

// Use the semantic model for type information:
TypeInfo literalInfo = model.GetTypeInfo(helloWorldString);

var stringTypeSymbol = (INamedTypeSymbol)literalInfo.Type;

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.literalexpressionsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.typeinfo
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.typeinfo.type#microsoft-codeanalysis-typeinfo-type

let's build it line by line, then reconstruct it as a single query. The source for this query is
the sequence of all members declared on the string type:

C#

That source sequence contains all members, including properties and fields, so filter it
using the ImmutableArray<T>.OfType method to find elements that are
Microsoft.CodeAnalysis.IMethodSymbol objects:

C#

Next, add another filter to return only those methods that are public and return a
string :

C#

Select only the name property, and only distinct names by removing any overloads:

C#

You can also build the full query using the LINQ query syntax, and then display all the
method names in the console:

C#

var allMembers = stringTypeSymbol.GetMembers();

var methods = allMembers.OfType<IMethodSymbol>();

var publicStringReturningMethods = methods
 .Where(m => m.ReturnType.Equals(stringTypeSymbol) &&
 m.DeclaredAccessibility == Accessibility.Public);

var distinctMethods = publicStringReturningMethods.Select(m =>
m.Name).Distinct();

foreach (string name in (from method in stringTypeSymbol
 .GetMembers().OfType<IMethodSymbol>()
 where method.ReturnType.Equals(stringTypeSymbol) &&
 method.DeclaredAccessibility ==
Accessibility.Public
 select method.Name).Distinct())
{
 Console.WriteLine(name);
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.immutable.immutablearray-1.oftype
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.imethodsymbol

Build and run the program. You should see the following output:

Output

You've used the Semantic API to find and display information about the symbols that
are part of this program.

Join
Substring
Trim
TrimStart
TrimEnd
Normalize
PadLeft
PadRight
ToLower
ToLowerInvariant
ToUpper
ToUpperInvariant
ToString
Insert
Replace
Remove
Format
Copy
Concat
Intern
IsInterned
Press any key to continue . . .

Get started with syntax transformation
Article • 2021-09-15 • 12 minutes to read

This tutorial builds on concepts and techniques explored in the Get started with syntax
analysis and Get started with semantic analysis quickstarts. If you haven't already, you
should complete those quickstarts before beginning this one.

In this quickstart, you explore techniques for creating and transforming syntax trees. In
combination with the techniques you learned in previous quickstarts, you create your
first command-line refactoring!

There are two different ways to find the .NET Compiler Platform SDK in the Visual
Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual
Studio extension development workload. You must select it as an optional component.

1. Run Visual Studio Installer
2. Select Modify
3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the

optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer
2. Select Modify
3. Select the Individual components tab

Installation instructions - Visual Studio Installer

Install using the Visual Studio Installer - Workloads view

Install using the Visual Studio Installer - Individual
components tab

4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the
Compilers, build tools, and runtimes section.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Check the box for DGML editor. You'll find it under the Code tools section.

Immutability is a fundamental tenet of the .NET compiler platform. Immutable data
structures can't be changed after they're created. Immutable data structures can be
safely shared and analyzed by multiple consumers simultaneously. There's no danger
that one consumer affects another in unpredictable ways. Your analyzer doesn't need
locks or other concurrency measures. This rule applies to syntax trees, compilations,
symbols, semantic models, and every other data structure you encounter. Instead of
modifying existing structures, APIs create new objects based on specified differences to
the old ones. You apply this concept to syntax trees to create new trees using
transformations.

You choose one of two strategies for syntax transformations. Factory methods are best
used when you're searching for specific nodes to replace, or specific locations where you
want to insert new code. Rewriters are best when you want to scan an entire project for
code patterns that you want to replace.

The first syntax transformation demonstrates the factory methods. You're going to
replace a using System.Collections; statement with a using
System.Collections.Generic; statement. This example demonstrates how you create
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxNode objects using the
Microsoft.CodeAnalysis.CSharp.SyntaxFactory factory methods. For each kind of node,
token, or trivia, there's a factory method that creates an instance of that type. You
create syntax trees by composing nodes hierarchically in a bottom-up fashion. Then,
you'll transform the existing program by replacing existing nodes with the new tree
you've created.

Start Visual Studio, and create a new C# Stand-Alone Code Analysis Tool project. In
Visual Studio, choose File > New > Project to display the New Project dialog. Under
Visual C# > Extensibility choose a Stand-Alone Code Analysis Tool. This quickstart has

Immutability and the .NET compiler platform

Create and transform trees

Create nodes with factory methods

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxfactory

two example projects, so name the solution SyntaxTransformationQuickStart, and name
the project ConstructionCS. Click OK.

This project uses the Microsoft.CodeAnalysis.CSharp.SyntaxFactory class methods to
construct a Microsoft.CodeAnalysis.CSharp.Syntax.NameSyntax representing the
System.Collections.Generic namespace.

Add the following using directive to the top of the Program.cs .

C#

You'll create name syntax nodes to build the tree that represents the using
System.Collections.Generic; statement. NameSyntax is the base class for four types of
names that appear in C#. You compose these four types of names together to create
any name that can appear in the C# language:

Microsoft.CodeAnalysis.CSharp.Syntax.NameSyntax, which represents simple single
identifier names like System and Microsoft .
Microsoft.CodeAnalysis.CSharp.Syntax.GenericNameSyntax, which represents a
generic type or method name such as List<int> .
Microsoft.CodeAnalysis.CSharp.Syntax.QualifiedNameSyntax, which represents a
qualified name of the form <left-name>.<right-identifier-or-generic-name> such
as System.IO .
Microsoft.CodeAnalysis.CSharp.Syntax.AliasQualifiedNameSyntax, which represents
a name using an assembly extern alias such a LibraryV2::Foo .

You use the IdentifierName(String) method to create a NameSyntax node. Add the
following code in your Main method in Program.cs :

C#

The preceding code creates an IdentifierNameSyntax object and assigns it to the
variable name . Many of the Roslyn APIs return base classes to make it easier to work with
related types. The variable name , an NameSyntax, can be reused as you build the
QualifiedNameSyntax. Don't use type inference as you build the sample. You'll automate
that step in this project.

using static Microsoft.CodeAnalysis.CSharp.SyntaxFactory;
using static System.Console;

NameSyntax name = IdentifierName("System");
WriteLine($"\tCreated the identifier {name}");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxfactory
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.genericnamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.qualifiednamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.aliasqualifiednamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxfactory.identifiername#microsoft-codeanalysis-csharp-syntaxfactory-identifiername(system-string)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.identifiernamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.namesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.qualifiednamesyntax

You've created the name. Now, it's time to build more nodes into the tree by building a
QualifiedNameSyntax. The new tree uses name as the left of the name, and a new
IdentifierNameSyntax for the Collections namespace as the right side of the
QualifiedNameSyntax. Add the following code to program.cs :

C#

Run the code again, and see the results. You're building a tree of nodes that represents
code. You'll continue this pattern to build the QualifiedNameSyntax for the namespace
System.Collections.Generic . Add the following code to Program.cs :

C#

Run the program again to see that you've built the tree for the code to add.

You've built a small syntax tree that contains one statement. The APIs to create new
nodes are the right choice to create single statements or other small code blocks.
However, to build larger blocks of code, you should use methods that replace nodes or
insert nodes into an existing tree. Remember that syntax trees are immutable. The
Syntax API doesn't provide any mechanism for modifying an existing syntax tree after
construction. Instead, it provides methods that produce new trees based on changes to
existing ones. With* methods are defined in concrete classes that derive from
SyntaxNode or in extension methods declared in the SyntaxNodeExtensions class. These
methods create a new node by applying changes to an existing node's child properties.
Additionally, the ReplaceNode extension method can be used to replace a descendent
node in a subtree. This method also updates the parent to point to the newly created
child and repeats this process up the entire tree - a process known as re-spinning the
tree.

The next step is to create a tree that represents an entire (small) program and then
modify it. Add the following code to the beginning of the Program class:

C#

name = QualifiedName(name, IdentifierName("Collections"));
WriteLine(name.ToString());

name = QualifiedName(name, IdentifierName("Generic"));
WriteLine(name.ToString());

Create a modified tree

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.qualifiednamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.identifiernamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.qualifiednamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.qualifiednamesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnodeextensions
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnodeextensions.replacenode

Next, add the following code to the bottom of the Main method to parse the text and
create a tree:

C#

This example uses the WithName(NameSyntax) method to replace the name in a
UsingDirectiveSyntax node with the one constructed in the preceding code.

Create a new UsingDirectiveSyntax node using the WithName(NameSyntax) method to
update the System.Collections name with the name you created in the preceding code.
Add the following code to the bottom of the Main method:

C#

Run the program and look carefully at the output. The newUsing hasn't been placed in
the root tree. The original tree hasn't been changed.

 private const string sampleCode =
@"using System;
using System.Collections;
using System.Linq;
using System.Text;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(""Hello, World!"");
 }
 }
}";

７ Note

The example code uses the System.Collections namespace and not the
System.Collections.Generic namespace.

SyntaxTree tree = CSharpSyntaxTree.ParseText(sampleCode);
var root = (CompilationUnitSyntax)tree.GetRoot();

var oldUsing = root.Usings[1];
var newUsing = oldUsing.WithName(name);
WriteLine(root.ToString());

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax.withname#microsoft-codeanalysis-csharp-syntax-usingdirectivesyntax-withname(microsoft-codeanalysis-csharp-syntax-namesyntax)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.usingdirectivesyntax.withname#microsoft-codeanalysis-csharp-syntax-usingdirectivesyntax-withname(microsoft-codeanalysis-csharp-syntax-namesyntax)

Add the following code using the ReplaceNode extension method to create a new tree.
The new tree is the result of replacing the existing import with the updated newUsing
node. You assign this new tree to the existing root variable:

C#

Run the program again. This time the tree now correctly imports the
System.Collections.Generic namespace.

The With* and ReplaceNode methods provide convenient means to transform
individual branches of a syntax tree. The
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxRewriter class performs multiple
transformations on a syntax tree. The
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxRewriter class is a subclass of
Microsoft.CodeAnalysis.CSharp.CSharpSyntaxVisitor<TResult>. The
CSharpSyntaxRewriter applies a transformation to a specific type of SyntaxNode. You
can apply transformations to multiple types of SyntaxNode objects wherever they
appear in a syntax tree. The second project in this quickstart creates a command-line
refactoring that removes explicit types in local variable declarations anywhere that type
inference could be used.

Create a new C# Stand-Alone Code Analysis Tool project. In Visual Studio, right-click
the SyntaxTransformationQuickStart solution node. Choose Add > New Project to
display the New Project dialog. Under Visual C# > Extensibility, choose Stand-Alone
Code Analysis Tool. Name your project TransformationCS and click OK.

The first step is to create a class that derives from CSharpSyntaxRewriter to perform your
transformations. Add a new class file to the project. In Visual Studio, choose Project >
Add Class.... In the Add New Item dialog type TypeInferenceRewriter.cs as the
filename.

Add the following using directives to the TypeInferenceRewriter.cs file:

C#

root = root.ReplaceNode(oldUsing, newUsing);
WriteLine(root.ToString());

Transform trees using SyntaxRewriters

using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnodeextensions.replacenode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnodeextensions.replacenode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxvisitor-1
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter

Next, make the TypeInferenceRewriter class extend the CSharpSyntaxRewriter class:

C#

Add the following code to declare a private read-only field to hold a SemanticModel
and initialize it in the constructor. You will need this field later on to determine where
type inference can be used:

C#

Override the VisitLocalDeclarationStatement(LocalDeclarationStatementSyntax) method:

C#

This quickstart handles local variable declarations. You could extend it to other
declarations such as foreach loops, for loops, LINQ expressions, and lambda
expressions. Furthermore this rewriter will only transform declarations of the simplest
form:

public class TypeInferenceRewriter : CSharpSyntaxRewriter

private readonly SemanticModel SemanticModel;

public TypeInferenceRewriter(SemanticModel semanticModel) => SemanticModel =
semanticModel;

public override SyntaxNode
VisitLocalDeclarationStatement(LocalDeclarationStatementSyntax node)
{

}

７ Note

Many of the Roslyn APIs declare return types that are base classes of the actual
runtime types returned. In many scenarios, one kind of node may be replaced by
another kind of node entirely - or even removed. In this example, the
VisitLocalDeclarationStatement(LocalDeclarationStatementSyntax) method
returns a SyntaxNode, instead of the derived type of
LocalDeclarationStatementSyntax. This rewriter returns a new
LocalDeclarationStatementSyntax node based on the existing one.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter.visitlocaldeclarationstatement#microsoft-codeanalysis-csharp-csharpsyntaxrewriter-visitlocaldeclarationstatement(microsoft-codeanalysis-csharp-syntax-localdeclarationstatementsyntax)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxrewriter.visitlocaldeclarationstatement#microsoft-codeanalysis-csharp-csharpsyntaxrewriter-visitlocaldeclarationstatement(microsoft-codeanalysis-csharp-syntax-localdeclarationstatementsyntax)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxnode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.localdeclarationstatementsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.localdeclarationstatementsyntax

C#

If you want to explore on your own, consider extending the finished sample for these
types of variable declarations:

C#

Add the following code to the body of the VisitLocalDeclarationStatement method to
skip rewriting these forms of declarations:

C#

The method indicates that no rewriting takes place by returning the node parameter
unmodified. If neither of those if expressions are true, the node represents a possible
declaration with initialization. Add these statements to extract the type name specified
in the declaration and bind it using the SemanticModel field to obtain a type symbol:

C#

Now, add this statement to bind the initializer expression:

C#

Type variable = expression;

// Multiple variables in a single declaration.
Type variable1 = expression1,
 variable2 = expression2;
// No initializer.
Type variable;

if (node.Declaration.Variables.Count > 1)
{
 return node;
}
if (node.Declaration.Variables[0].Initializer == null)
{
 return node;
}

var declarator = node.Declaration.Variables.First();
var variableTypeName = node.Declaration.Type;

var variableType = (ITypeSymbol)SemanticModel
 .GetSymbolInfo(variableTypeName)
 .Symbol;

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel

Finally, add the following if statement to replace the existing type name with the var
keyword if the type of the initializer expression matches the type specified:

C#

The conditional is required because the declaration may cast the initializer expression to
a base class or interface. If that's desired, the types on the left and right-hand side of the
assignment don't match. Removing the explicit type in these cases would change the
semantics of a program. var is specified as an identifier rather than a keyword because
var is a contextual keyword. The leading and trailing trivia (white space) are transferred
from the old type name to the var keyword to maintain vertical white space and
indentation. It's simpler to use ReplaceNode rather than With* to transform the
LocalDeclarationStatementSyntax because the type name is actually the grandchild of
the declaration statement.

You've finished the TypeInferenceRewriter . Now return to your Program.cs file to finish
the example. Create a test Compilation and obtain the SemanticModel from it. Use that
SemanticModel to try your TypeInferenceRewriter . You'll do this step last. In the
meantime declare a placeholder variable representing your test compilation:

C#

After pausing a moment, you should see an error squiggle appear reporting that no
CreateTestCompilation method exists. Press Ctrl+Period to open the light-bulb and
then press Enter to invoke the Generate Method Stub command. This command will

var initializerInfo =
SemanticModel.GetTypeInfo(declarator.Initializer.Value);

if (SymbolEqualityComparer.Default.Equals(variableType,
initializerInfo.Type))
{
 TypeSyntax varTypeName = SyntaxFactory.IdentifierName("var")
 .WithLeadingTrivia(variableTypeName.GetLeadingTrivia())
 .WithTrailingTrivia(variableTypeName.GetTrailingTrivia());

 return node.ReplaceNode(variableTypeName, varTypeName);
}
else
{
 return node;
}

Compilation test = CreateTestCompilation();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.localdeclarationstatementsyntax
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel

generate a method stub for the CreateTestCompilation method in the Program class.
You'll come back to fill in this method later:

Write the following code to iterate over each SyntaxTree in the test Compilation. For
each one, initialize a new TypeInferenceRewriter with the SemanticModel for that tree:

C#

Inside the foreach statement you created, add the following code to perform the
transformation on each source tree. This code conditionally writes out the new
transformed tree if any edits were made. Your rewriter should only modify a tree if it
encounters one or more local variable declarations that could be simplified using type
inference:

C#

foreach (SyntaxTree sourceTree in test.SyntaxTrees)
{
 SemanticModel model = test.GetSemanticModel(sourceTree);

 TypeInferenceRewriter rewriter = new TypeInferenceRewriter(model);

 SyntaxNode newSource = rewriter.Visit(sourceTree.GetRoot());

 if (newSource != sourceTree.GetRoot())
 {
 File.WriteAllText(sourceTree.FilePath, newSource.ToFullString());
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.syntaxtree
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel

You should see squiggles under the File.WriteAllText code. Select the light bulb, and
add the necessary using System.IO; statement.

You're almost done! There's one step left: creating a test Compilation. Since you haven't
been using type inference at all during this quickstart, it would have made a perfect test
case. Unfortunately, creating a Compilation from a C# project file is beyond the scope of
this walkthrough. But fortunately, if you've been following instructions carefully, there's
hope. Replace the contents of the CreateTestCompilation method with the following
code. It creates a test compilation that coincidentally matches the project described in
this quickstart:

C#

SyntaxNode newSource = rewriter.Visit(sourceTree.GetRoot());

if (newSource != sourceTree.GetRoot())
{
 File.WriteAllText(sourceTree.FilePath, newSource.ToFullString());
}

String programPath = @"..\..\..\Program.cs";
String programText = File.ReadAllText(programPath);
SyntaxTree programTree =
 CSharpSyntaxTree.ParseText(programText)
 .WithFilePath(programPath);

String rewriterPath = @"..\..\..\TypeInferenceRewriter.cs";
String rewriterText = File.ReadAllText(rewriterPath);
SyntaxTree rewriterTree =
 CSharpSyntaxTree.ParseText(rewriterText)
 .WithFilePath(rewriterPath);

SyntaxTree[] sourceTrees = { programTree, rewriterTree };

MetadataReference mscorlib =
 MetadataReference.CreateFromFile(typeof(object).Assembly.Location);
MetadataReference codeAnalysis =

MetadataReference.CreateFromFile(typeof(SyntaxTree).Assembly.Location);
MetadataReference csharpCodeAnalysis =

MetadataReference.CreateFromFile(typeof(CSharpSyntaxTree).Assembly.Location)
;

MetadataReference[] references = { mscorlib, codeAnalysis,
csharpCodeAnalysis };

return CSharpCompilation.Create("TransformationCS",
 sourceTrees,

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.compilation

Cross your fingers and run the project. In Visual Studio, choose Debug > Start
Debugging. You should be prompted by Visual Studio that the files in your project have
changed. Click "Yes to All" to reload the modified files. Examine them to observe your
awesomeness. Note how much cleaner the code looks without all those explicit and
redundant type specifiers.

Congratulations! You've used the Compiler APIs to write your own refactoring that
searches all files in a C# project for certain syntactic patterns, analyzes the semantics of
source code that matches those patterns, and transforms it. You're now officially a
refactoring author!

 references,
 new CSharpCompilationOptions(OutputKind.ConsoleApplication));

Tutorial: Write your first analyzer and
code fix
Article • 2022-02-04 • 24 minutes to read

The .NET Compiler Platform SDK provides the tools you need to create custom
diagnostics (analyzers), code fixes, code refactoring, and diagnostic suppressors that
target C# or Visual Basic code. An analyzer contains code that recognizes violations of
your rule. Your code fix contains the code that fixes the violation. The rules you
implement can be anything from code structure to coding style to naming conventions
and more. The .NET Compiler Platform provides the framework for running analysis as
developers are writing code, and all the Visual Studio UI features for fixing code:
showing squiggles in the editor, populating the Visual Studio Error List, creating the
"light bulb" suggestions and showing the rich preview of the suggested fixes.

In this tutorial, you'll explore the creation of an analyzer and an accompanying code fix
using the Roslyn APIs. An analyzer is a way to perform source code analysis and report a
problem to the user. Optionally, a code fix can be associated with the analyzer to
represent a modification to the user's source code. This tutorial creates an analyzer that
finds local variable declarations that could be declared using the const modifier but are
not. The accompanying code fix modifies those declarations to add the const modifier.

Visual Studio 2019 version 16.8 or later

You'll need to install the .NET Compiler Platform SDK via the Visual Studio Installer:

There are two different ways to find the .NET Compiler Platform SDK in the Visual
Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual
Studio extension development workload. You must select it as an optional component.

1. Run Visual Studio Installer
2. Select Modify

Prerequisites

Installation instructions - Visual Studio Installer

Install using the Visual Studio Installer - Workloads view

https://www.visualstudio.com/downloads

3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the

optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer
2. Select Modify
3. Select the Individual components tab
4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the

Compilers, build tools, and runtimes section.

Optionally, you'll also want the DGML editor to display graphs in the visualizer:

1. Check the box for DGML editor. You'll find it under the Code tools section.

There are several steps to creating and validating your analyzer:

1. Create the solution.
2. Register the analyzer name and description.
3. Report analyzer warnings and recommendations.
4. Implement the code fix to accept recommendations.
5. Improve the analysis through unit tests.

In Visual Studio, choose File > New > Project... to display the New Project dialog.
Under Visual C# > Extensibility, choose Analyzer with code fix (.NET Standard).
Name your project "MakeConst" and click OK.

Install using the Visual Studio Installer - Individual
components tab

Create the solution

７ Note

You may get a compilation error (MSB4062: The "CompareBuildTaskVersion" task
could not be loaded"). To fix this, update the NuGet packages in the solution with

The analyzer with code fix template creates five projects:

MakeConst, which contains the analyzer.
MakeConst.CodeFixes, which contains the code fix.
MakeConst.Package, which is used to produce NuGet package for the analyzer
and code fix.
MakeConst.Test, which is a unit test project.
MakeConst.Vsix, which is the default startup project that starts a second instance
of Visual Studio that has loaded your new analyzer. Press F5 to start the VSIX
project.

In the second Visual Studio instance that you just started, create a new C# Console
Application project (any target framework will work -- analyzers work at the source

NuGet Package Manager or use Update-Package in the Package Manager Console
window.

Explore the analyzer template

７ Note

Analyzers should target .NET Standard 2.0 because they can run in .NET Core
environment (command line builds) and .NET Framework environment (Visual
Studio).

 Tip

When you run your analyzer, you start a second copy of Visual Studio. This second
copy uses a different registry hive to store settings. That enables you to
differentiate the visual settings in the two copies of Visual Studio. You can pick a
different theme for the experimental run of Visual Studio. In addition, don't roam
your settings or login to your Visual Studio account using the experimental run of
Visual Studio. That keeps the settings different.

The hive includes not only the analyzer under development, but also any previous
analyzers opened. To reset Roslyn hive, you need to manually delete it from
%LocalAppData%\Microsoft\VisualStudio. The folder name of Roslyn hive will end in
Roslyn , for example, 16.0_9ae182f9Roslyn . Note that you may need to clean the
solution and rebuild it after deleting the hive.

level.) Hover over the token with a wavy underline, and the warning text provided by an
analyzer appears.

The template creates an analyzer that reports a warning on each type declaration where
the type name contains lowercase letters, as shown in the following figure:

The template also provides a code fix that changes any type name containing lower case
characters to all upper case. You can click on the light bulb displayed with the warning
to see the suggested changes. Accepting the suggested changes updates the type name
and all references to that type in the solution. Now that you've seen the initial analyzer
in action, close the second Visual Studio instance and return to your analyzer project.

You don't have to start a second copy of Visual Studio and create new code to test every
change in your analyzer. The template also creates a unit test project for you. That
project contains two tests. TestMethod1 shows the typical format of a test that analyzes
code without triggering a diagnostic. TestMethod2 shows the format of a test that
triggers a diagnostic, and then applies a suggested code fix. As you build your analyzer
and code fix, you'll write tests for different code structures to verify your work. Unit tests
for analyzers are much quicker than testing them interactively with Visual Studio.

In this tutorial, you write an analyzer that reports to the user any local variable
declarations that can be converted to local constants. For example, consider the
following code:

C#

 Tip

Analyzer unit tests are a great tool when you know what code constructs should
and shouldn't trigger your analyzer. Loading your analyzer in another copy of
Visual Studio is a great tool to explore and find constructs you may not have
thought about yet.

In the code above, x is assigned a constant value and is never modified. It can be
declared using the const modifier:

C#

The analysis to determine whether a variable can be made constant is involved,
requiring syntactic analysis, constant analysis of the initializer expression and dataflow
analysis to ensure that the variable is never written to. The .NET Compiler Platform
provides APIs that make it easier to perform this analysis.

The template creates the initial DiagnosticAnalyzer class, in the MakeConstAnalyzer.cs
file. This initial analyzer shows two important properties of every analyzer.

Every diagnostic analyzer must provide a [DiagnosticAnalyzer] attribute that
describes the language it operates on.
Every diagnostic analyzer must derive (directly or indirectly) from the
DiagnosticAnalyzer class.

The template also shows the basic features that are part of any analyzer:

1. Register actions. The actions represent code changes that should trigger your
analyzer to examine code for violations. When Visual Studio detects code edits that
match a registered action, it calls your analyzer's registered method.

2. Create diagnostics. When your analyzer detects a violation, it creates a diagnostic
object that Visual Studio uses to notify the user of the violation.

You register actions in your override of DiagnosticAnalyzer.Initialize(AnalysisContext)
method. In this tutorial, you'll visit syntax nodes looking for local declarations, and see
which of those have constant values. If a declaration could be constant, your analyzer
will create and report a diagnostic.

The first step is to update the registration constants and Initialize method so these
constants indicate your "Make Const" analyzer. Most of the string constants are defined
in the string resource file. You should follow that practice for easier localization. Open

int x = 0;
Console.WriteLine(x);

const int x = 0;
Console.WriteLine(x);

Create analyzer registrations

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostics.diagnosticanalyzer
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostics.diagnosticanalyzer.initialize#microsoft-codeanalysis-diagnostics-diagnosticanalyzer-initialize(microsoft-codeanalysis-diagnostics-analysiscontext)

the Resources.resx file for the MakeConst analyzer project. This displays the resource
editor. Update the string resources as follows:

Change AnalyzerDescription to "Variables that are not modified should be made
constants.".
Change AnalyzerMessageFormat to "Variable '{0}' can be made constant".
Change AnalyzerTitle to "Variable can be made constant".

When you have finished, the resource editor should appear as shown in the following
figure:

The remaining changes are in the analyzer file. Open MakeConstAnalyzer.cs in Visual
Studio. Change the registered action from one that acts on symbols to one that acts on
syntax. In the MakeConstAnalyzerAnalyzer.Initialize method, find the line that registers
the action on symbols:

C#

Replace it with the following line:

C#

After that change, you can delete the AnalyzeSymbol method. This analyzer examines
SyntaxKind.LocalDeclarationStatement, not SymbolKind.NamedType statements. Notice
that AnalyzeNode has red squiggles under it. The code you just added references an
AnalyzeNode method that hasn't been declared. Declare that method using the following
code:

C#

context.RegisterSymbolAction(AnalyzeSymbol, SymbolKind.NamedType);

context.RegisterSyntaxNodeAction(AnalyzeNode,
SyntaxKind.LocalDeclarationStatement);

private void AnalyzeNode(SyntaxNodeAnalysisContext context)
{
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntaxkind#microsoft-codeanalysis-csharp-syntaxkind-localdeclarationstatement
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.symbolkind#microsoft-codeanalysis-symbolkind-namedtype

Change the Category to "Usage" in MakeConstAnalyzer.cs as shown in the following
code:

C#

It's time to write the first version of the AnalyzeNode method. It should look for a single
local declaration that could be const but is not, like the following code:

C#

The first step is to find local declarations. Add the following code to AnalyzeNode in
MakeConstAnalyzer.cs:

C#

This cast always succeeds because your analyzer registered for changes to local
declarations, and only local declarations. No other node type triggers a call to your
AnalyzeNode method. Next, check the declaration for any const modifiers. If you find
them, return immediately. The following code looks for any const modifiers on the local
declaration:

C#

Finally, you need to check that the variable could be const . That means making sure it is
never assigned after it is initialized.

You'll perform some semantic analysis using the SyntaxNodeAnalysisContext. You use
the context argument to determine whether the local variable declaration can be made

private const string Category = "Usage";

Find local declarations that could be const

int x = 0;
Console.WriteLine(x);

var localDeclaration = (LocalDeclarationStatementSyntax)context.Node;

// make sure the declaration isn't already const:
if (localDeclaration.Modifiers.Any(SyntaxKind.ConstKeyword))
{
 return;
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostics.syntaxnodeanalysiscontext

const . A Microsoft.CodeAnalysis.SemanticModel represents all of semantic information
in a single source file. You can learn more in the article that covers semantic models.
You'll use the Microsoft.CodeAnalysis.SemanticModel to perform data flow analysis on
the local declaration statement. Then, you use the results of this data flow analysis to
ensure that the local variable isn't written with a new value anywhere else. Call the
GetDeclaredSymbol extension method to retrieve the ILocalSymbol for the variable and
check that it isn't contained with the DataFlowAnalysis.WrittenOutside collection of the
data flow analysis. Add the following code to the end of the AnalyzeNode method:

C#

The code just added ensures that the variable isn't modified, and can therefore be made
const . It's time to raise the diagnostic. Add the following code as the last line in
AnalyzeNode :

C#

You can check your progress by pressing F5 to run your analyzer. You can load the
console application you created earlier and then add the following test code:

C#

The light bulb should appear, and your analyzer should report a diagnostic. However,
depending on your version of Visual Studio, you'll either see:

// Perform data flow analysis on the local declaration.
DataFlowAnalysis dataFlowAnalysis =
context.SemanticModel.AnalyzeDataFlow(localDeclaration);

// Retrieve the local symbol for each variable in the local declaration
// and ensure that it is not written outside of the data flow analysis
region.
VariableDeclaratorSyntax variable =
localDeclaration.Declaration.Variables.Single();
ISymbol variableSymbol = context.SemanticModel.GetDeclaredSymbol(variable,
context.CancellationToken);
if (dataFlowAnalysis.WrittenOutside.Contains(variableSymbol))
{
 return;
}

context.ReportDiagnostic(Diagnostic.Create(Rule, context.Node.GetLocation(),
localDeclaration.Declaration.Variables.First().Identifier.ValueText));

int x = 0;
Console.WriteLine(x);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.semanticmodel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.modelextensions.getdeclaredsymbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.ilocalsymbol
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.dataflowanalysis.writtenoutside

The light bulb, which still uses the template generated code fix, will tell you it can
be made upper case.
A banner message at the top of the editor saying the 'MakeConstCodeFixProvider'
encountered an error and has been disabled.'. This is because the code fix provider
hasn't yet been changed and still expects to find TypeDeclarationSyntax elements
instead of LocalDeclarationStatementSyntax elements.

The next section explains how to write the code fix.

An analyzer can provide one or more code fixes. A code fix defines an edit that
addresses the reported issue. For the analyzer that you created, you can provide a code
fix that inserts the const keyword:

diff

The user chooses it from the light bulb UI in the editor and Visual Studio changes the
code.

Open CodeFixResources.resx file and change CodeFixTitle to "Make constant".

Open the MakeConstCodeFixProvider.cs file added by the template. This code fix is
already wired up to the Diagnostic ID produced by your diagnostic analyzer, but it
doesn't yet implement the right code transform.

Next, delete the MakeUppercaseAsync method. It no longer applies.

All code fix providers derive from CodeFixProvider. They all override
CodeFixProvider.RegisterCodeFixesAsync(CodeFixContext) to report available code fixes.
In RegisterCodeFixesAsync , change the ancestor node type you're searching for to a
LocalDeclarationStatementSyntax to match the diagnostic:

C#

Write the code fix

- int x = 0;
+ const int x = 0;
Console.WriteLine(x);

var declaration =
root.FindToken(diagnosticSpan.Start).Parent.AncestorsAndSelf().OfType<LocalD
eclarationStatementSyntax>().First();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.codefixes.codefixprovider
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.codefixes.codefixprovider.registercodefixesasync#microsoft-codeanalysis-codefixes-codefixprovider-registercodefixesasync(microsoft-codeanalysis-codefixes-codefixcontext)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.localdeclarationstatementsyntax

Next, change the last line to register a code fix. Your fix will create a new document that
results from adding the const modifier to an existing declaration:

C#

You'll notice red squiggles in the code you just added on the symbol MakeConstAsync .
Add a declaration for MakeConstAsync like the following code:

C#

Your new MakeConstAsync method will transform the Document representing the user's
source file into a new Document that now contains a const declaration.

You create a new const keyword token to insert at the front of the declaration
statement. Be careful to first remove any leading trivia from the first token of the
declaration statement and attach it to the const token. Add the following code to the
MakeConstAsync method:

C#

// Register a code action that will invoke the fix.
context.RegisterCodeFix(
 CodeAction.Create(
 title: CodeFixResources.CodeFixTitle,
 createChangedDocument: c => MakeConstAsync(context.Document,
declaration, c),
 equivalenceKey: nameof(CodeFixResources.CodeFixTitle)),
 diagnostic);

private static async Task<Document> MakeConstAsync(Document document,
 LocalDeclarationStatementSyntax localDeclaration,
 CancellationToken cancellationToken)
{
}

// Remove the leading trivia from the local declaration.
SyntaxToken firstToken = localDeclaration.GetFirstToken();
SyntaxTriviaList leadingTrivia = firstToken.LeadingTrivia;
LocalDeclarationStatementSyntax trimmedLocal =
localDeclaration.ReplaceToken(
 firstToken, firstToken.WithLeadingTrivia(SyntaxTriviaList.Empty));

// Create a const token with the leading trivia.
SyntaxToken constToken = SyntaxFactory.Token(leadingTrivia,
SyntaxKind.ConstKeyword,
SyntaxFactory.TriviaList(SyntaxFactory.ElasticMarker));

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.document
https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.document

Next, add the const token to the declaration using the following code:

C#

Next, format the new declaration to match C# formatting rules. Formatting your
changes to match existing code creates a better experience. Add the following
statement immediately after the existing code:

C#

A new namespace is required for this code. Add the following using directive to the top
of the file:

C#

The final step is to make your edit. There are three steps to this process:

1. Get a handle to the existing document.
2. Create a new document by replacing the existing declaration with the new

declaration.
3. Return the new document.

Add the following code to the end of the MakeConstAsync method:

C#

// Insert the const token into the modifiers list, creating a new modifiers
list.
SyntaxTokenList newModifiers = trimmedLocal.Modifiers.Insert(0, constToken);
// Produce the new local declaration.
LocalDeclarationStatementSyntax newLocal = trimmedLocal
 .WithModifiers(newModifiers)
 .WithDeclaration(localDeclaration.Declaration);

// Add an annotation to format the new local declaration.
LocalDeclarationStatementSyntax formattedLocal =
newLocal.WithAdditionalAnnotations(Formatter.Annotation);

using Microsoft.CodeAnalysis.Formatting;

// Replace the old local declaration with the new local declaration.
SyntaxNode oldRoot = await
document.GetSyntaxRootAsync(cancellationToken).ConfigureAwait(false);
SyntaxNode newRoot = oldRoot.ReplaceNode(localDeclaration, formattedLocal);

// Return document with transformed tree.
return document.WithSyntaxRoot(newRoot);

Your code fix is ready to try. Press F5 to run the analyzer project in a second instance of
Visual Studio. In the second Visual Studio instance, create a new C# Console Application
project and add a few local variable declarations initialized with constant values to the
Main method. You'll see that they are reported as warnings as below.

You've made a lot of progress. There are squiggles under the declarations that can be
made const . But there is still work to do. This works fine if you add const to the
declarations starting with i , then j and finally k . But, if you add the const modifier in
a different order, starting with k , your analyzer creates errors: k can't be declared
const , unless i and j are both already const . You've got to do more analysis to ensure
you handle the different ways variables can be declared and initialized.

Your analyzer and code fix work on a simple case of a single declaration that can be
made const. There are numerous possible declaration statements where this
implementation makes mistakes. You'll address these cases by working with the unit test
library written by the template. It's much faster than repeatedly opening a second copy
of Visual Studio.

Open the MakeConstUnitTests.cs file in the unit test project. The template created two
tests that follow the two common patterns for an analyzer and code fix unit test.
TestMethod1 shows the pattern for a test that ensures the analyzer doesn't report a
diagnostic when it shouldn't. TestMethod2 shows the pattern for reporting a diagnostic
and running the code fix.

The template uses Microsoft.CodeAnalysis.Testing packages for unit testing.

Build unit tests

 Tip

The testing library supports a special markup syntax, including the following:

[|text|] : indicates that a diagnostic is reported for text . By default, this
form may only be used for testing analyzers with exactly one

DiagnosticDescriptor provided by DiagnosticAnalyzer.SupportedDiagnostics .

https://github.com/dotnet/roslyn-sdk/blob/main/src/Microsoft.CodeAnalysis.Testing/README.md

Replace the template tests in the MakeConstUnitTest class with the following test
method:

C#

Run this test to make sure it passes. In Visual Studio, open the Test Explorer by selecting
Test > Windows > Test Explorer. Then select Run All.

As a general rule, analyzers should exit as quickly as possible, doing minimal work.
Visual Studio calls registered analyzers as the user edits code. Responsiveness is a key
requirement. There are several test cases for code that should not raise your diagnostic.
Your analyzer already handles one of those tests, the case where a variable is assigned
after being initialized. Add the following test method to represent that case:

{|ExpectedDiagnosticId:text|} : indicates that a diagnostic with Id

ExpectedDiagnosticId is reported for text .

 [TestMethod]
 public async Task LocalIntCouldBeConstant_Diagnostic()
 {
 await VerifyCS.VerifyCodeFixAsync(@"
using System;

class Program
{
 static void Main()
 {
 [|int i = 0;|]
 Console.WriteLine(i);
 }
}
", @"
using System;

class Program
{
 static void Main()
 {
 const int i = 0;
 Console.WriteLine(i);
 }
}
");
 }

Create tests for valid declarations

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.diagnostic.id#microsoft-codeanalysis-diagnostic-id

C#

This test passes as well. Next, add test methods for conditions you haven't handled yet:

Declarations that are already const , because they are already const:

C#

Declarations that have no initializer, because there is no value to use:

C#

 [TestMethod]
 public async Task VariableIsAssigned_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

class Program
{
 static void Main()
 {
 int i = 0;
 Console.WriteLine(i++);
 }
}
");
 }

 [TestMethod]
 public async Task VariableIsAlreadyConst_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

class Program
{
 static void Main()
 {
 const int i = 0;
 Console.WriteLine(i);
 }
}
");
 }

 [TestMethod]
 public async Task NoInitializer_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

Declarations where the initializer is not a constant, because they can't be compile-
time constants:

C#

It can be even more complicated because C# allows multiple declarations as one
statement. Consider the following test case string constant:

C#

class Program
{
 static void Main()
 {
 int i;
 i = 0;
 Console.WriteLine(i);
 }
}
");
 }

 [TestMethod]
 public async Task InitializerIsNotConstant_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

class Program
{
 static void Main()
 {
 int i = DateTime.Now.DayOfYear;
 Console.WriteLine(i);
 }
}
");
 }

 [TestMethod]
 public async Task MultipleInitializers_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

class Program
{
 static void Main()
 {
 int i = 0, j = DateTime.Now.DayOfYear;

The variable i can be made constant, but the variable j cannot. Therefore, this
statement cannot be made a const declaration.

Run your tests again, and you'll see these new test cases fail.

You need some enhancements to your analyzer's AnalyzeNode method to filter out code
that matches these conditions. They are all related conditions, so similar changes will fix
all these conditions. Make the following changes to AnalyzeNode :

Your semantic analysis examined a single variable declaration. This code needs to
be in a foreach loop that examines all the variables declared in the same
statement.
Each declared variable needs to have an initializer.
Each declared variable's initializer must be a compile-time constant.

In your AnalyzeNode method, replace the original semantic analysis:

C#

with the following code snippet:

 Console.WriteLine(i);
 Console.WriteLine(j);
 }
}
");
 }

Update your analyzer to ignore correct
declarations

// Perform data flow analysis on the local declaration.
DataFlowAnalysis dataFlowAnalysis =
context.SemanticModel.AnalyzeDataFlow(localDeclaration);

// Retrieve the local symbol for each variable in the local declaration
// and ensure that it is not written outside of the data flow analysis
region.
VariableDeclaratorSyntax variable =
localDeclaration.Declaration.Variables.Single();
ISymbol variableSymbol = context.SemanticModel.GetDeclaredSymbol(variable,
context.CancellationToken);
if (dataFlowAnalysis.WrittenOutside.Contains(variableSymbol))
{
 return;
}

C#

The first foreach loop examines each variable declaration using syntactic analysis. The
first check guarantees that the variable has an initializer. The second check guarantees
that the initializer is a constant. The second loop has the original semantic analysis. The
semantic checks are in a separate loop because it has a greater impact on performance.
Run your tests again, and you should see them all pass.

// Ensure that all variables in the local declaration have initializers that
// are assigned with constant values.
foreach (VariableDeclaratorSyntax variable in
localDeclaration.Declaration.Variables)
{
 EqualsValueClauseSyntax initializer = variable.Initializer;
 if (initializer == null)
 {
 return;
 }

 Optional<object> constantValue =
context.SemanticModel.GetConstantValue(initializer.Value,
context.CancellationToken);
 if (!constantValue.HasValue)
 {
 return;
 }
}

// Perform data flow analysis on the local declaration.
DataFlowAnalysis dataFlowAnalysis =
context.SemanticModel.AnalyzeDataFlow(localDeclaration);

foreach (VariableDeclaratorSyntax variable in
localDeclaration.Declaration.Variables)
{
 // Retrieve the local symbol for each variable in the local declaration
 // and ensure that it is not written outside of the data flow analysis
region.
 ISymbol variableSymbol =
context.SemanticModel.GetDeclaredSymbol(variable,
context.CancellationToken);
 if (dataFlowAnalysis.WrittenOutside.Contains(variableSymbol))
 {
 return;
 }
}

Add the final polish

You're almost done. There are a few more conditions for your analyzer to handle. Visual
Studio calls analyzers while the user is writing code. It's often the case that your analyzer
will be called for code that doesn't compile. The diagnostic analyzer's AnalyzeNode
method does not check to see if the constant value is convertible to the variable type.
So, the current implementation will happily convert an incorrect declaration such as int
i = "abc" to a local constant. Add a test method for this case:

C#

In addition, reference types are not handled properly. The only constant value allowed
for a reference type is null , except in the case of System.String, which allows string
literals. In other words, const string s = "abc" is legal, but const object s = "abc" is
not. This code snippet verifies that condition:

C#

 [TestMethod]
 public async Task DeclarationIsInvalid_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

class Program
{
 static void Main()
 {
 int x = {|CS0029:""abc""|};
 }
}
");
 }

 [TestMethod]
 public async Task DeclarationIsNotString_NoDiagnostic()
 {
 await VerifyCS.VerifyAnalyzerAsync(@"
using System;

class Program
{
 static void Main()
 {
 object s = ""abc"";
 }
}
");
 }

https://learn.microsoft.com/en-us/dotnet/api/system.string

To be thorough, you need to add another test to make sure that you can create a
constant declaration for a string. The following snippet defines both the code that raises
the diagnostic, and the code after the fix has been applied:

C#

Finally, if a variable is declared with the var keyword, the code fix does the wrong thing
and generates a const var declaration, which is not supported by the C# language. To
fix this bug, the code fix must replace the var keyword with the inferred type's name:

C#

 [TestMethod]
 public async Task StringCouldBeConstant_Diagnostic()
 {
 await VerifyCS.VerifyCodeFixAsync(@"
using System;

class Program
{
 static void Main()
 {
 [|string s = ""abc"";|]
 }
}
", @"
using System;

class Program
{
 static void Main()
 {
 const string s = ""abc"";
 }
}
");
 }

 [TestMethod]
 public async Task VarIntDeclarationCouldBeConstant_Diagnostic()
 {
 await VerifyCS.VerifyCodeFixAsync(@"
using System;

class Program
{
 static void Main()
 {
 [|var item = 4;|]
 }
}

Fortunately, all of the above bugs can be addressed using the same techniques that you
just learned.

To fix the first bug, first open MakeConstAnalyzer.cs and locate the foreach loop where
each of the local declaration's initializers are checked to ensure that they're assigned
with constant values. Immediately before the first foreach loop, call
context.SemanticModel.GetTypeInfo() to retrieve detailed information about the
declared type of the local declaration:

C#

", @"
using System;

class Program
{
 static void Main()
 {
 const int item = 4;
 }
}
");
 }

 [TestMethod]
 public async Task VarStringDeclarationCouldBeConstant_Diagnostic()
 {
 await VerifyCS.VerifyCodeFixAsync(@"
using System;

class Program
{
 static void Main()
 {
 [|var item = ""abc"";|]
 }
}
", @"
using System;

class Program
{
 static void Main()
 {
 const string item = ""abc"";
 }
}
");
 }

Then, inside your foreach loop, check each initializer to make sure it's convertible to the
variable type. Add the following check after ensuring that the initializer is a constant:

C#

The next change builds upon the last one. Before the closing curly brace of the first
foreach loop, add the following code to check the type of the local declaration when the
constant is a string or null.

C#

You must write a bit more code in your code fix provider to replace the var keyword
with the correct type name. Return to MakeConstCodeFixProvider.cs. The code you'll add
does the following steps:

Check if the declaration is a var declaration, and if it is:

TypeSyntax variableTypeName = localDeclaration.Declaration.Type;
ITypeSymbol variableType =
context.SemanticModel.GetTypeInfo(variableTypeName,
context.CancellationToken).ConvertedType;

// Ensure that the initializer value can be converted to the type of the
// local declaration without a user-defined conversion.
Conversion conversion =
context.SemanticModel.ClassifyConversion(initializer.Value, variableType);
if (!conversion.Exists || conversion.IsUserDefined)
{
 return;
}

// Special cases:
// * If the constant value is a string, the type of the local declaration
// must be System.String.
// * If the constant value is null, the type of the local declaration must
// be a reference type.
if (constantValue.Value is string)
{
 if (variableType.SpecialType != SpecialType.System_String)
 {
 return;
 }
}
else if (variableType.IsReferenceType && constantValue.Value != null)
{
 return;
}

Create a new type for the inferred type.
Make sure the type declaration is not an alias. If so, it is legal to declare const var .
Make sure that var isn't a type name in this program. (If so, const var is legal).
Simplify the full type name

That sounds like a lot of code. It's not. Replace the line that declares and initializes
newLocal with the following code. It goes immediately after the initialization of
newModifiers :

C#

// If the type of the declaration is 'var', create a new type name
// for the inferred type.
VariableDeclarationSyntax variableDeclaration =
localDeclaration.Declaration;
TypeSyntax variableTypeName = variableDeclaration.Type;
if (variableTypeName.IsVar)
{
 SemanticModel semanticModel = await
document.GetSemanticModelAsync(cancellationToken).ConfigureAwait(false);

 // Special case: Ensure that 'var' isn't actually an alias to another
type
 // (e.g. using var = System.String).
 IAliasSymbol aliasInfo = semanticModel.GetAliasInfo(variableTypeName,
cancellationToken);
 if (aliasInfo == null)
 {
 // Retrieve the type inferred for var.
 ITypeSymbol type = semanticModel.GetTypeInfo(variableTypeName,
cancellationToken).ConvertedType;

 // Special case: Ensure that 'var' isn't actually a type named
'var'.
 if (type.Name != "var")
 {
 // Create a new TypeSyntax for the inferred type. Be careful
 // to keep any leading and trailing trivia from the var keyword.
 TypeSyntax typeName =
SyntaxFactory.ParseTypeName(type.ToDisplayString())
 .WithLeadingTrivia(variableTypeName.GetLeadingTrivia())
 .WithTrailingTrivia(variableTypeName.GetTrailingTrivia());

 // Add an annotation to simplify the type name.
 TypeSyntax simplifiedTypeName =
typeName.WithAdditionalAnnotations(Simplifier.Annotation);

 // Replace the type in the variable declaration.
 variableDeclaration =
variableDeclaration.WithType(simplifiedTypeName);
 }
 }

You'll need to add one using directive to use the Simplifier type:

C#

Run your tests, and they should all pass. Congratulate yourself by running your finished
analyzer. Press Ctrl + F5 to run the analyzer project in a second instance of Visual
Studio with the Roslyn Preview extension loaded.

In the second Visual Studio instance, create a new C# Console Application project
and add int x = "abc"; to the Main method. Thanks to the first bug fix, no
warning should be reported for this local variable declaration (though there's a
compiler error as expected).
Next, add object s = "abc"; to the Main method. Because of the second bug fix,
no warning should be reported.
Finally, add another local variable that uses the var keyword. You'll see that a
warning is reported and a suggestion appears beneath to the left.
Move the editor caret over the squiggly underline and press Ctrl + . . to display
the suggested code fix. Upon selecting your code fix, note that the var keyword is
now handled correctly.

Finally, add the following code:

C#

After these changes, you get red squiggles only on the first two variables. Add const to
both i and j , and you get a new warning on k because it can now be const .

Congratulations! You've created your first .NET Compiler Platform extension that
performs on-the-fly code analysis to detect an issue and provides a quick fix to correct
it. Along the way, you've learned many of the code APIs that are part of the .NET
Compiler Platform SDK (Roslyn APIs). You can check your work against the completed
sample in our samples GitHub repository.

}
// Produce the new local declaration.
LocalDeclarationStatementSyntax newLocal =
trimmedLocal.WithModifiers(newModifiers)
 .WithDeclaration(variableDeclaration);

using Microsoft.CodeAnalysis.Simplification;

int i = 2;
int j = 32;
int k = i + j;

https://learn.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.simplification.simplifier
https://github.com/dotnet/samples/tree/main/csharp/roslyn-sdk/Tutorials/MakeConst

Get started with syntax analysis
Get started with semantic analysis

Other resources

C# programming guide
Article • 2022-10-11 • 2 minutes to read

This section provides detailed information on key C# language features and features
accessible to C# through .NET.

Most of this section assumes that you already know something about C# and general
programming concepts. If you are a complete beginner with programming or with C#,
you might want to visit the Introduction to C# Tutorials or .NET In-Browser Tutorial ,
where no prior programming knowledge is required.

For information about specific keywords, operators, and preprocessor directives, see C#
Reference. For information about the C# Language Specification, see C# Language
Specification.

Inside a C# Program

Main() and Command-Line Arguments

Statements

Operators and expressions

Expression-bodied members

Equality Comparisons

Types

Object oriented programming

Interfaces

Delegates

Arrays

Strings

Properties

Program sections

Language Sections

https://dotnet.microsoft.com/learn/dotnet/in-browser-tutorial/1

Indexers

Events

Generics

Iterators

LINQ Query Expressions

Namespaces

Unsafe Code and Pointers

XML Documentation Comments

Application Domains

Assemblies in .NET

Attributes

Collections

Exceptions and Exception Handling

File System and the Registry (C# Programming Guide)

Interoperability

Reflection

C# Reference

Platform Sections

See also

https://learn.microsoft.com/en-ca/dotnet/framework/app-domains/application-domains
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/

Programming Concepts (C#)
Article • 2022-03-31 • 2 minutes to read

This section explains programming concepts in the C# language.

Title Description

Assemblies in .NET Describes how to create and use assemblies.

Asynchronous
Programming with
async and await
(C#)

Describes how to write asynchronous solutions by using the async and await
keywords in C#. Includes a walkthrough.

Attributes (C#) Discusses how to provide additional information about programming
elements such as types, fields, methods, and properties by using attributes.

Collections (C#) Describes some of the types of collections provided by .NET. Demonstrates
how to use simple collections and collections of key/value pairs.

Covariance and
Contravariance
(C#)

Shows how to enable implicit conversion of generic type parameters in
interfaces and delegates.

Expression Trees
(C#)

Explains how you can use expression trees to enable dynamic modification
of executable code.

Iterators (C#) Describes iterators, which are used to step through collections and return
elements one at a time.

Language-
Integrated Query
(LINQ) (C#)

Discusses the powerful query capabilities in the language syntax of C#, and
the model for querying relational databases, XML documents, datasets, and
in-memory collections.

Reflection (C#) Explains how to use reflection to dynamically create an instance of a type,
bind the type to an existing object, or get the type from an existing object
and invoke its methods or access its fields and properties.

Serialization (C#) Describes key concepts in binary, XML, and SOAP serialization.

Performance Tips

In This Section

Related Sections

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/
https://learn.microsoft.com/en-ca/dotnet/framework/performance/performance-tips

Discusses several basic rules that may help you increase the performance of your
application.

Asynchronous programming with async
and await
Article • 2023-01-14 • 16 minutes to read

The Task asynchronous programming model (TAP) provides an abstraction over
asynchronous code. You write code as a sequence of statements, just like always. You
can read that code as though each statement completes before the next begins. The
compiler performs many transformations because some of those statements may start
work and return a Task that represents the ongoing work.

That's the goal of this syntax: enable code that reads like a sequence of statements, but
executes in a much more complicated order based on external resource allocation and
when tasks are complete. It's analogous to how people give instructions for processes
that include asynchronous tasks. Throughout this article, you'll use an example of
instructions for making breakfast to see how the async and await keywords make it
easier to reason about code that includes a series of asynchronous instructions. You'd
write the instructions something like the following list to explain how to make a
breakfast:

1. Pour a cup of coffee.
2. Heat a pan, then fry two eggs.
3. Fry three slices of bacon.
4. Toast two pieces of bread.
5. Add butter and jam to the toast.
6. Pour a glass of orange juice.

If you have experience with cooking, you'd execute those instructions asynchronously.
You'd start warming the pan for eggs, then start the bacon. You'd put the bread in the
toaster, then start the eggs. At each step of the process, you'd start a task, then turn
your attention to tasks that are ready for your attention.

Cooking breakfast is a good example of asynchronous work that isn't parallel. One
person (or thread) can handle all these tasks. Continuing the breakfast analogy, one
person can make breakfast asynchronously by starting the next task before the first task
completes. The cooking progresses whether or not someone is watching it. As soon as
you start warming the pan for the eggs, you can begin frying the bacon. Once the bacon
starts, you can put the bread into the toaster.

For a parallel algorithm, you'd need multiple cooks (or threads). One would make the
eggs, one the bacon, and so on. Each one would be focused on just that one task. Each

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

cook (or thread) would be blocked synchronously waiting for the bacon to be ready to
flip, or the toast to pop.

Now, consider those same instructions written as C# statements:

C#

using System;
using System.Threading.Tasks;

namespace AsyncBreakfast
{
 // These classes are intentionally empty for the purpose of this
example. They are simply marker classes for the purpose of demonstration,
contain no properties, and serve no other purpose.
 internal class Bacon { }
 internal class Coffee { }
 internal class Egg { }
 internal class Juice { }
 internal class Toast { }

 class Program
 {
 static void Main(string[] args)
 {
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");

 Egg eggs = FryEggs(2);
 Console.WriteLine("eggs are ready");

 Bacon bacon = FryBacon(3);
 Console.WriteLine("bacon is ready");

 Toast toast = ToastBread(2);
 ApplyButter(toast);
 ApplyJam(toast);
 Console.WriteLine("toast is ready");

 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");
 Console.WriteLine("Breakfast is ready!");
 }

 private static Juice PourOJ()
 {
 Console.WriteLine("Pouring orange juice");
 return new Juice();
 }

 private static void ApplyJam(Toast toast) =>
 Console.WriteLine("Putting jam on the toast");

 private static void ApplyButter(Toast toast) =>
 Console.WriteLine("Putting butter on the toast");

 private static Toast ToastBread(int slices)
 {
 for (int slice = 0; slice < slices; slice++)
 {
 Console.WriteLine("Putting a slice of bread in the
toaster");
 }
 Console.WriteLine("Start toasting...");
 Task.Delay(3000).Wait();
 Console.WriteLine("Remove toast from toaster");

 return new Toast();
 }

 private static Bacon FryBacon(int slices)
 {
 Console.WriteLine($"putting {slices} slices of bacon in the
pan");
 Console.WriteLine("cooking first side of bacon...");
 Task.Delay(3000).Wait();
 for (int slice = 0; slice < slices; slice++)
 {
 Console.WriteLine("flipping a slice of bacon");
 }
 Console.WriteLine("cooking the second side of bacon...");
 Task.Delay(3000).Wait();
 Console.WriteLine("Put bacon on plate");

 return new Bacon();
 }

 private static Egg FryEggs(int howMany)
 {
 Console.WriteLine("Warming the egg pan...");
 Task.Delay(3000).Wait();
 Console.WriteLine($"cracking {howMany} eggs");
 Console.WriteLine("cooking the eggs ...");
 Task.Delay(3000).Wait();
 Console.WriteLine("Put eggs on plate");

 return new Egg();
 }

 private static Coffee PourCoffee()
 {
 Console.WriteLine("Pouring coffee");
 return new Coffee();
 }
 }
}

The synchronously prepared breakfast took roughly 30 minutes because the total is the
sum of each task.

Computers don't interpret those instructions the same way people do. The computer
will block on each statement until the work is complete before moving on to the next
statement. That creates an unsatisfying breakfast. The later tasks wouldn't be started
until the earlier tasks had been completed. It would take much longer to create the
breakfast, and some items would have gotten cold before being served.

If you want the computer to execute the above instructions asynchronously, you must
write asynchronous code.

These concerns are important for the programs you write today. When you write client
programs, you want the UI to be responsive to user input. Your application shouldn't
make a phone appear frozen while it's downloading data from the web. When you write
server programs, you don't want threads blocked. Those threads could be serving other
requests. Using synchronous code when asynchronous alternatives exist hurts your
ability to scale out less expensively. You pay for those blocked threads.

Successful modern applications require asynchronous code. Without language support,
writing asynchronous code required callbacks, completion events, or other means that
obscured the original intent of the code. The advantage of the synchronous code is that

its step-by-step actions make it easy to scan and understand. Traditional asynchronous
models forced you to focus on the asynchronous nature of the code, not on the
fundamental actions of the code.

The preceding code demonstrates a bad practice: constructing synchronous code to
perform asynchronous operations. As written, this code blocks the thread executing it
from doing any other work. It won't be interrupted while any of the tasks are in
progress. It would be as though you stared at the toaster after putting the bread in.
You'd ignore anyone talking to you until the toast popped.

Let's start by updating this code so that the thread doesn't block while tasks are
running. The await keyword provides a non-blocking way to start a task, then continue
execution when that task completes. A simple asynchronous version of the make a
breakfast code would look like the following snippet:

C#

Don't block, await instead

static async Task Main(string[] args)
{
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");

 Egg eggs = await FryEggsAsync(2);
 Console.WriteLine("eggs are ready");

 Bacon bacon = await FryBaconAsync(3);
 Console.WriteLine("bacon is ready");

 Toast toast = await ToastBreadAsync(2);
 ApplyButter(toast);
 ApplyJam(toast);
 Console.WriteLine("toast is ready");

 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");
 Console.WriteLine("Breakfast is ready!");
}

） Important

The total elapsed time is roughly the same as the initial synchronous version. The
code has yet to take advantage of some of the key features of asynchronous
programming.

This code doesn't block while the eggs or the bacon are cooking. This code won't start
any other tasks though. You'd still put the toast in the toaster and stare at it until it pops.
But at least, you'd respond to anyone that wanted your attention. In a restaurant where
multiple orders are placed, the cook could start another breakfast while the first is
cooking.

Now, the thread working on the breakfast isn't blocked while awaiting any started task
that hasn't yet finished. For some applications, this change is all that's needed. A GUI
application still responds to the user with just this change. However, for this scenario,
you want more. You don't want each of the component tasks to be executed
sequentially. It's better to start each of the component tasks before awaiting the
previous task's completion.

In many scenarios, you want to start several independent tasks immediately. Then, as
each task finishes, you can continue other work that's ready. In the breakfast analogy,
that's how you get breakfast done more quickly. You also get everything done close to
the same time. You'll get a hot breakfast.

The System.Threading.Tasks.Task and related types are classes you can use to reason
about tasks that are in progress. That enables you to write code that more closely
resembles the way you'd create breakfast. You'd start cooking the eggs, bacon, and
toast at the same time. As each requires action, you'd turn your attention to that task,
take care of the next action, then wait for something else that requires your attention.

You start a task and hold on to the Task object that represents the work. You'll await
each task before working with its result.

 Tip

The method bodies of the FryEggsAsync , FryBaconAsync , and ToastBreadAsync have
all been updated to return Task<Egg> , Task<Bacon> , and Task<Toast> respectively.
The methods are renamed from their original version to include the "Async" suffix.
Their implementations are shown as part of the final version later in this article.

７ Note

The Main method returns Task , despite not having a return expression—this is by
design. For more information, see Evaluation of a void-returning async function.

Start tasks concurrently

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/classes#14153-evaluation-of-a-void-returning-async-function

Let's make these changes to the breakfast code. The first step is to store the tasks for
operations when they start, rather than awaiting them:

C#

Next, you can move the await statements for the bacon and eggs to the end of the
method, before serving breakfast:

C#

Coffee cup = PourCoffee();
Console.WriteLine("Coffee is ready");

Task<Egg> eggsTask = FryEggsAsync(2);
Egg eggs = await eggsTask;
Console.WriteLine("Eggs are ready");

Task<Bacon> baconTask = FryBaconAsync(3);
Bacon bacon = await baconTask;
Console.WriteLine("Bacon is ready");

Task<Toast> toastTask = ToastBreadAsync(2);
Toast toast = await toastTask;
ApplyButter(toast);
ApplyJam(toast);
Console.WriteLine("Toast is ready");

Juice oj = PourOJ();
Console.WriteLine("Oj is ready");
Console.WriteLine("Breakfast is ready!");

Coffee cup = PourCoffee();
Console.WriteLine("Coffee is ready");

Task<Egg> eggsTask = FryEggsAsync(2);
Task<Bacon> baconTask = FryBaconAsync(3);
Task<Toast> toastTask = ToastBreadAsync(2);

Toast toast = await toastTask;
ApplyButter(toast);
ApplyJam(toast);
Console.WriteLine("Toast is ready");
Juice oj = PourOJ();
Console.WriteLine("Oj is ready");

Egg eggs = await eggsTask;
Console.WriteLine("Eggs are ready");
Bacon bacon = await baconTask;
Console.WriteLine("Bacon is ready");

Console.WriteLine("Breakfast is ready!");

The asynchronously prepared breakfast took roughly 20 minutes, this time savings is
because some tasks ran concurrently.

The preceding code works better. You start all the asynchronous tasks at once. You await
each task only when you need the results. The preceding code may be similar to code in
a web application that makes requests to different microservices, then combines the
results into a single page. You'll make all the requests immediately, then await all those
tasks and compose the web page.

You have everything ready for breakfast at the same time except the toast. Making the
toast is the composition of an asynchronous operation (toasting the bread), and
synchronous operations (adding the butter and the jam). Updating this code illustrates
an important concept:

The preceding code showed you that you can use Task or Task<TResult> objects to hold
running tasks. You await each task before using its result. The next step is to create
methods that represent the combination of other work. Before serving breakfast, you

Composition with tasks

） Important

The composition of an asynchronous operation followed by synchronous work is an
asynchronous operation. Stated another way, if any portion of an operation is
asynchronous, the entire operation is asynchronous.

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

want to await the task that represents toasting the bread before adding butter and jam.
You can represent that work with the following code:

C#

The preceding method has the async modifier in its signature. That signals to the
compiler that this method contains an await statement; it contains asynchronous
operations. This method represents the task that toasts the bread, then adds butter and
jam. This method returns a Task<TResult> that represents the composition of those
three operations. The main block of code now becomes:

C#

The previous change illustrated an important technique for working with asynchronous
code. You compose tasks by separating the operations into a new method that returns a
task. You can choose when to await that task. You can start other tasks concurrently.

static async Task<Toast> MakeToastWithButterAndJamAsync(int number)
{
 var toast = await ToastBreadAsync(number);
 ApplyButter(toast);
 ApplyJam(toast);

 return toast;
}

static async Task Main(string[] args)
{
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");

 var eggsTask = FryEggsAsync(2);
 var baconTask = FryBaconAsync(3);
 var toastTask = MakeToastWithButterAndJamAsync(2);

 var eggs = await eggsTask;
 Console.WriteLine("eggs are ready");

 var bacon = await baconTask;
 Console.WriteLine("bacon is ready");

 var toast = await toastTask;
 Console.WriteLine("toast is ready");

 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");
 Console.WriteLine("Breakfast is ready!");
}

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

Up to this point, you've implicitly assumed that all these tasks complete successfully.
Asynchronous methods throw exceptions, just like their synchronous counterparts.
Asynchronous support for exceptions and error handling strives for the same goals as
asynchronous support in general: You should write code that reads like a series of
synchronous statements. Tasks throw exceptions when they can't complete successfully.
The client code can catch those exceptions when a started task is awaited . For example,
let's assume that the toaster catches fire while making the toast. You can simulate that
by modifying the ToastBreadAsync method to match the following code:

C#

Run the application after making these changes, and you'll output similar to the
following text:

Console

Asynchronous exceptions

private static async Task<Toast> ToastBreadAsync(int slices)
{
 for (int slice = 0; slice < slices; slice++)
 {
 Console.WriteLine("Putting a slice of bread in the toaster");
 }
 Console.WriteLine("Start toasting...");
 await Task.Delay(2000);
 Console.WriteLine("Fire! Toast is ruined!");
 throw new InvalidOperationException("The toaster is on fire");
 await Task.Delay(1000);
 Console.WriteLine("Remove toast from toaster");

 return new Toast();
}

７ Note

You'll get a warning when you compile the preceding code regarding unreachable
code. That's intentional, because once the toaster catches fire, operations won't
proceed normally.

Pouring coffee
Coffee is ready
Warming the egg pan...
putting 3 slices of bacon in the pan
Cooking first side of bacon...
Putting a slice of bread in the toaster

You'll notice quite a few tasks are completed between when the toaster catches fire and
the exception is observed. When a task that runs asynchronously throws an exception,
that Task is faulted. The Task object holds the exception thrown in the Task.Exception
property. Faulted tasks throw an exception when they're awaited.

There are two important mechanisms to understand: how an exception is stored in a
faulted task, and how an exception is unpackaged and rethrown when code awaits a
faulted task.

When code running asynchronously throws an exception, that exception is stored in the
Task . The Task.Exception property is a System.AggregateException because more than
one exception may be thrown during asynchronous work. Any exception thrown is
added to the AggregateException.InnerExceptions collection. If that Exception property
is null, a new AggregateException is created and the thrown exception is the first item in
the collection.

The most common scenario for a faulted task is that the Exception property contains
exactly one exception. When code awaits a faulted task, the first exception in the
AggregateException.InnerExceptions collection is rethrown. That's why the output from
this example shows an InvalidOperationException instead of an AggregateException .
Extracting the first inner exception makes working with asynchronous methods as
similar as possible to working with their synchronous counterparts. You can examine the
Exception property in your code when your scenario may generate multiple exceptions.

Putting a slice of bread in the toaster
Start toasting...
Fire! Toast is ruined!
Flipping a slice of bacon
Flipping a slice of bacon
Flipping a slice of bacon
Cooking the second side of bacon...
Cracking 2 eggs
Cooking the eggs ...
Put bacon on plate
Put eggs on plate
Eggs are ready
Bacon is ready
Unhandled exception. System.InvalidOperationException: The toaster is on
fire
 at AsyncBreakfast.Program.ToastBreadAsync(Int32 slices) in
Program.cs:line 65
 at AsyncBreakfast.Program.MakeToastWithButterAndJamAsync(Int32 number) in
Program.cs:line 36
 at AsyncBreakfast.Program.Main(String[] args) in Program.cs:line 24
 at AsyncBreakfast.Program.<Main>(String[] args)

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.exception#system-threading-tasks-task-exception
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.exception#system-threading-tasks-task-exception
https://learn.microsoft.com/en-us/dotnet/api/system.aggregateexception
https://learn.microsoft.com/en-us/dotnet/api/system.aggregateexception.innerexceptions#system-aggregateexception-innerexceptions
https://learn.microsoft.com/en-us/dotnet/api/system.aggregateexception.innerexceptions#system-aggregateexception-innerexceptions

Before going on, comment out these two lines in your ToastBreadAsync method. You
don't want to start another fire:

C#

The series of await statements at the end of the preceding code can be improved by
using methods of the Task class. One of those APIs is WhenAll, which returns a Task that
completes when all the tasks in its argument list have completed, as shown in the
following code:

C#

Another option is to use WhenAny, which returns a Task<Task> that completes when
any of its arguments complete. You can await the returned task, knowing that it has
already finished. The following code shows how you could use WhenAny to await the
first task to finish and then process its result. After processing the result from the
completed task, you remove that completed task from the list of tasks passed to
WhenAny .

C#

Console.WriteLine("Fire! Toast is ruined!");
throw new InvalidOperationException("The toaster is on fire");

Await tasks efficiently

await Task.WhenAll(eggsTask, baconTask, toastTask);
Console.WriteLine("Eggs are ready");
Console.WriteLine("Bacon is ready");
Console.WriteLine("Toast is ready");
Console.WriteLine("Breakfast is ready!");

var breakfastTasks = new List<Task> { eggsTask, baconTask, toastTask };
while (breakfastTasks.Count > 0)
{
 Task finishedTask = await Task.WhenAny(breakfastTasks);
 if (finishedTask == eggsTask)
 {
 Console.WriteLine("Eggs are ready");
 }
 else if (finishedTask == baconTask)
 {
 Console.WriteLine("Bacon is ready");
 }
 else if (finishedTask == toastTask)
 {

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenall
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany

After all those changes, the final version of the code looks like this:

C#

 Console.WriteLine("Toast is ready");
 }
 await finishedTask;
 breakfastTasks.Remove(finishedTask);
}

using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace AsyncBreakfast
{
 // These classes are intentionally empty for the purpose of this
example. They are simply marker classes for the purpose of demonstration,
contain no properties, and serve no other purpose.
 internal class Bacon { }
 internal class Coffee { }
 internal class Egg { }
 internal class Juice { }
 internal class Toast { }

 class Program
 {

 static async Task Main(string[] args)
 {
 Coffee cup = PourCoffee();
 Console.WriteLine("coffee is ready");

 var eggsTask = FryEggsAsync(2);
 var baconTask = FryBaconAsync(3);
 var toastTask = MakeToastWithButterAndJamAsync(2);

 var breakfastTasks = new List<Task> { eggsTask, baconTask,
toastTask };
 while (breakfastTasks.Count > 0)
 {
 Task finishedTask = await Task.WhenAny(breakfastTasks);
 if (finishedTask == eggsTask)
 {
 Console.WriteLine("eggs are ready");
 }
 else if (finishedTask == baconTask)
 {
 Console.WriteLine("bacon is ready");
 }
 else if (finishedTask == toastTask)
 {
 Console.WriteLine("toast is ready");
 }
 await finishedTask;
 breakfastTasks.Remove(finishedTask);
 }

 Juice oj = PourOJ();
 Console.WriteLine("oj is ready");
 Console.WriteLine("Breakfast is ready!");
 }

 static async Task<Toast> MakeToastWithButterAndJamAsync(int number)
 {
 var toast = await ToastBreadAsync(number);
 ApplyButter(toast);
 ApplyJam(toast);

 return toast;
 }

 private static Juice PourOJ()
 {
 Console.WriteLine("Pouring orange juice");
 return new Juice();
 }

 private static void ApplyJam(Toast toast) =>
 Console.WriteLine("Putting jam on the toast");

 private static void ApplyButter(Toast toast) =>
 Console.WriteLine("Putting butter on the toast");

 private static async Task<Toast> ToastBreadAsync(int slices)
 {
 for (int slice = 0; slice < slices; slice++)
 {
 Console.WriteLine("Putting a slice of bread in the
toaster");
 }
 Console.WriteLine("Start toasting...");
 await Task.Delay(3000);
 Console.WriteLine("Remove toast from toaster");

 return new Toast();
 }

 private static async Task<Bacon> FryBaconAsync(int slices)
 {
 Console.WriteLine($"putting {slices} slices of bacon in the
pan");
 Console.WriteLine("cooking first side of bacon...");
 await Task.Delay(3000);
 for (int slice = 0; slice < slices; slice++)
 {
 Console.WriteLine("flipping a slice of bacon");
 }
 Console.WriteLine("cooking the second side of bacon...");
 await Task.Delay(3000);
 Console.WriteLine("Put bacon on plate");

 return new Bacon();
 }

 private static async Task<Egg> FryEggsAsync(int howMany)
 {
 Console.WriteLine("Warming the egg pan...");
 await Task.Delay(3000);
 Console.WriteLine($"cracking {howMany} eggs");
 Console.WriteLine("cooking the eggs ...");
 await Task.Delay(3000);
 Console.WriteLine("Put eggs on plate");

 return new Egg();
 }

 private static Coffee PourCoffee()
 {
 Console.WriteLine("Pouring coffee");
 return new Coffee();
 }
 }
}

The final version of the asynchronously prepared breakfast took roughly 15 minutes
because some tasks ran concurrently, and the code monitored multiple tasks at once
and only took action when it was needed.

This final code is asynchronous. It more accurately reflects how a person would cook a
breakfast. Compare the preceding code with the first code sample in this article. The
core actions are still clear from reading the code. You can read this code the same way
you'd read those instructions for making a breakfast at the beginning of this article. The
language features for async and await provide the translation every person makes to
follow those written instructions: start tasks as you can and don't block waiting for tasks
to complete.

Next steps
Explore real world scenarios for asynchronous programs

Asynchronous programming
Article • 2022-03-11 • 10 minutes to read

If you have any I/O-bound needs (such as requesting data from a network, accessing a
database, or reading and writing to a file system), you'll want to utilize asynchronous
programming. You could also have CPU-bound code, such as performing an expensive
calculation, which is also a good scenario for writing async code.

C# has a language-level asynchronous programming model, which allows for easily
writing asynchronous code without having to juggle callbacks or conform to a library
that supports asynchrony. It follows what is known as the Task-based Asynchronous
Pattern (TAP).

The core of async programming is the Task and Task<T> objects, which model
asynchronous operations. They are supported by the async and await keywords. The
model is fairly simple in most cases:

For I/O-bound code, you await an operation that returns a Task or Task<T> inside
of an async method.
For CPU-bound code, you await an operation that is started on a background
thread with the Task.Run method.

The await keyword is where the magic happens. It yields control to the caller of the
method that performed await , and it ultimately allows a UI to be responsive or a service
to be elastic. While there are ways to approach async code other than async and await ,
this article focuses on the language-level constructs.

You may need to download some data from a web service when a button is pressed but
don't want to block the UI thread. It can be accomplished like this:

C#

Overview of the asynchronous model

I/O-bound example: Download data from a web service

private readonly HttpClient _httpClient = new HttpClient();

downloadButton.Clicked += async (o, e) =>
{
 // This line will yield control to the UI as the request
 // from the web service is happening.

https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run
https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

The code expresses the intent (downloading data asynchronously) without getting
bogged down in interacting with Task objects.

Say you're writing a mobile game where pressing a button can inflict damage on many
enemies on the screen. Performing the damage calculation can be expensive, and doing
it on the UI thread would make the game appear to pause as the calculation is
performed!

The best way to handle this is to start a background thread, which does the work using
Task.Run , and await its result using await . This allows the UI to feel smooth as the work
is being done.

C#

This code clearly expresses the intent of the button's click event, it doesn't require
managing a background thread manually, and it does so in a non-blocking way.

On the C# side of things, the compiler transforms your code into a state machine that
keeps track of things like yielding execution when an await is reached and resuming
execution when a background job has finished.

 //
 // The UI thread is now free to perform other work.
 var stringData = await _httpClient.GetStringAsync(URL);
 DoSomethingWithData(stringData);
};

CPU-bound example: Perform a calculation for a game

private DamageResult CalculateDamageDone()
{
 // Code omitted:
 //
 // Does an expensive calculation and returns
 // the result of that calculation.
}

calculateButton.Clicked += async (o, e) =>
{
 // This line will yield control to the UI while CalculateDamageDone()
 // performs its work. The UI thread is free to perform other work.
 var damageResult = await Task.Run(() => CalculateDamageDone());
 DisplayDamage(damageResult);
};

What happens under the covers

For the theoretically inclined, this is an implementation of the Promise Model of
asynchrony .

Async code can be used for both I/O-bound and CPU-bound code, but differently
for each scenario.
Async code uses Task<T> and Task , which are constructs used to model work
being done in the background.
The async keyword turns a method into an async method, which allows you to use
the await keyword in its body.
When the await keyword is applied, it suspends the calling method and yields
control back to its caller until the awaited task is complete.
await can only be used inside an async method.

The first two examples of this guide showed how you could use async and await for
I/O-bound and CPU-bound work. It's key that you can identify when a job you need to
do is I/O-bound or CPU-bound because it can greatly affect the performance of your
code and could potentially lead to misusing certain constructs.

Here are two questions you should ask before you write any code:

1. Will your code be "waiting" for something, such as data from a database?

If your answer is "yes", then your work is I/O-bound.

2. Will your code be performing an expensive computation?

If you answered "yes", then your work is CPU-bound.

If the work you have is I/O-bound, use async and await without Task.Run . You should
not use the Task Parallel Library.

If the work you have is CPU-bound and you care about responsiveness, use async and
await , but spawn off the work on another thread with Task.Run . If the work is
appropriate for concurrency and parallelism, also consider using the Task Parallel Library.

Additionally, you should always measure the execution of your code. For example, you
may find yourself in a situation where your CPU-bound work is not costly enough

Key pieces to understand

Recognize CPU-bound and I/O-bound work

https://en.wikipedia.org/wiki/Futures_and_promises
https://learn.microsoft.com/en-ca/dotnet/standard/parallel-programming/task-parallel-library-tpl

compared with the overhead of context switches when multithreading. Every choice has
its tradeoff, and you should pick the correct tradeoff for your situation.

The following examples demonstrate various ways you can write async code in C#. They
cover a few different scenarios you may come across.

This snippet downloads the HTML from the homepage at
https://dotnetfoundation.org and counts the number of times the string ".NET" occurs
in the HTML. It uses ASP.NET to define a Web API controller method, which performs
this task and returns the number.

C#

Here's the same scenario written for a Universal Windows App, which performs the same
task when a Button is pressed:

C#

More examples

Extract data from a network

７ Note

If you plan on doing HTML parsing in production code, don't use regular
expressions. Use a parsing library instead.

private readonly HttpClient _httpClient = new HttpClient();

[HttpGet, Route("DotNetCount")]
public async Task<int> GetDotNetCount()
{
 // Suspends GetDotNetCount() to allow the caller (the web server)
 // to accept another request, rather than blocking on this one.
 var html = await
_httpClient.GetStringAsync("https://dotnetfoundation.org");

 return Regex.Matches(html, @"\.NET").Count;
}

private readonly HttpClient _httpClient = new HttpClient();

private async void OnSeeTheDotNetsButtonClick(object sender, RoutedEventArgs
e)
{

https://dotnetfoundation.org/

You may find yourself in a situation where you need to retrieve multiple pieces of data
concurrently. The Task API contains two methods, Task.WhenAll and Task.WhenAny, that
allow you to write asynchronous code that performs a non-blocking wait on multiple
background jobs.

This example shows how you might grab User data for a set of userIds.

C#

 // Capture the task handle here so we can await the background task
later.
 var getDotNetFoundationHtmlTask =
_httpClient.GetStringAsync("https://dotnetfoundation.org");

 // Any other work on the UI thread can be done here, such as enabling a
Progress Bar.
 // This is important to do here, before the "await" call, so that the
user
 // sees the progress bar before execution of this method is yielded.
 NetworkProgressBar.IsEnabled = true;
 NetworkProgressBar.Visibility = Visibility.Visible;

 // The await operator suspends OnSeeTheDotNetsButtonClick(), returning
control to its caller.
 // This is what allows the app to be responsive and not block the UI
thread.
 var html = await getDotNetFoundationHtmlTask;
 int count = Regex.Matches(html, @"\.NET").Count;

 DotNetCountLabel.Text = $"Number of .NETs on dotnetfoundation.org:
{count}";

 NetworkProgressBar.IsEnabled = false;
 NetworkProgressBar.Visibility = Visibility.Collapsed;
}

Wait for multiple tasks to complete

public async Task<User> GetUserAsync(int userId)
{
 // Code omitted:
 //
 // Given a user Id {userId}, retrieves a User object corresponding
 // to the entry in the database with {userId} as its Id.
}

public static async Task<IEnumerable<User>> GetUsersAsync(IEnumerable<int>
userIds)
{
 var getUserTasks = new List<Task<User>>();
 foreach (int userId in userIds)

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenall
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany

Here's another way to write this more succinctly, using LINQ:

C#

Although it's less code, use caution when mixing LINQ with asynchronous code. Because
LINQ uses deferred (lazy) execution, async calls won't happen immediately as they do in
a foreach loop unless you force the generated sequence to iterate with a call to
.ToList() or .ToArray() .

With async programming, there are some details to keep in mind that can prevent
unexpected behavior.

async methods need to have an await keyword in their body or they will never
yield!

This is important to keep in mind. If await is not used in the body of an async
method, the C# compiler generates a warning, but the code compiles and runs as
if it were a normal method. This is incredibly inefficient, as the state machine
generated by the C# compiler for the async method is not accomplishing anything.

Add "Async" as the suffix of every async method name you write.

 {
 getUserTasks.Add(GetUserAsync(userId));
 }

 return await Task.WhenAll(getUserTasks);
}

public async Task<User> GetUserAsync(int userId)
{
 // Code omitted:
 //
 // Given a user Id {userId}, retrieves a User object corresponding
 // to the entry in the database with {userId} as its Id.
}

public static async Task<User[]> GetUsersAsync(IEnumerable<int> userIds)
{
 var getUserTasks = userIds.Select(id => GetUserAsync(id));
 return await Task.WhenAll(getUserTasks);
}

Important info and advice

This is the convention used in .NET to more easily differentiate synchronous and
asynchronous methods. Certain methods that aren't explicitly called by your code
(such as event handlers or web controller methods) don't necessarily apply.
Because they are not explicitly called by your code, being explicit about their
naming isn't as important.

async void should only be used for event handlers.

async void is the only way to allow asynchronous event handlers to work because
events do not have return types (thus cannot make use of Task and Task<T>). Any
other use of async void does not follow the TAP model and can be challenging to
use, such as:

Exceptions thrown in an async void method can't be caught outside of that
method.
async void methods are difficult to test.
async void methods can cause bad side effects if the caller isn't expecting them
to be async.

Tread carefully when using async lambdas in LINQ expressions

Lambda expressions in LINQ use deferred execution, meaning code could end up
executing at a time when you're not expecting it to. The introduction of blocking
tasks into this can easily result in a deadlock if not written correctly. Additionally,
the nesting of asynchronous code like this can also make it more difficult to reason
about the execution of the code. Async and LINQ are powerful but should be used
together as carefully and clearly as possible.

Write code that awaits Tasks in a non-blocking manner

Blocking the current thread as a means to wait for a Task to complete can result in
deadlocks and blocked context threads and can require more complex error-
handling. The following table provides guidance on how to deal with waiting for
tasks in a non-blocking way:

Use this... Instead of this... When wishing to do this...

await Task.Wait or Task.Result Retrieving the result of a background
task

await

Task.WhenAny

Task.WaitAny Waiting for any task to complete

await

Task.WhenAll

Task.WaitAll Waiting for all tasks to complete

Use this... Instead of this... When wishing to do this...

await Task.Delay Thread.Sleep Waiting for a period of time

Consider using ValueTask where possible

Returning a Task object from async methods can introduce performance
bottlenecks in certain paths. Task is a reference type, so using it means allocating
an object. In cases where a method declared with the async modifier returns a
cached result or completes synchronously, the extra allocations can become a
significant time cost in performance critical sections of code. It can become costly
if those allocations occur in tight loops. For more information, see generalized
async return types.

Consider using ConfigureAwait(false)

A common question is, "when should I use the Task.ConfigureAwait(Boolean)
method?". The method allows for a Task instance to configure its awaiter. This is
an important consideration and setting it incorrectly could potentially have
performance implications and even deadlocks. For more information on
ConfigureAwait , see the ConfigureAwait FAQ .

Write less stateful code

Don't depend on the state of global objects or the execution of certain methods.
Instead, depend only on the return values of methods. Why?

Code will be easier to reason about.
Code will be easier to test.
Mixing async and synchronous code is far simpler.
Race conditions can typically be avoided altogether.
Depending on return values makes coordinating async code simple.
(Bonus) it works really well with dependency injection.

A recommended goal is to achieve complete or near-complete Referential
Transparency in your code. Doing so will result in a predictable, testable, and
maintainable codebase.

The Task asynchronous programming model (C#).

Other resources

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.configureawait#system-threading-tasks-task-configureawait(system-boolean)
https://devblogs.microsoft.com/dotnet/configureawait-faq
https://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29

Task asynchronous programming model
Article • 2022-09-29 • 13 minutes to read

You can avoid performance bottlenecks and enhance the overall responsiveness of your
application by using asynchronous programming. However, traditional techniques for
writing asynchronous applications can be complicated, making them difficult to write,
debug, and maintain.

C# supports simplified approach, async programming, that leverages asynchronous
support in the .NET runtime. The compiler does the difficult work that the developer
used to do, and your application retains a logical structure that resembles synchronous
code. As a result, you get all the advantages of asynchronous programming with a
fraction of the effort.

This topic provides an overview of when and how to use async programming and
includes links to support topics that contain details and examples.

Asynchrony is essential for activities that are potentially blocking, such as web access.
Access to a web resource sometimes is slow or delayed. If such an activity is blocked in a
synchronous process, the entire application must wait. In an asynchronous process, the
application can continue with other work that doesn't depend on the web resource until
the potentially blocking task finishes.

The following table shows typical areas where asynchronous programming improves
responsiveness. The listed APIs from .NET and the Windows Runtime contain methods
that support async programming.

Application
area

.NET types with async methods Windows Runtime types with async
methods

Web access HttpClient Windows.Web.Http.HttpClient
SyndicationClient

Working with
files

JsonSerializer
StreamReader
StreamWriter
XmlReader
XmlWriter

StorageFile

Async improves responsiveness

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/uwp/api/windows.web.http.httpclient
https://learn.microsoft.com/en-us/uwp/api/windows.web.syndication.syndicationclient
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter
https://learn.microsoft.com/en-us/dotnet/api/system.xml.xmlreader
https://learn.microsoft.com/en-us/dotnet/api/system.xml.xmlwriter
https://learn.microsoft.com/en-us/uwp/api/windows.storage.storagefile

Application
area

.NET types with async methods Windows Runtime types with async
methods

Working with
images

MediaCapture
BitmapEncoder
BitmapDecoder

WCF
programming

Synchronous and Asynchronous
Operations

Asynchrony proves especially valuable for applications that access the UI thread because
all UI-related activity usually shares one thread. If any process is blocked in a
synchronous application, all are blocked. Your application stops responding, and you
might conclude that it has failed when instead it's just waiting.

When you use asynchronous methods, the application continues to respond to the UI.
You can resize or minimize a window, for example, or you can close the application if
you don't want to wait for it to finish.

The async-based approach adds the equivalent of an automatic transmission to the list
of options that you can choose from when designing asynchronous operations. That is,
you get all the benefits of traditional asynchronous programming but with much less
effort from the developer.

The async and await keywords in C# are the heart of async programming. By using those
two keywords, you can use resources in .NET Framework, .NET Core, or the Windows
Runtime to create an asynchronous method almost as easily as you create a
synchronous method. Asynchronous methods that you define by using the async
keyword are referred to as async methods.

The following example shows an async method. Almost everything in the code should
look familiar to you.

You can find a complete Windows Presentation Foundation (WPF) example available for
download from Asynchronous programming with async and await in C#.

C#

Async methods are easy to write

public async Task<int> GetUrlContentLengthAsync()
{
 var client = new HttpClient();

 Task<string> getStringTask =

https://learn.microsoft.com/en-us/uwp/api/windows.media.capture.mediacapture
https://learn.microsoft.com/en-us/uwp/api/windows.graphics.imaging.bitmapencoder
https://learn.microsoft.com/en-us/uwp/api/windows.graphics.imaging.bitmapdecoder
https://learn.microsoft.com/en-ca/dotnet/framework/wcf/synchronous-and-asynchronous-operations
https://learn.microsoft.com/en-us/samples/dotnet/samples/async-and-await-cs

You can learn several practices from the preceding sample. Start with the method
signature. It includes the async modifier. The return type is Task<int> (See "Return
Types" section for more options). The method name ends in Async . In the body of the
method, GetStringAsync returns a Task<string> . That means that when you await the
task you'll get a string (contents). Before awaiting the task, you can do work that
doesn't rely on the string from GetStringAsync .

Pay close attention to the await operator. It suspends GetUrlContentLengthAsync :

GetUrlContentLengthAsync can't continue until getStringTask is complete.
Meanwhile, control returns to the caller of GetUrlContentLengthAsync .
Control resumes here when getStringTask is complete.
The await operator then retrieves the string result from getStringTask .

The return statement specifies an integer result. Any methods that are awaiting
GetUrlContentLengthAsync retrieve the length value.

If GetUrlContentLengthAsync doesn't have any work that it can do between calling
GetStringAsync and awaiting its completion, you can simplify your code by calling and
awaiting in the following single statement.

C#

The following characteristics summarize what makes the previous example an async
method:

The method signature includes an async modifier.

 client.GetStringAsync("https://docs.microsoft.com/dotnet");

 DoIndependentWork();

 string contents = await getStringTask;

 return contents.Length;
}

void DoIndependentWork()
{
 Console.WriteLine("Working...");
}

string contents = await
client.GetStringAsync("https://learn.microsoft.com/dotnet");

The name of an async method, by convention, ends with an "Async" suffix.

The return type is one of the following types:
Task<TResult> if your method has a return statement in which the operand has
type TResult .
Task if your method has no return statement or has a return statement with no
operand.
void if you're writing an async event handler.
Any other type that has a GetAwaiter method.

For more information, see the Return types and parameters section.

The method usually includes at least one await expression, which marks a point
where the method can't continue until the awaited asynchronous operation is
complete. In the meantime, the method is suspended, and control returns to the
method's caller. The next section of this topic illustrates what happens at the
suspension point.

In async methods, you use the provided keywords and types to indicate what you want
to do, and the compiler does the rest, including keeping track of what must happen
when control returns to an await point in a suspended method. Some routine processes,
such as loops and exception handling, can be difficult to handle in traditional
asynchronous code. In an async method, you write these elements much as you would
in a synchronous solution, and the problem is solved.

For more information about asynchrony in previous versions of .NET Framework, see TPL
and traditional .NET Framework asynchronous programming.

The most important thing to understand in asynchronous programming is how the
control flow moves from method to method. The following diagram leads you through
the process:

What happens in an async method

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-ca/dotnet/standard/parallel-programming/tpl-and-traditional-async-programming

The numbers in the diagram correspond to the following steps, initiated when a calling
method calls the async method.

1. A calling method calls and awaits the GetUrlContentLengthAsync async method.

2. GetUrlContentLengthAsync creates an HttpClient instance and calls the
GetStringAsync asynchronous method to download the contents of a website as a
string.

3. Something happens in GetStringAsync that suspends its progress. Perhaps it must
wait for a website to download or some other blocking activity. To avoid blocking
resources, GetStringAsync yields control to its caller, GetUrlContentLengthAsync .

GetStringAsync returns a Task<TResult>, where TResult is a string, and
GetUrlContentLengthAsync assigns the task to the getStringTask variable. The task
represents the ongoing process for the call to GetStringAsync , with a commitment
to produce an actual string value when the work is complete.

4. Because getStringTask hasn't been awaited yet, GetUrlContentLengthAsync can
continue with other work that doesn't depend on the final result from
GetStringAsync . That work is represented by a call to the synchronous method
DoIndependentWork .

5. DoIndependentWork is a synchronous method that does its work and returns to its
caller.

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstringasync
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-ca/dotnet/csharp/programming-guide/concepts/async/media/task-asynchronous-programming-model/navigation-trace-async-program.png#lightbox

6. GetUrlContentLengthAsync has run out of work that it can do without a result from
getStringTask . GetUrlContentLengthAsync next wants to calculate and return the
length of the downloaded string, but the method can't calculate that value until
the method has the string.

Therefore, GetUrlContentLengthAsync uses an await operator to suspend its
progress and to yield control to the method that called GetUrlContentLengthAsync .
GetUrlContentLengthAsync returns a Task<int> to the caller. The task represents a
promise to produce an integer result that's the length of the downloaded string.

Inside the calling method the processing pattern continues. The caller might do
other work that doesn't depend on the result from GetUrlContentLengthAsync
before awaiting that result, or the caller might await immediately. The calling
method is waiting for GetUrlContentLengthAsync , and GetUrlContentLengthAsync is
waiting for GetStringAsync .

7. GetStringAsync completes and produces a string result. The string result isn't
returned by the call to GetStringAsync in the way that you might expect.
(Remember that the method already returned a task in step 3.) Instead, the string
result is stored in the task that represents the completion of the method,
getStringTask . The await operator retrieves the result from getStringTask . The
assignment statement assigns the retrieved result to contents .

8. When GetUrlContentLengthAsync has the string result, the method can calculate
the length of the string. Then the work of GetUrlContentLengthAsync is also
complete, and the waiting event handler can resume. In the full example at the end
of the topic, you can confirm that the event handler retrieves and prints the value
of the length result. If you are new to asynchronous programming, take a minute
to consider the difference between synchronous and asynchronous behavior. A
synchronous method returns when its work is complete (step 5), but an async
method returns a task value when its work is suspended (steps 3 and 6). When the

７ Note

If GetStringAsync (and therefore getStringTask) completes before
GetUrlContentLengthAsync awaits it, control remains in
GetUrlContentLengthAsync . The expense of suspending and then returning to
GetUrlContentLengthAsync would be wasted if the called asynchronous
process getStringTask has already completed and GetUrlContentLengthAsync
doesn't have to wait for the final result.

async method eventually completes its work, the task is marked as completed and
the result, if any, is stored in the task.

You might be wondering where to find methods such as GetStringAsync that support
async programming. .NET Framework 4.5 or higher and .NET Core contain many
members that work with async and await . You can recognize them by the "Async" suffix
that's appended to the member name, and by their return type of Task or
Task<TResult>. For example, the System.IO.Stream class contains methods such as
CopyToAsync, ReadAsync, and WriteAsync alongside the synchronous methods CopyTo,
Read, and Write.

The Windows Runtime also contains many methods that you can use with async and
await in Windows apps. For more information, see Threading and async programming
for UWP development, and Asynchronous programming (Windows Store apps) and
Quickstart: Calling asynchronous APIs in C# or Visual Basic if you use earlier versions of
the Windows Runtime.

Async methods are intended to be non-blocking operations. An await expression in an
async method doesn't block the current thread while the awaited task is running.
Instead, the expression signs up the rest of the method as a continuation and returns
control to the caller of the async method.

The async and await keywords don't cause additional threads to be created. Async
methods don't require multithreading because an async method doesn't run on its own
thread. The method runs on the current synchronization context and uses time on the
thread only when the method is active. You can use Task.Run to move CPU-bound work
to a background thread, but a background thread doesn't help with a process that's just
waiting for results to become available.

The async-based approach to asynchronous programming is preferable to existing
approaches in almost every case. In particular, this approach is better than the
BackgroundWorker class for I/O-bound operations because the code is simpler and you
don't have to guard against race conditions. In combination with the Task.Run method,
async programming is better than BackgroundWorker for CPU-bound operations
because async programming separates the coordination details of running your code
from the work that Task.Run transfers to the thread pool.

API async methods

Threads

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.copytoasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.readasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.writeasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.copyto
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.read
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.write
https://learn.microsoft.com/en-us/windows/uwp/threading-async/
https://learn.microsoft.com/en-us/previous-versions/windows/apps/hh464924(v=win.10)
https://learn.microsoft.com/en-us/previous-versions/windows/apps/hh452713(v=win.10)
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker

If you specify that a method is an async method by using the async modifier, you enable
the following two capabilities.

The marked async method can use await to designate suspension points. The
await operator tells the compiler that the async method can't continue past that
point until the awaited asynchronous process is complete. In the meantime,
control returns to the caller of the async method.

The suspension of an async method at an await expression doesn't constitute an
exit from the method, and finally blocks don't run.

The marked async method can itself be awaited by methods that call it.

An async method typically contains one or more occurrences of an await operator, but
the absence of await expressions doesn't cause a compiler error. If an async method
doesn't use an await operator to mark a suspension point, the method executes as a
synchronous method does, despite the async modifier. The compiler issues a warning
for such methods.

async and await are contextual keywords. For more information and examples, see the
following topics:

async
await

An async method typically returns a Task or a Task<TResult>. Inside an async method, an
await operator is applied to a task that's returned from a call to another async method.

You specify Task<TResult> as the return type if the method contains a return statement
that specifies an operand of type TResult .

You use Task as the return type if the method has no return statement or has a return
statement that doesn't return an operand.

You can also specify any other return type, provided that the type includes a GetAwaiter
method. ValueTask<TResult> is an example of such a type. It is available in the
System.Threading.Tasks.Extension NuGet package.

async and await

Return types and parameters

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://www.nuget.org/packages/System.Threading.Tasks.Extensions/

The following example shows how you declare and call a method that returns a
Task<TResult> or a Task:

C#

Each returned task represents ongoing work. A task encapsulates information about the
state of the asynchronous process and, eventually, either the final result from the
process or the exception that the process raises if it doesn't succeed.

An async method can also have a void return type. This return type is used primarily to
define event handlers, where a void return type is required. Async event handlers often
serve as the starting point for async programs.

An async method that has a void return type can't be awaited, and the caller of a void-
returning method can't catch any exceptions that the method throws.

An async method can't declare in, ref or out parameters, but the method can call
methods that have such parameters. Similarly, an async method can't return a value by
reference, although it can call methods with ref return values.

For more information and examples, see Async return types (C#). For more information
about how to catch exceptions in async methods, see try-catch.

async Task<int> GetTaskOfTResultAsync()
{
 int hours = 0;
 await Task.Delay(0);

 return hours;
}

Task<int> returnedTaskTResult = GetTaskOfTResultAsync();
int intResult = await returnedTaskTResult;
// Single line
// int intResult = await GetTaskOfTResultAsync();

async Task GetTaskAsync()
{
 await Task.Delay(0);
 // No return statement needed
}

Task returnedTask = GetTaskAsync();
await returnedTask;
// Single line
await GetTaskAsync();

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

Asynchronous APIs in Windows Runtime programming have one of the following return
types, which are similar to tasks:

IAsyncOperation<TResult>, which corresponds to Task<TResult>
IAsyncAction, which corresponds to Task
IAsyncActionWithProgress<TProgress>
IAsyncOperationWithProgress<TResult,TProgress>

By convention, methods that return commonly awaitable types (for example, Task ,
Task<T> , ValueTask , ValueTask<T>) should have names that end with "Async". Methods
that start an asynchronous operation but do not return an awaitable type should not
have names that end with "Async", but may start with "Begin", "Start", or some other
verb to suggest this method does not return or throw the result of the operation.

You can ignore the convention where an event, base class, or interface contract suggests
a different name. For example, you shouldn't rename common event handlers, such as
OnButtonClick .

Title Description

How to make multiple web requests in
parallel by using async and await (C#)

Demonstrates how to start several tasks at the same
time.

Async return types (C#) Illustrates the types that async methods can return,
and explains when each type is appropriate.

Cancel tasks with a cancellation token as a
signaling mechanism.

Shows how to add the following functionality to your
async solution:

- Cancel a list of tasks (C#)
- Cancel tasks after a period of time (C#)
- Process asynchronous task as they complete (C#)

Using async for file access (C#) Lists and demonstrates the benefits of using async
and await to access files.

Task-based asynchronous pattern (TAP) Describes an asynchronous pattern, the pattern is
based on the Task and Task<TResult> types.

Async Videos on Channel 9 Provides links to a variety of videos about async
programming.

Naming convention

Related articles (Visual Studio)

https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncoperation-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncaction
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncactionwithprogress-1
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncoperationwithprogress-2
https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/shows/browse?terms=async

Asynchronous programming with async and await
async
await

See also

Async return types (C#)
Article • 2022-09-29 • 9 minutes to read

Async methods can have the following return types:

Task, for an async method that performs an operation but returns no value.
Task<TResult>, for an async method that returns a value.
void , for an event handler.
Any type that has an accessible GetAwaiter method. The object returned by the
GetAwaiter method must implement the
System.Runtime.CompilerServices.ICriticalNotifyCompletion interface.
IAsyncEnumerable<T>, for an async method that returns an async stream.

For more information about async methods, see Asynchronous programming with async
and await (C#).

Several other types also exist that are specific to Windows workloads:

DispatcherOperation, for async operations limited to Windows.
IAsyncAction, for async actions in UWP that don't return a value.
IAsyncActionWithProgress<TProgress>, for async actions in UWP that report
progress but don't return a value.
IAsyncOperation<TResult>, for async operations in UWP that return a value.
IAsyncOperationWithProgress<TResult,TProgress>, for async operations in UWP
that report progress and return a value.

Async methods that don't contain a return statement or that contain a return
statement that doesn't return an operand usually have a return type of Task. Such
methods return void if they run synchronously. If you use a Task return type for an
async method, a calling method can use an await operator to suspend the caller's
completion until the called async method has finished.

In the following example, the WaitAndApologizeAsync method doesn't contain a return
statement, so the method returns a Task object. Returning a Task enables
WaitAndApologizeAsync to be awaited. The Task type doesn't include a Result property
because it has no return value.

C#

Task return type

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.icriticalnotifycompletion
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcheroperation
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncaction
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncactionwithprogress-1
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncoperation-1
https://learn.microsoft.com/en-us/uwp/api/windows.foundation.iasyncoperationwithprogress-2
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

WaitAndApologizeAsync is awaited by using an await statement instead of an await
expression, similar to the calling statement for a synchronous void-returning method.
The application of an await operator in this case doesn't produce a value. When the
right operand of an await is a Task<TResult>, the await expression produces a result of
T . When the right operand of an await is a Task, the await and its operand are a
statement.

You can separate the call to WaitAndApologizeAsync from the application of an await
operator, as the following code shows. However, remember that a Task doesn't have a
Result property, and that no value is produced when an await operator is applied to a
Task .

The following code separates calling the WaitAndApologizeAsync method from awaiting
the task that the method returns.

C#

public static async Task DisplayCurrentInfoAsync()
{
 await WaitAndApologizeAsync();

 Console.WriteLine($"Today is {DateTime.Now:D}");
 Console.WriteLine($"The current time is {DateTime.Now.TimeOfDay:t}");
 Console.WriteLine("The current temperature is 76 degrees.");
}

static async Task WaitAndApologizeAsync()
{
 await Task.Delay(2000);

 Console.WriteLine("Sorry for the delay...\n");
}
// Example output:
// Sorry for the delay...
//
// Today is Monday, August 17, 2020
// The current time is 12:59:24.2183304
// The current temperature is 76 degrees.

Task waitAndApologizeTask = WaitAndApologizeAsync();

string output =
 $"Today is {DateTime.Now:D}\n" +
 $"The current time is {DateTime.Now.TimeOfDay:t}\n" +
 "The current temperature is 76 degrees.\n";

await waitAndApologizeTask;
Console.WriteLine(output);

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

The Task<TResult> return type is used for an async method that contains a return
statement in which the operand is TResult .

In the following example, the GetLeisureHoursAsync method contains a return
statement that returns an integer. The method declaration must specify a return type of
Task<int> . The FromResult async method is a placeholder for an operation that returns
a DayOfWeek.

C#

When GetLeisureHoursAsync is called from within an await expression in the
ShowTodaysInfo method, the await expression retrieves the integer value (the value of
leisureHours) that's stored in the task returned by the GetLeisureHours method. For
more information about await expressions, see await.

You can better understand how await retrieves the result from a Task<T> by separating
the call to GetLeisureHoursAsync from the application of await , as the following code
shows. A call to method GetLeisureHoursAsync that isn't immediately awaited returns a
Task<int> , as you would expect from the declaration of the method. The task is

Task<TResult> return type

public static async Task ShowTodaysInfoAsync()
{
 string message =
 $"Today is {DateTime.Today:D}\n" +
 "Today's hours of leisure: " +
 $"{await GetLeisureHoursAsync()}";

 Console.WriteLine(message);
}

static async Task<int> GetLeisureHoursAsync()
{
 DayOfWeek today = await Task.FromResult(DateTime.Now.DayOfWeek);

 int leisureHours =
 today is DayOfWeek.Saturday || today is DayOfWeek.Sunday
 ? 16 : 5;

 return leisureHours;
}
// Example output:
// Today is Wednesday, May 24, 2017
// Today's hours of leisure: 5

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.fromresult
https://learn.microsoft.com/en-us/dotnet/api/system.datetime.dayofweek#system-datetime-dayofweek

assigned to the getLeisureHoursTask variable in the example. Because
getLeisureHoursTask is a Task<TResult>, it contains a Result property of type TResult .
In this case, TResult represents an integer type. When await is applied to
getLeisureHoursTask , the await expression evaluates to the contents of the Result
property of getLeisureHoursTask . The value is assigned to the ret variable.

C#

You use the void return type in asynchronous event handlers, which require a void
return type. For methods other than event handlers that don't return a value, you should
return a Task instead, because an async method that returns void can't be awaited. Any
caller of such a method must continue to completion without waiting for the called
async method to finish. The caller must be independent of any values or exceptions that
the async method generates.

The caller of a void-returning async method can't catch exceptions thrown from the
method. Such unhandled exceptions are likely to cause your application to fail. If a
method that returns a Task or Task<TResult> throws an exception, the exception is
stored in the returned task. The exception is rethrown when the task is awaited. Make

） Important

The Result property is a blocking property. If you try to access it before its task is
finished, the thread that's currently active is blocked until the task completes and
the value is available. In most cases, you should access the value by using await
instead of accessing the property directly.

The previous example retrieved the value of the Result property to block the main
thread so that the Main method could print the message to the console before the
application ended.

var getLeisureHoursTask = GetLeisureHoursAsync();

string message =
 $"Today is {DateTime.Today:D}\n" +
 "Today's hours of leisure: " +
 $"{await getLeisureHoursTask}";

Console.WriteLine(message);

Void return type

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result#system-threading-tasks-task-1-result
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result

sure that any async method that can produce an exception has a return type of Task or
Task<TResult> and that calls to the method are awaited.

For more information about how to catch exceptions in async methods, see the
Exceptions in async methods section of the try-catch article.

The following example shows the behavior of an async event handler. In the example
code, an async event handler must let the main thread know when it finishes. Then the
main thread can wait for an async event handler to complete before exiting the
program.

C#

public class NaiveButton
{
 public event EventHandler? Clicked;

 public void Click()
 {
 Console.WriteLine("Somebody has clicked a button. Let's raise the
event...");
 Clicked?.Invoke(this, EventArgs.Empty);
 Console.WriteLine("All listeners are notified.");
 }
}

public class AsyncVoidExample
{
 static readonly TaskCompletionSource<bool> s_tcs = new
TaskCompletionSource<bool>();

 public static async Task MultipleEventHandlersAsync()
 {
 Task<bool> secondHandlerFinished = s_tcs.Task;

 var button = new NaiveButton();

 button.Clicked += OnButtonClicked1;
 button.Clicked += OnButtonClicked2Async;
 button.Clicked += OnButtonClicked3;

 Console.WriteLine("Before button.Click() is called...");
 button.Click();
 Console.WriteLine("After button.Click() is called...");

 await secondHandlerFinished;
 }

 private static void OnButtonClicked1(object? sender, EventArgs e)
 {
 Console.WriteLine(" Handler 1 is starting...");
 Task.Delay(100).Wait();

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

An async method can return any type that has an accessible GetAwaiter method that
returns an instance of an awaiter type. In addition, the type returned from the
GetAwaiter method must have the
System.Runtime.CompilerServices.AsyncMethodBuilderAttribute attribute. You can learn
more in the article on Attributes read by the compiler or the feature spec for Task like
return types.

This feature is the complement to awaitable expressions, which describes the
requirements for the operand of await . Generalized async return types enable the
compiler to generate async methods that return different types. Generalized async

 Console.WriteLine(" Handler 1 is done.");
 }

 private static async void OnButtonClicked2Async(object? sender,
EventArgs e)
 {
 Console.WriteLine(" Handler 2 is starting...");
 Task.Delay(100).Wait();
 Console.WriteLine(" Handler 2 is about to go async...");
 await Task.Delay(500);
 Console.WriteLine(" Handler 2 is done.");
 s_tcs.SetResult(true);
 }

 private static void OnButtonClicked3(object? sender, EventArgs e)
 {
 Console.WriteLine(" Handler 3 is starting...");
 Task.Delay(100).Wait();
 Console.WriteLine(" Handler 3 is done.");
 }
}
// Example output:
//
// Before button.Click() is called...
// Somebody has clicked a button. Let's raise the event...
// Handler 1 is starting...
// Handler 1 is done.
// Handler 2 is starting...
// Handler 2 is about to go async...
// Handler 3 is starting...
// Handler 3 is done.
// All listeners are notified.
// After button.Click() is called...
// Handler 2 is done.

Generalized async return types and
ValueTask<TResult>

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asyncmethodbuilderattribute

return types enabled performance improvements in the .NET libraries. Because Task and
Task<TResult> are reference types, memory allocation in performance-critical paths,
particularly when allocations occur in tight loops, can adversely affect performance.
Support for generalized return types means that you can return a lightweight value type
instead of a reference type to avoid additional memory allocations.

.NET provides the System.Threading.Tasks.ValueTask<TResult> structure as a lightweight
implementation of a generalized task-returning value. To use the
System.Threading.Tasks.ValueTask<TResult> type, you must add the
System.Threading.Tasks.Extensions NuGet package to your project. The following
example uses the ValueTask<TResult> structure to retrieve the value of two dice rolls.

C#

Writing a generalized async return type is an advanced scenario, and is targeted for use
in specialized environments. Consider using the Task , Task<T> , and ValueTask<T> types
instead, which cover most scenarios for asynchronous code.

class Program
{
 static readonly Random s_rnd = new Random();

 static async Task Main() =>
 Console.WriteLine($"You rolled {await GetDiceRollAsync()}");

 static async ValueTask<int> GetDiceRollAsync()
 {
 Console.WriteLine("Shaking dice...");

 int roll1 = await RollAsync();
 int roll2 = await RollAsync();

 return roll1 + roll2;
 }

 static async ValueTask<int> RollAsync()
 {
 await Task.Delay(500);

 int diceRoll = s_rnd.Next(1, 7);
 return diceRoll;
 }
}
// Example output:
// Shaking dice...
// You rolled 8

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1

In C# 10 and later, you can apply the AsyncMethodBuilder attribute to an async method
(instead of the async return type declaration) to override the builder for that type.
Typically you'd apply this attribute to use a different builder provided in the .NET
runtime.

An async method may return an async stream, represented by IAsyncEnumerable<T>.
An async stream provides a way to enumerate items read from a stream when elements
are generated in chunks with repeated asynchronous calls. The following example shows
an async method that generates an async stream:

C#

The preceding example reads lines from a string asynchronously. Once each line is read,
the code enumerates each word in the string. Callers would enumerate each word using
the await foreach statement. The method awaits when it needs to asynchronously read
the next line from the source string.

FromResult
Process asynchronous tasks as they complete

Async streams with IAsyncEnumerable<T>

static async IAsyncEnumerable<string> ReadWordsFromStreamAsync()
{
 string data =
 @"This is a line of text.
 Here is the second line of text.
 And there is one more for good measure.
 Wait, that was the penultimate line.";

 using var readStream = new StringReader(data);

 string? line = await readStream.ReadLineAsync();
 while (line != null)
 {
 foreach (string word in line.Split(' ',
StringSplitOptions.RemoveEmptyEntries))
 {
 yield return word;
 }

 line = await readStream.ReadLineAsync();
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.fromresult

Asynchronous programming with async and await (C#)
async
await

Cancel a list of tasks (C#)
Article • 2022-09-21 • 4 minutes to read

You can cancel an async console application if you don't want to wait for it to finish. By
following the example in this topic, you can add a cancellation to an application that
downloads the contents of a list of websites. You can cancel many tasks by associating
the CancellationTokenSource instance with each task. If you select the Enter key, you
cancel all tasks that aren't yet complete.

This tutorial covers:

This tutorial requires the following:

.NET 5 or later SDK
Integrated development environment (IDE)

We recommend Visual Studio, Visual Studio Code, or Visual Studio for Mac

Create a new .NET Core console application. You can create one by using the dotnet
new console command or from Visual Studio. Open the Program.cs file in your favorite
code editor.

Replace the existing using statements with these declarations:

C#

Creating a .NET console application＂

Writing an async application that supports cancellation＂

Demonstrating signaling cancellation＂

Prerequisites

Create example application

Replace using statements

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource
https://dotnet.microsoft.com/download/dotnet/5.0
https://visualstudio.microsoft.com/
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-new-sdk-templates#console
https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio

In the Program class definition, add these three fields:

C#

The CancellationTokenSource is used to signal a requested cancellation to a
CancellationToken. The HttpClient exposes the ability to send HTTP requests and
receive HTTP responses. The s_urlList holds all of the URLs that the application plans
to process.

The main entry point into the console application is the Main method. Replace the
existing method with the following:

C#

Add fields

static readonly CancellationTokenSource s_cts = new
CancellationTokenSource();

static readonly HttpClient s_client = new HttpClient
{
 MaxResponseContentBufferSize = 1_000_000
};

static readonly IEnumerable<string> s_urlList = new string[]
{
 "https://learn.microsoft.com",
 "https://learn.microsoft.com/aspnet/core",
 "https://learn.microsoft.com/azure",
 "https://learn.microsoft.com/azure/devops",
 "https://learn.microsoft.com/dotnet",
 "https://learn.microsoft.com/dynamics365",
 "https://learn.microsoft.com/education",
 "https://learn.microsoft.com/enterprise-mobility-security",
 "https://learn.microsoft.com/gaming",
 "https://learn.microsoft.com/graph",
 "https://learn.microsoft.com/microsoft-365",
 "https://learn.microsoft.com/office",
 "https://learn.microsoft.com/powershell",
 "https://learn.microsoft.com/sql",
 "https://learn.microsoft.com/surface",
 "https://learn.microsoft.com/system-center",
 "https://learn.microsoft.com/visualstudio",
 "https://learn.microsoft.com/windows",
 "https://learn.microsoft.com/xamarin"
};

Update application entry point

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

The updated Main method is now considered an Async main, which allows for an
asynchronous entry point into the executable. It writes a few instructional messages to
the console, then declares a Task instance named cancelTask , which will read console
key strokes. If the Enter key is pressed, a call to CancellationTokenSource.Cancel() is
made. This will signal cancellation. Next, the sumPageSizesTask variable is assigned from
the SumPageSizesAsync method. Both tasks are then passed to Task.WhenAny(Task[]),
which will continue when any of the two tasks have completed.

Below the Main method, add the SumPageSizesAsync method:

C#

static async Task Main()
{
 Console.WriteLine("Application started.");
 Console.WriteLine("Press the ENTER key to cancel...\n");

 Task cancelTask = Task.Run(() =>
 {
 while (Console.ReadKey().Key != ConsoleKey.Enter)
 {
 Console.WriteLine("Press the ENTER key to cancel...");
 }

 Console.WriteLine("\nENTER key pressed: cancelling downloads.\n");
 s_cts.Cancel();
 });

 Task sumPageSizesTask = SumPageSizesAsync();

 await Task.WhenAny(new[] { cancelTask, sumPageSizesTask });

 Console.WriteLine("Application ending.");
}

Create the asynchronous sum page sizes
method

static async Task SumPageSizesAsync()
{
 var stopwatch = Stopwatch.StartNew();

 int total = 0;
 foreach (string url in s_urlList)
 {
 int contentLength = await ProcessUrlAsync(url, s_client,
s_cts.Token);

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.cancel#system-threading-cancellationtokensource-cancel
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany#system-threading-tasks-task-whenany(system-threading-tasks-task())

The method starts by instantiating and starting a Stopwatch. It then loops through each
URL in the s_urlList and calls ProcessUrlAsync . With each iteration, the s_cts.Token is
passed into the ProcessUrlAsync method and the code returns a Task<TResult>, where
TResult is an integer:

C#

Add the following ProcessUrlAsync method below the SumPageSizesAsync method:

C#

For any given URL, the method will use the client instance provided to get the
response as a byte[] . The CancellationToken instance is passed into the
HttpClient.GetAsync(String, CancellationToken) and
HttpContent.ReadAsByteArrayAsync() methods. The token is used to register for
requested cancellation. The length is returned after the URL and length is written to the
console.

 total += contentLength;
 }

 stopwatch.Stop();

 Console.WriteLine($"\nTotal bytes returned: {total:#,#}");
 Console.WriteLine($"Elapsed time: {stopwatch.Elapsed}\n");
}

int total = 0;
foreach (string url in s_urlList)
{
 int contentLength = await ProcessUrlAsync(url, s_client, s_cts.Token);
 total += contentLength;
}

Add process method

static async Task<int> ProcessUrlAsync(string url, HttpClient client,
CancellationToken token)
{
 HttpResponseMessage response = await client.GetAsync(url, token);
 byte[] content = await response.Content.ReadAsByteArrayAsync(token);
 Console.WriteLine($"{url,-60} {content.Length,10:#,#}");

 return content.Length;
}

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getasync#system-net-http-httpclient-getasync(system-string-system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpcontent.readasbytearrayasync#system-net-http-httpcontent-readasbytearrayasync

Console

The following code is the complete text of the Program.cs file for the example.

C#

Example application output

Application started.
Press the ENTER key to cancel...

https://learn.microsoft.com 37,357
https://learn.microsoft.com/aspnet/core 85,589
https://learn.microsoft.com/azure 398,939
https://learn.microsoft.com/azure/devops 73,663
https://learn.microsoft.com/dotnet 67,452
https://learn.microsoft.com/dynamics365 48,582
https://learn.microsoft.com/education 22,924

ENTER key pressed: cancelling downloads.

Application ending.

Complete example

using System.Diagnostics;

class Program
{
 static readonly CancellationTokenSource s_cts = new
CancellationTokenSource();

 static readonly HttpClient s_client = new HttpClient
 {
 MaxResponseContentBufferSize = 1_000_000
 };

 static readonly IEnumerable<string> s_urlList = new string[]
 {
 "https://docs.microsoft.com",
 "https://docs.microsoft.com/aspnet/core",
 "https://docs.microsoft.com/azure",
 "https://docs.microsoft.com/azure/devops",
 "https://docs.microsoft.com/dotnet",
 "https://docs.microsoft.com/dynamics365",
 "https://docs.microsoft.com/education",
 "https://docs.microsoft.com/enterprise-mobility-security",
 "https://docs.microsoft.com/gaming",
 "https://docs.microsoft.com/graph",
 "https://docs.microsoft.com/microsoft-365",
 "https://docs.microsoft.com/office",

 "https://docs.microsoft.com/powershell",
 "https://docs.microsoft.com/sql",
 "https://docs.microsoft.com/surface",
 "https://docs.microsoft.com/system-center",
 "https://docs.microsoft.com/visualstudio",
 "https://docs.microsoft.com/windows",
 "https://docs.microsoft.com/xamarin"
 };

 static async Task Main()
 {
 Console.WriteLine("Application started.");
 Console.WriteLine("Press the ENTER key to cancel...\n");

 Task cancelTask = Task.Run(() =>
 {
 while (Console.ReadKey().Key != ConsoleKey.Enter)
 {
 Console.WriteLine("Press the ENTER key to cancel...");
 }

 Console.WriteLine("\nENTER key pressed: cancelling
downloads.\n");
 s_cts.Cancel();
 });

 Task sumPageSizesTask = SumPageSizesAsync();

 await Task.WhenAny(new[] { cancelTask, sumPageSizesTask });

 Console.WriteLine("Application ending.");
 }

 static async Task SumPageSizesAsync()
 {
 var stopwatch = Stopwatch.StartNew();

 int total = 0;
 foreach (string url in s_urlList)
 {
 int contentLength = await ProcessUrlAsync(url, s_client,
s_cts.Token);
 total += contentLength;
 }

 stopwatch.Stop();

 Console.WriteLine($"\nTotal bytes returned: {total:#,#}");
 Console.WriteLine($"Elapsed time: {stopwatch.Elapsed}\n");
 }

 static async Task<int> ProcessUrlAsync(string url, HttpClient client,
CancellationToken token)
 {
 HttpResponseMessage response = await client.GetAsync(url, token);

CancellationToken
CancellationTokenSource
Asynchronous programming with async and await (C#)

 byte[] content = await response.Content.ReadAsByteArrayAsync(token);
 Console.WriteLine($"{url,-60} {content.Length,10:#,#}");

 return content.Length;
 }
}

See also

Next steps
Cancel async tasks after a period of time (C#)

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource

Cancel async tasks after a period of time
(C#)
Article • 2022-09-21 • 2 minutes to read

You can cancel an asynchronous operation after a period of time by using the
CancellationTokenSource.CancelAfter method if you don't want to wait for the operation
to finish. This method schedules the cancellation of any associated tasks that aren't
complete within the period of time that's designated by the CancelAfter expression.

This example adds to the code that's developed in Cancel a list of tasks (C#) to
download a list of websites and to display the length of the contents of each one.

This tutorial covers:

This tutorial requires the following:

You're expected to have created an application in the Cancel a list of tasks (C#)
tutorial
.NET 5 or later SDK
Integrated development environment (IDE)

We recommend Visual Studio, Visual Studio Code, or Visual Studio for Mac

Replace the existing Main method with the following:

C#

Updating an existing .NET console application＂

Scheduling a cancellation＂

Prerequisites

Update application entry point

static async Task Main()
{
 Console.WriteLine("Application started.");

 try
 {
 s_cts.CancelAfter(3500);

 await SumPageSizesAsync();
 }

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.cancelafter
https://dotnet.microsoft.com/download/dotnet/5.0
https://visualstudio.microsoft.com/

The updated Main method writes a few instructional messages to the console. Within
the try catch, a call to CancellationTokenSource.CancelAfter(Int32) schedules a
cancellation. This will signal cancellation after a period of time.

Next, the SumPageSizesAsync method is awaited. If processing all of the URLs occurs
faster than the scheduled cancellation, the application ends. However, if the scheduled
cancellation is triggered before all of the URLs are processed, a
OperationCanceledException is thrown.

Console

The following code is the complete text of the Program.cs file for the example.

C#

 catch (OperationCanceledException)
 {
 Console.WriteLine("\nTasks cancelled: timed out.\n");
 }
 finally
 {
 s_cts.Dispose();
 }

 Console.WriteLine("Application ending.");
}

Example application output

Application started.

https://learn.microsoft.com 37,357
https://learn.microsoft.com/aspnet/core 85,589
https://learn.microsoft.com/azure 398,939
https://learn.microsoft.com/azure/devops 73,663

Tasks cancelled: timed out.

Application ending.

Complete example

using System.Diagnostics;

class Program
{
 static readonly CancellationTokenSource s_cts = new

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource.cancelafter#system-threading-cancellationtokensource-cancelafter(system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.operationcanceledexception

CancellationTokenSource();

 static readonly HttpClient s_client = new HttpClient
 {
 MaxResponseContentBufferSize = 1_000_000
 };

 static readonly IEnumerable<string> s_urlList = new string[]
 {
 "https://docs.microsoft.com",
 "https://docs.microsoft.com/aspnet/core",
 "https://docs.microsoft.com/azure",
 "https://docs.microsoft.com/azure/devops",
 "https://docs.microsoft.com/dotnet",
 "https://docs.microsoft.com/dynamics365",
 "https://docs.microsoft.com/education",
 "https://docs.microsoft.com/enterprise-mobility-security",
 "https://docs.microsoft.com/gaming",
 "https://docs.microsoft.com/graph",
 "https://docs.microsoft.com/microsoft-365",
 "https://docs.microsoft.com/office",
 "https://docs.microsoft.com/powershell",
 "https://docs.microsoft.com/sql",
 "https://docs.microsoft.com/surface",
 "https://docs.microsoft.com/system-center",
 "https://docs.microsoft.com/visualstudio",
 "https://docs.microsoft.com/windows",
 "https://docs.microsoft.com/xamarin"
 };

 static async Task Main()
 {
 Console.WriteLine("Application started.");

 try
 {
 s_cts.CancelAfter(3500);

 await SumPageSizesAsync();
 }
 catch (OperationCanceledException)
 {
 Console.WriteLine("\nTasks cancelled: timed out.\n");
 }
 finally
 {
 s_cts.Dispose();
 }

 Console.WriteLine("Application ending.");
 }

 static async Task SumPageSizesAsync()
 {
 var stopwatch = Stopwatch.StartNew();

CancellationToken
CancellationTokenSource
Asynchronous programming with async and await (C#)
Cancel a list of tasks (C#)

 int total = 0;
 foreach (string url in s_urlList)
 {
 int contentLength = await ProcessUrlAsync(url, s_client,
s_cts.Token);
 total += contentLength;
 }

 stopwatch.Stop();

 Console.WriteLine($"\nTotal bytes returned: {total:#,#}");
 Console.WriteLine($"Elapsed time: {stopwatch.Elapsed}\n");
 }

 static async Task<int> ProcessUrlAsync(string url, HttpClient client,
CancellationToken token)
 {
 HttpResponseMessage response = await client.GetAsync(url, token);
 byte[] content = await response.Content.ReadAsByteArrayAsync(token);
 Console.WriteLine($"{url,-60} {content.Length,10:#,#}");

 return content.Length;
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtokensource

Process asynchronous tasks as they
complete (C#)
Article • 2022-09-21 • 9 minutes to read

By using Task.WhenAny, you can start multiple tasks at the same time and process them
one by one as they're completed rather than process them in the order in which they're
started.

The following example uses a query to create a collection of tasks. Each task downloads
the contents of a specified website. In each iteration of a while loop, an awaited call to
WhenAny returns the task in the collection of tasks that finishes its download first. That
task is removed from the collection and processed. The loop repeats until the collection
contains no more tasks.

You can follow this tutorial by using one of the following options:

Visual Studio 2022 version 17.0.0 Preview with the .NET desktop development
workload installed. The .NET 6.0 SDK is automatically installed when you select this
workload.
The .NET 6.0 SDK with a code editor of your choice, such as Visual Studio
Code .

Create a new .NET Core console application that targets .NET 6.0. You can create one by
using the dotnet new console command or from Visual Studio.

Open the Program.cs file in your code editor, and replace the existing code with this
code:

C#

Prerequisites

Create example application

using System.Diagnostics;

namespace ProcessTasksAsTheyFinish;

class Program
{
 static void Main(string[] args)
 {

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=learn.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2022
https://dotnet.microsoft.com/download/dotnet/6.0
https://code.visualstudio.com/
https://learn.microsoft.com/en-ca/dotnet/core/tools/dotnet-new-sdk-templates#console

In the Program class definition, add the following two fields:

C#

The HttpClient exposes the ability to send HTTP requests and receive HTTP responses.
The s_urlList holds all of the URLs that the application plans to process.

The main entry point into the console application is the Main method. Replace the
existing method with the following:

C#

 Console.WriteLine("Hello World!");
 }
}

Add fields

static readonly HttpClient s_client = new HttpClient
{
 MaxResponseContentBufferSize = 1_000_000
};

static readonly IEnumerable<string> s_urlList = new string[]
{
 "https://learn.microsoft.com",
 "https://learn.microsoft.com/aspnet/core",
 "https://learn.microsoft.com/azure",
 "https://learn.microsoft.com/azure/devops",
 "https://learn.microsoft.com/dotnet",
 "https://learn.microsoft.com/dynamics365",
 "https://learn.microsoft.com/education",
 "https://learn.microsoft.com/enterprise-mobility-security",
 "https://learn.microsoft.com/gaming",
 "https://learn.microsoft.com/graph",
 "https://learn.microsoft.com/microsoft-365",
 "https://learn.microsoft.com/office",
 "https://learn.microsoft.com/powershell",
 "https://learn.microsoft.com/sql",
 "https://learn.microsoft.com/surface",
 "https://learn.microsoft.com/system-center",
 "https://learn.microsoft.com/visualstudio",
 "https://learn.microsoft.com/windows",
 "https://learn.microsoft.com/xamarin"
};

Update application entry point

The updated Main method is now considered an Async main, which allows for an
asynchronous entry point into the executable. It is expressed as a call to
SumPageSizesAsync .

Below the Main method, add the SumPageSizesAsync method:

C#

The method starts by instantiating and starting a Stopwatch. It then includes a query
that, when executed, creates a collection of tasks. Each call to ProcessUrlAsync in the
following code returns a Task<TResult>, where TResult is an integer:

C#

static Task Main() => SumPageSizesAsync();

Create the asynchronous sum page sizes
method

static async Task SumPageSizesAsync()
{
 var stopwatch = Stopwatch.StartNew();

 IEnumerable<Task<int>> downloadTasksQuery =
 from url in s_urlList
 select ProcessUrlAsync(url, s_client);

 List<Task<int>> downloadTasks = downloadTasksQuery.ToList();

 int total = 0;
 while (downloadTasks.Any())
 {
 Task<int> finishedTask = await Task.WhenAny(downloadTasks);
 downloadTasks.Remove(finishedTask);
 total += await finishedTask;
 }

 stopwatch.Stop();

 Console.WriteLine($"\nTotal bytes returned: {total:#,#}");
 Console.WriteLine($"Elapsed time: {stopwatch.Elapsed}\n");
}

IEnumerable<Task<int>> downloadTasksQuery =
 from url in s_urlList
 select ProcessUrlAsync(url, s_client);

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

Due to deferred execution with the LINQ, you call Enumerable.ToList to start each task.

C#

The while loop performs the following steps for each task in the collection:

1. Awaits a call to WhenAny to identify the first task in the collection that has finished
its download.

C#

2. Removes that task from the collection.

C#

3. Awaits finishedTask , which is returned by a call to ProcessUrlAsync . The
finishedTask variable is a Task<TResult> where TResult is an integer. The task is
already complete, but you await it to retrieve the length of the downloaded
website, as the following example shows. If the task is faulted, await will throw the
first child exception stored in the AggregateException , unlike reading the
Task<TResult>.Result property, which would throw the AggregateException .

C#

Add the following ProcessUrlAsync method below the SumPageSizesAsync method:

C#

List<Task<int>> downloadTasks = downloadTasksQuery.ToList();

Task<int> finishedTask = await Task.WhenAny(downloadTasks);

downloadTasks.Remove(finishedTask);

total += await finishedTask;

Add process method

static async Task<int> ProcessUrlAsync(string url, HttpClient client)
{
 byte[] content = await client.GetByteArrayAsync(url);
 Console.WriteLine($"{url,-60} {content.Length,10:#,#}");

https://learn.microsoft.com/en-ca/dotnet/standard/linq/deferred-execution-example
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result#system-threading-tasks-task-1-result

For any given URL, the method will use the client instance provided to get the
response as a byte[] . The length is returned after the URL and length is written to the
console.

Run the program several times to verify that the downloaded lengths don't always
appear in the same order.

The following code is the complete text of the Program.cs file for the example.

C#

 return content.Length;
}

Ｕ Caution

You can use WhenAny in a loop, as described in the example, to solve problems that
involve a small number of tasks. However, other approaches are more efficient if
you have a large number of tasks to process. For more information and examples,
see Processing tasks as they complete .

Complete example

using System.Diagnostics;

HttpClient s_client = new()
{
 MaxResponseContentBufferSize = 1_000_000
};

IEnumerable<string> s_urlList = new string[]
{
 "https://docs.microsoft.com",
 "https://docs.microsoft.com/aspnet/core",
 "https://docs.microsoft.com/azure",
 "https://docs.microsoft.com/azure/devops",
 "https://docs.microsoft.com/dotnet",
 "https://docs.microsoft.com/dynamics365",
 "https://docs.microsoft.com/education",
 "https://docs.microsoft.com/enterprise-mobility-security",
 "https://docs.microsoft.com/gaming",
 "https://docs.microsoft.com/graph",
 "https://docs.microsoft.com/microsoft-365",
 "https://docs.microsoft.com/office",
 "https://docs.microsoft.com/powershell",
 "https://docs.microsoft.com/sql",
 "https://docs.microsoft.com/surface",

https://devblogs.microsoft.com/pfxteam/processing-tasks-as-they-complete

 "https://docs.microsoft.com/system-center",
 "https://docs.microsoft.com/visualstudio",
 "https://docs.microsoft.com/windows",
 "https://docs.microsoft.com/xamarin"
};

await SumPageSizesAsync();

async Task SumPageSizesAsync()
{
 var stopwatch = Stopwatch.StartNew();

 IEnumerable<Task<int>> downloadTasksQuery =
 from url in s_urlList
 select ProcessUrlAsync(url, s_client);

 List<Task<int>> downloadTasks = downloadTasksQuery.ToList();

 int total = 0;
 while (downloadTasks.Any())
 {
 Task<int> finishedTask = await Task.WhenAny(downloadTasks);
 downloadTasks.Remove(finishedTask);
 total += await finishedTask;
 }

 stopwatch.Stop();

 Console.WriteLine($"\nTotal bytes returned: {total:#,#}");
 Console.WriteLine($"Elapsed time: {stopwatch.Elapsed}\n");
}

static async Task<int> ProcessUrlAsync(string url, HttpClient client)
{
 byte[] content = await client.GetByteArrayAsync(url);
 Console.WriteLine($"{url,-60} {content.Length,10:#,#}");

 return content.Length;
}

// Example output:
// https://docs.microsoft.com 132,517
// https://docs.microsoft.com/powershell 57,375
// https://docs.microsoft.com/gaming 33,549
// https://docs.microsoft.com/aspnet/core 88,714
// https://docs.microsoft.com/surface 39,840
// https://docs.microsoft.com/enterprise-mobility-security 30,903
// https://docs.microsoft.com/microsoft-365 67,867
// https://docs.microsoft.com/windows 26,816
// https://docs.microsoft.com/xamarin 57,958
// https://docs.microsoft.com/dotnet 78,706
// https://docs.microsoft.com/graph 48,277
// https://docs.microsoft.com/dynamics365 49,042
// https://docs.microsoft.com/office 67,867
// https://docs.microsoft.com/system-center 42,887

WhenAny
Asynchronous programming with async and await (C#)

// https://docs.microsoft.com/education 38,636
// https://docs.microsoft.com/azure 421,663
// https://docs.microsoft.com/visualstudio 30,925
// https://docs.microsoft.com/sql 54,608
// https://docs.microsoft.com/azure/devops 86,034

// Total bytes returned: 1,454,184
// Elapsed time: 00:00:01.1290403

See also

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenany

Asynchronous file access (C#)
Article • 2022-10-04 • 5 minutes to read

You can use the async feature to access files. By using the async feature, you can call
into asynchronous methods without using callbacks or splitting your code across
multiple methods or lambda expressions. To make synchronous code asynchronous, you
just call an asynchronous method instead of a synchronous method and add a few
keywords to the code.

You might consider the following reasons for adding asynchrony to file access calls:

The simple examples in this topic demonstrate File.WriteAllTextAsync and
File.ReadAllTextAsync. For fine control over the file I/O operations, use the FileStream
class, which has an option that causes asynchronous I/O to occur at the operating
system level. By using this option, you can avoid blocking a thread pool thread in many
cases. To enable this option, you specify the useAsync=true or
options=FileOptions.Asynchronous argument in the constructor call.

You can't use this option with StreamReader and StreamWriter if you open them directly
by specifying a file path. However, you can use this option if you provide them a Stream
that the FileStream class opened. Asynchronous calls are faster in UI apps even if a
thread pool thread is blocked, because the UI thread isn't blocked during the wait.

Asynchrony makes UI applications more responsive because the UI thread that
launches the operation can perform other work. If the UI thread must execute code
that takes a long time (for example, more than 50 milliseconds), the UI may freeze
until the I/O is complete and the UI thread can again process keyboard and mouse
input and other events.

＂

Asynchrony improves the scalability of ASP.NET and other server-based applications
by reducing the need for threads. If the application uses a dedicated thread per
response and a thousand requests are being handled simultaneously, a thousand
threads are needed. Asynchronous operations often don't need to use a thread
during the wait. They use the existing I/O completion thread briefly at the end.

＂

The latency of a file access operation might be very low under current conditions,
but the latency may greatly increase in the future. For example, a file may be moved
to a server that's across the world.

＂

The added overhead of using the Async feature is small.＂

Asynchronous tasks can easily be run in parallel.＂

Use appropriate classes

https://learn.microsoft.com/en-us/dotnet/api/system.io.file.writealltextasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.readalltextasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.filestream
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream
https://learn.microsoft.com/en-us/dotnet/api/system.io.filestream

The following examples write text to a file. At each await statement, the method
immediately exits. When the file I/O is complete, the method resumes at the statement
that follows the await statement. The async modifier is in the definition of methods that
use the await statement.

C#

C#

The original example has the statement await sourceStream.WriteAsync(encodedText, 0,
encodedText.Length); , which is a contraction of the following two statements:

Write text

Simple example

public async Task SimpleWriteAsync()
{
 string filePath = "simple.txt";
 string text = $"Hello World";

 await File.WriteAllTextAsync(filePath, text);
}

Finite control example

public async Task ProcessWriteAsync()
{
 string filePath = "temp.txt";
 string text = $"Hello World{Environment.NewLine}";

 await WriteTextAsync(filePath, text);
}

async Task WriteTextAsync(string filePath, string text)
{
 byte[] encodedText = Encoding.Unicode.GetBytes(text);

 using var sourceStream =
 new FileStream(
 filePath,
 FileMode.Create, FileAccess.Write, FileShare.None,
 bufferSize: 4096, useAsync: true);

 await sourceStream.WriteAsync(encodedText, 0, encodedText.Length);
}

C#

The first statement returns a task and causes file processing to start. The second
statement with the await causes the method to immediately exit and return a different
task. When the file processing later completes, execution returns to the statement that
follows the await.

The following examples read text from a file.

C#

The text is buffered and, in this case, placed into a StringBuilder. Unlike in the previous
example, the evaluation of the await produces a value. The ReadAsync method returns a
Task<Int32>, so the evaluation of the await produces an Int32 value numRead after the
operation completes. For more information, see Async Return Types (C#).

C#

Task theTask = sourceStream.WriteAsync(encodedText, 0, encodedText.Length);
await theTask;

Read text

Simple example

public async Task SimpleReadAsync()
{
 string filePath = "simple.txt";
 string text = await File.ReadAllTextAsync(filePath);

 Console.WriteLine(text);
}

Finite control example

public async Task ProcessReadAsync()
{
 try
 {
 string filePath = "temp.txt";
 if (File.Exists(filePath) != false)
 {
 string text = await ReadTextAsync(filePath);
 Console.WriteLine(text);
 }

https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.readasync
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.int32

The following examples demonstrate parallel processing by writing 10 text files.

C#

 else
 {
 Console.WriteLine($"file not found: {filePath}");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

async Task<string> ReadTextAsync(string filePath)
{
 using var sourceStream =
 new FileStream(
 filePath,
 FileMode.Open, FileAccess.Read, FileShare.Read,
 bufferSize: 4096, useAsync: true);

 var sb = new StringBuilder();

 byte[] buffer = new byte[0x1000];
 int numRead;
 while ((numRead = await sourceStream.ReadAsync(buffer, 0,
buffer.Length)) != 0)
 {
 string text = Encoding.Unicode.GetString(buffer, 0, numRead);
 sb.Append(text);
 }

 return sb.ToString();
}

Parallel asynchronous I/O

Simple example

public async Task SimpleParallelWriteAsync()
{
 string folder = Directory.CreateDirectory("tempfolder").Name;
 IList<Task> writeTaskList = new List<Task>();

 for (int index = 11; index <= 20; ++ index)
 {
 string fileName = $"file-{index:00}.txt";
 string filePath = $"{folder}/{fileName}";

For each file, the WriteAsync method returns a task that is then added to a list of tasks.
The await Task.WhenAll(tasks); statement exits the method and resumes within the
method when file processing is complete for all of the tasks.

The example closes all FileStream instances in a finally block after the tasks are
complete. If each FileStream was instead created in a using statement, the FileStream
might be disposed of before the task was complete.

Any performance boost is almost entirely from the parallel processing and not the
asynchronous processing. The advantages of asynchrony are that it doesn't tie up
multiple threads, and that it doesn't tie up the user interface thread.

C#

 string text = $"In file {index}{Environment.NewLine}";

 writeTaskList.Add(File.WriteAllTextAsync(filePath, text));
 }

 await Task.WhenAll(writeTaskList);
}

Finite control example

public async Task ProcessMultipleWritesAsync()
{
 IList<FileStream> sourceStreams = new List<FileStream>();

 try
 {
 string folder = Directory.CreateDirectory("tempfolder").Name;
 IList<Task> writeTaskList = new List<Task>();

 for (int index = 1; index <= 10; ++ index)
 {
 string fileName = $"file-{index:00}.txt";
 string filePath = $"{folder}/{fileName}";

 string text = $"In file {index}{Environment.NewLine}";
 byte[] encodedText = Encoding.Unicode.GetBytes(text);

 var sourceStream =
 new FileStream(
 filePath,
 FileMode.Create, FileAccess.Write, FileShare.None,
 bufferSize: 4096, useAsync: true);

 Task writeTask = sourceStream.WriteAsync(encodedText, 0,
encodedText.Length);

https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.writeasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.filestream

When using the WriteAsync and ReadAsync methods, you can specify a
CancellationToken, which you can use to cancel the operation mid-stream. For more
information, see Cancellation in managed threads.

Asynchronous programming with async and await (C#)
Async return types (C#)

 sourceStreams.Add(sourceStream);

 writeTaskList.Add(writeTask);
 }

 await Task.WhenAll(writeTaskList);
 }
 finally
 {
 foreach (FileStream sourceStream in sourceStreams)
 {
 sourceStream.Close();
 }
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.writeasync
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream.readasync
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken
https://learn.microsoft.com/en-ca/dotnet/standard/threading/cancellation-in-managed-threads

Attributes (C#)
Article • 2022-11-17 • 5 minutes to read

Attributes provide a powerful method of associating metadata, or declarative
information, with code (assemblies, types, methods, properties, and so forth). After an
attribute is associated with a program entity, the attribute can be queried at run time by
using a technique called reflection. For more information, see Reflection (C#).

Attributes have the following properties:

Attributes add metadata to your program. Metadata is information about the types
defined in a program. All .NET assemblies contain a specified set of metadata that
describes the types and type members defined in the assembly. You can add
custom attributes to specify any additional information that is required. For more
information, see, Creating Custom Attributes (C#).
You can apply one or more attributes to entire assemblies, modules, or smaller
program elements such as classes and properties.
Attributes can accept arguments in the same way as methods and properties.
Your program can examine its own metadata or the metadata in other programs
by using reflection. For more information, see Accessing Attributes by Using
Reflection (C#).

Attributes can be placed on almost any declaration, though a specific attribute might
restrict the types of declarations on which it is valid. In C#, you specify an attribute by
placing the name of the attribute enclosed in square brackets ([]) above the
declaration of the entity to which it applies.

In this example, the SerializableAttribute attribute is used to apply a specific
characteristic to a class:

C#

A method with the attribute DllImportAttribute is declared like the following example:

Using attributes

[Serializable]
public class SampleClass
{
 // Objects of this type can be serialized.
}

https://learn.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute

C#

More than one attribute can be placed on a declaration as the following example shows:

C#

C#

Some attributes can be specified more than once for a given entity. An example of such
a multiuse attribute is ConditionalAttribute:

C#

Many attributes have parameters, which can be positional, unnamed, or named. Any
positional parameters must be specified in a certain order and cannot be omitted.
Named parameters are optional and can be specified in any order. Positional parameters
are specified first. For example, these three attributes are equivalent:

[System.Runtime.InteropServices.DllImport("user32.dll")]
extern static void SampleMethod();

using System.Runtime.InteropServices;

void MethodA([In][Out] ref double x) { }
void MethodB([Out][In] ref double x) { }
void MethodC([In, Out] ref double x) { }

[Conditional("DEBUG"), Conditional("TEST1")]
void TraceMethod()
{
 // ...
}

７ Note

By convention, all attribute names end with the word "Attribute" to distinguish
them from other items in the .NET libraries. However, you do not need to specify
the attribute suffix when using attributes in code. For example, [DllImport] is
equivalent to [DllImportAttribute] , but DllImportAttribute is the attribute's
actual name in the .NET Class Library.

Attribute parameters

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute

C#

The first parameter, the DLL name, is positional and always comes first; the others are
named. In this case, both named parameters default to false, so they can be omitted.
Positional parameters correspond to the parameters of the attribute constructor. Named
or optional parameters correspond to either properties or fields of the attribute. Refer to
the individual attribute's documentation for information on default parameter values.

For more information on allowed parameter types, see the Attributes section of the C#
language specification

The target of an attribute is the entity which the attribute applies to. For example, an
attribute may apply to a class, a particular method, or an entire assembly. By default, an
attribute applies to the element that follows it. But you can also explicitly identify, for
example, whether an attribute is applied to a method, or to its parameter, or to its return
value.

To explicitly identify an attribute target, use the following syntax:

C#

The list of possible target values is shown in the following table.

Target value Applies to

assembly Entire assembly

module Current assembly module

field Field in a class or a struct

event Event

method Method or get and set property accessors

param Method parameters or set property accessor parameters

property Property

[DllImport("user32.dll")]
[DllImport("user32.dll", SetLastError=false, ExactSpelling=false)]
[DllImport("user32.dll", ExactSpelling=false, SetLastError=false)]

Attribute targets

[target : attribute-list]

Target value Applies to

return Return value of a method, property indexer, or get property accessor

type Struct, class, interface, enum, or delegate

You would specify the field target value to apply an attribute to the backing field
created for an auto-implemented property.

The following example shows how to apply attributes to assemblies and modules. For
more information, see Common Attributes (C#).

C#

The following example shows how to apply attributes to methods, method parameters,
and method return values in C#.

C#

using System;
using System.Reflection;
[assembly: AssemblyTitleAttribute("Production assembly 4")]
[module: CLSCompliant(true)]

// default: applies to method
[ValidatedContract]
int Method1() { return 0; }

// applies to method
[method: ValidatedContract]
int Method2() { return 0; }

// applies to parameter
int Method3([ValidatedContract] string contract) { return 0; }

// applies to return value
[return: ValidatedContract]
int Method4() { return 0; }

７ Note

Regardless of the targets on which ValidatedContract is defined to be valid, the
return target has to be specified, even if ValidatedContract were defined to apply
only to return values. In other words, the compiler will not use AttributeUsage
information to resolve ambiguous attribute targets. For more information, see
AttributeUsage (C#).

The following list includes a few of the common uses of attributes in code:

Marking methods using the WebMethod attribute in Web services to indicate that
the method should be callable over the SOAP protocol. For more information, see
WebMethodAttribute.
Describing how to marshal method parameters when interoperating with native
code. For more information, see MarshalAsAttribute.
Describing the COM properties for classes, methods, and interfaces.
Calling unmanaged code using the DllImportAttribute class.
Describing your assembly in terms of title, version, description, or trademark.
Describing which members of a class to serialize for persistence.
Describing how to map between class members and XML nodes for XML
serialization.
Describing the security requirements for methods.
Specifying characteristics used to enforce security.
Controlling optimizations by the just-in-time (JIT) compiler so the code remains
easy to debug.
Obtaining information about the caller to a method.

For more information, see:

Creating Custom Attributes (C#)
Accessing Attributes by Using Reflection (C#)
How to create a C/C++ union by using attributes (C#)
Common Attributes (C#)
Caller Information (C#)

C# Programming Guide
Reflection (C#)
Attributes
Using Attributes in C#

Common uses for attributes

Related sections

See also

https://learn.microsoft.com/en-us/dotnet/api/system.web.services.webmethodattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshalasattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/

Creating Custom Attributes (C#)
Article • 2022-03-18 • 2 minutes to read

You can create your own custom attributes by defining an attribute class, a class that
derives directly or indirectly from Attribute, which makes identifying attribute definitions
in metadata fast and easy. Suppose you want to tag types with the name of the
programmer who wrote the type. You might define a custom Author attribute class:

C#

The class name AuthorAttribute is the attribute's name, Author , plus the Attribute
suffix. It is derived from System.Attribute , so it is a custom attribute class. The
constructor's parameters are the custom attribute's positional parameters. In this
example, name is a positional parameter. Any public read-write fields or properties are
named parameters. In this case, version is the only named parameter. Note the use of
the AttributeUsage attribute to make the Author attribute valid only on class and
struct declarations.

You could use this new attribute as follows:

C#

AttributeUsage has a named parameter, AllowMultiple , with which you can make a
custom attribute single-use or multiuse. In the following code example, a multiuse

[System.AttributeUsage(System.AttributeTargets.Class |
 System.AttributeTargets.Struct)
]
public class AuthorAttribute : System.Attribute
{
 private string name;
 public double version;

 public AuthorAttribute(string name)
 {
 this.name = name;
 version = 1.0;
 }
}

[Author("P. Ackerman", version = 1.1)]
class SampleClass
{
 // P. Ackerman's code goes here...
}

https://learn.microsoft.com/en-us/dotnet/api/system.attribute

attribute is created.

C#

In the following code example, multiple attributes of the same type are applied to a
class.

C#

System.Reflection
C# Programming Guide
Writing Custom Attributes
Reflection (C#)
Attributes (C#)
Accessing Attributes by Using Reflection (C#)
AttributeUsage (C#)

[System.AttributeUsage(System.AttributeTargets.Class |
 System.AttributeTargets.Struct,
 AllowMultiple = true) // multiuse attribute
]
public class AuthorAttribute : System.Attribute

[Author("P. Ackerman", version = 1.1)]
[Author("R. Koch", version = 1.2)]
class SampleClass
{
 // P. Ackerman's code goes here...
 // R. Koch's code goes here...
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/writing-custom-attributes

Accessing Attributes by Using Reflection
(C#)
Article • 2021-09-15 • 2 minutes to read

The fact that you can define custom attributes and place them in your source code
would be of little value without some way of retrieving that information and acting on it.
By using reflection, you can retrieve the information that was defined with custom
attributes. The key method is GetCustomAttributes , which returns an array of objects
that are the run-time equivalents of the source code attributes. This method has several
overloaded versions. For more information, see Attribute.

An attribute specification such as:

C#

is conceptually equivalent to this:

C#

However, the code is not executed until SampleClass is queried for attributes. Calling
GetCustomAttributes on SampleClass causes an Author object to be constructed and
initialized as above. If the class has other attributes, other attribute objects are
constructed similarly. GetCustomAttributes then returns the Author object and any other
attribute objects in an array. You can then iterate over this array, determine what
attributes were applied based on the type of each array element, and extract
information from the attribute objects.

Here is a complete example. A custom attribute is defined, applied to several entities,
and retrieved via reflection.

C#

[Author("P. Ackerman", version = 1.1)]
class SampleClass

Author anonymousAuthorObject = new Author("P. Ackerman");
anonymousAuthorObject.version = 1.1;

Example

https://learn.microsoft.com/en-us/dotnet/api/system.attribute

// Multiuse attribute.
[System.AttributeUsage(System.AttributeTargets.Class |
 System.AttributeTargets.Struct,
 AllowMultiple = true) // Multiuse attribute.
]
public class Author : System.Attribute
{
 string name;
 public double version;

 public Author(string name)
 {
 this.name = name;

 // Default value.
 version = 1.0;
 }

 public string GetName()
 {
 return name;
 }
}

// Class with the Author attribute.
[Author("P. Ackerman")]
public class FirstClass
{
 // ...
}

// Class without the Author attribute.
public class SecondClass
{
 // ...
}

// Class with multiple Author attributes.
[Author("P. Ackerman"), Author("R. Koch", version = 2.0)]
public class ThirdClass
{
 // ...
}

class TestAuthorAttribute
{
 static void Test()
 {
 PrintAuthorInfo(typeof(FirstClass));
 PrintAuthorInfo(typeof(SecondClass));
 PrintAuthorInfo(typeof(ThirdClass));
 }

 private static void PrintAuthorInfo(System.Type t)

System.Reflection
Attribute
C# Programming Guide
Retrieving Information Stored in Attributes
Reflection (C#)
Attributes (C#)
Creating Custom Attributes (C#)

 {
 System.Console.WriteLine("Author information for {0}", t);

 // Using reflection.
 System.Attribute[] attrs = System.Attribute.GetCustomAttributes(t);
// Reflection.

 // Displaying output.
 foreach (System.Attribute attr in attrs)
 {
 if (attr is Author)
 {
 Author a = (Author)attr;
 System.Console.WriteLine(" {0}, version {1:f}",
a.GetName(), a.version);
 }
 }
 }
}
/* Output:
 Author information for FirstClass
 P. Ackerman, version 1.00
 Author information for SecondClass
 Author information for ThirdClass
 R. Koch, version 2.00
 P. Ackerman, version 1.00
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/retrieving-information-stored-in-attributes

How to create a C/C++ union by using
attributes (C#)
Article • 2021-09-15 • 2 minutes to read

By using attributes, you can customize how structs are laid out in memory. For example,
you can create what is known as a union in C/C++ by using the
StructLayout(LayoutKind.Explicit) and FieldOffset attributes.

In this code segment, all of the fields of TestUnion start at the same location in memory.

C#

The following is another example where fields start at different explicitly set locations.

C#

Examples

// Add a using directive for System.Runtime.InteropServices.

[System.Runtime.InteropServices.StructLayout(LayoutKind.Explicit)]
struct TestUnion
{
 [System.Runtime.InteropServices.FieldOffset(0)]
 public int i;

 [System.Runtime.InteropServices.FieldOffset(0)]
 public double d;

 [System.Runtime.InteropServices.FieldOffset(0)]
 public char c;

 [System.Runtime.InteropServices.FieldOffset(0)]
 public byte b;
}

// Add a using directive for System.Runtime.InteropServices.

[System.Runtime.InteropServices.StructLayout(LayoutKind.Explicit)]
struct TestExplicit
{
 [System.Runtime.InteropServices.FieldOffset(0)]
 public long lg;

 [System.Runtime.InteropServices.FieldOffset(0)]
 public int i1;

The two integer fields, i1 and i2 , share the same memory locations as lg . This sort of
control over struct layout is useful when using platform invocation.

System.Reflection
Attribute
C# Programming Guide
Attributes
Reflection (C#)
Attributes (C#)
Creating Custom Attributes (C#)
Accessing Attributes by Using Reflection (C#)

 [System.Runtime.InteropServices.FieldOffset(0)]
 public int i2;

 [System.Runtime.InteropServices.FieldOffset(8)]
 public double d;

 [System.Runtime.InteropServices.FieldOffset(12)]
 public char c;

 [System.Runtime.InteropServices.FieldOffset(14)]
 public byte b;
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/

Collections (C#)
Article • 2022-09-29 • 13 minutes to read

For many applications, you want to create and manage groups of related objects. There
are two ways to group objects: by creating arrays of objects, and by creating collections
of objects.

Arrays are most useful for creating and working with a fixed number of strongly typed
objects. For information about arrays, see Arrays.

Collections provide a more flexible way to work with groups of objects. Unlike arrays,
the group of objects you work with can grow and shrink dynamically as the needs of the
application change. For some collections, you can assign a key to any object that you
put into the collection so that you can quickly retrieve the object by using the key.

A collection is a class, so you must declare an instance of the class before you can add
elements to that collection.

If your collection contains elements of only one data type, you can use one of the
classes in the System.Collections.Generic namespace. A generic collection enforces type
safety so that no other data type can be added to it. When you retrieve an element from
a generic collection, you do not have to determine its data type or convert it.

In this topic

Using a Simple Collection

Kinds of Collections

System.Collections.Generic Classes

System.Collections.Concurrent Classes

System.Collections Classes

Implementing a Collection of Key/Value Pairs

Using LINQ to Access a Collection

７ Note

For the examples in this topic, include using directives for the
System.Collections.Generic and System.Linq namespaces.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic

Sorting a Collection

Defining a Custom Collection

Iterators

The examples in this section use the generic List<T> class, which enables you to work
with a strongly typed list of objects.

The following example creates a list of strings and then iterates through the strings by
using a foreach statement.

C#

If the contents of a collection are known in advance, you can use a collection initializer
to initialize the collection. For more information, see Object and Collection Initializers.

The following example is the same as the previous example, except a collection
initializer is used to add elements to the collection.

C#

Using a Simple Collection

// Create a list of strings.
var salmons = new List<string>();
salmons.Add("chinook");
salmons.Add("coho");
salmons.Add("pink");
salmons.Add("sockeye");

// Iterate through the list.
foreach (var salmon in salmons)
{
 Console.Write(salmon + " ");
}
// Output: chinook coho pink sockeye

// Create a list of strings by using a
// collection initializer.
var salmons = new List<string> { "chinook", "coho", "pink", "sockeye" };

// Iterate through the list.
foreach (var salmon in salmons)
{
 Console.Write(salmon + " ");
}
// Output: chinook coho pink sockeye

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

You can use a for statement instead of a foreach statement to iterate through a
collection. You accomplish this by accessing the collection elements by the index
position. The index of the elements starts at 0 and ends at the element count minus 1.

The following example iterates through the elements of a collection by using for
instead of foreach .

C#

The following example removes an element from the collection by specifying the object
to remove.

C#

The following example removes elements from a generic list. Instead of a foreach
statement, a for statement that iterates in descending order is used. This is because the
RemoveAt method causes elements after a removed element to have a lower index
value.

C#

// Create a list of strings by using a
// collection initializer.
var salmons = new List<string> { "chinook", "coho", "pink", "sockeye" };

for (var index = 0; index < salmons.Count; index++)
{
 Console.Write(salmons[index] + " ");
}
// Output: chinook coho pink sockeye

// Create a list of strings by using a
// collection initializer.
var salmons = new List<string> { "chinook", "coho", "pink", "sockeye" };

// Remove an element from the list by specifying
// the object.
salmons.Remove("coho");

// Iterate through the list.
foreach (var salmon in salmons)
{
 Console.Write(salmon + " ");
}
// Output: chinook pink sockeye

var numbers = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.removeat

For the type of elements in the List<T>, you can also define your own class. In the
following example, the Galaxy class that is used by the List<T> is defined in the code.

C#

// Remove odd numbers.
for (var index = numbers.Count - 1; index >= 0; index--)
{
 if (numbers[index] % 2 == 1)
 {
 // Remove the element by specifying
 // the zero-based index in the list.
 numbers.RemoveAt(index);
 }
}

// Iterate through the list.
// A lambda expression is placed in the ForEach method
// of the List(T) object.
numbers.ForEach(
 number => Console.Write(number + " "));
// Output: 0 2 4 6 8

private static void IterateThroughList()
{
 var theGalaxies = new List<Galaxy>
 {
 new Galaxy() { Name="Tadpole", MegaLightYears=400},
 new Galaxy() { Name="Pinwheel", MegaLightYears=25},
 new Galaxy() { Name="Milky Way", MegaLightYears=0},
 new Galaxy() { Name="Andromeda", MegaLightYears=3}
 };

 foreach (Galaxy theGalaxy in theGalaxies)
 {
 Console.WriteLine(theGalaxy.Name + " " + theGalaxy.MegaLightYears);
 }

 // Output:
 // Tadpole 400
 // Pinwheel 25
 // Milky Way 0
 // Andromeda 3
}

public class Galaxy
{
 public string Name { get; set; }
 public int MegaLightYears { get; set; }
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

Many common collections are provided by .NET. Each type of collection is designed for
a specific purpose.

Some of the common collection classes are described in this section:

System.Collections.Generic classes

System.Collections.Concurrent classes

System.Collections classes

You can create a generic collection by using one of the classes in the
System.Collections.Generic namespace. A generic collection is useful when every item in
the collection has the same data type. A generic collection enforces strong typing by
allowing only the desired data type to be added.

The following table lists some of the frequently used classes of the
System.Collections.Generic namespace:

Class Description

Dictionary<TKey,TValue> Represents a collection of key/value pairs that are organized based on
the key.

List<T> Represents a list of objects that can be accessed by index. Provides
methods to search, sort, and modify lists.

Queue<T> Represents a first in, first out (FIFO) collection of objects.

SortedList<TKey,TValue> Represents a collection of key/value pairs that are sorted by key based
on the associated IComparer<T> implementation.

Stack<T> Represents a last in, first out (LIFO) collection of objects.

For additional information, see Commonly Used Collection Types, Selecting a Collection
Class, and System.Collections.Generic.

In .NET Framework 4 and later versions, the collections in the
System.Collections.Concurrent namespace provide efficient thread-safe operations for

Kinds of Collections

System.Collections.Generic Classes

System.Collections.Concurrent Classes

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://learn.microsoft.com/en-us/dotnet/api/system.collections
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.queue-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.sortedlist-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icomparer-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-ca/dotnet/standard/collections/commonly-used-collection-types
https://learn.microsoft.com/en-ca/dotnet/standard/collections/selecting-a-collection-class
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent

accessing collection items from multiple threads.

The classes in the System.Collections.Concurrent namespace should be used instead of
the corresponding types in the System.Collections.Generic and System.Collections
namespaces whenever multiple threads are accessing the collection concurrently. For
more information, see Thread-Safe Collections and System.Collections.Concurrent.

Some classes included in the System.Collections.Concurrent namespace are
BlockingCollection<T>, ConcurrentDictionary<TKey,TValue>, ConcurrentQueue<T>, and
ConcurrentStack<T>.

The classes in the System.Collections namespace do not store elements as specifically
typed objects, but as objects of type Object .

Whenever possible, you should use the generic collections in the
System.Collections.Generic namespace or the System.Collections.Concurrent namespace
instead of the legacy types in the System.Collections namespace.

The following table lists some of the frequently used classes in the System.Collections
namespace:

Class Description

ArrayList Represents an array of objects whose size is dynamically increased as required.

Hashtable Represents a collection of key/value pairs that are organized based on the hash code
of the key.

Queue Represents a first in, first out (FIFO) collection of objects.

Stack Represents a last in, first out (LIFO) collection of objects.

The System.Collections.Specialized namespace provides specialized and strongly typed
collection classes, such as string-only collections and linked-list and hybrid dictionaries.

The Dictionary<TKey,TValue> generic collection enables you to access to elements in a
collection by using the key of each element. Each addition to the dictionary consists of a
value and its associated key. Retrieving a value by using its key is fast because the
Dictionary class is implemented as a hash table.

System.Collections Classes

Implementing a Collection of Key/Value Pairs

https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections
https://learn.microsoft.com/en-ca/dotnet/standard/collections/thread-safe/
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.blockingcollection-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentqueue-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentstack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.hashtable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.queue
https://learn.microsoft.com/en-us/dotnet/api/system.collections.stack
https://learn.microsoft.com/en-us/dotnet/api/system.collections.specialized
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2

The following example creates a Dictionary collection and iterates through the
dictionary by using a foreach statement.

C#

To instead use a collection initializer to build the Dictionary collection, you can replace
the BuildDictionary and AddToDictionary methods with the following method.

private static void IterateThruDictionary()
{
 Dictionary<string, Element> elements = BuildDictionary();

 foreach (KeyValuePair<string, Element> kvp in elements)
 {
 Element theElement = kvp.Value;

 Console.WriteLine("key: " + kvp.Key);
 Console.WriteLine("values: " + theElement.Symbol + " " +
 theElement.Name + " " + theElement.AtomicNumber);
 }
}

private static Dictionary<string, Element> BuildDictionary()
{
 var elements = new Dictionary<string, Element>();

 AddToDictionary(elements, "K", "Potassium", 19);
 AddToDictionary(elements, "Ca", "Calcium", 20);
 AddToDictionary(elements, "Sc", "Scandium", 21);
 AddToDictionary(elements, "Ti", "Titanium", 22);

 return elements;
}

private static void AddToDictionary(Dictionary<string, Element> elements,
 string symbol, string name, int atomicNumber)
{
 Element theElement = new Element();

 theElement.Symbol = symbol;
 theElement.Name = name;
 theElement.AtomicNumber = atomicNumber;

 elements.Add(key: theElement.Symbol, value: theElement);
}

public class Element
{
 public string Symbol { get; set; }
 public string Name { get; set; }
 public int AtomicNumber { get; set; }
}

C#

The following example uses the ContainsKey method and the Item[] property of
Dictionary to quickly find an item by key. The Item property enables you to access an
item in the elements collection by using the elements[symbol] in C#.

C#

The following example instead uses the TryGetValue method quickly find an item by key.

C#

private static Dictionary<string, Element> BuildDictionary2()
{
 return new Dictionary<string, Element>
 {
 {"K",
 new Element() { Symbol="K", Name="Potassium", AtomicNumber=19}},
 {"Ca",
 new Element() { Symbol="Ca", Name="Calcium", AtomicNumber=20}},
 {"Sc",
 new Element() { Symbol="Sc", Name="Scandium", AtomicNumber=21}},
 {"Ti",
 new Element() { Symbol="Ti", Name="Titanium", AtomicNumber=22}}
 };
}

private static void FindInDictionary(string symbol)
{
 Dictionary<string, Element> elements = BuildDictionary();

 if (elements.ContainsKey(symbol) == false)
 {
 Console.WriteLine(symbol + " not found");
 }
 else
 {
 Element theElement = elements[symbol];
 Console.WriteLine("found: " + theElement.Name);
 }
}

private static void FindInDictionary2(string symbol)
{
 Dictionary<string, Element> elements = BuildDictionary();

 Element theElement = null;
 if (elements.TryGetValue(symbol, out theElement) == false)
 Console.WriteLine(symbol + " not found");
 else

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2.containskey
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2.item
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2.trygetvalue

LINQ (Language-Integrated Query) can be used to access collections. LINQ queries
provide filtering, ordering, and grouping capabilities. For more information, see Getting
Started with LINQ in C#.

The following example runs a LINQ query against a generic List . The LINQ query
returns a different collection that contains the results.

C#

 Console.WriteLine("found: " + theElement.Name);
}

Using LINQ to Access a Collection

private static void ShowLINQ()
{
 List<Element> elements = BuildList();

 // LINQ Query.
 var subset = from theElement in elements
 where theElement.AtomicNumber < 22
 orderby theElement.Name
 select theElement;

 foreach (Element theElement in subset)
 {
 Console.WriteLine(theElement.Name + " " + theElement.AtomicNumber);
 }

 // Output:
 // Calcium 20
 // Potassium 19
 // Scandium 21
}

private static List<Element> BuildList()
{
 return new List<Element>
 {
 { new Element() { Symbol="K", Name="Potassium", AtomicNumber=19}},
 { new Element() { Symbol="Ca", Name="Calcium", AtomicNumber=20}},
 { new Element() { Symbol="Sc", Name="Scandium", AtomicNumber=21}},
 { new Element() { Symbol="Ti", Name="Titanium", AtomicNumber=22}}
 };
}

public class Element
{
 public string Symbol { get; set; }
 public string Name { get; set; }

The following example illustrates a procedure for sorting a collection. The example sorts
instances of the Car class that are stored in a List<T>. The Car class implements the
IComparable<T> interface, which requires that the CompareTo method be
implemented.

Each call to the CompareTo method makes a single comparison that is used for sorting.
User-written code in the CompareTo method returns a value for each comparison of the
current object with another object. The value returned is less than zero if the current
object is less than the other object, greater than zero if the current object is greater than
the other object, and zero if they are equal. This enables you to define in code the
criteria for greater than, less than, and equal.

In the ListCars method, the cars.Sort() statement sorts the list. This call to the Sort
method of the List<T> causes the CompareTo method to be called automatically for the
Car objects in the List .

C#

 public int AtomicNumber { get; set; }
}

Sorting a Collection

private static void ListCars()
{
 var cars = new List<Car>
 {
 { new Car() { Name = "car1", Color = "blue", Speed = 20}},
 { new Car() { Name = "car2", Color = "red", Speed = 50}},
 { new Car() { Name = "car3", Color = "green", Speed = 10}},
 { new Car() { Name = "car4", Color = "blue", Speed = 50}},
 { new Car() { Name = "car5", Color = "blue", Speed = 30}},
 { new Car() { Name = "car6", Color = "red", Speed = 60}},
 { new Car() { Name = "car7", Color = "green", Speed = 50}}
 };

 // Sort the cars by color alphabetically, and then by speed
 // in descending order.
 cars.Sort();

 // View all of the cars.
 foreach (Car thisCar in cars)
 {
 Console.Write(thisCar.Color.PadRight(5) + " ");
 Console.Write(thisCar.Speed.ToString() + " ");
 Console.Write(thisCar.Name);
 Console.WriteLine();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1.compareto
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1.compareto
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1.sort
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

You can define a collection by implementing the IEnumerable<T> or IEnumerable
interface.

Although you can define a custom collection, it is usually better to instead use the
collections that are included in .NET, which are described in Kinds of Collections earlier

 }

 // Output:
 // blue 50 car4
 // blue 30 car5
 // blue 20 car1
 // green 50 car7
 // green 10 car3
 // red 60 car6
 // red 50 car2
}

public class Car : IComparable<Car>
{
 public string Name { get; set; }
 public int Speed { get; set; }
 public string Color { get; set; }

 public int CompareTo(Car other)
 {
 // A call to this method makes a single comparison that is
 // used for sorting.

 // Determine the relative order of the objects being compared.
 // Sort by color alphabetically, and then by speed in
 // descending order.

 // Compare the colors.
 int compare;
 compare = String.Compare(this.Color, other.Color, true);

 // If the colors are the same, compare the speeds.
 if (compare == 0)
 {
 compare = this.Speed.CompareTo(other.Speed);

 // Use descending order for speed.
 compare = -compare;
 }

 return compare;
 }
}

Defining a Custom Collection

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

in this article.

The following example defines a custom collection class named AllColors . This class
implements the IEnumerable interface, which requires that the GetEnumerator method
be implemented.

The GetEnumerator method returns an instance of the ColorEnumerator class.
ColorEnumerator implements the IEnumerator interface, which requires that the Current
property, MoveNext method, and Reset method be implemented.

C#

private static void ListColors()
{
 var colors = new AllColors();

 foreach (Color theColor in colors)
 {
 Console.Write(theColor.Name + " ");
 }
 Console.WriteLine();
 // Output: red blue green
}

// Collection class.
public class AllColors : System.Collections.IEnumerable
{
 Color[] _colors =
 {
 new Color() { Name = "red" },
 new Color() { Name = "blue" },
 new Color() { Name = "green" }
 };

 public System.Collections.IEnumerator GetEnumerator()
 {
 return new ColorEnumerator(_colors);

 // Instead of creating a custom enumerator, you could
 // use the GetEnumerator of the array.
 //return _colors.GetEnumerator();
 }

 // Custom enumerator.
 private class ColorEnumerator : System.Collections.IEnumerator
 {
 private Color[] _colors;
 private int _position = -1;

 public ColorEnumerator(Color[] colors)
 {
 _colors = colors;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.current
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.movenext
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset

An iterator is used to perform a custom iteration over a collection. An iterator can be a
method or a get accessor. An iterator uses a yield return statement to return each
element of the collection one at a time.

You call an iterator by using a foreach statement. Each iteration of the foreach loop calls
the iterator. When a yield return statement is reached in the iterator, an expression is
returned, and the current location in code is retained. Execution is restarted from that
location the next time that the iterator is called.

For more information, see Iterators (C#).

The following example uses an iterator method. The iterator method has a yield return
statement that is inside a for loop. In the ListEvenNumbers method, each iteration of
the foreach statement body creates a call to the iterator method, which proceeds to the
next yield return statement.

C#

 }

 object System.Collections.IEnumerator.Current
 {
 get
 {
 return _colors[_position];
 }
 }

 bool System.Collections.IEnumerator.MoveNext()
 {
 _position++;
 return (_position < _colors.Length);
 }

 void System.Collections.IEnumerator.Reset()
 {
 _position = -1;
 }
 }
}

// Element class.
public class Color
{
 public string Name { get; set; }
}

Iterators

Object and Collection Initializers
Programming Concepts (C#)
Option Strict Statement
LINQ to Objects (C#)
Parallel LINQ (PLINQ)
Collections and Data Structures
Selecting a Collection Class
Comparisons and Sorts Within Collections
When to Use Generic Collections
Iteration statements

private static void ListEvenNumbers()
{
 foreach (int number in EvenSequence(5, 18))
 {
 Console.Write(number.ToString() + " ");
 }
 Console.WriteLine();
 // Output: 6 8 10 12 14 16 18
}

private static IEnumerable<int> EvenSequence(
 int firstNumber, int lastNumber)
{
 // Yield even numbers in the range.
 for (var number = firstNumber; number <= lastNumber; number++)
 {
 if (number % 2 == 0)
 {
 yield return number;
 }
 }
}

See also

https://learn.microsoft.com/en-ca/dotnet/visual-basic/language-reference/statements/option-strict-statement
https://learn.microsoft.com/en-ca/dotnet/standard/parallel-programming/introduction-to-plinq
https://learn.microsoft.com/en-ca/dotnet/standard/collections/
https://learn.microsoft.com/en-ca/dotnet/standard/collections/selecting-a-collection-class
https://learn.microsoft.com/en-ca/dotnet/standard/collections/comparisons-and-sorts-within-collections
https://learn.microsoft.com/en-ca/dotnet/standard/collections/when-to-use-generic-collections

Covariance and Contravariance (C#)
Article • 2022-07-30 • 3 minutes to read

In C#, covariance and contravariance enable implicit reference conversion for array
types, delegate types, and generic type arguments. Covariance preserves assignment
compatibility and contravariance reverses it.

The following code demonstrates the difference between assignment compatibility,
covariance, and contravariance.

C#

Covariance for arrays enables implicit conversion of an array of a more derived type to
an array of a less derived type. But this operation is not type safe, as shown in the
following code example.

C#

Covariance and contravariance support for method groups allows for matching method
signatures with delegate types. This enables you to assign to delegates not only
methods that have matching signatures, but also methods that return more derived

// Assignment compatibility.
string str = "test";
// An object of a more derived type is assigned to an object of a less
derived type.
object obj = str;

// Covariance.
IEnumerable<string> strings = new List<string>();
// An object that is instantiated with a more derived type argument
// is assigned to an object instantiated with a less derived type argument.
// Assignment compatibility is preserved.
IEnumerable<object> objects = strings;

// Contravariance.
// Assume that the following method is in the class:
static void SetObject(object o) { }
Action<object> actObject = SetObject;
// An object that is instantiated with a less derived type argument
// is assigned to an object instantiated with a more derived type argument.
// Assignment compatibility is reversed.
Action<string> actString = actObject;

object[] array = new String[10];
// The following statement produces a run-time exception.
// array[0] = 10;

types (covariance) or that accept parameters that have less derived types
(contravariance) than that specified by the delegate type. For more information, see
Variance in Delegates (C#) and Using Variance in Delegates (C#).

The following code example shows covariance and contravariance support for method
groups.

C#

In .NET Framework 4 and later versions, C# supports covariance and contravariance in
generic interfaces and delegates and allows for implicit conversion of generic type
parameters. For more information, see Variance in Generic Interfaces (C#) and Variance
in Delegates (C#).

The following code example shows implicit reference conversion for generic interfaces.

C#

A generic interface or delegate is called variant if its generic parameters are declared
covariant or contravariant. C# enables you to create your own variant interfaces and
delegates. For more information, see Creating Variant Generic Interfaces (C#) and
Variance in Delegates (C#).

static object GetObject() { return null; }
static void SetObject(object obj) { }

static string GetString() { return ""; }
static void SetString(string str) { }

static void Test()
{
 // Covariance. A delegate specifies a return type as object,
 // but you can assign a method that returns a string.
 Func<object> del = GetString;

 // Contravariance. A delegate specifies a parameter type as string,
 // but you can assign a method that takes an object.
 Action<string> del2 = SetObject;
}

IEnumerable<String> strings = new List<String>();
IEnumerable<Object> objects = strings;

Related Topics

Title DescriptionTitle Description

Variance in Generic
Interfaces (C#)

Discusses covariance and contravariance in generic interfaces and
provides a list of variant generic interfaces in .NET.

Creating Variant Generic
Interfaces (C#)

Shows how to create custom variant interfaces.

Using Variance in Interfaces
for Generic Collections (C#)

Shows how covariance and contravariance support in the
IEnumerable<T> and IComparable<T> interfaces can help you
reuse code.

Variance in Delegates (C#) Discusses covariance and contravariance in generic and non-
generic delegates and provides a list of variant generic delegates
in .NET.

Using Variance in Delegates
(C#)

Shows how to use covariance and contravariance support in non-
generic delegates to match method signatures with delegate
types.

Using Variance for Func and
Action Generic Delegates
(C#)

Shows how covariance and contravariance support in the Func and
Action delegates can help you reuse code.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1

Variance in Generic Interfaces (C#)
Article • 2021-09-15 • 2 minutes to read

.NET Framework 4 introduced variance support for several existing generic interfaces.
Variance support enables implicit conversion of classes that implement these interfaces.

Starting with .NET Framework 4, the following interfaces are variant:

IEnumerable<T> (T is covariant)

IEnumerator<T> (T is covariant)

IQueryable<T> (T is covariant)

IGrouping<TKey,TElement> (TKey and TElement are covariant)

IComparer<T> (T is contravariant)

IEqualityComparer<T> (T is contravariant)

IComparable<T> (T is contravariant)

Starting with .NET Framework 4.5, the following interfaces are variant:

IReadOnlyList<T> (T is covariant)

IReadOnlyCollection<T> (T is covariant)

Covariance permits a method to have a more derived return type than that defined by
the generic type parameter of the interface. To illustrate the covariance feature, consider
these generic interfaces: IEnumerable<Object> and IEnumerable<String> . The
IEnumerable<String> interface does not inherit the IEnumerable<Object> interface.
However, the String type does inherit the Object type, and in some cases you may
want to assign objects of these interfaces to each other. This is shown in the following
code example.

C#

In earlier versions of .NET Framework, this code causes a compilation error in C# and, if
Option Strict is on, in Visual Basic. But now you can use strings instead of objects , as
shown in the previous example, because the IEnumerable<T> interface is covariant.

IEnumerable<String> strings = new List<String>();
IEnumerable<Object> objects = strings;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icomparer-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlylist-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ireadonlycollection-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Contravariance permits a method to have argument types that are less derived than that
specified by the generic parameter of the interface. To illustrate contravariance, assume
that you have created a BaseComparer class to compare instances of the BaseClass class.
The BaseComparer class implements the IEqualityComparer<BaseClass> interface.
Because the IEqualityComparer<T> interface is now contravariant, you can use
BaseComparer to compare instances of classes that inherit the BaseClass class. This is
shown in the following code example.

C#

For more examples, see Using Variance in Interfaces for Generic Collections (C#).

Variance in generic interfaces is supported for reference types only. Value types do not
support variance. For example, IEnumerable<int> cannot be implicitly converted to
IEnumerable<object> , because integers are represented by a value type.

C#

// Simple hierarchy of classes.
class BaseClass { }
class DerivedClass : BaseClass { }

// Comparer class.
class BaseComparer : IEqualityComparer<BaseClass>
{
 public int GetHashCode(BaseClass baseInstance)
 {
 return baseInstance.GetHashCode();
 }
 public bool Equals(BaseClass x, BaseClass y)
 {
 return x == y;
 }
}
class Program
{
 static void Test()
 {
 IEqualityComparer<BaseClass> baseComparer = new BaseComparer();

 // Implicit conversion of IEqualityComparer<BaseClass> to
 // IEqualityComparer<DerivedClass>.
 IEqualityComparer<DerivedClass> childComparer = baseComparer;
 }
}

IEnumerable<int> integers = new List<int>();
// The following statement generates a compiler error,

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1

It is also important to remember that classes that implement variant interfaces are still
invariant. For example, although List<T> implements the covariant interface
IEnumerable<T>, you cannot implicitly convert List<String> to List<Object> . This is
illustrated in the following code example.

C#

Using Variance in Interfaces for Generic Collections (C#)
Creating Variant Generic Interfaces (C#)
Generic Interfaces
Variance in Delegates (C#)

// because int is a value type.
// IEnumerable<Object> objects = integers;

// The following line generates a compiler error
// because classes are invariant.
// List<Object> list = new List<String>();

// You can use the interface object instead.
IEnumerable<Object> listObjects = new List<String>();

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-ca/dotnet/standard/generics/interfaces

Creating Variant Generic Interfaces (C#)
Article • 2021-09-15 • 4 minutes to read

You can declare generic type parameters in interfaces as covariant or contravariant.
Covariance allows interface methods to have more derived return types than that
defined by the generic type parameters. Contravariance allows interface methods to
have argument types that are less derived than that specified by the generic parameters.
A generic interface that has covariant or contravariant generic type parameters is called
variant.

You can declare variant generic interfaces by using the in and out keywords for generic
type parameters.

You can declare a generic type parameter covariant by using the out keyword. The
covariant type must satisfy the following conditions:

The type is used only as a return type of interface methods and not used as a type
of method arguments. This is illustrated in the following example, in which the type
R is declared covariant.

C#

７ Note

.NET Framework 4 introduced variance support for several existing generic
interfaces. For the list of the variant interfaces in .NET, see Variance in Generic
Interfaces (C#).

Declaring Variant Generic Interfaces

） Important

ref , in , and out parameters in C# cannot be variant. Value types also do not
support variance.

interface ICovariant<out R>
{
 R GetSomething();
 // The following statement generates a compiler error.
 // void SetSomething(R sampleArg);

There is one exception to this rule. If you have a contravariant generic delegate as
a method parameter, you can use the type as a generic type parameter for the
delegate. This is illustrated by the type R in the following example. For more
information, see Variance in Delegates (C#) and Using Variance for Func and Action
Generic Delegates (C#).

C#

The type is not used as a generic constraint for the interface methods. This is
illustrated in the following code.

C#

You can declare a generic type parameter contravariant by using the in keyword. The
contravariant type can be used only as a type of method arguments and not as a return
type of interface methods. The contravariant type can also be used for generic
constraints. The following code shows how to declare a contravariant interface and use a
generic constraint for one of its methods.

C#

}

interface ICovariant<out R>
{
 void DoSomething(Action<R> callback);
}

interface ICovariant<out R>
{
 // The following statement generates a compiler error
 // because you can use only contravariant or invariant types
 // in generic constraints.
 // void DoSomething<T>() where T : R;
}

interface IContravariant<in A>
{
 void SetSomething(A sampleArg);
 void DoSomething<T>() where T : A;
 // The following statement generates a compiler error.
 // A GetSomething();
}

It is also possible to support both covariance and contravariance in the same interface,
but for different type parameters, as shown in the following code example.

C#

You implement variant generic interfaces in classes by using the same syntax that is
used for invariant interfaces. The following code example shows how to implement a
covariant interface in a generic class.

C#

Classes that implement variant interfaces are invariant. For example, consider the
following code.

C#

interface IVariant<out R, in A>
{
 R GetSomething();
 void SetSomething(A sampleArg);
 R GetSetSomethings(A sampleArg);
}

Implementing Variant Generic Interfaces

interface ICovariant<out R>
{
 R GetSomething();
}
class SampleImplementation<R> : ICovariant<R>
{
 public R GetSomething()
 {
 // Some code.
 return default(R);
 }
}

// The interface is covariant.
ICovariant<Button> ibutton = new SampleImplementation<Button>();
ICovariant<Object> iobj = ibutton;

// The class is invariant.
SampleImplementation<Button> button = new SampleImplementation<Button>();
// The following statement generates a compiler error
// because classes are invariant.
// SampleImplementation<Object> obj = button;

When you extend a variant generic interface, you have to use the in and out keywords
to explicitly specify whether the derived interface supports variance. The compiler does
not infer the variance from the interface that is being extended. For example, consider
the following interfaces.

C#

In the IInvariant<T> interface, the generic type parameter T is invariant, whereas in
IExtCovariant<out T> the type parameter is covariant, although both interfaces extend
the same interface. The same rule is applied to contravariant generic type parameters.

You can create an interface that extends both the interface where the generic type
parameter T is covariant and the interface where it is contravariant if in the extending
interface the generic type parameter T is invariant. This is illustrated in the following
code example.

C#

However, if a generic type parameter T is declared covariant in one interface, you
cannot declare it contravariant in the extending interface, or vice versa. This is illustrated
in the following code example.

C#

When you implement variant generic interfaces, variance can sometimes lead to
ambiguity. Such ambiguity should be avoided.

Extending Variant Generic Interfaces

interface ICovariant<out T> { }
interface IInvariant<T> : ICovariant<T> { }
interface IExtCovariant<out T> : ICovariant<T> { }

interface ICovariant<out T> { }
interface IContravariant<in T> { }
interface IInvariant<T> : ICovariant<T>, IContravariant<T> { }

interface ICovariant<out T> { }
// The following statement generates a compiler error.
// interface ICoContraVariant<in T> : ICovariant<T> { }

Avoiding Ambiguity

For example, if you explicitly implement the same variant generic interface with different
generic type parameters in one class, it can create ambiguity. The compiler does not
produce an error in this case, but it's not specified which interface implementation will
be chosen at run time. This ambiguity could lead to subtle bugs in your code. Consider
the following code example.

C#

In this example, it is unspecified how the pets.GetEnumerator method chooses between
Cat and Dog . This could cause problems in your code.

// Simple class hierarchy.
class Animal { }
class Cat : Animal { }
class Dog : Animal { }

// This class introduces ambiguity
// because IEnumerable<out T> is covariant.
class Pets : IEnumerable<Cat>, IEnumerable<Dog>
{
 IEnumerator<Cat> IEnumerable<Cat>.GetEnumerator()
 {
 Console.WriteLine("Cat");
 // Some code.
 return null;
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 // Some code.
 return null;
 }

 IEnumerator<Dog> IEnumerable<Dog>.GetEnumerator()
 {
 Console.WriteLine("Dog");
 // Some code.
 return null;
 }
}
class Program
{
 public static void Test()
 {
 IEnumerable<Animal> pets = new Pets();
 pets.GetEnumerator();
 }
}

Variance in Generic Interfaces (C#)
Using Variance for Func and Action Generic Delegates (C#)

See also

Using Variance in Interfaces for Generic
Collections (C#)
Article • 2021-09-15 • 2 minutes to read

A covariant interface allows its methods to return more derived types than those
specified in the interface. A contravariant interface allows its methods to accept
parameters of less derived types than those specified in the interface.

In .NET Framework 4, several existing interfaces became covariant and contravariant.
These include IEnumerable<T> and IComparable<T>. This enables you to reuse
methods that operate with generic collections of base types for collections of derived
types.

For a list of variant interfaces in .NET, see Variance in Generic Interfaces (C#).

The following example illustrates the benefits of covariance support in the
IEnumerable<T> interface. The PrintFullName method accepts a collection of the
IEnumerable<Person> type as a parameter. However, you can reuse it for a collection of
the IEnumerable<Employee> type because Employee inherits Person .

C#

Converting Generic Collections

// Simple hierarchy of classes.
public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

public class Employee : Person { }

class Program
{
 // The method has a parameter of the IEnumerable<Person> type.
 public static void PrintFullName(IEnumerable<Person> persons)
 {
 foreach (Person person in persons)
 {
 Console.WriteLine("Name: {0} {1}",
 person.FirstName, person.LastName);
 }
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The following example illustrates the benefits of contravariance support in the
IEqualityComparer<T> interface. The PersonComparer class implements the
IEqualityComparer<Person> interface. However, you can reuse this class to compare a
sequence of objects of the Employee type because Employee inherits Person .

C#

 public static void Test()
 {
 IEnumerable<Employee> employees = new List<Employee>();

 // You can pass IEnumerable<Employee>,
 // although the method expects IEnumerable<Person>.

 PrintFullName(employees);

 }
}

Comparing Generic Collections

// Simple hierarchy of classes.
public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

public class Employee : Person { }

// The custom comparer for the Person type
// with standard implementations of Equals()
// and GetHashCode() methods.
class PersonComparer : IEqualityComparer<Person>
{
 public bool Equals(Person x, Person y)
 {
 if (Object.ReferenceEquals(x, y)) return true;
 if (Object.ReferenceEquals(x, null) ||
 Object.ReferenceEquals(y, null))
 return false;
 return x.FirstName == y.FirstName && x.LastName == y.LastName;
 }
 public int GetHashCode(Person person)
 {
 if (Object.ReferenceEquals(person, null)) return 0;
 int hashFirstName = person.FirstName == null
 ? 0 : person.FirstName.GetHashCode();
 int hashLastName = person.LastName.GetHashCode();
 return hashFirstName ^ hashLastName;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iequalitycomparer-1

Variance in Generic Interfaces (C#)

 }
}

class Program
{

 public static void Test()
 {
 List<Employee> employees = new List<Employee> {
 new Employee() {FirstName = "Michael", LastName =
"Alexander"},
 new Employee() {FirstName = "Jeff", LastName = "Price"}
 };

 // You can pass PersonComparer,
 // which implements IEqualityComparer<Person>,
 // although the method expects IEqualityComparer<Employee>.

 IEnumerable<Employee> noduplicates =
 employees.Distinct<Employee>(new PersonComparer());

 foreach (var employee in noduplicates)
 Console.WriteLine(employee.FirstName + " " + employee.LastName);
 }
}

See also

Variance in Delegates (C#)
Article • 2021-09-15 • 5 minutes to read

.NET Framework 3.5 introduced variance support for matching method signatures with
delegate types in all delegates in C#. This means that you can assign to delegates not
only methods that have matching signatures, but also methods that return more derived
types (covariance) or that accept parameters that have less derived types
(contravariance) than that specified by the delegate type. This includes both generic and
non-generic delegates.

For example, consider the following code, which has two classes and two delegates:
generic and non-generic.

C#

When you create delegates of the SampleDelegate or SampleGenericDelegate<A, R>
types, you can assign any one of the following methods to those delegates.

C#

The following code example illustrates the implicit conversion between the method
signature and the delegate type.

C#

public class First { }
public class Second : First { }
public delegate First SampleDelegate(Second a);
public delegate R SampleGenericDelegate<A, R>(A a);

// Matching signature.
public static First ASecondRFirst(Second second)
{ return new First(); }

// The return type is more derived.
public static Second ASecondRSecond(Second second)
{ return new Second(); }

// The argument type is less derived.
public static First AFirstRFirst(First first)
{ return new First(); }

// The return type is more derived
// and the argument type is less derived.
public static Second AFirstRSecond(First first)
{ return new Second(); }

For more examples, see Using Variance in Delegates (C#) and Using Variance for Func
and Action Generic Delegates (C#).

In .NET Framework 4 or later you can enable implicit conversion between delegates, so
that generic delegates that have different types specified by generic type parameters
can be assigned to each other, if the types are inherited from each other as required by
variance.

To enable implicit conversion, you must explicitly declare generic parameters in a
delegate as covariant or contravariant by using the in or out keyword.

The following code example shows how you can create a delegate that has a covariant
generic type parameter.

C#

// Assigning a method with a matching signature
// to a non-generic delegate. No conversion is necessary.
SampleDelegate dNonGeneric = ASecondRFirst;
// Assigning a method with a more derived return type
// and less derived argument type to a non-generic delegate.
// The implicit conversion is used.
SampleDelegate dNonGenericConversion = AFirstRSecond;

// Assigning a method with a matching signature to a generic delegate.
// No conversion is necessary.
SampleGenericDelegate<Second, First> dGeneric = ASecondRFirst;
// Assigning a method with a more derived return type
// and less derived argument type to a generic delegate.
// The implicit conversion is used.
SampleGenericDelegate<Second, First> dGenericConversion = AFirstRSecond;

Variance in Generic Type Parameters

// Type T is declared covariant by using the out keyword.
public delegate T SampleGenericDelegate <out T>();

public static void Test()
{
 SampleGenericDelegate <String> dString = () => " ";

 // You can assign delegates to each other,
 // because the type T is declared covariant.
 SampleGenericDelegate <Object> dObject = dString;
}

If you use only variance support to match method signatures with delegate types and
do not use the in and out keywords, you may find that sometimes you can instantiate
delegates with identical lambda expressions or methods, but you cannot assign one
delegate to another.

In the following code example, SampleGenericDelegate<String> cannot be explicitly
converted to SampleGenericDelegate<Object> , although String inherits Object . You can
fix this problem by marking the generic parameter T with the out keyword.

C#

.NET Framework 4 introduced variance support for generic type parameters in several
existing generic delegates:

Action delegates from the System namespace, for example, Action<T> and
Action<T1,T2>

Func delegates from the System namespace, for example, Func<TResult> and
Func<T,TResult>

The Predicate<T> delegate

The Comparison<T> delegate

The Converter<TInput,TOutput> delegate

public delegate T SampleGenericDelegate<T>();

public static void Test()
{
 SampleGenericDelegate<String> dString = () => " ";

 // You can assign the dObject delegate
 // to the same lambda expression as dString delegate
 // because of the variance support for
 // matching method signatures with delegate types.
 SampleGenericDelegate<Object> dObject = () => " ";

 // The following statement generates a compiler error
 // because the generic type T is not marked as covariant.
 // SampleGenericDelegate <Object> dObject = dString;

}

Generic Delegates That Have Variant Type Parameters in
.NET

https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.action-1
https://learn.microsoft.com/en-us/dotnet/api/system.action-2
https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.func-1
https://learn.microsoft.com/en-us/dotnet/api/system.func-2
https://learn.microsoft.com/en-us/dotnet/api/system.predicate-1
https://learn.microsoft.com/en-us/dotnet/api/system.comparison-1
https://learn.microsoft.com/en-us/dotnet/api/system.converter-2

For more information and examples, see Using Variance for Func and Action Generic
Delegates (C#).

If a generic delegate has covariant or contravariant generic type parameters, it can be
referred to as a variant generic delegate.

You can declare a generic type parameter covariant in a generic delegate by using the
out keyword. The covariant type can be used only as a method return type and not as a
type of method arguments. The following code example shows how to declare a
covariant generic delegate.

C#

You can declare a generic type parameter contravariant in a generic delegate by using
the in keyword. The contravariant type can be used only as a type of method
arguments and not as a method return type. The following code example shows how to
declare a contravariant generic delegate.

C#

It is also possible to support both variance and covariance in the same delegate, but for
different type parameters. This is shown in the following example.

C#

You can instantiate and invoke variant delegates just as you instantiate and invoke
invariant delegates. In the following example, the delegate is instantiated by a lambda

Declaring Variant Type Parameters in Generic Delegates

public delegate R DCovariant<out R>();

public delegate void DContravariant<in A>(A a);

） Important

ref , in , and out parameters in C# can't be marked as variant.

public delegate R DVariant<in A, out R>(A a);

Instantiating and Invoking Variant Generic Delegates

expression.

C#

Don't combine variant delegates. The Combine method does not support variant
delegate conversion and expects delegates to be of exactly the same type. This can lead
to a run-time exception when you combine delegates either by using the Combine
method or by using the + operator, as shown in the following code example.

C#

Variance for generic type parameters is supported for reference types only. For example,
DVariant<int> can't be implicitly converted to DVariant<Object> or DVariant<long> ,
because integer is a value type.

The following example demonstrates that variance in generic type parameters is not
supported for value types.

C#

DVariant<String, String> dvariant = (String str) => str + " ";
dvariant("test");

Combining Variant Generic Delegates

Action<object> actObj = x => Console.WriteLine("object: {0}", x);
Action<string> actStr = x => Console.WriteLine("string: {0}", x);
// All of the following statements throw exceptions at run time.
// Action<string> actCombine = actStr + actObj;
// actStr += actObj;
// Delegate.Combine(actStr, actObj);

Variance in Generic Type Parameters for Value
and Reference Types

// The type T is covariant.
public delegate T DVariant<out T>();

// The type T is invariant.
public delegate T DInvariant<T>();

public static void Test()
{
 int i = 0;
 DInvariant<int> dInt = () => i;

https://learn.microsoft.com/en-us/dotnet/api/system.delegate.combine
https://learn.microsoft.com/en-us/dotnet/api/system.delegate.combine

Generics
Using Variance for Func and Action Generic Delegates (C#)
How to combine delegates (Multicast Delegates)

 DVariant<int> dVariantInt = () => i;

 // All of the following statements generate a compiler error
 // because type variance in generic parameters is not supported
 // for value types, even if generic type parameters are declared
variant.
 // DInvariant<Object> dObject = dInt;
 // DInvariant<long> dLong = dInt;
 // DVariant<Object> dVariantObject = dVariantInt;
 // DVariant<long> dVariantLong = dVariantInt;
}

See also

https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Using Variance in Delegates (C#)
Article • 2021-09-15 • 2 minutes to read

When you assign a method to a delegate, covariance and contravariance provide
flexibility for matching a delegate type with a method signature. Covariance permits a
method to have return type that is more derived than that defined in the delegate.
Contravariance permits a method that has parameter types that are less derived than
those in the delegate type.

This example demonstrates how delegates can be used with methods that have return
types that are derived from the return type in the delegate signature. The data type
returned by DogsHandler is of type Dogs , which derives from the Mammals type that is
defined in the delegate.

C#

Example 1: Covariance

Description

Code

class Mammals {}
class Dogs : Mammals {}

class Program
{
 // Define the delegate.
 public delegate Mammals HandlerMethod();

 public static Mammals MammalsHandler()
 {
 return null;
 }

 public static Dogs DogsHandler()
 {
 return null;
 }

 static void Test()
 {
 HandlerMethod handlerMammals = MammalsHandler;

 // Covariance enables this assignment.

This example demonstrates how delegates can be used with methods that have
parameters whose types are base types of the delegate signature parameter type. With
contravariance, you can use one event handler instead of separate handlers. The
following example makes use of two delegates:

A KeyEventHandler delegate that defines the signature of the Button.KeyDown
event. Its signature is:

C#

A MouseEventHandler delegate that defines the signature of the
Button.MouseClick event. Its signature is:

C#

The example defines an event handler with an EventArgs parameter and uses it to
handle both the Button.KeyDown and Button.MouseClick events. It can do this because
EventArgs is a base type of both KeyEventArgs and MouseEventArgs.

C#

 HandlerMethod handlerDogs = DogsHandler;
 }
}

Example 2: Contravariance

Description

public delegate void KeyEventHandler(object sender, KeyEventArgs e)

public delegate void MouseEventHandler(object sender, MouseEventArgs e)

Code

// Event handler that accepts a parameter of the EventArgs type.
private void MultiHandler(object sender, System.EventArgs e)
{
 label1.Text = System.DateTime.Now.ToString();
}

public Form1()
{

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.keydown
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousedown
https://learn.microsoft.com/en-us/dotnet/api/system.eventargs
https://learn.microsoft.com/en-us/dotnet/api/system.eventargs
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.keyeventargs
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventargs

Variance in Delegates (C#)
Using Variance for Func and Action Generic Delegates (C#)

 InitializeComponent();

 // You can use a method that has an EventArgs parameter,
 // although the event expects the KeyEventArgs parameter.
 this.button1.KeyDown += this.MultiHandler;

 // You can use the same method
 // for an event that expects the MouseEventArgs parameter.
 this.button1.MouseClick += this.MultiHandler;

}

See also

Using Variance for Func and Action
Generic Delegates (C#)
Article • 2021-09-15 • 2 minutes to read

These examples demonstrate how to use covariance and contravariance in the Func and
Action generic delegates to enable reuse of methods and provide more flexibility in
your code.

For more information about covariance and contravariance, see Variance in Delegates
(C#).

The following example illustrates the benefits of covariance support in the generic Func
delegates. The FindByTitle method takes a parameter of the String type and returns
an object of the Employee type. However, you can assign this method to the
Func<String, Person> delegate because Employee inherits Person .

C#

Using Delegates with Covariant Type
Parameters

// Simple hierarchy of classes.
public class Person { }
public class Employee : Person { }
class Program
{
 static Employee FindByTitle(String title)
 {
 // This is a stub for a method that returns
 // an employee that has the specified title.
 return new Employee();
 }

 static void Test()
 {
 // Create an instance of the delegate without using variance.
 Func<String, Employee> findEmployee = FindByTitle;

 // The delegate expects a method to return Person,
 // but you can assign it a method that returns Employee.
 Func<String, Person> findPerson = FindByTitle;

 // You can also assign a delegate
 // that returns a more derived type
 // to a delegate that returns a less derived type.

The following example illustrates the benefits of contravariance support in the generic
Action delegates. The AddToContacts method takes a parameter of the Person type.
However, you can assign this method to the Action<Employee> delegate because
Employee inherits Person .

C#

Covariance and Contravariance (C#)

 findPerson = findEmployee;

 }
}

Using Delegates with Contravariant Type
Parameters

public class Person { }
public class Employee : Person { }
class Program
{
 static void AddToContacts(Person person)
 {
 // This method adds a Person object
 // to a contact list.
 }

 static void Test()
 {
 // Create an instance of the delegate without using variance.
 Action<Person> addPersonToContacts = AddToContacts;

 // The Action delegate expects
 // a method that has an Employee parameter,
 // but you can assign it a method that has a Person parameter
 // because Employee derives from Person.
 Action<Employee> addEmployeeToContacts = AddToContacts;

 // You can also assign a delegate
 // that accepts a less derived parameter to a delegate
 // that accepts a more derived parameter.
 addEmployeeToContacts = addPersonToContacts;
 }
}

See also

Generics

https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Expression Trees (C#)
Article • 2021-09-15 • 4 minutes to read

Expression trees represent code in a tree-like data structure, where each node is an
expression, for example, a method call or a binary operation such as x < y .

You can compile and run code represented by expression trees. This enables dynamic
modification of executable code, the execution of LINQ queries in various databases,
and the creation of dynamic queries. For more information about expression trees in
LINQ, see How to use expression trees to build dynamic queries (C#).

Expression trees are also used in the dynamic language runtime (DLR) to provide
interoperability between dynamic languages and .NET and to enable compiler writers to
emit expression trees instead of Microsoft intermediate language (MSIL). For more
information about the DLR, see Dynamic Language Runtime Overview.

You can have the C# or Visual Basic compiler create an expression tree for you based on
an anonymous lambda expression, or you can create expression trees manually by using
the System.Linq.Expressions namespace.

When a lambda expression is assigned to a variable of type Expression<TDelegate>, the
compiler emits code to build an expression tree that represents the lambda expression.

The C# compiler can generate expression trees only from expression lambdas (or single-
line lambdas). It cannot parse statement lambdas (or multi-line lambdas). For more
information about lambda expressions in C#, see Lambda Expressions.

The following code examples demonstrate how to have the C# compiler create an
expression tree that represents the lambda expression num => num < 5 .

C#

Creating Expression Trees from Lambda
Expressions

Expression<Func<int, bool>> lambda = num => num < 5;

Creating Expression Trees by Using the API

https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1

To create expression trees by using the API, use the Expression class. This class contains
static factory methods that create expression tree nodes of specific types, for example,
ParameterExpression, which represents a variable or parameter, or
MethodCallExpression, which represents a method call. ParameterExpression,
MethodCallExpression, and the other expression-specific types are also defined in the
System.Linq.Expressions namespace. These types derive from the abstract type
Expression.

The following code example demonstrates how to create an expression tree that
represents the lambda expression num => num < 5 by using the API.

C#

In .NET Framework 4 or later, the expression trees API also supports assignments and
control flow expressions such as loops, conditional blocks, and try-catch blocks. By
using the API, you can create expression trees that are more complex than those that
can be created from lambda expressions by the C# compiler. The following example
demonstrates how to create an expression tree that calculates the factorial of a number.

C#

// Add the following using directive to your code file:
// using System.Linq.Expressions;

// Manually build the expression tree for
// the lambda expression num => num < 5.
ParameterExpression numParam = Expression.Parameter(typeof(int), "num");
ConstantExpression five = Expression.Constant(5, typeof(int));
BinaryExpression numLessThanFive = Expression.LessThan(numParam, five);
Expression<Func<int, bool>> lambda1 =
 Expression.Lambda<Func<int, bool>>(
 numLessThanFive,
 new ParameterExpression[] { numParam });

// Creating a parameter expression.
ParameterExpression value = Expression.Parameter(typeof(int), "value");

// Creating an expression to hold a local variable.
ParameterExpression result = Expression.Parameter(typeof(int), "result");

// Creating a label to jump to from a loop.
LabelTarget label = Expression.Label(typeof(int));

// Creating a method body.
BlockExpression block = Expression.Block(
 // Adding a local variable.
 new[] { result },
 // Assigning a constant to a local variable: result = 1

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.parameterexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.methodcallexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.parameterexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.methodcallexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression

For more information, see Generating Dynamic Methods with Expression Trees in Visual
Studio 2010 , which also applies to later versions of Visual Studio.

The following code example demonstrates how the expression tree that represents the
lambda expression num => num < 5 can be decomposed into its parts.

C#

 Expression.Assign(result, Expression.Constant(1)),
 // Adding a loop.
 Expression.Loop(
 // Adding a conditional block into the loop.
 Expression.IfThenElse(
 // Condition: value > 1
 Expression.GreaterThan(value, Expression.Constant(1)),
 // If true: result *= value --
 Expression.MultiplyAssign(result,
 Expression.PostDecrementAssign(value)),
 // If false, exit the loop and go to the label.
 Expression.Break(label, result)
),
 // Label to jump to.
 label
)
);

// Compile and execute an expression tree.
int factorial = Expression.Lambda<Func<int, int>>(block, value).Compile()
(5);

Console.WriteLine(factorial);
// Prints 120.

Parsing Expression Trees

// Add the following using directive to your code file:
// using System.Linq.Expressions;

// Create an expression tree.
Expression<Func<int, bool>> exprTree = num => num < 5;

// Decompose the expression tree.
ParameterExpression param = (ParameterExpression)exprTree.Parameters[0];
BinaryExpression operation = (BinaryExpression)exprTree.Body;
ParameterExpression left = (ParameterExpression)operation.Left;
ConstantExpression right = (ConstantExpression)operation.Right;

Console.WriteLine("Decomposed expression: {0} => {1} {2} {3}",
 param.Name, left.Name, operation.NodeType, right.Value);

// This code produces the following output:

https://devblogs.microsoft.com/csharpfaq/generating-dynamic-methods-with-expression-trees-in-visual-studio-2010/

Expression trees should be immutable. This means that if you want to modify an
expression tree, you must construct a new expression tree by copying the existing one
and replacing nodes in it. You can use an expression tree visitor to traverse the existing
expression tree. For more information, see How to modify expression trees (C#).

The Expression<TDelegate> type provides the Compile method that compiles the code
represented by an expression tree into an executable delegate.

The following code example demonstrates how to compile an expression tree and run
the resulting code.

C#

For more information, see How to execute expression trees (C#).

System.Linq.Expressions
How to execute expression trees (C#)

// Decomposed expression: num => num LessThan 5

Immutability of Expression Trees

Compiling Expression Trees

// Creating an expression tree.
Expression<Func<int, bool>> expr = num => num < 5;

// Compiling the expression tree into a delegate.
Func<int, bool> result = expr.Compile();

// Invoking the delegate and writing the result to the console.
Console.WriteLine(result(4));

// Prints True.

// You can also use simplified syntax
// to compile and run an expression tree.
// The following line can replace two previous statements.
Console.WriteLine(expr.Compile()(4));

// Also prints True.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1.compile
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions

How to modify expression trees (C#)
Lambda Expressions
Dynamic Language Runtime Overview
Programming Concepts (C#)

https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview

How to execute expression trees (C#)
Article • 2021-09-15 • 2 minutes to read

This topic shows you how to execute an expression tree. Executing an expression tree
may return a value, or it may just perform an action such as calling a method.

Only expression trees that represent lambda expressions can be executed. Expression
trees that represent lambda expressions are of type LambdaExpression or
Expression<TDelegate>. To execute these expression trees, call the Compile method to
create an executable delegate, and then invoke the delegate.

If an expression tree does not represent a lambda expression, you can create a new
lambda expression that has the original expression tree as its body, by calling the
Lambda<TDelegate>(Expression, IEnumerable<ParameterExpression>) method. Then,
you can execute the lambda expression as described earlier in this section.

The following code example demonstrates how to execute an expression tree that
represents raising a number to a power by creating a lambda expression and executing
it. The result, which represents the number raised to the power, is displayed.

C#

７ Note

If the type of the delegate is not known, that is, the lambda expression is of type
LambdaExpression and not Expression<TDelegate>, you must call the
DynamicInvoke method on the delegate instead of invoking it directly.

Example

// The expression tree to execute.
BinaryExpression be = Expression.Power(Expression.Constant(2D),
Expression.Constant(3D));

// Create a lambda expression.
Expression<Func<double>> le = Expression.Lambda<Func<double>>(be);

// Compile the lambda expression.
Func<double> compiledExpression = le.Compile();

// Execute the lambda expression.
double result = compiledExpression();

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression.compile
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression.lambda#system-linq-expressions-expression-lambda-1(system-linq-expressions-expression-system-collections-generic-ienumerable((system-linq-expressions-parameterexpression)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.delegate.dynamicinvoke

Include the System.Linq.Expressions namespace.

Expression Trees (C#)
How to modify expression trees (C#)

// Display the result.
Console.WriteLine(result);

// This code produces the following output:
// 8

Compiling the Code

See also

How to modify expression trees (C#)
Article • 2021-09-15 • 2 minutes to read

This topic shows you how to modify an expression tree. Expression trees are immutable,
which means that they cannot be modified directly. To change an expression tree, you
must create a copy of an existing expression tree and when you create the copy, make
the required changes. You can use the ExpressionVisitor class to traverse an existing
expression tree and to copy each node that it visits.

1. Create a new Console Application project.

2. Add a using directive to the file for the System.Linq.Expressions namespace.

3. Add the AndAlsoModifier class to your project.

C#

This class inherits the ExpressionVisitor class and is specialized to modify
expressions that represent conditional AND operations. It changes these operations
from a conditional AND to a conditional OR . To do this, the class overrides the

To modify an expression tree

public class AndAlsoModifier : ExpressionVisitor
{
 public Expression Modify(Expression expression)
 {
 return Visit(expression);
 }

 protected override Expression VisitBinary(BinaryExpression b)
 {
 if (b.NodeType == ExpressionType.AndAlso)
 {
 Expression left = this.Visit(b.Left);
 Expression right = this.Visit(b.Right);

 // Make this binary expression an OrElse operation instead
of an AndAlso operation.
 return Expression.MakeBinary(ExpressionType.OrElse, left,
right, b.IsLiftedToNull, b.Method);
 }

 return base.VisitBinary(b);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expressionvisitor
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expressionvisitor

VisitBinary method of the base type, because conditional AND expressions are
represented as binary expressions. In the VisitBinary method, if the expression
that is passed to it represents a conditional AND operation, the code constructs a
new expression that contains the conditional OR operator instead of the
conditional AND operator. If the expression that is passed to VisitBinary does not
represent a conditional AND operation, the method defers to the base class
implementation. The base class methods construct nodes that are like the
expression trees that are passed in, but the nodes have their sub trees replaced
with the expression trees that are produced recursively by the visitor.

4. Add a using directive to the file for the System.Linq.Expressions namespace.

5. Add code to the Main method in the Program.cs file to create an expression tree
and pass it to the method that will modify it.

C#

The code creates an expression that contains a conditional AND operation. It then
creates an instance of the AndAlsoModifier class and passes the expression to the
Modify method of this class. Both the original and the modified expression trees
are outputted to show the change.

6. Compile and run the application.

How to execute expression trees (C#)
Expression Trees (C#)

Expression<Func<string, bool>> expr = name => name.Length > 10 &&
name.StartsWith("G");
Console.WriteLine(expr);

AndAlsoModifier treeModifier = new AndAlsoModifier();
Expression modifiedExpr = treeModifier.Modify((Expression) expr);

Console.WriteLine(modifiedExpr);

/* This code produces the following output:

 name => ((name.Length > 10) && name.StartsWith("G"))
 name => ((name.Length > 10) || name.StartsWith("G"))
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expressionvisitor.visitbinary

Querying based on runtime state (C#)
Article • 2022-07-20 • 8 minutes to read

Consider code that defines an IQueryable or an IQueryable<T> against a data source:

C#

Every time you run this code, the same exact query will be executed. This is frequently
not very useful, as you may want your code to execute different queries depending on
conditions at run time. This article describes how you can execute a different query
based on runtime state.

Fundamentally, an IQueryable has two components:

Expression—a language- and datasource-agnostic representation of the current
query's components, in the form of an expression tree.
Provider—an instance of a LINQ provider, which knows how to materialize the
current query into a value or set of values.

７ Note

Make sure you add using System.Linq.Expressions; and using static
System.Linq.Expressions.Expression; at the top of your .cs file.

var companyNames = new[] {
 "Consolidated Messenger", "Alpine Ski House", "Southridge Video",
 "City Power & Light", "Coho Winery", "Wide World Importers",
 "Graphic Design Institute", "Adventure Works", "Humongous Insurance",
 "Woodgrove Bank", "Margie's Travel", "Northwind Traders",
 "Blue Yonder Airlines", "Trey Research", "The Phone Company",
 "Wingtip Toys", "Lucerne Publishing", "Fourth Coffee"
};

// We're using an in-memory array as the data source, but the IQueryable
could have come
// from anywhere -- an ORM backed by a database, a web request, or any other
LINQ provider.
IQueryable<string> companyNamesSource = companyNames.AsQueryable();
var fixedQry = companyNames.OrderBy(x => x);

IQueryable / IQueryable<T> and expression
trees

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable.expression#system-linq-iqueryable-expression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable.provider#system-linq-iqueryable-provider

In the context of dynamic querying, the provider will usually remain the same; the
expression tree of the query will differ from query to query.

Expression trees are immutable; if you want a different expression tree—and thus a
different query—you'll need to translate the existing expression tree to a new one, and
thus to a new IQueryable.

The following sections describe specific techniques for querying differently in response
to runtime state:

Use runtime state from within the expression tree
Call additional LINQ methods
Vary the expression tree passed into the LINQ methods
Construct an Expression<TDelegate> expression tree using the factory methods at
Expression
Add method call nodes to an IQueryable's expression tree
Construct strings, and use the Dynamic LINQ library

Assuming the LINQ provider supports it, the simplest way to query dynamically is to
reference the runtime state directly in the query via a closed-over variable, such as
length in the following code example:

C#

The internal expression tree—and thus the query—haven't been modified; the query
returns different values only because the value of length has been changed.

Use runtime state from within the expression
tree

var length = 1;
var qry = companyNamesSource
 .Select(x => x.Substring(0, length))
 .Distinct();

Console.WriteLine(string.Join(",", qry));
// prints: C, A, S, W, G, H, M, N, B, T, L, F

length = 2;
Console.WriteLine(string.Join(",", qry));
// prints: Co, Al, So, Ci, Wi, Gr, Ad, Hu, Wo, Ma, No, Bl, Tr, Th, Lu, Fo

Call additional LINQ methods

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://dynamic-linq.net/

Generally, the built-in LINQ methods at Queryable perform two steps:

Wrap the current expression tree in a MethodCallExpression representing the
method call.
Pass the wrapped expression tree back to the provider, either to return a value via
the provider's IQueryProvider.Execute method; or to return a translated query
object via the IQueryProvider.CreateQuery method.

You can replace the original query with the result of an IQueryable<T>-returning
method, to get a new query. You can do this conditionally based on runtime state, as in
the following example:

C#

You can pass in different expressions to the LINQ methods, depending on runtime state:

C#

You might also want to compose the various subexpressions using a third-party library
such as LinqKit 's PredicateBuilder :

C#

// bool sortByLength = /* ... */;

var qry = companyNamesSource;
if (sortByLength)
{
 qry = qry.OrderBy(x => x.Length);
}

Vary the expression tree passed into the LINQ
methods

// string? startsWith = /* ... */;
// string? endsWith = /* ... */;

Expression<Func<string, bool>> expr = (startsWith, endsWith) switch
{
 ("" or null, "" or null) => x => true,
 (_, "" or null) => x => x.StartsWith(startsWith),
 ("" or null, _) => x => x.EndsWith(endsWith),
 (_, _) => x => x.StartsWith(startsWith) || x.EndsWith(endsWith)
};

var qry = companyNamesSource.Where(expr);

https://github.com/dotnet/runtime/blob/main/src/libraries/System.Linq.Queryable/src/System/Linq/Queryable.cs
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.methodcallexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryprovider.execute
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryprovider.createquery
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
http://www.albahari.com/nutshell/linqkit.aspx
http://www.albahari.com/nutshell/predicatebuilder.aspx

In all the examples up to this point, we've known the element type at compile time—
string—and thus the type of the query—IQueryable<string> . You may need to add
components to a query of any element type, or to add different components, depending
on the element type. You can create expression trees from the ground up, using the
factory methods at System.Linq.Expressions.Expression, and thus tailor the expression at
run time to a specific element type.

When you construct an expression to pass into one of the LINQ methods, you're actually
constructing an instance of Expression<TDelegate>, where TDelegate is some delegate
type such as Func<string, bool> , Action , or a custom delegate type.

Expression<TDelegate> inherits from LambdaExpression, which represents a complete
lambda expression like the following:

C#

// This is functionally equivalent to the previous example.

// using LinqKit;
// string? startsWith = /* ... */;
// string? endsWith = /* ... */;

Expression<Func<string, bool>>? expr = PredicateBuilder.New<string>(false);
var original = expr;
if (!string.IsNullOrEmpty(startsWith))
{
 expr = expr.Or(x => x.StartsWith(startsWith));
}
if (!string.IsNullOrEmpty(endsWith))
{
 expr = expr.Or(x => x.EndsWith(endsWith));
}
if (expr == original)
{
 expr = x => true;
}

var qry = companyNamesSource.Where(expr);

Construct expression trees and queries using
factory methods

Constructing an Expression<TDelegate>

Expression<Func<string, bool>> expr = x => x.StartsWith("a");

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1

A LambdaExpression has two components:

A parameter list—(string x)—represented by the Parameters property.
A body—x.StartsWith("a")—represented by the Body property.

The basic steps in constructing an Expression<TDelegate> are as follows:

Define ParameterExpression objects for each of the parameters (if any) in the
lambda expression, using the Parameter factory method.

C#

Construct the body of your LambdaExpression, using the ParameterExpression(s)
you've defined, and the factory methods at Expression. For instance, an expression
representing x.StartsWith("a") could be constructed like this:

C#

Wrap the parameters and body in a compile-time-typed Expression<TDelegate>,
using the appropriate Lambda factory method overload:

C#

The following sections describe a scenario in which you might want to construct an
Expression<TDelegate> to pass into a LINQ method, and provide a complete example
of how to do so using the factory methods.

Let's say you have multiple entity types:

C#

ParameterExpression x = Expression.Parameter(typeof(string), "x");

Expression body = Call(
 x,
 typeof(string).GetMethod("StartsWith", new[] { typeof(string) })!,
 Constant("a")
);

Expression<Func<string, bool>> expr = Lambda<Func<string, bool>>(body,
x);

Scenario

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression.parameters#system-linq-expressions-lambdaexpression-parameters
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression.body#system-linq-expressions-lambdaexpression-body
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.parameterexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression.parameter
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.parameterexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression.lambda
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1

For any of these entity types, you want to filter and return only those entities that have a
given text inside one of their string fields. For Person , you'd want to search the
FirstName and LastName properties:

C#

But for Car , you'd want to search only the Model property:

C#

While you could write one custom function for IQueryable<Person> and another for
IQueryable<Car> , the following function adds this filtering to any existing query,
irrespective of the specific element type.

C#

record Person(string LastName, string FirstName, DateTime DateOfBirth);
record Car(string Model, int Year);

string term = /* ... */;
var personsQry = new List<Person>()
 .AsQueryable()
 .Where(x => x.FirstName.Contains(term) || x.LastName.Contains(term));

string term = /* ... */;
var carsQry = new List<Car>()
 .AsQueryable()
 .Where(x => x.Model.Contains(term));

Example

// using static System.Linq.Expressions.Expression;

IQueryable<T> TextFilter<T>(IQueryable<T> source, string term)
{
 if (string.IsNullOrEmpty(term)) { return source; }

 // T is a compile-time placeholder for the element type of the query.
 Type elementType = typeof(T);

 // Get all the string properties on this specific type.
 PropertyInfo[] stringProperties =
 elementType.GetProperties()
 .Where(x => x.PropertyType == typeof(string))
 .ToArray();
 if (!stringProperties.Any()) { return source; }

Because the TextFilter function takes and returns an IQueryable<T> (and not just an
IQueryable), you can add further compile-time-typed query elements after the text filter.

C#

 // Get the right overload of String.Contains
 MethodInfo containsMethod = typeof(string).GetMethod("Contains", new[] {
typeof(string) })!;

 // Create a parameter for the expression tree:
 // the 'x' in 'x => x.PropertyName.Contains("term")'
 // The type of this parameter is the query's element type
 ParameterExpression prm = Parameter(elementType);

 // Map each property to an expression tree node
 IEnumerable<Expression> expressions = stringProperties
 .Select(prp =>
 // For each property, we have to construct an expression tree
node like x.PropertyName.Contains("term")
 Call(// .Contains(...)
 Property(// .PropertyName
 prm, // x
 prp
),
 containsMethod,
 Constant(term) // "term"
)
);

 // Combine all the resultant expression nodes using ||
 Expression body = expressions
 .Aggregate(
 (prev, current) => Or(prev, current)
);

 // Wrap the expression body in a compile-time-typed lambda expression
 Expression<Func<T, bool>> lambda = Lambda<Func<T, bool>>(body, prm);

 // Because the lambda is compile-time-typed (albeit with a generic
parameter), we can use it with the Where method
 return source.Where(lambda);
}

var qry = TextFilter(
 new List<Person>().AsQueryable(),
 "abcd"
)
 .Where(x => x.DateOfBirth < new DateTime(2001, 1, 1));

var qry1 = TextFilter(
 new List<Car>().AsQueryable(),
 "abcd"

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable

If you have an IQueryable instead of an IQueryable<T>, you can't directly call the
generic LINQ methods. One alternative is to build the inner expression tree as above,
and use reflection to invoke the appropriate LINQ method while passing in the
expression tree.

You could also duplicate the LINQ method's functionality, by wrapping the entire tree in
a MethodCallExpression that represents a call to the LINQ method:

C#

In this case, you don't have a compile-time T generic placeholder, so you'll use the
Lambda overload that doesn't require compile-time type information, and which
produces a LambdaExpression instead of an Expression<TDelegate>.

)
 .Where(x => x.Year == 2010);

Add method call nodes to the IQueryable's
expression tree

IQueryable TextFilter_Untyped(IQueryable source, string term)
{
 if (string.IsNullOrEmpty(term)) { return source; }
 Type elementType = source.ElementType;

 // The logic for building the ParameterExpression and the
LambdaExpression's body is the same as in the previous example,
 // but has been refactored into the constructBody function.
 (Expression? body, ParameterExpression? prm) =
constructBody(elementType, term);
 if (body is null) {return source;}

 Expression filteredTree = Call(
 typeof(Queryable),
 "Where",
 new[] { elementType},
 source.Expression,
 Lambda(body, prm!)
);

 return source.Provider.CreateQuery(filteredTree);
}

The Dynamic LINQ library

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.methodcallexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression.lambda
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable

Constructing expression trees using factory methods is relatively complex; it is easier to
compose strings. The Dynamic LINQ library exposes a set of extension methods on
IQueryable corresponding to the standard LINQ methods at Queryable, and which
accept strings in a special syntax instead of expression trees. The library generates the
appropriate expression tree from the string, and can return the resultant translated
IQueryable.

For instance, the previous example could be rewritten as follows:

C#

Expression Trees (C#)
How to execute expression trees (C#)
Dynamically specify predicate filters at run time

// using System.Linq.Dynamic.Core

IQueryable TextFilter_Strings(IQueryable source, string term) {
 if (string.IsNullOrEmpty(term)) { return source; }

 var elementType = source.ElementType;

 // Get all the string property names on this specific type.
 var stringProperties =
 elementType.GetProperties()
 .Where(x => x.PropertyType == typeof(string))
 .ToArray();
 if (!stringProperties.Any()) { return source; }

 // Build the string expression
 string filterExpr = string.Join(
 " || ",
 stringProperties.Select(prp => $"{prp.Name}.Contains(@0)")
);

 return source.Where(filterExpr, term);
}

See also

https://dynamic-linq.net/
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable
https://dynamic-linq.net/expression-language
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable

Debugging Expression Trees in Visual
Studio (C#)
Article • 2021-09-15 • 2 minutes to read

You can analyze the structure and content of expression trees when you debug your
applications. To get a quick overview of the expression tree structure, you can use the
DebugView property, which represents expression trees using a special syntax. (Note that
DebugView is available only in debug mode.)

Since DebugView is a string, you can use the built-in Text Visualizer to view it across
multiple lines, by selecting Text Visualizer from the magnifying glass icon next to the
DebugView label.

Alternatively, you can install and use a custom visualizer for expression trees, such as:

Readable Expressions (MIT license , available at the Visual Studio
Marketplace), renders the expression tree as themeable C# code, with various
rendering options:

https://learn.microsoft.com/en-us/visualstudio/debugger/view-strings-visualizer#open-a-string-visualizer
https://learn.microsoft.com/en-us/visualstudio/debugger/create-custom-visualizers-of-data
https://github.com/agileobjects/ReadableExpressions
https://github.com/agileobjects/ReadableExpressions/blob/master/LICENCE.md
https://marketplace.visualstudio.com/items?itemName=vs-publisher-1232914.ReadableExpressionsVisualizers

Expression Tree Visualizer (MIT license) provides a tree view of the expression
tree and its individual nodes:

1. Click the magnifying glass icon that appears next to the expression tree in
DataTips, a Watch window, the Autos window, or the Locals window.

A list of available visualizers is displayed.:

2. Click the visualizer you want to use.

To open a visualizer for an expression tree

https://github.com/zspitz/ExpressionTreeVisualizer/blob/master/README.md
https://github.com/zspitz/ExpressionTreeVisualizer/blob/master/LICENSE

Expression Trees (C#)
Debugging in Visual Studio
Create Custom Visualizers
DebugView syntax

See also

https://learn.microsoft.com/en-us/visualstudio/debugger/debugger-feature-tour
https://learn.microsoft.com/en-us/visualstudio/debugger/create-custom-visualizers-of-data

DebugView syntax
Article • 2021-09-15 • 2 minutes to read

The DebugView property (available only when debugging) provides a string rendering
of expression trees. Most of the syntax is fairly straightforward to understand; the
special cases are described in the following sections.

Each example is followed by a block comment, containing the DebugView.

ParameterExpression variable names are displayed with a $ symbol at the beginning.

If a parameter does not have a name, it is assigned an automatically generated name,
such as $var1 or $var2 .

C#

For ConstantExpression objects that represent integer values, strings, and null , the
value of the constant is displayed.

For numeric types that have standard suffixes as C# literals, the suffix is added to the
value. The following table shows the suffixes associated with various numeric types.

Type Keyword Suffix

System.UInt32 uint U

ParameterExpression

Examples

ParameterExpression numParam = Expression.Parameter(typeof(int), "num");
/*
 $num
*/

ParameterExpression numParam = Expression.Parameter(typeof(int));
/*
 $var1
*/

ConstantExpression

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.parameterexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.constantexpression
https://learn.microsoft.com/en-us/dotnet/api/system.uint32

Type Keyword Suffix

System.Int64 long L

System.UInt64 ulong UL

System.Double double D

System.Single float F

System.Decimal decimal M

C#

If the type of a BlockExpression object differs from the type of the last expression in the
block, the type is displayed within angle brackets (< and >). Otherwise, the type of the
BlockExpression object is not displayed.

C#

Examples

int num = 10;
ConstantExpression expr = Expression.Constant(num);
/*
 10
*/

double num = 10;
ConstantExpression expr = Expression.Constant(num);
/*
 10D
*/

BlockExpression

Examples

BlockExpression block = Expression.Block(Expression.Constant("test"));
/*
 .Block() {
 "test"
 }
*/

BlockExpression block = Expression.Block(typeof(Object),
Expression.Constant("test"));

https://learn.microsoft.com/en-us/dotnet/api/system.int64
https://learn.microsoft.com/en-us/dotnet/api/system.uint64
https://learn.microsoft.com/en-us/dotnet/api/system.double
https://learn.microsoft.com/en-us/dotnet/api/system.single
https://learn.microsoft.com/en-us/dotnet/api/system.decimal
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.blockexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.blockexpression

LambdaExpression objects are displayed together with their delegate types.

If a lambda expression does not have a name, it is assigned an automatically generated
name, such as #Lambda1 or #Lambda2 .

C#

If you specify a default value for the LabelExpression object, this value is displayed
before the LabelTarget object.

The .Label token indicates the start of the label. The .LabelTarget token indicates the
destination of the target to jump to.

If a label does not have a name, it is assigned an automatically generated name, such as
#Label1 or #Label2 .

/*
 .Block<System.Object>() {
 "test"
 }
*/

LambdaExpression

Examples

LambdaExpression lambda = Expression.Lambda<Func<int>>
(Expression.Constant(1));
/*
 .Lambda #Lambda1<System.Func'1[System.Int32]>() {
 1
 }
*/

LambdaExpression lambda = Expression.Lambda<Func<int>>
(Expression.Constant(1), "SampleLambda", null);
/*
 .Lambda #SampleLambda<System.Func'1[System.Int32]>() {
 1
 }
*/

LabelExpression

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.labelexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.labeltarget

C#

Checked operators are displayed with the # symbol in front of the operator. For
example, the checked addition operator is displayed as #+ .

C#

Examples

LabelTarget target = Expression.Label(typeof(int), "SampleLabel");
BlockExpression block = Expression.Block(
 Expression.Goto(target, Expression.Constant(0)),
 Expression.Label(target, Expression.Constant(-1))
);
/*
 .Block() {
 .Goto SampleLabel { 0 };
 .Label
 -1
 .LabelTarget SampleLabel:
 }
*/

LabelTarget target = Expression.Label();
BlockExpression block = Expression.Block(
 Expression.Goto(target),
 Expression.Label(target)
);
/*
 .Block() {
 .Goto #Label1 { };
 .Label
 .LabelTarget #Label1:
 }
*/

Checked Operators

Examples

Expression expr = Expression.AddChecked(Expression.Constant(1),
Expression.Constant(2));
/*
 1 #+ 2
*/

Expression expr = Expression.ConvertChecked(Expression.Constant(10.0),
typeof(int));
/*

 #(System.Int32)10D
*/

Iterators (C#)
Article • 2022-09-29 • 7 minutes to read

An iterator can be used to step through collections such as lists and arrays.

An iterator method or get accessor performs a custom iteration over a collection. An
iterator method uses the yield return statement to return each element one at a time.
When a yield return statement is reached, the current location in code is remembered.
Execution is restarted from that location the next time the iterator function is called.

You consume an iterator from client code by using a foreach statement or by using a
LINQ query.

In the following example, the first iteration of the foreach loop causes execution to
proceed in the SomeNumbers iterator method until the first yield return statement is
reached. This iteration returns a value of 3, and the current location in the iterator
method is retained. On the next iteration of the loop, execution in the iterator method
continues from where it left off, again stopping when it reaches a yield return
statement. This iteration returns a value of 5, and the current location in the iterator
method is again retained. The loop completes when the end of the iterator method is
reached.

C#

The return type of an iterator method or get accessor can be IEnumerable,
IEnumerable<T>, IEnumerator, or IEnumerator<T>.

You can use a yield break statement to end the iteration.

static void Main()
{
 foreach (int number in SomeNumbers())
 {
 Console.Write(number.ToString() + " ");
 }
 // Output: 3 5 8
 Console.ReadKey();
}

public static System.Collections.IEnumerable SomeNumbers()
{
 yield return 3;
 yield return 5;
 yield return 8;
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1

The following example has a single yield return statement that is inside a for loop. In
Main , each iteration of the foreach statement body creates a call to the iterator
function, which proceeds to the next yield return statement.

C#

In the following example, the DaysOfTheWeek class implements the IEnumerable
interface, which requires a GetEnumerator method. The compiler implicitly calls the
GetEnumerator method, which returns an IEnumerator.

７ Note

For all examples in this topic except the Simple Iterator example, include using
directives for the System.Collections and System.Collections.Generic
namespaces.

Simple Iterator

static void Main()
{
 foreach (int number in EvenSequence(5, 18))
 {
 Console.Write(number.ToString() + " ");
 }
 // Output: 6 8 10 12 14 16 18
 Console.ReadKey();
}

public static System.Collections.Generic.IEnumerable<int>
 EvenSequence(int firstNumber, int lastNumber)
{
 // Yield even numbers in the range.
 for (int number = firstNumber; number <= lastNumber; number++)
 {
 if (number % 2 == 0)
 {
 yield return number;
 }
 }
}

Creating a Collection Class

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator

The GetEnumerator method returns each string one at a time by using the yield return
statement.

C#

The following example creates a Zoo class that contains a collection of animals.

The foreach statement that refers to the class instance (theZoo) implicitly calls the
GetEnumerator method. The foreach statements that refer to the Birds and Mammals
properties use the AnimalsForType named iterator method.

C#

static void Main()
{
 DaysOfTheWeek days = new DaysOfTheWeek();

 foreach (string day in days)
 {
 Console.Write(day + " ");
 }
 // Output: Sun Mon Tue Wed Thu Fri Sat
 Console.ReadKey();
}

public class DaysOfTheWeek : IEnumerable
{
 private string[] days = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri",
"Sat" };

 public IEnumerator GetEnumerator()
 {
 for (int index = 0; index < days.Length; index++)
 {
 // Yield each day of the week.
 yield return days[index];
 }
 }
}

static void Main()
{
 Zoo theZoo = new Zoo();

 theZoo.AddMammal("Whale");
 theZoo.AddMammal("Rhinoceros");
 theZoo.AddBird("Penguin");
 theZoo.AddBird("Warbler");

 foreach (string name in theZoo)
 {

 Console.Write(name + " ");
 }
 Console.WriteLine();
 // Output: Whale Rhinoceros Penguin Warbler

 foreach (string name in theZoo.Birds)
 {
 Console.Write(name + " ");
 }
 Console.WriteLine();
 // Output: Penguin Warbler

 foreach (string name in theZoo.Mammals)
 {
 Console.Write(name + " ");
 }
 Console.WriteLine();
 // Output: Whale Rhinoceros

 Console.ReadKey();
}

public class Zoo : IEnumerable
{
 // Private members.
 private List<Animal> animals = new List<Animal>();

 // Public methods.
 public void AddMammal(string name)
 {
 animals.Add(new Animal { Name = name, Type = Animal.TypeEnum.Mammal
});
 }

 public void AddBird(string name)
 {
 animals.Add(new Animal { Name = name, Type = Animal.TypeEnum.Bird
});
 }

 public IEnumerator GetEnumerator()
 {
 foreach (Animal theAnimal in animals)
 {
 yield return theAnimal.Name;
 }
 }

 // Public members.
 public IEnumerable Mammals
 {
 get { return AnimalsForType(Animal.TypeEnum.Mammal); }
 }

 public IEnumerable Birds

In the following example, the Stack<T> generic class implements the IEnumerable<T>
generic interface. The Push method assigns values to an array of type T . The
GetEnumerator method returns the array values by using the yield return statement.

In addition to the generic GetEnumerator method, the non-generic GetEnumerator
method must also be implemented. This is because IEnumerable<T> inherits from
IEnumerable. The non-generic implementation defers to the generic implementation.

The example uses named iterators to support various ways of iterating through the
same collection of data. These named iterators are the TopToBottom and BottomToTop
properties, and the TopN method.

The BottomToTop property uses an iterator in a get accessor.

C#

 {
 get { return AnimalsForType(Animal.TypeEnum.Bird); }
 }

 // Private methods.
 private IEnumerable AnimalsForType(Animal.TypeEnum type)
 {
 foreach (Animal theAnimal in animals)
 {
 if (theAnimal.Type == type)
 {
 yield return theAnimal.Name;
 }
 }
 }

 // Private class.
 private class Animal
 {
 public enum TypeEnum { Bird, Mammal }

 public string Name { get; set; }
 public TypeEnum Type { get; set; }
 }
}

Using Iterators with a Generic List

static void Main()
{
 Stack<int> theStack = new Stack<int>();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1.push
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

 // Add items to the stack.
 for (int number = 0; number <= 9; number++)
 {
 theStack.Push(number);
 }

 // Retrieve items from the stack.
 // foreach is allowed because theStack implements IEnumerable<int>.
 foreach (int number in theStack)
 {
 Console.Write("{0} ", number);
 }
 Console.WriteLine();
 // Output: 9 8 7 6 5 4 3 2 1 0

 // foreach is allowed, because theStack.TopToBottom returns
IEnumerable(Of Integer).
 foreach (int number in theStack.TopToBottom)
 {
 Console.Write("{0} ", number);
 }
 Console.WriteLine();
 // Output: 9 8 7 6 5 4 3 2 1 0

 foreach (int number in theStack.BottomToTop)
 {
 Console.Write("{0} ", number);
 }
 Console.WriteLine();
 // Output: 0 1 2 3 4 5 6 7 8 9

 foreach (int number in theStack.TopN(7))
 {
 Console.Write("{0} ", number);
 }
 Console.WriteLine();
 // Output: 9 8 7 6 5 4 3

 Console.ReadKey();
}

public class Stack<T> : IEnumerable<T>
{
 private T[] values = new T[100];
 private int top = 0;

 public void Push(T t)
 {
 values[top] = t;
 top++;
 }
 public T Pop()
 {
 top--;
 return values[top];

An iterator can occur as a method or get accessor. An iterator cannot occur in an event,
instance constructor, static constructor, or static finalizer.

 }

 // This method implements the GetEnumerator method. It allows
 // an instance of the class to be used in a foreach statement.
 public IEnumerator<T> GetEnumerator()
 {
 for (int index = top - 1; index >= 0; index--)
 {
 yield return values[index];
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 public IEnumerable<T> TopToBottom
 {
 get { return this; }
 }

 public IEnumerable<T> BottomToTop
 {
 get
 {
 for (int index = 0; index <= top - 1; index++)
 {
 yield return values[index];
 }
 }
 }

 public IEnumerable<T> TopN(int itemsFromTop)
 {
 // Return less than itemsFromTop if necessary.
 int startIndex = itemsFromTop >= top ? 0 : top - itemsFromTop;

 for (int index = top - 1; index >= startIndex; index--)
 {
 yield return values[index];
 }
 }

}

Syntax Information

An implicit conversion must exist from the expression type in the yield return
statement to the type argument for the IEnumerable<T> returned by the iterator.

In C#, an iterator method cannot have any in , ref , or out parameters.

In C#, yield is not a reserved word and has special meaning only when it is used before
a return or break keyword.

Although you write an iterator as a method, the compiler translates it into a nested class
that is, in effect, a state machine. This class keeps track of the position of the iterator as
long the foreach loop in the client code continues.

To see what the compiler does, you can use the Ildasm.exe tool to view the Microsoft
intermediate language code that's generated for an iterator method.

When you create an iterator for a class or struct, you don't have to implement the whole
IEnumerator interface. When the compiler detects the iterator, it automatically generates
the Current , MoveNext , and Dispose methods of the IEnumerator or IEnumerator<T>
interface.

On each successive iteration of the foreach loop (or the direct call to
IEnumerator.MoveNext), the next iterator code body resumes after the previous yield
return statement. It then continues to the next yield return statement until the end of
the iterator body is reached, or until a yield break statement is encountered.

Iterators don't support the IEnumerator.Reset method. To reiterate from the start, you
must obtain a new iterator. Calling Reset on the iterator returned by an iterator method
throws a NotSupportedException.

For additional information, see the C# Language Specification.

Iterators enable you to maintain the simplicity of a foreach loop when you need to use
complex code to populate a list sequence. This can be useful when you want to do the
following:

Modify the list sequence after the first foreach loop iteration.

Technical Implementation

Use of Iterators

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator.reset
https://learn.microsoft.com/en-us/dotnet/api/system.notsupportedexception

Avoid fully loading a large list before the first iteration of a foreach loop. An
example is a paged fetch to load a batch of table rows. Another example is the
EnumerateFiles method, which implements iterators in .NET.

Encapsulate building the list in the iterator. In the iterator method, you can build
the list and then yield each result in a loop.

System.Collections.Generic
IEnumerable<T>
foreach, in
Using foreach with Arrays
Generics

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.enumeratefiles
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Language Integrated Query (LINQ) (C#)
Article • 2022-10-13 • 3 minutes to read

Language-Integrated Query (LINQ) is the name for a set of technologies based on the
integration of query capabilities directly into the C# language. Traditionally, queries
against data are expressed as simple strings without type checking at compile time or
IntelliSense support. Furthermore, you have to learn a different query language for each
type of data source: SQL databases, XML documents, various Web services, and so on.
With LINQ, a query is a first-class language construct, just like classes, methods, events.
You write queries against strongly typed collections of objects by using language
keywords and familiar operators. The LINQ family of technologies provides a consistent
query experience for objects (LINQ to Objects), relational databases (LINQ to SQL), and
XML (LINQ to XML).

For a developer who writes queries, the most visible "language-integrated" part of LINQ
is the query expression. Query expressions are written in a declarative query syntax. By
using query syntax, you can perform filtering, ordering, and grouping operations on
data sources with a minimum of code. You use the same basic query expression patterns
to query and transform data in SQL databases, ADO.NET Datasets, XML documents and
streams, and .NET collections.

You can write LINQ queries in C# for SQL Server databases, XML documents, ADO.NET
Datasets, and any collection of objects that supports IEnumerable or the generic
IEnumerable<T> interface. LINQ support is also provided by third parties for many Web
services and other database implementations.

The following example shows the complete query operation. The complete operation
includes creating a data source, defining the query expression, and executing the query
in a foreach statement.

C#

// Specify the data source.
int[] scores = { 97, 92, 81, 60 };

// Define the query expression.
IEnumerable<int> scoreQuery =
 from score in scores
 where score > 80
 select score;

// Execute the query.
foreach (int i in scoreQuery)
{

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The following illustration from Visual Studio shows a partially-completed LINQ query
against a SQL Server database in both C# and Visual Basic with full type checking and
IntelliSense support:

Query expressions can be used to query and to transform data from any LINQ-
enabled data source. For example, a single query can retrieve data from a SQL
database, and produce an XML stream as output.
Query expressions are easy to grasp because they use many familiar C# language
constructs.
The variables in a query expression are all strongly typed, although in many cases
you do not have to provide the type explicitly because the compiler can infer it. For
more information, see Type relationships in LINQ query operations.
A query is not executed until you iterate over the query variable, for example, in a
foreach statement. For more information, see Introduction to LINQ queries.
At compile time, query expressions are converted to Standard Query Operator
method calls according to the rules set forth in the C# specification. Any query that
can be expressed by using query syntax can also be expressed by using method
syntax. However, in most cases query syntax is more readable and concise. For
more information, see C# language specification and Standard query operators
overview.

 Console.Write(i + " ");
}

// Output: 97 92 81

Query expression overview

As a rule when you write LINQ queries, we recommend that you use query syntax
whenever possible and method syntax whenever necessary. There is no semantic
or performance difference between the two different forms. Query expressions are
often more readable than equivalent expressions written in method syntax.
Some query operations, such as Count or Max, have no equivalent query
expression clause and must therefore be expressed as a method call. Method
syntax can be combined with query syntax in various ways. For more information,
see Query syntax and method syntax in LINQ.
Query expressions can be compiled to expression trees or to delegates, depending
on the type that the query is applied to. IEnumerable<T> queries are compiled to
delegates. IQueryable and IQueryable<T> queries are compiled to expression
trees. For more information, see Expression trees.

To learn more details about LINQ, start by becoming familiar with some basic concepts
in Query expression basics, and then read the documentation for the LINQ technology
in which you are interested:

XML documents: LINQ to XML
ADO.NET Entity Framework: LINQ to entities
.NET collections, files, strings and so on: LINQ to objects

To gain a deeper understanding of LINQ in general, see LINQ in C#.

To start working with LINQ in C#, see the tutorial Working with LINQ.

Next steps

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-ca/dotnet/standard/linq/linq-xml-overview
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/ef/language-reference/linq-to-entities

Introduction to LINQ Queries (C#)
Article • 2021-09-15 • 6 minutes to read

A query is an expression that retrieves data from a data source. Queries are usually
expressed in a specialized query language. Different languages have been developed
over time for the various types of data sources, for example SQL for relational databases
and XQuery for XML. Therefore, developers have had to learn a new query language for
each type of data source or data format that they must support. LINQ simplifies this
situation by offering a consistent model for working with data across various kinds of
data sources and formats. In a LINQ query, you are always working with objects. You use
the same basic coding patterns to query and transform data in XML documents, SQL
databases, ADO.NET Datasets, .NET collections, and any other format for which a LINQ
provider is available.

All LINQ query operations consist of three distinct actions:

1. Obtain the data source.

2. Create the query.

3. Execute the query.

The following example shows how the three parts of a query operation are expressed in
source code. The example uses an integer array as a data source for convenience;
however, the same concepts apply to other data sources also. This example is referred
to throughout the rest of this topic.

C#

Three Parts of a Query Operation

class IntroToLINQ
{
 static void Main()
 {
 // The Three Parts of a LINQ Query:
 // 1. Data source.
 int[] numbers = new int[7] { 0, 1, 2, 3, 4, 5, 6 };

 // 2. Query creation.
 // numQuery is an IEnumerable<int>
 var numQuery =
 from num in numbers
 where (num % 2) == 0
 select num;

The following illustration shows the complete query operation. In LINQ, the execution of
the query is distinct from the query itself. In other words, you have not retrieved any
data just by creating a query variable.

In the previous example, because the data source is an array, it implicitly supports the
generic IEnumerable<T> interface. This fact means it can be queried with LINQ. A query
is executed in a foreach statement, and foreach requires IEnumerable or
IEnumerable<T>. Types that support IEnumerable<T> or a derived interface such as the
generic IQueryable<T> are called queryable types.

A queryable type requires no modification or special treatment to serve as a LINQ data
source. If the source data is not already in memory as a queryable type, the LINQ
provider must represent it as such. For example, LINQ to XML loads an XML document
into a queryable XElement type:

C#

 // 3. Query execution.
 foreach (int num in numQuery)
 {
 Console.Write("{0,1} ", num);
 }
 }
}

The Data Source

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.xml.linq.xelement

With LINQ to SQL, you first create an object-relational mapping at design time either
manually or by using the LINQ to SQL Tools in Visual Studio. You write your queries
against the objects, and at run-time LINQ to SQL handles the communication with the
database. In the following example, Customers represents a specific table in the
database, and the type of the query result, IQueryable<T>, derives from
IEnumerable<T>.

C#

For more information about how to create specific types of data sources, see the
documentation for the various LINQ providers. However, the basic rule is very simple: a
LINQ data source is any object that supports the generic IEnumerable<T> interface, or
an interface that inherits from it.

The query specifies what information to retrieve from the data source or sources.
Optionally, a query also specifies how that information should be sorted, grouped, and
shaped before it is returned. A query is stored in a query variable and initialized with a
query expression. To make it easier to write queries, C# has introduced new query
syntax.

The query in the previous example returns all the even numbers from the integer array.
The query expression contains three clauses: from , where and select . (If you are

// Create a data source from an XML document.
// using System.Xml.Linq;
XElement contacts = XElement.Load(@"c:\myContactList.xml");

Northwnd db = new Northwnd(@"c:\northwnd.mdf");

// Query for customers in London.
IQueryable<Customer> custQuery =
 from cust in db.Customers
 where cust.City == "London"
 select cust;

７ Note

Types such as ArrayList that support the non-generic IEnumerable interface can
also be used as a LINQ data source. For more information, see How to query an
ArrayList with LINQ (C#).

The Query

https://learn.microsoft.com/en-us/visualstudio/data-tools/linq-to-sql-tools-in-visual-studio2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

familiar with SQL, you will have noticed that the ordering of the clauses is reversed from
the order in SQL.) The from clause specifies the data source, the where clause applies
the filter, and the select clause specifies the type of the returned elements. These and
the other query clauses are discussed in detail in the Language Integrated Query (LINQ)
section. For now, the important point is that in LINQ, the query variable itself takes no
action and returns no data. It just stores the information that is required to produce the
results when the query is executed at some later point. For more information about how
queries are constructed behind the scenes, see Standard Query Operators Overview
(C#).

As stated previously, the query variable itself only stores the query commands. The
actual execution of the query is deferred until you iterate over the query variable in a
foreach statement. This concept is referred to as deferred execution and is
demonstrated in the following example:

C#

The foreach statement is also where the query results are retrieved. For example, in the
previous query, the iteration variable num holds each value (one at a time) in the
returned sequence.

Because the query variable itself never holds the query results, you can execute it as
often as you like. For example, you may have a database that is being updated
continually by a separate application. In your application, you could create one query
that retrieves the latest data, and you could execute it repeatedly at some interval to
retrieve different results every time.

７ Note

Queries can also be expressed by using method syntax. For more information, see
Query Syntax and Method Syntax in LINQ.

Query Execution

Deferred Execution

// Query execution.
foreach (int num in numQuery)
{
 Console.Write("{0,1} ", num);
}

Queries that perform aggregation functions over a range of source elements must first
iterate over those elements. Examples of such queries are Count , Max , Average , and
First . These execute without an explicit foreach statement because the query itself
must use foreach in order to return a result. Note also that these types of queries return
a single value, not an IEnumerable collection. The following query returns a count of the
even numbers in the source array:

C#

To force immediate execution of any query and cache its results, you can call the ToList
or ToArray methods.

C#

You can also force execution by putting the foreach loop immediately after the query
expression. However, by calling ToList or ToArray you also cache all the data in a single
collection object.

Getting Started with LINQ in C#
Walkthrough: Writing Queries in C#
Language Integrated Query (LINQ)

Forcing Immediate Execution

var evenNumQuery =
 from num in numbers
 where (num % 2) == 0
 select num;

int evenNumCount = evenNumQuery.Count();

List<int> numQuery2 =
 (from num in numbers
 where (num % 2) == 0
 select num).ToList();

// or like this:
// numQuery3 is still an int[]

var numQuery3 =
 (from num in numbers
 where (num % 2) == 0
 select num).ToArray();

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray

foreach, in
Query Keywords (LINQ)

LINQ and Generic Types (C#)
Article • 2022-09-21 • 2 minutes to read

LINQ queries are based on generic types, which were introduced in version 2.0 of .NET
Framework. You do not need an in-depth knowledge of generics before you can start
writing queries. However, you may want to understand two basic concepts:

1. When you create an instance of a generic collection class such as List<T>, you
replace the "T" with the type of objects that the list will hold. For example, a list of
strings is expressed as List<string> , and a list of Customer objects is expressed as
List<Customer> . A generic list is strongly typed and provides many benefits over
collections that store their elements as Object. If you try to add a Customer to a
List<string> , you will get an error at compile time. It is easy to use generic
collections because you do not have to perform run-time type-casting.

2. IEnumerable<T> is the interface that enables generic collection classes to be
enumerated by using the foreach statement. Generic collection classes support
IEnumerable<T> just as non-generic collection classes such as ArrayList support
IEnumerable.

For more information about generics, see Generics.

LINQ query variables are typed as IEnumerable<T> or a derived type such as
IQueryable<T>. When you see a query variable that is typed as IEnumerable<Customer> ,
it just means that the query, when it is executed, will produce a sequence of zero or
more Customer objects.

C#

For more information, see Type Relationships in LINQ Query Operations.

IEnumerable<T> variables in LINQ Queries

IEnumerable<Customer> customerQuery =
 from cust in customers
 where cust.City == "London"
 select cust;

foreach (Customer customer in customerQuery)
{
 Console.WriteLine(customer.LastName + ", " + customer.FirstName);
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1

If you prefer, you can avoid generic syntax by using the var keyword. The var keyword
instructs the compiler to infer the type of a query variable by looking at the data source
specified in the from clause. The following example produces the same compiled code
as the previous example:

C#

The var keyword is useful when the type of the variable is obvious or when it is not that
important to explicitly specify nested generic types such as those that are produced by
group queries. In general, we recommend that if you use var , realize that it can make
your code more difficult for others to read. For more information, see Implicitly Typed
Local Variables.

Generics

Letting the Compiler Handle Generic Type
Declarations

var customerQuery2 =
 from cust in customers
 where cust.City == "London"
 select cust;

foreach(var customer in customerQuery2)
{
 Console.WriteLine(customer.LastName + ", " + customer.FirstName);
}

See also

Basic LINQ Query Operations (C#)
Article • 2021-09-15 • 5 minutes to read

This topic gives a brief introduction to LINQ query expressions and some of the typical
kinds of operations that you perform in a query. More detailed information is in the
following topics:

LINQ Query Expressions

Standard Query Operators Overview (C#)

Walkthrough: Writing Queries in C#

In a LINQ query, the first step is to specify the data source. In C# as in most
programming languages a variable must be declared before it can be used. In a LINQ
query, the from clause comes first in order to introduce the data source (customers) and
the range variable (cust).

C#

The range variable is like the iteration variable in a foreach loop except that no actual
iteration occurs in a query expression. When the query is executed, the range variable
will serve as a reference to each successive element in customers . Because the compiler
can infer the type of cust , you do not have to specify it explicitly. Additional range
variables can be introduced by a let clause. For more information, see let clause.

７ Note

If you already are familiar with a query language such as SQL or XQuery, you can
skip most of this topic. Read about the "from clause" in the next section to learn
about the order of clauses in LINQ query expressions.

Obtaining a Data Source

//queryAllCustomers is an IEnumerable<Customer>
var queryAllCustomers = from cust in customers
 select cust;

７ Note

Probably the most common query operation is to apply a filter in the form of a Boolean
expression. The filter causes the query to return only those elements for which the
expression is true. The result is produced by using the where clause. The filter in effect
specifies which elements to exclude from the source sequence. In the following example,
only those customers who have an address in London are returned.

C#

You can use the familiar C# logical AND and OR operators to apply as many filter
expressions as necessary in the where clause. For example, to return only customers
from "London" AND whose name is "Devon" you would write the following code:

C#

To return customers from London or Paris, you would write the following code:

C#

For more information, see where clause.

Often it is convenient to sort the returned data. The orderby clause will cause the
elements in the returned sequence to be sorted according to the default comparer for
the type being sorted. For example, the following query can be extended to sort the
results based on the Name property. Because Name is a string, the default comparer
performs an alphabetical sort from A to Z.

For non-generic data sources such as ArrayList, the range variable must be
explicitly typed. For more information, see How to query an ArrayList with LINQ
(C#) and from clause.

Filtering

var queryLondonCustomers = from cust in customers
 where cust.City == "London"
 select cust;

where cust.City == "London" && cust.Name == "Devon"

where cust.City == "London" || cust.City == "Paris"

Ordering

https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist

C#

To order the results in reverse order, from Z to A, use the orderby…descending clause.

For more information, see orderby clause.

The group clause enables you to group your results based on a key that you specify. For
example you could specify that the results should be grouped by the City so that all
customers from London or Paris are in individual groups. In this case, cust.City is the
key.

C#

When you end a query with a group clause, your results take the form of a list of lists.
Each element in the list is an object that has a Key member and a list of elements that
are grouped under that key. When you iterate over a query that produces a sequence of
groups, you must use a nested foreach loop. The outer loop iterates over each group,
and the inner loop iterates over each group's members.

If you must refer to the results of a group operation, you can use the into keyword to
create an identifier that can be queried further. The following query returns only those
groups that contain more than two customers:

var queryLondonCustomers3 =
 from cust in customers
 where cust.City == "London"
 orderby cust.Name ascending
 select cust;

Grouping

// queryCustomersByCity is an IEnumerable<IGrouping<string, Customer>>
 var queryCustomersByCity =
 from cust in customers
 group cust by cust.City;

 // customerGroup is an IGrouping<string, Customer>
 foreach (var customerGroup in queryCustomersByCity)
 {
 Console.WriteLine(customerGroup.Key);
 foreach (Customer customer in customerGroup)
 {
 Console.WriteLine(" {0}", customer.Name);
 }
 }

C#

For more information, see group clause.

Join operations create associations between sequences that are not explicitly modeled
in the data sources. For example you can perform a join to find all the customers and
distributors who have the same location. In LINQ the join clause always works against
object collections instead of database tables directly.

C#

In LINQ, you do not have to use join as often as you do in SQL, because foreign keys in
LINQ are represented in the object model as properties that hold a collection of items.
For example, a Customer object contains a collection of Order objects. Rather than
performing a join, you access the orders by using dot notation:

C#

For more information, see join clause.

The select clause produces the results of the query and specifies the "shape" or type of
each returned element. For example, you can specify whether your results will consist of
complete Customer objects, just one member, a subset of members, or some completely
different result type based on a computation or new object creation. When the select

// custQuery is an IEnumerable<IGrouping<string, Customer>>
var custQuery =
 from cust in customers
 group cust by cust.City into custGroup
 where custGroup.Count() > 2
 orderby custGroup.Key
 select custGroup;

Joining

var innerJoinQuery =
 from cust in customers
 join dist in distributors on cust.City equals dist.City
 select new { CustomerName = cust.Name, DistributorName = dist.Name };

from order in Customer.Orders...

Selecting (Projections)

clause produces something other than a copy of the source element, the operation is
called a projection. The use of projections to transform data is a powerful capability of
LINQ query expressions. For more information, see Data Transformations with LINQ (C#)
and select clause.

LINQ Query Expressions
Walkthrough: Writing Queries in C#
Query Keywords (LINQ)
Anonymous Types

See also

Data Transformations with LINQ (C#)
Article • 2021-09-15 • 6 minutes to read

Language-Integrated Query (LINQ) is not only about retrieving data. It is also a powerful
tool for transforming data. By using a LINQ query, you can use a source sequence as
input and modify it in many ways to create a new output sequence. You can modify the
sequence itself without modifying the elements themselves by sorting and grouping.
But perhaps the most powerful feature of LINQ queries is the ability to create new types.
This is accomplished in the select clause. For example, you can perform the following
tasks:

Merge multiple input sequences into a single output sequence that has a new
type.

Create output sequences whose elements consist of only one or several properties
of each element in the source sequence.

Create output sequences whose elements consist of the results of operations
performed on the source data.

Create output sequences in a different format. For example, you can transform
data from SQL rows or text files into XML.

These are just several examples. Of course, these transformations can be combined in
various ways in the same query. Furthermore, the output sequence of one query can be
used as the input sequence for a new query.

You can use a LINQ query to create an output sequence that contains elements from
more than one input sequence. The following example shows how to combine two in-
memory data structures, but the same principles can be applied to combine data from
XML or SQL or DataSet sources. Assume the following two class types:

C#

Joining Multiple Inputs into One Output
Sequence

class Student
{
 public string First { get; set; }
 public string Last {get; set;}
 public int ID { get; set; }
 public string Street { get; set; }

The following example shows the query:

C#

 public string City { get; set; }
 public List<int> Scores;
}

class Teacher
{
 public string First { get; set; }
 public string Last { get; set; }
 public int ID { get; set; }
 public string City { get; set; }
}

class DataTransformations
{
 static void Main()
 {
 // Create the first data source.
 List<Student> students = new List<Student>()
 {
 new Student { First="Svetlana",
 Last="Omelchenko",
 ID=111,
 Street="123 Main Street",
 City="Seattle",
 Scores= new List<int> { 97, 92, 81, 60 } },
 new Student { First="Claire",
 Last="O’Donnell",
 ID=112,
 Street="124 Main Street",
 City="Redmond",
 Scores= new List<int> { 75, 84, 91, 39 } },
 new Student { First="Sven",
 Last="Mortensen",
 ID=113,
 Street="125 Main Street",
 City="Lake City",
 Scores= new List<int> { 88, 94, 65, 91 } },
 };

 // Create the second data source.
 List<Teacher> teachers = new List<Teacher>()
 {
 new Teacher { First="Ann", Last="Beebe", ID=945, City="Seattle"
},
 new Teacher { First="Alex", Last="Robinson", ID=956,
City="Redmond" },
 new Teacher { First="Michiyo", Last="Sato", ID=972,
City="Tacoma" }
 };

For more information, see join clause and select clause.

There are two primary ways to select a subset of each element in the source sequence:

1. To select just one member of the source element, use the dot operation. In the
following example, assume that a Customer object contains several public
properties including a string named City . When executed, this query will produce
an output sequence of strings.

C#

2. To create elements that contain more than one property from the source element,
you can use an object initializer with either a named object or an anonymous type.
The following example shows the use of an anonymous type to encapsulate two
properties from each Customer element:

 // Create the query.
 var peopleInSeattle = (from student in students
 where student.City == "Seattle"
 select student.Last)
 .Concat(from teacher in teachers
 where teacher.City == "Seattle"
 select teacher.Last);

 Console.WriteLine("The following students and teachers live in
Seattle:");
 // Execute the query.
 foreach (var person in peopleInSeattle)
 {
 Console.WriteLine(person);
 }

 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 The following students and teachers live in Seattle:
 Omelchenko
 Beebe
 */

Selecting a Subset of each Source Element

var query = from cust in Customers
 select cust.City;

C#

For more information, see Object and Collection Initializers and Anonymous Types.

LINQ queries make it easy to transform data between in-memory data structures, SQL
databases, ADO.NET Datasets and XML streams or documents. The following example
transforms objects in an in-memory data structure into XML elements.

C#

var query = from cust in Customer
 select new {Name = cust.Name, City = cust.City};

Transforming in-Memory Objects into XML

class XMLTransform
{
 static void Main()
 {
 // Create the data source by using a collection initializer.
 // The Student class was defined previously in this topic.
 List<Student> students = new List<Student>()
 {
 new Student {First="Svetlana", Last="Omelchenko", ID=111, Scores
= new List<int>{97, 92, 81, 60}},
 new Student {First="Claire", Last="O’Donnell", ID=112, Scores =
new List<int>{75, 84, 91, 39}},
 new Student {First="Sven", Last="Mortensen", ID=113, Scores =
new List<int>{88, 94, 65, 91}},
 };

 // Create the query.
 var studentsToXML = new XElement("Root",
 from student in students
 let scores = string.Join(",", student.Scores)
 select new XElement("student",
 new XElement("First", student.First),
 new XElement("Last", student.Last),
 new XElement("Scores", scores)
) // end "student"
); // end "Root"

 // Execute the query.
 Console.WriteLine(studentsToXML);

 // Keep the console open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

The code produces the following XML output:

XML

For more information, see Creating XML Trees in C# (LINQ to XML).

An output sequence might not contain any elements or element properties from the
source sequence. The output might instead be a sequence of values that is computed by
using the source elements as input arguments.

The following query will take a sequence of numbers that represent radii of circles,
calculate the area for each radius, and return an output sequence containing strings
formatted with the calculated area.

Each string for the output sequence will be formatted using string interpolation. An
interpolated string will have a $ in front of the string's opening quotation mark, and
operations can be performed within curly braces placed inside the interpolated string.
Once those operations are performed, the results will be concatenated.

<Root>
 <student>
 <First>Svetlana</First>
 <Last>Omelchenko</Last>
 <Scores>97,92,81,60</Scores>
 </student>
 <student>
 <First>Claire</First>
 <Last>O'Donnell</Last>
 <Scores>75,84,91,39</Scores>
 </student>
 <student>
 <First>Sven</First>
 <Last>Mortensen</Last>
 <Scores>88,94,65,91</Scores>
 </student>
</Root>

Performing Operations on Source Elements

７ Note

Calling methods in query expressions is not supported if the query will be
translated into some other domain. For example, you cannot call an ordinary C#
method in LINQ to SQL because SQL Server has no context for it. However, you can
map stored procedures to methods and call those. For more information, see
Stored Procedures.

https://learn.microsoft.com/en-ca/dotnet/standard/linq/create-xml-trees
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/stored-procedures

C#

Language-Integrated Query (LINQ) (C#)
LINQ to SQL
LINQ to DataSet
LINQ to XML (C#)
LINQ Query Expressions
select clause

class FormatQuery
{
 static void Main()
 {
 // Data source.
 double[] radii = { 1, 2, 3 };

 // LINQ query using method syntax.
 IEnumerable<string> output =
 radii.Select(r => $"Area for a circle with a radius of '{r}' =
{r * r * Math.PI:F2}");

 /*
 // LINQ query using query syntax.
 IEnumerable<string> output =
 from rad in radii
 select $"Area for a circle with a radius of '{rad}' = {rad * rad
* Math.PI:F2}";
 */

 foreach (string s in output)
 {
 Console.WriteLine(s);
 }

 // Keep the console open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Area for a circle with a radius of '1' = 3.14
 Area for a circle with a radius of '2' = 12.57
 Area for a circle with a radius of '3' = 28.27
*/

See also

https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/linq-to-dataset
https://learn.microsoft.com/en-ca/dotnet/standard/linq/linq-xml-overview

Type Relationships in LINQ Query
Operations (C#)
Article • 2022-09-21 • 2 minutes to read

To write queries effectively, you should understand how types of the variables in a
complete query operation all relate to each other. If you understand these relationships
you will more easily comprehend the LINQ samples and code examples in the
documentation. Furthermore, you will understand what occurs behind the scenes when
variables are implicitly typed by using var .

LINQ query operations are strongly typed in the data source, in the query itself, and in
the query execution. The type of the variables in the query must be compatible with the
type of the elements in the data source and with the type of the iteration variable in the
foreach statement. This strong typing guarantees that type errors are caught at compile
time when they can be corrected before users encounter them.

In order to demonstrate these type relationships, most of the examples that follow use
explicit typing for all variables. The last example shows how the same principles apply
even when you use implicit typing by using var.

The following illustration shows a LINQ to Objects query operation that performs no
transformations on the data. The source contains a sequence of strings and the query
output is also a sequence of strings.

1. The type argument of the data source determines the type of the range variable.

2. The type of the object that is selected determines the type of the query variable.
Here name is a string. Therefore, the query variable is an IEnumerable<string> .

Queries that do not Transform the Source Data

3. The query variable is iterated over in the foreach statement. Because the query
variable is a sequence of strings, the iteration variable is also a string.

The following illustration shows a LINQ to SQL query operation that performs a simple
transformation on the data. The query takes a sequence of Customer objects as input,
and selects only the Name property in the result. Because Name is a string, the query
produces a sequence of strings as output.

1. The type argument of the data source determines the type of the range variable.

2. The select statement returns the Name property instead of the complete Customer
object. Because Name is a string, the type argument of custNameQuery is string ,
not Customer .

3. Because custNameQuery is a sequence of strings, the foreach loop's iteration
variable must also be a string .

The following illustration shows a slightly more complex transformation. The select
statement returns an anonymous type that captures just two members of the original
Customer object.

Queries that Transform the Source Data

1. The type argument of the data source is always the type of the range variable in
the query.

2. Because the select statement produces an anonymous type, the query variable
must be implicitly typed by using var .

3. Because the type of the query variable is implicit, the iteration variable in the
foreach loop must also be implicit.

Although you should understand the type relationships in a query operation, you have
the option to let the compiler do all the work for you. The keyword var can be used for
any local variable in a query operation. The following illustration is similar to example
number 2 that was discussed earlier. However, the compiler supplies the strong type for
each variable in the query operation.

For more information about var , see Implicitly Typed Local Variables.

Letting the compiler infer type information

Query Syntax and Method Syntax in
LINQ (C#)
Article • 2021-09-15 • 4 minutes to read

Most queries in the introductory Language Integrated Query (LINQ) documentation are
written by using the LINQ declarative query syntax. However, the query syntax must be
translated into method calls for the .NET common language runtime (CLR) when the
code is compiled. These method calls invoke the standard query operators, which have
names such as Where , Select , GroupBy , Join , Max , and Average . You can call them
directly by using method syntax instead of query syntax.

Query syntax and method syntax are semantically identical, but many people find query
syntax simpler and easier to read. Some queries must be expressed as method calls. For
example, you must use a method call to express a query that retrieves the number of
elements that match a specified condition. You also must use a method call for a query
that retrieves the element that has the maximum value in a source sequence. The
reference documentation for the standard query operators in the System.Linq
namespace generally uses method syntax. Therefore, even when getting started writing
LINQ queries, it is useful to be familiar with how to use method syntax in queries and in
query expressions themselves.

The following example shows a simple query expression and the semantically equivalent
query written as a method-based query.

C#

Standard Query Operator Extension Methods

class QueryVMethodSyntax
{
 static void Main()
 {
 int[] numbers = { 5, 10, 8, 3, 6, 12};

 //Query syntax:
 IEnumerable<int> numQuery1 =
 from num in numbers
 where num % 2 == 0
 orderby num
 select num;

 //Method syntax:
 IEnumerable<int> numQuery2 = numbers.Where(num => num % 2 ==

https://learn.microsoft.com/en-us/dotnet/api/system.linq

The output from the two examples is identical. You can see that the type of the query
variable is the same in both forms: IEnumerable<T>.

To understand the method-based query, let's examine it more closely. On the right side
of the expression, notice that the where clause is now expressed as an instance method
on the numbers object, which as you will recall has a type of IEnumerable<int> . If you are
familiar with the generic IEnumerable<T> interface, you know that it does not have a
Where method. However, if you invoke the IntelliSense completion list in the Visual
Studio IDE, you will see not only a Where method, but many other methods such as
Select , SelectMany , Join , and Orderby . These are all the standard query operators.

Although it looks as if IEnumerable<T> has been redefined to include these additional
methods, in fact this is not the case. The standard query operators are implemented as a

0).OrderBy(n => n);

 foreach (int i in numQuery1)
 {
 Console.Write(i + " ");
 }
 Console.WriteLine(System.Environment.NewLine);
 foreach (int i in numQuery2)
 {
 Console.Write(i + " ");
 }

 // Keep the console open in debug mode.
 Console.WriteLine(System.Environment.NewLine);
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }
}
/*
 Output:
 6 8 10 12
 6 8 10 12
 */

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

new kind of method called extension methods. Extensions methods "extend" an existing
type; they can be called as if they were instance methods on the type. The standard
query operators extend IEnumerable<T> and that is why you can write
numbers.Where(...) .

To get started using LINQ, all that you really have to know about extension methods is
how to bring them into scope in your application by using the correct using directives.
From your application's point of view, an extension method and a regular instance
method are the same.

For more information about extension methods, see Extension Methods. For more
information about standard query operators, see Standard Query Operators Overview
(C#). Some LINQ providers, such as LINQ to SQL and LINQ to XML, implement their own
standard query operators and additional extension methods for other types besides
IEnumerable<T>.

In the previous example, notice that the conditional expression (num % 2 == 0) is passed
as an in-line argument to the Where method: Where(num => num % 2 == 0). This inline
expression is called a lambda expression. It is a convenient way to write code that would
otherwise have to be written in more cumbersome form as an anonymous method or a
generic delegate or an expression tree. In C# => is the lambda operator, which is read as
"goes to". The num on the left of the operator is the input variable which corresponds to
num in the query expression. The compiler can infer the type of num because it knows
that numbers is a generic IEnumerable<T> type. The body of the lambda is just the same
as the expression in query syntax or in any other C# expression or statement; it can
include method calls and other complex logic. The "return value" is just the expression
result.

To get started using LINQ, you do not have to use lambdas extensively. However, certain
queries can only be expressed in method syntax and some of those require lambda
expressions. After you become more familiar with lambdas, you will find that they are a
powerful and flexible tool in your LINQ toolbox. For more information, see Lambda
Expressions.

In the previous code example, note that the OrderBy method is invoked by using the
dot operator on the call to Where . Where produces a filtered sequence, and then

Lambda Expressions

Composability of Queries

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Orderby operates on that sequence by sorting it. Because queries return an
IEnumerable , you compose them in method syntax by chaining the method calls
together. This is what the compiler does behind the scenes when you write queries by
using query syntax. And because a query variable does not store the results of the
query, you can modify it or use it as the basis for a new query at any time, even after it
has been executed.

C# Features That Support LINQ
Article • 2022-09-29 • 3 minutes to read

These new features are all used to a degree with LINQ queries, they are not limited to
LINQ and can be used in any context where you find them useful.

Query expressions use a declarative syntax similar to SQL or XQuery to query over
IEnumerable collections. At compile time query syntax is converted to method calls to a
LINQ provider's implementation of the standard query operator extension methods.
Applications control the standard query operators that are in scope by specifying the
appropriate namespace with a using directive. The following query expression takes an
array of strings, groups them according to the first character in the string, and orders
the groups.

C#

For more information, see LINQ Query Expressions.

Instead of explicitly specifying a type when you declare and initialize a variable, you can
use the var modifier to instruct the compiler to infer and assign the type, as shown here:

C#

Variables declared as var are just as strongly typed as variables whose type you specify
explicitly. The use of var makes it possible to create anonymous types, but it can be
used only for local variables. Arrays can also be declared with implicit typing.

Query Expressions

var query = from str in stringArray
 group str by str[0] into stringGroup
 orderby stringGroup.Key
 select stringGroup;

Implicitly Typed Variables (var)

var number = 5;
var name = "Virginia";
var query = from str in stringArray
 where str[0] == 'm'
 select str;

For more information, see Implicitly Typed Local Variables.

Object and collection initializers make it possible to initialize objects without explicitly
calling a constructor for the object. Initializers are typically used in query expressions
when they project the source data into a new data type. Assuming a class named
Customer with public Name and Phone properties, the object initializer can be used as in
the following code:

C#

Continuing with our Customer class, assume that there is a data source called
IncomingOrders , and that for each order with a large OrderSize , we would like to create
a new Customer based off of that order. A LINQ query can be executed on this data
source and use object initialization to fill a collection:

C#

The data source may have more properties lying under the hood than the Customer
class such as OrderSize , but with object initialization, the data returned from the query
is molded into the desired data type; we choose the data that is relevant to our class. As
a result, we now have an IEnumerable filled with the new Customers we wanted. The
above can also be written in LINQ's method syntax:

C#

For more information, see:

Object and Collection Initializers

Query Expression Syntax for Standard Query Operators

Object and Collection Initializers

var cust = new Customer { Name = "Mike", Phone = "555-1212" };

var newLargeOrderCustomers = from o in IncomingOrders
 where o.OrderSize > 5
 select new Customer { Name = o.Name, Phone =
o.Phone };

var newLargeOrderCustomers = IncomingOrders.Where(x => x.OrderSize >
5).Select(y => new Customer { Name = y.Name, Phone = y.Phone });

An anonymous type is constructed by the compiler and the type name is only available
to the compiler. Anonymous types provide a convenient way to group a set of
properties temporarily in a query result without having to define a separate named type.
Anonymous types are initialized with a new expression and an object initializer, as
shown here:

C#

For more information, see Anonymous Types.

An extension method is a static method that can be associated with a type, so that it can
be called as if it were an instance method on the type. This feature enables you to, in
effect, "add" new methods to existing types without actually modifying them. The
standard query operators are a set of extension methods that provide LINQ query
functionality for any type that implements IEnumerable<T>.

For more information, see Extension Methods.

A lambda expression is an inline function that uses the => operator to separate input
parameters from the function body and can be converted at compile time to a delegate
or an expression tree. In LINQ programming, you encounter lambda expressions when
you make direct method calls to the standard query operators.

For more information, see:

Lambda Expressions

Expression Trees (C#)

Language-Integrated Query (LINQ) (C#)

Anonymous Types

select new {name = cust.Name, phone = cust.Phone};

Extension Methods

Lambda Expressions

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Walkthrough: Writing Queries in C#
(LINQ)
Article • 2022-09-21 • 10 minutes to read

This walkthrough demonstrates the C# language features that are used to write LINQ
query expressions.

1. Start Visual Studio.

2. On the menu bar, choose File, New, Project.

The New Project dialog box opens.

3. Expand Installed, expand Templates, expand Visual C#, and then choose Console
Application.

4. In the Name text box, enter a different name or accept the default name, and then
choose the OK button.

The new project appears in Solution Explorer.

5. Notice that your project has a reference to System.Core.dll and a using directive
for the System.Linq namespace.

The data source for the queries is a simple list of Student objects. Each Student record
has a first name, last name, and an array of integers that represents their test scores in
the class. Copy this code into your project. Note the following characteristics:

Create a C# Project

７ Note

The following instructions are for Visual Studio. If you are using a different
development environment, create a console project with a reference to
System.Core.dll and a using directive for the System.Linq namespace.

To create a project in Visual Studio

Create an in-Memory Data Source

https://learn.microsoft.com/en-us/dotnet/api/system.linq
https://learn.microsoft.com/en-us/dotnet/api/system.linq

The Student class consists of auto-implemented properties.

Each student in the list is initialized with an object initializer.

The list itself is initialized with a collection initializer.

This whole data structure will be initialized and instantiated without explicit calls to any
constructor or explicit member access. For more information about these new features,
see Auto-Implemented Properties and Object and Collection Initializers.

Add the Student class and the initialized list of students to the Program class in
your project.

C#

To add the data source

public class Student
{
 public string First { get; set; }
 public string Last { get; set; }
 public int ID { get; set; }
 public List<int> Scores;
}

// Create a data source by using a collection initializer.
static List<Student> students = new List<Student>
{
 new Student {First="Svetlana", Last="Omelchenko", ID=111, Scores=
new List<int> {97, 92, 81, 60}},
 new Student {First="Claire", Last="O'Donnell", ID=112, Scores= new
List<int> {75, 84, 91, 39}},
 new Student {First="Sven", Last="Mortensen", ID=113, Scores= new
List<int> {88, 94, 65, 91}},
 new Student {First="Cesar", Last="Garcia", ID=114, Scores= new
List<int> {97, 89, 85, 82}},
 new Student {First="Debra", Last="Garcia", ID=115, Scores= new
List<int> {35, 72, 91, 70}},
 new Student {First="Fadi", Last="Fakhouri", ID=116, Scores= new
List<int> {99, 86, 90, 94}},
 new Student {First="Hanying", Last="Feng", ID=117, Scores= new
List<int> {93, 92, 80, 87}},
 new Student {First="Hugo", Last="Garcia", ID=118, Scores= new
List<int> {92, 90, 83, 78}},
 new Student {First="Lance", Last="Tucker", ID=119, Scores= new
List<int> {68, 79, 88, 92}},
 new Student {First="Terry", Last="Adams", ID=120, Scores= new
List<int> {99, 82, 81, 79}},
 new Student {First="Eugene", Last="Zabokritski", ID=121, Scores=
new List<int> {96, 85, 91, 60}},
 new Student {First="Michael", Last="Tucker", ID=122, Scores= new

1. Add a new Student to the Students list and use a name and test scores of your
choice. Try typing all the new student information in order to better learn the
syntax for the object initializer.

In the application's Main method, create a simple query that, when it is executed,
will produce a list of all students whose score on the first test was greater than 90.
Note that because the whole Student object is selected, the type of the query is
IEnumerable<Student> . Although the code could also use implicit typing by using
the var keyword, explicit typing is used to clearly illustrate results. (For more
information about var , see Implicitly Typed Local Variables.)

Note also that the query's range variable, student , serves as a reference to each
Student in the source, providing member access for each object.

C#

1. Now write the foreach loop that will cause the query to execute. Note the
following about the code:

List<int> {94, 92, 91, 91}}
};

To add a new Student to the Students list

Create the Query

To create a simple query

// Create the query.
// The first line could also be written as "var studentQuery ="
IEnumerable<Student> studentQuery =
 from student in students
 where student.Scores[0] > 90
 select student;

Execute the Query

To execute the query

Each element in the returned sequence is accessed through the iteration
variable in the foreach loop.

The type of this variable is Student , and the type of the query variable is
compatible, IEnumerable<Student> .

2. After you have added this code, build and run the application to see the results in
the Console window.

C#

1. You can combine multiple Boolean conditions in the where clause in order to
further refine a query. The following code adds a condition so that the query
returns those students whose first score was over 90 and whose last score was less
than 80. The where clause should resemble the following code.

C#

For more information, see where clause.

// Execute the query.
// var could be used here also.
foreach (Student student in studentQuery)
{
 Console.WriteLine("{0}, {1}", student.Last, student.First);
}

// Output:
// Omelchenko, Svetlana
// Garcia, Cesar
// Fakhouri, Fadi
// Feng, Hanying
// Garcia, Hugo
// Adams, Terry
// Zabokritski, Eugene
// Tucker, Michael

To add another filter condition

where student.Scores[0] > 90 && student.Scores[3] < 80

Modify the Query

To order the results

1. It will be easier to scan the results if they are in some kind of order. You can order
the returned sequence by any accessible field in the source elements. For example,
the following orderby clause orders the results in alphabetical order from A to Z
according to the last name of each student. Add the following orderby clause to
your query, right after the where statement and before the select statement:

C#

2. Now change the orderby clause so that it orders the results in reverse order
according to the score on the first test, from the highest score to the lowest score.

C#

3. Change the WriteLine format string so that you can see the scores:

C#

For more information, see orderby clause.

1. Grouping is a powerful capability in query expressions. A query with a group clause
produces a sequence of groups, and each group itself contains a Key and a
sequence that consists of all the members of that group. The following new query
groups the students by using the first letter of their last name as the key.

C#

2. Note that the type of the query has now changed. It now produces a sequence of
groups that have a char type as a key, and a sequence of Student objects.

orderby student.Last ascending

orderby student.Scores[0] descending

Console.WriteLine("{0}, {1} {2}", student.Last, student.First,
student.Scores[0]);

To group the results

// studentQuery2 is an IEnumerable<IGrouping<char, Student>>
var studentQuery2 =
 from student in students
 group student by student.Last[0];

Because the type of the query has changed, the following code changes the
foreach execution loop also:

C#

3. Run the application and view the results in the Console window.

For more information, see group clause.

1. Explicitly coding IEnumerables of IGroupings can quickly become tedious. You can
write the same query and foreach loop much more conveniently by using var .
The var keyword does not change the types of your objects; it just instructs the
compiler to infer the types. Change the type of studentQuery and the iteration
variable group to var and rerun the query. Note that in the inner foreach loop,

// studentGroup is a IGrouping<char, Student>
foreach (var studentGroup in studentQuery2)
{
 Console.WriteLine(studentGroup.Key);
 foreach (Student student in studentGroup)
 {
 Console.WriteLine(" {0}, {1}",
 student.Last, student.First);
 }
}

// Output:
// O
// Omelchenko, Svetlana
// O'Donnell, Claire
// M
// Mortensen, Sven
// G
// Garcia, Cesar
// Garcia, Debra
// Garcia, Hugo
// F
// Fakhouri, Fadi
// Feng, Hanying
// T
// Tucker, Lance
// Tucker, Michael
// A
// Adams, Terry
// Z
// Zabokritski, Eugene

To make the variables implicitly typed

the iteration variable is still typed as Student , and the query works just as before.
Change the student iteration variable to var and run the query again. You see that
you get exactly the same results.

C#

For more information about var, see Implicitly Typed Local Variables.

1. When you run the previous query, you notice that the groups are not in
alphabetical order. To change this, you must provide an orderby clause after the
group clause. But to use an orderby clause, you first need an identifier that serves

var studentQuery3 =
 from student in students
 group student by student.Last[0];

foreach (var groupOfStudents in studentQuery3)
{
 Console.WriteLine(groupOfStudents.Key);
 foreach (var student in groupOfStudents)
 {
 Console.WriteLine(" {0}, {1}",
 student.Last, student.First);
 }
}

// Output:
// O
// Omelchenko, Svetlana
// O'Donnell, Claire
// M
// Mortensen, Sven
// G
// Garcia, Cesar
// Garcia, Debra
// Garcia, Hugo
// F
// Fakhouri, Fadi
// Feng, Hanying
// T
// Tucker, Lance
// Tucker, Michael
// A
// Adams, Terry
// Z
// Zabokritski, Eugene

To order the groups by their key value

as a reference to the groups created by the group clause. You provide the identifier
by using the into keyword, as follows:

C#

When you run this query, you will see the groups are now sorted in alphabetical
order.

1. You can use the let keyword to introduce an identifier for any expression result in
the query expression. This identifier can be a convenience, as in the following

var studentQuery4 =
 from student in students
 group student by student.Last[0] into studentGroup
 orderby studentGroup.Key
 select studentGroup;

foreach (var groupOfStudents in studentQuery4)
{
 Console.WriteLine(groupOfStudents.Key);
 foreach (var student in groupOfStudents)
 {
 Console.WriteLine(" {0}, {1}",
 student.Last, student.First);
 }
}

// Output:
//A
// Adams, Terry
//F
// Fakhouri, Fadi
// Feng, Hanying
//G
// Garcia, Cesar
// Garcia, Debra
// Garcia, Hugo
//M
// Mortensen, Sven
//O
// Omelchenko, Svetlana
// O'Donnell, Claire
//T
// Tucker, Lance
// Tucker, Michael
//Z
// Zabokritski, Eugene

To introduce an identifier by using let

example, or it can enhance performance by storing the results of an expression so
that it does not have to be calculated multiple times.

C#

For more information, see let clause.

1. As described in Query Syntax and Method Syntax in LINQ, some query operations
can only be expressed by using method syntax. The following code calculates the
total score for each Student in the source sequence, and then calls the Average()
method on the results of that query to calculate the average score of the class.

C#

// studentQuery5 is an IEnumerable<string>
// This query returns those students whose
// first test score was higher than their
// average score.
var studentQuery5 =
 from student in students
 let totalScore = student.Scores[0] + student.Scores[1] +
 student.Scores[2] + student.Scores[3]
 where totalScore / 4 < student.Scores[0]
 select student.Last + " " + student.First;

foreach (string s in studentQuery5)
{
 Console.WriteLine(s);
}

// Output:
// Omelchenko Svetlana
// O'Donnell Claire
// Mortensen Sven
// Garcia Cesar
// Fakhouri Fadi
// Feng Hanying
// Garcia Hugo
// Adams Terry
// Zabokritski Eugene
// Tucker Michael

To use method syntax in a query expression

var studentQuery6 =
 from student in students
 let totalScore = student.Scores[0] + student.Scores[1] +
 student.Scores[2] + student.Scores[3]
 select totalScore;

1. It is very common for a query to produce a sequence whose elements differ from
the elements in the source sequences. Delete or comment out your previous query
and execution loop, and replace it with the following code. Note that the query
returns a sequence of strings (not Students), and this fact is reflected in the
foreach loop.

C#

2. Code earlier in this walkthrough indicated that the average class score is
approximately 334. To produce a sequence of Students whose total score is
greater than the class average, together with their Student ID , you can use an
anonymous type in the select statement:

C#

double averageScore = studentQuery6.Average();
Console.WriteLine("Class average score = {0}", averageScore);

// Output:
// Class average score = 334.166666666667

To transform or project in the select clause

IEnumerable<string> studentQuery7 =
 from student in students
 where student.Last == "Garcia"
 select student.First;

Console.WriteLine("The Garcias in the class are:");
foreach (string s in studentQuery7)
{
 Console.WriteLine(s);
}

// Output:
// The Garcias in the class are:
// Cesar
// Debra
// Hugo

var studentQuery8 =
 from student in students
 let x = student.Scores[0] + student.Scores[1] +
 student.Scores[2] + student.Scores[3]
 where x > averageScore
 select new { id = student.ID, score = x };

foreach (var item in studentQuery8)

After you are familiar with the basic aspects of working with queries in C#, you are ready
to read the documentation and samples for the specific type of LINQ provider you are
interested in:

LINQ to SQL

LINQ to DataSet

LINQ to XML (C#)

LINQ to Objects (C#)

Language-Integrated Query (LINQ) (C#)
LINQ Query Expressions

{
 Console.WriteLine("Student ID: {0}, Score: {1}", item.id,
item.score);
}

// Output:
// Student ID: 113, Score: 338
// Student ID: 114, Score: 353
// Student ID: 116, Score: 369
// Student ID: 117, Score: 352
// Student ID: 118, Score: 343
// Student ID: 120, Score: 341
// Student ID: 122, Score: 368

Next Steps

See also

https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/linq-to-dataset
https://learn.microsoft.com/en-ca/dotnet/standard/linq/linq-xml-overview

Standard Query Operators Overview
(C#)
Article • 2021-09-15 • 3 minutes to read

The standard query operators are the methods that form the LINQ pattern. Most of these
methods operate on sequences, where a sequence is an object whose type implements
the IEnumerable<T> interface or the IQueryable<T> interface. The standard query
operators provide query capabilities including filtering, projection, aggregation, sorting
and more.

There are two sets of LINQ standard query operators: one that operates on objects of
type IEnumerable<T>, another that operates on objects of type IQueryable<T>. The
methods that make up each set are static members of the Enumerable and Queryable
classes, respectively. They are defined as extension methods of the type that they
operate on. Extension methods can be called by using either static method syntax or
instance method syntax.

In addition, several standard query operator methods operate on types other than those
based on IEnumerable<T> or IQueryable<T>. The Enumerable type defines two such
methods that both operate on objects of type IEnumerable. These methods,
Cast<TResult>(IEnumerable) and OfType<TResult>(IEnumerable), let you enable a non-
parameterized, or non-generic, collection to be queried in the LINQ pattern. They do
this by creating a strongly typed collection of objects. The Queryable class defines two
similar methods, Cast<TResult>(IQueryable) and OfType<TResult>(IQueryable), that
operate on objects of type IQueryable.

The standard query operators differ in the timing of their execution, depending on
whether they return a singleton value or a sequence of values. Those methods that
return a singleton value (for example, Average and Sum) execute immediately. Methods
that return a sequence defer the query execution and return an enumerable object.

For methods that operate on in-memory collections, that is, those methods that extend
IEnumerable<T>, the returned enumerable object captures the arguments that were
passed to the method. When that object is enumerated, the logic of the query operator
is employed and the query results are returned.

In contrast, methods that extend IQueryable<T> don't implement any querying
behavior. They build an expression tree that represents the query to be performed. The
query processing is handled by the source IQueryable<T> object.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast#system-linq-enumerable-cast-1(system-collections-ienumerable)
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype#system-linq-enumerable-oftype-1(system-collections-ienumerable)
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.cast#system-linq-queryable-cast-1(system-linq-iqueryable)
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.oftype#system-linq-queryable-oftype-1(system-linq-iqueryable)
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.average
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sum
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1

Calls to query methods can be chained together in one query, which enables queries to
become arbitrarily complex.

The following code example demonstrates how the standard query operators can be
used to obtain information about a sequence.

C#

Some of the more frequently used standard query operators have dedicated C# and
Visual Basic language keyword syntax that enables them to be called as part of a query

string sentence = "the quick brown fox jumps over the lazy dog";
// Split the string into individual words to create a collection.
string[] words = sentence.Split(' ');

// Using query expression syntax.
var query = from word in words
 group word.ToUpper() by word.Length into gr
 orderby gr.Key
 select new { Length = gr.Key, Words = gr };

// Using method-based query syntax.
var query2 = words.
 GroupBy(w => w.Length, w => w.ToUpper()).
 Select(g => new { Length = g.Key, Words = g }).
 OrderBy(o => o.Length);

foreach (var obj in query)
{
 Console.WriteLine("Words of length {0}:", obj.Length);
 foreach (string word in obj.Words)
 Console.WriteLine(word);
}

// This code example produces the following output:
//
// Words of length 3:
// THE
// FOX
// THE
// DOG
// Words of length 4:
// OVER
// LAZY
// Words of length 5:
// QUICK
// BROWN
// JUMPS

Query Expression Syntax

expression. For more information about standard query operators that have dedicated
keywords and their corresponding syntaxes, see Query Expression Syntax for Standard
Query Operators (C#).

You can augment the set of standard query operators by creating domain-specific
methods that are appropriate for your target domain or technology. You can also
replace the standard query operators with your own implementations that provide
additional services such as remote evaluation, query translation, and optimization. See
AsEnumerable for an example.

The following links take you to articles that provide additional information about the
various standard query operators based on functionality.

Sorting Data (C#)

Set Operations (C#)

Filtering Data (C#)

Quantifier Operations (C#)

Projection Operations (C#)

Partitioning Data (C#)

Join Operations (C#)

Grouping Data (C#)

Generation Operations (C#)

Equality Operations (C#)

Element Operations (C#)

Converting Data Types (C#)

Concatenation Operations (C#)

Aggregation Operations (C#)

Extending the Standard Query Operators

Related Sections

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.asenumerable

Enumerable
Queryable
Introduction to LINQ Queries (C#)
Query Expression Syntax for Standard Query Operators (C#)
Classification of Standard Query Operators by Manner of Execution (C#)
Extension Methods

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable

Query Expression Syntax for Standard
Query Operators (C#)
Article • 2021-09-15 • 2 minutes to read

Some of the more frequently used standard query operators have dedicated C#
language keyword syntax that enables them to be called as part of a query expression. A
query expression is a different, more readable form of expressing a query than its
method-based equivalent. Query expression clauses are translated into calls to the query
methods at compile time.

The following table lists the standard query operators that have equivalent query
expression clauses.

Method C# Query
Expression Syntax

Cast Use an explicitly
typed range
variable, for
example:

from int i in

numbers

(For more
information, see
from clause.)

GroupBy group … by

-or-

group … by … into

…

(For more
information, see
group clause.)

Query Expression Syntax Table

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby

Method C# Query
Expression Syntax

GroupJoin<TOuter,TInner,TKey,TResult>(IEnumerable<TOuter>,
IEnumerable<TInner>, Func<TOuter,TKey>, Func<TInner,TKey>,
Func<TOuter,IEnumerable<TInner>, TResult>)

join … in … on …

equals … into …

(For more
information, see join
clause.)

Join<TOuter,TInner,TKey,TResult>(IEnumerable<TOuter>,
IEnumerable<TInner>, Func<TOuter,TKey>, Func<TInner,TKey>,
Func<TOuter,TInner,TResult>)

join … in … on …

equals …

(For more
information, see join
clause.)

OrderBy<TSource,TKey>(IEnumerable<TSource>, Func<TSource,TKey>) orderby

(For more
information, see
orderby clause.)

OrderByDescending<TSource,TKey>(IEnumerable<TSource>,
Func<TSource,TKey>)

orderby …

descending

(For more
information, see
orderby clause.)

Select select

(For more
information, see
select clause.)

SelectMany Multiple from
clauses.

(For more
information, see
from clause.)

ThenBy<TSource,TKey>(IOrderedEnumerable<TSource>,
Func<TSource,TKey>)

orderby …, …

(For more
information, see
orderby clause.)

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin#system-linq-enumerable-groupjoin-4(system-collections-generic-ienumerable((-0))-system-collections-generic-ienumerable((-1))-system-func((-0-2))-system-func((-1-2))-system-func((-0-system-collections-generic-ienumerable((-1))-3)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join#system-linq-enumerable-join-4(system-collections-generic-ienumerable((-0))-system-collections-generic-ienumerable((-1))-system-func((-0-2))-system-func((-1-2))-system-func((-0-1-3)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderby#system-linq-enumerable-orderby-2(system-collections-generic-ienumerable((-0))-system-func((-0-1)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderbydescending#system-linq-enumerable-orderbydescending-2(system-collections-generic-ienumerable((-0))-system-func((-0-1)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.selectmany
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenby#system-linq-enumerable-thenby-2(system-linq-iorderedenumerable((-0))-system-func((-0-1)))

Method C# Query
Expression Syntax

ThenByDescending<TSource,TKey>(IOrderedEnumerable<TSource>,
Func<TSource,TKey>)

orderby …, …

descending

(For more
information, see
orderby clause.)

Where where

(For more
information, see
where clause.)

Enumerable
Queryable
Standard Query Operators Overview (C#)
Classification of Standard Query Operators by Manner of Execution (C#)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenbydescending#system-linq-enumerable-thenbydescending-2(system-linq-iorderedenumerable((-0))-system-func((-0-1)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable

Classification of Standard Query
Operators by Manner of Execution (C#)
Article • 2022-06-28 • 3 minutes to read

The LINQ to Objects implementations of the standard query operator methods execute
in one of two main ways: immediate or deferred. The query operators that use deferred
execution can be additionally divided into two categories: streaming and non-streaming.
If you know how the different query operators execute, it may help you understand the
results that you get from a given query. This is especially true if the data source is
changing or if you are building a query on top of another query. This topic classifies the
standard query operators according to their manner of execution.

Immediate execution means that the data source is read and the operation is performed
once. All the standard query operators that return a scalar result execute immediately.
You can force a query to execute immediately using the Enumerable.ToList or
Enumerable.ToArray methods. Immediate execution provides reuse of query results, not
query declaration. The results are retrieved once, then stored for future use.

Deferred execution means that the operation is not performed at the point in the code
where the query is declared. The operation is performed only when the query variable is
enumerated, for example by using a foreach statement. This means that the results of
executing the query depend on the contents of the data source when the query is
executed rather than when the query is defined. If the query variable is enumerated
multiple times, the results might differ every time. Almost all the standard query
operators whose return type is IEnumerable<T> or IOrderedEnumerable<TElement>
execute in a deferred manner. Deferred execution provides the facility of query reuse
since the query fetches the updated data from the data source each time query results
are iterated.

Query operators that use deferred execution can be additionally classified as streaming
or non-streaming.

Manners of Execution

Immediate

Deferred

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iorderedenumerable-1

Streaming operators do not have to read all the source data before they yield elements.
At the time of execution, a streaming operator performs its operation on each source
element as it is read and yields the element if appropriate. A streaming operator
continues to read source elements until a result element can be produced. This means
that more than one source element might be read to produce one result element.

Non-streaming operators must read all the source data before they can yield a result
element. Operations such as sorting or grouping fall into this category. At the time of
execution, non-streaming query operators read all the source data, put it into a data
structure, perform the operation, and yield the resulting elements.

The following table classifies each standard query operator method according to its
method of execution.

Standard Query
Operator

Return Type Immediate
Execution

Deferred
Streaming
Execution

Deferred
Non-
Streaming
Execution

Aggregate TSource X

All Boolean X

Any Boolean X

AsEnumerable IEnumerable<T> X

Average Single numeric value X

Cast IEnumerable<T> X

Streaming

Non-Streaming

Classification Table

７ Note

If an operator is marked in two columns, two input sequences are involved in the
operation, and each sequence is evaluated differently. In these cases, it is always
the first sequence in the parameter list that is evaluated in a deferred, streaming
manner.

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.aggregate
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.all
https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.any
https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.asenumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.average
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Standard Query
Operator

Return Type Immediate
Execution

Deferred
Streaming
Execution

Deferred
Non-
Streaming
Execution

Concat IEnumerable<T> X

Contains Boolean X

Count Int32 X

DefaultIfEmpty IEnumerable<T> X

Distinct IEnumerable<T> X

ElementAt TSource X

ElementAtOrDefault TSource X

Empty IEnumerable<T> X

Except IEnumerable<T> X X

First TSource X

FirstOrDefault TSource X

GroupBy IEnumerable<T> X

GroupJoin IEnumerable<T> X X

Intersect IEnumerable<T> X X

Join IEnumerable<T> X X

Last TSource X

LastOrDefault TSource X

LongCount Int64 X

Max Single numeric value, TSource, or
TResult

X

Min Single numeric value, TSource, or
TResult

X

OfType IEnumerable<T> X

OrderBy IOrderedEnumerable<TElement> X

OrderByDescending IOrderedEnumerable<TElement> X

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.concat
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.contains
https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.defaultifempty
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.elementat
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.elementatordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.except
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.first
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.firstordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersect
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.last
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.lastordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.longcount
https://learn.microsoft.com/en-us/dotnet/api/system.int64
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.min
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iorderedenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderbydescending
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iorderedenumerable-1

Standard Query
Operator

Return Type Immediate
Execution

Deferred
Streaming
Execution

Deferred
Non-
Streaming
Execution

Range IEnumerable<T> X

Repeat IEnumerable<T> X

Reverse IEnumerable<T> X

Select IEnumerable<T> X

SelectMany IEnumerable<T> X

SequenceEqual Boolean X

Single TSource X

SingleOrDefault TSource X

Skip IEnumerable<T> X

SkipWhile IEnumerable<T> X

Sum Single numeric value X

Take IEnumerable<T> X

TakeWhile IEnumerable<T> X

ThenBy IOrderedEnumerable<TElement> X

ThenByDescending IOrderedEnumerable<TElement> X

ToArray TSource array X

ToDictionary Dictionary<TKey,TValue> X

ToList IList<T> X

ToLookup ILookup<TKey,TElement> X

Union IEnumerable<T> X

Where IEnumerable<T> X

Enumerable
Standard Query Operators Overview (C#)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.repeat
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.reverse
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.selectmany
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sequenceequal
https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.single
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.singleordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skipwhile
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sum
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.takewhile
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iorderedenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenbydescending
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iorderedenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.todictionary
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolookup
https://learn.microsoft.com/en-us/dotnet/api/system.linq.ilookup-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.union
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable

Query Expression Syntax for Standard Query Operators (C#)
LINQ to Objects (C#)

Sorting Data (C#)
Article • 2021-09-15 • 2 minutes to read

A sorting operation orders the elements of a sequence based on one or more attributes.
The first sort criterion performs a primary sort on the elements. By specifying a second
sort criterion, you can sort the elements within each primary sort group.

The following illustration shows the results of an alphabetical sort operation on a
sequence of characters:

The standard query operator methods that sort data are listed in the following section.

Method Name Description C# Query
Expression
Syntax

More Information

OrderBy Sorts values in
ascending order.

orderby Enumerable.OrderBy

Queryable.OrderBy

OrderByDescending Sorts values in
descending order.

orderby …

descending

Enumerable.OrderByDescending

Queryable.OrderByDescending

ThenBy Performs a secondary
sort in ascending
order.

orderby …, … Enumerable.ThenBy

Queryable.ThenBy

ThenByDescending Performs a secondary
sort in descending
order.

orderby …, …

descending

Enumerable.ThenByDescending

Queryable.ThenByDescending

Reverse Reverses the order of
the elements in a
collection.

Not applicable. Enumerable.Reverse

Queryable.Reverse

Methods

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.orderby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderbydescending
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.orderbydescending
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.thenby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenbydescending
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.thenbydescending
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.reverse
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.reverse

The following example demonstrates how to use the orderby clause in a LINQ query to
sort the strings in an array by string length, in ascending order.

C#

The next example demonstrates how to use the orderby descending clause in a LINQ
query to sort the strings by their first letter, in descending order.

C#

Query Expression Syntax Examples

Primary Sort Examples

Primary Ascending Sort

string[] words = { "the", "quick", "brown", "fox", "jumps" };

IEnumerable<string> query = from word in words
 orderby word.Length
 select word;

foreach (string str in query)
 Console.WriteLine(str);

/* This code produces the following output:

 the
 fox
 quick
 brown
 jumps
*/

Primary Descending Sort

string[] words = { "the", "quick", "brown", "fox", "jumps" };

IEnumerable<string> query = from word in words
 orderby word.Substring(0, 1) descending
 select word;

foreach (string str in query)
 Console.WriteLine(str);

/* This code produces the following output:

The following example demonstrates how to use the orderby clause in a LINQ query to
perform a primary and secondary sort of the strings in an array. The strings are sorted
primarily by length and secondarily by the first letter of the string, both in ascending
order.

C#

The next example demonstrates how to use the orderby descending clause in a LINQ
query to perform a primary sort, in ascending order, and a secondary sort, in descending
order. The strings are sorted primarily by length and secondarily by the first letter of the
string.

C#

 the
 quick
 jumps
 fox
 brown
*/

Secondary Sort Examples

Secondary Ascending Sort

string[] words = { "the", "quick", "brown", "fox", "jumps" };

IEnumerable<string> query = from word in words
 orderby word.Length, word.Substring(0, 1)
 select word;

foreach (string str in query)
 Console.WriteLine(str);

/* This code produces the following output:

 fox
 the
 brown
 jumps
 quick
*/

Secondary Descending Sort

System.Linq
Standard Query Operators Overview (C#)
orderby clause
Order the results of a join clause
How to sort or filter text data by any word or field (LINQ) (C#)

string[] words = { "the", "quick", "brown", "fox", "jumps" };

IEnumerable<string> query = from word in words
 orderby word.Length, word.Substring(0, 1)
descending
 select word;

foreach (string str in query)
 Console.WriteLine(str);

/* This code produces the following output:

 the
 fox
 quick
 jumps
 brown
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Set operations (C#)
Article • 2021-12-22 • 7 minutes to read

Set operations in LINQ refer to query operations that produce a result set that is based
on the presence or absence of equivalent elements within the same or separate
collections (or sets).

The standard query operator methods that perform set operations are listed in the
following section.

Method
names

Description C# query
expression
syntax

More information

Distinct or
DistinctBy

Removes duplicate values from a
collection.

Not
applicable.

Enumerable.Distinct
Enumerable.DistinctBy
Queryable.Distinct
Queryable.DistinctBy

Except or
ExceptBy

Returns the set difference, which means
the elements of one collection that do not
appear in a second collection.

Not
applicable.

Enumerable.Except
Enumerable.ExceptBy
Queryable.Except
Queryable.ExceptBy

Intersect
or
IntersectBy

Returns the set intersection, which means
elements that appear in each of two
collections.

Not
applicable.

Enumerable.Intersect
Enumerable.IntersectBy
Queryable.Intersect
Queryable.IntersectBy

Union or
UnionBy

Returns the set union, which means unique
elements that appear in either of two
collections.

Not
applicable.

Enumerable.Union
Enumerable.UnionBy
Queryable.Union
Queryable.UnionBy

Some of the following examples rely on a record type that represents the planets in our
solar system.

C#

Methods

Examples

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinctby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.distinctby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.except
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.exceptby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.except
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.exceptby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersect
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersectby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.intersect
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.intersectby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.union
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.unionby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.union
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.unionby

The record Planet is a positional record, which requires a Name , Type , and OrderFromSun
arguments to instantiate it. There are several static readonly planet instances on the
Planet type. These are convenience-based definitions for well-known planets. The Type
member identifies the planet type.

C#

namespace SolarSystem;

record Planet(
 string Name,
 PlanetType Type,
 int OrderFromSun)
{
 public static readonly Planet Mercury =
 new(nameof(Mercury), PlanetType.Rock, 1);

 public static readonly Planet Venus =
 new(nameof(Venus), PlanetType.Rock, 2);

 public static readonly Planet Earth =
 new(nameof(Earth), PlanetType.Rock, 3);

 public static readonly Planet Mars =
 new(nameof(Mars), PlanetType.Rock, 4);

 public static readonly Planet Jupiter =
 new(nameof(Jupiter), PlanetType.Gas, 5);

 public static readonly Planet Saturn =
 new(nameof(Saturn), PlanetType.Gas, 6);

 public static readonly Planet Uranus =
 new(nameof(Uranus), PlanetType.Liquid, 7);

 public static readonly Planet Neptune =
 new(nameof(Neptune), PlanetType.Liquid, 8);

 // Yes, I know... not technically a planet anymore
 public static readonly Planet Pluto =
 new(nameof(Pluto), PlanetType.Ice, 9);
}

namespace SolarSystem;

enum PlanetType
{
 Rock,
 Ice,
 Gas,

The following example depicts the behavior of the Enumerable.Distinct method on a
sequence of strings. The returned sequence contains the unique elements from the
input sequence.

C#

The DistinctBy is an alternative approach to Distinct that takes a keySelector . The
keySelector is used as the comparative discriminator of the source type. Consider the
following planet array:

C#

 Liquid
};

Distinct and DistinctBy

string[] planets = { "Mercury", "Venus", "Venus", "Earth", "Mars", "Earth"
};

IEnumerable<string> query = from planet in planets.Distinct()
 select planet;

foreach (var str in query)
{
 Console.WriteLine(str);
}

/* This code produces the following output:
 *
 * Mercury
 * Venus
 * Earth
 * Mars
 */

Planet[] planets =
{
 Planet.Mercury,
 Planet.Venus,
 Planet.Earth,
 Planet.Mars,
 Planet.Jupiter,
 Planet.Saturn,
 Planet.Uranus,

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinctby

In the following code, planets are discriminated based on their PlanetType , and the first
planet of each type is displayed:

C#

In the preceding C# code:

The Planet array is filtered distinctly to the first occurrence of each unique planet
type.
The resulting planet instances are written to the console.

The following example depicts the behavior of Enumerable.Except. The returned
sequence contains only the elements from the first input sequence that are not in the
second input sequence.

C#

 Planet.Neptune,
 Planet.Pluto
};

foreach (Planet planet in planets.DistinctBy(p => p.Type))
{
 Console.WriteLine(planet);
}

// This code produces the following output:
// Planet { Name = Mercury, Type = Rock, OrderFromSun = 1 }
// Planet { Name = Jupiter, Type = Gas, OrderFromSun = 5 }
// Planet { Name = Uranus, Type = Liquid, OrderFromSun = 7 }
// Planet { Name = Pluto, Type = Ice, OrderFromSun = 9 }

Except and ExceptBy

string[] planets1 = { "Mercury", "Venus", "Earth", "Jupiter" };
string[] planets2 = { "Mercury", "Earth", "Mars", "Jupiter" };

IEnumerable<string> query = from planet in planets1.Except(planets2)
 select planet;

foreach (var str in query)
{

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.except

The ExceptBy method is an alternative approach to Except that takes two sequences of
possibly heterogenous types and a keySelector . The keySelector is the same type as
the second collection's type, and it is used as the comparative discriminator of the
source type. Consider the following planet arrays:

C#

To find planets in the first collection that aren't in the second collection, you can project
the planet names as the second collection and provide the same keySelector :

C#

 Console.WriteLine(str);
}

/* This code produces the following output:
 *
 * Venus
 */

Planet[] planets =
{
 Planet.Mercury,
 Planet.Venus,
 Planet.Earth,
 Planet.Jupiter
};

Planet[] morePlanets =
{
 Planet.Mercury,
 Planet.Earth,
 Planet.Mars,
 Planet.Jupiter
};

// A shared "keySelector"
static string PlanetNameSelector(Planet planet) => planet.Name;

foreach (Planet planet in
 planets.ExceptBy(
 morePlanets.Select(PlanetNameSelector), PlanetNameSelector))
{
 Console.WriteLine(planet);
}

// This code produces the following output:
// Planet { Name = Venus, Type = Rock, OrderFromSun = 2 }

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.exceptby

In the preceding C# code:

The keySelector is defined as a static local function that discriminates on a
planet name.
The first planet array is filtered to planets that are not found in the second planet
array, based on their name.
The resulting planet instance is written to the console.

The following example depicts the behavior of Enumerable.Intersect. The returned
sequence contains the elements that are common to both of the input sequences.

C#

The IntersectBy method is an alternative approach to Intersect that takes two
sequences of possibly heterogenous types and a keySelector . The keySelector is used
as the comparative discriminator of the second collection's type. Consider the following
planet arrays:

C#

Intersect and IntersectBy

string[] planets1 = { "Mercury", "Venus", "Earth", "Jupiter" };
string[] planets2 = { "Mercury", "Earth", "Mars", "Jupiter" };

IEnumerable<string> query = from planet in planets1.Intersect(planets2)
 select planet;

foreach (var str in query)
{
 Console.WriteLine(str);
}

/* This code produces the following output:
 *
 * Mercury
 * Earth
 * Jupiter
 */

Planet[] firstFivePlanetsFromTheSun =
{

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersect
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersectby

There are two arrays of planets; one represents the first five planets from the sun and
the second represents the last five planets from the sun. Since the Planet type is a
positional record type, you can use its value comparison semantics in the form of the
keySelector :

C#

In the preceding C# code:

The two Planet arrays are intersected by their value comparison semantics.
Only planets that are found in both arrays are present in the resulting sequence.
The resulting planet instances are written to the console.

The following example depicts a union operation on two sequences of strings. The
returned sequence contains the unique elements from both input sequences.

 Planet.Mercury,
 Planet.Venus,
 Planet.Earth,
 Planet.Mars,
 Planet.Jupiter
};

Planet[] lastFivePlanetsFromTheSun =
{
 Planet.Mars,
 Planet.Jupiter,
 Planet.Saturn,
 Planet.Uranus,
 Planet.Neptune
};

foreach (Planet planet in
 firstFivePlanetsFromTheSun.IntersectBy(
 lastFivePlanetsFromTheSun, planet => planet))
{
 Console.WriteLine(planet);
}

// This code produces the following output:
// Planet { Name = Mars, Type = Rock, OrderFromSun = 4 }
// Planet { Name = Jupiter, Type = Gas, OrderFromSun = 5 }

Union and UnionBy

C#

The UnionBy method is an alternative approach to Union that takes two sequences of
the same type and a keySelector . The keySelector is used as the comparative
discriminator of the source type. Consider the following planet arrays:

C#

string[] planets1 = { "Mercury", "Venus", "Earth", "Jupiter" };
string[] planets2 = { "Mercury", "Earth", "Mars", "Jupiter" };

IEnumerable<string> query = from planet in planets1.Union(planets2)
 select planet;

foreach (var str in query)
{
 Console.WriteLine(str);
}

/* This code produces the following output:
 *
 * Mercury
 * Venus
 * Earth
 * Jupiter
 * Mars
 */

Planet[] firstFivePlanetsFromTheSun =
{
 Planet.Mercury,
 Planet.Venus,
 Planet.Earth,
 Planet.Mars,
 Planet.Jupiter
};

Planet[] lastFivePlanetsFromTheSun =
{
 Planet.Mars,
 Planet.Jupiter,
 Planet.Saturn,
 Planet.Uranus,
 Planet.Neptune
};

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.unionby

To union these two collections into a single sequence, you provide the keySelector :

C#

In the preceding C# code:

The two Planet arrays are weaved together using their record value comparison
semantics.
The resulting planet instances are written to the console.

System.Linq
Standard Query Operators Overview (C#)
How to combine and compare string collections (LINQ) (C#)
How to find the set difference between two lists (LINQ) (C#)

foreach (Planet planet in
 firstFivePlanetsFromTheSun.UnionBy(
 lastFivePlanetsFromTheSun, planet => planet))
{
 Console.WriteLine(planet);
}

// This code produces the following output:
// Planet { Name = Mercury, Type = Rock, OrderFromSun = 1 }
// Planet { Name = Venus, Type = Rock, OrderFromSun = 2 }
// Planet { Name = Earth, Type = Rock, OrderFromSun = 3 }
// Planet { Name = Mars, Type = Rock, OrderFromSun = 4 }
// Planet { Name = Jupiter, Type = Gas, OrderFromSun = 5 }
// Planet { Name = Saturn, Type = Gas, OrderFromSun = 6 }
// Planet { Name = Uranus, Type = Liquid, OrderFromSun = 7 }
// Planet { Name = Neptune, Type = Liquid, OrderFromSun = 8 }

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Filtering Data (C#)
Article • 2021-11-05 • 2 minutes to read

Filtering refers to the operation of restricting the result set to contain only those
elements that satisfy a specified condition. It is also known as selection.

The following illustration shows the results of filtering a sequence of characters. The
predicate for the filtering operation specifies that the character must be 'A'.

The standard query operator methods that perform selection are listed in the following
section.

Method
Name

Description C# Query
Expression
Syntax

More Information

OfType Selects values, depending on their ability
to be cast to a specified type.

Not applicable. Enumerable.OfType

Queryable.OfType

Where Selects values that are based on a
predicate function.

where Enumerable.Where

Queryable.Where

The following example uses the where clause to filter from an array those strings that
have a specific length.

C#

Methods

Query Expression Syntax Example

string[] words = { "the", "quick", "brown", "fox", "jumps" };

IEnumerable<string> query = from word in words
 where word.Length == 3

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.where

System.Linq
Standard Query Operators Overview (C#)
where clause
Dynamically specify predicate filters at run time
How to query an assembly's metadata with Reflection (LINQ) (C#)
How to query for files with a specified attribute or name (C#)
How to sort or filter text data by any word or field (LINQ) (C#)

 select word;

foreach (string str in query)
 Console.WriteLine(str);

/* This code produces the following output:

 the
 fox
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Quantifier operations in LINQ (C#)
Article • 2022-06-07 • 2 minutes to read

Quantifier operations return a Boolean value that indicates whether some or all of the
elements in a sequence satisfy a condition.

The following illustration depicts two different quantifier operations on two different
source sequences. The first operation asks if any of the elements are the character 'A'.
The second operation asks if all the elements are the character 'A'. Both methods return
true in this example.

The standard query operator methods that perform quantifier operations are listed in
the following section.

Method
Name

Description C# Query
Expression
Syntax

More Information

All Determines whether all the elements in a
sequence satisfy a condition.

Not applicable. Enumerable.All
Queryable.All

Any Determines whether any elements in a
sequence satisfy a condition.

Not applicable. Enumerable.Any
Queryable.Any

Contains Determines whether a sequence contains
a specified element.

Not applicable. Enumerable.Contains
Queryable.Contains

The following example uses the All to check that all strings are of a specific length.

Methods

Query Expression Syntax Examples

All

https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.all
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.all
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.any
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.any
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.contains
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.contains

C#

The following example uses the Any to check that any strings are start with 'o'.

C#

class Market
{
 public string Name { get; set; }
 public string[] Items { get; set; }
}

public static void Example()
{
 List<Market> markets = new List<Market>
 {
 new Market { Name = "Emily's", Items = new string[] { "kiwi",
"cheery", "banana" } },
 new Market { Name = "Kim's", Items = new string[] { "melon",
"mango", "olive" } },
 new Market { Name = "Adam's", Items = new string[] { "kiwi",
"apple", "orange" } },
 };

 // Determine which market have all fruit names length equal to 5
 IEnumerable<string> names = from market in markets
 where market.Items.All(item => item.Length
== 5)
 select market.Name;

 foreach (string name in names)
 {
 Console.WriteLine($"{name} market");
 }

 // This code produces the following output:
 //
 // Kim's market
}

Any

class Market
{
 public string Name { get; set; }
 public string[] Items { get; set; }
}

public static void Example()
{
 List<Market> markets = new List<Market>

The following example uses the Contains to check an array have a specific element.

C#

 {
 new Market { Name = "Emily's", Items = new string[] { "kiwi",
"cheery", "banana" } },
 new Market { Name = "Kim's", Items = new string[] { "melon",
"mango", "olive" } },
 new Market { Name = "Adam's", Items = new string[] { "kiwi",
"apple", "orange" } },
 };

 // Determine which market have any fruit names start with 'o'
 IEnumerable<string> names = from market in markets
 where market.Items.Any(item =>
item.StartsWith("o"))
 select market.Name;

 foreach (string name in names)
 {
 Console.WriteLine($"{name} market");
 }

 // This code produces the following output:
 //
 // Kim's market
 // Adam's market
}

Contains

class Market
{
 public string Name { get; set; }
 public string[] Items { get; set; }
}

public static void Example()
{
 List<Market> markets = new List<Market>
 {
 new Market { Name = "Emily's", Items = new string[] { "kiwi",
"cheery", "banana" } },
 new Market { Name = "Kim's", Items = new string[] { "melon",
"mango", "olive" } },
 new Market { Name = "Adam's", Items = new string[] { "kiwi",
"apple", "orange" } },
 };

 // Determine which market contains fruit names equal 'kiwi'
 IEnumerable<string> names = from market in markets

System.Linq
Standard Query Operators Overview (C#)
Dynamically specify predicate filters at run time
How to query for sentences that contain a specified set of words (LINQ) (C#)

 where market.Items.Contains("kiwi")
 select market.Name;

 foreach (string name in names)
 {
 Console.WriteLine($"{name} market");
 }

 // This code produces the following output:
 //
 // Emily's market
 // Adam's market
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Projection operations (C#)
Article • 2022-10-06 • 5 minutes to read

Projection refers to the operation of transforming an object into a new form that often
consists only of those properties that will be subsequently used. By using projection, you
can construct a new type that is built from each object. You can project a property and
perform a mathematical function on it. You can also project the original object without
changing it.

The standard query operator methods that perform projection are listed in the following
section.

Method
names

Description C# query
expression
syntax

More information

Select Projects values that are based on a
transform function.

select Enumerable.Select
Queryable.Select

SelectMany Projects sequences of values that are
based on a transform function and then
flattens them into one sequence.

Use multiple
from clauses

Enumerable.SelectMany
Queryable.SelectMany

Zip Produces a sequence of tuples with
elements from 2-3 specified sequences.

Not
applicable.

Enumerable.Zip
Queryable.Zip

The following example uses the select clause to project the first letter from each string
in a list of strings.

C#

Methods

Select

List<string> words = new() { "an", "apple", "a", "day" };

var query = from word in words
 select word.Substring(0, 1);

foreach (string s in query)
 Console.WriteLine(s);

/* This code produces the following output:

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.select
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.selectmany
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.selectmany
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.zip
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.zip

The following example uses multiple from clauses to project each word from each string
in a list of strings.

C#

There are several overloads for the Zip projection operator. All of the Zip methods
work on sequences of two or more possibly heterogenous types. The first two overloads
return tuples, with the corresponding positional type from the given sequences.

Consider the following collections:

C#

 a
 a
 a
 d
*/

SelectMany

List<string> phrases = new() { "an apple a day", "the quick brown fox" };

var query = from phrase in phrases
 from word in phrase.Split(' ')
 select word;

foreach (string s in query)
 Console.WriteLine(s);

/* This code produces the following output:

 an
 apple
 a
 day
 the
 quick
 brown
 fox
*/

Zip

// An int array with 7 elements.
IEnumerable<int> numbers = new[]

To project these sequences together, use the Enumerable.Zip<TFirst,TSecond>
(IEnumerable<TFirst>, IEnumerable<TSecond>) operator:

C#

The second overload accepts a third sequence. Let's create another collection, namely
emoji :

C#

To project these sequences together, use the Enumerable.Zip<TFirst,TSecond,TThird>
(IEnumerable<TFirst>, IEnumerable<TSecond>, IEnumerable<TThird>) operator:

{
 1, 2, 3, 4, 5, 6, 7
};
// A char array with 6 elements.
IEnumerable<char> letters = new[]
{
 'A', 'B', 'C', 'D', 'E', 'F'
};

foreach ((int number, char letter) in numbers.Zip(letters))
{
 Console.WriteLine($"Number: {number} zipped with letter: '{letter}'");
}
// This code produces the following output:
// Number: 1 zipped with letter: 'A'
// Number: 2 zipped with letter: 'B'
// Number: 3 zipped with letter: 'C'
// Number: 4 zipped with letter: 'D'
// Number: 5 zipped with letter: 'E'
// Number: 6 zipped with letter: 'F'

） Important

The resulting sequence from a zip operation is never longer in length than the
shortest sequence. The numbers and letters collections differ in length, and the
resulting sequence omits the last element from the numbers collection, as it has
nothing to zip with.

// A string array with 8 elements.
IEnumerable<string> emoji = new[]
{
 "🤓", "🔥", "🎉", "👀", "⭐", "💜", "✔", "💯"
};

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.zip#system-linq-enumerable-zip-2(system-collections-generic-ienumerable((-0))-system-collections-generic-ienumerable((-1)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.zip#system-linq-enumerable-zip-3(system-collections-generic-ienumerable((-0))-system-collections-generic-ienumerable((-1))-system-collections-generic-ienumerable((-2)))

C#

Much like the previous overload, the Zip method projects a tuple, but this time with
three elements.

The third overload accepts a Func<TFirst, TSecond, TResult> argument that acts as a
results selector. Given the two types from the sequences being zipped, you can project a
new resulting sequence.

C#

With the preceding Zip overload, the specified function is applied to the corresponding
elements numbers and letter , producing a sequence of the string results.

The work of both Select and SelectMany is to produce a result value (or values) from
source values. Select produces one result value for every source value. The overall

foreach ((int number, char letter, string em) in numbers.Zip(letters,
emoji))
{
 Console.WriteLine(
 $"Number: {number} is zipped with letter: '{letter}' and emoji:
{em}");
}
// This code produces the following output:
// Number: 1 is zipped with letter: 'A' and emoji: 🤓
// Number: 2 is zipped with letter: 'B' and emoji: 🔥
// Number: 3 is zipped with letter: 'C' and emoji: 🎉
// Number: 4 is zipped with letter: 'D' and emoji: 👀
// Number: 5 is zipped with letter: 'E' and emoji: ⭐
// Number: 6 is zipped with letter: 'F' and emoji: 💜

foreach (string result in
 numbers.Zip(letters, (number, letter) => $"{number} = {letter}
({(int)letter})"))
{
 Console.WriteLine(result);
}
// This code produces the following output:
// 1 = A (65)
// 2 = B (66)
// 3 = C (67)
// 4 = D (68)
// 5 = E (69)
// 6 = F (70)

Select versus SelectMany

result is therefore a collection that has the same number of elements as the source
collection. In contrast, SelectMany produces a single overall result that contains
concatenated sub-collections from each source value. The transform function that is
passed as an argument to SelectMany must return an enumerable sequence of values
for each source value. These enumerable sequences are then concatenated by
SelectMany to create one large sequence.

The following two illustrations show the conceptual difference between the actions of
these two methods. In each case, assume that the selector (transform) function selects
the array of flowers from each source value.

This illustration depicts how Select returns a collection that has the same number of
elements as the source collection.

This illustration depicts how SelectMany concatenates the intermediate sequence of
arrays into one final result value that contains each value from each intermediate array.

Code example

The following example compares the behavior of Select and SelectMany . The code
creates a "bouquet" of flowers by taking the items from each list of flower names in the
source collection. In this example, the "single value" that the transform function
Select<TSource,TResult>(IEnumerable<TSource>, Func<TSource,TResult>) uses is itself
a collection of values. This requires the extra foreach loop in order to enumerate each
string in each sub-sequence.

C#

class Bouquet
{
 public List<string> Flowers { get; set; }
}

static void SelectVsSelectMany()
{
 List<Bouquet> bouquets = new()
 {
 new Bouquet { Flowers = new List<string> { "sunflower", "daisy",
"daffodil", "larkspur" }},
 new Bouquet { Flowers = new List<string> { "tulip", "rose", "orchid"
}},
 new Bouquet { Flowers = new List<string> { "gladiolis", "lily",
"snapdragon", "aster", "protea" }},
 new Bouquet { Flowers = new List<string> { "larkspur", "lilac",
"iris", "dahlia" }}
 };

 IEnumerable<List<string>> query1 = bouquets.Select(bq => bq.Flowers);

 IEnumerable<string> query2 = bouquets.SelectMany(bq => bq.Flowers);

 Console.WriteLine("Results by using Select():");
 // Note the extra foreach loop here.
 foreach (IEnumerable<String> collection in query1)
 foreach (string item in collection)
 Console.WriteLine(item);

 Console.WriteLine("\nResults by using SelectMany():");
 foreach (string item in query2)
 Console.WriteLine(item);

 /* This code produces the following output:

 Results by using Select():
 sunflower
 daisy
 daffodil
 larkspur
 tulip
 rose
 orchid

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select#system-linq-enumerable-select-2(system-collections-generic-ienumerable((-0))-system-func((-0-1)))

System.Linq
Standard Query Operators Overview (C#)
select clause
How to populate object collections from multiple sources (LINQ) (C#)
How to split a file into many files by using groups (LINQ) (C#)

 gladiolis
 lily
 snapdragon
 aster
 protea
 larkspur
 lilac
 iris
 dahlia

 Results by using SelectMany():
 sunflower
 daisy
 daffodil
 larkspur
 tulip
 rose
 orchid
 gladiolis
 lily
 snapdragon
 aster
 protea
 larkspur
 lilac
 iris
 dahlia
 */
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Partitioning data (C#)
Article • 2021-12-22 • 2 minutes to read

Partitioning in LINQ refers to the operation of dividing an input sequence into two
sections, without rearranging the elements, and then returning one of the sections.

The following illustration shows the results of three different partitioning operations on
a sequence of characters. The first operation returns the first three elements in the
sequence. The second operation skips the first three elements and returns the remaining
elements. The third operation skips the first two elements in the sequence and returns
the next three elements.

The standard query operator methods that partition sequences are listed in the
following section.

Method
names

Description C# query
expression
syntax

More information

Skip Skips elements up to a specified position
in a sequence.

Not
applicable.

Enumerable.Skip
Queryable.Skip

SkipWhile Skips elements based on a predicate
function until an element does not satisfy
the condition.

Not
applicable.

Enumerable.SkipWhile
Queryable.SkipWhile

Take Takes elements up to a specified position
in a sequence.

Not
applicable.

Enumerable.Take
Queryable.Take

TakeWhile Takes elements based on a predicate
function until an element does not satisfy
the condition.

Not
applicable.

Enumerable.TakeWhile
Queryable.TakeWhile

Operators

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skipwhile
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.skipwhile
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.take
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.takewhile
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.takewhile

Method
names

Description C# query
expression
syntax

More information

Chunk Splits the elements of a sequence into
chunks of a specified maximum size.

Not
applicable.

Enumerable.Chunk
Queryable.Chunk

The Chunk operator is used to split elements of a sequence based on a given size .

C#

The preceding C# code:

Relies on Enumerable.Range(Int32, Int32) to generate a sequence of numbers.
Applies the Chunk operator, splitting the sequence into chunks with a max size of
three.

Example

int chunkNumber = 1;
foreach (int[] chunk in Enumerable.Range(0, 8).Chunk(3))
{
 Console.WriteLine($"Chunk {chunkNumber++}:");
 foreach (int item in chunk)
 {
 Console.WriteLine($" {item}");
 }

 Console.WriteLine();
}
// This code produces the following output:
// Chunk 1:
// 0
// 1
// 2
//
//Chunk 2:
// 3
// 4
// 5
//
//Chunk 3:
// 6
// 7

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.chunk
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.chunk
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range#system-linq-enumerable-range(system-int32-system-int32)

System.Linq
Standard Query Operators Overview (C#)

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Join Operations (C#)
Article • 2021-09-15 • 4 minutes to read

A join of two data sources is the association of objects in one data source with objects
that share a common attribute in another data source.

Joining is an important operation in queries that target data sources whose relationships
to each other cannot be followed directly. In object-oriented programming, this could
mean a correlation between objects that is not modeled, such as the backwards
direction of a one-way relationship. An example of a one-way relationship is a Customer
class that has a property of type City, but the City class does not have a property that is
a collection of Customer objects. If you have a list of City objects and you want to find
all the customers in each city, you could use a join operation to find them.

The join methods provided in the LINQ framework are Join and GroupJoin. These
methods perform equijoins, or joins that match two data sources based on equality of
their keys. (For comparison, Transact-SQL supports join operators other than 'equals', for
example the 'less than' operator.) In relational database terms, Join implements an inner
join, a type of join in which only those objects that have a match in the other data set
are returned. The GroupJoin method has no direct equivalent in relational database
terms, but it implements a superset of inner joins and left outer joins. A left outer join is
a join that returns each element of the first (left) data source, even if it has no correlated
elements in the other data source.

The following illustration shows a conceptual view of two sets and the elements within
those sets that are included in either an inner join or a left outer join.

Methods

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin

Method
Name

Description C# Query
Expression
Syntax

More InformationMethod
Name

Description C# Query
Expression
Syntax

More Information

Join Joins two sequences based on key
selector functions and extracts pairs of
values.

join … in … on

… equals …

Enumerable.Join

Queryable.Join

GroupJoin Joins two sequences based on key
selector functions and groups the
resulting matches for each element.

join … in … on

… equals …

into …

Enumerable.GroupJoin

Queryable.GroupJoin

The following example uses the join … in … on … equals … clause to join two
sequences based on specific value:

C#

Query expression syntax examples

Join

class Product
{
 public string Name { get; set; }
 public int CategoryId { get; set; }
}

class Category
{
 public int Id { get; set; }
 public string CategoryName { get; set; }
}

public static void Example()
{
 List<Product> products = new List<Product>
 {
 new Product { Name = "Cola", CategoryId = 0 },
 new Product { Name = "Tea", CategoryId = 0 },
 new Product { Name = "Apple", CategoryId = 1 },
 new Product { Name = "Kiwi", CategoryId = 1 },
 new Product { Name = "Carrot", CategoryId = 2 },
 };

 List<Category> categories = new List<Category>
 {
 new Category { Id = 0, CategoryName = "Beverage" },
 new Category { Id = 1, CategoryName = "Fruit" },
 new Category { Id = 2, CategoryName = "Vegetable" }

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.groupjoin

The following example uses the join … in … on … equals … into … clause to join two
sequences based on specific value and groups the resulting matches for each element:

C#

 };

 // Join products and categories based on CategoryId
 var query = from product in products
 join category in categories on product.CategoryId equals
category.Id
 select new { product.Name, category.CategoryName };

 foreach (var item in query)
 {
 Console.WriteLine($"{item.Name} - {item.CategoryName}");
 }

 // This code produces the following output:
 //
 // Cola - Beverage
 // Tea - Beverage
 // Apple - Fruit
 // Kiwi - Fruit
 // Carrot - Vegetable
}

GroupJoin

class Product
{
 public string Name { get; set; }
 public int CategoryId { get; set; }
}

class Category
{
 public int Id { get; set; }
 public string CategoryName { get; set; }
}

public static void Example()
{
 List<Product> products = new List<Product>
 {
 new Product { Name = "Cola", CategoryId = 0 },
 new Product { Name = "Tea", CategoryId = 0 },
 new Product { Name = "Apple", CategoryId = 1 },
 new Product { Name = "Kiwi", CategoryId = 1 },
 new Product { Name = "Carrot", CategoryId = 2 },
 };

System.Linq
Standard Query Operators Overview (C#)
Anonymous Types
Formulate Joins and Cross-Product Queries
join clause
Join by using composite keys
How to join content from dissimilar files (LINQ) (C#)
Order the results of a join clause
Perform custom join operations
Perform grouped joins
Perform inner joins
Perform left outer joins

 List<Category> categories = new List<Category>
 {
 new Category { Id = 0, CategoryName = "Beverage" },
 new Category { Id = 1, CategoryName = "Fruit" },
 new Category { Id = 2, CategoryName = "Vegetable" }
 };

 // Join categories and product based on CategoryId and grouping result
 var productGroups = from category in categories
 join product in products on category.Id equals
product.CategoryId into productGroup
 select productGroup;

 foreach (IEnumerable<Product> productGroup in productGroups)
 {
 Console.WriteLine("Group");
 foreach (Product product in productGroup)
 {
 Console.WriteLine($"{product.Name,8}");
 }
 }

 // This code produces the following output:
 //
 // Group
 // Cola
 // Tea
 // Group
 // Apple
 // Kiwi
 // Group
 // Carrot
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/formulate-joins-and-cross-product-queries

How to populate object collections from multiple sources (LINQ) (C#)

Grouping Data (C#)
Article • 2021-09-15 • 2 minutes to read

Grouping refers to the operation of putting data into groups so that the elements in
each group share a common attribute.

The following illustration shows the results of grouping a sequence of characters. The
key for each group is the character.

The standard query operator methods that group data elements are listed in the
following section.

Method
Name

Description C# Query
Expression
Syntax

More Information

GroupBy Groups elements that share a common
attribute. Each group is represented by an
IGrouping<TKey,TElement> object.

group … by

-or-

group … by

… into …

Enumerable.GroupBy

Queryable.GroupBy

ToLookup Inserts elements into a
Lookup<TKey,TElement> (a one-to-many
dictionary) based on a key selector function.

Not
applicable.

Enumerable.ToLookup

The following code example uses the group by clause to group integers in a list
according to whether they are even or odd.

Methods

Query Expression Syntax Example

https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.lookup-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolookup

C#

System.Linq
Standard Query Operators Overview (C#)
group clause
Create a nested group
How to group files by extension (LINQ) (C#)
Group query results
Perform a subquery on a grouping operation
How to split a file into many files by using groups (LINQ) (C#)

List<int> numbers = new List<int>() { 35, 44, 200, 84, 3987, 4, 199, 329,
446, 208 };

IEnumerable<IGrouping<int, int>> query = from number in numbers
 group number by number % 2;

foreach (var group in query)
{
 Console.WriteLine(group.Key == 0 ? "\nEven numbers:" : "\nOdd
numbers:");
 foreach (int i in group)
 Console.WriteLine(i);
}

/* This code produces the following output:

 Odd numbers:
 35
 3987
 199
 329

 Even numbers:
 44
 200
 84
 4
 446
 208
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Generation Operations (C#)
Article • 2021-09-15 • 2 minutes to read

Generation refers to creating a new sequence of values.

The standard query operator methods that perform generation are listed in the
following section.

Method
Name

Description C# Query
Expression
Syntax

More Information

DefaultIfEmpty Replaces an empty collection
with a default valued singleton
collection.

Not applicable. Enumerable.DefaultIfEmpty

Queryable.DefaultIfEmpty

Empty Returns an empty collection. Not applicable. Enumerable.Empty

Range Generates a collection that
contains a sequence of numbers.

Not applicable. Enumerable.Range

Repeat Generates a collection that
contains one repeated value.

Not applicable. Enumerable.Repeat

System.Linq
Standard Query Operators Overview (C#)

Methods

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.defaultifempty
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.defaultifempty
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.empty
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.range
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.repeat
https://learn.microsoft.com/en-us/dotnet/api/system.linq

Equality Operations (C#)
Article • 2021-09-15 • 2 minutes to read

Two sequences whose corresponding elements are equal and which have the same
number of elements are considered equal.

Method
Name

Description C# Query
Expression
Syntax

More Information

SequenceEqual Determines whether two
sequences are equal by
comparing elements in a pair-
wise manner.

Not
applicable.

Enumerable.SequenceEqual

Queryable.SequenceEqual

System.Linq
Standard Query Operators Overview (C#)
How to compare the contents of two folders (LINQ) (C#)

Methods

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sequenceequal
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.sequenceequal
https://learn.microsoft.com/en-us/dotnet/api/system.linq

Element operations (C#)
Article • 2021-09-15 • 2 minutes to read

Element operations return a single, specific element from a sequence.

The standard query operator methods that perform element operations are listed in the
following section.

Method name Description C# query
expression
syntax

More information

ElementAt Returns the element at a
specified index in a
collection.

Not
applicable.

Enumerable.ElementAt
Queryable.ElementAt

ElementAtOrDefault Returns the element at a
specified index in a
collection or a default
value if the index is out of
range.

Not
applicable.

Enumerable.ElementAtOrDefault
Queryable.ElementAtOrDefault

First Returns the first element
of a collection, or the first
element that satisfies a
condition.

Not
applicable.

Enumerable.First
Queryable.First

FirstOrDefault Returns the first element
of a collection, or the first
element that satisfies a
condition. Returns a
default value if no such
element exists.

Not
applicable.

Enumerable.FirstOrDefault
Queryable.FirstOrDefault
Queryable.FirstOrDefault<TSource>
(IQueryable<TSource>)

Last Returns the last element
of a collection, or the last
element that satisfies a
condition.

Not
applicable.

Enumerable.Last
Queryable.Last

Methods

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.elementat
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.elementat
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.elementatordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.elementatordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.first
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.first
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.firstordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.firstordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.firstordefault#system-linq-queryable-firstordefault-1(system-linq-iqueryable((-0)))
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.last
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.last

Method name Description C# query
expression
syntax

More information

LastOrDefault Returns the last element
of a collection, or the last
element that satisfies a
condition. Returns a
default value if no such
element exists.

Not
applicable.

Enumerable.LastOrDefault
Queryable.LastOrDefault

Single Returns the only element
of a collection or the only
element that satisfies a
condition. Throws an
InvalidOperationException
if there is no element or
more than one element to
return.

Not
applicable.

Enumerable.Single
Queryable.Single

SingleOrDefault Returns the only element
of a collection or the only
element that satisfies a
condition. Returns a
default value if there is no
element to return. Throws
an
InvalidOperationException
if there is more than one
element to return.

Not
applicable.

Enumerable.SingleOrDefault
Queryable.SingleOrDefault

System.Linq
Standard Query Operators Overview (C#)
How to query for the largest file or files in a directory tree (LINQ) (C#)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.lastordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.lastordefault
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.single
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.single
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.singleordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.singleordefault
https://learn.microsoft.com/en-us/dotnet/api/system.linq

Converting Data Types (C#)
Article • 2021-09-15 • 2 minutes to read

Conversion methods change the type of input objects.

Conversion operations in LINQ queries are useful in a variety of applications. Following
are some examples:

The Enumerable.AsEnumerable method can be used to hide a type's custom
implementation of a standard query operator.

The Enumerable.OfType method can be used to enable non-parameterized
collections for LINQ querying.

The Enumerable.ToArray, Enumerable.ToDictionary, Enumerable.ToList, and
Enumerable.ToLookup methods can be used to force immediate query execution
instead of deferring it until the query is enumerated.

The following table lists the standard query operator methods that perform data-type
conversions.

The conversion methods in this table whose names start with "As" change the static type
of the source collection but do not enumerate it. The methods whose names start with
"To" enumerate the source collection and put the items into the corresponding
collection type.

Method
Name

Description C# Query
Expression
Syntax

More Information

AsEnumerable Returns the input typed as
IEnumerable<T>.

Not
applicable.

Enumerable.AsEnumerable

AsQueryable Converts a (generic) IEnumerable
to a (generic) IQueryable.

Not
applicable.

Queryable.AsQueryable

Methods

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.asenumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.todictionary
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolookup
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.asenumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.asqueryable

Method
Name

Description C# Query
Expression
Syntax

More Information

Cast Casts the elements of a collection
to a specified type.

Use an
explicitly
typed range
variable. For
example:

from string

str in words

Enumerable.Cast

Queryable.Cast

OfType Filters values, depending on their
ability to be cast to a specified
type.

Not
applicable.

Enumerable.OfType

Queryable.OfType

ToArray Converts a collection to an array.
This method forces query
execution.

Not
applicable.

Enumerable.ToArray

ToDictionary Puts elements into a
Dictionary<TKey,TValue> based on
a key selector function. This
method forces query execution.

Not
applicable.

Enumerable.ToDictionary

ToList Converts a collection to a List<T>.
This method forces query
execution.

Not
applicable.

Enumerable.ToList

ToLookup Puts elements into a
Lookup<TKey,TElement> (a one-
to-many dictionary) based on a key
selector function. This method
forces query execution.

Not
applicable.

Enumerable.ToLookup

The following code example uses an explicitly typed range variable to cast a type to a
subtype before accessing a member that is available only on the subtype.

C#

Query Expression Syntax Example

class Plant
{
 public string Name { get; set; }
}

class CarnivorousPlant : Plant

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.toarray
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.todictionary
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.lookup-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.tolookup

System.Linq
Standard Query Operators Overview (C#)
from clause
LINQ Query Expressions
How to query an ArrayList with LINQ (C#)

{
 public string TrapType { get; set; }
}

static void Cast()
{
 Plant[] plants = new Plant[] {
 new CarnivorousPlant { Name = "Venus Fly Trap", TrapType = "Snap
Trap" },
 new CarnivorousPlant { Name = "Pitcher Plant", TrapType = "Pitfall
Trap" },
 new CarnivorousPlant { Name = "Sundew", TrapType = "Flypaper Trap"
},
 new CarnivorousPlant { Name = "Waterwheel Plant", TrapType = "Snap
Trap" }
 };

 var query = from CarnivorousPlant cPlant in plants
 where cPlant.TrapType == "Snap Trap"
 select cPlant;

 foreach (Plant plant in query)
 Console.WriteLine(plant.Name);

 /* This code produces the following output:

 Venus Fly Trap
 Waterwheel Plant
 */
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq

Concatenation Operations (C#)
Article • 2021-09-15 • 2 minutes to read

Concatenation refers to the operation of appending one sequence to another.

The following illustration depicts a concatenation operation on two sequences of
characters.

The standard query operator methods that perform concatenation are listed in the
following section.

Method
Name

Description C# Query
Expression Syntax

More Information

Concat Concatenates two sequences to form
one sequence.

Not applicable. Enumerable.Concat

Queryable.Concat

System.Linq
Standard Query Operators Overview (C#)
How to combine and compare string collections (LINQ) (C#)

Methods

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.concat
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.concat
https://learn.microsoft.com/en-us/dotnet/api/system.linq

Aggregation operations (C#)
Article • 2021-09-15 • 2 minutes to read

An aggregation operation computes a single value from a collection of values. An
example of an aggregation operation is calculating the average daily temperature from
a month's worth of daily temperature values.

The following illustration shows the results of two different aggregation operations on a
sequence of numbers. The first operation sums the numbers. The second operation
returns the maximum value in the sequence.

The standard query operator methods that perform aggregation operations are listed in
the following section.

Method
name

description C# query
expression
syntax

More information

Aggregate Performs a custom aggregation operation
on the values of a collection.

Not
applicable.

Enumerable.Aggregate
Queryable.Aggregate

Average Calculates the average value of a
collection of values.

Not
applicable.

Enumerable.Average
Queryable.Average

Count Counts the elements in a collection,
optionally only those elements that satisfy
a predicate function.

Not
applicable.

Enumerable.Count
Queryable.Count

LongCount Counts the elements in a large collection,
optionally only those elements that satisfy
a predicate function.

Not
applicable.

Enumerable.LongCount
Queryable.LongCount

Methods

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.aggregate
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.aggregate
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.average
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.average
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.count
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.longcount
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.longcount

Method
name

description C# query
expression
syntax

More information

Max or
MaxBy

Determines the maximum value in a
collection.

Not
applicable.

Enumerable.Max
Enumerable.MaxBy
Queryable.Max
Queryable.MaxBy

Min or
MinBy

Determines the minimum value in a
collection.

Not
applicable.

Enumerable.Min
Enumerable.MinBy
Queryable.Min
Queryable.MinBy

Sum Calculates the sum of the values in a
collection.

Not
applicable.

Enumerable.Sum
Queryable.Sum

System.Linq
Standard Query Operators Overview (C#)
How to compute column values in a CSV text file (LINQ) (C#)
How to query for the largest file or files in a directory tree (LINQ) (C#)
How to query for the total number of bytes in a set of folders (LINQ) (C#)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.maxby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.max
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.maxby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.min
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.minby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.min
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.minby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sum
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.sum
https://learn.microsoft.com/en-us/dotnet/api/system.linq

LINQ to Objects (C#)
Article • 2021-09-15 • 2 minutes to read

The term "LINQ to Objects" refers to the use of LINQ queries with any IEnumerable or
IEnumerable<T> collection directly, without the use of an intermediate LINQ provider or
API such as LINQ to SQL or LINQ to XML. You can use LINQ to query any enumerable
collections such as List<T>, Array, or Dictionary<TKey,TValue>. The collection may be
user-defined or may be returned by a .NET API.

In a basic sense, LINQ to Objects represents a new approach to collections. In the old
way, you had to write complex foreach loops that specified how to retrieve data from a
collection. In the LINQ approach, you write declarative code that describes what you
want to retrieve.

In addition, LINQ queries offer three main advantages over traditional foreach loops:

They are more concise and readable, especially when filtering multiple conditions.

They provide powerful filtering, ordering, and grouping capabilities with a
minimum of application code.

They can be ported to other data sources with little or no modification.

In general, the more complex the operation you want to perform on the data, the more
benefit you'll realize by using LINQ instead of traditional iteration techniques.

The purpose of this section is to demonstrate the LINQ approach with some select
examples. It's not intended to be exhaustive.

LINQ and Strings (C#)
Explains how LINQ can be used to query and transform strings and collections of strings.
Also includes links to articles that demonstrate these principles.

LINQ and Reflection (C#)
Links to a sample that demonstrates how LINQ uses reflection.

LINQ and File Directories (C#)
Explains how LINQ can be used to interact with file systems. Also includes links to
articles that demonstrate these concepts.

In This Section

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/
https://learn.microsoft.com/en-ca/dotnet/standard/linq/linq-xml-overview
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2

How to query an ArrayList with LINQ (C#)
Demonstrates how to query an ArrayList in C#.

How to add custom methods for LINQ queries (C#)
Explains how to extend the set of methods that you can use for LINQ queries by adding
extension methods to the IEnumerable<T> interface.

Language-Integrated Query (LINQ) (C#)
Provides links to articles that explain LINQ and provide examples of code that perform
queries.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

LINQ and strings (C#)
Article • 2021-09-15 • 2 minutes to read

LINQ can be used to query and transform strings and collections of strings. It can be
especially useful with semi-structured data in text files. LINQ queries can be combined
with traditional string functions and regular expressions. For example, you can use the
String.Split or Regex.Split method to create an array of strings that you can then query
or modify by using LINQ. You can use the Regex.IsMatch method in the where clause of
a LINQ query. And you can use LINQ to query or modify the MatchCollection results
returned by a regular expression.

You can also use the techniques described in this section to transform semi-structured
text data to XML. For more information, see How to generate XML from CSV files.

The examples in this section fall into two categories:

You can query, analyze, and modify text blocks by splitting them into a queryable array
of smaller strings by using the String.Split method or the Regex.Split method. You can
split the source text into words, sentences, paragraphs, pages, or any other criteria, and
then perform additional splits if they are required in your query.

How to count occurrences of a word in a string (LINQ) (C#)
Shows how to use LINQ for simple querying over text.

How to query for sentences that contain a specified set of words (LINQ) (C#)

Shows how to split text files on arbitrary boundaries and how to perform queries
against each part.

How to query for characters in a string (LINQ) (C#)

Demonstrates that a string is a queryable type.

How to combine LINQ queries with regular expressions (C#)

Shows how to use regular expressions in LINQ queries for complex pattern
matching on filtered query results.

Querying a block of text

Querying semi-structured data in text format

https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.split
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.ismatch
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection
https://learn.microsoft.com/en-ca/dotnet/standard/linq/generate-xml-csv-files
https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.split

Many different types of text files consist of a series of lines, often with similar
formatting, such as tab- or comma-delimited files or fixed-length lines. After you read
such a text file into memory, you can use LINQ to query and/or modify the lines. LINQ
queries also simplify the task of combining data from multiple sources.

How to find the set difference between two lists (LINQ) (C#)

Shows how to find all the strings that are present in one list but not the other.

How to sort or filter text data by any word or field (LINQ) (C#)

Shows how to sort text lines based on any word or field.

How to reorder the fields of a delimited file (LINQ) (C#)

Shows how to reorder fields in a line in a .csv file.

How to combine and compare string collections (LINQ) (C#)

Shows how to combine string lists in various ways.

How to populate object collections from multiple sources (LINQ) (C#)

Shows how to create object collections by using multiple text files as data sources.

How to join content from dissimilar files (LINQ) (C#)

Shows how to combine strings in two lists into a single string by using a matching
key.

How to split a file into many files by using groups (LINQ) (C#)

Shows how to create new files by using a single file as a data source.

How to compute column values in a CSV text file (LINQ) (C#)

Shows how to perform mathematical computations on text data in .csv files.

Language-Integrated Query (LINQ) (C#)
How to generate XML from CSV files

See also

https://learn.microsoft.com/en-ca/dotnet/standard/linq/generate-xml-csv-files

How to count occurrences of a word in a
string (LINQ) (C#)
Article • 2022-03-22 • 2 minutes to read

This example shows how to use a LINQ query to count the occurrences of a specified
word in a string. Note that to perform the count, first the Split method is called to create
an array of words. There is a performance cost to the Split method. If the only operation
on the string is to count the words, you should consider using the Matches or IndexOf
methods instead. However, if performance is not a critical issue, or you have already
split the sentence in order to perform other types of queries over it, then it makes sense
to use LINQ to count the words or phrases as well.

C#

Example

class CountWords
{
 static void Main()
 {
 string text = @"Historically, the world of data and the world of
objects" +
 @" have not been well integrated. Programmers work in C# or Visual
Basic" +
 @" and also in SQL or XQuery. On the one side are concepts such as
classes," +
 @" objects, fields, inheritance, and .NET APIs. On the other side"
+
 @" are tables, columns, rows, nodes, and separate languages for
dealing with" +
 @" them. Data types often require translation between the two
worlds; there are" +
 @" different standard functions. Because the object world has no
notion of query, a" +
 @" query can only be represented as a string without compile-time
type checking or" +
 @" IntelliSense support in the IDE. Transferring data from SQL
tables or XML trees to" +
 @" objects in memory is often tedious and error-prone.";

 string searchTerm = "data";

 //Convert the string into an array of words
 string[] source = text.Split(new char[] { '.', '?', '!', ' ', ';',
':', ',' }, StringSplitOptions.RemoveEmptyEntries);

 // Create the query. Use the InvariantCultureIgnoreCase comparision

https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.matches
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)

to match "data" and "Data"
 var matchQuery = from word in source
 where word.Equals(searchTerm,
StringComparison.InvariantCultureIgnoreCase)
 select word;

 // Count the matches, which executes the query.
 int wordCount = matchQuery.Count();
 Console.WriteLine("{0} occurrences(s) of the search term \"{1}\"
were found.", wordCount, searchTerm);

 // Keep console window open in debug mode
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }
}
/* Output:
 3 occurrences(s) of the search term "data" were found.
*/

Compiling the Code

See also

How to query for sentences that contain
a specified set of words (LINQ) (C#)
Article • 2021-11-05 • 2 minutes to read

This example shows how to find sentences in a text file that contain matches for each of
a specified set of words. Although the array of search terms is hard-coded in this
example, it could also be populated dynamically at run time. In this example, the query
returns the sentences that contain the words "Historically," "data," and "integrated."

C#

Example

class FindSentences
{
 static void Main()
 {
 string text = @"Historically, the world of data and the world of
objects " +
 @"have not been well integrated. Programmers work in C# or Visual
Basic " +
 @"and also in SQL or XQuery. On the one side are concepts such as
classes, " +
 @"objects, fields, inheritance, and .NET APIs. On the other side " +
 @"are tables, columns, rows, nodes, and separate languages for
dealing with " +
 @"them. Data types often require translation between the two worlds;
there are " +
 @"different standard functions. Because the object world has no
notion of query, a " +
 @"query can only be represented as a string without compile-time
type checking or " +
 @"IntelliSense support in the IDE. Transferring data from SQL tables
or XML trees to " +
 @"objects in memory is often tedious and error-prone.";

 // Split the text block into an array of sentences.
 string[] sentences = text.Split(new char[] { '.', '?', '!' });

 // Define the search terms. This list could also be dynamically
populated at run time.
 string[] wordsToMatch = { "Historically", "data", "integrated" };

 // Find sentences that contain all the terms in the wordsToMatch
array.
 // Note that the number of terms to match is not specified at
compile time.
 var sentenceQuery = from sentence in sentences

The query works by first splitting the text into sentences, and then splitting the
sentences into an array of strings that hold each word. For each of these arrays, the
Distinct method removes all duplicate words, and then the query performs an Intersect
operation on the word array and the wordsToMatch array. If the count of the intersection
is the same as the count of the wordsToMatch array, all words were found in the words
and the original sentence is returned.

In the call to Split, the punctuation marks are used as separators in order to remove
them from the string. If you did not do this, for example you could have a string
"Historically," that would not match "Historically" in the wordsToMatch array. You may
have to use additional separators, depending on the types of punctuation found in the
source text.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

 let w = sentence.Split(new char[] { '.', '?',
'!', ' ', ';', ':', ',' },

StringSplitOptions.RemoveEmptyEntries)
 where
w.Distinct().Intersect(wordsToMatch).Count() == wordsToMatch.Count()
 select sentence;

 // Execute the query. Note that you can explicitly type
 // the iteration variable here even though sentenceQuery
 // was implicitly typed.
 foreach (string str in sentenceQuery)
 {
 Console.WriteLine(str);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }
}
/* Output:
Historically, the world of data and the world of objects have not been well
integrated
*/

Compiling the Code

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.intersect
https://learn.microsoft.com/en-us/dotnet/api/system.string.split

LINQ and Strings (C#)

How to query for characters in a string
(LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

Because the String class implements the generic IEnumerable<T> interface, any string
can be queried as a sequence of characters. However, this is not a common use of LINQ.
For complex pattern matching operations, use the Regex class.

The following example queries a string to determine the number of numeric digits it
contains. Note that the query is "reused" after it is executed the first time. This is
possible because the query itself does not store any actual results.

C#

Example

class QueryAString
{
 static void Main()
 {
 string aString = "ABCDE99F-J74-12-89A";

 // Select only those characters that are numbers
 IEnumerable<char> stringQuery =
 from ch in aString
 where Char.IsDigit(ch)
 select ch;

 // Execute the query
 foreach (char c in stringQuery)
 Console.Write(c + " ");

 // Call the Count method on the existing query.
 int count = stringQuery.Count();
 Console.WriteLine("Count = {0}", count);

 // Select all characters before the first '-'
 IEnumerable<char> stringQuery2 = aString.TakeWhile(c => c != '-');

 // Execute the second query
 foreach (char c in stringQuery2)
 Console.Write(c);

 Console.WriteLine(System.Environment.NewLine + "Press any key to
exit");
 Console.ReadKey();
 }

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)
How to combine LINQ queries with regular expressions (C#)

}
/* Output:
 Output: 9 9 7 4 1 2 8 9
 Count = 8
 ABCDE99F
*/

Compiling the Code

See also

How to combine LINQ queries with
regular expressions (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how to use the Regex class to create a regular expression for more
complex matching in text strings. The LINQ query makes it easy to filter on exactly the
files that you want to search with the regular expression, and to shape the results.

C#

Example

class QueryWithRegEx
{
 public static void Main()
 {
 // Modify this path as necessary so that it accesses your version of
Visual Studio.
 string startFolder = @"C:\Program Files (x86)\Microsoft Visual
Studio 14.0\";
 // One of the following paths may be more appropriate on your
computer.
 //string startFolder = @"C:\Program Files (x86)\Microsoft Visual
Studio\2017\";

 // Take a snapshot of the file system.
 IEnumerable<System.IO.FileInfo> fileList = GetFiles(startFolder);

 // Create the regular expression to find all things "Visual".
 System.Text.RegularExpressions.Regex searchTerm =
 new System.Text.RegularExpressions.Regex(@"Visual
(Basic|C#|C\+\+|Studio)");

 // Search the contents of each .htm file.
 // Remove the where clause to find even more matchedValues!
 // This query produces a list of files where a match
 // was found, and a list of the matchedValues in that file.
 // Note: Explicit typing of "Match" in select clause.
 // This is required because MatchCollection is not a
 // generic IEnumerable collection.
 var queryMatchingFiles =
 from file in fileList
 where file.Extension == ".htm"
 let fileText = System.IO.File.ReadAllText(file.FullName)
 let matches = searchTerm.Matches(fileText)
 where matches.Count > 0
 select new
 {

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex

Note that you can also query the MatchCollection object that is returned by a RegEx
search. In this example only the value of each match is produced in the results. However,
it is also possible to use LINQ to perform all kinds of filtering, sorting, and grouping on

 name = file.FullName,
 matchedValues = from System.Text.RegularExpressions.Match
match in matches
 select match.Value
 };

 // Execute the query.
 Console.WriteLine("The term \"{0}\" was found in:",
searchTerm.ToString());

 foreach (var v in queryMatchingFiles)
 {
 // Trim the path a bit, then write
 // the file name in which a match was found.
 string s = v.name.Substring(startFolder.Length - 1);
 Console.WriteLine(s);

 // For this file, write out all the matching strings
 foreach (var v2 in v.matchedValues)
 {
 Console.WriteLine(" " + v2);
 }
 }

 // Keep the console window open in debug mode
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 // This method assumes that the application has discovery
 // permissions for all folders under the specified path.
 static IEnumerable<System.IO.FileInfo> GetFiles(string path)
 {
 if (!System.IO.Directory.Exists(path))
 throw new System.IO.DirectoryNotFoundException();

 string[] fileNames = null;
 List<System.IO.FileInfo> files = new List<System.IO.FileInfo>();

 fileNames = System.IO.Directory.GetFiles(path, "*.*",
System.IO.SearchOption.AllDirectories);
 foreach (string name in fileNames)
 {
 files.Add(new System.IO.FileInfo(name));
 }
 return files;
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection

that collection. Because MatchCollection is a non-generic IEnumerable collection, you
have to explicitly state the type of the range variable in the query.

Create a C# console application project with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)
LINQ and File Directories (C#)

Compiling the Code

See also

https://learn.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.matchcollection
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

How to find the set difference between
two lists (LINQ) (C#)
Article • 2022-03-11 • 2 minutes to read

This example shows how to use LINQ to compare two lists of strings and output those
lines that are in names1.txt but not in names2.txt.

1. Copy names1.txt and names2.txt to your solution folder as shown in How to
combine and compare string collections (LINQ) (C#).

C#

To create the data files

Example

class CompareLists
{
 static void Main()
 {
 // Create the IEnumerable data sources.
 string[] names1 =
System.IO.File.ReadAllLines(@"../../../names1.txt");
 string[] names2 =
System.IO.File.ReadAllLines(@"../../../names2.txt");

 // Create the query. Note that method syntax must be used here.
 IEnumerable<string> differenceQuery =
 names1.Except(names2);

 // Execute the query.
 Console.WriteLine("The following lines are in names1.txt but not
names2.txt");
 foreach (string s in differenceQuery)
 Console.WriteLine(s);

 // Keep the console window open until the user presses a key.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }
}
/* Output:
 The following lines are in names1.txt but not names2.txt
 Potra, Cristina
 Noriega, Fabricio
 Aw, Kam Foo

Some types of query operations in C#, such as Except, Distinct, Union, and Concat, can
only be expressed in method-based syntax.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)

 Toyoshima, Tim
 Guy, Wey Yuan
 Garcia, Debra
 */

Compiling the Code

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.except
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.union
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.concat

How to sort or filter text data by any
word or field (LINQ) (C#)
Article • 2021-11-05 • 2 minutes to read

The following example shows how to sort lines of structured text, such as comma-
separated values, by any field in the line. The field may be dynamically specified at run
time. Assume that the fields in scores.csv represent a student's ID number, followed by a
series of four test scores.

1. Copy the scores.csv data from the topic How to join content from dissimilar files
(LINQ) (C#) and save it to your solution folder.

C#

To create a file that contains data

Example

public class SortLines
{
 static void Main()
 {
 // Create an IEnumerable data source
 string[] scores =
System.IO.File.ReadAllLines(@"../../../scores.csv");

 // Change this to any value from 0 to 4.
 int sortField = 1;

 Console.WriteLine("Sorted highest to lowest by field [{0}]:",
sortField);

 // Demonstrates how to return query from a method.
 // The query is executed here.
 foreach (string str in RunQuery(scores, sortField))
 {
 Console.WriteLine(str);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 // Returns the query variable, not query results!
 static IEnumerable<string> RunQuery(IEnumerable<string> source, int num)

This example also demonstrates how to return a query variable from a method.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)

 {
 // Split the string and sort on field[num]
 var scoreQuery = from line in source
 let fields = line.Split(',')
 orderby fields[num] descending
 select line;

 return scoreQuery;
 }
}
/* Output (if sortField == 1):
 Sorted highest to lowest by field [1]:
 116, 99, 86, 90, 94
 120, 99, 82, 81, 79
 111, 97, 92, 81, 60
 114, 97, 89, 85, 82
 121, 96, 85, 91, 60
 122, 94, 92, 91, 91
 117, 93, 92, 80, 87
 118, 92, 90, 83, 78
 113, 88, 94, 65, 91
 112, 75, 84, 91, 39
 119, 68, 79, 88, 92
 115, 35, 72, 91, 70
 */

Compiling the Code

See also

How to reorder the fields of a delimited
file (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

A comma-separated value (CSV) file is a text file that is often used to store spreadsheet
data or other tabular data that is represented by rows and columns. By using the Split
method to separate the fields, it is very easy to query and manipulate CSV files by using
LINQ. In fact, the same technique can be used to reorder the parts of any structured line
of text; it is not limited to CSV files.

In the following example, assume that the three columns represent students' "last
name," "first name", and "ID." The fields are in alphabetical order based on the students'
last names. The query produces a new sequence in which the ID column appears first,
followed by a second column that combines the student's first name and last name. The
lines are reordered according to the ID field. The results are saved into a new file and
the original data is not modified.

1. Copy the following lines into a plain text file that is named spreadsheet1.csv. Save
the file in your project folder.

csv

C#

To create the data file

Adams,Terry,120
Fakhouri,Fadi,116
Feng,Hanying,117
Garcia,Cesar,114
Garcia,Debra,115
Garcia,Hugo,118
Mortensen,Sven,113
O'Donnell,Claire,112
Omelchenko,Svetlana,111
Tucker,Lance,119
Tucker,Michael,122
Zabokritski,Eugene,121

Example

https://learn.microsoft.com/en-us/dotnet/api/system.string.split

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

class CSVFiles
{
 static void Main(string[] args)
 {
 // Create the IEnumerable data source
 string[] lines =
System.IO.File.ReadAllLines(@"../../../spreadsheet1.csv");

 // Create the query. Put field 2 first, then
 // reverse and combine fields 0 and 1 from the old field
 IEnumerable<string> query =
 from line in lines
 let x = line.Split(',')
 orderby x[2]
 select x[2] + ", " + (x[1] + " " + x[0]);

 // Execute the query and write out the new file. Note that
WriteAllLines
 // takes a string[], so ToArray is called on the query.
 System.IO.File.WriteAllLines(@"../../../spreadsheet2.csv",
query.ToArray());

 Console.WriteLine("Spreadsheet2.csv written to disk. Press any key
to exit");
 Console.ReadKey();
 }
}
/* Output to spreadsheet2.csv:
111, Svetlana Omelchenko
112, Claire O'Donnell
113, Sven Mortensen
114, Cesar Garcia
115, Debra Garcia
116, Fadi Fakhouri
117, Hanying Feng
118, Hugo Garcia
119, Lance Tucker
120, Terry Adams
121, Eugene Zabokritski
122, Michael Tucker
 */

Compiling the Code

See also

LINQ and Strings (C#)
LINQ and File Directories (C#)
How to generate XML from CSV files (C#)

https://learn.microsoft.com/en-ca/dotnet/standard/linq/generate-xml-csv-files

How to combine and compare string
collections (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how to merge files that contain lines of text and then sort the
results. Specifically, it shows how to perform a simple concatenation, a union, and an
intersection on the two sets of text lines.

1. Copy these names into a text file that is named names1.txt and save it in your
project folder:

text

2. Copy these names into a text file that is named names2.txt and save it in your
project folder. Note that the two files have some names in common.

text

To set up the project and the text files

Bankov, Peter
Holm, Michael
Garcia, Hugo
Potra, Cristina
Noriega, Fabricio
Aw, Kam Foo
Beebe, Ann
Toyoshima, Tim
Guy, Wey Yuan
Garcia, Debra

Liu, Jinghao
Bankov, Peter
Holm, Michael
Garcia, Hugo
Beebe, Ann
Gilchrist, Beth
Myrcha, Jacek
Giakoumakis, Leo
McLin, Nkenge
El Yassir, Mehdi

Example

C#

class MergeStrings
 {
 static void Main(string[] args)
 {
 //Put text files in your solution folder
 string[] fileA =
System.IO.File.ReadAllLines(@"../../../names1.txt");
 string[] fileB =
System.IO.File.ReadAllLines(@"../../../names2.txt");

 //Simple concatenation and sort. Duplicates are preserved.
 IEnumerable<string> concatQuery =
 fileA.Concat(fileB).OrderBy(s => s);

 // Pass the query variable to another function for execution.
 OutputQueryResults(concatQuery, "Simple concatenate and sort.
Duplicates are preserved:");

 // Concatenate and remove duplicate names based on
 // default string comparer.
 IEnumerable<string> uniqueNamesQuery =
 fileA.Union(fileB).OrderBy(s => s);
 OutputQueryResults(uniqueNamesQuery, "Union removes duplicate
names:");

 // Find the names that occur in both files (based on
 // default string comparer).
 IEnumerable<string> commonNamesQuery =
 fileA.Intersect(fileB);
 OutputQueryResults(commonNamesQuery, "Merge based on
intersect:");

 // Find the matching fields in each list. Merge the two
 // results by using Concat, and then
 // sort using the default string comparer.
 string nameMatch = "Garcia";

 IEnumerable<String> tempQuery1 =
 from name in fileA
 let n = name.Split(',')
 where n[0] == nameMatch
 select name;

 IEnumerable<string> tempQuery2 =
 from name2 in fileB
 let n2 = name2.Split(',')
 where n2[0] == nameMatch
 select name2;

 IEnumerable<string> nameMatchQuery =
 tempQuery1.Concat(tempQuery2).OrderBy(s => s);
 OutputQueryResults(nameMatchQuery, $"Concat based on partial

name match \"{nameMatch}\":");

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 static void OutputQueryResults(IEnumerable<string> query, string
message)
 {
 Console.WriteLine(System.Environment.NewLine + message);
 foreach (string item in query)
 {
 Console.WriteLine(item);
 }
 Console.WriteLine("{0} total names in list", query.Count());
 }
 }
 /* Output:
 Simple concatenate and sort. Duplicates are preserved:
 Aw, Kam Foo
 Bankov, Peter
 Bankov, Peter
 Beebe, Ann
 Beebe, Ann
 El Yassir, Mehdi
 Garcia, Debra
 Garcia, Hugo
 Garcia, Hugo
 Giakoumakis, Leo
 Gilchrist, Beth
 Guy, Wey Yuan
 Holm, Michael
 Holm, Michael
 Liu, Jinghao
 McLin, Nkenge
 Myrcha, Jacek
 Noriega, Fabricio
 Potra, Cristina
 Toyoshima, Tim
 20 total names in list

 Union removes duplicate names:
 Aw, Kam Foo
 Bankov, Peter
 Beebe, Ann
 El Yassir, Mehdi
 Garcia, Debra
 Garcia, Hugo
 Giakoumakis, Leo
 Gilchrist, Beth
 Guy, Wey Yuan
 Holm, Michael
 Liu, Jinghao
 McLin, Nkenge

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)
LINQ and File Directories (C#)

 Myrcha, Jacek
 Noriega, Fabricio
 Potra, Cristina
 Toyoshima, Tim
 16 total names in list

 Merge based on intersect:
 Bankov, Peter
 Holm, Michael
 Garcia, Hugo
 Beebe, Ann
 4 total names in list

 Concat based on partial name match "Garcia":
 Garcia, Debra
 Garcia, Hugo
 Garcia, Hugo
 3 total names in list
*/

Compiling the Code

See also

How to populate object collections from
multiple sources (LINQ) (C#)
Article • 2021-09-15 • 4 minutes to read

This example shows how to merge data from different sources into a sequence of new
types.

Copy the names.csv and scores.csv files into your project folder, as described in How to
join content from dissimilar files (LINQ) (C#).

The following example shows how to use a named type Student to store merged data
from two in-memory collections of strings that simulate spreadsheet data in .csv format.
The first collection of strings represents the student names and IDs, and the second
collection represents the student ID (in the first column) and four exam scores. The ID is
used as the foreign key.

C#

７ Note

Don't try to join in-memory data or data in the file system with data that is still in a
database. Such cross-domain joins can yield undefined results because of different
ways in which join operations might be defined for database queries and other
types of sources. Additionally, there is a risk that such an operation could cause an
out-of-memory exception if the amount of data in the database is large enough. To
join data from a database to in-memory data, first call ToList or ToArray on the
database query, and then perform the join on the returned collection.

To create the data file

Example

using System;
using System.Collections.Generic;
using System.Linq;

class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 public int ID { get; set; }
 public List<int> ExamScores { get; set; }
}

class PopulateCollection
{
 static void Main()
 {
 // These data files are defined in How to join content from
 // dissimilar files (LINQ).

 // Each line of names.csv consists of a last name, a first name, and
an
 // ID number, separated by commas. For example,
Omelchenko,Svetlana,111
 string[] names = System.IO.File.ReadAllLines(@"../../../names.csv");

 // Each line of scores.csv consists of an ID number and four test
 // scores, separated by commas. For example, 111, 97, 92, 81, 60
 string[] scores =
System.IO.File.ReadAllLines(@"../../../scores.csv");

 // Merge the data sources using a named type.
 // var could be used instead of an explicit type. Note the dynamic
 // creation of a list of ints for the ExamScores member. The first
item
 // is skipped in the split string because it is the student ID,
 // not an exam score.
 IEnumerable<Student> queryNamesScores =
 from nameLine in names
 let splitName = nameLine.Split(',')
 from scoreLine in scores
 let splitScoreLine = scoreLine.Split(',')
 where Convert.ToInt32(splitName[2]) ==
Convert.ToInt32(splitScoreLine[0])
 select new Student()
 {
 FirstName = splitName[0],
 LastName = splitName[1],
 ID = Convert.ToInt32(splitName[2]),
 ExamScores = (from scoreAsText in splitScoreLine.Skip(1)
 select Convert.ToInt32(scoreAsText)).
 ToList()
 };

 // Optional. Store the newly created student objects in memory
 // for faster access in future queries. This could be useful with
 // very large data files.
 List<Student> students = queryNamesScores.ToList();

 // Display each student's name and exam score average.
 foreach (var student in students)
 {
 Console.WriteLine("The average score of {0} {1} is {2}.",
 student.FirstName, student.LastName,

In the select clause, an object initializer is used to instantiate each new Student object
by using the data from the two sources.

If you don't have to store the results of a query, anonymous types can be more
convenient than named types. Named types are required if you pass the query results
outside the method in which the query is executed. The following example executes the
same task as the previous example, but uses anonymous types instead of named types:

C#

 student.ExamScores.Average());
 }

 //Keep console window open in debug mode
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 The average score of Omelchenko Svetlana is 82.5.
 The average score of O'Donnell Claire is 72.25.
 The average score of Mortensen Sven is 84.5.
 The average score of Garcia Cesar is 88.25.
 The average score of Garcia Debra is 67.
 The average score of Fakhouri Fadi is 92.25.
 The average score of Feng Hanying is 88.
 The average score of Garcia Hugo is 85.75.
 The average score of Tucker Lance is 81.75.
 The average score of Adams Terry is 85.25.
 The average score of Zabokritski Eugene is 83.
 The average score of Tucker Michael is 92.
 */

// Merge the data sources by using an anonymous type.
// Note the dynamic creation of a list of ints for the
// ExamScores member. We skip 1 because the first string
// in the array is the student ID, not an exam score.
var queryNamesScores2 =
 from nameLine in names
 let splitName = nameLine.Split(',')
 from scoreLine in scores
 let splitScoreLine = scoreLine.Split(',')
 where Convert.ToInt32(splitName[2]) ==
Convert.ToInt32(splitScoreLine[0])
 select new
 {
 First = splitName[0],
 Last = splitName[1],
 ExamScores = (from scoreAsText in splitScoreLine.Skip(1)
 select Convert.ToInt32(scoreAsText))
 .ToList()
 };

LINQ and Strings (C#)
Object and Collection Initializers
Anonymous Types

// Display each student's name and exam score average.
foreach (var student in queryNamesScores2)
{
 Console.WriteLine("The average score of {0} {1} is {2}.",
 student.First, student.Last, student.ExamScores.Average());
}

See also

How to split a file into many files by
using groups (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows one way to merge the contents of two files and then create a set of
new files that organize the data in a new way.

1. Copy these names into a text file that is named names1.txt and save it in your
project folder:

text

2. Copy these names into a text file that is named names2.txt and save it in your
project folder: Note that the two files have some names in common.

text

To create the data files

Bankov, Peter
Holm, Michael
Garcia, Hugo
Potra, Cristina
Noriega, Fabricio
Aw, Kam Foo
Beebe, Ann
Toyoshima, Tim
Guy, Wey Yuan
Garcia, Debra

Liu, Jinghao
Bankov, Peter
Holm, Michael
Garcia, Hugo
Beebe, Ann
Gilchrist, Beth
Myrcha, Jacek
Giakoumakis, Leo
McLin, Nkenge
El Yassir, Mehdi

Example

C#

class SplitWithGroups
{
 static void Main()
 {
 string[] fileA =
System.IO.File.ReadAllLines(@"../../../names1.txt");
 string[] fileB =
System.IO.File.ReadAllLines(@"../../../names2.txt");

 // Concatenate and remove duplicate names based on
 // default string comparer
 var mergeQuery = fileA.Union(fileB);

 // Group the names by the first letter in the last name.
 var groupQuery = from name in mergeQuery
 let n = name.Split(',')
 group name by n[0][0] into g
 orderby g.Key
 select g;

 // Create a new file for each group that was created
 // Note that nested foreach loops are required to access
 // individual items with each group.
 foreach (var g in groupQuery)
 {
 // Create the new file name.
 string fileName = @"../../../testFile_" + g.Key + ".txt";

 // Output to display.
 Console.WriteLine(g.Key);

 // Write file.
 using (System.IO.StreamWriter sw = new
System.IO.StreamWriter(fileName))
 {
 foreach (var item in g)
 {
 sw.WriteLine(item);
 // Output to console for example purposes.
 Console.WriteLine(" {0}", item);
 }
 }
 }
 // Keep console window open in debug mode.
 Console.WriteLine("Files have been written. Press any key to exit");
 Console.ReadKey();
 }
}
/* Output:
 A
 Aw, Kam Foo
 B

The program writes a separate file for each group in the same folder as the data files.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)
LINQ and File Directories (C#)

 Bankov, Peter
 Beebe, Ann
 E
 El Yassir, Mehdi
 G
 Garcia, Hugo
 Guy, Wey Yuan
 Garcia, Debra
 Gilchrist, Beth
 Giakoumakis, Leo
 H
 Holm, Michael
 L
 Liu, Jinghao
 M
 Myrcha, Jacek
 McLin, Nkenge
 N
 Noriega, Fabricio
 P
 Potra, Cristina
 T
 Toyoshima, Tim
 */

Compiling the Code

See also

How to join content from dissimilar files
(LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how to join data from two comma-delimited files that share a
common value that is used as a matching key. This technique can be useful if you have
to combine data from two spreadsheets, or from a spreadsheet and from a file that has
another format, into a new file. You can modify the example to work with any kind of
structured text.

1. Copy the following lines into a file that is named scores.csv and save it to your
project folder. The file represents spreadsheet data. Column 1 is the student's ID,
and columns 2 through 5 are test scores.

csv

2. Copy the following lines into a file that is named names.csv and save it to your
project folder. The file represents a spreadsheet that contains the student's last
name, first name, and student ID.

csv

To create the data files

111, 97, 92, 81, 60
112, 75, 84, 91, 39
113, 88, 94, 65, 91
114, 97, 89, 85, 82
115, 35, 72, 91, 70
116, 99, 86, 90, 94
117, 93, 92, 80, 87
118, 92, 90, 83, 78
119, 68, 79, 88, 92
120, 99, 82, 81, 79
121, 96, 85, 91, 60
122, 94, 92, 91, 91

Omelchenko,Svetlana,111
O'Donnell,Claire,112
Mortensen,Sven,113
Garcia,Cesar,114
Garcia,Debra,115
Fakhouri,Fadi,116
Feng,Hanying,117

C#

Garcia,Hugo,118
Tucker,Lance,119
Adams,Terry,120
Zabokritski,Eugene,121
Tucker,Michael,122

Example

using System;
using System.Collections.Generic;
using System.Linq;

class JoinStrings
{
 static void Main()
 {
 // Join content from dissimilar files that contain
 // related information. File names.csv contains the student
 // name plus an ID number. File scores.csv contains the ID
 // and a set of four test scores. The following query joins
 // the scores to the student names by using ID as a
 // matching key.

 string[] names = System.IO.File.ReadAllLines(@"../../../names.csv");
 string[] scores =
System.IO.File.ReadAllLines(@"../../../scores.csv");

 // Name: Last[0], First[1], ID[2]
 // Omelchenko, Svetlana, 11
 // Score: StudentID[0], Exam1[1] Exam2[2], Exam3[3], Exam4[4]
 // 111, 97, 92, 81, 60

 // This query joins two dissimilar spreadsheets based on common ID
value.
 // Multiple from clauses are used instead of a join clause
 // in order to store results of id.Split.
 IEnumerable<string> scoreQuery1 =
 from name in names
 let nameFields = name.Split(',')
 from id in scores
 let scoreFields = id.Split(',')
 where Convert.ToInt32(nameFields[2]) ==
Convert.ToInt32(scoreFields[0])
 select nameFields[0] + "," + scoreFields[1] + "," +
scoreFields[2]
 + "," + scoreFields[3] + "," + scoreFields[4];

 // Pass a query variable to a method and execute it
 // in the method. The query itself is unchanged.
 OutputQueryResults(scoreQuery1, "Merge two spreadsheets:");

LINQ and Strings (C#)
LINQ and File Directories (C#)

 // Keep console window open in debug mode.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 static void OutputQueryResults(IEnumerable<string> query, string
message)
 {
 Console.WriteLine(System.Environment.NewLine + message);
 foreach (string item in query)
 {
 Console.WriteLine(item);
 }
 Console.WriteLine("{0} total names in list", query.Count());
 }
}
/* Output:
Merge two spreadsheets:
Omelchenko, 97, 92, 81, 60
O'Donnell, 75, 84, 91, 39
Mortensen, 88, 94, 65, 91
Garcia, 97, 89, 85, 82
Garcia, 35, 72, 91, 70
Fakhouri, 99, 86, 90, 94
Feng, 93, 92, 80, 87
Garcia, 92, 90, 83, 78
Tucker, 68, 79, 88, 92
Adams, 99, 82, 81, 79
Zabokritski, 96, 85, 91, 60
Tucker, 94, 92, 91, 91
12 total names in list
 */

See also

How to compute column values in a CSV
text file (LINQ) (C#)
Article • 2021-11-05 • 3 minutes to read

This example shows how to perform aggregate computations such as Sum, Average,
Min, and Max on the columns of a .csv file. The example principles that are shown here
can be applied to other types of structured text.

1. Copy the following lines into a file that is named scores.csv and save it in your
project folder. Assume that the first column represents a student ID, and
subsequent columns represent scores from four exams.

csv

C#

To create the source file

111, 97, 92, 81, 60
112, 75, 84, 91, 39
113, 88, 94, 65, 91
114, 97, 89, 85, 82
115, 35, 72, 91, 70
116, 99, 86, 90, 94
117, 93, 92, 80, 87
118, 92, 90, 83, 78
119, 68, 79, 88, 92
120, 99, 82, 81, 79
121, 96, 85, 91, 60
122, 94, 92, 91, 91

Example

class SumColumns
{
 static void Main(string[] args)
 {
 string[] lines =
System.IO.File.ReadAllLines(@"../../../scores.csv");

 // Specifies the column to compute.
 int exam = 3;

 // Spreadsheet format:

 // Student ID Exam#1 Exam#2 Exam#3 Exam#4
 // 111, 97, 92, 81, 60

 // Add one to exam to skip over the first column,
 // which holds the student ID.
 SingleColumn(lines, exam + 1);
 Console.WriteLine();
 MultiColumns(lines);

 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 static void SingleColumn(IEnumerable<string> strs, int examNum)
 {
 Console.WriteLine("Single Column Query:");

 // Parameter examNum specifies the column to
 // run the calculations on. This value could be
 // passed in dynamically at run time.

 // Variable columnQuery is an IEnumerable<int>.
 // The following query performs two steps:
 // 1) use Split to break each row (a string) into an array
 // of strings,
 // 2) convert the element at position examNum to an int
 // and select it.
 var columnQuery =
 from line in strs
 let elements = line.Split(',')
 select Convert.ToInt32(elements[examNum]);

 // Execute the query and cache the results to improve
 // performance. This is helpful only with very large files.
 var results = columnQuery.ToList();

 // Perform aggregate calculations Average, Max, and
 // Min on the column specified by examNum.
 double average = results.Average();
 int max = results.Max();
 int min = results.Min();

 Console.WriteLine("Exam #{0}: Average:{1:##.##} High Score:{2} Low
Score:{3}",
 examNum, average, max, min);
 }

 static void MultiColumns(IEnumerable<string> strs)
 {
 Console.WriteLine("Multi Column Query:");

 // Create a query, multiColQuery. Explicit typing is used
 // to make clear that, when executed, multiColQuery produces
 // nested sequences. However, you get the same results by
 // using 'var'.

 // The multiColQuery query performs the following steps:
 // 1) use Split to break each row (a string) into an array
 // of strings,
 // 2) use Skip to skip the "Student ID" column, and store the
 // rest of the row in scores.
 // 3) convert each score in the current row from a string to
 // an int, and select that entire sequence as one row
 // in the results.
 IEnumerable<IEnumerable<int>> multiColQuery =
 from line in strs
 let elements = line.Split(',')
 let scores = elements.Skip(1)
 select (from str in scores
 select Convert.ToInt32(str));

 // Execute the query and cache the results to improve
 // performance.
 // ToArray could be used instead of ToList.
 var results = multiColQuery.ToList();

 // Find out how many columns you have in results.
 int columnCount = results[0].Count();

 // Perform aggregate calculations Average, Max, and
 // Min on each column.
 // Perform one iteration of the loop for each column
 // of scores.
 // You can use a for loop instead of a foreach loop
 // because you already executed the multiColQuery
 // query by calling ToList.
 for (int column = 0; column < columnCount; column++)
 {
 var results2 = from row in results
 select row.ElementAt(column);
 double average = results2.Average();
 int max = results2.Max();
 int min = results2.Min();

 // Add one to column because the first exam is Exam #1,
 // not Exam #0.
 Console.WriteLine("Exam #{0} Average: {1:##.##} High Score: {2}
Low Score: {3}",
 column + 1, average, max, min);
 }
 }
}
/* Output:
 Single Column Query:
 Exam #4: Average:76.92 High Score:94 Low Score:39

 Multi Column Query:
 Exam #1 Average: 86.08 High Score: 99 Low Score: 35
 Exam #2 Average: 86.42 High Score: 94 Low Score: 72
 Exam #3 Average: 84.75 High Score: 91 Low Score: 65

The query works by using the Split method to convert each line of text into an array.
Each array element represents a column. Finally, the text in each column is converted to
its numeric representation. If your file is a tab-separated file, just update the argument
in the Split method to \t .

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and Strings (C#)
LINQ and File Directories (C#)

 Exam #4 Average: 76.92 High Score: 94 Low Score: 39
 */

Compiling the Code

See also

https://learn.microsoft.com/en-us/dotnet/api/system.string.split

How to query an assembly's metadata
with Reflection (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

The .NET reflection APIs can be used to examine the metadata in a .NET assembly and
create collections of types, type members, parameters, and so on that are in that
assembly. Because these collections support the generic IEnumerable<T> interface, they
can be queried by using LINQ.

The following example shows how LINQ can be used with reflection to retrieve specific
metadata about methods that match a specified search criterion. In this case, the query
will find the names of all the methods in the assembly that return enumerable types
such as arrays.

C#

Example

using System;
using System.Linq;
using System.Reflection;

class ReflectionHowTO
{
 static void Main()
 {
 Assembly assembly = Assembly.Load("System.Core, Version=3.5.0.0,
Culture=neutral, PublicKeyToken= b77a5c561934e089");
 var pubTypesQuery = from type in assembly.GetTypes()
 where type.IsPublic
 from method in type.GetMethods()
 where method.ReturnType.IsArray == true
 || (method.ReturnType.GetInterface(

typeof(System.Collections.Generic.IEnumerable<>).FullName) != null
 && method.ReturnType.FullName != "System.String"
)
 group method.ToString() by type.ToString();

 foreach (var groupOfMethods in pubTypesQuery)
 {
 Console.WriteLine("Type: {0}", groupOfMethods.Key);
 foreach (var method in groupOfMethods)
 {
 Console.WriteLine(" {0}", method);
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The example uses the Assembly.GetTypes method to return an array of types in the
specified assembly. The where filter is applied so that only public types are returned. For
each public type, a subquery is generated by using the MethodInfo array that is
returned from the Type.GetMethods call. These results are filtered to return only those
methods whose return type is an array or else a type that implements IEnumerable<T>.
Finally, these results are grouped by using the type name as a key.

LINQ to Objects (C#)

 }

 Console.WriteLine("Press any key to exit... ");
 Console.ReadKey();
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.gettypes
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo
https://learn.microsoft.com/en-us/dotnet/api/system.type.getmethods
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

How to query an assembly's metadata
with Reflection (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

The .NET reflection APIs can be used to examine the metadata in a .NET assembly and
create collections of types, type members, parameters, and so on that are in that
assembly. Because these collections support the generic IEnumerable<T> interface, they
can be queried by using LINQ.

The following example shows how LINQ can be used with reflection to retrieve specific
metadata about methods that match a specified search criterion. In this case, the query
will find the names of all the methods in the assembly that return enumerable types
such as arrays.

C#

Example

using System;
using System.Linq;
using System.Reflection;

class ReflectionHowTO
{
 static void Main()
 {
 Assembly assembly = Assembly.Load("System.Core, Version=3.5.0.0,
Culture=neutral, PublicKeyToken= b77a5c561934e089");
 var pubTypesQuery = from type in assembly.GetTypes()
 where type.IsPublic
 from method in type.GetMethods()
 where method.ReturnType.IsArray == true
 || (method.ReturnType.GetInterface(

typeof(System.Collections.Generic.IEnumerable<>).FullName) != null
 && method.ReturnType.FullName != "System.String"
)
 group method.ToString() by type.ToString();

 foreach (var groupOfMethods in pubTypesQuery)
 {
 Console.WriteLine("Type: {0}", groupOfMethods.Key);
 foreach (var method in groupOfMethods)
 {
 Console.WriteLine(" {0}", method);
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The example uses the Assembly.GetTypes method to return an array of types in the
specified assembly. The where filter is applied so that only public types are returned. For
each public type, a subquery is generated by using the MethodInfo array that is
returned from the Type.GetMethods call. These results are filtered to return only those
methods whose return type is an array or else a type that implements IEnumerable<T>.
Finally, these results are grouped by using the type name as a key.

LINQ to Objects (C#)

 }

 Console.WriteLine("Press any key to exit... ");
 Console.ReadKey();
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly.gettypes
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo
https://learn.microsoft.com/en-us/dotnet/api/system.type.getmethods
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

LINQ and file directories (C#)
Article • 2021-09-15 • 2 minutes to read

Many file system operations are essentially queries and are therefore well suited to the
LINQ approach.

The queries in this section are non-destructive. They are not used to change the
contents of the original files or folders. This follows the rule that queries should not
cause any side-effects. In general, any code (including queries that perform create /
update / delete operators) that modifies source data should be kept separate from the
code that just queries the data.

This section contains the following topics:

How to query for files with a specified attribute or name (C#)
Shows how to search for files by examining one or more properties of its FileInfo object.

How to group files by extension (LINQ) (C#)
Shows how to return groups of FileInfo object based on their file name extension.

How to query for the total number of bytes in a set of folders (LINQ) (C#)
Shows how to return the total number of bytes in all the files in a specified directory
tree.

How to compare the contents of two folders (LINQ) (C#)s
Shows how to return all the files that are present in two specified folders, and also all
the files that are present in one folder but not the other.

How to query for the largest file or files in a directory tree (LINQ) (C#)
Shows how to return the largest or smallest file, or a specified number of files, in a
directory tree.

How to query for duplicate files in a directory tree (LINQ) (C#)
Shows how to group for all file names that occur in more than one location in a
specified directory tree. Also shows how to perform more complex comparisons based
on a custom comparer.

How to query the contents of files in a folder (LINQ) (C#)
Shows how to iterate through folders in a tree, open each file, and query the file's
contents.

Comments

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo

There is some complexity involved in creating a data source that accurately represents
the contents of the file system and handles exceptions gracefully. The examples in this
section create a snapshot collection of FileInfo objects that represents all the files under
a specified root folder and all its subfolders. The actual state of each FileInfo may
change in the time between when you begin and end executing a query. For example,
you can create a list of FileInfo objects to use as a data source. If you try to access the
Length property in a query, the FileInfo object will try to access the file system to update
the value of Length . If the file no longer exists, you will get a FileNotFoundException in
your query, even though you are not querying the file system directly. Some queries in
this section use a separate method that consumes these particular exceptions in certain
cases. Another option is to keep your data source updated dynamically by using the
FileSystemWatcher.

LINQ to Objects (C#)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.filenotfoundexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher

How to query for files with a specified
attribute or name (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how to find all files that have a specified file name extension (for
example ".txt") in a specified directory tree. It also shows how to return either the newest
or oldest file in the tree based on the creation time.

C#

Example

class FindFileByExtension
{
 // This query will produce the full path for all .txt files
 // under the specified folder including subfolders.
 // It orders the list according to the file name.
 static void Main()
 {
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\";

 // Take a snapshot of the file system.
 System.IO.DirectoryInfo dir = new
System.IO.DirectoryInfo(startFolder);

 // This method assumes that the application has discovery
permissions
 // for all folders under the specified path.
 IEnumerable<System.IO.FileInfo> fileList = dir.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 //Create the query
 IEnumerable<System.IO.FileInfo> fileQuery =
 from file in fileList
 where file.Extension == ".txt"
 orderby file.Name
 select file;

 //Execute the query. This might write out a lot of files!
 foreach (System.IO.FileInfo fi in fileQuery)
 {
 Console.WriteLine(fi.FullName);
 }

 // Create and execute a new query by using the previous
 // query as a starting point. fileQuery is not
 // executed again until the call to Last()

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ to Objects (C#)
LINQ and File Directories (C#)

 var newestFile =
 (from file in fileQuery
 orderby file.CreationTime
 select new { file.FullName, file.CreationTime })
 .Last();

 Console.WriteLine("\r\nThe newest .txt file is {0}. Creation time:
{1}",
 newestFile.FullName, newestFile.CreationTime);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }
}

Compiling the Code

See also

How to group files by extension (LINQ)
(C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how LINQ can be used to perform advanced grouping and sorting
operations on lists of files or folders. It also shows how to page output in the console
window by using the Skip and Take methods.

The following query shows how to group the contents of a specified directory tree by
the file name extension.

C#

Example

class GroupByExtension
{
 // This query will sort all the files under the specified folder
 // and subfolder into groups keyed by the file extension.
 private static void Main()
 {
 // Take a snapshot of the file system.
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\Common7";

 // Used in WriteLine to trim output lines.
 int trimLength = startFolder.Length;

 // Take a snapshot of the file system.
 System.IO.DirectoryInfo dir = new
System.IO.DirectoryInfo(startFolder);

 // This method assumes that the application has discovery
permissions
 // for all folders under the specified path.
 IEnumerable<System.IO.FileInfo> fileList = dir.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 // Create the query.
 var queryGroupByExt =
 from file in fileList
 group file by file.Extension.ToLower() into fileGroup
 orderby fileGroup.Key
 select fileGroup;

 // Display one group at a time. If the number of
 // entries is greater than the number of lines

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take

 // in the console window, then page the output.
 PageOutput(trimLength, queryGroupByExt);
 }

 // This method specifically handles group queries of FileInfo objects
with string keys.
 // It can be modified to work for any long listings of data. Note that
explicit typing
 // must be used in method signatures. The groupbyExtList parameter is a
query that produces
 // groups of FileInfo objects with string keys.
 private static void PageOutput(int rootLength,

IEnumerable<System.Linq.IGrouping<string, System.IO.FileInfo>>
groupByExtList)
 {
 // Flag to break out of paging loop.
 bool goAgain = true;

 // "3" = 1 line for extension + 1 for "Press any key" + 1 for input
cursor.
 int numLines = Console.WindowHeight - 3;

 // Iterate through the outer collection of groups.
 foreach (var filegroup in groupByExtList)
 {
 // Start a new extension at the top of a page.
 int currentLine = 0;

 // Output only as many lines of the current group as will fit in
the window.
 do
 {
 Console.Clear();
 Console.WriteLine(filegroup.Key == String.Empty ? "[none]" :
filegroup.Key);

 // Get 'numLines' number of items starting at number
'currentLine'.
 var resultPage = filegroup.Skip(currentLine).Take(numLines);

 //Execute the resultPage query
 foreach (var f in resultPage)
 {
 Console.WriteLine("\t{0}",
f.FullName.Substring(rootLength));
 }

 // Increment the line counter.
 currentLine += numLines;

 // Give the user a chance to escape.
 Console.WriteLine("Press any key to continue or the 'End'
key to break...");
 ConsoleKey key = Console.ReadKey().Key;

The output from this program can be long, depending on the details of the local file
system and what the startFolder is set to. To enable viewing of all results, this example
shows how to page through results. The same techniques can be applied to Windows
and Web applications. Notice that because the code pages the items in a group, a
nested foreach loop is required. There is also some additional logic to compute the
current position in the list, and to enable the user to stop paging and exit the program.
In this particular case, the paging query is run against the cached results from the
original query. In other contexts, such as LINQ to SQL, such caching is not required.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ to Objects (C#)
LINQ and File Directories (C#)

 if (key == ConsoleKey.End)
 {
 goAgain = false;
 break;
 }
 } while (currentLine < filegroup.Count());

 if (goAgain == false)
 break;
 }
 }
}

Compiling the Code

See also

How to query for the total number of
bytes in a set of folders (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how to retrieve the total number of bytes used by all the files in a
specified folder and all its subfolders.

The Sum method adds the values of all the items selected in the select clause. You can
easily modify this query to retrieve the biggest or smallest file in the specified directory
tree by calling the Min or Max method instead of Sum.

C#

Example

class QuerySize
{
 public static void Main()
 {
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\VC#";

 // Take a snapshot of the file system.
 // This method assumes that the application has discovery
permissions
 // for all folders under the specified path.
 IEnumerable<string> fileList =
System.IO.Directory.GetFiles(startFolder, "*.*",
System.IO.SearchOption.AllDirectories);

 var fileQuery = from file in fileList
 select GetFileLength(file);

 // Cache the results to avoid multiple trips to the file system.
 long[] fileLengths = fileQuery.ToArray();

 // Return the size of the largest file
 long largestFile = fileLengths.Max();

 // Return the total number of bytes in all the files under the
specified folder.
 long totalBytes = fileLengths.Sum();

 Console.WriteLine("There are {0} bytes in {1} files under {2}",
 totalBytes, fileList.Count(), startFolder);
 Console.WriteLine("The largest files is {0} bytes.", largestFile);

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sum
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.min
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.sum

If you only have to count the number of bytes in a specified directory tree, you can do
this more efficiently without creating a LINQ query, which incurs the overhead of
creating the list collection as a data source. The usefulness of the LINQ approach
increases as the query becomes more complex, or when you have to run multiple
queries against the same data source.

The query calls out to a separate method to obtain the file length. It does this in order
to consume the possible exception that will be raised if the file was deleted on another
thread after the FileInfo object was created in the call to GetFiles . Even though the
FileInfo object has already been created, the exception can occur because a FileInfo
object will try to refresh its Length property with the most current length the first time
the property is accessed. By putting this operation in a try-catch block outside the
query, the code follows the rule of avoiding operations in queries that can cause side-
effects. In general, great care must be taken when you consume exceptions to make
sure that an application is not left in an unknown state.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }

 // This method is used to swallow the possible exception
 // that can be raised when accessing the System.IO.FileInfo.Length
property.
 static long GetFileLength(string filename)
 {
 long retval;
 try
 {
 System.IO.FileInfo fi = new System.IO.FileInfo(filename);
 retval = fi.Length;
 }
 catch (System.IO.FileNotFoundException)
 {
 // If a file is no longer present,
 // just add zero bytes to the total.
 retval = 0;
 }
 return retval;
 }
}

Compiling the Code

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo.length

LINQ to Objects (C#)
LINQ and File Directories (C#)

See also

How to compare the contents of two
folders (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

This example demonstrates three ways to compare two file listings:

By querying for a Boolean value that specifies whether the two file lists are
identical.

By querying for the intersection to retrieve the files that are in both folders.

By querying for the set difference to retrieve the files that are in one folder but not
the other.

The FileComparer class shown here demonstrates how to use a custom comparer class
together with the Standard Query Operators. The class is not intended for use in real-
world scenarios. It just uses the name and length in bytes of each file to determine
whether the contents of each folder are identical or not. In a real-world scenario, you
should modify this comparer to perform a more rigorous equality check.

C#

７ Note

The techniques shown here can be adapted to compare sequences of objects
of any type.

Example

namespace QueryCompareTwoDirs
{
 class CompareDirs
 {

 static void Main(string[] args)
 {

 // Create two identical or different temporary folders
 // on a local drive and change these file paths.
 string pathA = @"C:\TestDir";
 string pathB = @"C:\TestDir2";

 System.IO.DirectoryInfo dir1 = new

System.IO.DirectoryInfo(pathA);
 System.IO.DirectoryInfo dir2 = new
System.IO.DirectoryInfo(pathB);

 // Take a snapshot of the file system.
 IEnumerable<System.IO.FileInfo> list1 = dir1.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);
 IEnumerable<System.IO.FileInfo> list2 = dir2.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 //A custom file comparer defined below
 FileCompare myFileCompare = new FileCompare();

 // This query determines whether the two folders contain
 // identical file lists, based on the custom file comparer
 // that is defined in the FileCompare class.
 // The query executes immediately because it returns a bool.
 bool areIdentical = list1.SequenceEqual(list2, myFileCompare);

 if (areIdentical == true)
 {
 Console.WriteLine("the two folders are the same");
 }
 else
 {
 Console.WriteLine("The two folders are not the same");
 }

 // Find the common files. It produces a sequence and doesn't
 // execute until the foreach statement.
 var queryCommonFiles = list1.Intersect(list2, myFileCompare);

 if (queryCommonFiles.Any())
 {
 Console.WriteLine("The following files are in both
folders:");
 foreach (var v in queryCommonFiles)
 {
 Console.WriteLine(v.FullName); //shows which items end
up in result list
 }
 }
 else
 {
 Console.WriteLine("There are no common files in the two
folders.");
 }

 // Find the set difference between the two folders.
 // For this example we only check one way.
 var queryList1Only = (from file in list1
 select file).Except(list2, myFileCompare);

 Console.WriteLine("The following files are in list1 but not
list2:");

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ to Objects (C#)

 foreach (var v in queryList1Only)
 {
 Console.WriteLine(v.FullName);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }

 // This implementation defines a very simple comparison
 // between two FileInfo objects. It only compares the name
 // of the files being compared and their length in bytes.
 class FileCompare :
System.Collections.Generic.IEqualityComparer<System.IO.FileInfo>
 {
 public FileCompare() { }

 public bool Equals(System.IO.FileInfo f1, System.IO.FileInfo f2)
 {
 return (f1.Name == f2.Name &&
 f1.Length == f2.Length);
 }

 // Return a hash that reflects the comparison criteria. According to
the
 // rules for IEqualityComparer<T>, if Equals is true, then the hash
codes must
 // also be equal. Because equality as defined here is a simple value
equality, not
 // reference identity, it is possible that two or more objects will
produce the same
 // hash code.
 public int GetHashCode(System.IO.FileInfo fi)
 {
 string s = $"{fi.Name}{fi.Length}";
 return s.GetHashCode();
 }
 }
}

Compiling the Code

See also

LINQ and File Directories (C#)

How to query for the largest file or files
in a directory tree (LINQ) (C#)
Article • 2021-09-15 • 3 minutes to read

This example shows five queries related to file size in bytes:

How to retrieve the size in bytes of the largest file.

How to retrieve the size in bytes of the smallest file.

How to retrieve the FileInfo object largest or smallest file from one or more folders
under a specified root folder.

How to retrieve a sequence such as the 10 largest files.

How to order files into groups based on their file size in bytes, ignoring files that
are less than a specified size.

The following example contains five separate queries that show how to query and group
files, depending on their file size in bytes. You can easily modify these examples to base
the query on some other property of the FileInfo object.

C#

Example

class QueryBySize
{
 static void Main(string[] args)
 {
 QueryFilesBySize();
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 private static void QueryFilesBySize()
 {
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\";

 // Take a snapshot of the file system.
 System.IO.DirectoryInfo dir = new
System.IO.DirectoryInfo(startFolder);

 // This method assumes that the application has discovery
permissions

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo

 // for all folders under the specified path.
 IEnumerable<System.IO.FileInfo> fileList = dir.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 //Return the size of the largest file
 long maxSize =
 (from file in fileList
 let len = GetFileLength(file)
 select len)
 .Max();

 Console.WriteLine("The length of the largest file under {0} is {1}",
 startFolder, maxSize);

 // Return the FileInfo object for the largest file
 // by sorting and selecting from beginning of list
 System.IO.FileInfo longestFile =
 (from file in fileList
 let len = GetFileLength(file)
 where len > 0
 orderby len descending
 select file)
 .First();

 Console.WriteLine("The largest file under {0} is {1} with a length
of {2} bytes",
 startFolder, longestFile.FullName,
longestFile.Length);

 //Return the FileInfo of the smallest file
 System.IO.FileInfo smallestFile =
 (from file in fileList
 let len = GetFileLength(file)
 where len > 0
 orderby len ascending
 select file).First();

 Console.WriteLine("The smallest file under {0} is {1} with a length
of {2} bytes",
 startFolder, smallestFile.FullName,
smallestFile.Length);

 //Return the FileInfos for the 10 largest files
 // queryTenLargest is an IEnumerable<System.IO.FileInfo>
 var queryTenLargest =
 (from file in fileList
 let len = GetFileLength(file)
 orderby len descending
 select file).Take(10);

 Console.WriteLine("The 10 largest files under {0} are:",
startFolder);

 foreach (var v in queryTenLargest)
 {

To return one or more complete FileInfo objects, the query first must examine each one
in the data source, and then sort them by the value of their Length property. Then it can
return the single one or the sequence with the greatest lengths. Use First to return the
first element in a list. Use Take to return the first n number of elements. Specify a
descending sort order to put the smallest elements at the start of the list.

 Console.WriteLine("{0}: {1} bytes", v.FullName, v.Length);
 }

 // Group the files according to their size, leaving out
 // files that are less than 200000 bytes.
 var querySizeGroups =
 from file in fileList
 let len = GetFileLength(file)
 where len > 0
 group file by (len / 100000) into fileGroup
 where fileGroup.Key >= 2
 orderby fileGroup.Key descending
 select fileGroup;

 foreach (var filegroup in querySizeGroups)
 {
 Console.WriteLine(filegroup.Key.ToString() + "00000");
 foreach (var item in filegroup)
 {
 Console.WriteLine("\t{0}: {1}", item.Name, item.Length);
 }
 }
 }

 // This method is used to swallow the possible exception
 // that can be raised when accessing the FileInfo.Length property.
 // In this particular case, it is safe to swallow the exception.
 static long GetFileLength(System.IO.FileInfo fi)
 {
 long retval;
 try
 {
 retval = fi.Length;
 }
 catch (System.IO.FileNotFoundException)
 {
 // If a file is no longer present,
 // just add zero bytes to the total.
 retval = 0;
 }
 return retval;
 }

}

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.first
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.take

The query calls out to a separate method to obtain the file size in bytes in order to
consume the possible exception that will be raised in the case where a file was deleted
on another thread in the time period since the FileInfo object was created in the call to
GetFiles . Even through the FileInfo object has already been created, the exception can
occur because a FileInfo object will try to refresh its Length property by using the most
current size in bytes the first time the property is accessed. By putting this operation in a
try-catch block outside the query, we follow the rule of avoiding operations in queries
that can cause side-effects. In general, great care must be taken when consuming
exceptions, to make sure that an application is not left in an unknown state.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ to Objects (C#)
LINQ and File Directories (C#)

Compiling the Code

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo.length

How to query for duplicate files in a
directory tree (LINQ) (C#)
Article • 2021-09-15 • 3 minutes to read

Sometimes files that have the same name may be located in more than one folder. For
example, under the Visual Studio installation folder, several folders have a readme.htm
file. This example shows how to query for such duplicate file names under a specified
root folder. The second example shows how to query for files whose size and LastWrite
times also match.

C#

Example

class QueryDuplicateFileNames
{
 static void Main(string[] args)
 {
 // Uncomment QueryDuplicates2 to run that query.
 QueryDuplicates();
 // QueryDuplicates2();

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }

 static void QueryDuplicates()
 {
 // Change the root drive or folder if necessary
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\";

 // Take a snapshot of the file system.
 System.IO.DirectoryInfo dir = new
System.IO.DirectoryInfo(startFolder);

 // This method assumes that the application has discovery
permissions
 // for all folders under the specified path.
 IEnumerable<System.IO.FileInfo> fileList = dir.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 // used in WriteLine to keep the lines shorter
 int charsToSkip = startFolder.Length;

 // var can be used for convenience with groups.

 var queryDupNames =
 from file in fileList
 group file.FullName.Substring(charsToSkip) by file.Name into
fileGroup
 where fileGroup.Count() > 1
 select fileGroup;

 // Pass the query to a method that will
 // output one page at a time.
 PageOutput<string, string>(queryDupNames);
 }

 // A Group key that can be passed to a separate method.
 // Override Equals and GetHashCode to define equality for the key.
 // Override ToString to provide a friendly name for Key.ToString()
 class PortableKey
 {
 public string Name { get; set; }
 public DateTime LastWriteTime { get; set; }
 public long Length { get; set; }

 public override bool Equals(object obj)
 {
 PortableKey other = (PortableKey)obj;
 return other.LastWriteTime == this.LastWriteTime &&
 other.Length == this.Length &&
 other.Name == this.Name;
 }

 public override int GetHashCode()
 {
 string str = $"{this.LastWriteTime}{this.Length}{this.Name}";
 return str.GetHashCode();
 }
 public override string ToString()
 {
 return $"{this.Name} {this.Length} {this.LastWriteTime}";
 }
 }
 static void QueryDuplicates2()
 {
 // Change the root drive or folder if necessary.
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\Common7";

 // Make the lines shorter for the console display
 int charsToSkip = startFolder.Length;

 // Take a snapshot of the file system.
 System.IO.DirectoryInfo dir = new
System.IO.DirectoryInfo(startFolder);
 IEnumerable<System.IO.FileInfo> fileList = dir.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 // Note the use of a compound key. Files that match

 // all three properties belong to the same group.
 // A named type is used to enable the query to be
 // passed to another method. Anonymous types can also be used
 // for composite keys but cannot be passed across method boundaries
 //
 var queryDupFiles =
 from file in fileList
 group file.FullName.Substring(charsToSkip) by
 new PortableKey { Name = file.Name, LastWriteTime =
file.LastWriteTime, Length = file.Length } into fileGroup
 where fileGroup.Count() > 1
 select fileGroup;

 var list = queryDupFiles.ToList();

 int i = queryDupFiles.Count();

 PageOutput<PortableKey, string>(queryDupFiles);
 }

 // A generic method to page the output of the QueryDuplications methods
 // Here the type of the group must be specified explicitly. "var" cannot
 // be used in method signatures. This method does not display more than
one
 // group per page.
 private static void PageOutput<K, V>
(IEnumerable<System.Linq.IGrouping<K, V>> groupByExtList)
 {
 // Flag to break out of paging loop.
 bool goAgain = true;

 // "3" = 1 line for extension + 1 for "Press any key" + 1 for input
cursor.
 int numLines = Console.WindowHeight - 3;

 // Iterate through the outer collection of groups.
 foreach (var filegroup in groupByExtList)
 {
 // Start a new extension at the top of a page.
 int currentLine = 0;

 // Output only as many lines of the current group as will fit in
the window.
 do
 {
 Console.Clear();
 Console.WriteLine("Filename = {0}", filegroup.Key.ToString()
== String.Empty ? "[none]" : filegroup.Key.ToString());

 // Get 'numLines' number of items starting at number
'currentLine'.
 var resultPage = filegroup.Skip(currentLine).Take(numLines);

 //Execute the resultPage query
 foreach (var fileName in resultPage)

The first query uses a simple key to determine a match; this finds files that have the
same name but whose contents might be different. The second query uses a compound
key to match against three properties of the FileInfo object. This query is much more
likely to find files that have the same name and similar or identical content.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ to Objects (C#)
LINQ and File Directories (C#)

 {
 Console.WriteLine("\t{0}", fileName);
 }

 // Increment the line counter.
 currentLine += numLines;

 // Give the user a chance to escape.
 Console.WriteLine("Press any key to continue or the 'End'
key to break...");
 ConsoleKey key = Console.ReadKey().Key;
 if (key == ConsoleKey.End)
 {
 goAgain = false;
 break;
 }
 } while (currentLine < filegroup.Count());

 if (goAgain == false)
 break;
 }
 }
}

Compiling the Code

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo

How to query the contents of text files
in a folder (LINQ) (C#)
Article • 2021-09-15 • 2 minutes to read

This example shows how to query over all the files in a specified directory tree, open
each file, and inspect its contents. This type of technique could be used to create
indexes or reverse indexes of the contents of a directory tree. A simple string search is
performed in this example. However, more complex types of pattern matching can be
performed with a regular expression. For more information, see How to combine LINQ
queries with regular expressions (C#).

C#

Example

class QueryContents
{
 public static void Main()
 {
 // Modify this path as necessary.
 string startFolder = @"c:\program files\Microsoft Visual Studio
9.0\";

 // Take a snapshot of the file system.
 System.IO.DirectoryInfo dir = new
System.IO.DirectoryInfo(startFolder);

 // This method assumes that the application has discovery
permissions
 // for all folders under the specified path.
 IEnumerable<System.IO.FileInfo> fileList = dir.GetFiles("*.*",
System.IO.SearchOption.AllDirectories);

 string searchTerm = @"Visual Studio";

 // Search the contents of each file.
 // A regular expression created with the RegEx class
 // could be used instead of the Contains method.
 // queryMatchingFiles is an IEnumerable<string>.
 var queryMatchingFiles =
 from file in fileList
 where file.Extension == ".htm"
 let fileText = GetFileText(file.FullName)
 where fileText.Contains(searchTerm)
 select file.FullName;

 // Execute the query.

Create a C# console application project, with using directives for the System.Linq and
System.IO namespaces.

LINQ and File Directories (C#)
LINQ to Objects (C#)

 Console.WriteLine("The term \"{0}\" was found in:", searchTerm);
 foreach (string filename in queryMatchingFiles)
 {
 Console.WriteLine(filename);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit");
 Console.ReadKey();
 }

 // Read the contents of the file.
 static string GetFileText(string name)
 {
 string fileContents = String.Empty;

 // If the file has been deleted since we took
 // the snapshot, ignore it and return the empty string.
 if (System.IO.File.Exists(name))
 {
 fileContents = System.IO.File.ReadAllText(name);
 }
 return fileContents;
 }
}

Compiling the Code

See also

How to query an ArrayList with LINQ
(C#)
Article • 2021-09-15 • 2 minutes to read

When using LINQ to query non-generic IEnumerable collections such as ArrayList, you
must explicitly declare the type of the range variable to reflect the specific type of the
objects in the collection. For example, if you have an ArrayList of Student objects, your
from clause should look like this:

C#

By specifying the type of the range variable, you are casting each item in the ArrayList to
a Student .

The use of an explicitly typed range variable in a query expression is equivalent to
calling the Cast method. Cast throws an exception if the specified cast cannot be
performed. Cast and OfType are the two Standard Query Operator methods that operate
on non-generic IEnumerable types. For more information, see Type Relationships in
LINQ Query Operations.

The following example shows a simple query over an ArrayList. Note that this example
uses object initializers when the code calls the Add method, but this is not a
requirement.

C#

var query = from Student s in arrList
//...

Example

using System;
using System.Collections;
using System.Linq;

namespace NonGenericLINQ
{
 public class Student
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int[] Scores { get; set; }
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.cast
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.oftype
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist.add

LINQ to Objects (C#)

 class Program
 {
 static void Main(string[] args)
 {
 ArrayList arrList = new ArrayList();
 arrList.Add(
 new Student
 {
 FirstName = "Svetlana", LastName = "Omelchenko",
Scores = new int[] { 98, 92, 81, 60 }
 });
 arrList.Add(
 new Student
 {
 FirstName = "Claire", LastName = "O’Donnell", Scores
= new int[] { 75, 84, 91, 39 }
 });
 arrList.Add(
 new Student
 {
 FirstName = "Sven", LastName = "Mortensen", Scores =
new int[] { 88, 94, 65, 91 }
 });
 arrList.Add(
 new Student
 {
 FirstName = "Cesar", LastName = "Garcia", Scores =
new int[] { 97, 89, 85, 82 }
 });

 var query = from Student student in arrList
 where student.Scores[0] > 95
 select student;

 foreach (Student s in query)
 Console.WriteLine(s.LastName + ": " + s.Scores[0]);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }
}
/* Output:
 Omelchenko: 98
 Garcia: 97
*/

See also

How to add custom methods for LINQ
queries (C#)
Article • 2021-09-15 • 5 minutes to read

You extend the set of methods that you use for LINQ queries by adding extension
methods to the IEnumerable<T> interface. For example, in addition to the standard
average or maximum operations, you create a custom aggregate method to compute a
single value from a sequence of values. You also create a method that works as a
custom filter or a specific data transform for a sequence of values and returns a new
sequence. Examples of such methods are Distinct, Skip, and Reverse.

When you extend the IEnumerable<T> interface, you can apply your custom methods to
any enumerable collection. For more information, see Extension Methods.

An aggregate method computes a single value from a set of values. LINQ provides
several aggregate methods, including Average, Min, and Max. You can create your own
aggregate method by adding an extension method to the IEnumerable<T> interface.

The following code example shows how to create an extension method called Median to
compute a median for a sequence of numbers of type double .

C#

Add an aggregate method

public static class EnumerableExtension
{
 public static double Median(this IEnumerable<double>? source)
 {
 if (source is null || !source.Any())
 {
 throw new InvalidOperationException("Cannot compute median for a
null or empty set.");
 }

 var sortedList =
 source.OrderBy(number => number).ToList();

 int itemIndex = sortedList.Count / 2;

 if (sortedList.Count % 2 == 0)
 {
 // Even number of items.
 return (sortedList[itemIndex] + sortedList[itemIndex - 1]) / 2;
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.distinct
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.skip
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.reverse
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.average
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.min
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.max
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

You call this extension method for any enumerable collection in the same way you call
other aggregate methods from the IEnumerable<T> interface.

The following code example shows how to use the Median method for an array of type
double .

C#

You can overload your aggregate method so that it accepts sequences of various types.
The standard approach is to create an overload for each type. Another approach is to
create an overload that will take a generic type and convert it to a specific type by using
a delegate. You can also combine both approaches.

You can create a specific overload for each type that you want to support. The following
code example shows an overload of the Median method for the int type.

C#

You can now call the Median overloads for both integer and double types, as shown in
the following code:

C#

 else
 {
 // Odd number of items.
 return sortedList[itemIndex];
 }
 }
}

double[] numbers = { 1.9, 2, 8, 4, 5.7, 6, 7.2, 0 };
var query = numbers.Median();

Console.WriteLine($"double: Median = {query}");
// This code produces the following output:
// double: Median = 4.85

Overload an aggregate method to accept various types

Create an overload for each type

// int overload
public static double Median(this IEnumerable<int> source) =>
 (from number in source select (double)number).Median();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

You can also create an overload that accepts a sequence of generic objects. This
overload takes a delegate as a parameter and uses it to convert a sequence of objects of
a generic type to a specific type.

The following code shows an overload of the Median method that takes the
Func<T,TResult> delegate as a parameter. This delegate takes an object of generic type
T and returns an object of type double .

C#

You can now call the Median method for a sequence of objects of any type. If the type
doesn't have its own method overload, you have to pass a delegate parameter. In C#,
you can use a lambda expression for this purpose. Also, in Visual Basic only, if you use
the Aggregate or Group By clause instead of the method call, you can pass any value or
expression that is in the scope this clause.

The following example code shows how to call the Median method for an array of
integers and an array of strings. For strings, the median for the lengths of strings in the
array is calculated. The example shows how to pass the Func<T,TResult> delegate
parameter to the Median method for each case.

C#

double[] numbers1 = { 1.9, 2, 8, 4, 5.7, 6, 7.2, 0 };
var query1 = numbers1.Median();

Console.WriteLine($"double: Median = {query1}");

int[] numbers2 = { 1, 2, 3, 4, 5 };
var query2 = numbers2.Median();

Console.WriteLine($"int: Median = {query2}");
// This code produces the following output:
// double: Median = 4.85
// int: Median = 3

Create a generic overload

// generic overload
public static double Median<T>(
 this IEnumerable<T> numbers, Func<T, double> selector) =>
 (from num in numbers select selector(num)).Median();

int[] numbers3 = { 1, 2, 3, 4, 5 };

https://learn.microsoft.com/en-us/dotnet/api/system.func-2
https://learn.microsoft.com/en-us/dotnet/api/system.func-2

You can extend the IEnumerable<T> interface with a custom query method that returns
a sequence of values. In this case, the method must return a collection of type
IEnumerable<T>. Such methods can be used to apply filters or data transforms to a
sequence of values.

The following example shows how to create an extension method named
AlternateElements that returns every other element in a collection, starting from the
first element.

C#

/*
 You can use the num => num lambda expression as a parameter for the
Median method
 so that the compiler will implicitly convert its value to double.
 If there is no implicit conversion, the compiler will display an error
message.
*/
var query3 = numbers3.Median(num => num);

Console.WriteLine($"int: Median = {query3}");

string[] numbers4 = { "one", "two", "three", "four", "five" };

// With the generic overload, you can also use numeric properties of
objects.
var query4 = numbers4.Median(str => str.Length);

Console.WriteLine($"string: Median = {query4}");
// This code produces the following output:
// int: Median = 3
// string: Median = 4

Add a method that returns a sequence

// Extension method for the IEnumerable<T> interface.
// The method returns every other element of a sequence.
public static IEnumerable<T> AlternateElements<T>(this IEnumerable<T>
source)
{
 int index = 0;
 foreach (T element in source)
 {
 if (index % 2 == 0)
 {
 yield return element;
 }

 index++;

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

You can call this extension method for any enumerable collection just as you would call
other methods from the IEnumerable<T> interface, as shown in the following code:

C#

IEnumerable<T>
Extension Methods

 }
}

string[] strings = { "a", "b", "c", "d", "e" };

var query5 = strings.AlternateElements();

foreach (var element in query5)
{
 Console.WriteLine(element);
}
// This code produces the following output:
// a
// c
// e

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

LINQ to ADO.NET (Portal Page)
Article • 2021-09-15 • 2 minutes to read

LINQ to ADO.NET enables you to query over any enumerable object in ADO.NET by
using the Language-Integrated Query (LINQ) programming model.

There are three separate ADO.NET Language-Integrated Query (LINQ) technologies:
LINQ to DataSet, LINQ to SQL, and LINQ to Entities. LINQ to DataSet provides richer,
optimized querying over the DataSet, LINQ to SQL enables you to directly query SQL
Server database schemas, and LINQ to Entities allows you to query an Entity Data
Model.

The DataSet is one of the most widely used components in ADO.NET, and is a key
element of the disconnected programming model that ADO.NET is built on. Despite this
prominence, however, the DataSet has limited query capabilities.

LINQ to DataSet enables you to build richer query capabilities into DataSet by using the
same query functionality that is available for many other data sources.

For more information, see LINQ to DataSet.

LINQ to SQL provides a run-time infrastructure for managing relational data as objects.
In LINQ to SQL, the data model of a relational database is mapped to an object model
expressed in the programming language of the developer. When you execute the
application, LINQ to SQL translates language-integrated queries in the object model
into SQL and sends them to the database for execution. When the database returns the
results, LINQ to SQL translates them back into objects that you can manipulate.

LINQ to SQL includes support for stored procedures and user-defined functions in the
database, and for inheritance in the object model.

７ Note

The LINQ to ADO.NET documentation is located in the ADO.NET section of the .NET
Framework SDK: LINQ and ADO.NET.

LINQ to DataSet

LINQ to SQL

https://learn.microsoft.com/en-us/dotnet/api/system.data.dataset
https://learn.microsoft.com/en-us/dotnet/api/system.data.dataset
https://learn.microsoft.com/en-us/dotnet/api/system.data.dataset
https://learn.microsoft.com/en-us/dotnet/api/system.data.dataset
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/linq-to-dataset
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/linq-and-ado-net

For more information, see LINQ to SQL.

Through the Entity Data Model, relational data is exposed as objects in the .NET
environment. This makes the object layer an ideal target for LINQ support, allowing
developers to formulate queries against the database from the language used to build
the business logic. This capability is known as LINQ to Entities. See LINQ to Entities for
more information.

LINQ and ADO.NET
Language-Integrated Query (LINQ) (C#)

LINQ to Entities

See also

https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/ef/language-reference/linq-to-entities
https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/linq-and-ado-net

Enabling a Data Source for LINQ
Querying
Article • 2021-09-15 • 3 minutes to read

There are various ways to extend LINQ to enable any data source to be queried in the
LINQ pattern. The data source might be a data structure, a Web service, a file system, or
a database, to name some. The LINQ pattern makes it easy for clients to query a data
source for which LINQ querying is enabled, because the syntax and pattern of the query
does not change. The ways in which LINQ can be extended to these data sources
include the following:

Implementing the IEnumerable<T> interface in a type to enable LINQ to Objects
querying of that type.

Creating standard query operator methods such as Where and Select that extend a
type, to enable custom LINQ querying of that type.

Creating a provider for your data source that implements the IQueryable<T>
interface. A provider that implements this interface receives LINQ queries in the
form of expression trees, which it can execute in a custom way, for example
remotely.

Creating a provider for your data source that takes advantage of an existing LINQ
technology. Such a provider would enable not only querying, but also insert,
update, and delete operations and mapping for user-defined types.

This topic discusses these options.

There are two ways you can enable LINQ querying of in-memory data. If the data is of a
type that implements IEnumerable<T>, you can query the data by using LINQ to
Objects. If it does not make sense to enable enumeration of your type by implementing
the IEnumerable<T> interface, you can define LINQ standard query operator methods in
that type or create LINQ standard query operator methods that extend the type. Custom

How to Enable LINQ Querying of Your Data
Source

In-Memory Data

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

implementations of the standard query operators should use deferred execution to
return the results.

The best option for enabling LINQ querying of a remote data source is to implement the
IQueryable<T> interface. However, this differs from extending a provider such as LINQ
to SQL for a data source.

LINQ providers that implement IQueryable<T> can vary widely in their complexity. This
section discusses the different levels of complexity.

A less complex IQueryable provider might interface with a single method of a Web
service. This type of provider is very specific because it expects specific information in
the queries that it handles. It has a closed type system, perhaps exposing a single result
type. Most of the execution of the query occurs locally, for example by using the
Enumerable implementations of the standard query operators. A less complex provider
might examine only one method call expression in the expression tree that represents
the query, and let the remaining logic of the query be handled elsewhere.

An IQueryable provider of medium complexity might target a data source that has a
partially expressive query language. If it targets a Web service, it might interface with
more than one method of the Web service and select the method to call based on the
question that the query poses. A provider of medium complexity would have a richer
type system than a simple provider, but it would still be a fixed type system. For
example, the provider might expose types that have one-to-many relationships that can
be traversed, but it would not provide mapping technology for user-defined types.

A complex IQueryable provider, such as the LINQ to SQL provider, might translate
complete LINQ queries to an expressive query language, such as SQL. A complex
provider is more general than a less complex provider, because it can handle a wider
variety of questions in the query. It also has an open type system and therefore must
contain extensive infrastructure to map user-defined types. Developing a complex
provider requires a significant amount of effort.

IQueryable<T>
IEnumerable<T>

Remote Data

IQueryable LINQ Providers

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

Enumerable
Standard Query Operators Overview (C#)
LINQ to Objects (C#)

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable

Visual Studio IDE and Tools Support for
LINQ (C#)
Article • 2021-09-15 • 2 minutes to read

The Visual Studio integrated development environment (IDE) provides the following
features that support LINQ application development:

The Object Relational Designer is a visual design tool that you can use in LINQ to SQL
applications to generate classes in C# that represent the relational data in an underlying
database. For more information, see LINQ to SQL Tools in Visual Studio.

SQLMetal is a command-line tool that can be used in build processes to generate
classes from existing databases for use in LINQ to SQL applications. For more
information, see SqlMetal.exe (Code Generation Tool).

The C# code editor supports LINQ extensively with IntelliSense and formatting
capabilities.

The Visual Studio debugger supports debugging of query expressions. For more
information, see Debugging LINQ.

Language-Integrated Query (LINQ) (C#)

Object Relational Designer

SQLMetal Command Line Tool

LINQ-Aware Code Editor

Visual Studio Debugger Support

See also

https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/
https://learn.microsoft.com/en-us/visualstudio/data-tools/linq-to-sql-tools-in-visual-studio2
https://learn.microsoft.com/en-ca/dotnet/framework/tools/sqlmetal-exe-code-generation-tool
https://learn.microsoft.com/en-us/visualstudio/debugger/debugging-linq

Reflection (C#)
Article • 2021-11-05 • 2 minutes to read

Reflection provides objects (of type Type) that describe assemblies, modules, and types.
You can use reflection to dynamically create an instance of a type, bind the type to an
existing object, or get the type from an existing object and invoke its methods or access
its fields and properties. If you are using attributes in your code, reflection enables you
to access them. For more information, see Attributes.

Here's a simple example of reflection using the GetType() method - inherited by all types
from the Object base class - to obtain the type of a variable:

C#

The output is: System.Int32 .

The following example uses reflection to obtain the full name of the loaded assembly.

C#

The output is: System.Private.CoreLib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=7cec85d7bea7798e .

７ Note

Make sure you add using System; and using System.Reflection; at the top of
your .cs file.

// Using GetType to obtain type information:
int i = 42;
Type type = i.GetType();
Console.WriteLine(type);

// Using Reflection to get information of an Assembly:
Assembly info = typeof(int).Assembly;
Console.WriteLine(info);

７ Note

The C# keywords protected and internal have no meaning in Intermediate
Language (IL) and are not used in the reflection APIs. The corresponding terms in IL

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/
https://learn.microsoft.com/en-us/dotnet/api/system.object.gettype#system-object-gettype

Reflection is useful in the following situations:

When you have to access attributes in your program's metadata. For more
information, see Retrieving Information Stored in Attributes.
For examining and instantiating types in an assembly.
For building new types at run time. Use classes in System.Reflection.Emit.
For performing late binding, accessing methods on types created at run time. See
the topic Dynamically Loading and Using Types.

For more information:

Reflection
Viewing Type Information
Reflection and Generic Types
System.Reflection.Emit
Retrieving Information Stored in Attributes

C# Programming Guide
Assemblies in .NET

are Family and Assembly. To identify an internal method using reflection, use the
IsAssembly property. To identify a protected internal method, use the
IsFamilyOrAssembly.

Reflection overview

Related sections

See also

https://learn.microsoft.com/en-ca/dotnet/standard/attributes/retrieving-information-stored-in-attributes
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.emit
https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/dynamically-loading-and-using-types
https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/reflection
https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/viewing-type-information
https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/reflection-and-generic-types
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.emit
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/retrieving-information-stored-in-attributes
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.isassembly
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.isfamilyorassembly

Serialization (C#)
Article • 2022-11-17 • 4 minutes to read

Serialization is the process of converting an object into a stream of bytes to store the
object or transmit it to memory, a database, or a file. Its main purpose is to save the
state of an object in order to be able to recreate it when needed. The reverse process is
called deserialization.

This illustration shows the overall process of serialization:

The object is serialized to a stream that carries the data. The stream may also have
information about the object's type, such as its version, culture, and assembly name.
From that stream, the object can be stored in a database, a file, or memory.

Serialization allows the developer to save the state of an object and re-create it as
needed, providing storage of objects as well as data exchange. Through serialization, a
developer can perform actions such as:

Sending the object to a remote application by using a web service
Passing an object from one domain to another
Passing an object through a firewall as a JSON or XML string
Maintaining security or user-specific information across applications

The System.Text.Json namespace contains classes for JavaScript Object Notation (JSON)
serialization and deserialization. JSON is an open standard that is commonly used for
sharing data across the web.

How serialization works

Uses for serialization

JSON serialization

https://learn.microsoft.com/en-ca/dotnet/csharp/programming-guide/concepts/serialization/media/index/serialization-process.gif
https://learn.microsoft.com/en-us/dotnet/api/system.text.json

JSON serialization serializes the public properties of an object into a string, byte array, or
stream that conforms to the RFC 8259 JSON specification . To control the way
JsonSerializer serializes or deserializes an instance of the class, you can use one or more
of the following approaches:

Use a JsonSerializerOptions object
Apply attributes from the System.Text.Json.Serialization namespace to classes or
properties
Customize the contract
Implement custom converters

The System.Runtime.Serialization namespace contains classes for binary and XML
serialization and deserialization.

Binary serialization uses binary encoding to produce compact serialization for uses such
as storage or socket-based network streams. In binary serialization, all members, even
members that are read-only, are serialized, and performance is enhanced.

XML serialization serializes the public fields and properties of an object, or the
parameters and return values of methods, into an XML stream that conforms to a
specific XML Schema definition language (XSD) document. XML serialization results in
strongly typed classes with public properties and fields that are converted to XML.
System.Xml.Serialization contains classes for serializing and deserializing XML. You apply
attributes to classes and class members to control the way the XmlSerializer serializes or
deserializes an instance of the class.

For binary or XML serialization, you need:

The object to serialize
A stream to contain the serialized object
A System.Runtime.Serialization.Formatter instance

Binary and XML serialization

２ Warning

Binary serialization can be dangerous. For more information, see BinaryFormatter
security guide.

Making an object serializable

https://tools.ietf.org/html/rfc8259
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializeroptions
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization
https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/custom-contracts
https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/converters-how-to
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.serialization
https://learn.microsoft.com/en-us/dotnet/api/system.xml.serialization
https://learn.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.serialization.formatter
https://learn.microsoft.com/en-ca/dotnet/standard/serialization/binaryformatter-security-guide

Apply the SerializableAttribute attribute to a type to indicate that instances of the type
can be serialized. An exception is thrown if you attempt to serialize but the type doesn't
have the SerializableAttribute attribute.

To prevent a field from being serialized, apply the NonSerializedAttribute attribute. If a
field of a serializable type contains a pointer, a handle, or some other data structure that
is specific to a particular environment, and the field cannot be meaningfully
reconstituted in a different environment, then you may want to make it nonserializable.

If a serialized class contains references to objects of other classes that are marked
SerializableAttribute, those objects will also be serialized.

Binary and XML serialization can be performed in two ways, basic and custom.

Basic serialization uses .NET to automatically serialize the object. The only requirement is
that the class has the SerializableAttribute attribute applied. The NonSerializedAttribute
can be used to keep specific fields from being serialized.

When you use basic serialization, the versioning of objects may create problems. You
would use custom serialization when versioning issues are important. Basic serialization
is the easiest way to perform serialization, but it does not provide much control over the
process.

In custom serialization, you can specify exactly which objects will be serialized and how
it will be done. The class must be marked SerializableAttribute and implement the
ISerializable interface. If you want your object to be deserialized in a custom manner as
well, use a custom constructor.

Designer serialization is a special form of serialization that involves the kind of object
persistence associated with development tools. Designer serialization is the process of
converting an object graph into a source file that can later be used to recover the object
graph. A source file can contain code, markup, or even SQL table information.

System.Text.Json overview
Shows how to get the System.Text.Json library.

Basic and custom serialization

Designer serialization

Related articles

https://learn.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.nonserializedattribute
https://learn.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.nonserializedattribute
https://learn.microsoft.com/en-us/dotnet/api/system.serializableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializable
https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/overview

How to serialize and deserialize JSON in .NET
Shows how to read and write object data to and from JSON using the JsonSerializer
class.

Walkthrough: Persisting an Object in Visual Studio (C#)
Demonstrates how serialization can be used to persist an object's data between
instances, allowing you to store values and retrieve them the next time the object is
instantiated.

How to read object data from an XML file (C#)
Shows how to read object data that was previously written to an XML file using the
XmlSerializer class.

How to write object data to an XML file (C#)
Shows how to write the object from a class to an XML file using the XmlSerializer class.

https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/how-to
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer
https://learn.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer
https://learn.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer

How to write object data to an XML file
(C#)
Article • 2021-09-15 • 2 minutes to read

This example writes the object from a class to an XML file using the XmlSerializer class.

C#

The class being serialized must have a public constructor without parameters.

Example

public class XMLWrite
{

 static void Main(string[] args)
 {
 WriteXML();
 }

 public class Book
 {
 public String title;
 }

 public static void WriteXML()
 {
 Book overview = new Book();
 overview.title = "Serialization Overview";
 System.Xml.Serialization.XmlSerializer writer =
 new System.Xml.Serialization.XmlSerializer(typeof(Book));

 var path =
Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
"//SerializationOverview.xml";
 System.IO.FileStream file = System.IO.File.Create(path);

 writer.Serialize(file, overview);
 file.Close();
 }
}

Compiling the Code

https://learn.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer

The following conditions may cause an exception:

The class being serialized does not have a public, parameterless constructor.

The file exists and is read-only (IOException).

The path is too long (PathTooLongException).

The disk is full (IOException).

This example creates a new file, if the file does not already exist. If an application needs
to create a file, that application needs Create access for the folder. If the file already
exists, the application needs only Write access, a lesser privilege. Where possible, it is
more secure to create the file during deployment, and only grant Read access to a single
file, rather than Create access for a folder.

StreamWriter
How to read object data from an XML file (C#)
Serialization (C#)

Robust Programming

.NET Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.pathtoolongexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter

How to read object data from an XML
file (C#)
Article • 2021-09-15 • 2 minutes to read

This example reads object data that was previously written to an XML file using the
XmlSerializer class.

C#

Replace the file name "c:\temp\SerializationOverview.xml" with the name of the file
containing the serialized data. For more information about serializing data, see How to
write object data to an XML file (C#).

The class must have a public constructor without parameters.

Example

public class Book
{
 public String title;
}

public void ReadXML()
{
 // First write something so that there is something to read ...
 var b = new Book { title = "Serialization Overview" };
 var writer = new System.Xml.Serialization.XmlSerializer(typeof(Book));
 var wfile = new
System.IO.StreamWriter(@"c:\temp\SerializationOverview.xml");
 writer.Serialize(wfile, b);
 wfile.Close();

 // Now we can read the serialized book ...
 System.Xml.Serialization.XmlSerializer reader =
 new System.Xml.Serialization.XmlSerializer(typeof(Book));
 System.IO.StreamReader file = new System.IO.StreamReader(
 @"c:\temp\SerializationOverview.xml");
 Book overview = (Book)reader.Deserialize(file);
 file.Close();

 Console.WriteLine(overview.title);

}

Compiling the Code

https://learn.microsoft.com/en-us/dotnet/api/system.xml.serialization.xmlserializer

Only public properties and fields are deserialized.

The following conditions may cause an exception:

The class being serialized does not have a public, parameterless constructor.

The data in the file does not represent data from the class to be deserialized.

The file does not exist (IOException).

Always verify inputs, and never deserialize data from an untrusted source. The re-
created object runs on a local computer with the permissions of the code that
deserialized it. Verify all inputs before using the data in your application.

StreamWriter
How to write object data to an XML file (C#)
Serialization (C#)
C# Programming Guide

Robust Programming

.NET Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter

Walkthrough: Persist an object using C#
Article • 2023-01-04 • 4 minutes to read

You can use JSON serialization to persist an object's data between instances, which
enables you to store values and retrieve them the next time that the object is
instantiated.

In this walkthrough, you'll create a basic Loan object and persist its data to a JSON file.
You'll then retrieve the data from the file when you re-create the object.

To build and run, install the .NET SDK .

Install your favorite code editor, if you haven't already.

You can examine the sample code online at the .NET samples GitHub repository .

） Important

This example creates a new file if the file does not already exist. If an application
must create a file, that application must have Create permission for the folder.
Permissions are set by using access control lists. If the file already exists, the
application needs only Write permission, a lesser permission. Where possible, it's
more secure to create the file during deployment and only grant Read permissions
to a single file (instead of Create permissions for a folder). Also, it's more secure to
write data to user folders than to the root folder or the Program Files folder.

） Important

This example stores data in a JSON file. You should not store sensitive data, such as
passwords or credit-card information, in a JSON file.

Prerequisites

 Tip

Need to install a code editor? Try Visual Studio !

https://dotnet.microsoft.com/download
https://github.com/dotnet/samples/tree/main/csharp/serialization
https://visualstudio.com/downloads

The first step is to create a Loan class and a console application that uses the class:

1. Create a new application. At a command prompt, enter dotnet new console -o
serialization to create a new console application in a subdirectory named
serialization .

2. Open the application in your editor, and add a new class named Loan.cs .

3. Add the following code to your Loan class:

C#

Define the loan type

public class Loan : INotifyPropertyChanged
{
 public double LoanAmount { get; set; }
 public double InterestRate { get; set; }

 [JsonIgnore]
 public DateTime TimeLastLoaded { get; set; }

 public int Term { get; set; }

 private string _customer;
 public string Customer
 {
 get { return _customer; }
 set
 {
 _customer = value;
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(Customer)));
 }
 }

 public event PropertyChangedEventHandler? PropertyChanged;

 public Loan(double loanAmount,
 double interestRate,
 int term,
 string customer)
 {
 LoanAmount = loanAmount;
 InterestRate = interestRate;
 Term = term;
 _customer = customer;
 }
}

1. Open Program.cs and add the following code:

C#

2. Add an event handler for the PropertyChanged event, and a few lines to modify the
Loan object and display the changes. You can see the additions in the following
code:

C#

At this point, you can run the code and see the current output:

Console

Running this application repeatedly always writes the same values. A new Loan object is
created every time you run the program. In the real world, interest rates change
periodically, but not necessarily every time that the application is run. Serialization code
means you preserve the most recent interest rate between instances of the application.
In the next step, you'll do just that by adding serialization to the Loan class.

To serialize an object using System.Text.Json serialization, you don't need to add any
special attributes to the type. By default, all public properties are serialized and all fields
are ignored. However, you can annotate properties to ignore or specify that fields
should be included.

Instantiate a loan object

Loan testLoan = new(10_000.0, 7.5, 36, "Neil Black");

testLoan.PropertyChanged += (_, __) => Console.WriteLine($"New customer
value: {testLoan.Customer}");

testLoan.Customer = "Henry Clay";
Console.WriteLine(testLoan.InterestRate);
testLoan.InterestRate = 7.1;
Console.WriteLine(testLoan.InterestRate);

New customer value: Henry Clay
7.5
7.1

Use serialization to persist the object

https://learn.microsoft.com/en-us/dotnet/api/system.text.json

The following code adds a TimeLastLoaded property and marks it with the
JsonIgnoreAttribute attribute to exclude it from serialization:

C#

1. To serialize the class and write it to a file, you use the System.IO and
System.Text.Json namespaces. To avoid typing the fully qualified names, you can
add references to the necessary namespaces as shown in the following code:

C#

2. Add code to deserialize the object from the file when the object is created. Add a
constant to the class for the serialized data's file name as shown in the following
code:

C#

Next, add the following code after the line that creates the TestLoan object. This
code first checks that the file exists. If it exists, it reads the text from the file, and
then deserialize it using the JsonSerializer.Deserialize<TValue>(String,
JsonSerializerOptions) method.

C#

3. Next, add code to serialize the class to a file using the
JsonSerializer.Serialize<TValue>(TValue, JsonSerializerOptions) method. Add the
following code to the end of the file:

C#

[JsonIgnore]
public DateTime TimeLastLoaded { get; set; }

using System.IO;
using System.Text.Json;

const string fileName = @"../../../SavedLoan.json";

if (File.Exists(fileName))
{
 Console.WriteLine("Reading saved file");
 string jsonFromFile = File.ReadAllText(fileName);
 testLoan = JsonSerializer.Deserialize<Loan>(jsonFromFile);
 testLoan.TimeLastLoaded = DateTime.Now;
}

https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization.jsonignoreattribute
https://learn.microsoft.com/en-us/dotnet/api/system.io
https://learn.microsoft.com/en-us/dotnet/api/system.text.json
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer.deserialize#system-text-json-jsonserializer-deserialize-1(system-string-system-text-json-jsonserializeroptions)
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.jsonserializer.serialize#system-text-json-jsonserializer-serialize-1(-0-system-text-json-jsonserializeroptions)

At this point, you can again build and run the application. The first time it runs, notice
that the interest rates starts at 7.5, and then changes to 7.1. Close the application and
then run it again. Now, the application prints the message that it has read the saved file,
and the interest rate is 7.1 even before the code that changes it.

Serialization (C#)
C# Programming Guide
How to serialize and deserialize JSON in .NET

// Serialize it.
string json = JsonSerializer.Serialize(testLoan);
File.WriteAllText(fileName, json);

See also

https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/how-to

Statements (C# Programming Guide)
Article • 2022-09-29 • 6 minutes to read

The actions that a program takes are expressed in statements. Common actions include
declaring variables, assigning values, calling methods, looping through collections, and
branching to one or another block of code, depending on a given condition. The order
in which statements are executed in a program is called the flow of control or flow of
execution. The flow of control may vary every time that a program is run, depending on
how the program reacts to input that it receives at run time.

A statement can consist of a single line of code that ends in a semicolon, or a series of
single-line statements in a block. A statement block is enclosed in {} brackets and can
contain nested blocks. The following code shows two examples of single-line
statements, and a multi-line statement block:

C#

 static void Main()
 {
 // Declaration statement.
 int counter;

 // Assignment statement.
 counter = 1;

 // Error! This is an expression, not an expression statement.
 // counter + 1;

 // Declaration statements with initializers are functionally
 // equivalent to declaration statement followed by assignment
statement:
 int[] radii = { 15, 32, 108, 74, 9 }; // Declare and initialize an
array.
 const double pi = 3.14159; // Declare and initialize constant.

 // foreach statement block that contains multiple statements.
 foreach (int radius in radii)
 {
 // Declaration statement with initializer.
 double circumference = pi * (2 * radius);

 // Expression statement (method invocation). A single-line
 // statement can span multiple text lines because line breaks
 // are treated as white space, which is ignored by the compiler.
 System.Console.WriteLine("Radius of circle #{0} is {1}.
Circumference = {2:N2}",
 counter, radius, circumference);

 // Expression statement (postfix increment).

The following table lists the various types of statements in C# and their associated
keywords, with links to topics that include more information:

Category C# keywords / notes

Declaration
statements

A declaration statement introduces a new variable or constant. A variable
declaration can optionally assign a value to the variable. In a constant declaration,
the assignment is required.

Expression
statements

Expression statements that calculate a value must store the value in a variable.

Selection
statements

Selection statements enable you to branch to different sections of code, depending
on one or more specified conditions. For more information, see the following topics:

if
switch

Iteration
statements

Iteration statements enable you to loop through collections like arrays, or perform
the same set of statements repeatedly until a specified condition is met. For more
information, see the following topics:

do
for
foreach
while

 counter++;
 } // End of foreach statement block
 } // End of Main method body.
} // End of SimpleStatements class.
/*
 Output:
 Radius of circle #1 = 15. Circumference = 94.25
 Radius of circle #2 = 32. Circumference = 201.06
 Radius of circle #3 = 108. Circumference = 678.58
 Radius of circle #4 = 74. Circumference = 464.96
 Radius of circle #5 = 9. Circumference = 56.55
*/

Types of statements

Category C# keywords / notes

Jump
statements

Jump statements transfer control to another section of code. For more information,
see the following topics:

break
continue
goto
return
yield

Exception
handling
statements

Exception handling statements enable you to gracefully recover from exceptional
conditions that occur at run time. For more information, see the following topics:

throw
try-catch
try-finally
try-catch-finally

checked
and
unchecked

The checked and unchecked statements enable you to specify whether integral-type
numerical operations are allowed to cause an overflow when the result is stored in a
variable that is too small to hold the resulting value.

The await
statement

If you mark a method with the async modifier, you can use the await operator in the
method. When control reaches an await expression in the async method, control
returns to the caller, and progress in the method is suspended until the awaited
task completes. When the task is complete, execution can resume in the method.

For a simple example, see the "Async Methods" section of Methods. For more
information, see Asynchronous Programming with async and await.

The yield
return

statement

An iterator performs a custom iteration over a collection, such as a list or an array.
An iterator uses the yield return statement to return each element one at a time.
When a yield return statement is reached, the current location in code is
remembered. Execution is restarted from that location when the iterator is called
the next time.

For more information, see Iterators.

The fixed
statement

The fixed statement prevents the garbage collector from relocating a movable
variable. For more information, see fixed.

The lock
statement

The lock statement enables you to limit access to blocks of code to only one thread
at a time. For more information, see lock.

Labeled
statements

You can give a statement a label and then use the goto keyword to jump to the
labeled statement. (See the example in the following row.)

The empty
statement

The empty statement consists of a single semicolon. It does nothing and can be
used in places where a statement is required but no action needs to be performed.

The following code shows examples of variable declarations with and without an initial
assignment, and a constant declaration with the necessary initialization.

C#

The following code shows examples of expression statements, including assignment,
object creation with assignment, and method invocation.

C#

The following examples show two uses for an empty statement:

C#

Declaration statements

// Variable declaration statements.
double area;
double radius = 2;

// Constant declaration statement.
const double pi = 3.14159;

Expression statements

// Expression statement (assignment).
area = 3.14 * (radius * radius);

// Error. Not statement because no assignment:
//circ * 2;

// Expression statement (method invocation).
System.Console.WriteLine();

// Expression statement (new object creation).
System.Collections.Generic.List<string> strings =
 new System.Collections.Generic.List<string>();

The empty statement

void ProcessMessages()
{
 while (ProcessMessage())
 ; // Statement needed here.
}

Some statements, for example, iteration statements, always have an embedded
statement that follows them. This embedded statement may be either a single
statement or multiple statements enclosed by {} brackets in a statement block. Even
single-line embedded statements can be enclosed in {} brackets, as shown in the
following example:

C#

An embedded statement that is not enclosed in {} brackets cannot be a declaration
statement or a labeled statement. This is shown in the following example:

C#

Put the embedded statement in a block to fix the error:

C#

void F()
{
 //...
 if (done) goto exit;
//...
exit:
 ; // Statement needed here.
}

Embedded statements

// Recommended style. Embedded statement in block.
foreach (string s in System.IO.Directory.GetDirectories(
 System.Environment.CurrentDirectory))
{
 System.Console.WriteLine(s);
}

// Not recommended.
foreach (string s in System.IO.Directory.GetDirectories(
 System.Environment.CurrentDirectory))
 System.Console.WriteLine(s);

if(pointB == true)
 //Error CS1023:
 int radius = 5;

if (b == true)
{
 // OK:

Statement blocks can be nested, as shown in the following code:

C#

If the compiler determines that the flow of control can never reach a particular
statement under any circumstances, it will produce warning CS0162, as shown in the
following example:

C#

For more information, see the Statements section of the C# language specification.

 System.DateTime d = System.DateTime.Now;
 System.Console.WriteLine(d.ToLongDateString());
}

Nested statement blocks

foreach (string s in System.IO.Directory.GetDirectories(
 System.Environment.CurrentDirectory))
{
 if (s.StartsWith("CSharp"))
 {
 if (s.EndsWith("TempFolder"))
 {
 return s;
 }
 }
}
return "Not found.";

Unreachable statements

// An over-simplified example of unreachable code.
const int val = 5;
if (val < 4)
{
 System.Console.WriteLine("I'll never write anything."); //CS0162
}

C# language specification

See also

C# Programming Guide
Statement keywords
C# operators and expressions

Expression-bodied members (C#
programming guide)
Article • 2022-09-29 • 3 minutes to read

Expression body definitions let you provide a member's implementation in a very
concise, readable form. You can use an expression body definition whenever the logic
for any supported member, such as a method or property, consists of a single
expression. An expression body definition has the following general syntax:

C#

where expression is a valid expression.

Expression body definitions can be used with the following type members:

Method
Read-only property
Property
Constructor
Finalizer
Indexer

An expression-bodied method consists of a single expression that returns a value whose
type matches the method's return type, or, for methods that return void , that performs
some operation. For example, types that override the ToString method typically include
a single expression that returns the string representation of the current object.

The following example defines a Person class that overrides the ToString method with
an expression body definition. It also defines a DisplayName method that displays a
name to the console. Note that the return keyword is not used in the ToString
expression body definition.

C#

member => expression;

Methods

using System;

public class Person

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring

For more information, see Methods (C# Programming Guide).

You can use expression body definition to implement a read-only property. To do that,
use the following syntax:

C#

The following example defines a Location class whose read-only Name property is
implemented as an expression body definition that returns the value of the private
locationName field:

C#

{
 public Person(string firstName, string lastName)
 {
 fname = firstName;
 lname = lastName;
 }

 private string fname;
 private string lname;

 public override string ToString() => $"{fname} {lname}".Trim();
 public void DisplayName() => Console.WriteLine(ToString());
}

class Example
{
 static void Main()
 {
 Person p = new Person("Mandy", "Dejesus");
 Console.WriteLine(p);
 p.DisplayName();
 }
}

Read-only properties

PropertyType PropertyName => expression;

public class Location
{
 private string locationName;

 public Location(string name)
 {
 locationName = name;
 }

For more information about properties, see Properties (C# Programming Guide).

You can use expression body definitions to implement property get and set accessors.
The following example demonstrates how to do that:

C#

For more information about properties, see Properties (C# Programming Guide).

An expression body definition for a constructor typically consists of a single assignment
expression or a method call that handles the constructor's arguments or initializes
instance state.

The following example defines a Location class whose constructor has a single string
parameter named name. The expression body definition assigns the argument to the
Name property.

C#

 public string Name => locationName;
}

Properties

public class Location
{
 private string locationName;

 public Location(string name) => Name = name;

 public string Name
 {
 get => locationName;
 set => locationName = value;
 }
}

Constructors

public class Location
{
 private string locationName;

 public Location(string name) => Name = name;

For more information, see Constructors (C# Programming Guide).

An expression body definition for a finalizer typically contains cleanup statements, such
as statements that release unmanaged resources.

The following example defines a finalizer that uses an expression body definition to
indicate that the finalizer has been called.

C#

For more information, see Finalizers (C# Programming Guide).

Like with properties, indexer get and set accessors consist of expression body
definitions if the get accessor consists of a single expression that returns a value or the
set accessor performs a simple assignment.

The following example defines a class named Sports that includes an internal String
array that contains the names of a number of sports. Both the indexer get and set
accessors are implemented as expression body definitions.

C#

 public string Name
 {
 get => locationName;
 set => locationName = value;
 }
}

Finalizers

public class Destroyer
{
 public override string ToString() => GetType().Name;

 ~Destroyer() => Console.WriteLine($"The {ToString()} finalizer is
executing.");
}

Indexers

using System;
using System.Collections.Generic;

public class Sports

https://learn.microsoft.com/en-us/dotnet/api/system.string

For more information, see Indexers (C# Programming Guide).

.NET code style rules for expression-bodied-members

{
 private string[] types = { "Baseball", "Basketball", "Football",
 "Hockey", "Soccer", "Tennis",
 "Volleyball" };

 public string this[int i]
 {
 get => types[i];
 set => types[i] = value;
 }
}

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/expression-bodied-members

Equality comparisons (C# Programming
Guide)
Article • 2021-09-23 • 3 minutes to read

It is sometimes necessary to compare two values for equality. In some cases, you are
testing for value equality, also known as equivalence, which means that the values that
are contained by the two variables are equal. In other cases, you have to determine
whether two variables refer to the same underlying object in memory. This type of
equality is called reference equality, or identity. This topic describes these two kinds of
equality and provides links to other topics for more information.

Reference equality means that two object references refer to the same underlying
object. This can occur through simple assignment, as shown in the following example.

C#

Reference equality

using System;
class Test
{
 public int Num { get; set; }
 public string Str { get; set; }

 static void Main()
 {
 Test a = new Test() { Num = 1, Str = "Hi" };
 Test b = new Test() { Num = 1, Str = "Hi" };

 bool areEqual = System.Object.ReferenceEquals(a, b);
 // False:
 System.Console.WriteLine("ReferenceEquals(a, b) = {0}", areEqual);

 // Assign b to a.
 b = a;

 // Repeat calls with different results.
 areEqual = System.Object.ReferenceEquals(a, b);
 // True:
 System.Console.WriteLine("ReferenceEquals(a, b) = {0}", areEqual);

 // Keep the console open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

In this code, two objects are created, but after the assignment statement, both
references refer to the same object. Therefore they have reference equality. Use the
ReferenceEquals method to determine whether two references refer to the same object.

The concept of reference equality applies only to reference types. Value type objects
cannot have reference equality because when an instance of a value type is assigned to
a variable, a copy of the value is made. Therefore you can never have two unboxed
structs that refer to the same location in memory. Furthermore, if you use
ReferenceEquals to compare two value types, the result will always be false , even if the
values that are contained in the objects are all identical. This is because each variable is
boxed into a separate object instance. For more information, see How to test for
reference equality (Identity).

Value equality means that two objects contain the same value or values. For primitive
value types such as int or bool, tests for value equality are straightforward. You can use
the == operator, as shown in the following example.

C#

For most other types, testing for value equality is more complex because it requires that
you understand how the type defines it. For classes and structs that have multiple fields
or properties, value equality is often defined to mean that all fields or properties have
the same value. For example, two Point objects might be defined to be equivalent if
pointA.X is equal to pointB.X and pointA.Y is equal to pointB.Y. For records, value
equality means that two variables of a record type are equal if the types match and all
property and field values match.

However, there is no requirement that equivalence be based on all the fields in a type. It
can be based on a subset. When you compare types that you do not own, you should
make sure to understand specifically how equivalence is defined for that type. For more
information about how to define value equality in your own classes and structs, see How
to define value equality for a type.

Value equality

int a = GetOriginalValue();
int b = GetCurrentValue();

// Test for value equality.
if (b == a)
{
 // The two integers are equal.
}

https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals

Equality comparisons of floating-point values (double and float) are problematic
because of the imprecision of floating-point arithmetic on binary computers. For more
information, see the remarks in the topic System.Double.

Title Description

How to test for
reference equality
(Identity)

Describes how to determine whether two variables have reference
equality.

How to define value
equality for a type

Describes how to provide a custom definition of value equality for a
type.

C# Programming
Guide

Provides links to detailed information about important C# language
features and features that are available to C# through .NET.

Types Provides information about the C# type system and links to additional
information.

Records Provides information about record types, which test for value equality
by default.

C# Programming Guide

Value equality for floating-point values

Related topics

See also

https://learn.microsoft.com/en-us/dotnet/api/system.double

How to define value equality for a class
or struct (C# Programming Guide)
Article • 2022-06-21 • 9 minutes to read

Records automatically implement value equality. Consider defining a record instead of a
class when your type models data and should implement value equality.

When you define a class or struct, you decide whether it makes sense to create a custom
definition of value equality (or equivalence) for the type. Typically, you implement value
equality when you expect to add objects of the type to a collection, or when their
primary purpose is to store a set of fields or properties. You can base your definition of
value equality on a comparison of all the fields and properties in the type, or you can
base the definition on a subset.

In either case, and in both classes and structs, your implementation should follow the
five guarantees of equivalence (for the following rules, assume that x , y and z are not
null):

1. The reflexive property: x.Equals(x) returns true .

2. The symmetric property: x.Equals(y) returns the same value as y.Equals(x) .

3. The transitive property: if (x.Equals(y) && y.Equals(z)) returns true , then
x.Equals(z) returns true .

4. Successive invocations of x.Equals(y) return the same value as long as the objects
referenced by x and y aren't modified.

5. Any non-null value isn't equal to null. However, x.Equals(y) throws an exception
when x is null. That breaks rules 1 or 2, depending on the argument to Equals .

Any struct that you define already has a default implementation of value equality that it
inherits from the System.ValueType override of the Object.Equals(Object) method. This
implementation uses reflection to examine all the fields and properties in the type.
Although this implementation produces correct results, it is relatively slow compared to
a custom implementation that you write specifically for the type.

The implementation details for value equality are different for classes and structs.
However, both classes and structs require the same basic steps for implementing
equality:

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)

1. Override the virtual Object.Equals(Object) method. In most cases, your
implementation of bool Equals(object obj) should just call into the type-
specific Equals method that is the implementation of the System.IEquatable<T>
interface. (See step 2.)

2. Implement the System.IEquatable<T> interface by providing a type-specific
Equals method. This is where the actual equivalence comparison is performed. For
example, you might decide to define equality by comparing only one or two fields
in your type. Don't throw exceptions from Equals . For classes that are related by
inheritance:

This method should examine only fields that are declared in the class. It
should call base.Equals to examine fields that are in the base class. (Don't
call base.Equals if the type inherits directly from Object, because the Object
implementation of Object.Equals(Object) performs a reference equality
check.)

Two variables should be deemed equal only if the run-time types of the
variables being compared are the same. Also, make sure that the IEquatable
implementation of the Equals method for the run-time type is used if the
run-time and compile-time types of a variable are different. One strategy for
making sure run-time types are always compared correctly is to implement
IEquatable only in sealed classes. For more information, see the class
example later in this article.

3. Optional but recommended: Overload the == and != operators.

4. Override Object.GetHashCode so that two objects that have value equality produce
the same hash code.

5. Optional: To support definitions for "greater than" or "less than," implement the
IComparable<T> interface for your type, and also overload the <= and >=
operators.

７ Note

Starting in C# 9.0, you can use records to get value equality semantics without any
unnecessary boilerplate code.

Class example

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1

The following example shows how to implement value equality in a class (reference
type).

C#

namespace ValueEqualityClass;

class TwoDPoint : IEquatable<TwoDPoint>
{
 public int X { get; private set; }
 public int Y { get; private set; }

 public TwoDPoint(int x, int y)
 {
 if (x is (< 1 or > 2000) || y is (< 1 or > 2000))
 {
 throw new ArgumentException("Point must be in range 1 - 2000");
 }
 this.X = x;
 this.Y = y;
 }

 public override bool Equals(object obj) => this.Equals(obj as
TwoDPoint);

 public bool Equals(TwoDPoint p)
 {
 if (p is null)
 {
 return false;
 }

 // Optimization for a common success case.
 if (Object.ReferenceEquals(this, p))
 {
 return true;
 }

 // If run-time types are not exactly the same, return false.
 if (this.GetType() != p.GetType())
 {
 return false;
 }

 // Return true if the fields match.
 // Note that the base class is not invoked because it is
 // System.Object, which defines Equals as reference equality.
 return (X == p.X) && (Y == p.Y);
 }

 public override int GetHashCode() => (X, Y).GetHashCode();

 public static bool operator ==(TwoDPoint lhs, TwoDPoint rhs)
 {

 if (lhs is null)
 {
 if (rhs is null)
 {
 return true;
 }

 // Only the left side is null.
 return false;
 }
 // Equals handles case of null on right side.
 return lhs.Equals(rhs);
 }

 public static bool operator !=(TwoDPoint lhs, TwoDPoint rhs) => !(lhs ==
rhs);
}

// For the sake of simplicity, assume a ThreeDPoint IS a TwoDPoint.
class ThreeDPoint : TwoDPoint, IEquatable<ThreeDPoint>
{
 public int Z { get; private set; }

 public ThreeDPoint(int x, int y, int z)
 : base(x, y)
 {
 if ((z < 1) || (z > 2000))
 {
 throw new ArgumentException("Point must be in range 1 - 2000");
 }
 this.Z = z;
 }

 public override bool Equals(object obj) => this.Equals(obj as
ThreeDPoint);

 public bool Equals(ThreeDPoint p)
 {
 if (p is null)
 {
 return false;
 }

 // Optimization for a common success case.
 if (Object.ReferenceEquals(this, p))
 {
 return true;
 }

 // Check properties that this class declares.
 if (Z == p.Z)
 {
 // Let base class check its own fields
 // and do the run-time type comparison.
 return base.Equals((TwoDPoint)p);

 }
 else
 {
 return false;
 }
 }

 public override int GetHashCode() => (X, Y, Z).GetHashCode();

 public static bool operator ==(ThreeDPoint lhs, ThreeDPoint rhs)
 {
 if (lhs is null)
 {
 if (rhs is null)
 {
 // null == null = true.
 return true;
 }

 // Only the left side is null.
 return false;
 }
 // Equals handles the case of null on right side.
 return lhs.Equals(rhs);
 }

 public static bool operator !=(ThreeDPoint lhs, ThreeDPoint rhs) => !
(lhs == rhs);
}

class Program
{
 static void Main(string[] args)
 {
 ThreeDPoint pointA = new ThreeDPoint(3, 4, 5);
 ThreeDPoint pointB = new ThreeDPoint(3, 4, 5);
 ThreeDPoint pointC = null;
 int i = 5;

 Console.WriteLine("pointA.Equals(pointB) = {0}",
pointA.Equals(pointB));
 Console.WriteLine("pointA == pointB = {0}", pointA == pointB);
 Console.WriteLine("null comparison = {0}", pointA.Equals(pointC));
 Console.WriteLine("Compare to some other type = {0}",
pointA.Equals(i));

 TwoDPoint pointD = null;
 TwoDPoint pointE = null;

 Console.WriteLine("Two null TwoDPoints are equal: {0}", pointD ==
pointE);

 pointE = new TwoDPoint(3, 4);
 Console.WriteLine("(pointE == pointA) = {0}", pointE == pointA);
 Console.WriteLine("(pointA == pointE) = {0}", pointA == pointE);

On classes (reference types), the default implementation of both Object.Equals(Object)
methods performs a reference equality comparison, not a value equality check. When an
implementer overrides the virtual method, the purpose is to give it value equality
semantics.

The == and != operators can be used with classes even if the class does not overload
them. However, the default behavior is to perform a reference equality check. In a class,
if you overload the Equals method, you should overload the == and != operators, but
it is not required.

 Console.WriteLine("(pointA != pointE) = {0}", pointA != pointE);

 System.Collections.ArrayList list = new
System.Collections.ArrayList();
 list.Add(new ThreeDPoint(3, 4, 5));
 Console.WriteLine("pointE.Equals(list[0]): {0}",
pointE.Equals(list[0]));

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

/* Output:
 pointA.Equals(pointB) = True
 pointA == pointB = True
 null comparison = False
 Compare to some other type = False
 Two null TwoDPoints are equal: True
 (pointE == pointA) = False
 (pointA == pointE) = False
 (pointA != pointE) = True
 pointE.Equals(list[0]): False
*/

） Important

The preceding example code may not handle every inheritance scenario the way
you expect. Consider the following code:

C#

TwoDPoint p1 = new ThreeDPoint(1, 2, 3);
TwoDPoint p2 = new ThreeDPoint(1, 2, 4);
Console.WriteLine(p1.Equals(p2)); // output: True

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)

The following example shows how to implement value equality in a struct (value type):

C#

This code reports that p1 equals p2 despite the difference in z values. The
difference is ignored because the compiler picks the TwoDPoint implementation of
IEquatable based on the compile-time type.

The built-in value equality of record types handles scenarios like this correctly. If
TwoDPoint and ThreeDPoint were record types, the result of p1.Equals(p2) would
be False . For more information, see Equality in record type inheritance
hierarchies.

Struct example

namespace ValueEqualityStruct
{
 struct TwoDPoint : IEquatable<TwoDPoint>
 {
 public int X { get; private set; }
 public int Y { get; private set; }

 public TwoDPoint(int x, int y)
 : this()
 {
 if (x is (< 1 or > 2000) || y is (< 1 or > 2000))
 {
 throw new ArgumentException("Point must be in range 1 -
2000");
 }
 X = x;
 Y = y;
 }

 public override bool Equals(object? obj) => obj is TwoDPoint other
&& this.Equals(other);

 public bool Equals(TwoDPoint p) => X == p.X && Y == p.Y;

 public override int GetHashCode() => (X, Y).GetHashCode();

 public static bool operator ==(TwoDPoint lhs, TwoDPoint rhs) =>
lhs.Equals(rhs);

 public static bool operator !=(TwoDPoint lhs, TwoDPoint rhs) => !
(lhs == rhs);
 }

 class Program

 {
 static void Main(string[] args)
 {
 TwoDPoint pointA = new TwoDPoint(3, 4);
 TwoDPoint pointB = new TwoDPoint(3, 4);
 int i = 5;

 // True:
 Console.WriteLine("pointA.Equals(pointB) = {0}",
pointA.Equals(pointB));
 // True:
 Console.WriteLine("pointA == pointB = {0}", pointA == pointB);
 // True:
 Console.WriteLine("object.Equals(pointA, pointB) = {0}",
object.Equals(pointA, pointB));
 // False:
 Console.WriteLine("pointA.Equals(null) = {0}",
pointA.Equals(null));
 // False:
 Console.WriteLine("(pointA == null) = {0}", pointA == null);
 // True:
 Console.WriteLine("(pointA != null) = {0}", pointA != null);
 // False:
 Console.WriteLine("pointA.Equals(i) = {0}", pointA.Equals(i));
 // CS0019:
 // Console.WriteLine("pointA == i = {0}", pointA == i);

 // Compare unboxed to boxed.
 System.Collections.ArrayList list = new
System.Collections.ArrayList();
 list.Add(new TwoDPoint(3, 4));
 // True:
 Console.WriteLine("pointA.Equals(list[0]): {0}",
pointA.Equals(list[0]));

 // Compare nullable to nullable and to non-nullable.
 TwoDPoint? pointC = null;
 TwoDPoint? pointD = null;
 // False:
 Console.WriteLine("pointA == (pointC = null) = {0}", pointA ==
pointC);
 // True:
 Console.WriteLine("pointC == pointD = {0}", pointC == pointD);

 TwoDPoint temp = new TwoDPoint(3, 4);
 pointC = temp;
 // True:
 Console.WriteLine("pointA == (pointC = 3,4) = {0}", pointA ==
pointC);

 pointD = temp;
 // True:
 Console.WriteLine("pointD == (pointC = 3,4) = {0}", pointD ==
pointC);

For structs, the default implementation of Object.Equals(Object) (which is the overridden
version in System.ValueType) performs a value equality check by using reflection to
compare the values of every field in the type. When an implementer overrides the virtual
Equals method in a struct, the purpose is to provide a more efficient means of
performing the value equality check and optionally to base the comparison on some
subset of the struct's fields or properties.

The == and != operators can't operate on a struct unless the struct explicitly overloads
them.

Equality comparisons
C# programming guide

 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }

 /* Output:
 pointA.Equals(pointB) = True
 pointA == pointB = True
 Object.Equals(pointA, pointB) = True
 pointA.Equals(null) = False
 (pointA == null) = False
 (pointA != null) = True
 pointA.Equals(i) = False
 pointE.Equals(list[0]): True
 pointA == (pointC = null) = False
 pointC == pointD = True
 pointA == (pointC = 3,4) = True
 pointD == (pointC = 3,4) = True
 */
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype

How to test for reference equality
(Identity) (C# Programming Guide)
Article • 2021-11-05 • 3 minutes to read

You do not have to implement any custom logic to support reference equality
comparisons in your types. This functionality is provided for all types by the static
Object.ReferenceEquals method.

The following example shows how to determine whether two variables have reference
equality, which means that they refer to the same object in memory.

The example also shows why Object.ReferenceEquals always returns false for value
types and why you should not use ReferenceEquals to determine string equality.

C#

Example

using System.Text;

namespace TestReferenceEquality
{
 struct TestStruct
 {
 public int Num { get; private set; }
 public string Name { get; private set; }

 public TestStruct(int i, string s) : this()
 {
 Num = i;
 Name = s;
 }
 }

 class TestClass
 {
 public int Num { get; set; }
 public string? Name { get; set; }
 }

 class Program
 {
 static void Main()
 {
 // Demonstrate reference equality with reference types.
 #region ReferenceTypes

https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals

 // Create two reference type instances that have identical
values.
 TestClass tcA = new TestClass() { Num = 1, Name = "New
TestClass" };
 TestClass tcB = new TestClass() { Num = 1, Name = "New
TestClass" };

 Console.WriteLine("ReferenceEquals(tcA, tcB) = {0}",
 Object.ReferenceEquals(tcA, tcB)); // false

 // After assignment, tcB and tcA refer to the same object.
 // They now have reference equality.
 tcB = tcA;
 Console.WriteLine("After assignment: ReferenceEquals(tcA, tcB) =
{0}",
 Object.ReferenceEquals(tcA, tcB)); // true

 // Changes made to tcA are reflected in tcB. Therefore, objects
 // that have reference equality also have value equality.
 tcA.Num = 42;
 tcA.Name = "TestClass 42";
 Console.WriteLine("tcB.Name = {0} tcB.Num: {1}", tcB.Name,
tcB.Num);
 #endregion

 // Demonstrate that two value type instances never have
reference equality.
 #region ValueTypes

 TestStruct tsC = new TestStruct(1, "TestStruct 1");

 // Value types are copied on assignment. tsD and tsC have
 // the same values but are not the same object.
 TestStruct tsD = tsC;
 Console.WriteLine("After assignment: ReferenceEquals(tsC, tsD) =
{0}",
 Object.ReferenceEquals(tsC, tsD)); // false
 #endregion

 #region stringRefEquality
 // Constant strings within the same assembly are always interned
by the runtime.
 // This means they are stored in the same location in memory.
Therefore,
 // the two strings have reference equality although no
assignment takes place.
 string strA = "Hello world!";
 string strB = "Hello world!";
 Console.WriteLine("ReferenceEquals(strA, strB) = {0}",
 Object.ReferenceEquals(strA, strB)); // true

 // After a new string is assigned to strA, strA and strB
 // are no longer interned and no longer have reference equality.
 strA = "Goodbye world!";
 Console.WriteLine("strA = \"{0}\" strB = \"{1}\"", strA, strB);

The implementation of Equals in the System.Object universal base class also performs a
reference equality check, but it is best not to use this because, if a class happens to
override the method, the results might not be what you expect. The same is true for the
== and != operators. When they are operating on reference types, the default behavior
of == and != is to perform a reference equality check. However, derived classes can
overload the operator to perform a value equality check. To minimize the potential for
error, it is best to always use ReferenceEquals when you have to determine whether two
objects have reference equality.

Constant strings within the same assembly are always interned by the runtime. That is,
only one instance of each unique literal string is maintained. However, the runtime does

 Console.WriteLine("After strA changes, ReferenceEquals(strA,
strB) = {0}",
 Object.ReferenceEquals(strA, strB)); // false

 // A string that is created at runtime cannot be interned.
 StringBuilder sb = new StringBuilder("Hello world!");
 string stringC = sb.ToString();
 // False:
 Console.WriteLine("ReferenceEquals(stringC, strB) = {0}",
 Object.ReferenceEquals(stringC, strB));

 // The string class overloads the == operator to perform an
equality comparison.
 Console.WriteLine("stringC == strB = {0}", stringC == strB); //
true

 #endregion

 // Keep the console open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }
}

/* Output:
 ReferenceEquals(tcA, tcB) = False
 After assignment: ReferenceEquals(tcA, tcB) = True
 tcB.Name = TestClass 42 tcB.Num: 42
 After assignment: ReferenceEquals(tsC, tsD) = False
 ReferenceEquals(strA, strB) = True
 strA = "Goodbye world!" strB = "Hello world!"
 After strA changes, ReferenceEquals(strA, strB) = False
 ReferenceEquals(stringC, strB) = False
 stringC == strB = True
*/

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals

not guarantee that strings created at run time are interned, nor does it guarantee that
two equal constant strings in different assemblies are interned.

Equality Comparisons

See also

Casting and type conversions (C#
Programming Guide)
Article • 2022-01-12 • 5 minutes to read

Because C# is statically-typed at compile time, after a variable is declared, it cannot be
declared again or assigned a value of another type unless that type is implicitly
convertible to the variable's type. For example, the string cannot be implicitly
converted to int . Therefore, after you declare i as an int , you cannot assign the string
"Hello" to it, as the following code shows:

C#

However, you might sometimes need to copy a value into a variable or method
parameter of another type. For example, you might have an integer variable that you
need to pass to a method whose parameter is typed as double . Or you might need to
assign a class variable to a variable of an interface type. These kinds of operations are
called type conversions. In C#, you can perform the following kinds of conversions:

Implicit conversions: No special syntax is required because the conversion always
succeeds and no data will be lost. Examples include conversions from smaller to
larger integral types, and conversions from derived classes to base classes.

Explicit conversions (casts): Explicit conversions require a cast expression. Casting
is required when information might be lost in the conversion, or when the
conversion might not succeed for other reasons. Typical examples include numeric
conversion to a type that has less precision or a smaller range, and conversion of a
base-class instance to a derived class.

User-defined conversions: User-defined conversions are performed by special
methods that you can define to enable explicit and implicit conversions between
custom types that do not have a base class–derived class relationship. For more
information, see User-defined conversion operators.

Conversions with helper classes: To convert between non-compatible types, such
as integers and System.DateTime objects, or hexadecimal strings and byte arrays,
you can use the System.BitConverter class, the System.Convert class, and the Parse

int i;

// error CS0029: Cannot implicitly convert type 'string' to 'int'
i = "Hello";

https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.convert

methods of the built-in numeric types, such as Int32.Parse. For more information,
see How to convert a byte array to an int, How to convert a string to a number,
and How to convert between hexadecimal strings and numeric types.

For built-in numeric types, an implicit conversion can be made when the value to be
stored can fit into the variable without being truncated or rounded off. For integral
types, this means the range of the source type is a proper subset of the range for the
target type. For example, a variable of type long (64-bit integer) can store any value that
an int (32-bit integer) can store. In the following example, the compiler implicitly
converts the value of num on the right to a type long before assigning it to bigNum .

C#

For a complete list of all implicit numeric conversions, see the Implicit numeric
conversions section of the Built-in numeric conversions article.

For reference types, an implicit conversion always exists from a class to any one of its
direct or indirect base classes or interfaces. No special syntax is necessary because a
derived class always contains all the members of a base class.

C#

However, if a conversion cannot be made without a risk of losing information, the
compiler requires that you perform an explicit conversion, which is called a cast. A cast is
a way of explicitly informing the compiler that you intend to make the conversion and
that you are aware that data loss might occur, or the cast may fail at run time. To
perform a cast, specify the type that you are casting to in parentheses in front of the

Implicit conversions

// Implicit conversion. A long can
// hold any value an int can hold, and more!
int num = 2147483647;
long bigNum = num;

Derived d = new Derived();

// Always OK.
Base b = d;

Explicit conversions

https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse

value or variable to be converted. The following program casts a double to an int. The
program will not compile without the cast.

C#

For a complete list of supported explicit numeric conversions, see the Explicit numeric
conversions section of the Built-in numeric conversions article.

For reference types, an explicit cast is required if you need to convert from a base type
to a derived type:

C#

A cast operation between reference types does not change the run-time type of the
underlying object; it only changes the type of the value that is being used as a reference
to that object. For more information, see Polymorphism.

In some reference type conversions, the compiler cannot determine whether a cast will
be valid. It is possible for a cast operation that compiles correctly to fail at run time. As

class Test
{
 static void Main()
 {
 double x = 1234.7;
 int a;
 // Cast double to int.
 a = (int)x;
 System.Console.WriteLine(a);
 }
}
// Output: 1234

// Create a new derived type.
Giraffe g = new Giraffe();

// Implicit conversion to base type is safe.
Animal a = g;

// Explicit conversion is required to cast back
// to derived type. Note: This will compile but will
// throw an exception at run time if the right-side
// object is not in fact a Giraffe.
Giraffe g2 = (Giraffe)a;

Type conversion exceptions at run time

shown in the following example, a type cast that fails at run time will cause an
InvalidCastException to be thrown.

C#

The Test method has an Animal parameter, thus explicitly casting the argument a to a
Reptile makes a dangerous assumption. It is safer to not make assumptions, but rather
check the type. C# provides the is operator to enable you to test for compatibility
before actually performing a cast. For more information, see How to safely cast using
pattern matching and the as and is operators.

For more information, see the Conversions section of the C# language specification.

C# Programming Guide

class Animal
{
 public void Eat() => System.Console.WriteLine("Eating.");

 public override string ToString() => "I am an animal.";
}

class Reptile : Animal { }
class Mammal : Animal { }

class UnSafeCast
{
 static void Main()
 {
 Test(new Mammal());

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }

 static void Test(Animal a)
 {
 // System.InvalidCastException at run time
 // Unable to cast object of type 'Mammal' to type 'Reptile'
 Reptile r = (Reptile)a;
 }
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception

Types
Cast expression
User-defined conversion operators
Generalized Type Conversion
How to convert a string to a number

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2013/yy580hbd(v=vs.120)

Boxing and Unboxing (C# Programming
Guide)
Article • 2021-09-15 • 5 minutes to read

Boxing is the process of converting a value type to the type object or to any interface
type implemented by this value type. When the common language runtime (CLR) boxes
a value type, it wraps the value inside a System.Object instance and stores it on the
managed heap. Unboxing extracts the value type from the object. Boxing is implicit;
unboxing is explicit. The concept of boxing and unboxing underlies the C# unified view
of the type system in which a value of any type can be treated as an object.

In the following example, the integer variable i is boxed and assigned to object o .

C#

The object o can then be unboxed and assigned to integer variable i :

C#

The following examples illustrate how boxing is used in C#.

C#

int i = 123;
// The following line boxes i.
object o = i;

o = 123;
i = (int)o; // unboxing

// String.Concat example.
// String.Concat has many versions. Rest the mouse pointer on
// Concat in the following statement to verify that the version
// that is used here takes three object arguments. Both 42 and
// true must be boxed.
Console.WriteLine(String.Concat("Answer", 42, true));

// List example.
// Create a list of objects to hold a heterogeneous collection
// of elements.
List<object> mixedList = new List<object>();

// Add a string element to the list.
mixedList.Add("First Group:");

https://learn.microsoft.com/en-us/dotnet/api/system.object

// Add some integers to the list.
for (int j = 1; j < 5; j++)
{
 // Rest the mouse pointer over j to verify that you are adding
 // an int to a list of objects. Each element j is boxed when
 // you add j to mixedList.
 mixedList.Add(j);
}

// Add another string and more integers.
mixedList.Add("Second Group:");
for (int j = 5; j < 10; j++)
{
 mixedList.Add(j);
}

// Display the elements in the list. Declare the loop variable by
// using var, so that the compiler assigns its type.
foreach (var item in mixedList)
{
 // Rest the mouse pointer over item to verify that the elements
 // of mixedList are objects.
 Console.WriteLine(item);
}

// The following loop sums the squares of the first group of boxed
// integers in mixedList. The list elements are objects, and cannot
// be multiplied or added to the sum until they are unboxed. The
// unboxing must be done explicitly.
var sum = 0;
for (var j = 1; j < 5; j++)
{
 // The following statement causes a compiler error: Operator
 // '*' cannot be applied to operands of type 'object' and
 // 'object'.
 //sum += mixedList[j] * mixedList[j]);

 // After the list elements are unboxed, the computation does
 // not cause a compiler error.
 sum += (int)mixedList[j] * (int)mixedList[j];
}

// The sum displayed is 30, the sum of 1 + 4 + 9 + 16.
Console.WriteLine("Sum: " + sum);

// Output:
// Answer42True
// First Group:
// 1
// 2
// 3
// 4
// Second Group:
// 5
// 6

In relation to simple assignments, boxing and unboxing are computationally expensive
processes. When a value type is boxed, a new object must be allocated and constructed.
To a lesser degree, the cast required for unboxing is also expensive computationally. For
more information, see Performance.

Boxing is used to store value types in the garbage-collected heap. Boxing is an implicit
conversion of a value type to the type object or to any interface type implemented by
this value type. Boxing a value type allocates an object instance on the heap and copies
the value into the new object.

Consider the following declaration of a value-type variable:

C#

The following statement implicitly applies the boxing operation on the variable i :

C#

The result of this statement is creating an object reference o , on the stack, that
references a value of the type int , on the heap. This value is a copy of the value-type
value assigned to the variable i . The difference between the two variables, i and o , is
illustrated in the following image of boxing conversion:

// 7
// 8
// 9
// Sum: 30

Performance

Boxing

int i = 123;

// Boxing copies the value of i into object o.
object o = i;

https://learn.microsoft.com/en-ca/dotnet/framework/performance/performance-tips

It is also possible to perform the boxing explicitly as in the following example, but
explicit boxing is never required:

C#

This example converts an integer variable i to an object o by using boxing. Then, the
value stored in the variable i is changed from 123 to 456 . The example shows that the
original value type and the boxed object use separate memory locations, and therefore
can store different values.

C#

int i = 123;
object o = (object)i; // explicit boxing

Example

class TestBoxing
{
 static void Main()
 {
 int i = 123;

 // Boxing copies the value of i into object o.
 object o = i;

 // Change the value of i.
 i = 456;

 // The change in i doesn't affect the value stored in o.
 System.Console.WriteLine("The value-type value = {0}", i);
 System.Console.WriteLine("The object-type value = {0}", o);
 }
}
/* Output:
 The value-type value = 456
 The object-type value = 123
*/

https://learn.microsoft.com/en-ca/dotnet/csharp/programming-guide/types/media/boxing-and-unboxing/boxing-operation-i-o-variables.gif

Unboxing is an explicit conversion from the type object to a value type or from an
interface type to a value type that implements the interface. An unboxing operation
consists of:

Checking the object instance to make sure that it is a boxed value of the given
value type.

Copying the value from the instance into the value-type variable.

The following statements demonstrate both boxing and unboxing operations:

C#

The following figure demonstrates the result of the previous statements:

For the unboxing of value types to succeed at run time, the item being unboxed must
be a reference to an object that was previously created by boxing an instance of that
value type. Attempting to unbox null causes a NullReferenceException. Attempting to
unbox a reference to an incompatible value type causes an InvalidCastException.

The following example demonstrates a case of invalid unboxing and the resulting
InvalidCastException . Using try and catch , an error message is displayed when the
error occurs.

C#

Unboxing

int i = 123; // a value type
object o = i; // boxing
int j = (int)o; // unboxing

Example

https://learn.microsoft.com/en-ca/dotnet/csharp/programming-guide/types/media/boxing-and-unboxing/unboxing-conversion-operation.gif
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception

This program outputs:

Specified cast is not valid. Error: Incorrect unboxing.

If you change the statement:

C#

to:

C#

the conversion will be performed, and you will get the output:

Unboxing OK.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

class TestUnboxing
{
 static void Main()
 {
 int i = 123;
 object o = i; // implicit boxing

 try
 {
 int j = (short)o; // attempt to unbox

 System.Console.WriteLine("Unboxing OK.");
 }
 catch (System.InvalidCastException e)
 {
 System.Console.WriteLine("{0} Error: Incorrect unboxing.",
e.Message);
 }
 }
}

int j = (short)o;

int j = (int)o;

C# language specification

C# programming guide
Reference types
Value types

See also

How to convert a byte array to an int
(C# Programming Guide)
Article • 2021-09-23 • 2 minutes to read

This example shows you how to use the BitConverter class to convert an array of bytes
to an int and back to an array of bytes. You may have to convert from bytes to a built-in
data type after you read bytes off the network, for example. In addition to the
ToInt32(Byte[], Int32) method in the example, the following table lists methods in the
BitConverter class that convert bytes (from an array of bytes) to other built-in types.

Type returned Method

bool ToBoolean(Byte[], Int32)

char ToChar(Byte[], Int32)

double ToDouble(Byte[], Int32)

short ToInt16(Byte[], Int32)

int ToInt32(Byte[], Int32)

long ToInt64(Byte[], Int32)

float ToSingle(Byte[], Int32)

ushort ToUInt16(Byte[], Int32)

uint ToUInt32(Byte[], Int32)

ulong ToUInt64(Byte[], Int32)

This example initializes an array of bytes, reverses the array if the computer architecture
is little-endian (that is, the least significant byte is stored first), and then calls the
ToInt32(Byte[], Int32) method to convert four bytes in the array to an int . The second
argument to ToInt32(Byte[], Int32) specifies the start index of the array of bytes.

Examples

７ Note

The output may differ depending on the endianness of your computer's
architecture.

https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toint32#system-bitconverter-toint32(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toboolean#system-bitconverter-toboolean(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.tochar#system-bitconverter-tochar(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.todouble#system-bitconverter-todouble(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toint16#system-bitconverter-toint16(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toint32#system-bitconverter-toint32(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toint64#system-bitconverter-toint64(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.tosingle#system-bitconverter-tosingle(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.touint16#system-bitconverter-touint16(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.touint32#system-bitconverter-touint32(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.touint64#system-bitconverter-touint64(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toint32#system-bitconverter-toint32(system-byte()-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.toint32#system-bitconverter-toint32(system-byte()-system-int32)

C#

In this example, the GetBytes(Int32) method of the BitConverter class is called to convert
an int to an array of bytes.

C#

BitConverter
IsLittleEndian
Types

byte[] bytes = { 0, 0, 0, 25 };

// If the system architecture is little-endian (that is, little end first),
// reverse the byte array.
if (BitConverter.IsLittleEndian)
 Array.Reverse(bytes);

int i = BitConverter.ToInt32(bytes, 0);
Console.WriteLine("int: {0}", i);
// Output: int: 25

７ Note

The output may differ depending on the endianness of your computer's
architecture.

byte[] bytes = BitConverter.GetBytes(201805978);
Console.WriteLine("byte array: " + BitConverter.ToString(bytes));
// Output: byte array: 9A-50-07-0C

See also

https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.getbytes#system-bitconverter-getbytes(system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter.islittleendian

How to convert a string to a number
(C# Programming Guide)
Article • 2022-05-27 • 4 minutes to read

You convert a string to a number by calling the Parse or TryParse method found on
numeric types (int , long , double , and so on), or by using methods in the
System.Convert class.

It's slightly more efficient and straightforward to call a TryParse method (for example,
int.TryParse("11", out number)) or Parse method (for example, var number =
int.Parse("11")). Using a Convert method is more useful for general objects that
implement IConvertible.

You use Parse or TryParse methods on the numeric type you expect the string contains,
such as the System.Int32 type. The Convert.ToInt32 method uses Parse internally. The
Parse method returns the converted number; the TryParse method returns a boolean
value that indicates whether the conversion succeeded, and returns the converted
number in an out parameter. If the string isn't in a valid format, Parse throws an
exception, but TryParse returns false . When calling a Parse method, you should
always use exception handling to catch a FormatException when the parse operation
fails.

The Parse and TryParse methods ignore white space at the beginning and at the end
of the string, but all other characters must be characters that form the appropriate
numeric type (int , long , ulong , float , decimal , and so on). Any white space within the
string that forms the number causes an error. For example, you can use
decimal.TryParse to parse "10", "10.3", or " 10 ", but you can't use this method to parse
10 from "10X", "1 0" (note the embedded space), "10 .3" (note the embedded space),
"10e1" (float.TryParse works here), and so on. A string whose value is null or
String.Empty fails to parse successfully. You can check for a null or empty string before
attempting to parse it by calling the String.IsNullOrEmpty method.

The following example demonstrates both successful and unsuccessful calls to Parse
and TryParse .

C#

Call Parse or TryParse methods

https://learn.microsoft.com/en-us/dotnet/api/system.convert
https://learn.microsoft.com/en-us/dotnet/api/system.int32.tryparse
https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse
https://learn.microsoft.com/en-us/dotnet/api/system.convert
https://learn.microsoft.com/en-us/dotnet/api/system.iconvertible
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32
https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse
https://learn.microsoft.com/en-us/dotnet/api/system.formatexception
https://learn.microsoft.com/en-us/dotnet/api/system.string.empty
https://learn.microsoft.com/en-us/dotnet/api/system.string.isnullorempty

using System;

public static class StringConversion
{
 public static void Main()
 {
 string input = String.Empty;
 try
 {
 int result = Int32.Parse(input);
 Console.WriteLine(result);
 }
 catch (FormatException)
 {
 Console.WriteLine($"Unable to parse '{input}'");
 }
 // Output: Unable to parse ''

 try
 {
 int numVal = Int32.Parse("-105");
 Console.WriteLine(numVal);
 }
 catch (FormatException e)
 {
 Console.WriteLine(e.Message);
 }
 // Output: -105

 if (Int32.TryParse("-105", out int j))
 {
 Console.WriteLine(j);
 }
 else
 {
 Console.WriteLine("String could not be parsed.");
 }
 // Output: -105

 try
 {
 int m = Int32.Parse("abc");
 }
 catch (FormatException e)
 {
 Console.WriteLine(e.Message);
 }
 // Output: Input string was not in a correct format.

 const string inputString = "abc";
 if (Int32.TryParse(inputString, out int numValue))
 {
 Console.WriteLine(numValue);
 }

The following example illustrates one approach to parsing a string expected to include
leading numeric characters (including hexadecimal characters) and trailing non-numeric
characters. It assigns valid characters from the beginning of a string to a new string
before calling the TryParse method. Because the strings to be parsed contain a few
characters, the example calls the String.Concat method to assign valid characters to a
new string. For a larger string, the StringBuilder class can be used instead.

C#

 else
 {
 Console.WriteLine($"Int32.TryParse could not parse
'{inputString}' to an int.");
 }
 // Output: Int32.TryParse could not parse 'abc' to an int.
 }
}

using System;

public static class StringConversion
{
 public static void Main()
 {
 var str = " 10FFxxx";
 string numericString = string.Empty;
 foreach (var c in str)
 {
 // Check for numeric characters (hex in this case) or leading or
trailing spaces.
 if ((c >= '0' && c <= '9') || (char.ToUpperInvariant(c) >= 'A'
&& char.ToUpperInvariant(c) <= 'F') || c == ' ')
 {
 numericString = string.Concat(numericString, c.ToString());
 }
 else
 {
 break;
 }
 }

 if (int.TryParse(numericString,
System.Globalization.NumberStyles.HexNumber, null, out int i))
 {
 Console.WriteLine($"'{str}' --> '{numericString}' --> {i}");
 }
 // Output: ' 10FFxxx' --> ' 10FF' --> 4351

 str = " -10FFXXX";
 numericString = "";
 foreach (char c in str)
 {

https://learn.microsoft.com/en-us/dotnet/api/system.int32.tryparse
https://learn.microsoft.com/en-us/dotnet/api/system.string.concat
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

The following table lists some of the methods from the Convert class that you can use to
convert a string to a number.

Numeric type Method

decimal ToDecimal(String)

float ToSingle(String)

double ToDouble(String)

short ToInt16(String)

int ToInt32(String)

long ToInt64(String)

ushort ToUInt16(String)

uint ToUInt32(String)

ulong ToUInt64(String)

The following example calls the Convert.ToInt32(String) method to convert an input
string to an int. The example catches the two most common exceptions that can be
thrown by this method, FormatException and OverflowException. If the resulting

 // Check for numeric characters (0-9), a negative sign, or
leading or trailing spaces.
 if ((c >= '0' && c <= '9') || c == ' ' || c == '-')
 {
 numericString = string.Concat(numericString, c);
 }
 else
 {
 break;
 }
 }

 if (int.TryParse(numericString, out int j))
 {
 Console.WriteLine($"'{str}' --> '{numericString}' --> {j}");
 }
 // Output: ' -10FFXXX' --> ' -10' --> -10
 }
}

Call Convert methods

https://learn.microsoft.com/en-us/dotnet/api/system.convert
https://learn.microsoft.com/en-us/dotnet/api/system.convert.todecimal#system-convert-todecimal(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.tosingle#system-convert-tosingle(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.todouble#system-convert-todouble(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint16#system-convert-toint16(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32#system-convert-toint32(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint64#system-convert-toint64(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.touint16#system-convert-touint16(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.touint32#system-convert-touint32(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.touint64#system-convert-touint64(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32#system-convert-toint32(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.formatexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

number can be incremented without exceeding Int32.MaxValue, the example adds 1 to
the result and displays the output.

C#

using System;

public class ConvertStringExample1
{
 static void Main(string[] args)
 {
 int numVal = -1;
 bool repeat = true;

 while (repeat)
 {
 Console.Write("Enter a number between −2,147,483,648 and
+2,147,483,647 (inclusive): ");

 string input = Console.ReadLine();

 // ToInt32 can throw FormatException or OverflowException.
 try
 {
 numVal = Convert.ToInt32(input);
 if (numVal < Int32.MaxValue)
 {
 Console.WriteLine("The new value is {0}", ++numVal);
 }
 else
 {
 Console.WriteLine("numVal cannot be incremented beyond
its current value");
 }
 }
 catch (FormatException)
 {
 Console.WriteLine("Input string is not a sequence of
digits.");
 }
 catch (OverflowException)
 {
 Console.WriteLine("The number cannot fit in an Int32.");
 }

 Console.Write("Go again? Y/N: ");
 string go = Console.ReadLine();
 if (go.ToUpper() != "Y")
 {
 repeat = false;
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.int32.maxvalue

// Sample Output:
// Enter a number between -2,147,483,648 and +2,147,483,647 (inclusive):
473
// The new value is 474
// Go again? Y/N: y
// Enter a number between -2,147,483,648 and +2,147,483,647 (inclusive):
2147483647
// numVal cannot be incremented beyond its current value
// Go again? Y/N: y
// Enter a number between -2,147,483,648 and +2,147,483,647 (inclusive):
-1000
// The new value is -999
// Go again? Y/N: n

How to convert between hexadecimal
strings and numeric types (C#
Programming Guide)
Article • 2021-10-12 • 3 minutes to read

These examples show you how to perform the following tasks:

Obtain the hexadecimal value of each character in a string.

Obtain the char that corresponds to each value in a hexadecimal string.

Convert a hexadecimal string to an int.

Convert a hexadecimal string to a float.

Convert a byte array to a hexadecimal string .

This example outputs the hexadecimal value of each character in a string . First it parses
the string to an array of characters. Then it calls ToInt32(Char) on each character to
obtain its numeric value. Finally, it formats the number as its hexadecimal representation
in a string .

C#

Examples

string input = "Hello World!";
char[] values = input.ToCharArray();
foreach (char letter in values)
{
 // Get the integral value of the character.
 int value = Convert.ToInt32(letter);
 // Convert the integer value to a hexadecimal value in string form.
 Console.WriteLine($"Hexadecimal value of {letter} is {value:X}");
}
/* Output:
 Hexadecimal value of H is 48
 Hexadecimal value of e is 65
 Hexadecimal value of l is 6C
 Hexadecimal value of l is 6C
 Hexadecimal value of o is 6F
 Hexadecimal value of is 20
 Hexadecimal value of W is 57
 Hexadecimal value of o is 6F
 Hexadecimal value of r is 72

https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32#system-convert-toint32(system-char)

This example parses a string of hexadecimal values and outputs the character
corresponding to each hexadecimal value. First it calls the Split(Char[]) method to obtain
each hexadecimal value as an individual string in an array. Then it calls ToInt32(String,
Int32) to convert the hexadecimal value to a decimal value represented as an int. It
shows two different ways to obtain the character corresponding to that character code.
The first technique uses ConvertFromUtf32(Int32), which returns the character
corresponding to the integer argument as a string . The second technique explicitly
casts the int to a char.

C#

This example shows another way to convert a hexadecimal string to an integer, by
calling the Parse(String, NumberStyles) method.

C#

 Hexadecimal value of l is 6C
 Hexadecimal value of d is 64
 Hexadecimal value of ! is 21
 */

string hexValues = "48 65 6C 6C 6F 20 57 6F 72 6C 64 21";
string[] hexValuesSplit = hexValues.Split(' ');
foreach (string hex in hexValuesSplit)
{
 // Convert the number expressed in base-16 to an integer.
 int value = Convert.ToInt32(hex, 16);
 // Get the character corresponding to the integral value.
 string stringValue = Char.ConvertFromUtf32(value);
 char charValue = (char)value;
 Console.WriteLine("hexadecimal value = {0}, int value = {1}, char value
= {2} or {3}",
 hex, value, stringValue, charValue);
}
/* Output:
 hexadecimal value = 48, int value = 72, char value = H or H
 hexadecimal value = 65, int value = 101, char value = e or e
 hexadecimal value = 6C, int value = 108, char value = l or l
 hexadecimal value = 6C, int value = 108, char value = l or l
 hexadecimal value = 6F, int value = 111, char value = o or o
 hexadecimal value = 20, int value = 32, char value = or
 hexadecimal value = 57, int value = 87, char value = W or W
 hexadecimal value = 6F, int value = 111, char value = o or o
 hexadecimal value = 72, int value = 114, char value = r or r
 hexadecimal value = 6C, int value = 108, char value = l or l
 hexadecimal value = 64, int value = 100, char value = d or d
 hexadecimal value = 21, int value = 33, char value = ! or !
*/

https://learn.microsoft.com/en-us/dotnet/api/system.string.split#system-string-split(system-char())
https://learn.microsoft.com/en-us/dotnet/api/system.convert.toint32#system-convert-toint32(system-string-system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.char.convertfromutf32#system-char-convertfromutf32(system-int32)
https://learn.microsoft.com/en-us/dotnet/api/system.int32.parse#system-int32-parse(system-string-system-globalization-numberstyles)

The following example shows how to convert a hexadecimal string to a float by using
the System.BitConverter class and the UInt32.Parse method.

C#

The following example shows how to convert a byte array to a hexadecimal string by
using the System.BitConverter class.

C#

The following example shows how to convert a byte array to a hexadecimal string by
calling the Convert.ToHexString method introduced in .NET 5.0.

C#

string hexString = "8E2";
int num = Int32.Parse(hexString,
System.Globalization.NumberStyles.HexNumber);
Console.WriteLine(num);
//Output: 2274

string hexString = "43480170";
uint num = uint.Parse(hexString,
System.Globalization.NumberStyles.AllowHexSpecifier);

byte[] floatVals = BitConverter.GetBytes(num);
float f = BitConverter.ToSingle(floatVals, 0);
Console.WriteLine("float convert = {0}", f);

// Output: 200.0056

byte[] vals = { 0x01, 0xAA, 0xB1, 0xDC, 0x10, 0xDD };

string str = BitConverter.ToString(vals);
Console.WriteLine(str);

str = BitConverter.ToString(vals).Replace("-", "");
Console.WriteLine(str);

/*Output:
 01-AA-B1-DC-10-DD
 01AAB1DC10DD
 */

byte[] array = { 0x64, 0x6f, 0x74, 0x63, 0x65, 0x74 };

string hexValue = Convert.ToHexString(array);

https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.uint32.parse
https://learn.microsoft.com/en-us/dotnet/api/system.bitconverter
https://learn.microsoft.com/en-us/dotnet/api/system.convert.tohexstring

Standard Numeric Format Strings
Types
How to determine whether a string represents a numeric value

Console.WriteLine(hexValue);

/*Output:
 646F74636574
 */

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-numeric-format-strings

Using type dynamic (C# Programming
Guide)
Article • 2022-09-29 • 4 minutes to read

The dynamic type is a static type, but an object of type dynamic bypasses static type
checking. In most cases, it functions like it has type object . At compile time, an element
that is typed as dynamic is assumed to support any operation. Therefore, you do not
have to be concerned about whether the object gets its value from a COM API, from a
dynamic language such as IronPython, from the HTML Document Object Model (DOM),
from reflection, or from somewhere else in the program. However, if the code is not
valid, errors are caught at run time.

For example, if instance method exampleMethod1 in the following code has only one
parameter, the compiler recognizes that the first call to the method,
ec.exampleMethod1(10, 4) , is not valid because it contains two arguments. The call
causes a compiler error. The second call to the method, dynamic_ec.exampleMethod1(10,
4) , is not checked by the compiler because the type of dynamic_ec is dynamic .
Therefore, no compiler error is reported. However, the error does not escape notice
indefinitely. It is caught at run time and causes a run-time exception.

C#

C#

static void Main(string[] args)
{
 ExampleClass ec = new ExampleClass();
 // The following call to exampleMethod1 causes a compiler error
 // if exampleMethod1 has only one parameter. Uncomment the line
 // to see the error.
 //ec.exampleMethod1(10, 4);

 dynamic dynamic_ec = new ExampleClass();
 // The following line is not identified as an error by the
 // compiler, but it causes a run-time exception.
 dynamic_ec.exampleMethod1(10, 4);

 // The following calls also do not cause compiler errors, whether
 // appropriate methods exist or not.
 dynamic_ec.someMethod("some argument", 7, null);
 dynamic_ec.nonexistentMethod();
}

The role of the compiler in these examples is to package together information about
what each statement is proposing to do to the object or expression that is typed as
dynamic . At run time, the stored information is examined, and any statement that is not
valid causes a run-time exception.

The result of most dynamic operations is itself dynamic . For example, if you rest the
mouse pointer over the use of testSum in the following example, IntelliSense displays
the type (local variable) dynamic testSum.

C#

Operations in which the result is not dynamic include:

Conversions from dynamic to another type.
Constructor calls that include arguments of type dynamic .

For example, the type of testInstance in the following declaration is ExampleClass , not
dynamic :

C#

Conversion examples are shown in the following section, "Conversions."

Conversions between dynamic objects and other types are easy. This enables the
developer to switch between dynamic and non-dynamic behavior.

class ExampleClass
{
 public ExampleClass() { }
 public ExampleClass(int v) { }

 public void exampleMethod1(int i) { }

 public void exampleMethod2(string str) { }
}

dynamic d = 1;
var testSum = d + 3;
// Rest the mouse pointer over testSum in the following statement.
System.Console.WriteLine(testSum);

var testInstance = new ExampleClass(d);

Conversions

Any object can be converted to dynamic type implicitly, as shown in the following
examples.

C#

Conversely, an implicit conversion can be dynamically applied to any expression of type
dynamic .

C#

Overload resolution occurs at run time instead of at compile time if one or more of the
arguments in a method call have the type dynamic , or if the receiver of the method call
is of type dynamic . In the following example, if the only accessible exampleMethod2
method is defined to take a string argument, sending d1 as the argument does not
cause a compiler error, but it does cause a run-time exception. Overload resolution fails
at run time because the run-time type of d1 is int , and exampleMethod2 requires a
string.

C#

dynamic d1 = 7;
dynamic d2 = "a string";
dynamic d3 = System.DateTime.Today;
dynamic d4 = System.Diagnostics.Process.GetProcesses();

int i = d1;
string str = d2;
DateTime dt = d3;
System.Diagnostics.Process[] procs = d4;

Overload resolution with arguments of type
dynamic

// Valid.
ec.exampleMethod2("a string");

// The following statement does not cause a compiler error, even though ec
is not
// dynamic. A run-time exception is raised because the run-time type of d1
is int.
ec.exampleMethod2(d1);
// The following statement does cause a compiler error.
//ec.exampleMethod2(7);

The dynamic language runtime (DLR) is an API that was introduced in .NET Framework 4.
It provides the infrastructure that supports the dynamic type in C#, and also the
implementation of dynamic programming languages such as IronPython and IronRuby.
For more information about the DLR, see Dynamic Language Runtime Overview.

Many COM methods allow for variation in argument types and return type by
designating the types as object . This has necessitated explicit casting of the values to
coordinate with strongly typed variables in C#. If you compile by using the
EmbedInteropTypes (C# Compiler Options) option, the introduction of the dynamic type
enables you to treat the occurrences of object in COM signatures as if they were of
type dynamic , and thereby to avoid much of the casting. For example, the following
statements contrast how you access a cell in a Microsoft Office Excel spreadsheet with
the dynamic type and without the dynamic type.

C#

C#

Title Description

dynamic Describes the usage of the dynamic keyword.

Dynamic Language
Runtime Overview

Provides an overview of the DLR, which is a runtime environment that
adds a set of services for dynamic languages to the common language
runtime (CLR).

Dynamic language runtime

COM interop

// Before the introduction of dynamic.
((Excel.Range)excelApp.Cells[1, 1]).Value2 = "Name";
Excel.Range range2008 = (Excel.Range)excelApp.Cells[1, 1];

// After the introduction of dynamic, the access to the Value property and
// the conversion to Excel.Range are handled by the run-time COM binder.
excelApp.Cells[1, 1].Value = "Name";
Excel.Range range2010 = excelApp.Cells[1, 1];

Related topics

https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview

Title Description

Walkthrough: Creating
and Using Dynamic
Objects

Provides step-by-step instructions for creating a custom dynamic
object and for creating a project that accesses an IronPython library.

How to access Office
interop objects by
using C# features

Demonstrates how to create a project that uses named and optional
arguments, the dynamic type, and other enhancements that simplify
access to Office API objects.

Walkthrough: Creating and Using
Dynamic Objects (C# and Visual Basic)
Article • 2022-09-21 • 11 minutes to read

Dynamic objects expose members such as properties and methods at run time, instead
of at compile time. This enables you to create objects to work with structures that do
not match a static type or format. For example, you can use a dynamic object to
reference the HTML Document Object Model (DOM), which can contain any
combination of valid HTML markup elements and attributes. Because each HTML
document is unique, the members for a particular HTML document are determined at
run time. A common method to reference an attribute of an HTML element is to pass
the name of the attribute to the GetProperty method of the element. To reference the
id attribute of the HTML element <div id="Div1"> , you first obtain a reference to the
<div> element, and then use divElement.GetProperty("id") . If you use a dynamic
object, you can reference the id attribute as divElement.id .

Dynamic objects also provide convenient access to dynamic languages such as
IronPython and IronRuby. You can use a dynamic object to refer to a dynamic script that
is interpreted at run time.

You reference a dynamic object by using late binding. In C#, you specify the type of a
late-bound object as dynamic . In Visual Basic, you specify the type of a late-bound
object as Object . For more information, see dynamic and Early and Late Binding.

You can create custom dynamic objects by using the classes in the System.Dynamic
namespace. For example, you can create an ExpandoObject and specify the members of
that object at run time. You can also create your own type that inherits the
DynamicObject class. You can then override the members of the DynamicObject class to
provide run-time dynamic functionality.

This article contains two independent walkthroughs:

Create a custom object that dynamically exposes the contents of a text file as
properties of an object.

Create a project that uses an IronPython library.

You can do either one of these or both of them, and if you do both, the order doesn't
matter.

https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/early-late-binding/
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.expandoobject
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject

Visual Studio 2019 version 16.9 or a later version with the .NET desktop
development workload installed. The .NET 5 SDK is automatically installed when
you select this workload.

For the second walkthrough, install IronPython for .NET. Go to their Download
page to obtain the latest version.

The first walkthrough defines a custom dynamic object that searches the contents of a
text file. A dynamic property specifies the text to search for. For example, if calling code
specifies dynamicFile.Sample , the dynamic class returns a generic list of strings that
contains all of the lines from the file that begin with "Sample". The search is case-
insensitive. The dynamic class also supports two optional arguments. The first argument
is a search option enum value that specifies that the dynamic class should search for
matches at the start of the line, the end of the line, or anywhere in the line. The second
argument specifies that the dynamic class should trim leading and trailing spaces from
each line before searching. For example, if calling code specifies
dynamicFile.Sample(StringSearchOption.Contains) , the dynamic class searches for
"Sample" anywhere in a line. If calling code specifies
dynamicFile.Sample(StringSearchOption.StartsWith, false) , the dynamic class searches
for "Sample" at the start of each line, and does not remove leading and trailing spaces.
The default behavior of the dynamic class is to search for a match at the start of each
line and to remove leading and trailing spaces.

1. Start Visual Studio.

2. Select Create a new project.

Prerequisites

７ Note

Your computer might show different names or locations for some of the Visual
Studio user interface elements in the following instructions. The Visual Studio
edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

Create a Custom Dynamic Object

To create a custom dynamic class

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=learn.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019
https://ironpython.net/
https://ironpython.net/download/
https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

3. In the Create a new project dialog, select C# or Visual Basic, select Console
Application, and then select Next.

4. In the Configure your new project dialog, enter DynamicSample for the Project
name, and then select Next.

5. In the Additional information dialog, select .NET 5.0 (Current) for the Target
Framework, and then select Create.

The new project is created.

6. In Solution Explorer, right-click the DynamicSample project and select Add >
Class. In the Name box, type ReadOnlyFile , and then select Add.

A new file is added that contains the ReadOnlyFile class.

7. At the top of the ReadOnlyFile.cs or ReadOnlyFile.vb file, add the following code to
import the System.IO and System.Dynamic namespaces.

C#

8. The custom dynamic object uses an enum to determine the search criteria. Before
the class statement, add the following enum definition.

C#

9. Update the class statement to inherit the DynamicObject class, as shown in the
following code example.

C#

10. Add the following code to the ReadOnlyFile class to define a private field for the
file path and a constructor for the ReadOnlyFile class.

using System.IO;
using System.Dynamic;

public enum StringSearchOption
{
 StartsWith,
 Contains,
 EndsWith
}

class ReadOnlyFile : DynamicObject

https://learn.microsoft.com/en-us/dotnet/api/system.io
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic

C#

11. Add the following GetPropertyValue method to the ReadOnlyFile class. The
GetPropertyValue method takes, as input, search criteria and returns the lines from
a text file that match that search criteria. The dynamic methods provided by the
ReadOnlyFile class call the GetPropertyValue method to retrieve their respective
results.

C#

// Store the path to the file and the initial line count value.
private string p_filePath;

// Public constructor. Verify that file exists and store the path in
// the private variable.
public ReadOnlyFile(string filePath)
{
 if (!File.Exists(filePath))
 {
 throw new Exception("File path does not exist.");
 }

 p_filePath = filePath;
}

public List<string> GetPropertyValue(string propertyName,
 StringSearchOption
StringSearchOption = StringSearchOption.StartsWith,
 bool trimSpaces = true)
{
 StreamReader sr = null;
 List<string> results = new List<string>();
 string line = "";
 string testLine = "";

 try
 {
 sr = new StreamReader(p_filePath);

 while (!sr.EndOfStream)
 {
 line = sr.ReadLine();

 // Perform a case-insensitive search by using the specified
search options.
 testLine = line.ToUpper();
 if (trimSpaces) { testLine = testLine.Trim(); }

 switch (StringSearchOption)
 {
 case StringSearchOption.StartsWith:

12. After the GetPropertyValue method, add the following code to override the
TryGetMember method of the DynamicObject class. The TryGetMember method is
called when a member of a dynamic class is requested and no arguments are
specified. The binder argument contains information about the referenced
member, and the result argument references the result returned for the specified
member. The TryGetMember method returns a Boolean value that returns true if
the requested member exists; otherwise it returns false .

C#

13. After the TryGetMember method, add the following code to override the
TryInvokeMember method of the DynamicObject class. The TryInvokeMember

 if (testLine.StartsWith(propertyName.ToUpper())) {
results.Add(line); }
 break;
 case StringSearchOption.Contains:
 if (testLine.Contains(propertyName.ToUpper())) {
results.Add(line); }
 break;
 case StringSearchOption.EndsWith:
 if (testLine.EndsWith(propertyName.ToUpper())) {
results.Add(line); }
 break;
 }
 }
 }
 catch
 {
 // Trap any exception that occurs in reading the file and
return null.
 results = null;
 }
 finally
 {
 if (sr != null) {sr.Close();}
 }

 return results;
}

// Implement the TryGetMember method of the DynamicObject class for
dynamic member calls.
public override bool TryGetMember(GetMemberBinder binder,
 out object result)
{
 result = GetPropertyValue(binder.Name);
 return result == null ? false : true;
}

https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject.trygetmember
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject.trygetmember
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject.trygetmember
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject.tryinvokemember
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject.tryinvokemember

method is called when a member of a dynamic class is requested with arguments.
The binder argument contains information about the referenced member, and the
result argument references the result returned for the specified member. The
args argument contains an array of the arguments that are passed to the member.
The TryInvokeMember method returns a Boolean value that returns true if the
requested member exists; otherwise it returns false .

The custom version of the TryInvokeMember method expects the first argument to
be a value from the StringSearchOption enum that you defined in a previous step.
The TryInvokeMember method expects the second argument to be a Boolean value.
If one or both arguments are valid values, they are passed to the GetPropertyValue
method to retrieve the results.

C#

// Implement the TryInvokeMember method of the DynamicObject class for
// dynamic member calls that have arguments.
public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args,
 out object result)
{
 StringSearchOption StringSearchOption =
StringSearchOption.StartsWith;
 bool trimSpaces = true;

 try
 {
 if (args.Length > 0) { StringSearchOption =
(StringSearchOption)args[0]; }
 }
 catch
 {
 throw new ArgumentException("StringSearchOption argument must
be a StringSearchOption enum value.");
 }

 try
 {
 if (args.Length > 1) { trimSpaces = (bool)args[1]; }
 }
 catch
 {
 throw new ArgumentException("trimSpaces argument must be a
Boolean value.");
 }

 result = GetPropertyValue(binder.Name, StringSearchOption,
trimSpaces);

https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject.tryinvokemember

14. Save and close the file.

1. In Solution Explorer, right-click the DynamicSample project and select Add > New
Item. In the Installed Templates pane, select General, and then select the Text File
template. Leave the default name of TextFile1.txt in the Name box, and then click
Add. A new text file is added to the project.

2. Copy the following text to the TextFile1.txt file.

text

3. Save and close the file.

1. In Solution Explorer, double-click the Program.vb file if you're using Visual Basic or
the Program.cs file if you're using Visual C#.

2. Add the following code to the Main procedure to create an instance of the
ReadOnlyFile class for the TextFile1.txt file. The code uses late binding to call
dynamic members and retrieve lines of text that contain the string "Customer".

C#

 return result == null ? false : true;
}

To create a sample text file

List of customers and suppliers

Supplier: Lucerne Publishing (https://www.lucernepublishing.com/)
Customer: Preston, Chris
Customer: Hines, Patrick
Customer: Cameron, Maria
Supplier: Graphic Design Institute
(https://www.graphicdesigninstitute.com/)
Supplier: Fabrikam, Inc. (https://www.fabrikam.com/)
Customer: Seubert, Roxanne
Supplier: Proseware, Inc. (http://www.proseware.com/)
Customer: Adolphi, Stephan
Customer: Koch, Paul

To create a sample application that uses the custom
dynamic object

dynamic rFile = new ReadOnlyFile(@"..\..\..\TextFile1.txt");
foreach (string line in rFile.Customer)

3. Save the file and press Ctrl+ F5 to build and run the application.

The following walkthrough creates a project that accesses a library that is written in the
dynamic language IronPython.

1. In Visual Studio, select File > New > Project.

2. In the Create a new project dialog, select C# or Visual Basic, select Console
Application, and then select Next.

3. In the Configure your new project dialog, enter DynamicIronPythonSample for the
Project name, and then select Next.

4. In the Additional information dialog, select .NET 5.0 (Current) for the Target
Framework, and then select Create.

The new project is created.

5. Install the IronPython NuGet package.

6. If you're using Visual Basic, edit the Program.vb file. If you're using Visual C#, edit
the Program.cs file.

7. At the top of the file, add the following code to import the
Microsoft.Scripting.Hosting and IronPython.Hosting namespaces from the
IronPython libraries and the System.Linq namespace.

C#

{
 Console.WriteLine(line);
}
Console.WriteLine("----------------------------");
foreach (string line in rFile.Customer(StringSearchOption.Contains,
true))
{
 Console.WriteLine(line);
}

Call a dynamic language library

To create a custom dynamic class

using System.Linq;
using Microsoft.Scripting.Hosting;
using IronPython.Hosting;

https://www.nuget.org/packages/IronPython

8. In the Main method, add the following code to create a new
Microsoft.Scripting.Hosting.ScriptRuntime object to host the IronPython
libraries. The ScriptRuntime object loads the IronPython library module
random.py.

C#

9. After the code to load the random.py module, add the following code to create an
array of integers. The array is passed to the shuffle method of the random.py
module, which randomly sorts the values in the array.

C#

10. Save the file and press Ctrl+ F5 to build and run the application.

System.Dynamic
System.Dynamic.DynamicObject
Using Type dynamic

// Set the current directory to the IronPython libraries.
System.IO.Directory.SetCurrentDirectory(
 Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles) +
 @"\IronPython 2.7\Lib");

// Create an instance of the random.py IronPython library.
Console.WriteLine("Loading random.py");
ScriptRuntime py = Python.CreateRuntime();
dynamic random = py.UseFile("random.py");
Console.WriteLine("random.py loaded.");

// Initialize an enumerable set of integers.
int[] items = Enumerable.Range(1, 7).ToArray();

// Randomly shuffle the array of integers by using IronPython.
for (int i = 0; i < 5; i++)
{
 random.shuffle(items);
 foreach (int item in items)
 {
 Console.WriteLine(item);
 }
 Console.WriteLine("-------------------");
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.dynamic
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject

Early and Late Binding
dynamic
Implementing Dynamic Interfaces (downloadable PDF from Microsoft TechNet)

https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/early-late-binding/
https://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/implementing-dynamic-interfaces.pdf

Versioning with the Override and New
Keywords (C# Programming Guide)
Article • 2021-10-27 • 5 minutes to read

The C# language is designed so that versioning between base and derived classes in
different libraries can evolve and maintain backward compatibility. This means, for
example, that the introduction of a new member in a base class with the same name as
a member in a derived class is completely supported by C# and does not lead to
unexpected behavior. It also means that a class must explicitly state whether a method is
intended to override an inherited method, or whether a method is a new method that
hides a similarly named inherited method.

In C#, derived classes can contain methods with the same name as base class methods.

If the method in the derived class is not preceded by new or override keywords,
the compiler will issue a warning and the method will behave as if the new
keyword were present.

If the method in the derived class is preceded with the new keyword, the method is
defined as being independent of the method in the base class.

If the method in the derived class is preceded with the override keyword, objects
of the derived class will call that method instead of the base class method.

In order to apply the override keyword to the method in the derived class, the
base class method must be defined virtual.

The base class method can be called from within the derived class using the base
keyword.

The override , virtual , and new keywords can also be applied to properties,
indexers, and events.

By default, C# methods are not virtual. If a method is declared as virtual, any class
inheriting the method can implement its own version. To make a method virtual, the
virtual modifier is used in the method declaration of the base class. The derived class
can then override the base virtual method by using the override keyword or hide the
virtual method in the base class by using the new keyword. If neither the override
keyword nor the new keyword is specified, the compiler will issue a warning and the
method in the derived class will hide the method in the base class.

To demonstrate this in practice, assume for a moment that Company A has created a
class named GraphicsClass , which your program uses. The following is GraphicsClass :

C#

Your company uses this class, and you use it to derive your own class, adding a new
method:

C#

Your application is used without problems, until Company A releases a new version of
GraphicsClass , which resembles the following code:

C#

The new version of GraphicsClass now contains a method named DrawRectangle .
Initially, nothing occurs. The new version is still binary compatible with the old version.
Any software that you have deployed will continue to work, even if the new class is
installed on those computer systems. Any existing calls to the method DrawRectangle
will continue to reference your version, in your derived class.

However, as soon as you recompile your application by using the new version of
GraphicsClass , you will receive a warning from the compiler, CS0108. This warning
informs you that you have to consider how you want your DrawRectangle method to
behave in your application.

class GraphicsClass
{
 public virtual void DrawLine() { }
 public virtual void DrawPoint() { }
}

class YourDerivedGraphicsClass : GraphicsClass
{
 public void DrawRectangle() { }
}

class GraphicsClass
{
 public virtual void DrawLine() { }
 public virtual void DrawPoint() { }
 public virtual void DrawRectangle() { }
}

If you want your method to override the new base class method, use the override
keyword:

C#

The override keyword makes sure that any objects derived from
YourDerivedGraphicsClass will use the derived class version of DrawRectangle . Objects
derived from YourDerivedGraphicsClass can still access the base class version of
DrawRectangle by using the base keyword:

C#

If you do not want your method to override the new base class method, the following
considerations apply. To avoid confusion between the two methods, you can rename
your method. This can be time-consuming and error-prone, and just not practical in
some cases. However, if your project is relatively small, you can use Visual Studio's
Refactoring options to rename the method. For more information, see Refactoring
Classes and Types (Class Designer).

Alternatively, you can prevent the warning by using the keyword new in your derived
class definition:

C#

Using the new keyword tells the compiler that your definition hides the definition that is
contained in the base class. This is the default behavior.

When a method is named on a class, the C# compiler selects the best method to call if
more than one method is compatible with the call, such as when there are two methods

class YourDerivedGraphicsClass : GraphicsClass
{
 public override void DrawRectangle() { }
}

base.DrawRectangle();

class YourDerivedGraphicsClass : GraphicsClass
{
 public new void DrawRectangle() { }
}

Override and Method Selection

https://learn.microsoft.com/en-us/visualstudio/ide/class-designer/refactoring-classes-and-types

with the same name, and parameters that are compatible with the parameter passed.
The following methods would be compatible:

C#

When DoWork is called on an instance of Derived , the C# compiler will first try to make
the call compatible with the versions of DoWork declared originally on Derived . Override
methods are not considered as declared on a class, they are new implementations of a
method declared on a base class. Only if the C# compiler cannot match the method call
to an original method on Derived , it will try to match the call to an overridden method
with the same name and compatible parameters. For example:

C#

Because the variable val can be converted to a double implicitly, the C# compiler calls
DoWork(double) instead of DoWork(int) . There are two ways to avoid this. First, avoid
declaring new methods with the same name as virtual methods. Second, you can
instruct the C# compiler to call the virtual method by making it search the base class
method list by casting the instance of Derived to Base . Because the method is virtual,
the implementation of DoWork(int) on Derived will be called. For example:

C#

For more examples of new and override , see Knowing When to Use Override and New
Keywords.

C# Programming Guide
The C# type system

public class Derived : Base
{
 public override void DoWork(int param) { }
 public void DoWork(double param) { }
}

int val = 5;
Derived d = new Derived();
d.DoWork(val); // Calls DoWork(double).

((Base)d).DoWork(val); // Calls DoWork(int) on Derived.

See also

Methods
Inheritance

Knowing When to Use Override and
New Keywords (C# Programming Guide)
Article • 2021-10-27 • 10 minutes to read

In C#, a method in a derived class can have the same name as a method in the base
class. You can specify how the methods interact by using the new and override
keywords. The override modifier extends the base class virtual method, and the new
modifier hides an accessible base class method. The difference is illustrated in the
examples in this topic.

In a console application, declare the following two classes, BaseClass and DerivedClass .
DerivedClass inherits from BaseClass .

C#

In the Main method, declare variables bc , dc , and bcdc .

bc is of type BaseClass , and its value is of type BaseClass .

dc is of type DerivedClass , and its value is of type DerivedClass .

bcdc is of type BaseClass , and its value is of type DerivedClass . This is the variable
to pay attention to.

Because bc and bcdc have type BaseClass , they can only directly access Method1 , unless
you use casting. Variable dc can access both Method1 and Method2 . These relationships
are shown in the following code.

class BaseClass
{
 public void Method1()
 {
 Console.WriteLine("Base - Method1");
 }
}

class DerivedClass : BaseClass
{
 public void Method2()
 {
 Console.WriteLine("Derived - Method2");
 }
}

C#

Next, add the following Method2 method to BaseClass . The signature of this method
matches the signature of the Method2 method in DerivedClass .

C#

Because BaseClass now has a Method2 method, a second calling statement can be
added for BaseClass variables bc and bcdc , as shown in the following code.

C#

When you build the project, you see that the addition of the Method2 method in
BaseClass causes a warning. The warning says that the Method2 method in
DerivedClass hides the Method2 method in BaseClass . You are advised to use the new
keyword in the Method2 definition if you intend to cause that result. Alternatively, you

class Program
{
 static void Main(string[] args)
 {
 BaseClass bc = new BaseClass();
 DerivedClass dc = new DerivedClass();
 BaseClass bcdc = new DerivedClass();

 bc.Method1();
 dc.Method1();
 dc.Method2();
 bcdc.Method1();
 }
 // Output:
 // Base - Method1
 // Base - Method1
 // Derived - Method2
 // Base - Method1
}

public void Method2()
{
 Console.WriteLine("Base - Method2");
}

bc.Method1();
bc.Method2();
dc.Method1();
dc.Method2();
bcdc.Method1();
bcdc.Method2();

could rename one of the Method2 methods to resolve the warning, but that is not always
practical.

Before adding new , run the program to see the output produced by the additional
calling statements. The following results are displayed.

C#

The new keyword preserves the relationships that produce that output, but it suppresses
the warning. The variables that have type BaseClass continue to access the members of
BaseClass , and the variable that has type DerivedClass continues to access members in
DerivedClass first, and then to consider members inherited from BaseClass .

To suppress the warning, add the new modifier to the definition of Method2 in
DerivedClass , as shown in the following code. The modifier can be added before or
after public .

C#

Run the program again to verify that the output has not changed. Also verify that the
warning no longer appears. By using new , you are asserting that you are aware that the
member that it modifies hides a member that is inherited from the base class. For more
information about name hiding through inheritance, see new Modifier.

To contrast this behavior to the effects of using override , add the following method to
DerivedClass . The override modifier can be added before or after public .

C#

// Output:
// Base - Method1
// Base - Method2
// Base - Method1
// Derived - Method2
// Base - Method1
// Base - Method2

public new void Method2()
{
 Console.WriteLine("Derived - Method2");
}

public override void Method1()
{

Add the virtual modifier to the definition of Method1 in BaseClass . The virtual
modifier can be added before or after public .

C#

Run the project again. Notice especially the last two lines of the following output.

C#

The use of the override modifier enables bcdc to access the Method1 method that is
defined in DerivedClass . Typically, that is the desired behavior in inheritance hierarchies.
You want objects that have values that are created from the derived class to use the
methods that are defined in the derived class. You achieve that behavior by using
override to extend the base class method.

The following code contains the full example.

C#

 Console.WriteLine("Derived - Method1");
}

public virtual void Method1()
{
 Console.WriteLine("Base - Method1");
}

// Output:
// Base - Method1
// Base - Method2
// Derived - Method1
// Derived - Method2
// Derived - Method1
// Base - Method2

using System;
using System.Text;

namespace OverrideAndNew
{
 class Program
 {
 static void Main(string[] args)
 {
 BaseClass bc = new BaseClass();
 DerivedClass dc = new DerivedClass();
 BaseClass bcdc = new DerivedClass();

 // The following two calls do what you would expect. They call
 // the methods that are defined in BaseClass.
 bc.Method1();
 bc.Method2();
 // Output:
 // Base - Method1
 // Base - Method2

 // The following two calls do what you would expect. They call
 // the methods that are defined in DerivedClass.
 dc.Method1();
 dc.Method2();
 // Output:
 // Derived - Method1
 // Derived - Method2

 // The following two calls produce different results, depending
 // on whether override (Method1) or new (Method2) is used.
 bcdc.Method1();
 bcdc.Method2();
 // Output:
 // Derived - Method1
 // Base - Method2
 }
 }

 class BaseClass
 {
 public virtual void Method1()
 {
 Console.WriteLine("Base - Method1");
 }

 public virtual void Method2()
 {
 Console.WriteLine("Base - Method2");
 }
 }

 class DerivedClass : BaseClass
 {
 public override void Method1()
 {
 Console.WriteLine("Derived - Method1");
 }

 public new void Method2()
 {
 Console.WriteLine("Derived - Method2");
 }
 }
}

The following example illustrates similar behavior in a different context. The example
defines three classes: a base class named Car and two classes that are derived from it,
ConvertibleCar and Minivan . The base class contains a DescribeCar method. The
method displays a basic description of a car, and then calls ShowDetails to provide
additional information. Each of the three classes defines a ShowDetails method. The new
modifier is used to define ShowDetails in the ConvertibleCar class. The override
modifier is used to define ShowDetails in the Minivan class.

C#

// Define the base class, Car. The class defines two methods,
// DescribeCar and ShowDetails. DescribeCar calls ShowDetails, and each
derived
// class also defines a ShowDetails method. The example tests which version
of
// ShowDetails is selected, the base class method or the derived class
method.
class Car
{
 public void DescribeCar()
 {
 System.Console.WriteLine("Four wheels and an engine.");
 ShowDetails();
 }

 public virtual void ShowDetails()
 {
 System.Console.WriteLine("Standard transportation.");
 }
}

// Define the derived classes.

// Class ConvertibleCar uses the new modifier to acknowledge that
ShowDetails
// hides the base class method.
class ConvertibleCar : Car
{
 public new void ShowDetails()
 {
 System.Console.WriteLine("A roof that opens up.");
 }
}

// Class Minivan uses the override modifier to specify that ShowDetails
// extends the base class method.
class Minivan : Car
{
 public override void ShowDetails()
 {
 System.Console.WriteLine("Carries seven people.");

The example tests which version of ShowDetails is called. The following method,
TestCars1 , declares an instance of each class, and then calls DescribeCar on each
instance.

C#

TestCars1 produces the following output. Notice especially the results for car2 , which
probably are not what you expected. The type of the object is ConvertibleCar , but
DescribeCar does not access the version of ShowDetails that is defined in the
ConvertibleCar class because that method is declared with the new modifier, not the
override modifier. As a result, a ConvertibleCar object displays the same description as
a Car object. Contrast the results for car3 , which is a Minivan object. In this case, the
ShowDetails method that is declared in the Minivan class overrides the ShowDetails
method that is declared in the Car class, and the description that is displayed describes
a minivan.

C#

 }
}

public static void TestCars1()
{
 System.Console.WriteLine("\nTestCars1");
 System.Console.WriteLine("----------");

 Car car1 = new Car();
 car1.DescribeCar();
 System.Console.WriteLine("----------");

 // Notice the output from this test case. The new modifier is
 // used in the definition of ShowDetails in the ConvertibleCar
 // class.

 ConvertibleCar car2 = new ConvertibleCar();
 car2.DescribeCar();
 System.Console.WriteLine("----------");

 Minivan car3 = new Minivan();
 car3.DescribeCar();
 System.Console.WriteLine("----------");
}

// TestCars1
// ----------
// Four wheels and an engine.
// Standard transportation.

TestCars2 creates a list of objects that have type Car . The values of the objects are
instantiated from the Car , ConvertibleCar , and Minivan classes. DescribeCar is called
on each element of the list. The following code shows the definition of TestCars2 .

C#

The following output is displayed. Notice that it is the same as the output that is
displayed by TestCars1 . The ShowDetails method of the ConvertibleCar class is not
called, regardless of whether the type of the object is ConvertibleCar , as in TestCars1 ,
or Car , as in TestCars2 . Conversely, car3 calls the ShowDetails method from the
Minivan class in both cases, whether it has type Minivan or type Car .

C#

// ----------
// Four wheels and an engine.
// Standard transportation.
// ----------
// Four wheels and an engine.
// Carries seven people.
// ----------

public static void TestCars2()
{
 System.Console.WriteLine("\nTestCars2");
 System.Console.WriteLine("----------");

 var cars = new List<Car> { new Car(), new ConvertibleCar(),
 new Minivan() };

 foreach (var car in cars)
 {
 car.DescribeCar();
 System.Console.WriteLine("----------");
 }
}

// TestCars2
// ----------
// Four wheels and an engine.
// Standard transportation.
// ----------
// Four wheels and an engine.
// Standard transportation.
// ----------
// Four wheels and an engine.
// Carries seven people.
// ----------

Methods TestCars3 and TestCars4 complete the example. These methods call
ShowDetails directly, first from objects declared to have type ConvertibleCar and
Minivan (TestCars3), then from objects declared to have type Car (TestCars4). The
following code defines these two methods.

C#

The methods produce the following output, which corresponds to the results from the
first example in this topic.

C#

The following code shows the complete project and its output.

C#

public static void TestCars3()
{
 System.Console.WriteLine("\nTestCars3");
 System.Console.WriteLine("----------");
 ConvertibleCar car2 = new ConvertibleCar();
 Minivan car3 = new Minivan();
 car2.ShowDetails();
 car3.ShowDetails();
}

public static void TestCars4()
{
 System.Console.WriteLine("\nTestCars4");
 System.Console.WriteLine("----------");
 Car car2 = new ConvertibleCar();
 Car car3 = new Minivan();
 car2.ShowDetails();
 car3.ShowDetails();
}

// TestCars3
// ----------
// A roof that opens up.
// Carries seven people.

// TestCars4
// ----------
// Standard transportation.
// Carries seven people.

using System;
using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace OverrideAndNew2
{
 class Program
 {
 static void Main(string[] args)
 {
 // Declare objects of the derived classes and test which version
 // of ShowDetails is run, base or derived.
 TestCars1();

 // Declare objects of the base class, instantiated with the
 // derived classes, and repeat the tests.
 TestCars2();

 // Declare objects of the derived classes and call ShowDetails
 // directly.
 TestCars3();

 // Declare objects of the base class, instantiated with the
 // derived classes, and repeat the tests.
 TestCars4();
 }

 public static void TestCars1()
 {
 System.Console.WriteLine("\nTestCars1");
 System.Console.WriteLine("----------");

 Car car1 = new Car();
 car1.DescribeCar();
 System.Console.WriteLine("----------");

 // Notice the output from this test case. The new modifier is
 // used in the definition of ShowDetails in the ConvertibleCar
 // class.
 ConvertibleCar car2 = new ConvertibleCar();
 car2.DescribeCar();
 System.Console.WriteLine("----------");

 Minivan car3 = new Minivan();
 car3.DescribeCar();
 System.Console.WriteLine("----------");
 }
 // Output:
 // TestCars1
 // ----------
 // Four wheels and an engine.
 // Standard transportation.
 // ----------
 // Four wheels and an engine.
 // Standard transportation.
 // ----------
 // Four wheels and an engine.

 // Carries seven people.
 // ----------

 public static void TestCars2()
 {
 System.Console.WriteLine("\nTestCars2");
 System.Console.WriteLine("----------");

 var cars = new List<Car> { new Car(), new ConvertibleCar(),
 new Minivan() };

 foreach (var car in cars)
 {
 car.DescribeCar();
 System.Console.WriteLine("----------");
 }
 }
 // Output:
 // TestCars2
 // ----------
 // Four wheels and an engine.
 // Standard transportation.
 // ----------
 // Four wheels and an engine.
 // Standard transportation.
 // ----------
 // Four wheels and an engine.
 // Carries seven people.
 // ----------

 public static void TestCars3()
 {
 System.Console.WriteLine("\nTestCars3");
 System.Console.WriteLine("----------");
 ConvertibleCar car2 = new ConvertibleCar();
 Minivan car3 = new Minivan();
 car2.ShowDetails();
 car3.ShowDetails();
 }
 // Output:
 // TestCars3
 // ----------
 // A roof that opens up.
 // Carries seven people.

 public static void TestCars4()
 {
 System.Console.WriteLine("\nTestCars4");
 System.Console.WriteLine("----------");
 Car car2 = new ConvertibleCar();
 Car car3 = new Minivan();
 car2.ShowDetails();
 car3.ShowDetails();
 }
 // Output:

 // TestCars4
 // ----------
 // Standard transportation.
 // Carries seven people.
 }

 // Define the base class, Car. The class defines two virtual methods,
 // DescribeCar and ShowDetails. DescribeCar calls ShowDetails, and each
derived
 // class also defines a ShowDetails method. The example tests which
version of
 // ShowDetails is used, the base class method or the derived class
method.
 class Car
 {
 public virtual void DescribeCar()
 {
 System.Console.WriteLine("Four wheels and an engine.");
 ShowDetails();
 }

 public virtual void ShowDetails()
 {
 System.Console.WriteLine("Standard transportation.");
 }
 }

 // Define the derived classes.

 // Class ConvertibleCar uses the new modifier to acknowledge that
ShowDetails
 // hides the base class method.
 class ConvertibleCar : Car
 {
 public new void ShowDetails()
 {
 System.Console.WriteLine("A roof that opens up.");
 }
 }

 // Class Minivan uses the override modifier to specify that ShowDetails
 // extends the base class method.
 class Minivan : Car
 {
 public override void ShowDetails()
 {
 System.Console.WriteLine("Carries seven people.");
 }
 }

}

C# Programming Guide
The C# type system
Versioning with the Override and New Keywords
base
abstract

See also

How to override the ToString method
(C# Programming Guide)
Article • 2021-10-27 • 2 minutes to read

Every class or struct in C# implicitly inherits the Object class. Therefore, every object in
C# gets the ToString method, which returns a string representation of that object. For
example, all variables of type int have a ToString method, which enables them to
return their contents as a string:

C#

When you create a custom class or struct, you should override the ToString method in
order to provide information about your type to client code.

For information about how to use format strings and other types of custom formatting
with the ToString method, see Formatting Types.

To override the ToString method in your class or struct:

1. Declare a ToString method with the following modifiers and return type:

C#

2. Implement the method so that it returns a string.

int x = 42;
string strx = x.ToString();
Console.WriteLine(strx);
// Output:
// 42

） Important

When you decide what information to provide through this method, consider
whether your class or struct will ever be used by untrusted code. Be careful to
ensure that you do not provide any information that could be exploited by
malicious code.

public override string ToString(){}

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types

The following example returns the name of the class in addition to the data
specific to a particular instance of the class.

C#

You can test the ToString method as shown in the following code example:

C#

IFormattable
C# Programming Guide
The C# type system
Strings
string
override
virtual
Formatting Types

class Person
{
 public string Name { get; set; }
 public int Age { get; set; }

 public override string ToString()
 {
 return "Person: " + Name + " " + Age;
 }
}

Person person = new Person { Name = "John", Age = 12 };
Console.WriteLine(person);
// Output:
// Person: John 12

See also

https://learn.microsoft.com/en-us/dotnet/api/system.iformattable
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types

Members (C# Programming Guide)
Article • 2021-09-17 • 2 minutes to read

Classes and structs have members that represent their data and behavior. A class's
members include all the members declared in the class, along with all members (except
constructors and finalizers) declared in all classes in its inheritance hierarchy. Private
members in base classes are inherited but are not accessible from derived classes.

The following table lists the kinds of members a class or struct may contain:

Member Description

Fields Fields are variables declared at class scope. A field may be a built-in numeric type
or an instance of another class. For example, a calendar class may have a field that
contains the current date.

Constants Constants are fields whose value is set at compile time and cannot be changed.

Properties Properties are methods on a class that are accessed as if they were fields on that
class. A property can provide protection for a class field to keep it from being
changed without the knowledge of the object.

Methods Methods define the actions that a class can perform. Methods can take parameters
that provide input data, and can return output data through parameters. Methods
can also return a value directly, without using a parameter.

Events Events provide notifications about occurrences, such as button clicks or the
successful completion of a method, to other objects. Events are defined and
triggered by using delegates.

Operators Overloaded operators are considered type members. When you overload an
operator, you define it as a public static method in a type. For more information,
see Operator overloading.

Indexers Indexers enable an object to be indexed in a manner similar to arrays.

Constructors Constructors are methods that are called when the object is first created. They are
often used to initialize the data of an object.

Finalizers Finalizers are used very rarely in C#. They are methods that are called by the
runtime execution engine when the object is about to be removed from memory.
They are generally used to make sure that any resources which must be released
are handled appropriately.

Nested
Types

Nested types are types declared within another type. Nested types are often used
to describe objects that are used only by the types that contain them.

C# Programming Guide
Classes

See also

Abstract and Sealed Classes and Class
Members (C# Programming Guide)
Article • 2021-10-27 • 2 minutes to read

The abstract keyword enables you to create classes and class members that are
incomplete and must be implemented in a derived class.

The sealed keyword enables you to prevent the inheritance of a class or certain class
members that were previously marked virtual.

Classes can be declared as abstract by putting the keyword abstract before the class
definition. For example:

C#

An abstract class cannot be instantiated. The purpose of an abstract class is to provide a
common definition of a base class that multiple derived classes can share. For example,
a class library may define an abstract class that is used as a parameter to many of its
functions, and require programmers using that library to provide their own
implementation of the class by creating a derived class.

Abstract classes may also define abstract methods. This is accomplished by adding the
keyword abstract before the return type of the method. For example:

C#

Abstract methods have no implementation, so the method definition is followed by a
semicolon instead of a normal method block. Derived classes of the abstract class must
implement all abstract methods. When an abstract class inherits a virtual method from a

Abstract Classes and Class Members

public abstract class A
{
 // Class members here.
}

public abstract class A
{
 public abstract void DoWork(int i);
}

base class, the abstract class can override the virtual method with an abstract method.
For example:

C#

If a virtual method is declared abstract , it is still virtual to any class inheriting from
the abstract class. A class inheriting an abstract method cannot access the original
implementation of the method—in the previous example, DoWork on class F cannot call
DoWork on class D. In this way, an abstract class can force derived classes to provide new
method implementations for virtual methods.

Classes can be declared as sealed by putting the keyword sealed before the class
definition. For example:

C#

A sealed class cannot be used as a base class. For this reason, it cannot also be an
abstract class. Sealed classes prevent derivation. Because they can never be used as a

// compile with: -target:library
public class D
{
 public virtual void DoWork(int i)
 {
 // Original implementation.
 }
}

public abstract class E : D
{
 public abstract override void DoWork(int i);
}

public class F : E
{
 public override void DoWork(int i)
 {
 // New implementation.
 }
}

Sealed Classes and Class Members

public sealed class D
{
 // Class members here.
}

base class, some run-time optimizations can make calling sealed class members slightly
faster.

A method, indexer, property, or event, on a derived class that is overriding a virtual
member of the base class can declare that member as sealed. This negates the virtual
aspect of the member for any further derived class. This is accomplished by putting the
sealed keyword before the override keyword in the class member declaration. For
example:

C#

C# Programming Guide
The C# type system
Inheritance
Methods
Fields
How to define abstract properties

public class D : C
{
 public sealed override void DoWork() { }
}

See also

Static Classes and Static Class Members
(C# Programming Guide)
Article • 2022-06-21 • 5 minutes to read

A static class is basically the same as a non-static class, but there is one difference: a
static class cannot be instantiated. In other words, you cannot use the new operator to
create a variable of the class type. Because there is no instance variable, you access the
members of a static class by using the class name itself. For example, if you have a static
class that is named UtilityClass that has a public static method named MethodA , you
call the method as shown in the following example:

C#

A static class can be used as a convenient container for sets of methods that just
operate on input parameters and do not have to get or set any internal instance fields.
For example, in the .NET Class Library, the static System.Math class contains methods
that perform mathematical operations, without any requirement to store or retrieve data
that is unique to a particular instance of the Math class. That is, you apply the members
of the class by specifying the class name and the method name, as shown in the
following example.

C#

As is the case with all class types, the type information for a static class is loaded by the
.NET runtime when the program that references the class is loaded. The program cannot
specify exactly when the class is loaded. However, it is guaranteed to be loaded and to
have its fields initialized and its static constructor called before the class is referenced
for the first time in your program. A static constructor is only called one time, and a
static class remains in memory for the lifetime of the application domain in which your
program resides.

UtilityClass.MethodA();

double dub = -3.14;
Console.WriteLine(Math.Abs(dub));
Console.WriteLine(Math.Floor(dub));
Console.WriteLine(Math.Round(Math.Abs(dub)));

// Output:
// 3.14
// -4
// 3

https://learn.microsoft.com/en-us/dotnet/api/system.math
https://learn.microsoft.com/en-us/dotnet/api/system.math

The following list provides the main features of a static class:

Contains only static members.

Cannot be instantiated.

Is sealed.

Cannot contain Instance Constructors.

Creating a static class is therefore basically the same as creating a class that contains
only static members and a private constructor. A private constructor prevents the class
from being instantiated. The advantage of using a static class is that the compiler can
check to make sure that no instance members are accidentally added. The compiler will
guarantee that instances of this class cannot be created.

Static classes are sealed and therefore cannot be inherited. They cannot inherit from any
class except Object. Static classes cannot contain an instance constructor. However, they
can contain a static constructor. Non-static classes should also define a static
constructor if the class contains static members that require non-trivial initialization. For
more information, see Static Constructors.

Here is an example of a static class that contains two methods that convert temperature
from Celsius to Fahrenheit and from Fahrenheit to Celsius:

C#

７ Note

To create a non-static class that allows only one instance of itself to be created, see
Implementing Singleton in C#.

Example

public static class TemperatureConverter
{
 public static double CelsiusToFahrenheit(string temperatureCelsius)
 {
 // Convert argument to double for calculations.
 double celsius = Double.Parse(temperatureCelsius);

 // Convert Celsius to Fahrenheit.
 double fahrenheit = (celsius * 9 / 5) + 32;

 return fahrenheit;

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff650316(v=pandp.10)

 }

 public static double FahrenheitToCelsius(string temperatureFahrenheit)
 {
 // Convert argument to double for calculations.
 double fahrenheit = Double.Parse(temperatureFahrenheit);

 // Convert Fahrenheit to Celsius.
 double celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;
 }
}

class TestTemperatureConverter
{
 static void Main()
 {
 Console.WriteLine("Please select the convertor direction");
 Console.WriteLine("1. From Celsius to Fahrenheit.");
 Console.WriteLine("2. From Fahrenheit to Celsius.");
 Console.Write(":");

 string? selection = Console.ReadLine();
 double F, C = 0;

 switch (selection)
 {
 case "1":
 Console.Write("Please enter the Celsius temperature: ");
 F =
TemperatureConverter.CelsiusToFahrenheit(Console.ReadLine() ?? "0");
 Console.WriteLine("Temperature in Fahrenheit: {0:F2}", F);
 break;

 case "2":
 Console.Write("Please enter the Fahrenheit temperature: ");
 C =
TemperatureConverter.FahrenheitToCelsius(Console.ReadLine() ?? "0");
 Console.WriteLine("Temperature in Celsius: {0:F2}", C);
 break;

 default:
 Console.WriteLine("Please select a convertor.");
 break;
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Example Output:
 Please select the convertor direction
 1. From Celsius to Fahrenheit.

A non-static class can contain static methods, fields, properties, or events. The static
member is callable on a class even when no instance of the class has been created. The
static member is always accessed by the class name, not the instance name. Only one
copy of a static member exists, regardless of how many instances of the class are
created. Static methods and properties cannot access non-static fields and events in
their containing type, and they cannot access an instance variable of any object unless
it's explicitly passed in a method parameter.

It is more typical to declare a non-static class with some static members, than to declare
an entire class as static. Two common uses of static fields are to keep a count of the
number of objects that have been instantiated, or to store a value that must be shared
among all instances.

Static methods can be overloaded but not overridden, because they belong to the class,
and not to any instance of the class.

Although a field cannot be declared as static const , a const field is essentially static in
its behavior. It belongs to the type, not to instances of the type. Therefore, const fields
can be accessed by using the same ClassName.MemberName notation that's used for static
fields. No object instance is required.

C# does not support static local variables (that is, variables that are declared in method
scope).

You declare static class members by using the static keyword before the return type of
the member, as shown in the following example:

C#

 2. From Fahrenheit to Celsius.
 :2
 Please enter the Fahrenheit temperature: 20
 Temperature in Celsius: -6.67
 Press any key to exit.
 */

Static Members

public class Automobile
{
 public static int NumberOfWheels = 4;

 public static int SizeOfGasTank
 {
 get

Static members are initialized before the static member is accessed for the first time and
before the static constructor, if there is one, is called. To access a static class member,
use the name of the class instead of a variable name to specify the location of the
member, as shown in the following example:

C#

If your class contains static fields, provide a static constructor that initializes them when
the class is loaded.

A call to a static method generates a call instruction in Microsoft intermediate language
(MSIL), whereas a call to an instance method generates a callvirt instruction, which
also checks for null object references. However, most of the time the performance
difference between the two is not significant.

For more information, see Static classes, Static and instance members and Static
constructors in the C# Language Specification. The language specification is the
definitive source for C# syntax and usage.

C# Programming Guide
static
Classes
class
Static Constructors

 {
 return 15;
 }
 }

 public static void Drive() { }

 public static event EventType? RunOutOfGas;

 // Other non-static fields and properties...
}

Automobile.Drive();
int i = Automobile.NumberOfWheels;

C# Language Specification

See also

Instance Constructors

Access Modifiers (C# Programming
Guide)
Article • 2022-06-18 • 4 minutes to read

All types and type members have an accessibility level. The accessibility level controls
whether they can be used from other code in your assembly or other assemblies. An
assembly is a .dll or .exe created by compiling one or more .cs files in a single
compilation. Use the following access modifiers to specify the accessibility of a type or
member when you declare it:

public: The type or member can be accessed by any other code in the same
assembly or another assembly that references it. The accessibility level of public
members of a type is controlled by the accessibility level of the type itself.
private: The type or member can be accessed only by code in the same class or
struct .
protected: The type or member can be accessed only by code in the same class ,
or in a class that is derived from that class .
internal: The type or member can be accessed by any code in the same assembly,
but not from another assembly. In other words, internal types or members can be
accessed from code that is part of the same compilation.
protected internal: The type or member can be accessed by any code in the
assembly in which it's declared, or from within a derived class in another
assembly.
private protected: The type or member can be accessed by types derived from the
class that are declared within its containing assembly.

Caller's location public protected

internal

protected internal private

protected

private

Within the class ✔ ✔ ✔ ✔ ✔ ✔

Derived class (same
assembly)

✔ ✔ ✔ ✔ ✔ ❌

Non-derived class
(same assembly)

✔ ✔ ❌ ✔ ❌ ❌

Summary table

https://learn.microsoft.com/en-ca/dotnet/standard/glossary#assembly

Caller's location public protected

internal

protected internal private

protected

private

Derived class (different
assembly)

✔ ✔ ✔ ❌ ❌ ❌

Non-derived class
(different assembly)

✔ ❌ ❌ ❌ ❌ ❌

The following examples demonstrate how to specify access modifiers on a type and
member:

C#

Not all access modifiers are valid for all types or members in all contexts. In some cases,
the accessibility of a type member is constrained by the accessibility of its containing
type.

Classes, records, and structs declared directly within a namespace (in other words, that
aren't nested within other classes or structs) can be either public or internal . internal
is the default if no access modifier is specified.

Struct members, including nested classes and structs, can be declared public , internal ,
or private . Class members, including nested classes and structs, can be public ,
protected internal , protected , internal , private protected , or private . Class and
struct members, including nested classes and structs, have private access by default.
Private nested types aren't accessible from outside the containing type.

Derived classes and derived records can't have greater accessibility than their base
types. You can't declare a public class B that derives from an internal class A . If allowed,
it would have the effect of making A public, because all protected or internal
members of A are accessible from the derived class.

You can enable specific other assemblies to access your internal types by using the
InternalsVisibleToAttribute . For more information, see Friend Assemblies.

public class Bicycle
{
 public void Pedal() { }
}

Class, record, and struct accessibility

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/friend

Class and record members (including nested classes, records and structs) can be
declared with any of the six types of access. Struct members can't be declared as
protected , protected internal , or private protected because structs don't support
inheritance.

Normally, the accessibility of a member isn't greater than the accessibility of the type
that contains it. However, a public member of an internal class might be accessible
from outside the assembly if the member implements interface methods or overrides
virtual methods that are defined in a public base class.

The type of any member field, property, or event must be at least as accessible as the
member itself. Similarly, the return type and the parameter types of any method,
indexer, or delegate must be at least as accessible as the member itself. For example,
you can't have a public method M that returns a class C unless C is also public .
Likewise, you can't have a protected property of type A if A is declared as private .

User-defined operators must always be declared as public and static . For more
information, see Operator overloading.

Finalizers can't have accessibility modifiers.

To set the access level for a class , record , or struct member, add the appropriate
keyword to the member declaration, as shown in the following example.

C#

Class, record, and struct member accessibility

// public class:
public class Tricycle
{
 // protected method:
 protected void Pedal() { }

 // private field:
 private int _wheels = 3;

 // protected internal property:
 protected internal int Wheels
 {
 get { return _wheels; }
 }
}

Other types

Interfaces declared directly within a namespace can be public or internal and, just like
classes and structs, interfaces default to internal access. Interface members are public
by default because the purpose of an interface is to enable other types to access a class
or struct. Interface member declarations may include any access modifier. This is most
useful for static methods to provide common implementations needed by all
implementors of a class.

Enumeration members are always public , and no access modifiers can be applied.

Delegates behave like classes and structs. By default, they have internal access when
declared directly within a namespace, and private access when nested.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Specify modifier order (style rule IDE0036)
C# Programming Guide
The C# type system
Interfaces
private
public
internal
protected
protected internal
private protected
class
struct
interface

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0036

Fields (C# Programming Guide)
Article • 2022-07-30 • 4 minutes to read

A field is a variable of any type that is declared directly in a class or struct. Fields are
members of their containing type.

A class or struct may have instance fields, static fields, or both. Instance fields are
specific to an instance of a type. If you have a class T , with an instance field F , you can
create two objects of type T , and modify the value of F in each object without affecting
the value in the other object. By contrast, a static field belongs to the type itself, and is
shared among all instances of that type. You can access the static field only by using the
type name. If you access the static field by an instance name, you get CS0176 compile-
time error.

Generally, you should use fields only for variables that have private or protected
accessibility. Data that your type exposes to client code should be provided through
methods, properties, and indexers. By using these constructs for indirect access to
internal fields, you can guard against invalid input values. A private field that stores the
data exposed by a public property is called a backing store or backing field.

Fields typically store the data that must be accessible to more than one type method
and must be stored for longer than the lifetime of any single method. For example, a
type that represents a calendar date might have three integer fields: one for the month,
one for the day, and one for the year. Variables that aren't used outside the scope of a
single method should be declared as local variables within the method body itself.

Fields are declared in the class or struct block by specifying the access level of the field,
followed by the type of the field, followed by the name of the field. For example:

C#

public class CalendarEntry
{

 // private field (Located near wrapping "Date" property).
 private DateTime _date;

 // Public property exposes _date field safely.
 public DateTime Date
 {
 get
 {
 return _date;
 }
 set

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0176

To access a field in an instance, add a period after the instance name, followed by the
name of the field, as in instancename._fieldName . For example:

C#

 {
 // Set some reasonable boundaries for likely birth dates.
 if (value.Year > 1900 && value.Year <= DateTime.Today.Year)
 {
 _date = value;
 }
 else
 {
 throw new ArgumentOutOfRangeException("Date");
 }
 }
 }

 // public field (Generally not recommended).
 public string? Day;

 // Public method also exposes _date field safely.
 // Example call: birthday.SetDate("1975, 6, 30");
 public void SetDate(string dateString)
 {
 DateTime dt = Convert.ToDateTime(dateString);

 // Set some reasonable boundaries for likely birth dates.
 if (dt.Year > 1900 && dt.Year <= DateTime.Today.Year)
 {
 _date = dt;
 }
 else
 {
 throw new ArgumentOutOfRangeException("dateString");
 }
 }

 public TimeSpan GetTimeSpan(string dateString)
 {
 DateTime dt = Convert.ToDateTime(dateString);

 if (dt.Ticks < _date.Ticks)
 {
 return _date - dt;
 }
 else
 {
 throw new ArgumentOutOfRangeException("dateString");
 }
 }
}

A field can be given an initial value by using the assignment operator when the field is
declared. To automatically assign the Day field to "Monday" , for example, you would
declare Day as in the following example:

C#

Fields are initialized immediately before the constructor for the object instance is called.
If the constructor assigns the value of a field, it will overwrite any value given during
field declaration. For more information, see Using Constructors.

Fields can be marked as public, private, protected, internal, protected internal, or private
protected. These access modifiers define how users of the type can access the fields. For
more information, see Access Modifiers.

A field can optionally be declared static. Static fields are available to callers at any time,
even if no instance of the type exists. For more information, see Static Classes and Static
Class Members.

A field can be declared readonly. A read-only field can only be assigned a value during
initialization or in a constructor. A static readonly field is similar to a constant, except
that the C# compiler doesn't have access to the value of a static read-only field at
compile time, only at run time. For more information, see Constants.

A field can be declared required. A required field must be initialized by the constructor,
or by an object initializers when an object is created. You add the
System.Diagnostics.CodeAnalysis.SetsRequiredMembersAttribute attribute to any
constructor declaration that initializes all required members.

The required modifier can't be combined with the readonly modifier on the same field.

CalendarEntry birthday = new CalendarEntry();
birthday.Day = "Saturday";

public class CalendarDateWithInitialization
{
 public string Day = "Monday";
 //...
}

７ Note

A field initializer cannot refer to other instance fields.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.setsrequiredmembersattribute

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Programming Guide
The C# type system
Using Constructors
Inheritance
Access Modifiers
Abstract and Sealed Classes and Class Members

C# language specification

See also

Constants (C# Programming Guide)
Article • 2021-11-05 • 2 minutes to read

Constants are immutable values which are known at compile time and do not change
for the life of the program. Constants are declared with the const modifier. Only the C#
built-in types (excluding System.Object) may be declared as const . User-defined types,
including classes, structs, and arrays, cannot be const . Use the readonly modifier to
create a class, struct, or array that is initialized one time at run time (for example in a
constructor) and thereafter cannot be changed.

C# does not support const methods, properties, or events.

The enum type enables you to define named constants for integral built-in types (for
example int , uint , long , and so on). For more information, see enum.

Constants must be initialized as they are declared. For example:

C#

In this example, the constant Months is always 12, and it cannot be changed even by the
class itself. In fact, when the compiler encounters a constant identifier in C# source code
(for example, Months), it substitutes the literal value directly into the intermediate
language (IL) code that it produces. Because there is no variable address associated with
a constant at run time, const fields cannot be passed by reference and cannot appear
as an l-value in an expression.

Multiple constants of the same type can be declared at the same time, for example:

C#

class Calendar1
{
 public const int Months = 12;
}

７ Note

Use caution when you refer to constant values defined in other code such as DLLs.
If a new version of the DLL defines a new value for the constant, your program will
still hold the old literal value until it is recompiled against the new version.

https://learn.microsoft.com/en-us/dotnet/api/system.object

The expression that is used to initialize a constant can refer to another constant if it
does not create a circular reference. For example:

C#

Constants can be marked as public, private, protected, internal, protected internal or
private protected. These access modifiers define how users of the class can access the
constant. For more information, see Access Modifiers.

Constants are accessed as if they were static fields because the value of the constant is
the same for all instances of the type. You do not use the static keyword to declare
them. Expressions that are not in the class that defines the constant must use the class
name, a period, and the name of the constant to access the constant. For example:

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Programming Guide
Properties
Types

class Calendar2
{
 public const int Months = 12, Weeks = 52, Days = 365;
}

class Calendar3
{
 public const int Months = 12;
 public const int Weeks = 52;
 public const int Days = 365;

 public const double DaysPerWeek = (double) Days / (double) Weeks;
 public const double DaysPerMonth = (double) Days / (double) Months;
}

int birthstones = Calendar.Months;

C# Language Specification

See also

readonly
Immutability in C# Part One: Kinds of Immutability

https://learn.microsoft.com/en-us/archive/blogs/ericlippert/immutability-in-c-part-one-kinds-of-immutability

How to define abstract properties (C#
Programming Guide)
Article • 2021-10-27 • 2 minutes to read

The following example shows how to define abstract properties. An abstract property
declaration does not provide an implementation of the property accessors -- it declares
that the class supports properties, but leaves the accessor implementation to derived
classes. The following example demonstrates how to implement the abstract properties
inherited from a base class.

This sample consists of three files, each of which is compiled individually and its
resulting assembly is referenced by the next compilation:

abstractshape.cs: the Shape class that contains an abstract Area property.

shapes.cs: The subclasses of the Shape class.

shapetest.cs: A test program to display the areas of some Shape -derived objects.

To compile the example, use the following command:

csc abstractshape.cs shapes.cs shapetest.cs

This will create the executable file shapetest.exe.

This file declares the Shape class that contains the Area property of the type double .

C#

Examples

// compile with: csc -target:library abstractshape.cs
public abstract class Shape
{
 private string name;

 public Shape(string s)
 {
 // calling the set accessor of the Id property.
 Id = s;
 }

 public string Id
 {
 get

Modifiers on the property are placed on the property declaration itself. For
example:

C#

When declaring an abstract property (such as Area in this example), you simply
indicate what property accessors are available, but do not implement them. In this
example, only a get accessor is available, so the property is read-only.

The following code shows three subclasses of Shape and how they override the Area
property to provide their own implementation.

C#

 {
 return name;
 }

 set
 {
 name = value;
 }
 }

 // Area is a read-only property - only a get accessor is needed:
 public abstract double Area
 {
 get;
 }

 public override string ToString()
 {
 return $"{Id} Area = {Area:F2}";
 }
}

public abstract double Area

// compile with: csc -target:library -reference:abstractshape.dll shapes.cs
public class Square : Shape
{
 private int side;

 public Square(int side, string id)
 : base(id)
 {
 this.side = side;
 }

 public override double Area

The following code shows a test program that creates a number of Shape -derived
objects and prints out their areas.

 {
 get
 {
 // Given the side, return the area of a square:
 return side * side;
 }
 }
}

public class Circle : Shape
{
 private int radius;

 public Circle(int radius, string id)
 : base(id)
 {
 this.radius = radius;
 }

 public override double Area
 {
 get
 {
 // Given the radius, return the area of a circle:
 return radius * radius * System.Math.PI;
 }
 }
}

public class Rectangle : Shape
{
 private int width;
 private int height;

 public Rectangle(int width, int height, string id)
 : base(id)
 {
 this.width = width;
 this.height = height;
 }

 public override double Area
 {
 get
 {
 // Given the width and height, return the area of a rectangle:
 return width * height;
 }
 }
}

C#

C# Programming Guide
The C# type system
Abstract and Sealed Classes and Class Members
Properties

// compile with: csc -reference:abstractshape.dll;shapes.dll shapetest.cs
class TestClass
{
 static void Main()
 {
 Shape[] shapes =
 {
 new Square(5, "Square #1"),
 new Circle(3, "Circle #1"),
 new Rectangle(4, 5, "Rectangle #1")
 };

 System.Console.WriteLine("Shapes Collection");
 foreach (Shape s in shapes)
 {
 System.Console.WriteLine(s);
 }
 }
}
/* Output:
 Shapes Collection
 Square #1 Area = 25.00
 Circle #1 Area = 28.27
 Rectangle #1 Area = 20.00
*/

See also

How to define constants in C#
Article • 2021-10-27 • 2 minutes to read

Constants are fields whose values are set at compile time and can never be changed.
Use constants to provide meaningful names instead of numeric literals ("magic
numbers") for special values.

To define constant values of integral types (int , byte , and so on) use an enumerated
type. For more information, see enum.

To define non-integral constants, one approach is to group them in a single static class
named Constants . This will require that all references to the constants be prefaced with
the class name, as shown in the following example.

C#

The use of the class name qualifier helps ensure that you and others who use the
constant understand that it is constant and cannot be modified.

７ Note

In C# the #define preprocessor directive cannot be used to define constants in the
way that is typically used in C and C++.

Example

static class Constants
{
 public const double Pi = 3.14159;
 public const int SpeedOfLight = 300000; // km per sec.
}

class Program
{
 static void Main()
 {
 double radius = 5.3;
 double area = Constants.Pi * (radius * radius);
 int secsFromSun = 149476000 / Constants.SpeedOfLight; // in km
 Console.WriteLine(secsFromSun);
 }
}

The C# type system

See also

Properties (C# Programming Guide)
Article • 2022-09-29 • 4 minutes to read

A property is a member that provides a flexible mechanism to read, write, or compute
the value of a private field. Properties can be used as if they're public data members, but
they're special methods called accessors. This feature enables data to be accessed easily
and still helps promote the safety and flexibility of methods.

Properties enable a class to expose a public way of getting and setting values,
while hiding implementation or verification code.
A get property accessor is used to return the property value, and a set property
accessor is used to assign a new value. In C# 9 and later, an init property accessor
is used to assign a new value only during object construction. These accessors can
have different access levels. For more information, see Restricting Accessor
Accessibility.
The value keyword is used to define the value being assigned by the set or init
accessor.
Properties can be read-write (they have both a get and a set accessor), read-only
(they have a get accessor but no set accessor), or write-only (they have a set
accessor, but no get accessor). Write-only properties are rare and are most
commonly used to restrict access to sensitive data.
Simple properties that require no custom accessor code can be implemented
either as expression body definitions or as auto-implemented properties.

One basic pattern for implementing a property involves using a private backing field for
setting and retrieving the property value. The get accessor returns the value of the
private field, and the set accessor may perform some data validation before assigning a
value to the private field. Both accessors may also perform some conversion or
computation on the data before it's stored or returned.

The following example illustrates this pattern. In this example, the TimePeriod class
represents an interval of time. Internally, the class stores the time interval in seconds in a
private field named _seconds . A read-write property named Hours allows the customer
to specify the time interval in hours. Both the get and the set accessors perform the

Properties overview

Properties with backing fields

necessary conversion between hours and seconds. In addition, the set accessor
validates the data and throws an ArgumentOutOfRangeException if the number of
hours is invalid.

C#

You could access properties to get and set the value as shown in the following example:

C#

Property accessors often consist of single-line statements that just assign or return the
result of an expression. You can implement these properties as expression-bodied
members. Expression body definitions consist of the => symbol followed by the
expression to assign to or retrieve from the property.

Read-only properties can implement the get accessor as an expression-bodied
member. In this case, neither the get accessor keyword nor the return keyword is used.

public class TimePeriod
{
 private double _seconds;

 public double Hours
 {
 get { return _seconds / 3600; }
 set
 {
 if (value < 0 || value > 24)
 throw new ArgumentOutOfRangeException(nameof(value),
 "The valid range is between 0 and 24.");

 _seconds = value * 3600;
 }
 }
}

TimePeriod t = new TimePeriod();
// The property assignment causes the 'set' accessor to be called.
t.Hours = 24;

// Retrieving the property causes the 'get' accessor to be called.
Console.WriteLine($"Time in hours: {t.Hours}");
// The example displays the following output:
// Time in hours: 24

Expression body definitions

https://learn.microsoft.com/en-us/dotnet/api/system.argumentoutofrangeexception

The following example implements the read-only Name property as an expression-
bodied member.

C#

Both the get and the set accessor can be implemented as expression-bodied
members. In this case, the get and set keywords must be present. The following
example illustrates the use of expression body definitions for both accessors. The
return keyword isn't used with the get accessor.

C#

public class Person
{
 private string _firstName;
 private string _lastName;

 public Person(string first, string last)
 {
 _firstName = first;
 _lastName = last;
 }

 public string Name => $"{_firstName} {_lastName}";
}

public class SaleItem
{
 string _name;
 decimal _cost;

 public SaleItem(string name, decimal cost)
 {
 _name = name;
 _cost = cost;
 }

 public string Name
 {
 get => _name;
 set => _name = value;
 }

 public decimal Price
 {
 get => _cost;
 set => _cost = value;
 }
}

In some cases, property get and set accessors just assign a value to or retrieve a value
from a backing field without including any extra logic. By using auto-implemented
properties, you can simplify your code while having the C# compiler transparently
provide the backing field for you.

If a property has both a get and a set (or a get and an init) accessor, both must be
auto-implemented. You define an auto-implemented property by using the get and
set keywords without providing any implementation. The following example repeats
the previous one, except that Name and Price are auto-implemented properties. The
example also removes the parameterized constructor, so that SaleItem objects are now
initialized with a call to the parameterless constructor and an object initializer.

C#

Auto-implemented properties can declare different accessibilities for the get and set
accessors. You commonly declare a public get accessor and a private set accessor. You
can learn more in the article on restricting accessor accessibility.

Beginning with C# 11, you can add the required member to force client code to
initialize any property or field:

C#

Auto-implemented properties

public class SaleItem
{
 public string Name
 { get; set; }

 public decimal Price
 { get; set; }
}

Required properties

public class SaleItem
{
 public required string Name
 { get; set; }

 public required decimal Price
 { get; set; }
}

To create a SaleItem , you must set both the Name and Price properties using object
initializers, as shown in the following code:

C#

Using Properties
Interface Properties
Comparison Between Properties and Indexers
Restricting Accessor Accessibility
Auto-Implemented Properties

For more information, see Properties in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

Indexers
get keyword
set keyword

var item = new SaleItem { Name = "Shoes", Price = 19.95m };
Console.WriteLine($"{item.Name}: sells for {item.Price:C2}");

Related sections

C# Language Specification

See also

Using Properties (C# Programming
Guide)
Article • 2022-11-04 • 8 minutes to read

Properties combine aspects of both fields and methods. To the user of an object, a
property appears to be a field, accessing the property requires the same syntax. To the
implementer of a class, a property is one or two code blocks, representing a get
accessor and/or a set accessor. The code block for the get accessor is executed when
the property is read; the code block for the set accessor is executed when the property
is assigned a value. A property without a set accessor is considered read-only. A
property without a get accessor is considered write-only. A property that has both
accessors is read-write. In C# 9 and later, you can use an init accessor instead of a set
accessor to make the property read-only.

Unlike fields, properties aren't classified as variables. Therefore, you can't pass a
property as a ref or out parameter.

Properties have many uses: they can validate data before allowing a change; they can
transparently expose data on a class where that data is retrieved from some other
source, such as a database; they can take an action when data is changed, such as
raising an event, or changing the value of other fields.

Properties are declared in the class block by specifying the access level of the field,
followed by the type of the property, followed by the name of the property, and
followed by a code block that declares a get -accessor and/or a set accessor. For
example:

C#

public class Date
{
 private int _month = 7; // Backing store

 public int Month
 {
 get => _month;
 set
 {
 if ((value > 0) && (value < 13))
 {
 _month = value;
 }
 }

In this example, Month is declared as a property so that the set accessor can make sure
that the Month value is set between 1 and 12. The Month property uses a private field to
track the actual value. The real location of a property's data is often referred to as the
property's "backing store." It's common for properties to use private fields as a backing
store. The field is marked private in order to make sure that it can only be changed by
calling the property. For more information about public and private access restrictions,
see Access Modifiers.

Auto-implemented properties provide simplified syntax for simple property declarations.
For more information, see Auto-Implemented Properties.

The body of the get accessor resembles that of a method. It must return a value of the
property type. The execution of the get accessor is equivalent to reading the value of
the field. For example, when you're returning the private variable from the get accessor
and optimizations are enabled, the call to the get accessor method is inlined by the
compiler so there's no method-call overhead. However, a virtual get accessor method
can't be inlined because the compiler doesn't know at compile-time which method may
actually be called at run time. The following example shows a get accessor that returns
the value of a private field _name :

C#

When you reference the property, except as the target of an assignment, the get
accessor is invoked to read the value of the property. For example:

C#

 }
}

The get accessor

class Employee
{
 private string _name; // the name field
 public string Name => _name; // the Name property
}

var employee= new Employee();
//...

System.Console.Write(employee.Name); // the get accessor is invoked here

The get accessor must end in a return or throw statement, and control can't flow off the
accessor body.

The get accessor can be used to return the field value or to compute it and return it. For
example:

C#

In the previous code segment, if you don't assign a value to the Name property, it will
return the value NA .

The set accessor resembles a method whose return type is void. It uses an implicit
parameter called value , whose type is the type of the property. In the following
example, a set accessor is added to the Name property:

C#

When you assign a value to the property, the set accessor is invoked by using an
argument that provides the new value. For example:

C#

２ Warning

It's a bad programming style to change the state of the object by using the get
accessor.

class Manager
{
 private string _name;
 public string Name => _name != null ? _name : "NA";
}

The set accessor

class Student
{
 private string _name; // the name field
 public string Name // the Name property
 {
 get => _name;
 set => _name = value;
 }
}

It's an error to use the implicit parameter name, value , for a local variable declaration in
a set accessor.

The code to create an init accessor is the same as the code to create a set accessor
except that you use the init keyword instead of set . The difference is that the init
accessor can only be used in the constructor or by using an object-initializer.

Properties can be marked as public , private , protected , internal , protected
internal , or private protected . These access modifiers define how users of the class
can access the property. The get and set accessors for the same property may have
different access modifiers. For example, the get may be public to allow read-only
access from outside the type, and the set may be private or protected . For more
information, see Access Modifiers.

A property may be declared as a static property by using the static keyword. Static
properties are available to callers at any time, even if no instance of the class exists. For
more information, see Static Classes and Static Class Members.

A property may be marked as a virtual property by using the virtual keyword. Virtual
properties enable derived classes to override the property behavior by using the
override keyword. For more information about these options, see Inheritance.

A property overriding a virtual property can also be sealed, specifying that for derived
classes it's no longer virtual. Lastly, a property can be declared abstract. Abstract
properties don't define an implementation in the class, and derived classes must write
their own implementation. For more information about these options, see Abstract and
Sealed Classes and Class Members.

var student = new Student();
student.Name = "Joe"; // the set accessor is invoked here

System.Console.Write(student.Name); // the get accessor is invoked here

The init accessor

Remarks

７ Note

This example demonstrates instance, static, and read-only properties. It accepts the
name of the employee from the keyboard, increments NumberOfEmployees by 1, and
displays the Employee name and number.

C#

This example demonstrates how to access a property in a base class that is hidden by
another property that has the same name in a derived class:

C#

It is an error to use a virtual, abstract, or override modifier on an accessor of a
static property.

Examples

public class Employee
{
 public static int NumberOfEmployees;
 private static int _counter;
 private string _name;

 // A read-write instance property:
 public string Name
 {
 get => _name;
 set => _name = value;
 }

 // A read-only static property:
 public static int Counter => _counter;

 // A Constructor:
 public Employee() => _counter = ++NumberOfEmployees; // Calculate the
employee's number:
}

Hidden property example

public class Employee
{
 private string _name;
 public string Name
 {
 get => _name;
 set => _name = value;
 }

The following are important points in the previous example:

The property Name in the derived class hides the property Name in the base class. In
such a case, the new modifier is used in the declaration of the property in the
derived class:

C#

The cast (Employee) is used to access the hidden property in the base class:

C#

}

public class Manager : Employee
{
 private string _name;

 // Notice the use of the new modifier:
 public new string Name
 {
 get => _name;
 set => _name = value + ", Manager";
 }
}

class TestHiding
{
 public static void Test()
 {
 Manager m1 = new Manager();

 // Derived class property.
 m1.Name = "John";

 // Base class property.
 ((Employee)m1).Name = "Mary";

 System.Console.WriteLine("Name in the derived class is: {0}",
m1.Name);
 System.Console.WriteLine("Name in the base class is: {0}",
((Employee)m1).Name);
 }
}
/* Output:
 Name in the derived class is: John, Manager
 Name in the base class is: Mary
*/

public new string Name

For more information about hiding members, see the new Modifier.

In this example, two classes, Cube and Square , implement an abstract class, Shape , and
override its abstract Area property. Note the use of the override modifier on the
properties. The program accepts the side as an input and calculates the areas for the
square and cube. It also accepts the area as an input and calculates the corresponding
side for the square and cube.

C#

((Employee)m1).Name = "Mary";

Override property example

abstract class Shape
{
 public abstract double Area
 {
 get;
 set;
 }
}

class Square : Shape
{
 public double side;

 //constructor
 public Square(double s) => side = s;

 public override double Area
 {
 get => side * side;
 set => side = System.Math.Sqrt(value);
 }
}

class Cube : Shape
{
 public double side;

 //constructor
 public Cube(double s) => side = s;

 public override double Area
 {
 get => 6 * side * side;
 set => side = System.Math.Sqrt(value / 6);
 }

Properties
Interface Properties
Auto-Implemented Properties

}

class TestShapes
{
 static void Main()
 {
 // Input the side:
 System.Console.Write("Enter the side: ");
 double side = double.Parse(System.Console.ReadLine());

 // Compute the areas:
 Square s = new Square(side);
 Cube c = new Cube(side);

 // Display the results:
 System.Console.WriteLine("Area of the square = {0:F2}", s.Area);
 System.Console.WriteLine("Area of the cube = {0:F2}", c.Area);
 System.Console.WriteLine();

 // Input the area:
 System.Console.Write("Enter the area: ");
 double area = double.Parse(System.Console.ReadLine());

 // Compute the sides:
 s.Area = area;
 c.Area = area;

 // Display the results:
 System.Console.WriteLine("Side of the square = {0:F2}", s.side);
 System.Console.WriteLine("Side of the cube = {0:F2}", c.side);
 }
}
/* Example Output:
 Enter the side: 4
 Area of the square = 16.00
 Area of the cube = 96.00

 Enter the area: 24
 Side of the square = 4.90
 Side of the cube = 2.00
*/

See also

Interface Properties (C# Programming
Guide)
Article • 2022-09-29 • 2 minutes to read

Properties can be declared on an interface. The following example declares an interface
property accessor:

C#

Interface properties typically don't have a body. The accessors indicate whether the
property is read-write, read-only, or write-only. Unlike in classes and structs, declaring
the accessors without a body doesn't declare an auto-implemented property. An
interface may define a default implementation for members, including properties.
Defining a default implementation for a property in an interface is rare because
interfaces may not define instance data fields.

In this example, the interface IEmployee has a read-write property, Name , and a read-
only property, Counter . The class Employee implements the IEmployee interface and
uses these two properties. The program reads the name of a new employee and the
current number of employees and displays the employee name and the computed
employee number.

You could use the fully qualified name of the property, which references the interface in
which the member is declared. For example:

C#

public interface ISampleInterface
{
 // Property declaration:
 string Name
 {
 get;
 set;
 }
}

Example

string IEmployee.Name
{
 get { return "Employee Name"; }

The preceding example demonstrates Explicit Interface Implementation. For example, if
the class Employee is implementing two interfaces ICitizen and IEmployee and both
interfaces have the Name property, the explicit interface member implementation will be
necessary. That is, the following property declaration:

C#

implements the Name property on the IEmployee interface, while the following
declaration:

C#

implements the Name property on the ICitizen interface.

C#

 set { }
}

string IEmployee.Name
{
 get { return "Employee Name"; }
 set { }
}

string ICitizen.Name
{
 get { return "Citizen Name"; }
 set { }
}

interface IEmployee
{
 string Name
 {
 get;
 set;
 }

 int Counter
 {
 get;
 }
}

public class Employee : IEmployee
{
 public static int numberOfEmployees;

C#

Console

C# Programming Guide
Properties
Using Properties
Comparison Between Properties and Indexers

 private string _name;
 public string Name // read-write instance property
 {
 get => _name;
 set => _name = value;
 }

 private int _counter;
 public int Counter // read-only instance property
 {
 get => _counter;
 }

 // constructor
 public Employee() => _counter = ++numberOfEmployees;
}

System.Console.Write("Enter number of employees: ");
Employee.numberOfEmployees = int.Parse(System.Console.ReadLine());

Employee e1 = new Employee();
System.Console.Write("Enter the name of the new employee: ");
e1.Name = System.Console.ReadLine();

System.Console.WriteLine("The employee information:");
System.Console.WriteLine("Employee number: {0}", e1.Counter);
System.Console.WriteLine("Employee name: {0}", e1.Name);

Sample output

Enter number of employees: 210
Enter the name of the new employee: Hazem Abolrous
The employee information:
Employee number: 211
Employee name: Hazem Abolrous

See also

Indexers
Interfaces

Restricting Accessor Accessibility (C#
Programming Guide)
Article • 2022-07-30 • 4 minutes to read

The get and set portions of a property or indexer are called accessors. By default these
accessors have the same visibility or access level of the property or indexer to which
they belong. For more information, see accessibility levels. However, it's sometimes
useful to restrict access to one of these accessors. Typically, you restrict the accessibility
of the set accessor, while keeping the get accessor publicly accessible. For example:

C#

In this example, a property called Name defines a get and set accessor. The get
accessor receives the accessibility level of the property itself, public in this case, while
the set accessor is explicitly restricted by applying the protected access modifier to the
accessor itself.

Using the accessor modifiers on properties or indexers is subject to these conditions:

private string _name = "Hello";

public string Name
{
 get
 {
 return _name;
 }
 protected set
 {
 _name = value;
 }
}

７ Note

The examples in this article don't use auto-implemented properties. Auto-
implemented properties provide a concise syntax for declaring properties when a
custom backing field isn't required.

Restrictions on Access Modifiers on Accessors

You can't use accessor modifiers on an interface or an explicit interface member
implementation.
You can use accessor modifiers only if the property or indexer has both set and
get accessors. In this case, the modifier is permitted on only one of the two
accessors.
If the property or indexer has an override modifier, the accessor modifier must
match the accessor of the overridden accessor, if any.
The accessibility level on the accessor must be more restrictive than the
accessibility level on the property or indexer itself.

When you override a property or indexer, the overridden accessors must be accessible
to the overriding code. Also, the accessibility of both the property/indexer and its
accessors must match the corresponding overridden property/indexer and its accessors.
For example:

C#

Access Modifiers on Overriding Accessors

public class Parent
{
 public virtual int TestProperty
 {
 // Notice the accessor accessibility level.
 protected set { }

 // No access modifier is used here.
 get { return 0; }
 }
}
public class Kid : Parent
{
 public override int TestProperty
 {
 // Use the same accessibility level as in the overridden accessor.
 protected set { }

 // Cannot use access modifier here.
 get { return 0; }
 }
}

Implementing Interfaces

When you use an accessor to implement an interface, the accessor may not have an
access modifier. However, if you implement the interface using one accessor, such as
get , the other accessor can have an access modifier, as in the following example:

C#

If you use an access modifier on the accessor, the accessibility domain of the accessor is
determined by this modifier.

If you didn't use an access modifier on the accessor, the accessibility domain of the
accessor is determined by the accessibility level of the property or indexer.

The following example contains three classes, BaseClass , DerivedClass , and MainClass .
There are two properties on the BaseClass , Name and Id on both classes. The example
demonstrates how the property Id on DerivedClass can be hidden by the property Id
on BaseClass when you use a restrictive access modifier such as protected or private.
Therefore, when you assign values to this property, the property on the BaseClass class

public interface ISomeInterface
{
 int TestProperty
 {
 // No access modifier allowed here
 // because this is an interface.
 get;
 }
}

public class TestClass : ISomeInterface
{
 public int TestProperty
 {
 // Cannot use access modifier here because
 // this is an interface implementation.
 get { return 10; }

 // Interface property does not have set accessor,
 // so access modifier is allowed.
 protected set { }
 }
}

Accessor Accessibility Domain

Example

is called instead. Replacing the access modifier by public will make the property
accessible.

The example also demonstrates that a restrictive access modifier, such as private or
protected , on the set accessor of the Name property in DerivedClass prevents access to
the accessor in the derived class. It generates an error when you assign to it, or accesses
the base class property of the same name, if it's accessible.

C#

public class BaseClass
{
 private string _name = "Name-BaseClass";
 private string _id = "ID-BaseClass";

 public string Name
 {
 get { return _name; }
 set { }
 }

 public string Id
 {
 get { return _id; }
 set { }
 }
}

public class DerivedClass : BaseClass
{
 private string _name = "Name-DerivedClass";
 private string _id = "ID-DerivedClass";

 new public string Name
 {
 get
 {
 return _name;
 }

 // Using "protected" would make the set accessor not accessible.
 set
 {
 _name = value;
 }
 }

 // Using private on the following property hides it in the Main Class.
 // Any assignment to the property will use Id in BaseClass.
 new private string Id
 {
 get

Notice that if you replace the declaration new private string Id by new public string
Id , you get the output:

Name and ID in the base class: Name-BaseClass, ID-BaseClass Name and ID in the
derived class: John, John123

Properties
Indexers

 {
 return _id;
 }
 set
 {
 _id = value;
 }
 }
}

class MainClass
{
 static void Main()
 {
 BaseClass b1 = new BaseClass();
 DerivedClass d1 = new DerivedClass();

 b1.Name = "Mary";
 d1.Name = "John";

 b1.Id = "Mary123";
 d1.Id = "John123"; // The BaseClass.Id property is called.

 System.Console.WriteLine("Base: {0}, {1}", b1.Name, b1.Id);
 System.Console.WriteLine("Derived: {0}, {1}", d1.Name, d1.Id);

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
}
/* Output:
 Base: Name-BaseClass, ID-BaseClass
 Derived: John, ID-BaseClass
*/

Comments

See also

Access Modifiers
Init only properties
Required properties

How to declare and use read write
properties (C# Programming Guide)
Article • 2022-07-30 • 2 minutes to read

Properties provide the convenience of public data members without the risks that come
with unprotected, uncontrolled, and unverified access to an object's data. Properties
declare accessors: special methods that assign and retrieve values from the underlying
data member. The set accessor enables data members to be assigned, and the get
accessor retrieves data member values.

This sample shows a Person class that has two properties: Name (string) and Age (int).
Both properties provide get and set accessors, so they're considered read/write
properties.

C#

Example

class Person
{
 private string _name = "N/A";
 private int _age = 0;

 // Declare a Name property of type string:
 public string Name
 {
 get
 {
 return _name;
 }
 set
 {
 _name = value;
 }
 }

 // Declare an Age property of type int:
 public int Age
 {
 get
 {
 return _age;
 }

 set
 {

 _age = value;
 }
 }

 public override string ToString()
 {
 return "Name = " + Name + ", Age = " + Age;
 }
}

public class Wrapper
{
 private string _name = "N/A";
 public string Name
 {
 get
 {
 return _name;
 }
 private set
 {
 _name = value;
 }
 }

}

class TestPerson
{
 static void Main()
 {
 // Create a new Person object:
 Person person = new Person();

 // Print out the name and the age associated with the person:
 Console.WriteLine("Person details - {0}", person);

 // Set some values on the person object:
 person.Name = "Joe";
 person.Age = 99;
 Console.WriteLine("Person details - {0}", person);

 // Increment the Age property:
 person.Age += 1;
 Console.WriteLine("Person details - {0}", person);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Person details - Name = N/A, Age = 0
 Person details - Name = Joe, Age = 99

In the previous example, the Name and Age properties are public and include both a get
and a set accessor. Public accessors allow any object to read and write these properties.
It's sometimes desirable, however, to exclude one of the accessors. You can omit the
set accessor to make the property read-only:

C#

Alternatively, you can expose one accessor publicly but make the other private or
protected. For more information, see Asymmetric Accessor Accessibility.

Once the properties are declared, they can be used as fields of the class. Properties
allow for a natural syntax when both getting and setting the value of a property, as in
the following statements:

C#

In a property set method a special value variable is available. This variable contains the
value that the user specified, for example:

C#

Notice the clean syntax for incrementing the Age property on a Person object:

 Person details - Name = Joe, Age = 100
*/

Robust Programming

public string Name
{
 get
 {
 return _name;
 }
 private set
 {
 _name = value;
 }
}

person.Name = "Joe";
person.Age = 99;

_name = value;

C#

If separate set and get methods were used to model properties, the equivalent code
might look like this:

C#

The ToString method is overridden in this example:

C#

Notice that ToString isn't explicitly used in the program. It's invoked by default by the
WriteLine calls.

Properties
The C# type system

person.Age += 1;

person.SetAge(person.GetAge() + 1);

public override string ToString()
{
 return "Name = " + Name + ", Age = " + Age;
}

See also

Auto-Implemented Properties (C#
Programming Guide)
Article • 2022-09-29 • 2 minutes to read

Auto-implemented properties make property-declaration more concise when no
additional logic is required in the property accessors. They also enable client code to
create objects. When you declare a property as shown in the following example, the
compiler creates a private, anonymous backing field that can only be accessed through
the property's get and set accessors. In C# 9 and later, init accessors can also be
declared as auto-implemented properties.

The following example shows a simple class that has some auto-implemented
properties:

C#

Example

// This class is mutable. Its data can be modified from
// outside the class.
public class Customer
{
 // Auto-implemented properties for trivial get and set
 public double TotalPurchases { get; set; }
 public string Name { get; set; }
 public int CustomerId { get; set; }

 // Constructor
 public Customer(double purchases, string name, int id)
 {
 TotalPurchases = purchases;
 Name = name;
 CustomerId = id;
 }

 // Methods
 public string GetContactInfo() { return "ContactInfo"; }
 public string GetTransactionHistory() { return "History"; }

 // .. Additional methods, events, etc.
}

class Program
{
 static void Main()
 {

You can't declare auto-implemented properties in interfaces. Auto-implemented
properties declare a private instance backing field, and interfaces may not declare
instance fields. Declaring a property in an interface without defining a body declares a
property with accessors that must be implemented by each type that implements that
interface.

You can initialize auto-implemented properties similarly to fields:

C#

The class that is shown in the previous example is mutable. Client code can change the
values in objects after creation. In complex classes that contain significant behavior
(methods) as well as data, it's often necessary to have public properties. However, for
small classes or structs that just encapsulate a set of values (data) and have little or no
behaviors, you should use one of the following options for making the objects
immutable:

Declare only a get accessor (immutable everywhere except the constructor).
Declare a get accessor and an init accessor (immutable everywhere except
during object construction).
Declare the set accessor as private (immutable to consumers).

For more information, see How to implement a lightweight class with auto-implemented
properties.

Use auto-implemented properties (style rule IDE0032)
Properties
Modifiers

 // Initialize a new object.
 Customer cust1 = new Customer(4987.63, "Northwind", 90108);

 // Modify a property.
 cust1.TotalPurchases += 499.99;
 }
}

public string FirstName { get; set; } = "Jane";

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0032

How to implement a lightweight class
with auto-implemented properties (C#
Programming Guide)
Article • 2022-07-30 • 3 minutes to read

This example shows how to create an immutable lightweight class that serves only to
encapsulate a set of auto-implemented properties. Use this kind of construct instead of
a struct when you must use reference type semantics.

You can make an immutable property in the following ways:

Declare only the get accessor, which makes the property immutable everywhere
except in the type's constructor.
Declare an init accessor instead of a set accessor, which makes the property
settable only in the constructor or by using an object initializer.
Declare the set accessor to be private. The property is settable within the type, but
it's immutable to consumers.

You can add the required modifier to the property declaration to force callers to set the
property as part of initializing a new object.

The following example shows how a property with only get accessor differs than one
with get and private set.

C#

class Contact
{
 public string Name { get; }
 public string Address { get; private set; }

 public Contact(string contactName, string contactAddress)
 {
 // Both properties are accessible in the constructor.
 Name = contactName;
 Address = contactAddress;
 }

 // Name isn't assignable here. This will generate a compile error.
 //public void ChangeName(string newName) => Name = newName;

 // Address is assignable here.
 public void ChangeAddress(string newAddress) => Address = newAddress;
}

The following example shows two ways to implement an immutable class that has auto-
implemented properties. Each way declares one of the properties with a private set and
one of the properties with a get only. The first class uses a constructor only to initialize
the properties, and the second class uses a static factory method that calls a constructor.

C#

Example

// This class is immutable. After an object is created,
// it cannot be modified from outside the class. It uses a
// constructor to initialize its properties.
class Contact
{
 // Read-only property.
 public string Name { get; }

 // Read-write property with a private set accessor.
 public string Address { get; private set; }

 // Public constructor.
 public Contact(string contactName, string contactAddress)
 {
 Name = contactName;
 Address = contactAddress;
 }
}

// This class is immutable. After an object is created,
// it cannot be modified from outside the class. It uses a
// static method and private constructor to initialize its properties.
public class Contact2
{
 // Read-write property with a private set accessor.
 public string Name { get; private set; }

 // Read-only property.
 public string Address { get; }

 // Private constructor.
 private Contact2(string contactName, string contactAddress)
 {
 Name = contactName;
 Address = contactAddress;
 }

 // Public factory method.
 public static Contact2 CreateContact(string name, string address)
 {
 return new Contact2(name, address);
 }
}

The compiler creates backing fields for each auto-implemented property. The fields
aren't accessible directly from source code.

public class Program
{
 static void Main()
 {
 // Some simple data sources.
 string[] names = {"Terry Adams","Fadi Fakhouri", "Hanying Feng",
 "Cesar Garcia", "Debra Garcia"};
 string[] addresses = {"123 Main St.", "345 Cypress Ave.", "678 1st
Ave",
 "12 108th St.", "89 E. 42nd St."};

 // Simple query to demonstrate object creation in select clause.
 // Create Contact objects by using a constructor.
 var query1 = from i in Enumerable.Range(0, 5)
 select new Contact(names[i], addresses[i]);

 // List elements cannot be modified by client code.
 var list = query1.ToList();
 foreach (var contact in list)
 {
 Console.WriteLine("{0}, {1}", contact.Name, contact.Address);
 }

 // Create Contact2 objects by using a static factory method.
 var query2 = from i in Enumerable.Range(0, 5)
 select Contact2.CreateContact(names[i],
addresses[i]);

 // Console output is identical to query1.
 var list2 = query2.ToList();

 // List elements cannot be modified by client code.
 // CS0272:
 // list2[0].Name = "Eugene Zabokritski";

 // Keep the console open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

/* Output:
 Terry Adams, 123 Main St.
 Fadi Fakhouri, 345 Cypress Ave.
 Hanying Feng, 678 1st Ave
 Cesar Garcia, 12 108th St.
 Debra Garcia, 89 E. 42nd St.
*/

Properties
struct
Object and Collection Initializers

See also

Methods (C# Programming Guide)
Article • 2022-09-29 • 10 minutes to read

A method is a code block that contains a series of statements. A program causes the
statements to be executed by calling the method and specifying any required method
arguments. In C#, every executed instruction is performed in the context of a method.

The Main method is the entry point for every C# application and it's called by the
common language runtime (CLR) when the program is started. In an application that
uses top-level statements, the Main method is generated by the compiler and contains
all top-level statements.

Methods are declared in a class, struct, or interface by specifying the access level such as
public or private , optional modifiers such as abstract or sealed , the return value, the
name of the method, and any method parameters. These parts together are the
signature of the method.

Method parameters are enclosed in parentheses and are separated by commas. Empty
parentheses indicate that the method requires no parameters. This class contains four
methods:

C#

７ Note

This article discusses named methods. For information about anonymous functions,
see Lambda expressions.

Method signatures

） Important

A return type of a method is not part of the signature of the method for the
purposes of method overloading. However, it is part of the signature of the method
when determining the compatibility between a delegate and the method that it
points to.

abstract class Motorcycle
{
 // Anyone can call this.

Calling a method on an object is like accessing a field. After the object name, add a
period, the name of the method, and parentheses. Arguments are listed within the
parentheses, and are separated by commas. The methods of the Motorcycle class can
therefore be called as in the following example:

C#

The method definition specifies the names and types of any parameters that are
required. When calling code calls the method, it provides concrete values called

 public void StartEngine() {/* Method statements here */ }

 // Only derived classes can call this.
 protected void AddGas(int gallons) { /* Method statements here */ }

 // Derived classes can override the base class implementation.
 public virtual int Drive(int miles, int speed) { /* Method statements
here */ return 1; }

 // Derived classes must implement this.
 public abstract double GetTopSpeed();
}

Method access

class TestMotorcycle : Motorcycle
{

 public override double GetTopSpeed()
 {
 return 108.4;
 }

 static void Main()
 {

 TestMotorcycle moto = new TestMotorcycle();

 moto.StartEngine();
 moto.AddGas(15);
 moto.Drive(5, 20);
 double speed = moto.GetTopSpeed();
 Console.WriteLine("My top speed is {0}", speed);
 }
}

Method parameters vs. arguments

arguments for each parameter. The arguments must be compatible with the parameter
type but the argument name (if any) used in the calling code doesn't have to be the
same as the parameter named defined in the method. For example:

C#

By default, when an instance of a value type is passed to a method, its copy is passed
instead of the instance itself. Therefore, changes to the argument have no effect on the
original instance in the calling method. To pass a value-type instance by reference, use
the ref keyword. For more information, see Passing Value-Type Parameters.

When an object of a reference type is passed to a method, a reference to the object is
passed. That is, the method receives not the object itself but an argument that indicates
the location of the object. If you change a member of the object by using this reference,
the change is reflected in the argument in the calling method, even if you pass the
object by value.

You create a reference type by using the class keyword, as the following example
shows:

C#

public void Caller()
{
 int numA = 4;
 // Call with an int variable.
 int productA = Square(numA);

 int numB = 32;
 // Call with another int variable.
 int productB = Square(numB);

 // Call with an integer literal.
 int productC = Square(12);

 // Call with an expression that evaluates to int.
 productC = Square(productA * 3);
}

int Square(int i)
{
 // Store input argument in a local variable.
 int input = i;
 return input * input;
}

Passing by reference vs. passing by value

Now, if you pass an object that is based on this type to a method, a reference to the
object is passed. The following example passes an object of type SampleRefType to
method ModifyObject :

C#

The example does essentially the same thing as the previous example in that it passes
an argument by value to a method. But, because a reference type is used, the result is
different. The modification that is made in ModifyObject to the value field of the
parameter, obj , also changes the value field of the argument, rt , in the TestRefType
method. The TestRefType method displays 33 as the output.

For more information about how to pass reference types by reference and by value, see
Passing Reference-Type Parameters and Reference Types.

Methods can return a value to the caller. If the return type (the type listed before the
method name) is not void , the method can return the value by using the return
statement. A statement with the return keyword followed by a value that matches the
return type will return that value to the method caller.

The value can be returned to the caller by value or by reference. Values are returned to
the caller by reference if the ref keyword is used in the method signature and it follows
each return keyword. For example, the following method signature and return

public class SampleRefType
{
 public int value;
}

public static void TestRefType()
{
 SampleRefType rt = new SampleRefType();
 rt.value = 44;
 ModifyObject(rt);
 Console.WriteLine(rt.value);
}

static void ModifyObject(SampleRefType obj)
{
 obj.value = 33;
}

Return values

statement indicate that the method returns a variable named estDistance by reference
to the caller.

C#

The return keyword also stops the execution of the method. If the return type is void , a
return statement without a value is still useful to stop the execution of the method.
Without the return keyword, the method will stop executing when it reaches the end of
the code block. Methods with a non-void return type are required to use the return
keyword to return a value. For example, these two methods use the return keyword to
return integers:

C#

To use a value returned from a method, the calling method can use the method call
itself anywhere a value of the same type would be sufficient. You can also assign the
return value to a variable. For example, the following two code examples accomplish the
same goal:

C#

C#

public ref double GetEstimatedDistance()
{
 return ref estDistance;
}

class SimpleMath
{
 public int AddTwoNumbers(int number1, int number2)
 {
 return number1 + number2;
 }

 public int SquareANumber(int number)
 {
 return number * number;
 }
}

int result = obj.AddTwoNumbers(1, 2);
result = obj.SquareANumber(result);
// The result is 9.
Console.WriteLine(result);

Using a local variable, in this case, result , to store a value is optional. It may help the
readability of the code, or it may be necessary if you need to store the original value of
the argument for the entire scope of the method.

To use a value returned by reference from a method, you must declare a ref local
variable if you intend to modify its value. For example, if the
Planet.GetEstimatedDistance method returns a Double value by reference, you can
define it as a ref local variable with code like the following:

C#

Returning a multi-dimensional array from a method, M , that modifies the array's
contents is not necessary if the calling function passed the array into M . You may return
the resulting array from M for good style or functional flow of values, but it is not
necessary because C# passes all reference types by value, and the value of an array
reference is the pointer to the array. In the method M , any changes to the array's
contents are observable by any code that has a reference to the array, as shown in the
following example:

C#

result = obj.SquareANumber(obj.AddTwoNumbers(1, 2));
// The result is 9.
Console.WriteLine(result);

ref double distance = ref Planet.GetEstimatedDistance();

static void Main(string[] args)
{
 int[,] matrix = new int[2, 2];
 FillMatrix(matrix);
 // matrix is now full of -1
}

public static void FillMatrix(int[,] matrix)
{
 for (int i = 0; i < matrix.GetLength(0); i++)
 {
 for (int j = 0; j < matrix.GetLength(1); j++)
 {
 matrix[i, j] = -1;
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.double

By using the async feature, you can invoke asynchronous methods without using explicit
callbacks or manually splitting your code across multiple methods or lambda
expressions.

If you mark a method with the async modifier, you can use the await operator in the
method. When control reaches an await expression in the async method, control returns
to the caller, and progress in the method is suspended until the awaited task completes.
When the task is complete, execution can resume in the method.

An async method typically has a return type of Task<TResult>, Task,
IAsyncEnumerable<T>or void . The void return type is used primarily to define event
handlers, where a void return type is required. An async method that returns void can't
be awaited, and the caller of a void-returning method can't catch exceptions that the
method throws. An async method can have any task-like return type.

In the following example, DelayAsync is an async method that has a return type of
Task<TResult>. DelayAsync has a return statement that returns an integer. Therefore
the method declaration of DelayAsync must have a return type of Task<int> . Because
the return type is Task<int> , the evaluation of the await expression in
DoSomethingAsync produces an integer as the following statement demonstrates: int
result = await delayTask .

The Main method is an example of an async method that has a return type of Task. It
goes to the DoSomethingAsync method, and because it is expressed with a single line, it
can omit the async and await keywords. Because DoSomethingAsync is an async method,
the task for the call to DoSomethingAsync must be awaited, as the following statement
shows: await DoSomethingAsync(); .

C#

Async methods

７ Note

An async method returns to the caller when either it encounters the first awaited
object that's not yet complete or it gets to the end of the async method, whichever
occurs first.

class Program
{
 static Task Main() => DoSomethingAsync();

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task

An async method can't declare any ref or out parameters, but it can call methods that
have such parameters.

For more information about async methods, see Asynchronous programming with async
and await and Async return types.

It is common to have method definitions that simply return immediately with the result
of an expression, or that have a single statement as the body of the method. There is a
syntax shortcut for defining such methods using => :

C#

If the method returns void or is an async method, then the body of the method must
be a statement expression (same as with lambdas). For properties and indexers, they
must be read only, and you don't use the get accessor keyword.

 static async Task DoSomethingAsync()
 {
 Task<int> delayTask = DelayAsync();
 int result = await delayTask;

 // The previous two statements may be combined into
 // the following statement.
 //int result = await DelayAsync();

 Console.WriteLine($"Result: {result}");
 }

 static async Task<int> DelayAsync()
 {
 await Task.Delay(100);
 return 5;
 }
}
// Example output:
// Result: 5

Expression body definitions

public Point Move(int dx, int dy) => new Point(x + dx, y + dy);
public void Print() => Console.WriteLine(First + " " + Last);
// Works with operators, properties, and indexers too.
public static Complex operator +(Complex a, Complex b) => a.Add(b);
public string Name => First + " " + Last;
public Customer this[long id] => store.LookupCustomer(id);

An iterator performs a custom iteration over a collection, such as a list or an array. An
iterator uses the yield return statement to return each element one at a time. When a
yield return statement is reached, the current location in code is remembered.
Execution is restarted from that location when the iterator is called the next time.

You call an iterator from client code by using a foreach statement.

The return type of an iterator can be IEnumerable, IEnumerable<T>,
IAsyncEnumerable<T>, IEnumerator, or IEnumerator<T>.

For more information, see Iterators.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Programming Guide
The C# type system
Access Modifiers
Static Classes and Static Class Members
Inheritance
Abstract and Sealed Classes and Class Members
params
out
ref
Method Parameters

Iterators

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/keywords/out

Local functions (C# Programming
Guide)
Article • 2022-09-29 • 10 minutes to read

Local functions are methods of a type that are nested in another member. They can only
be called from their containing member. Local functions can be declared in and called
from:

Methods, especially iterator methods and async methods
Constructors
Property accessors
Event accessors
Anonymous methods
Lambda expressions
Finalizers
Other local functions

However, local functions can't be declared inside an expression-bodied member.

Local functions make the intent of your code clear. Anyone reading your code can see
that the method is not callable except by the containing method. For team projects, they
also make it impossible for another developer to mistakenly call the method directly
from elsewhere in the class or struct.

A local function is defined as a nested method inside a containing member. Its definition
has the following syntax:

C#

７ Note

In some cases, you can use a lambda expression to implement functionality also
supported by a local function. For a comparison, see Local functions vs. lambda
expressions.

Local function syntax

<modifiers> <return-type> <method-name> <parameter-list>

You can use the following modifiers with a local function:

async
unsafe
static A static local function can't capture local variables or instance state.
extern An external local function must be static .

All local variables that are defined in the containing member, including its method
parameters, are accessible in a non-static local function.

Unlike a method definition, a local function definition cannot include the member access
modifier. Because all local functions are private, including an access modifier, such as
the private keyword, generates compiler error CS0106, "The modifier 'private' is not
valid for this item."

The following example defines a local function named AppendPathSeparator that is
private to a method named GetText :

C#

Beginning with C# 9.0, you can apply attributes to a local function, its parameters and
type parameters, as the following example shows:

C#

private static string GetText(string path, string filename)
{
 var reader = File.OpenText($"{AppendPathSeparator(path)}{filename}");
 var text = reader.ReadToEnd();
 return text;

 string AppendPathSeparator(string filepath)
 {
 return filepath.EndsWith(@"\") ? filepath : filepath + @"\";
 }
}

#nullable enable
private static void Process(string?[] lines, string mark)
{
 foreach (var line in lines)
 {
 if (IsValid(line))
 {
 // Processing logic...
 }
 }

The preceding example uses a special attribute to assist the compiler in static analysis in
a nullable context.

One of the useful features of local functions is that they can allow exceptions to surface
immediately. For method iterators, exceptions are surfaced only when the returned
sequence is enumerated, and not when the iterator is retrieved. For async methods, any
exceptions thrown in an async method are observed when the returned task is awaited.

The following example defines an OddSequence method that enumerates odd numbers
in a specified range. Because it passes a number greater than 100 to the OddSequence
enumerator method, the method throws an ArgumentOutOfRangeException. As the
output from the example shows, the exception surfaces only when you iterate the
numbers, and not when you retrieve the enumerator.

C#

 bool IsValid([NotNullWhen(true)] string? line)
 {
 return !string.IsNullOrEmpty(line) && line.Length >= mark.Length;
 }
}

Local functions and exceptions

public class IteratorWithoutLocalExample
{
 public static void Main()
 {
 IEnumerable<int> xs = OddSequence(50, 110);
 Console.WriteLine("Retrieved enumerator...");

 foreach (var x in xs) // line 11
 {
 Console.Write($"{x} ");
 }
 }

 public static IEnumerable<int> OddSequence(int start, int end)
 {
 if (start < 0 || start > 99)
 throw new ArgumentOutOfRangeException(nameof(start), "start must be
between 0 and 99.");
 if (end > 100)
 throw new ArgumentOutOfRangeException(nameof(end), "end must be
less than or equal to 100.");
 if (start >= end)
 throw new ArgumentException("start must be less than end.");

https://learn.microsoft.com/en-us/dotnet/api/system.argumentoutofrangeexception

If you put iterator logic into a local function, argument validation exceptions are thrown
when you retrieve the enumerator, as the following example shows:

C#

 for (int i = start; i <= end; i++)
 {
 if (i % 2 == 1)
 yield return i;
 }
 }
}
// The example displays the output like this:
//
// Retrieved enumerator...
// Unhandled exception. System.ArgumentOutOfRangeException: end must be
less than or equal to 100. (Parameter 'end')
// at IteratorWithoutLocalExample.OddSequence(Int32 start, Int32
end)+MoveNext() in IteratorWithoutLocal.cs:line 22
// at IteratorWithoutLocalExample.Main() in IteratorWithoutLocal.cs:line
11

public class IteratorWithLocalExample
{
 public static void Main()
 {
 IEnumerable<int> xs = OddSequence(50, 110); // line 8
 Console.WriteLine("Retrieved enumerator...");

 foreach (var x in xs)
 {
 Console.Write($"{x} ");
 }
 }

 public static IEnumerable<int> OddSequence(int start, int end)
 {
 if (start < 0 || start > 99)
 throw new ArgumentOutOfRangeException(nameof(start), "start must be
between 0 and 99.");
 if (end > 100)
 throw new ArgumentOutOfRangeException(nameof(end), "end must be
less than or equal to 100.");
 if (start >= end)
 throw new ArgumentException("start must be less than end.");

 return GetOddSequenceEnumerator();

 IEnumerable<int> GetOddSequenceEnumerator()
 {
 for (int i = start; i <= end; i++)
 {
 if (i % 2 == 1)

At first glance, local functions and lambda expressions are very similar. In many cases,
the choice between using lambda expressions and local functions is a matter of style
and personal preference. However, there are real differences in where you can use one
or the other that you should be aware of.

Let's examine the differences between the local function and lambda expression
implementations of the factorial algorithm. Here's the version using a local function:

C#

This version uses lambda expressions:

C#

 yield return i;
 }
 }
 }
}
// The example displays the output like this:
//
// Unhandled exception. System.ArgumentOutOfRangeException: end must be
less than or equal to 100. (Parameter 'end')
// at IteratorWithLocalExample.OddSequence(Int32 start, Int32 end) in
IteratorWithLocal.cs:line 22
// at IteratorWithLocalExample.Main() in IteratorWithLocal.cs:line 8

Local functions vs. lambda expressions

public static int LocalFunctionFactorial(int n)
{
 return nthFactorial(n);

 int nthFactorial(int number) => number < 2
 ? 1
 : number * nthFactorial(number - 1);
}

public static int LambdaFactorial(int n)
{
 Func<int, int> nthFactorial = default(Func<int, int>);

 nthFactorial = number => number < 2
 ? 1
 : number * nthFactorial(number - 1);

 return nthFactorial(n);
}

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0039

Local functions are explicitly named like methods. Lambda expressions are anonymous
methods and need to be assigned to variables of a delegate type, typically either
Action or Func types. When you declare a local function, the process is like writing a
normal method; you declare a return type and a function signature.

Lambda expressions rely on the type of the Action /Func variable that they're assigned
to determine the argument and return types. In local functions, since the syntax is much
like writing a normal method, argument types and return type are already part of the
function declaration.

Beginning with C# 10, some lambda expressions have a natural type, which enables the
compiler to infer the return type and parameter types of the lambda expression.

Lambda expressions are objects that are declared and assigned at run time. In order for
a lambda expression to be used, it needs to be definitely assigned: the Action /Func
variable that it will be assigned to must be declared and the lambda expression assigned
to it. Notice that LambdaFactorial must declare and initialize the lambda expression
nthFactorial before defining it. Not doing so results in a compile time error for
referencing nthFactorial before assigning it.

Local functions are defined at compile time. As they're not assigned to variables, they
can be referenced from any code location where it is in scope; in our first example
LocalFunctionFactorial , we could declare our local function either above or below the
return statement and not trigger any compiler errors.

These differences mean that recursive algorithms are easier to create using local
functions. You can declare and define a local function that calls itself. Lambda
expressions must be declared, and assigned a default value before they can be re-
assigned to a body that references the same lambda expression.

Lambda expressions are converted to delegates when they're declared. Local functions
are more flexible in that they can be written like a traditional method or as a delegate.
Local functions are only converted to delegates when used as a delegate.

Naming

Function signatures and lambda expression types

Definite assignment

Implementation as a delegate

If you declare a local function and only reference it by calling it like a method, it will not
be converted to a delegate.

The rules of definite assignment also affect any variables that are captured by the local
function or lambda expression. The compiler can perform static analysis that enables
local functions to definitely assign captured variables in the enclosing scope. Consider
this example:

C#

The compiler can determine that LocalFunction definitely assigns y when called.
Because LocalFunction is called before the return statement, y is definitely assigned at
the return statement.

Note that when a local function captures variables in the enclosing scope, the local
function is implemented as a delegate type.

Depending on their use, local functions can avoid heap allocations that are always
necessary for lambda expressions. If a local function is never converted to a delegate,
and none of the variables captured by the local function are captured by other lambdas
or local functions that are converted to delegates, the compiler can avoid heap
allocations.

Consider this async example:

C#

Variable capture

int M()
{
 int y;
 LocalFunction();
 return y;

 void LocalFunction() => y = 0;
}

Heap allocations

public async Task<string> PerformLongRunningWorkLambda(string address, int
index, string name)
{
 if (string.IsNullOrWhiteSpace(address))
 throw new ArgumentException(message: "An address is required",

The closure for this lambda expression contains the address , index and name variables.
In the case of local functions, the object that implements the closure may be a struct
type. That struct type would be passed by reference to the local function. This difference
in implementation would save on an allocation.

The instantiation necessary for lambda expressions means extra memory allocations,
which may be a performance factor in time-critical code paths. Local functions do not
incur this overhead. In the example above, the local functions version has two fewer
allocations than the lambda expression version.

If you know that your local function won't be converted to a delegate and none of the
variables captured by it are captured by other lambdas or local functions that are
converted to delegates, you can guarantee that your local function avoids being
allocated on the heap by declaring it as a static local function.

paramName: nameof(address));
 if (index < 0)
 throw new ArgumentOutOfRangeException(paramName: nameof(index),
message: "The index must be non-negative");
 if (string.IsNullOrWhiteSpace(name))
 throw new ArgumentException(message: "You must supply a name",
paramName: nameof(name));

 Func<Task<string>> longRunningWorkImplementation = async () =>
 {
 var interimResult = await FirstWork(address);
 var secondResult = await SecondStep(index, name);
 return $"The results are {interimResult} and {secondResult}.
Enjoy.";
 };

 return await longRunningWorkImplementation();
}

 Tip

Enable .NET code style rule IDE0062 to ensure that local functions are always
marked static .

７ Note

The local function equivalent of this method also uses a class for the closure.
Whether the closure for a local function is implemented as a class or a struct is
an implementation detail. A local function may use a struct whereas a lambda will
always use a class .

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0062

C#

One final advantage not demonstrated in this sample is that local functions can be
implemented as iterators, using the yield return syntax to produce a sequence of
values.

C#

public async Task<string> PerformLongRunningWork(string address, int index,
string name)
{
 if (string.IsNullOrWhiteSpace(address))
 throw new ArgumentException(message: "An address is required",
paramName: nameof(address));
 if (index < 0)
 throw new ArgumentOutOfRangeException(paramName: nameof(index),
message: "The index must be non-negative");
 if (string.IsNullOrWhiteSpace(name))
 throw new ArgumentException(message: "You must supply a name",
paramName: nameof(name));

 return await longRunningWorkImplementation();

 async Task<string> longRunningWorkImplementation()
 {
 var interimResult = await FirstWork(address);
 var secondResult = await SecondStep(index, name);
 return $"The results are {interimResult} and {secondResult}.
Enjoy.";
 }
}

Usage of the yield keyword

public IEnumerable<string> SequenceToLowercase(IEnumerable<string> input)
{
 if (!input.Any())
 {
 throw new ArgumentException("There are no items to convert to
lowercase.");
 }

 return LowercaseIterator();

 IEnumerable<string> LowercaseIterator()
 {
 foreach (var output in input.Select(item => item.ToLower()))
 {
 yield return output;

The yield return statement is not allowed in lambda expressions, see compiler error
CS1621.

While local functions may seem redundant to lambda expressions, they actually serve
different purposes and have different uses. Local functions are more efficient for the
case when you want to write a function that is called only from the context of another
method.

Use local function instead of lambda (style rule IDE0039)
Methods

 }
 }
}

See also

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs1621
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0039

Implicitly typed local variables (C#
Programming Guide)
Article • 2022-09-21 • 5 minutes to read

Local variables can be declared without giving an explicit type. The var keyword
instructs the compiler to infer the type of the variable from the expression on the right
side of the initialization statement. The inferred type may be a built-in type, an
anonymous type, a user-defined type, or a type defined in the .NET class library. For
more information about how to initialize arrays with var , see Implicitly Typed Arrays.

The following examples show various ways in which local variables can be declared with
var :

C#

It is important to understand that the var keyword does not mean "variant" and does
not indicate that the variable is loosely typed, or late-bound. It just means that the
compiler determines and assigns the most appropriate type.

The var keyword may be used in the following contexts:

On local variables (variables declared at method scope) as shown in the previous
example.

// i is compiled as an int
var i = 5;

// s is compiled as a string
var s = "Hello";

// a is compiled as int[]
var a = new[] { 0, 1, 2 };

// expr is compiled as IEnumerable<Customer>
// or perhaps IQueryable<Customer>
var expr =
 from c in customers
 where c.City == "London"
 select c;

// anon is compiled as an anonymous type
var anon = new { Name = "Terry", Age = 34 };

// list is compiled as List<int>
var list = new List<int>();

In a for initialization statement.

C#

In a foreach initialization statement.

C#

In a using statement.

C#

For more information, see How to use implicitly typed local variables and arrays in a
query expression.

In many cases the use of var is optional and is just a syntactic convenience. However,
when a variable is initialized with an anonymous type you must declare the variable as
var if you need to access the properties of the object at a later point. This is a common
scenario in LINQ query expressions. For more information, see Anonymous Types.

From the perspective of your source code, an anonymous type has no name. Therefore,
if a query variable has been initialized with var , then the only way to access the
properties in the returned sequence of objects is to use var as the type of the iteration
variable in the foreach statement.

C#

for (var x = 1; x < 10; x++)

foreach (var item in list) {...}

using (var file = new StreamReader("C:\\myfile.txt")) {...}

var and anonymous types

class ImplicitlyTypedLocals2
{
 static void Main()
 {
 string[] words = { "aPPLE", "BlUeBeRrY", "cHeRry" };

 // If a query produces a sequence of anonymous types,
 // then use var in the foreach statement to access the properties.
 var upperLowerWords =
 from w in words

The following restrictions apply to implicitly-typed variable declarations:

var can only be used when a local variable is declared and initialized in the same
statement; the variable cannot be initialized to null, or to a method group or an
anonymous function.

var cannot be used on fields at class scope.

Variables declared by using var cannot be used in the initialization expression. In
other words, this expression is legal: int i = (i = 20); but this expression
produces a compile-time error: var i = (i = 20);

Multiple implicitly-typed variables cannot be initialized in the same statement.

If a type named var is in scope, then the var keyword will resolve to that type
name and will not be treated as part of an implicitly typed local variable
declaration.

Implicit typing with the var keyword can only be applied to variables at local method
scope. Implicit typing is not available for class fields as the C# compiler would encounter
a logical paradox as it processed the code: the compiler needs to know the type of the
field, but it cannot determine the type until the assignment expression is analyzed, and
the expression cannot be evaluated without knowing the type. Consider the following
code:

C#

 select new { Upper = w.ToUpper(), Lower = w.ToLower() };

 // Execute the query
 foreach (var ul in upperLowerWords)
 {
 Console.WriteLine("Uppercase: {0}, Lowercase: {1}", ul.Upper,
ul.Lower);
 }
 }
}
/* Outputs:
 Uppercase: APPLE, Lowercase: apple
 Uppercase: BLUEBERRY, Lowercase: blueberry
 Uppercase: CHERRY, Lowercase: cherry
 */

Remarks

private var bookTitles;

bookTitles is a class field given the type var . As the field has no expression to evaluate,
it is impossible for the compiler to infer what type bookTitles is supposed to be. In
addition, adding an expression to the field (like you would for a local variable) is also
insufficient:

C#

When the compiler encounters fields during code compilation, it records each field's
type before processing any expressions associated with it. The compiler encounters the
same paradox trying to parse bookTitles : it needs to know the type of the field, but the
compiler would normally determine var 's type by analyzing the expression, which isn't
possible without knowing the type beforehand.

You may find that var can also be useful with query expressions in which the exact
constructed type of the query variable is difficult to determine. This can occur with
grouping and ordering operations.

The var keyword can also be useful when the specific type of the variable is tedious to
type on the keyboard, or is obvious, or does not add to the readability of the code. One
example where var is helpful in this manner is with nested generic types such as those
used with group operations. In the following query, the type of the query variable is
IEnumerable<IGrouping<string, Student>> . As long as you and others who must
maintain your code understand this, there is no problem with using implicit typing for
convenience and brevity.

C#

The use of var helps simplify your code, but its use should be restricted to cases where
it is required, or when it makes your code easier to read. For more information about
when to use var properly, see the Implicitly typed local variables section on the C#
Coding Guidelines article.

private var bookTitles = new List<string>();

// Same as previous example except we use the entire last name as a key.
// Query variable is an IEnumerable<IGrouping<string, Student>>
var studentQuery3 =
 from student in students
 group student by student.Last;

See also

C# Reference
Implicitly Typed Arrays
How to use implicitly typed local variables and arrays in a query expression
Anonymous Types
Object and Collection Initializers
var
LINQ in C#
LINQ (Language-Integrated Query)
Iteration statements
using Statement

How to use implicitly typed local
variables and arrays in a query
expression (C# Programming Guide)
Article • 2022-09-21 • 2 minutes to read

You can use implicitly typed local variables whenever you want the compiler to
determine the type of a local variable. You must use implicitly typed local variables to
store anonymous types, which are often used in query expressions. The following
examples illustrate both optional and required uses of implicitly typed local variables in
queries.

Implicitly typed local variables are declared by using the var contextual keyword. For
more information, see Implicitly Typed Local Variables and Implicitly Typed Arrays.

The following example shows a common scenario in which the var keyword is required:
a query expression that produces a sequence of anonymous types. In this scenario, both
the query variable and the iteration variable in the foreach statement must be implicitly
typed by using var because you do not have access to a type name for the anonymous
type. For more information about anonymous types, see Anonymous Types.

C#

Examples

private static void QueryNames(char firstLetter)
{
 // Create the query. Use of var is required because
 // the query produces a sequence of anonymous types:
 // System.Collections.Generic.IEnumerable<????>.
 var studentQuery =
 from student in students
 where student.FirstName[0] == firstLetter
 select new { student.FirstName, student.LastName };

 // Execute the query and display the results.
 foreach (var anonType in studentQuery)
 {
 Console.WriteLine("First = {0}, Last = {1}", anonType.FirstName,
anonType.LastName);
 }
}

The following example uses the var keyword in a situation that is similar, but in which
the use of var is optional. Because student.LastName is a string, execution of the query
returns a sequence of strings. Therefore, the type of queryId could be declared as
System.Collections.Generic.IEnumerable<string> instead of var . Keyword var is used
for convenience. In the example, the iteration variable in the foreach statement is
explicitly typed as a string, but it could instead be declared by using var . Because the
type of the iteration variable is not an anonymous type, the use of var is an option, not
a requirement. Remember, var itself is not a type, but an instruction to the compiler to
infer and assign the type.

C#

C# Programming Guide
Extension Methods
LINQ (Language-Integrated Query)
LINQ in C#

// Variable queryId could be declared by using
// System.Collections.Generic.IEnumerable<string>
// instead of var.
var queryId =
 from student in students
 where student.Id > 111
 select student.LastName;

// Variable str could be declared by using var instead of string.
foreach (string str in queryId)
{
 Console.WriteLine("Last name: {0}", str);
}

See also

Extension Methods (C# Programming
Guide)
Article • 2022-09-29 • 10 minutes to read

Extension methods enable you to "add" methods to existing types without creating a
new derived type, recompiling, or otherwise modifying the original type. Extension
methods are static methods, but they're called as if they were instance methods on the
extended type. For client code written in C#, F# and Visual Basic, there's no apparent
difference between calling an extension method and the methods defined in a type.

The most common extension methods are the LINQ standard query operators that add
query functionality to the existing System.Collections.IEnumerable and
System.Collections.Generic.IEnumerable<T> types. To use the standard query operators,
first bring them into scope with a using System.Linq directive. Then any type that
implements IEnumerable<T> appears to have instance methods such as GroupBy,
OrderBy, Average, and so on. You can see these additional methods in IntelliSense
statement completion when you type "dot" after an instance of an IEnumerable<T> type
such as List<T> or Array.

The following example shows how to call the standard query operator OrderBy method
on an array of integers. The expression in parentheses is a lambda expression. Many
standard query operators take lambda expressions as parameters, but this isn't a
requirement for extension methods. For more information, see Lambda Expressions.

C#

OrderBy Example

class ExtensionMethods2
{

 static void Main()
 {
 int[] ints = { 10, 45, 15, 39, 21, 26 };
 var result = ints.OrderBy(g => g);
 foreach (var i in result)
 {
 System.Console.Write(i + " ");
 }
 }
}
//Output: 10 15 21 26 39 45

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.average
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.array

Extension methods are defined as static methods but are called by using instance
method syntax. Their first parameter specifies which type the method operates on. The
parameter is preceded by the this modifier. Extension methods are only in scope when
you explicitly import the namespace into your source code with a using directive.

The following example shows an extension method defined for the System.String class.
It's defined inside a non-nested, non-generic static class:

C#

The WordCount extension method can be brought into scope with this using directive:

C#

And it can be called from an application by using this syntax:

C#

You invoke the extension method in your code with instance method syntax. The
intermediate language (IL) generated by the compiler translates your code into a call on
the static method. The principle of encapsulation is not really being violated. Extension
methods cannot access private variables in the type they are extending.

Both the MyExtensions class and the WordCount method are static , and it can be
accessed like all other static members. The WordCount method can be invoked like
other static methods as follows:

C#

namespace ExtensionMethods
{
 public static class MyExtensions
 {
 public static int WordCount(this string str)
 {
 return str.Split(new char[] { ' ', '.', '?' },
 StringSplitOptions.RemoveEmptyEntries).Length;
 }
 }
}

using ExtensionMethods;

string s = "Hello Extension Methods";
int i = s.WordCount();

https://learn.microsoft.com/en-us/dotnet/api/system.string

The preceding C# code:

Declares and assigns a new string named s with a value of "Hello Extension
Methods" .
Calls MyExtensions.WordCount given argument s

For more information, see How to implement and call a custom extension method.

In general, you'll probably be calling extension methods far more often than
implementing your own. Because extension methods are called by using instance
method syntax, no special knowledge is required to use them from client code. To
enable extension methods for a particular type, just add a using directive for the
namespace in which the methods are defined. For example, to use the standard query
operators, add this using directive to your code:

C#

(You may also have to add a reference to System.Core.dll.) You'll notice that the standard
query operators now appear in IntelliSense as additional methods available for most
IEnumerable<T> types.

You can use extension methods to extend a class or interface, but not to override them.
An extension method with the same name and signature as an interface or class method
will never be called. At compile time, extension methods always have lower priority than
instance methods defined in the type itself. In other words, if a type has a method
named Process(int i) , and you have an extension method with the same signature, the
compiler will always bind to the instance method. When the compiler encounters a
method invocation, it first looks for a match in the type's instance methods. If no match
is found, it will search for any extension methods that are defined for the type, and bind
to the first extension method that it finds. The following example demonstrates how the
compiler determines which extension method or instance method to bind to.

string s = "Hello Extension Methods";
int i = MyExtensions.WordCount(s);

using System.Linq;

Binding Extension Methods at Compile Time

Example

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The following example demonstrates the rules that the C# compiler follows in
determining whether to bind a method call to an instance method on the type, or to an
extension method. The static class Extensions contains extension methods defined for
any type that implements IMyInterface . Classes A , B , and C all implement the
interface.

The MethodB extension method is never called because its name and signature exactly
match methods already implemented by the classes.

When the compiler can't find an instance method with a matching signature, it will bind
to a matching extension method if one exists.

C#

// Define an interface named IMyInterface.
namespace DefineIMyInterface
{
 using System;

 public interface IMyInterface
 {
 // Any class that implements IMyInterface must define a method
 // that matches the following signature.
 void MethodB();
 }
}

// Define extension methods for IMyInterface.
namespace Extensions
{
 using System;
 using DefineIMyInterface;

 // The following extension methods can be accessed by instances of any
 // class that implements IMyInterface.
 public static class Extension
 {
 public static void MethodA(this IMyInterface myInterface, int i)
 {
 Console.WriteLine
 ("Extension.MethodA(this IMyInterface myInterface, int i)");
 }

 public static void MethodA(this IMyInterface myInterface, string s)
 {
 Console.WriteLine
 ("Extension.MethodA(this IMyInterface myInterface, string
s)");
 }

 // This method is never called in ExtensionMethodsDemo1, because

each
 // of the three classes A, B, and C implements a method named
MethodB
 // that has a matching signature.
 public static void MethodB(this IMyInterface myInterface)
 {
 Console.WriteLine
 ("Extension.MethodB(this IMyInterface myInterface)");
 }
 }
}

// Define three classes that implement IMyInterface, and then use them to
test
// the extension methods.
namespace ExtensionMethodsDemo1
{
 using System;
 using Extensions;
 using DefineIMyInterface;

 class A : IMyInterface
 {
 public void MethodB() { Console.WriteLine("A.MethodB()"); }
 }

 class B : IMyInterface
 {
 public void MethodB() { Console.WriteLine("B.MethodB()"); }
 public void MethodA(int i) { Console.WriteLine("B.MethodA(int i)");
}
 }

 class C : IMyInterface
 {
 public void MethodB() { Console.WriteLine("C.MethodB()"); }
 public void MethodA(object obj)
 {
 Console.WriteLine("C.MethodA(object obj)");
 }
 }

 class ExtMethodDemo
 {
 static void Main(string[] args)
 {
 // Declare an instance of class A, class B, and class C.
 A a = new A();
 B b = new B();
 C c = new C();

 // For a, b, and c, call the following methods:
 // -- MethodA with an int argument
 // -- MethodA with a string argument
 // -- MethodB with no argument.

In the past, it was common to create "Collection Classes" that implemented the
System.Collections.Generic.IEnumerable<T> interface for a given type and contained
functionality that acted on collections of that type. While there's nothing wrong with

 // A contains no MethodA, so each call to MethodA resolves to
 // the extension method that has a matching signature.
 a.MethodA(1); // Extension.MethodA(IMyInterface, int)
 a.MethodA("hello"); // Extension.MethodA(IMyInterface,
string)

 // A has a method that matches the signature of the following
call
 // to MethodB.
 a.MethodB(); // A.MethodB()

 // B has methods that match the signatures of the following
 // method calls.
 b.MethodA(1); // B.MethodA(int)
 b.MethodB(); // B.MethodB()

 // B has no matching method for the following call, but
 // class Extension does.
 b.MethodA("hello"); // Extension.MethodA(IMyInterface,
string)

 // C contains an instance method that matches each of the
following
 // method calls.
 c.MethodA(1); // C.MethodA(object)
 c.MethodA("hello"); // C.MethodA(object)
 c.MethodB(); // C.MethodB()
 }
 }
}
/* Output:
 Extension.MethodA(this IMyInterface myInterface, int i)
 Extension.MethodA(this IMyInterface myInterface, string s)
 A.MethodB()
 B.MethodA(int i)
 B.MethodB()
 Extension.MethodA(this IMyInterface myInterface, string s)
 C.MethodA(object obj)
 C.MethodA(object obj)
 C.MethodB()
 */

Common Usage Patterns

Collection Functionality

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

creating this type of collection object, the same functionality can be achieved by using
an extension on the System.Collections.Generic.IEnumerable<T>. Extensions have the
advantage of allowing the functionality to be called from any collection such as an
System.Array or System.Collections.Generic.List<T> that implements
System.Collections.Generic.IEnumerable<T> on that type. An example of this using an
Array of Int32 can be found earlier in this article.

When using an Onion Architecture or other layered application design, it's common to
have a set of Domain Entities or Data Transfer Objects that can be used to communicate
across application boundaries. These objects generally contain no functionality, or only
minimal functionality that applies to all layers of the application. Extension methods can
be used to add functionality that is specific to each application layer without loading the
object down with methods not needed or wanted in other layers.

C#

Rather than creating new objects when reusable functionality needs to be created, we
can often extend an existing type, such as a .NET or CLR type. As an example, if we don't
use extension methods, we might create an Engine or Query class to do the work of
executing a query on a SQL Server that may be called from multiple places in our code.
However we can instead extend the System.Data.SqlClient.SqlConnection class using
extension methods to perform that query from anywhere we have a connection to a SQL
Server. Other examples might be to add common functionality to the System.String
class, extend the data processing capabilities of the System.IO.File and System.IO.Stream
objects, and System.Exception objects for specific error handling functionality. These
types of use-cases are limited only by your imagination and good sense.

Layer-Specific Functionality

public class DomainEntity
{
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

static class DomainEntityExtensions
{
 static string FullName(this DomainEntity value)
 => $"{value.FirstName} {value.LastName}";
}

Extending Predefined Types

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnection
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.io.file
https://learn.microsoft.com/en-us/dotnet/api/system.io.stream
https://learn.microsoft.com/en-us/dotnet/api/system.exception

Extending predefined types can be difficult with struct types because they're passed by
value to methods. That means any changes to the struct are made to a copy of the
struct. Those changes aren't visible once the extension method exits. You can add the
ref modifier to the first argument of an extension method. Adding the ref modifier
means the first argument is passed by reference. This enables you to write extension
methods that change the state of the struct being extended.

While it's still considered preferable to add functionality by modifying an object's code
or deriving a new type whenever it's reasonable and possible to do so, extension
methods have become a crucial option for creating reusable functionality throughout
the .NET ecosystem. For those occasions when the original source isn't under your
control, when a derived object is inappropriate or impossible, or when the functionality
shouldn't be exposed beyond its applicable scope, Extension methods are an excellent
choice.

For more information on derived types, see Inheritance.

When using an extension method to extend a type whose source code you aren't in
control of, you run the risk that a change in the implementation of the type will cause
your extension method to break.

If you do implement extension methods for a given type, remember the following
points:

An extension method will never be called if it has the same signature as a method
defined in the type.
Extension methods are brought into scope at the namespace level. For example, if
you have multiple static classes that contain extension methods in a single
namespace named Extensions , they'll all be brought into scope by the using
Extensions; directive.

For a class library that you implemented, you shouldn't use extension methods to avoid
incrementing the version number of an assembly. If you want to add significant
functionality to a library for which you own the source code, follow the .NET guidelines
for assembly versioning. For more information, see Assembly Versioning.

C# Programming Guide

General Guidelines

See also

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/versioning

Parallel Programming Samples (these include many example extension methods)
Lambda Expressions
Standard Query Operators Overview
Conversion rules for Instance parameters and their impact
Extension methods Interoperability between languages
Extension methods and Curried Delegates
Extension method Binding and Error reporting

https://learn.microsoft.com/en-us/samples/browse/?products=dotnet-core%2Cdotnet-standard&term=parallel
https://learn.microsoft.com/en-us/archive/blogs/sreekarc/conversion-rules-for-instance-parameters-and-their-impact
https://learn.microsoft.com/en-us/archive/blogs/sreekarc/extension-methods-interoperability-between-languages
https://learn.microsoft.com/en-us/archive/blogs/sreekarc/extension-methods-and-curried-delegates
https://learn.microsoft.com/en-us/archive/blogs/sreekarc/extension-method-binding-and-error-reporting

How to implement and call a custom
extension method (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

This topic shows how to implement your own extension methods for any .NET type.
Client code can use your extension methods by adding a reference to the DLL that
contains them, and adding a using directive that specifies the namespace in which the
extension methods are defined.

1. Define a static class to contain the extension method.

The class must be visible to client code. For more information about accessibility
rules, see Access Modifiers.

2. Implement the extension method as a static method with at least the same
visibility as the containing class.

3. The first parameter of the method specifies the type that the method operates on;
it must be preceded with the this modifier.

4. In the calling code, add a using directive to specify the namespace that contains
the extension method class.

5. Call the methods as if they were instance methods on the type.

Note that the first parameter is not specified by calling code because it represents
the type on which the operator is being applied, and the compiler already knows
the type of your object. You only have to provide arguments for parameters 2
through n .

The following example implements an extension method named WordCount in the
CustomExtensions.StringExtension class. The method operates on the String class, which
is specified as the first method parameter. The CustomExtensions namespace is imported
into the application namespace, and the method is called inside the Main method.

To define and call the extension method

Example

https://learn.microsoft.com/en-us/dotnet/api/system.string

C#

Extension methods present no specific security vulnerabilities. They can never be used to
impersonate existing methods on a type, because all name collisions are resolved in
favor of the instance or static method defined by the type itself. Extension methods
cannot access any private data in the extended class.

C# Programming Guide

using System.Linq;
using System.Text;
using System;

namespace CustomExtensions
{
 // Extension methods must be defined in a static class.
 public static class StringExtension
 {
 // This is the extension method.
 // The first parameter takes the "this" modifier
 // and specifies the type for which the method is defined.
 public static int WordCount(this string str)
 {
 return str.Split(new char[] {' ', '.','?'},
StringSplitOptions.RemoveEmptyEntries).Length;
 }
 }
}
namespace Extension_Methods_Simple
{
 // Import the extension method namespace.
 using CustomExtensions;
 class Program
 {
 static void Main(string[] args)
 {
 string s = "The quick brown fox jumped over the lazy dog.";
 // Call the method as if it were an
 // instance method on the type. Note that the first
 // parameter is not specified by the calling code.
 int i = s.WordCount();
 System.Console.WriteLine("Word count of s is {0}", i);
 }
 }
}

.NET Security

See also

Extension Methods
LINQ (Language-Integrated Query)
Static Classes and Static Class Members
protected
internal
public
this
namespace

How to create a new method for an
enumeration (C# Programming Guide)
Article • 2021-09-15 • 2 minutes to read

You can use extension methods to add functionality specific to a particular enum type.

In the following example, the Grades enumeration represents the possible letter grades
that a student may receive in a class. An extension method named Passing is added to
the Grades type so that each instance of that type now "knows" whether it represents a
passing grade or not.

C#

Example

using System;
using System.Collections.Generic;
using System.Text;
using System.Linq;

namespace EnumExtension
{
 // Define an extension method in a non-nested static class.
 public static class Extensions
 {
 public static Grades minPassing = Grades.D;
 public static bool Passing(this Grades grade)
 {
 return grade >= minPassing;
 }
 }

 public enum Grades { F = 0, D=1, C=2, B=3, A=4 };
 class Program
 {
 static void Main(string[] args)
 {
 Grades g1 = Grades.D;
 Grades g2 = Grades.F;
 Console.WriteLine("First {0} a passing grade.", g1.Passing() ?
"is" : "is not");
 Console.WriteLine("Second {0} a passing grade.", g2.Passing() ?
"is" : "is not");

 Extensions.minPassing = Grades.C;
 Console.WriteLine("\r\nRaising the bar!\r\n");
 Console.WriteLine("First {0} a passing grade.", g1.Passing() ?

Note that the Extensions class also contains a static variable that is updated
dynamically and that the return value of the extension method reflects the current value
of that variable. This demonstrates that, behind the scenes, extension methods are
invoked directly on the static class in which they are defined.

C# Programming Guide
Extension Methods

"is" : "is not");
 Console.WriteLine("Second {0} a passing grade.", g2.Passing() ?
"is" : "is not");
 }
 }
 }
/* Output:
 First is a passing grade.
 Second is not a passing grade.

 Raising the bar!

 First is not a passing grade.
 Second is not a passing grade.
 */

See also

Named and Optional Arguments (C#
Programming Guide)
Article • 2022-09-29 • 7 minutes to read

Named arguments enable you to specify an argument for a parameter by matching the
argument with its name rather than with its position in the parameter list. Optional
arguments enable you to omit arguments for some parameters. Both techniques can be
used with methods, indexers, constructors, and delegates.

When you use named and optional arguments, the arguments are evaluated in the
order in which they appear in the argument list, not the parameter list.

Named and optional parameters enable you to supply arguments for selected
parameters. This capability greatly eases calls to COM interfaces such as the Microsoft
Office Automation APIs.

Named arguments free you from matching the order of arguments to the order of
parameters in the parameter lists of called methods. The argument for each parameter
can be specified by parameter name. For example, a function that prints order details
(such as, seller name, order number & product name) can be called by sending
arguments by position, in the order defined by the function.

C#

If you don't remember the order of the parameters but know their names, you can send
the arguments in any order.

C#

Named arguments also improve the readability of your code by identifying what each
argument represents. In the example method below, the sellerName can't be null or
white space. As both sellerName and productName are string types, instead of sending

Named arguments

PrintOrderDetails("Gift Shop", 31, "Red Mug");

PrintOrderDetails(orderNum: 31, productName: "Red Mug", sellerName: "Gift
Shop");
PrintOrderDetails(productName: "Red Mug", sellerName: "Gift Shop", orderNum:
31);

arguments by position, it makes sense to use named arguments to disambiguate the
two and reduce confusion for anyone reading the code.

Named arguments, when used with positional arguments, are valid as long as

they're not followed by any positional arguments, or

C#

they're used in the correct position. In the example below, the parameter orderNum
is in the correct position but isn't explicitly named.

C#

Positional arguments that follow any out-of-order named arguments are invalid.

C#

The following code implements the examples from this section along with some
additional ones.

C#

PrintOrderDetails("Gift Shop", 31, productName: "Red Mug");

PrintOrderDetails(sellerName: "Gift Shop", 31, productName: "Red Mug");

// This generates CS1738: Named argument specifications must appear after
all fixed arguments have been specified.
PrintOrderDetails(productName: "Red Mug", 31, "Gift Shop");

Example

class NamedExample
{
 static void Main(string[] args)
 {
 // The method can be called in the normal way, by using positional
arguments.
 PrintOrderDetails("Gift Shop", 31, "Red Mug");

 // Named arguments can be supplied for the parameters in any order.
 PrintOrderDetails(orderNum: 31, productName: "Red Mug", sellerName:
"Gift Shop");
 PrintOrderDetails(productName: "Red Mug", sellerName: "Gift Shop",
orderNum: 31);

The definition of a method, constructor, indexer, or delegate can specify its parameters
are required or optional. Any call must provide arguments for all required parameters,
but can omit arguments for optional parameters.

Each optional parameter has a default value as part of its definition. If no argument is
sent for that parameter, the default value is used. A default value must be one of the
following types of expressions:

a constant expression;
an expression of the form new ValType() , where ValType is a value type, such as an
enum or a struct;
an expression of the form default(ValType), where ValType is a value type.

Optional parameters are defined at the end of the parameter list, after any required
parameters. If the caller provides an argument for any one of a succession of optional
parameters, it must provide arguments for all preceding optional parameters. Comma-
separated gaps in the argument list aren't supported. For example, in the following

 // Named arguments mixed with positional arguments are valid
 // as long as they are used in their correct position.
 PrintOrderDetails("Gift Shop", 31, productName: "Red Mug");
 PrintOrderDetails(sellerName: "Gift Shop", 31, productName: "Red
Mug");
 PrintOrderDetails("Gift Shop", orderNum: 31, "Red Mug");

 // However, mixed arguments are invalid if used out-of-order.
 // The following statements will cause a compiler error.
 // PrintOrderDetails(productName: "Red Mug", 31, "Gift Shop");
 // PrintOrderDetails(31, sellerName: "Gift Shop", "Red Mug");
 // PrintOrderDetails(31, "Red Mug", sellerName: "Gift Shop");
 }

 static void PrintOrderDetails(string sellerName, int orderNum, string
productName)
 {
 if (string.IsNullOrWhiteSpace(sellerName))
 {
 throw new ArgumentException(message: "Seller name cannot be null
or empty.", paramName: nameof(sellerName));
 }

 Console.WriteLine($"Seller: {sellerName}, Order #: {orderNum},
Product: {productName}");
 }
}

Optional arguments

code, instance method ExampleMethod is defined with one required and two optional
parameters.

C#

The following call to ExampleMethod causes a compiler error, because an argument is
provided for the third parameter but not for the second.

C#

However, if you know the name of the third parameter, you can use a named argument
to accomplish the task.

C#

IntelliSense uses brackets to indicate optional parameters, as shown in the following
illustration:

In the following example, the constructor for ExampleClass has one parameter, which is
optional. Instance method ExampleMethod has one required parameter, required , and
two optional parameters, optionalstr and optionalint . The code in Main shows the
different ways in which the constructor and method can be invoked.

public void ExampleMethod(int required, string optionalstr = "default
string",
 int optionalint = 10)

//anExample.ExampleMethod(3, ,4);

anExample.ExampleMethod(3, optionalint: 4);

７ Note

You can also declare optional parameters by using the .NET OptionalAttribute
class. OptionalAttribute parameters do not require a default value.

Example

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.optionalattribute

C#

namespace OptionalNamespace
{
 class OptionalExample
 {
 static void Main(string[] args)
 {
 // Instance anExample does not send an argument for the
constructor's
 // optional parameter.
 ExampleClass anExample = new ExampleClass();
 anExample.ExampleMethod(1, "One", 1);
 anExample.ExampleMethod(2, "Two");
 anExample.ExampleMethod(3);

 // Instance anotherExample sends an argument for the
constructor's
 // optional parameter.
 ExampleClass anotherExample = new ExampleClass("Provided name");
 anotherExample.ExampleMethod(1, "One", 1);
 anotherExample.ExampleMethod(2, "Two");
 anotherExample.ExampleMethod(3);

 // The following statements produce compiler errors.

 // An argument must be supplied for the first parameter, and it
 // must be an integer.
 //anExample.ExampleMethod("One", 1);
 //anExample.ExampleMethod();

 // You cannot leave a gap in the provided arguments.
 //anExample.ExampleMethod(3, ,4);
 //anExample.ExampleMethod(3, 4);

 // You can use a named parameter to make the previous
 // statement work.
 anExample.ExampleMethod(3, optionalint: 4);
 }
 }

 class ExampleClass
 {
 private string _name;

 // Because the parameter for the constructor, name, has a default
 // value assigned to it, it is optional.
 public ExampleClass(string name = "Default name")
 {
 _name = name;
 }

 // The first parameter, required, has no default value assigned
 // to it. Therefore, it is not optional. Both optionalstr and

The preceding code shows a number of examples where optional parameters aren't
applied correctly. The first illustrates that an argument must be supplied for the first
parameter, which is required.

Named and optional arguments, along with support for dynamic objects, greatly
improve interoperability with COM APIs, such as Office Automation APIs.

For example, the AutoFormat method in the Microsoft Office Excel Range interface has
seven parameters, all of which are optional. These parameters are shown in the
following illustration:

However, you can greatly simplify the call to AutoFormat by using named and optional
arguments. Named and optional arguments enable you to omit the argument for an
optional parameter if you don't want to change the parameter's default value. In the
following call, a value is specified for only one of the seven parameters.

C#

 // optionalint have default values assigned to them. They are
optional.
 public void ExampleMethod(int required, string optionalstr =
"default string",
 int optionalint = 10)
 {
 Console.WriteLine(
 $"{_name}: {required}, {optionalstr}, and {optionalint}.");
 }
 }

 // The output from this example is the following:
 // Default name: 1, One, and 1.
 // Default name: 2, Two, and 10.
 // Default name: 3, default string, and 10.
 // Provided name: 1, One, and 1.
 // Provided name: 2, Two, and 10.
 // Provided name: 3, default string, and 10.
 // Default name: 3, default string, and 4.
}

COM interfaces

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range.autoformat
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range

For more information and examples, see How to use named and optional arguments in
Office programming and How to access Office interop objects by using C# features.

Use of named and optional arguments affects overload resolution in the following ways:

A method, indexer, or constructor is a candidate for execution if each of its
parameters either is optional or corresponds, by name or by position, to a single
argument in the calling statement, and that argument can be converted to the
type of the parameter.
If more than one candidate is found, overload resolution rules for preferred
conversions are applied to the arguments that are explicitly specified. Omitted
arguments for optional parameters are ignored.
If two candidates are judged to be equally good, preference goes to a candidate
that doesn't have optional parameters for which arguments were omitted in the
call. Overload resolution generally prefers candidates that have fewer parameters.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

var excelApp = new Microsoft.Office.Interop.Excel.Application();
excelApp.Workbooks.Add();
excelApp.Visible = true;

var myFormat =

Microsoft.Office.Interop.Excel.XlRangeAutoFormat.xlRangeAutoFormatAccounting
1;

excelApp.Range["A1", "B4"].AutoFormat(Format: myFormat);

Overload resolution

C# language specification

How to use named and optional
arguments in Office programming (C#
Programming Guide)
Article • 2022-09-29 • 5 minutes to read

Named arguments and optional arguments enhance convenience, flexibility, and
readability in C# programming. In addition, these features greatly facilitate access to
COM interfaces such as the Microsoft Office automation APIs.

In the following example, method ConvertToTable has sixteen parameters that represent
characteristics of a table, such as number of columns and rows, formatting, borders,
fonts, and colors. All sixteen parameters are optional, because most of the time you do
not want to specify particular values for all of them. However, without named and
optional arguments, a value or a placeholder value has to be provided for each
parameter. With named and optional arguments, you specify values only for the
parameters that are required for your project.

You must have Microsoft Office Word installed on your computer to complete these
procedures.

1. Start Visual Studio.

2. On the File menu, point to New, and then click Project.

3. In the Templates Categories pane, expand Visual C#, and then click Windows.

4. Look in the top of the Templates pane to make sure that .NET Framework 4
appears in the Target Framework box.

5. In the Templates pane, click Console Application.

７ Note

Your computer might show different names or locations for some of the Visual
Studio user interface elements in the following instructions. The Visual Studio
edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

To create a new console application

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word.range.converttotable
https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

6. Type a name for your project in the Name field.

7. Click OK.

The new project appears in Solution Explorer.

1. In Solution Explorer, right-click your project's name and then click Add Reference.
The Add Reference dialog box appears.

2. On the .NET page, select Microsoft.Office.Interop.Word in the Component Name
list.

3. Click OK.

1. In Solution Explorer, right-click the Program.cs file and then click View Code.

2. Add the following using directives to the top of the code file:

C#

1. In the Program class in Program.cs, add the following method to create a Word
application and a Word document. The Add method has four optional parameters.
This example uses their default values. Therefore, no arguments are necessary in
the calling statement.

C#

To add a reference

To add necessary using directives

using Word = Microsoft.Office.Interop.Word;

To display text in a Word document

static void DisplayInWord()
{
 var wordApp = new Word.Application();
 wordApp.Visible = true;
 // docs is a collection of all the Document objects currently
 // open in Word.
 Word.Documents docs = wordApp.Documents;

 // Add a document to the collection and name it doc.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word.documents.add

2. Add the following code at the end of the method to define where to display text in
the document, and what text to display:

C#

1. Add the following statement to Main:

C#

2. Press CTRL + F5 to run the project. A Word document appears that contains the
specified text.

1. Use the ConvertToTable method to enclose the text in a table. The method has
sixteen optional parameters. IntelliSense encloses optional parameters in brackets,
as shown in the following illustration.

Named and optional arguments enable you to specify values for only the
parameters that you want to change. Add the following code to the end of method

 Word.Document doc = docs.Add();
}

// Define a range, a contiguous area in the document, by specifying
// a starting and ending character position. Currently, the document
// is empty.
Word.Range range = doc.Range(0, 0);

// Use the InsertAfter method to insert a string at the end of the
// current range.
range.InsertAfter("Testing, testing, testing. . .");

To run the application

DisplayInWord();

To change the text to a table

DisplayInWord to create a simple table. The argument specifies that the commas in
the text string in range separate the cells of the table.

C#

In earlier versions of C#, the call to ConvertToTable requires a reference argument
for each parameter, as shown in the following code:

C#

2. Press CTRL + F5 to run the project.

1. To change the table so that it has one column and three rows, replace the last line
in DisplayInWord with the following statement and then type CTRL + F5 .

C#

2. To specify a predefined format for the table, replace the last line in DisplayInWord
with the following statement and then type CTRL + F5 . The format can be any of
the WdTableFormat constants.

C#

// Convert to a simple table. The table will have a single row with
// three columns.
range.ConvertToTable(Separator: ",");

// Call to ConvertToTable in Visual C# 2008 or earlier. This code
// is not part of the solution.
var missing = Type.Missing;
object separator = ",";
range.ConvertToTable(ref separator, ref missing, ref missing,
 ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing, ref missing,
 ref missing);

To experiment with other parameters

range.ConvertToTable(Separator: ",", AutoFit: true, NumColumns: 1);

range.ConvertToTable(Separator: ",", AutoFit: true, NumColumns: 1,
 Format: Word.WdTableFormat.wdTableFormatElegant);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word.wdtableformat

The following code includes the full example:

C#

Example

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Word = Microsoft.Office.Interop.Word;

namespace OfficeHowTo
{
 class WordProgram
 {
 static void Main(string[] args)
 {
 DisplayInWord();
 }

 static void DisplayInWord()
 {
 var wordApp = new Word.Application();
 wordApp.Visible = true;
 // docs is a collection of all the Document objects currently
 // open in Word.
 Word.Documents docs = wordApp.Documents;

 // Add a document to the collection and name it doc.
 Word.Document doc = docs.Add();

 // Define a range, a contiguous area in the document, by
specifying
 // a starting and ending character position. Currently, the
document
 // is empty.
 Word.Range range = doc.Range(0, 0);

 // Use the InsertAfter method to insert a string at the end of
the
 // current range.
 range.InsertAfter("Testing, testing, testing. . .");

 // You can comment out any or all of the following statements to
 // see the effect of each one in the Word document.

 // Next, use the ConvertToTable method to put the text into a
table.
 // The method has 16 optional parameters. You only have to
specify
 // values for those you want to change.

Named and Optional Arguments

 // Convert to a simple table. The table will have a single row
with
 // three columns.
 range.ConvertToTable(Separator: ",");

 // Change to a single column with three rows..
 range.ConvertToTable(Separator: ",", AutoFit: true, NumColumns:
1);

 // Format the table.
 range.ConvertToTable(Separator: ",", AutoFit: true, NumColumns:
1,
 Format: Word.WdTableFormat.wdTableFormatElegant);
 }
 }
}

See also

Constructors (C# programming guide)
Article • 2022-02-09 • 2 minutes to read

Whenever a class or struct is created, its constructor is called. A class or struct may have
multiple constructors that take different arguments. Constructors enable the
programmer to set default values, limit instantiation, and write code that is flexible and
easy to read. For more information and examples, see Instance constructors and Using
constructors.

A constructor is a method whose name is the same as the name of its type. Its method
signature includes only an optional access modifier, the method name and its parameter
list; it does not include a return type. The following example shows the constructor for a
class named Person .

C#

If a constructor can be implemented as a single statement, you can use an expression
body definition. The following example defines a Location class whose constructor has
a single string parameter named name. The expression body definition assigns the
argument to the locationName field.

C#

Constructor syntax

public class Person
{
 private string last;
 private string first;

 public Person(string lastName, string firstName)
 {
 last = lastName;
 first = firstName;
 }

 // Remaining implementation of Person class.
}

public class Location
{
 private string locationName;

 public Location(string name) => Name = name;

The previous examples have all shown instance constructors, which create a new object.
A class or struct can also have a static constructor, which initializes static members of
the type. Static constructors are parameterless. If you don't provide a static constructor
to initialize static fields, the C# compiler initializes static fields to their default value as
listed in the Default values of C# types article.

The following example uses a static constructor to initialize a static field.

C#

You can also define a static constructor with an expression body definition, as the
following example shows.

C#

 public string Name
 {
 get => locationName;
 set => locationName = value;
 }
}

Static constructors

public class Adult : Person
{
 private static int minimumAge;

 public Adult(string lastName, string firstName) : base(lastName,
firstName)
 { }

 static Adult()
 {
 minimumAge = 18;
 }

 // Remaining implementation of Adult class.
}

public class Child : Person
{
 private static int maximumAge;

 public Child(string lastName, string firstName) : base(lastName,
firstName)
 { }

For more information and examples, see Static Constructors.

Using Constructors

Instance Constructors

Private Constructors

Static Constructors

How to write a copy constructor

C# Programming Guide
The C# type system
Finalizers
static
Why Do Initializers Run In The Opposite Order As Constructors? Part One

 static Child() => maximumAge = 18;

 // Remaining implementation of Child class.
}

In This Section

See also

https://learn.microsoft.com/en-us/archive/blogs/ericlippert/why-do-initializers-run-in-the-opposite-order-as-constructors-part-one

Using Constructors (C# Programming
Guide)
Article • 2022-06-11 • 4 minutes to read

When a class or struct is instantiated, its constructor is called. Constructors have the
same name as the class or struct, and they usually initialize the data members of the
new object.

In the following example, a class named Taxi is defined by using a simple constructor.
This class is then instantiated with the new operator. The Taxi constructor is invoked by
the new operator immediately after memory is allocated for the new object.

C#

A constructor that takes no parameters is called a parameterless constructor.
Parameterless constructors are invoked whenever an object is instantiated by using the
new operator and no arguments are provided to new . For more information, see
Instance Constructors.

Unless the class is static, classes without constructors are given a public parameterless
constructor by the C# compiler in order to enable class instantiation. For more
information, see Static Classes and Static Class Members.

You can prevent a class from being instantiated by making the constructor private, as
follows:

public class Taxi
{
 public bool IsInitialized;

 public Taxi()
 {
 IsInitialized = true;
 }
}

class TestTaxi
{
 static void Main()
 {
 Taxi t = new Taxi();
 Console.WriteLine(t.IsInitialized);
 }
}

C#

For more information, see Private Constructors.

Constructors for struct types resemble class constructors, but structs can't contain an
explicit parameterless constructor because one is provided automatically by the
compiler. This constructor initializes each field in the struct to the default value.
However, this parameterless constructor is only invoked if the struct is instantiated
with new . For example, this code uses the parameterless constructor for Int32, so that
you're assured that the integer is initialized:

C#

The following code, however, causes a compiler error because it doesn't use new , and
because it tries to use an object that hasn't been initialized:

C#

Alternatively, objects based on structs (including all built-in numeric types) can be
initialized or assigned and then used as in the following example:

C#

class NLog
{
 // Private Constructor:
 private NLog() { }

 public static double e = Math.E; //2.71828...
}

int i = new int();
Console.WriteLine(i);

７ Note

Beginning with C# 10, a structure type can contain an explicit parameterless
constructor. For more information, see the Struct initialization and default values
section of the Structure types article.

int i;
Console.WriteLine(i);

https://learn.microsoft.com/en-us/dotnet/api/system.int32

So calling the parameterless constructor for a value type isn't required.

Both classes and structs can define constructors that take parameters. Constructors
that take parameters must be called through a new statement or a base statement.
Classes and structs can also define multiple constructors, and neither is required to
define a parameterless constructor. For example:

C#

This class can be created by using either of the following statements:

C#

A constructor can use the base keyword to call the constructor of a base class. For
example:

C#

int a = 44; // Initialize the value type...
int b;
b = 33; // Or assign it before using it.
Console.WriteLine("{0}, {1}", a, b);

public class Employee
{
 public int Salary;

 public Employee() { }

 public Employee(int annualSalary)
 {
 Salary = annualSalary;
 }

 public Employee(int weeklySalary, int numberOfWeeks)
 {
 Salary = weeklySalary * numberOfWeeks;
 }
}

Employee e1 = new Employee(30000);
Employee e2 = new Employee(500, 52);

public class Manager : Employee
{
 public Manager(int annualSalary)
 : base(annualSalary)

In this example, the constructor for the base class is called before the block for the
constructor is executed. The base keyword can be used with or without parameters. Any
parameters to the constructor can be used as parameters to base , or as part of an
expression. For more information, see base.

In a derived class, if a base-class constructor isn't called explicitly by using the base
keyword, the parameterless constructor, if there's one, is called implicitly. This means
that the following constructor declarations are effectively the same:

C#

C#

If a base class doesn't offer a parameterless constructor, the derived class must make an
explicit call to a base constructor by using base .

A constructor can invoke another constructor in the same object by using the this
keyword. Like base , this can be used with or without parameters, and any parameters
in the constructor are available as parameters to this , or as part of an expression. For
example, the second constructor in the previous example can be rewritten using this :

C#

 {
 //Add further instructions here.
 }
}

public Manager(int initialData)
{
 //Add further instructions here.
}

public Manager(int initialData)
 : base()
{
 //Add further instructions here.
}

public Employee(int weeklySalary, int numberOfWeeks)
 : this(weeklySalary * numberOfWeeks)
{
}

The use of the this keyword in the previous example causes this constructor to be
called:

C#

Constructors can be marked as public, private, protected, internal, protected internal or
private protected. These access modifiers define how users of the class can construct the
class. For more information, see Access Modifiers.

A constructor can be declared static by using the static keyword. Static constructors are
called automatically, immediately before any static fields are accessed, and are generally
used to initialize static class members. For more information, see Static Constructors.

For more information, see Instance constructors and Static constructors in the C#
Language Specification. The language specification is the definitive source for C# syntax
and usage.

C# Programming Guide
The C# type system
Constructors
Finalizers

public Employee(int annualSalary)
{
 Salary = annualSalary;
}

C# Language Specification

See also

Instance constructors (C# programming
guide)
Article • 2022-05-21 • 2 minutes to read

You declare an instance constructor to specify the code that is executed when you
create a new instance of a type with the new expression. To initialize a static class or
static variables in a non-static class, you can define a static constructor.

As the following example shows, you can declare several instance constructors in one
type:

C#

In the preceding example, the first, parameterless, constructor calls the second
constructor with both arguments equal 0 . To do that, use the this keyword.

class Coords
{
 public Coords()
 : this(0, 0)
 { }

 public Coords(int x, int y)
 {
 X = x;
 Y = y;
 }

 public int X { get; set; }
 public int Y { get; set; }

 public override string ToString() => $"({X},{Y})";
}

class Example
{
 static void Main()
 {
 var p1 = new Coords();
 Console.WriteLine($"Coords #1 at {p1}");
 // Output: Coords #1 at (0,0)

 var p2 = new Coords(5, 3);
 Console.WriteLine($"Coords #2 at {p2}");
 // Output: Coords #2 at (5,3)
 }
}

When you declare an instance constructor in a derived class, you can call a constructor
of a base class. To do that, use the base keyword, as the following example shows:

C#

abstract class Shape
{
 public const double pi = Math.PI;
 protected double x, y;

 public Shape(double x, double y)
 {
 this.x = x;
 this.y = y;
 }

 public abstract double Area();
}

class Circle : Shape
{
 public Circle(double radius)
 : base(radius, 0)
 { }

 public override double Area() => pi * x * x;
}

class Cylinder : Circle
{
 public Cylinder(double radius, double height)
 : base(radius)
 {
 y = height;
 }

 public override double Area() => (2 * base.Area()) + (2 * pi * x * y);
}

class Example
{
 static void Main()
 {
 double radius = 2.5;
 double height = 3.0;

 var ring = new Circle(radius);
 Console.WriteLine($"Area of the circle = {ring.Area():F2}");
 // Output: Area of the circle = 19.63

 var tube = new Cylinder(radius, height);
 Console.WriteLine($"Area of the cylinder = {tube.Area():F2}");
 // Output: Area of the cylinder = 86.39

If a class has no explicit instance constructors, C# provides a parameterless constructor
that you can use to instantiate an instance of that class, as the following example shows:

C#

That constructor initializes instance fields and properties according to the corresponding
initializers. If a field or property has no initializer, its value is set to the default value of
the field's or property's type. If you declare at least one instance constructor in a class,
C# doesn't provide a parameterless constructor.

A structure type always provides a parameterless constructor as follows:

In C# 9.0 and earlier, that is an implicit parameterless constructor that produces
the default value of a type.
In C# 10 and later, that is either an implicit parameterless constructor that
produces the default value of a type or an explicitly declared parameterless
constructor. For more information, see the Struct initialization and default values
section of the Structure types article.

C# programming guide
Classes, structs, and records

 }
}

Parameterless constructors

public class Person
{
 public int age;
 public string name = "unknown";
}

class Example
{
 static void Main()
 {
 var person = new Person();
 Console.WriteLine($"Name: {person.name}, Age: {person.age}");
 // Output: Name: unknown, Age: 0
 }
}

See also

Constructors
Finalizers
base
this

Private Constructors (C# Programming
Guide)
Article • 2022-01-12 • 2 minutes to read

A private constructor is a special instance constructor. It is generally used in classes that
contain static members only. If a class has one or more private constructors and no
public constructors, other classes (except nested classes) cannot create instances of this
class. For example:

C#

The declaration of the empty constructor prevents the automatic generation of a
parameterless constructor. Note that if you do not use an access modifier with the
constructor it will still be private by default. However, the private modifier is usually used
explicitly to make it clear that the class cannot be instantiated.

Private constructors are used to prevent creating instances of a class when there are no
instance fields or methods, such as the Math class, or when a method is called to obtain
an instance of a class. If all the methods in the class are static, consider making the
complete class static. For more information see Static Classes and Static Class Members.

The following is an example of a class using a private constructor.

C#

class NLog
{
 // Private Constructor:
 private NLog() { }

 public static double e = Math.E; //2.71828...
}

Example

public class Counter
{
 private Counter() { }

 public static int currentCount;

 public static int IncrementCount()
 {
 return ++currentCount;

https://learn.microsoft.com/en-us/dotnet/api/system.math

Notice that if you uncomment the following statement from the example, it will
generate an error because the constructor is inaccessible because of its protection level:

C#

C# Programming Guide
The C# type system
Constructors
Finalizers
private
public

 }
}

class TestCounter
{
 static void Main()
 {
 // If you uncomment the following statement, it will generate
 // an error because the constructor is inaccessible:
 // Counter aCounter = new Counter(); // Error

 Counter.currentCount = 100;
 Counter.IncrementCount();
 Console.WriteLine("New count: {0}", Counter.currentCount);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
// Output: New count: 101

// Counter aCounter = new Counter(); // Error

See also

Static Constructors (C# Programming
Guide)
Article • 2022-01-25 • 4 minutes to read

A static constructor is used to initialize any static data, or to perform a particular action
that needs to be performed only once. It is called automatically before the first instance
is created or any static members are referenced.

C#

Static constructors have the following properties:

A static constructor doesn't take access modifiers or have parameters.
A class or struct can only have one static constructor.
Static constructors cannot be inherited or overloaded.
A static constructor cannot be called directly and is only meant to be called by the
common language runtime (CLR). It is invoked automatically.
The user has no control on when the static constructor is executed in the program.
A static constructor is called automatically. It initializes the class before the first
instance is created or any static members declared in that class (not its base
classes) are referenced. A static constructor runs before an instance constructor. A
type's static constructor is called when a static method assigned to an event or a
delegate is invoked and not when it is assigned. If static field variable initializers
are present in the class of the static constructor, they're executed in the textual
order in which they appear in the class declaration. The initializers run immediately
prior to the execution of the static constructor.

class SimpleClass
{
 // Static variable that must be initialized at run time.
 static readonly long baseline;

 // Static constructor is called at most one time, before any
 // instance constructor is invoked or member is accessed.
 static SimpleClass()
 {
 baseline = DateTime.Now.Ticks;
 }
}

Remarks

If you don't provide a static constructor to initialize static fields, all static fields are
initialized to their default value as listed in Default values of C# types.
If a static constructor throws an exception, the runtime doesn't invoke it a second
time, and the type will remain uninitialized for the lifetime of the application
domain. Most commonly, a TypeInitializationException exception is thrown when a
static constructor is unable to instantiate a type or for an unhandled exception
occurring within a static constructor. For static constructors that aren't explicitly
defined in source code, troubleshooting may require inspection of the
intermediate language (IL) code.
The presence of a static constructor prevents the addition of the BeforeFieldInit
type attribute. This limits runtime optimization.
A field declared as static readonly may only be assigned as part of its declaration
or in a static constructor. When an explicit static constructor isn't required, initialize
static fields at declaration rather than through a static constructor for better
runtime optimization.
The runtime calls a static constructor no more than once in a single application
domain. That call is made in a locked region based on the specific type of the class.
No additional locking mechanisms are needed in the body of a static constructor.
To avoid the risk of deadlocks, don't block the current thread in static constructors
and initializers. For example, don't wait on tasks, threads, wait handles or events,
don't acquire locks, and don't execute blocking parallel operations such as parallel
loops, Parallel.Invoke and Parallel LINQ queries.

A typical use of static constructors is when the class is using a log file and the
constructor is used to write entries to this file.
Static constructors are also useful when creating wrapper classes for unmanaged
code, when the constructor can call the LoadLibrary method.
Static constructors are also a convenient place to enforce run-time checks on the
type parameter that cannot be checked at compile time via type-parameter
constraints.

７ Note

Though not directly accessible, the presence of an explicit static constructor should
be documented to assist with troubleshooting initialization exceptions.

Usage

Example

https://learn.microsoft.com/en-us/dotnet/api/system.typeinitializationexception
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.typeattributes#system-reflection-typeattributes-beforefieldinit

In this example, class Bus has a static constructor. When the first instance of Bus is
created (bus1), the static constructor is invoked to initialize the class. The sample output
verifies that the static constructor runs only one time, even though two instances of Bus
are created, and that it runs before the instance constructor runs.

C#

public class Bus
{
 // Static variable used by all Bus instances.
 // Represents the time the first bus of the day starts its route.
 protected static readonly DateTime globalStartTime;

 // Property for the number of each bus.
 protected int RouteNumber { get; set; }

 // Static constructor to initialize the static variable.
 // It is invoked before the first instance constructor is run.
 static Bus()
 {
 globalStartTime = DateTime.Now;

 // The following statement produces the first line of output,
 // and the line occurs only once.
 Console.WriteLine("Static constructor sets global start time to
{0}",
 globalStartTime.ToLongTimeString());
 }

 // Instance constructor.
 public Bus(int routeNum)
 {
 RouteNumber = routeNum;
 Console.WriteLine("Bus #{0} is created.", RouteNumber);
 }

 // Instance method.
 public void Drive()
 {
 TimeSpan elapsedTime = DateTime.Now - globalStartTime;

 // For demonstration purposes we treat milliseconds as minutes to
simulate
 // actual bus times. Do not do this in your actual bus schedule
program!
 Console.WriteLine("{0} is starting its route {1:N2} minutes after
global start time {2}.",
 this.RouteNumber,
 elapsedTime.Milliseconds,
 globalStartTime.ToShortTimeString());
 }
}

For more information, see the Static constructors section of the C# language
specification.

C# Programming Guide
The C# type system
Constructors
Static Classes and Static Class Members
Finalizers
Constructor Design Guidelines
Security Warning - CA2121: Static constructors should be private
Module initializers

class TestBus
{
 static void Main()
 {
 // The creation of this instance activates the static constructor.
 Bus bus1 = new Bus(71);

 // Create a second bus.
 Bus bus2 = new Bus(72);

 // Send bus1 on its way.
 bus1.Drive();

 // Wait for bus2 to warm up.
 System.Threading.Thread.Sleep(25);

 // Send bus2 on its way.
 bus2.Drive();

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Sample output:
 Static constructor sets global start time to 3:57:08 PM.
 Bus #71 is created.
 Bus #72 is created.
 71 is starting its route 6.00 minutes after global start time 3:57 PM.
 72 is starting its route 31.00 minutes after global start time 3:57 PM.
*/

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/constructor#type-constructor-guidelines
https://learn.microsoft.com/en-us/visualstudio/code-quality/ca2121-static-constructors-should-be-private

How to write a copy constructor (C#
Programming Guide)
Article • 2021-10-27 • 2 minutes to read

C# records provide a copy constructor for objects, but for classes you have to write one
yourself.

In the following example, the Personclass defines a copy constructor that takes, as its
argument, an instance of Person . The values of the properties of the argument are
assigned to the properties of the new instance of Person . The code contains an
alternative copy constructor that sends the Name and Age properties of the instance that
you want to copy to the instance constructor of the class.

C#

Example

class Person
{
 // Copy constructor.
 public Person(Person previousPerson)
 {
 Name = previousPerson.Name;
 Age = previousPerson.Age;
 }

 //// Alternate copy constructor calls the instance constructor.
 //public Person(Person previousPerson)
 // : this(previousPerson.Name, previousPerson.Age)
 //{
 //}

 // Instance constructor.
 public Person(string name, int age)
 {
 Name = name;
 Age = age;
 }

 public int Age { get; set; }

 public string Name { get; set; }

 public string Details()
 {
 return Name + " is " + Age.ToString();

ICloneable
Records
C# Programming Guide
The C# type system
Constructors
Finalizers

 }
}

class TestPerson
{
 static void Main()
 {
 // Create a Person object by using the instance constructor.
 Person person1 = new Person("George", 40);

 // Create another Person object, copying person1.
 Person person2 = new Person(person1);

 // Change each person's age.
 person1.Age = 39;
 person2.Age = 41;

 // Change person2's name.
 person2.Name = "Charles";

 // Show details to verify that the name and age fields are distinct.
 Console.WriteLine(person1.Details());
 Console.WriteLine(person2.Details());

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
// Output:
// George is 39
// Charles is 41

See also

https://learn.microsoft.com/en-us/dotnet/api/system.icloneable

Finalizers (C# Programming Guide)
Article • 2022-06-21 • 4 minutes to read

Finalizers (historically referred to as destructors) are used to perform any necessary final
clean-up when a class instance is being collected by the garbage collector. In most
cases, you can avoid writing a finalizer by using the
System.Runtime.InteropServices.SafeHandle or derived classes to wrap any unmanaged
handle.

Finalizers cannot be defined in structs. They are only used with classes.
A class can only have one finalizer.
Finalizers cannot be inherited or overloaded.
Finalizers cannot be called. They are invoked automatically.
A finalizer does not take modifiers or have parameters.

For example, the following is a declaration of a finalizer for the Car class.

C#

A finalizer can also be implemented as an expression body definition, as the following
example shows.

C#

The finalizer implicitly calls Finalize on the base class of the object. Therefore, a call to a
finalizer is implicitly translated to the following code:

Remarks

class Car
{
 ~Car() // finalizer
 {
 // cleanup statements...
 }
}

public class Destroyer
{
 public override string ToString() => GetType().Name;

 ~Destroyer() => Console.WriteLine($"The {ToString()} finalizer is
executing.");
}

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.safehandle
https://learn.microsoft.com/en-us/dotnet/api/system.object.finalize

C#

This design means that the Finalize method is called recursively for all instances in the
inheritance chain, from the most-derived to the least-derived.

The programmer has no control over when the finalizer is called; the garbage collector
decides when to call it. The garbage collector checks for objects that are no longer
being used by the application. If it considers an object eligible for finalization, it calls the
finalizer (if any) and reclaims the memory used to store the object. It's possible to force
garbage collection by calling Collect, but most of the time, this call should be avoided
because it may create performance issues.

protected override void Finalize()
{
 try
 {
 // Cleanup statements...
 }
 finally
 {
 base.Finalize();
 }
}

７ Note

Empty finalizers should not be used. When a class contains a finalizer, an entry is
created in the Finalize queue. This queue is processed by the garbage collector.
When the GC processes the queue, it calls each finalizer. Unnecessary finalizers,
including empty finalizers, finalizers that only call the base class finalizer, or
finalizers that only call conditionally emitted methods, cause a needless loss of
performance.

７ Note

Whether or not finalizers are run as part of application termination is specific to
each implementation of .NET. When an application terminates, .NET Framework
makes every reasonable effort to call finalizers for objects that haven't yet been
garbage collected, unless such cleanup has been suppressed (by a call to the library
method GC.SuppressFinalize , for example). .NET 5 (including .NET Core) and later
versions don't call finalizers as part of application termination. For more
information, see GitHub issue dotnet/csharpstandard #291 .

https://learn.microsoft.com/en-us/dotnet/api/system.gc.collect
https://learn.microsoft.com/en-ca/dotnet/standard/glossary#implementation-of-net
https://github.com/dotnet/csharpstandard/issues/291

If you need to perform cleanup reliably when an application exits, register a handler for
the System.AppDomain.ProcessExit event. That handler would ensure
IDisposable.Dispose() (or, IAsyncDisposable.DisposeAsync()) has been called for all
objects that require cleanup before application exit. Because you can't call Finalize
directly, and you can't guarantee the garbage collector calls all finalizers before exit, you
must use Dispose or DisposeAsync to ensure resources are freed.

In general, C# does not require as much memory management on the part of the
developer as languages that don't target a runtime with garbage collection. This is
because the .NET garbage collector implicitly manages the allocation and release of
memory for your objects. However, when your application encapsulates unmanaged
resources, such as windows, files, and network connections, you should use finalizers to
free those resources. When the object is eligible for finalization, the garbage collector
runs the Finalize method of the object.

If your application is using an expensive external resource, we also recommend that you
provide a way to explicitly release the resource before the garbage collector frees the
object. To release the resource, implement a Dispose method from the IDisposable
interface that performs the necessary cleanup for the object. This can considerably
improve the performance of the application. Even with this explicit control over
resources, the finalizer becomes a safeguard to clean up resources if the call to the
Dispose method fails.

For more information about cleaning up resources, see the following articles:

Cleaning Up Unmanaged Resources
Implementing a Dispose Method
Implementing a DisposeAsync Method
using Statement

The following example creates three classes that make a chain of inheritance. The class
First is the base class, Second is derived from First , and Third is derived from
Second . All three have finalizers. In Main , an instance of the most-derived class is

Using finalizers to release resources

Explicit release of resources

Example

https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.processexit
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose#system-idisposable-dispose
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable.disposeasync#system-iasyncdisposable-disposeasync
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/unmanaged
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/implementing-dispose
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/implementing-disposeasync

created. The output from this code depends on which implementation of .NET the
application targets:

.NET Framework: The output shows that the finalizers for the three classes are
called automatically when the application terminates, in order from the most-
derived to the least-derived.
.NET 5 (including .NET Core) or a later version: There's no output, because this
implementation of .NET doesn't call finalizers when the application terminates.

C#

For more information, see the Finalizers section of the C# Language Specification.

class First
{
 ~First()
 {
 System.Diagnostics.Trace.WriteLine("First's finalizer is called.");
 }
}

class Second : First
{
 ~Second()
 {
 System.Diagnostics.Trace.WriteLine("Second's finalizer is called.");
 }
}

class Third : Second
{
 ~Third()
 {
 System.Diagnostics.Trace.WriteLine("Third's finalizer is called.");
 }
}

/*
Test with code like the following:
 Third t = new Third();
 t = null;

When objects are finalized, the output would be:
Third's finalizer is called.
Second's finalizer is called.
First's finalizer is called.
*/

C# language specification

IDisposable
C# Programming Guide
Constructors
Garbage Collection

See also

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/

Object and Collection Initializers (C#
Programming Guide)
Article • 2022-09-29 • 9 minutes to read

C# lets you instantiate an object or collection and perform member assignments in a
single statement.

Object initializers let you assign values to any accessible fields or properties of an object
at creation time without having to invoke a constructor followed by lines of assignment
statements. The object initializer syntax enables you to specify arguments for a
constructor or omit the arguments (and parentheses syntax). The following example
shows how to use an object initializer with a named type, Cat and how to invoke the
parameterless constructor. Note the use of auto-implemented properties in the Cat
class. For more information, see Auto-Implemented Properties.

C#

C#

The object initializers syntax allows you to create an instance, and after that it assigns
the newly created object, with its assigned properties, to the variable in the assignment.

Object initializers

public class Cat
{
 // Auto-implemented properties.
 public int Age { get; set; }
 public string Name { get; set; }

 public Cat()
 {
 }

 public Cat(string name)
 {
 this.Name = name;
 }
}

Cat cat = new Cat { Age = 10, Name = "Fluffy" };
Cat sameCat = new Cat("Fluffy"){ Age = 10 };

Object initializers can set indexers, in addition to assigning fields and properties.
Consider this basic Matrix class:

C#

You could initialize the identity matrix with the following code:

C#

Any accessible indexer that contains an accessible setter can be used as one of the
expressions in an object initializer, regardless of the number or types of arguments. The
index arguments form the left side of the assignment, and the value is the right side of
the expression. For example, these are all valid if IndexersExample has the appropriate
indexers:

C#

public class Matrix
{
 private double[,] storage = new double[3, 3];

 public double this[int row, int column]
 {
 // The embedded array will throw out of range exceptions as
appropriate.
 get { return storage[row, column]; }
 set { storage[row, column] = value; }
 }
}

var identity = new Matrix
{
 [0, 0] = 1.0,
 [0, 1] = 0.0,
 [0, 2] = 0.0,

 [1, 0] = 0.0,
 [1, 1] = 1.0,
 [1, 2] = 0.0,

 [2, 0] = 0.0,
 [2, 1] = 0.0,
 [2, 2] = 1.0,
};

var thing = new IndexersExample {
 name = "object one",
 [1] = '1',
 [2] = '4',

For the preceding code to compile, the IndexersExample type must have the following
members:

C#

Although object initializers can be used in any context, they are especially useful in LINQ
query expressions. Query expressions make frequent use of anonymous types, which
can only be initialized by using an object initializer, as shown in the following
declaration.

C#

Anonymous types enable the select clause in a LINQ query expression to transform
objects of the original sequence into objects whose value and shape may differ from the
original. This is useful if you want to store only a part of the information from each
object in a sequence. In the following example, assume that a product object (p)
contains many fields and methods, and that you are only interested in creating a
sequence of objects that contain the product name and the unit price.

C#

When this query is executed, the productInfos variable will contain a sequence of
objects that can be accessed in a foreach statement as shown in this example:

C#

 [3] = '9',
 Size = Math.PI,
 ['C',4] = "Middle C"
}

public string name;
public double Size { set { ... }; }
public char this[int i] { set { ... }; }
public string this[char c, int i] { set { ... }; }

Object Initializers with anonymous types

var pet = new { Age = 10, Name = "Fluffy" };

var productInfos =
 from p in products
 select new { p.ProductName, p.UnitPrice };

Each object in the new anonymous type has two public properties that receive the same
names as the properties or fields in the original object. You can also rename a field when
you are creating an anonymous type; the following example renames the UnitPrice
field to Price .

C#

Collection initializers let you specify one or more element initializers when you initialize
a collection type that implements IEnumerable and has Add with the appropriate
signature as an instance method or an extension method. The element initializers can be
a simple value, an expression, or an object initializer. By using a collection initializer, you
do not have to specify multiple calls; the compiler adds the calls automatically.

The following example shows two simple collection initializers:

C#

The following collection initializer uses object initializers to initialize objects of the Cat
class defined in a previous example. Note that the individual object initializers are
enclosed in braces and separated by commas.

C#

You can specify null as an element in a collection initializer if the collection's Add
method allows it.

C#

foreach(var p in productInfos){...}

select new {p.ProductName, Price = p.UnitPrice};

Collection initializers

List<int> digits = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
List<int> digits2 = new List<int> { 0 + 1, 12 % 3, MakeInt() };

List<Cat> cats = new List<Cat>
{
 new Cat{ Name = "Sylvester", Age=8 },
 new Cat{ Name = "Whiskers", Age=2 },
 new Cat{ Name = "Sasha", Age=14 }
};

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

You can specify indexed elements if the collection supports read / write indexing.

C#

The preceding sample generates code that calls the Item[TKey] to set the values. You
could also initialize dictionaries and other associative containers using the following
syntax. Notice that instead of indexer syntax, with parentheses and an assignment, it
uses an object with multiple values:

C#

This initializer example calls Add(TKey, TValue) to add the three items into the dictionary.
These two different ways to initialize associative collections have slightly different
behavior because of the method calls the compiler generates. Both variants work with
the Dictionary class. Other types may only support one or the other based on their
public API.

Some classes may have collection properties where the property is read-only, like the
Cats property of CatOwner in the following case:

List<Cat> moreCats = new List<Cat>
{
 new Cat{ Name = "Furrytail", Age=5 },
 new Cat{ Name = "Peaches", Age=4 },
 null
};

var numbers = new Dictionary<int, string>
{
 [7] = "seven",
 [9] = "nine",
 [13] = "thirteen"
};

var moreNumbers = new Dictionary<int, string>
{
 {19, "nineteen" },
 {23, "twenty-three" },
 {42, "forty-two" }
};

Object Initializers with collection read-only
property initialization

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2.item#system-collections-generic-dictionary-2-item(-0)
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2.add#system-collections-generic-dictionary-2-add(-0-1)

C#

You will not be able to use collection initializer syntax discussed so far since the property
cannot be assigned a new list:

C#

However, new entries can be added to Cats nonetheless using the initialization syntax
by omitting the list creation (new List<Cat>), as shown next:

C#

The set of entries to be added simply appear surrounded by braces. The above is
identical to writing:

C#

public class CatOwner
{
 public IList<Cat> Cats { get; } = new List<Cat>();
}

CatOwner owner = new CatOwner
{
 Cats = new List<Cat>
 {
 new Cat{ Name = "Sylvester", Age=8 },
 new Cat{ Name = "Whiskers", Age=2 },
 new Cat{ Name = "Sasha", Age=14 }
 }
};

CatOwner owner = new CatOwner
{
 Cats =
 {
 new Cat{ Name = "Sylvester", Age=8 },
 new Cat{ Name = "Whiskers", Age=2 },
 new Cat{ Name = "Sasha", Age=14 }
 }
};

CatOwner owner = new CatOwner();
owner.Cats.Add(new Cat{ Name = "Sylvester", Age=8 });
owner.Cats.Add(new Cat{ Name = "Whiskers", Age=2 });
owner.Cats.Add(new Cat{ Name = "Sasha", Age=14 });

The following example combines the concepts of object and collection initializers.

C#

Examples

public class InitializationSample
{
 public class Cat
 {
 // Auto-implemented properties.
 public int Age { get; set; }
 public string Name { get; set; }

 public Cat() { }

 public Cat(string name)
 {
 Name = name;
 }
 }

 public static void Main()
 {
 Cat cat = new Cat { Age = 10, Name = "Fluffy" };
 Cat sameCat = new Cat("Fluffy"){ Age = 10 };

 List<Cat> cats = new List<Cat>
 {
 new Cat { Name = "Sylvester", Age = 8 },
 new Cat { Name = "Whiskers", Age = 2 },
 new Cat { Name = "Sasha", Age = 14 }
 };

 List<Cat> moreCats = new List<Cat>
 {
 new Cat { Name = "Furrytail", Age = 5 },
 new Cat { Name = "Peaches", Age = 4 },
 null
 };

 // Display results.
 System.Console.WriteLine(cat.Name);

 foreach (Cat c in cats)
 System.Console.WriteLine(c.Name);

 foreach (Cat c in moreCats)
 if (c != null)
 System.Console.WriteLine(c.Name);
 else
 System.Console.WriteLine("List element has null value.");
 }

The following example shows an object that implements IEnumerable and contains an
Add method with multiple parameters, It uses a collection initializer with multiple
elements per item in the list that correspond to the signature of the Add method.

C#

 // Output:
 //Fluffy
 //Sylvester
 //Whiskers
 //Sasha
 //Furrytail
 //Peaches
 //List element has null value.
}

 public class FullExample
 {
 class FormattedAddresses : IEnumerable<string>
 {
 private List<string> internalList = new List<string>();
 public IEnumerator<string> GetEnumerator() =>
internalList.GetEnumerator();

 System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator() =>
internalList.GetEnumerator();

 public void Add(string firstname, string lastname,
 string street, string city,
 string state, string zipcode) => internalList.Add(
 $@"{firstname} {lastname}
{street}
{city}, {state} {zipcode}"
);
 }

 public static void Main()
 {
 FormattedAddresses addresses = new FormattedAddresses()
 {
 {"John", "Doe", "123 Street", "Topeka", "KS", "00000" },
 {"Jane", "Smith", "456 Street", "Topeka", "KS", "00000" }
 };

 Console.WriteLine("Address Entries:");

 foreach (string addressEntry in addresses)
 {
 Console.WriteLine("\r\n" + addressEntry);
 }
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

Add methods can use the params keyword to take a variable number of arguments, as
shown in the following example. This example also demonstrates the custom
implementation of an indexer to initialize a collection using indexes.

C#

 /*
 * Prints:

 Address Entries:

 John Doe
 123 Street
 Topeka, KS 00000

 Jane Smith
 456 Street
 Topeka, KS 00000
 */
 }

public class DictionaryExample
{
 class RudimentaryMultiValuedDictionary<TKey, TValue> :
IEnumerable<KeyValuePair<TKey, List<TValue>>>
 {
 private Dictionary<TKey, List<TValue>> internalDictionary = new
Dictionary<TKey, List<TValue>>();

 public IEnumerator<KeyValuePair<TKey, List<TValue>>> GetEnumerator()
=> internalDictionary.GetEnumerator();

 System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator() =>
internalDictionary.GetEnumerator();

 public List<TValue> this[TKey key]
 {
 get => internalDictionary[key];
 set => Add(key, value);
 }

 public void Add(TKey key, params TValue[] values) => Add(key,
(IEnumerable<TValue>)values);

 public void Add(TKey key, IEnumerable<TValue> values)
 {
 if (!internalDictionary.TryGetValue(key, out List<TValue>
storedValues))
 internalDictionary.Add(key, storedValues = new List<TValue>
());

 storedValues.AddRange(values);
 }
 }

 public static void Main()
 {
 RudimentaryMultiValuedDictionary<string, string>
rudimentaryMultiValuedDictionary1
 = new RudimentaryMultiValuedDictionary<string, string>()
 {
 {"Group1", "Bob", "John", "Mary" },
 {"Group2", "Eric", "Emily", "Debbie", "Jesse" }
 };
 RudimentaryMultiValuedDictionary<string, string>
rudimentaryMultiValuedDictionary2
 = new RudimentaryMultiValuedDictionary<string, string>()
 {
 ["Group1"] = new List<string>() { "Bob", "John", "Mary" },
 ["Group2"] = new List<string>() { "Eric", "Emily", "Debbie",
"Jesse" }
 };
 RudimentaryMultiValuedDictionary<string, string>
rudimentaryMultiValuedDictionary3
 = new RudimentaryMultiValuedDictionary<string, string>()
 {
 {"Group1", new string []{ "Bob", "John", "Mary" } },
 { "Group2", new string[]{ "Eric", "Emily", "Debbie", "Jesse"
} }
 };

 Console.WriteLine("Using first multi-valued dictionary created with
a collection initializer:");

 foreach (KeyValuePair<string, List<string>> group in
rudimentaryMultiValuedDictionary1)
 {
 Console.WriteLine($"\r\nMembers of group {group.Key}: ");

 foreach (string member in group.Value)
 {
 Console.WriteLine(member);
 }
 }

 Console.WriteLine("\r\nUsing second multi-valued dictionary created
with a collection initializer using indexing:");

 foreach (KeyValuePair<string, List<string>> group in
rudimentaryMultiValuedDictionary2)
 {
 Console.WriteLine($"\r\nMembers of group {group.Key}: ");

 foreach (string member in group.Value)
 {

 Console.WriteLine(member);
 }
 }
 Console.WriteLine("\r\nUsing third multi-valued dictionary created
with a collection initializer using indexing:");

 foreach (KeyValuePair<string, List<string>> group in
rudimentaryMultiValuedDictionary3)
 {
 Console.WriteLine($"\r\nMembers of group {group.Key}: ");

 foreach (string member in group.Value)
 {
 Console.WriteLine(member);
 }
 }
 }

 /*
 * Prints:

 Using first multi-valued dictionary created with a collection
initializer:

 Members of group Group1:
 Bob
 John
 Mary

 Members of group Group2:
 Eric
 Emily
 Debbie
 Jesse

 Using second multi-valued dictionary created with a collection
initializer using indexing:

 Members of group Group1:
 Bob
 John
 Mary

 Members of group Group2:
 Eric
 Emily
 Debbie
 Jesse

 Using third multi-valued dictionary created with a collection
initializer using indexing:

 Members of group Group1:
 Bob
 John

Use object initializers (style rule IDE0017)
Use collection initializers (style rule IDE0028)
C# Programming Guide
LINQ in C#
Anonymous Types

 Mary

 Members of group Group2:
 Eric
 Emily
 Debbie
 Jesse
 */
}

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0017
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0028

How to initialize objects by using an
object initializer (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

You can use object initializers to initialize type objects in a declarative manner without
explicitly invoking a constructor for the type.

The following examples show how to use object initializers with named objects. The
compiler processes object initializers by first accessing the parameterless instance
constructor and then processing the member initializations. Therefore, if the
parameterless constructor is declared as private in the class, object initializers that
require public access will fail.

You must use an object initializer if you're defining an anonymous type. For more
information, see How to return subsets of element properties in a query.

The following example shows how to initialize a new StudentName type by using object
initializers. This example sets properties in the StudentName type:

C#

Example

public class HowToObjectInitializers
{
 public static void Main()
 {
 // Declare a StudentName by using the constructor that has two
parameters.
 StudentName student1 = new StudentName("Craig", "Playstead");

 // Make the same declaration by using an object initializer and
sending
 // arguments for the first and last names. The parameterless
constructor is
 // invoked in processing this declaration, not the constructor that
has
 // two parameters.
 StudentName student2 = new StudentName
 {
 FirstName = "Craig",
 LastName = "Playstead"
 };

 // Declare a StudentName by using an object initializer and sending
 // an argument for only the ID property. No corresponding
constructor is
 // necessary. Only the parameterless constructor is used to process
object
 // initializers.
 StudentName student3 = new StudentName
 {
 ID = 183
 };

 // Declare a StudentName by using an object initializer and sending
 // arguments for all three properties. No corresponding constructor
is
 // defined in the class.
 StudentName student4 = new StudentName
 {
 FirstName = "Craig",
 LastName = "Playstead",
 ID = 116
 };

 Console.WriteLine(student1.ToString());
 Console.WriteLine(student2.ToString());
 Console.WriteLine(student3.ToString());
 Console.WriteLine(student4.ToString());
 }
 // Output:
 // Craig 0
 // Craig 0
 // 183
 // Craig 116

 public class StudentName
 {
 // This constructor has no parameters. The parameterless constructor
 // is invoked in the processing of object initializers.
 // You can test this by changing the access modifier from public to
 // private. The declarations in Main that use object initializers
will
 // fail.
 public StudentName() { }

 // The following constructor has parameters for two of the three
 // properties.
 public StudentName(string first, string last)
 {
 FirstName = first;
 LastName = last;
 }

 // Properties.
 public string FirstName { get; set; }
 public string LastName { get; set; }

Object initializers can be used to set indexers in an object. The following example
defines a BaseballTeam class that uses an indexer to get and set players at different
positions. The initializer can assign players, based on the abbreviation for the position,
or the number used for each position baseball scorecards:

C#

 public int ID { get; set; }

 public override string ToString() => FirstName + " " + ID;
 }
}

public class HowToIndexInitializer
{
 public class BaseballTeam
 {
 private string[] players = new string[9];
 private readonly List<string> positionAbbreviations = new
List<string>
 {
 "P", "C", "1B", "2B", "3B", "SS", "LF", "CF", "RF"
 };

 public string this[int position]
 {
 // Baseball positions are 1 - 9.
 get { return players[position-1]; }
 set { players[position-1] = value; }
 }
 public string this[string position]
 {
 get { return players[positionAbbreviations.IndexOf(position)]; }
 set { players[positionAbbreviations.IndexOf(position)] = value;
}
 }
 }

 public static void Main()
 {
 var team = new BaseballTeam
 {
 ["RF"] = "Mookie Betts",
 [4] = "Jose Altuve",
 ["CF"] = "Mike Trout"
 };

 Console.WriteLine(team["2B"]);
 }
}

C# Programming Guide
Object and Collection Initializers

See also

How to initialize a dictionary with a
collection initializer (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

A Dictionary<TKey,TValue> contains a collection of key/value pairs. Its Add method
takes two parameters, one for the key and one for the value. One way to initialize a
Dictionary<TKey,TValue>, or any collection whose Add method takes multiple
parameters, is to enclose each set of parameters in braces as shown in the following
example. Another option is to use an index initializer, also shown in the following
example.

In the following code example, a Dictionary<TKey,TValue> is initialized with instances of
type StudentName . The first initialization uses the Add method with two arguments. The
compiler generates a call to Add for each of the pairs of int keys and StudentName
values. The second uses a public read / write indexer method of the Dictionary class:

C#

Example

public class HowToDictionaryInitializer
{
 class StudentName
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int ID { get; set; }
 }

 public static void Main()
 {
 var students = new Dictionary<int, StudentName>()
 {
 { 111, new StudentName { FirstName="Sachin", LastName="Karnik",
ID=211 } },
 { 112, new StudentName { FirstName="Dina",
LastName="Salimzianova", ID=317 } },
 { 113, new StudentName { FirstName="Andy", LastName="Ruth",
ID=198 } }
 };

 foreach(var index in Enumerable.Range(111, 3))
 {

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2.add
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2

Note the two pairs of braces in each element of the collection in the first declaration.
The innermost braces enclose the object initializer for the StudentName , and the
outermost braces enclose the initializer for the key/value pair that will be added to the
students Dictionary<TKey,TValue>. Finally, the whole collection initializer for the
dictionary is enclosed in braces. In the second initialization, the left side of the
assignment is the key and the right side is the value, using an object initializer for
StudentName .

C# Programming Guide
Object and Collection Initializers

 Console.WriteLine($"Student {index} is
{students[index].FirstName} {students[index].LastName}");
 }
 Console.WriteLine();

 var students2 = new Dictionary<int, StudentName>()
 {
 [111] = new StudentName { FirstName="Sachin", LastName="Karnik",
ID=211 },
 [112] = new StudentName { FirstName="Dina",
LastName="Salimzianova", ID=317 } ,
 [113] = new StudentName { FirstName="Andy", LastName="Ruth",
ID=198 }
 };

 foreach (var index in Enumerable.Range(111, 3))
 {
 Console.WriteLine($"Student {index} is
{students2[index].FirstName} {students2[index].LastName}");
 }
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2

Nested Types (C# Programming Guide)
Article • 2021-10-27 • 2 minutes to read

A type defined within a class, struct, or interface is called a nested type. For example

C#

Regardless of whether the outer type is a class, interface, or struct, nested types default
to private; they are accessible only from their containing type. In the previous example,
the Nested class is inaccessible to external types.

You can also specify an access modifier to define the accessibility of a nested type, as
follows:

Nested types of a class can be public, protected, internal, protected internal,
private or private protected.

However, defining a protected , protected internal or private protected nested
class inside a sealed class generates compiler warning CS0628, "new protected
member declared in sealed class."

Also be aware that making a nested type externally visible violates the code quality
rule CA1034 "Nested types should not be visible".

Nested types of a struct can be public, internal, or private.

The following example makes the Nested class public:

C#

public class Container
{
 class Nested
 {
 Nested() { }
 }
}

public class Container
{
 public class Nested
 {
 Nested() { }
 }
}

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0628
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/quality-rules/ca1034

The nested, or inner, type can access the containing, or outer, type. To access the
containing type, pass it as an argument to the constructor of the nested type. For
example:

C#

A nested type has access to all of the members that are accessible to its containing type.
It can access private and protected members of the containing type, including any
inherited protected members.

In the previous declaration, the full name of class Nested is Container.Nested . This is the
name used to create a new instance of the nested class, as follows:

C#

C# Programming Guide
The C# type system
Access Modifiers
Constructors
CA1034 rule

public class Container
{
 public class Nested
 {
 private Container parent;

 public Nested()
 {
 }
 public Nested(Container parent)
 {
 this.parent = parent;
 }
 }
}

Container.Nested nest = new Container.Nested();

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/quality-rules/ca1034

Partial Classes and Methods (C#
Programming Guide)
Article • 2022-01-25 • 6 minutes to read

It is possible to split the definition of a class, a struct, an interface or a method over two
or more source files. Each source file contains a section of the type or method definition,
and all parts are combined when the application is compiled.

There are several situations when splitting a class definition is desirable:

When working on large projects, spreading a class over separate files enables
multiple programmers to work on it at the same time.
When working with automatically generated source, code can be added to the
class without having to recreate the source file. Visual Studio uses this approach
when it creates Windows Forms, Web service wrapper code, and so on. You can
create code that uses these classes without having to modify the file created by
Visual Studio.
When using source generators to generate additional functionality in a class.

To split a class definition, use the partial keyword modifier, as shown here:

C#

The partial keyword indicates that other parts of the class, struct, or interface can be
defined in the namespace. All the parts must use the partial keyword. All the parts
must be available at compile time to form the final type. All the parts must have the
same accessibility, such as public , private , and so on.

Partial Classes

public partial class Employee
{
 public void DoWork()
 {
 }
}

public partial class Employee
{
 public void GoToLunch()
 {
 }
}

If any part is declared abstract, then the whole type is considered abstract. If any part is
declared sealed, then the whole type is considered sealed. If any part declares a base
type, then the whole type inherits that class.

All the parts that specify a base class must agree, but parts that omit a base class still
inherit the base type. Parts can specify different base interfaces, and the final type
implements all the interfaces listed by all the partial declarations. Any class, struct, or
interface members declared in a partial definition are available to all the other parts. The
final type is the combination of all the parts at compile time.

The following example shows that nested types can be partial, even if the type they are
nested within is not partial itself.

C#

At compile time, attributes of partial-type definitions are merged. For example, consider
the following declarations:

C#

They are equivalent to the following declarations:

C#

７ Note

The partial modifier is not available on delegate or enumeration declarations.

class Container
{
 partial class Nested
 {
 void Test() { }
 }

 partial class Nested
 {
 void Test2() { }
 }
}

[SerializableAttribute]
partial class Moon { }

[ObsoleteAttribute]
partial class Moon { }

The following are merged from all the partial-type definitions:

XML comments
interfaces
generic-type parameter attributes
class attributes
members

For example, consider the following declarations:

C#

They are equivalent to the following declarations:

C#

There are several rules to follow when you are working with partial class definitions:

All partial-type definitions meant to be parts of the same type must be modified
with partial . For example, the following class declarations generate an error:

C#

The partial modifier can only appear immediately before the keywords class ,
struct , or interface .
Nested partial types are allowed in partial-type definitions as illustrated in the
following example:

C#

[SerializableAttribute]
[ObsoleteAttribute]
class Moon { }

partial class Earth : Planet, IRotate { }
partial class Earth : IRevolve { }

class Earth : Planet, IRotate, IRevolve { }

Restrictions

public partial class A { }
//public class A { } // Error, must also be marked partial

All partial-type definitions meant to be parts of the same type must be defined in
the same assembly and the same module (.exe or .dll file). Partial definitions cannot
span multiple modules.
The class name and generic-type parameters must match on all partial-type
definitions. Generic types can be partial. Each partial declaration must use the
same parameter names in the same order.
The following keywords on a partial-type definition are optional, but if present on
one partial-type definition, cannot conflict with the keywords specified on another
partial definition for the same type:

public
private
protected
internal
abstract
sealed
base class
new modifier (nested parts)
generic constraints

For more information, see Constraints on Type Parameters.

In the following example, the fields and the constructor of the class, Coords , are
declared in one partial class definition, and the member, PrintCoords , is declared in
another partial class definition.

C#

partial class ClassWithNestedClass
{
 partial class NestedClass { }
}

partial class ClassWithNestedClass
{
 partial class NestedClass { }
}

Examples

public partial class Coords
{
 private int x;
 private int y;

The following example shows that you can also develop partial structs and interfaces.

C#

 public Coords(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

public partial class Coords
{
 public void PrintCoords()
 {
 Console.WriteLine("Coords: {0},{1}", x, y);
 }
}

class TestCoords
{
 static void Main()
 {
 Coords myCoords = new Coords(10, 15);
 myCoords.PrintCoords();

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
// Output: Coords: 10,15

partial interface ITest
{
 void Interface_Test();
}

partial interface ITest
{
 void Interface_Test2();
}

partial struct S1
{
 void Struct_Test() { }
}

partial struct S1
{
 void Struct_Test2() { }
}

A partial class or struct may contain a partial method. One part of the class contains the
signature of the method. An implementation can be defined in the same part or another
part. If the implementation is not supplied, then the method and all calls to the method
are removed at compile time. Implementation may be required depending on method
signature. A partial method isn't required to have an implementation in the following
cases:

It doesn't have any accessibility modifiers (including the default private).
It returns void.
It doesn't have any out parameters.
It doesn't have any of the following modifiers virtual, override, sealed, new, or
extern.

Any method that doesn't conform to all those restrictions (for example, public virtual
partial void method), must provide an implementation. That implementation may be
supplied by a source generator.

Partial methods enable the implementer of one part of a class to declare a method. The
implementer of another part of the class can define that method. There are two
scenarios where this is useful: templates that generate boilerplate code, and source
generators.

Template code: The template reserves a method name and signature so that
generated code can call the method. These methods follow the restrictions that
enable a developer to decide whether to implement the method. If the method is
not implemented, then the compiler removes the method signature and all calls to
the method. The calls to the method, including any results that would occur from
evaluation of arguments in the calls, have no effect at run time. Therefore, any
code in the partial class can freely use a partial method, even if the implementation
is not supplied. No compile-time or run-time errors will result if the method is
called but not implemented.
Source generators: Source generators provide an implementation for methods.
The human developer can add the method declaration (often with attributes read
by the source generator). The developer can write code that calls these methods.
The source generator runs during compilation and provides the implementation. In
this scenario, the restrictions for partial methods that may not be implemented
often aren't followed.

C#

Partial Methods

Partial method declarations must begin with the contextual keyword partial.
Partial method signatures in both parts of the partial type must match.
Partial methods can have static and unsafe modifiers.
Partial methods can be generic. Constraints are put on the defining partial method
declaration, and may optionally be repeated on the implementing one. Parameter
and type parameter names do not have to be the same in the implementing
declaration as in the defining one.
You can make a delegate to a partial method that has been defined and
implemented, but not to a partial method that has only been defined.

For more information, see Partial types in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

C# Programming Guide
Classes
Structure types
Interfaces
partial (Type)

// Definition in file1.cs
partial void OnNameChanged();

// Implementation in file2.cs
partial void OnNameChanged()
{
 // method body
}

C# Language Specification

See also

How to return subsets of element
properties in a query (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

Use an anonymous type in a query expression when both of these conditions apply:

You want to return only some of the properties of each source element.

You do not have to store the query results outside the scope of the method in
which the query is executed.

If you only want to return one property or field from each source element, then you can
just use the dot operator in the select clause. For example, to return only the ID of
each student , write the select clause as follows:

C#

The following example shows how to use an anonymous type to return only a subset of
the properties of each source element that matches the specified condition.

C#

select student.ID;

Example

private static void QueryByScore()
{
 // Create the query. var is required because
 // the query produces a sequence of anonymous types.
 var queryHighScores =
 from student in students
 where student.ExamScores[0] > 95
 select new { student.FirstName, student.LastName };

 // Execute the query.
 foreach (var obj in queryHighScores)
 {
 // The anonymous type's properties were not named. Therefore
 // they have the same names as the Student properties.
 Console.WriteLine(obj.FirstName + ", " + obj.LastName);
 }
}

Note that the anonymous type uses the source element's names for its properties if no
names are specified. To give new names to the properties in the anonymous type, write
the select statement as follows:

C#

If you try this in the previous example, then the Console.WriteLine statement must also
change:

C#

To run this code, copy and paste the class into a C# console application with a using
directive for System.Linq.

C# Programming Guide
Anonymous Types
LINQ in C#

/* Output:
Adams, Terry
Fakhouri, Fadi
Garcia, Cesar
Omelchenko, Svetlana
Zabokritski, Eugene
*/

select new { First = student.FirstName, Last = student.LastName };

Console.WriteLine(student.First + " " + student.Last);

Compiling the Code

See also

Explicit Interface Implementation (C#
Programming Guide)
Article • 2022-09-29 • 2 minutes to read

If a class implements two interfaces that contain a member with the same signature,
then implementing that member on the class will cause both interfaces to use that
member as their implementation. In the following example, all the calls to Paint invoke
the same method. This first sample defines the types:

C#

The following sample calls the methods:

C#

public interface IControl
{
 void Paint();
}
public interface ISurface
{
 void Paint();
}
public class SampleClass : IControl, ISurface
{
 // Both ISurface.Paint and IControl.Paint call this method.
 public void Paint()
 {
 Console.WriteLine("Paint method in SampleClass");
 }
}

SampleClass sample = new SampleClass();
IControl control = sample;
ISurface surface = sample;

// The following lines all call the same method.
sample.Paint();
control.Paint();
surface.Paint();

// Output:
// Paint method in SampleClass
// Paint method in SampleClass
// Paint method in SampleClass

But you might not want the same implementation to be called for both interfaces. To
call a different implementation depending on which interface is in use, you can
implement an interface member explicitly. An explicit interface implementation is a class
member that is only called through the specified interface. Name the class member by
prefixing it with the name of the interface and a period. For example:

C#

The class member IControl.Paint is only available through the IControl interface, and
ISurface.Paint is only available through ISurface . Both method implementations are
separate, and neither are available directly on the class. For example:

C#

Explicit implementation is also used to resolve cases where two interfaces each declare
different members of the same name such as a property and a method. To implement
both interfaces, a class has to use explicit implementation either for the property P , or
the method P , or both, to avoid a compiler error. For example:

C#

public class SampleClass : IControl, ISurface
{
 void IControl.Paint()
 {
 System.Console.WriteLine("IControl.Paint");
 }
 void ISurface.Paint()
 {
 System.Console.WriteLine("ISurface.Paint");
 }
}

SampleClass sample = new SampleClass();
IControl control = sample;
ISurface surface = sample;

// The following lines all call the same method.
//sample.Paint(); // Compiler error.
control.Paint(); // Calls IControl.Paint on SampleClass.
surface.Paint(); // Calls ISurface.Paint on SampleClass.

// Output:
// IControl.Paint
// ISurface.Paint

interface ILeft
{

An explicit interface implementation doesn't have an access modifier since it isn't
accessible as a member of the type it's defined in. Instead, it's only accessible when
called through an instance of the interface. If you specify an access modifier for an
explicit interface implementation, you get compiler error CS0106. For more information,
see interface (C# Reference).

You can define an implementation for members declared in an interface. If a class
inherits a method implementation from an interface, that method is only accessible
through a reference of the interface type. The inherited member doesn't appear as part
of the public interface. The following sample defines a default implementation for an
interface method:

C#

The following sample invokes the default implementation:

C#

Any class that implements the IControl interface can override the default Paint
method, either as a public method, or as an explicit interface implementation.

 int P { get;}
}
interface IRight
{
 int P();
}

class Middle : ILeft, IRight
{
 public int P() { return 0; }
 int ILeft.P { get { return 0; } }
}

public interface IControl
{
 void Paint() => Console.WriteLine("Default Paint method");
}
public class SampleClass : IControl
{
 // Paint() is inherited from IControl.
}

var sample = new SampleClass();
//sample.Paint();// "Paint" isn't accessible.
var control = sample as IControl;
control.Paint();

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/cs0106

C# Programming Guide
Object oriented programming
Interfaces
Inheritance

See also

How to explicitly implement interface
members (C# Programming Guide)
Article • 2021-09-23 • 2 minutes to read

This example declares an interface, IDimensions , and a class, Box , which explicitly
implements the interface members GetLength and GetWidth . The members are accessed
through the interface instance dimensions .

C#

Example

interface IDimensions
{
 float GetLength();
 float GetWidth();
}

class Box : IDimensions
{
 float lengthInches;
 float widthInches;

 Box(float length, float width)
 {
 lengthInches = length;
 widthInches = width;
 }
 // Explicit interface member implementation:
 float IDimensions.GetLength()
 {
 return lengthInches;
 }
 // Explicit interface member implementation:
 float IDimensions.GetWidth()
 {
 return widthInches;
 }

 static void Main()
 {
 // Declare a class instance box1:
 Box box1 = new Box(30.0f, 20.0f);

 // Declare an interface instance dimensions:
 IDimensions dimensions = box1;

 // The following commented lines would produce compilation

Notice that the following lines, in the Main method, are commented out because
they would produce compilation errors. An interface member that is explicitly
implemented cannot be accessed from a class instance:

C#

Notice also that the following lines, in the Main method, successfully print out the
dimensions of the box because the methods are being called from an instance of
the interface:

C#

C# Programming Guide
Object oriented programming
Interfaces
How to explicitly implement members of two interfaces

 // errors because they try to access an explicitly implemented
 // interface member from a class instance:
 //System.Console.WriteLine("Length: {0}", box1.GetLength());
 //System.Console.WriteLine("Width: {0}", box1.GetWidth());

 // Print out the dimensions of the box by calling the methods
 // from an instance of the interface:
 System.Console.WriteLine("Length: {0}", dimensions.GetLength());
 System.Console.WriteLine("Width: {0}", dimensions.GetWidth());
 }
}
/* Output:
 Length: 30
 Width: 20
*/

Robust Programming

//System.Console.WriteLine("Length: {0}", box1.GetLength());
//System.Console.WriteLine("Width: {0}", box1.GetWidth());

System.Console.WriteLine("Length: {0}", dimensions.GetLength());
System.Console.WriteLine("Width: {0}", dimensions.GetWidth());

See also

How to explicitly implement members
of two interfaces (C# Programming
Guide)
Article • 2021-09-23 • 2 minutes to read

Explicit interface implementation also allows the programmer to implement two
interfaces that have the same member names and give each interface member a
separate implementation. This example displays the dimensions of a box in both metric
and English units. The Box class implements two interfaces IEnglishDimensions and
IMetricDimensions, which represent the different measurement systems. Both interfaces
have identical member names, Length and Width.

C#

Example

// Declare the English units interface:
interface IEnglishDimensions
{
 float Length();
 float Width();
}

// Declare the metric units interface:
interface IMetricDimensions
{
 float Length();
 float Width();
}

// Declare the Box class that implements the two interfaces:
// IEnglishDimensions and IMetricDimensions:
class Box : IEnglishDimensions, IMetricDimensions
{
 float lengthInches;
 float widthInches;

 public Box(float lengthInches, float widthInches)
 {
 this.lengthInches = lengthInches;
 this.widthInches = widthInches;
 }

 // Explicitly implement the members of IEnglishDimensions:
 float IEnglishDimensions.Length() => lengthInches;

If you want to make the default measurements in English units, implement the methods
Length and Width normally, and explicitly implement the Length and Width methods
from the IMetricDimensions interface:

C#

 float IEnglishDimensions.Width() => widthInches;

 // Explicitly implement the members of IMetricDimensions:
 float IMetricDimensions.Length() => lengthInches * 2.54f;

 float IMetricDimensions.Width() => widthInches * 2.54f;

 static void Main()
 {
 // Declare a class instance box1:
 Box box1 = new Box(30.0f, 20.0f);

 // Declare an instance of the English units interface:
 IEnglishDimensions eDimensions = box1;

 // Declare an instance of the metric units interface:
 IMetricDimensions mDimensions = box1;

 // Print dimensions in English units:
 System.Console.WriteLine("Length(in): {0}", eDimensions.Length());
 System.Console.WriteLine("Width (in): {0}", eDimensions.Width());

 // Print dimensions in metric units:
 System.Console.WriteLine("Length(cm): {0}", mDimensions.Length());
 System.Console.WriteLine("Width (cm): {0}", mDimensions.Width());
 }
}
/* Output:
 Length(in): 30
 Width (in): 20
 Length(cm): 76.2
 Width (cm): 50.8
*/

Robust Programming

// Normal implementation:
public float Length() => lengthInches;
public float Width() => widthInches;

// Explicit implementation:
float IMetricDimensions.Length() => lengthInches * 2.54f;
float IMetricDimensions.Width() => widthInches * 2.54f;

In this case, you can access the English units from the class instance and access the
metric units from the interface instance:

C#

C# Programming Guide
Object oriented programming
Interfaces
How to explicitly implement interface members

public static void Test()
{
 Box box1 = new Box(30.0f, 20.0f);
 IMetricDimensions mDimensions = box1;

 System.Console.WriteLine("Length(in): {0}", box1.Length());
 System.Console.WriteLine("Width (in): {0}", box1.Width());
 System.Console.WriteLine("Length(cm): {0}", mDimensions.Length());
 System.Console.WriteLine("Width (cm): {0}", mDimensions.Width());
}

See also

Delegates (C# Programming Guide)
Article • 2022-09-29 • 2 minutes to read

A delegate is a type that represents references to methods with a particular parameter
list and return type. When you instantiate a delegate, you can associate its instance with
any method with a compatible signature and return type. You can invoke (or call) the
method through the delegate instance.

Delegates are used to pass methods as arguments to other methods. Event handlers are
nothing more than methods that are invoked through delegates. You create a custom
method, and a class such as a windows control can call your method when a certain
event occurs. The following example shows a delegate declaration:

C#

Any method from any accessible class or struct that matches the delegate type can be
assigned to the delegate. The method can be either static or an instance method. This
flexibility means you can programmatically change method calls, or plug new code into
existing classes.

This ability to refer to a method as a parameter makes delegates ideal for defining
callback methods. You can write a method that compares two objects in your
application. That method can be used in a delegate for a sort algorithm. Because the
comparison code is separate from the library, the sort method can be more general.

Function pointers were added to C# 9 for similar scenarios, where you need more
control over the calling convention. The code associated with a delegate is invoked
using a virtual method added to a delegate type. Using function pointers, you can
specify different conventions.

public delegate int PerformCalculation(int x, int y);

７ Note

In the context of method overloading, the signature of a method does not include
the return value. But in the context of delegates, the signature does include the
return value. In other words, a method must have the same return type as the
delegate.

Delegates Overview

Delegates have the following properties:

Delegates are similar to C++ function pointers, but delegates are fully object-
oriented, and unlike C++ pointers to member functions, delegates encapsulate
both an object instance and a method.
Delegates allow methods to be passed as parameters.
Delegates can be used to define callback methods.
Delegates can be chained together; for example, multiple methods can be called
on a single event.
Methods don't have to match the delegate type exactly. For more information, see
Using Variance in Delegates.
Lambda expressions are a more concise way of writing inline code blocks. Lambda
expressions (in certain contexts) are compiled to delegate types. For more
information about lambda expressions, see Lambda expressions.

Using Delegates
When to Use Delegates Instead of Interfaces (C# Programming Guide)
Delegates with Named vs. Anonymous Methods
Using Variance in Delegates
How to combine delegates (Multicast Delegates)
How to declare, instantiate, and use a delegate

For more information, see Delegates in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

Delegate
C# Programming Guide
Events

In This Section

C# Language Specification

See also

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ms173173(v=vs.100)
https://learn.microsoft.com/en-us/dotnet/api/system.delegate

Using Delegates (C# Programming
Guide)
Article • 2022-05-17 • 5 minutes to read

A delegate is a type that safely encapsulates a method, similar to a function pointer in C
and C++. Unlike C function pointers, delegates are object-oriented, type safe, and
secure. The type of a delegate is defined by the name of the delegate. The following
example declares a delegate named Del that can encapsulate a method that takes a
string as an argument and returns void:

C#

A delegate object is normally constructed by providing the name of the method the
delegate will wrap, or with a lambda expression. Once a delegate is instantiated, a
method call made to the delegate will be passed by the delegate to that method. The
parameters passed to the delegate by the caller are passed to the method, and the
return value, if any, from the method is returned to the caller by the delegate. This is
known as invoking the delegate. An instantiated delegate can be invoked as if it were
the wrapped method itself. For example:

C#

C#

Delegate types are derived from the Delegate class in .NET. Delegate types are sealed—
they cannot be derived from— and it is not possible to derive custom classes from
Delegate. Because the instantiated delegate is an object, it can be passed as an
argument, or assigned to a property. This allows a method to accept a delegate as a

public delegate void Del(string message);

// Create a method for a delegate.
public static void DelegateMethod(string message)
{
 Console.WriteLine(message);
}

// Instantiate the delegate.
Del handler = DelegateMethod;

// Call the delegate.
handler("Hello World");

https://learn.microsoft.com/en-us/dotnet/api/system.delegate
https://learn.microsoft.com/en-us/dotnet/api/system.delegate

parameter, and call the delegate at some later time. This is known as an asynchronous
callback, and is a common method of notifying a caller when a long process has
completed. When a delegate is used in this fashion, the code using the delegate does
not need any knowledge of the implementation of the method being used. The
functionality is similar to the encapsulation interfaces provide.

Another common use of callbacks is defining a custom comparison method and passing
that delegate to a sort method. It allows the caller's code to become part of the sort
algorithm. The following example method uses the Del type as a parameter:

C#

You can then pass the delegate created above to that method:

C#

and receive the following output to the console:

Console

Using the delegate as an abstraction, MethodWithCallback does not need to call the
console directly—it does not have to be designed with a console in mind. What
MethodWithCallback does is simply prepare a string and pass the string to another
method. This is especially powerful since a delegated method can use any number of
parameters.

When a delegate is constructed to wrap an instance method, the delegate references
both the instance and the method. A delegate has no knowledge of the instance type
aside from the method it wraps, so a delegate can refer to any type of object as long as
there is a method on that object that matches the delegate signature. When a delegate
is constructed to wrap a static method, it only references the method. Consider the
following declarations:

C#

public static void MethodWithCallback(int param1, int param2, Del callback)
{
 callback("The number is: " + (param1 + param2).ToString());
}

MethodWithCallback(1, 2, handler);

The number is: 3

Along with the static DelegateMethod shown previously, we now have three methods
that can be wrapped by a Del instance.

A delegate can call more than one method when invoked. This is referred to as
multicasting. To add an extra method to the delegate's list of methods—the invocation
list—simply requires adding two delegates using the addition or addition assignment
operators ('+' or '+='). For example:

C#

At this point allMethodsDelegate contains three methods in its invocation list—Method1 ,
Method2 , and DelegateMethod . The original three delegates, d1 , d2 , and d3 , remain
unchanged. When allMethodsDelegate is invoked, all three methods are called in order.
If the delegate uses reference parameters, the reference is passed sequentially to each
of the three methods in turn, and any changes by one method are visible to the next
method. When any of the methods throws an exception that is not caught within the
method, that exception is passed to the caller of the delegate and no subsequent
methods in the invocation list are called. If the delegate has a return value and/or out
parameters, it returns the return value and parameters of the last method invoked. To
remove a method from the invocation list, use the subtraction or subtraction
assignment operators (- or -=). For example:

C#

public class MethodClass
{
 public void Method1(string message) { }
 public void Method2(string message) { }
}

var obj = new MethodClass();
Del d1 = obj.Method1;
Del d2 = obj.Method2;
Del d3 = DelegateMethod;

//Both types of assignment are valid.
Del allMethodsDelegate = d1 + d2;
allMethodsDelegate += d3;

//remove Method1
allMethodsDelegate -= d1;

// copy AllMethodsDelegate while removing d2
Del oneMethodDelegate = allMethodsDelegate - d2;

Because delegate types are derived from System.Delegate , the methods and properties
defined by that class can be called on the delegate. For example, to find the number of
methods in a delegate's invocation list, you may write:

C#

Delegates with more than one method in their invocation list derive from
MulticastDelegate, which is a subclass of System.Delegate . The above code works in
either case because both classes support GetInvocationList .

Multicast delegates are used extensively in event handling. Event source objects send
event notifications to recipient objects that have registered to receive that event. To
register for an event, the recipient creates a method designed to handle the event, then
creates a delegate for that method and passes the delegate to the event source. The
source calls the delegate when the event occurs. The delegate then calls the event
handling method on the recipient, delivering the event data. The delegate type for a
given event is defined by the event source. For more, see Events.

Comparing delegates of two different types assigned at compile-time will result in a
compilation error. If the delegate instances are statically of the type System.Delegate ,
then the comparison is allowed, but will return false at run time. For example:

C#

C# Programming Guide
Delegates
Using Variance in Delegates

int invocationCount = d1.GetInvocationList().GetLength(0);

delegate void Delegate1();
delegate void Delegate2();

static void method(Delegate1 d, Delegate2 e, System.Delegate f)
{
 // Compile-time error.
 //Console.WriteLine(d == e);

 // OK at compile-time. False if the run-time type of f
 // is not the same as that of d.
 Console.WriteLine(d == f);
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.multicastdelegate

Variance in Delegates
Using Variance for Func and Action Generic Delegates
Events

Delegates with Named vs. Anonymous
Methods (C# Programming Guide)
Article • 2021-11-08 • 2 minutes to read

A delegate can be associated with a named method. When you instantiate a delegate by
using a named method, the method is passed as a parameter, for example:

C#

This is called using a named method. Delegates constructed with a named method can
encapsulate either a static method or an instance method. Named methods are the only
way to instantiate a delegate in earlier versions of C#. However, in a situation where
creating a new method is unwanted overhead, C# enables you to instantiate a delegate
and immediately specify a code block that the delegate will process when it is called.
The block can contain either a lambda expression or an anonymous method.

The method that you pass as a delegate parameter must have the same signature as the
delegate declaration. A delegate instance may encapsulate either static or instance
method.

Beginning with C# 10, method groups with a single overload have a natural type. This
means the compiler can infer the return type and parameter types for the delegate type:

C#

// Declare a delegate.
delegate void Del(int x);

// Define a named method.
void DoWork(int k) { /* ... */ }

// Instantiate the delegate using the method as a parameter.
Del d = obj.DoWork;

７ Note

Although the delegate can use an out parameter, we do not recommend its use
with multicast event delegates because you cannot know which delegate will be
called.

var read = Console.Read; // Just one overload; Func<int> inferred
var write = Console.Write; // ERROR: Multiple overloads, can't choose

The following is a simple example of declaring and using a delegate. Notice that both
the delegate, Del , and the associated method, MultiplyNumbers , have the same
signature

C#

In the following example, one delegate is mapped to both static and instance methods
and returns specific information from each.

C#

Examples

// Declare a delegate
delegate void Del(int i, double j);

class MathClass
{
 static void Main()
 {
 MathClass m = new MathClass();

 // Delegate instantiation using "MultiplyNumbers"
 Del d = m.MultiplyNumbers;

 // Invoke the delegate object.
 Console.WriteLine("Invoking the delegate using 'MultiplyNumbers':");
 for (int i = 1; i <= 5; i++)
 {
 d(i, 2);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }

 // Declare the associated method.
 void MultiplyNumbers(int m, double n)
 {
 Console.Write(m * n + " ");
 }
}
/* Output:
 Invoking the delegate using 'MultiplyNumbers':
 2 4 6 8 10
*/

// Declare a delegate
delegate void Del();

C# Programming Guide
Delegates
How to combine delegates (Multicast Delegates)
Events

class SampleClass
{
 public void InstanceMethod()
 {
 Console.WriteLine("A message from the instance method.");
 }

 static public void StaticMethod()
 {
 Console.WriteLine("A message from the static method.");
 }
}

class TestSampleClass
{
 static void Main()
 {
 var sc = new SampleClass();

 // Map the delegate to the instance method:
 Del d = sc.InstanceMethod;
 d();

 // Map to the static method:
 d = SampleClass.StaticMethod;
 d();
 }
}
/* Output:
 A message from the instance method.
 A message from the static method.
*/

See also

How to combine delegates (Multicast
Delegates) (C# Programming Guide)
Article • 2021-09-15 • 2 minutes to read

This example demonstrates how to create multicast delegates. A useful property of
delegate objects is that multiple objects can be assigned to one delegate instance by
using the + operator. The multicast delegate contains a list of the assigned delegates.
When the multicast delegate is called, it invokes the delegates in the list, in order. Only
delegates of the same type can be combined.

The - operator can be used to remove a component delegate from a multicast
delegate.

C#

Example

using System;

// Define a custom delegate that has a string parameter and returns void.
delegate void CustomDel(string s);

class TestClass
{
 // Define two methods that have the same signature as CustomDel.
 static void Hello(string s)
 {
 Console.WriteLine($" Hello, {s}!");
 }

 static void Goodbye(string s)
 {
 Console.WriteLine($" Goodbye, {s}!");
 }

 static void Main()
 {
 // Declare instances of the custom delegate.
 CustomDel hiDel, byeDel, multiDel, multiMinusHiDel;

 // In this example, you can omit the custom delegate if you
 // want to and use Action<string> instead.
 //Action<string> hiDel, byeDel, multiDel, multiMinusHiDel;

 // Create the delegate object hiDel that references the
 // method Hello.
 hiDel = Hello;

MulticastDelegate
C# Programming Guide
Events

 // Create the delegate object byeDel that references the
 // method Goodbye.
 byeDel = Goodbye;

 // The two delegates, hiDel and byeDel, are combined to
 // form multiDel.
 multiDel = hiDel + byeDel;

 // Remove hiDel from the multicast delegate, leaving byeDel,
 // which calls only the method Goodbye.
 multiMinusHiDel = multiDel - hiDel;

 Console.WriteLine("Invoking delegate hiDel:");
 hiDel("A");
 Console.WriteLine("Invoking delegate byeDel:");
 byeDel("B");
 Console.WriteLine("Invoking delegate multiDel:");
 multiDel("C");
 Console.WriteLine("Invoking delegate multiMinusHiDel:");
 multiMinusHiDel("D");
 }
}
/* Output:
Invoking delegate hiDel:
 Hello, A!
Invoking delegate byeDel:
 Goodbye, B!
Invoking delegate multiDel:
 Hello, C!
 Goodbye, C!
Invoking delegate multiMinusHiDel:
 Goodbye, D!
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.multicastdelegate

How to declare, instantiate, and use a
Delegate (C# Programming Guide)
Article • 2022-09-29 • 4 minutes to read

You can declare delegates using any of the following methods:

Declare a delegate type and declare a method with a matching signature:

C#

C#

Assign a method group to a delegate type:

C#

Declare an anonymous method:

C#

Use a lambda expression:

C#

// Declare a delegate.
delegate void Del(string str);

// Declare a method with the same signature as the delegate.
static void Notify(string name)
{
 Console.WriteLine($"Notification received for: {name}");
}

// Create an instance of the delegate.
Del del1 = new Del(Notify);

// C# 2.0 provides a simpler way to declare an instance of Del.
Del del2 = Notify;

// Instantiate Del by using an anonymous method.
Del del3 = delegate(string name)
 { Console.WriteLine($"Notification received for: {name}"); };

// Instantiate Del by using a lambda expression.
Del del4 = name => { Console.WriteLine($"Notification received for:

For more information, see Lambda Expressions.

The following example illustrates declaring, instantiating, and using a delegate. The
BookDB class encapsulates a bookstore database that maintains a database of books. It
exposes a method, ProcessPaperbackBooks , which finds all paperback books in the
database and calls a delegate for each one. The delegate type that is used is named
ProcessBookCallback . The Test class uses this class to print the titles and average price
of the paperback books.

The use of delegates promotes good separation of functionality between the bookstore
database and the client code. The client code has no knowledge of how the books are
stored or how the bookstore code finds paperback books. The bookstore code has no
knowledge of what processing is performed on the paperback books after it finds them.

C#

{name}"); };

Example

// A set of classes for handling a bookstore:
namespace Bookstore
{
 using System.Collections;

 // Describes a book in the book list:
 public struct Book
 {
 public string Title; // Title of the book.
 public string Author; // Author of the book.
 public decimal Price; // Price of the book.
 public bool Paperback; // Is it paperback?

 public Book(string title, string author, decimal price, bool
paperBack)
 {
 Title = title;
 Author = author;
 Price = price;
 Paperback = paperBack;
 }
 }

 // Declare a delegate type for processing a book:
 public delegate void ProcessBookCallback(Book book);

 // Maintains a book database.
 public class BookDB

 {
 // List of all books in the database:
 ArrayList list = new ArrayList();

 // Add a book to the database:
 public void AddBook(string title, string author, decimal price, bool
paperBack)
 {
 list.Add(new Book(title, author, price, paperBack));
 }

 // Call a passed-in delegate on each paperback book to process it:
 public void ProcessPaperbackBooks(ProcessBookCallback processBook)
 {
 foreach (Book b in list)
 {
 if (b.Paperback)
 // Calling the delegate:
 processBook(b);
 }
 }
 }
}

// Using the Bookstore classes:
namespace BookTestClient
{
 using Bookstore;

 // Class to total and average prices of books:
 class PriceTotaller
 {
 int countBooks = 0;
 decimal priceBooks = 0.0m;

 internal void AddBookToTotal(Book book)
 {
 countBooks += 1;
 priceBooks += book.Price;
 }

 internal decimal AveragePrice()
 {
 return priceBooks / countBooks;
 }
 }

 // Class to test the book database:
 class Test
 {
 // Print the title of the book.
 static void PrintTitle(Book b)
 {
 Console.WriteLine($" {b.Title}");
 }

 // Execution starts here.
 static void Main()
 {
 BookDB bookDB = new BookDB();

 // Initialize the database with some books:
 AddBooks(bookDB);

 // Print all the titles of paperbacks:
 Console.WriteLine("Paperback Book Titles:");

 // Create a new delegate object associated with the static
 // method Test.PrintTitle:
 bookDB.ProcessPaperbackBooks(PrintTitle);

 // Get the average price of a paperback by using
 // a PriceTotaller object:
 PriceTotaller totaller = new PriceTotaller();

 // Create a new delegate object associated with the nonstatic
 // method AddBookToTotal on the object totaller:
 bookDB.ProcessPaperbackBooks(totaller.AddBookToTotal);

 Console.WriteLine("Average Paperback Book Price: ${0:#.##}",
 totaller.AveragePrice());
 }

 // Initialize the book database with some test books:
 static void AddBooks(BookDB bookDB)
 {
 bookDB.AddBook("The C Programming Language", "Brian W. Kernighan
and Dennis M. Ritchie", 19.95m, true);
 bookDB.AddBook("The Unicode Standard 2.0", "The Unicode
Consortium", 39.95m, true);
 bookDB.AddBook("The MS-DOS Encyclopedia", "Ray Duncan", 129.95m,
false);
 bookDB.AddBook("Dogbert's Clues for the Clueless", "Scott
Adams", 12.00m, true);
 }
 }
}
/* Output:
Paperback Book Titles:
 The C Programming Language
 The Unicode Standard 2.0
 Dogbert's Clues for the Clueless
Average Paperback Book Price: $23.97
*/

Robust Programming

Declaring a delegate.

The following statement declares a new delegate type.

C#

Each delegate type describes the number and types of the arguments, and the
type of the return value of methods that it can encapsulate. Whenever a new set of
argument types or return value type is needed, a new delegate type must be
declared.

Instantiating a delegate.

After a delegate type has been declared, a delegate object must be created and
associated with a particular method. In the previous example, you do this by
passing the PrintTitle method to the ProcessPaperbackBooks method as in the
following example:

C#

This creates a new delegate object associated with the static method
Test.PrintTitle . Similarly, the non-static method AddBookToTotal on the object
totaller is passed as in the following example:

C#

In both cases a new delegate object is passed to the ProcessPaperbackBooks
method.

After a delegate is created, the method it is associated with never changes;
delegate objects are immutable.

Calling a delegate.

After a delegate object is created, the delegate object is typically passed to other
code that will call the delegate. A delegate object is called by using the name of
the delegate object, followed by the parenthesized arguments to be passed to the
delegate. Following is an example of a delegate call:

public delegate void ProcessBookCallback(Book book);

bookDB.ProcessPaperbackBooks(PrintTitle);

bookDB.ProcessPaperbackBooks(totaller.AddBookToTotal);

C#

A delegate can be either called synchronously, as in this example, or
asynchronously by using BeginInvoke and EndInvoke methods.

C# Programming Guide
Events
Delegates

processBook(b);

See also

Arrays (C# Programming Guide)
Article • 2021-10-01 • 3 minutes to read

You can store multiple variables of the same type in an array data structure. You declare
an array by specifying the type of its elements. If you want the array to store elements of
any type, you can specify object as its type. In the unified type system of C#, all types,
predefined and user-defined, reference types and value types, inherit directly or
indirectly from Object.

C#

The following example creates single-dimensional, multidimensional, and jagged arrays:

C#

type[] arrayName;

Example

class TestArraysClass
{
 static void Main()
 {
 // Declare a single-dimensional array of 5 integers.
 int[] array1 = new int[5];

 // Declare and set array element values.
 int[] array2 = new int[] { 1, 3, 5, 7, 9 };

 // Alternative syntax.
 int[] array3 = { 1, 2, 3, 4, 5, 6 };

 // Declare a two dimensional array.
 int[,] multiDimensionalArray1 = new int[2, 3];

 // Declare and set array element values.
 int[,] multiDimensionalArray2 = { { 1, 2, 3 }, { 4, 5, 6 } };

 // Declare a jagged array.
 int[][] jaggedArray = new int[6][];

 // Set the values of the first array in the jagged array structure.
 jaggedArray[0] = new int[4] { 1, 2, 3, 4 };
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.object

An array has the following properties:

An array can be single-dimensional, multidimensional or jagged.
The number of dimensions and the length of each dimension are established when
the array instance is created. These values can't be changed during the lifetime of
the instance.
The default values of numeric array elements are set to zero, and reference
elements are set to null .
A jagged array is an array of arrays, and therefore its elements are reference types
and are initialized to null .
Arrays are zero indexed: an array with n elements is indexed from 0 to n-1 .
Array elements can be of any type, including an array type.
Array types are reference types derived from the abstract base type Array. All
arrays implement IList, and IEnumerable. You can use the foreach statement to
iterate through an array. Single-dimensional arrays also implement IList<T> and
IEnumerable<T>.

For value types, the array elements are initialized with the default value, the 0-bit
pattern; the elements will have the value 0 .
All the reference types (including the non-nullable), have the values null .
For nullable value types, HasValue is set to false and the elements would be set
to null .

In C#, arrays are actually objects, and not just addressable regions of contiguous
memory as in C and C++. Array is the abstract base type of all array types. You can use
the properties and other class members that Array has. An example of this is using the
Length property to get the length of an array. The following code assigns the length of
the numbers array, which is 5 , to a variable called lengthOfNumbers :

C#

Array overview

Default value behaviour

Arrays as Objects

int[] numbers = { 1, 2, 3, 4, 5 };
int lengthOfNumbers = numbers.Length;

https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ilist
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.array.length

The Array class provides many other useful methods and properties for sorting,
searching, and copying arrays. The following example uses the Rank property to display
the number of dimensions of an array.

C#

How to use single-dimensional arrays
How to use multi-dimensional arrays
How to use jagged arrays
Using foreach with arrays
Passing arrays as arguments
Implicitly typed arrays
C# Programming Guide
Collections

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

class TestArraysClass
{
 static void Main()
 {
 // Declare and initialize an array.
 int[,] theArray = new int[5, 10];
 System.Console.WriteLine("The array has {0} dimensions.",
theArray.Rank);
 }
}
// Output: The array has 2 dimensions.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.array.rank

Single-Dimensional Arrays (C#
Programming Guide)
Article • 2022-12-06 • 2 minutes to read

You create a single-dimensional array using the new operator specifying the array
element type and the number of elements. The following example declares an array of
five integers:

C#

This array contains the elements from array[0] to array[4] . The elements of the array
are initialized to the default value of the element type, 0 for integers.

Arrays can store any element type you specify, such as the following example that
declares an array of strings:

C#

You can initialize the elements of an array when you declare the array. The length
specifier isn't needed because it's inferred by the number of elements in the
initialization list. For example:

C#

The following code shows a declaration of a string array where each array element is
initialized by a name of a day:

C#

int[] array = new int[5];

string[] stringArray = new string[6];

Array Initialization

int[] array1 = new int[] { 1, 3, 5, 7, 9 };

string[] weekDays = new string[] { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri",
"Sat" };

You can avoid the new expression and the array type when you initialize an array upon
declaration, as shown in the following code. This is called an implicitly typed array:

C#

You can declare an array variable without creating it, but you must use the new operator
when you assign a new array to this variable. For example:

C#

Consider the following array declaration:

C#

The result of this statement depends on whether SomeType is a value type or a reference
type. If it's a value type, the statement creates an array of 10 elements, each of which
has the type SomeType . If SomeType is a reference type, the statement creates an array of
10 elements, each of which is initialized to a null reference. In both instances, the
elements are initialized to the default value for the element type. For more information
about value types and reference types, see Value types and Reference types.

You can retrieve the data of an array by using an index. For example:

C#

int[] array2 = { 1, 3, 5, 7, 9 };
string[] weekDays2 = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

int[] array3;
array3 = new int[] { 1, 3, 5, 7, 9 }; // OK
//array3 = {1, 3, 5, 7, 9}; // Error

Value Type and Reference Type Arrays

SomeType[] array4 = new SomeType[10];

Retrieving data from Array

string[] weekDays2 = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

Console.WriteLine(weekDays2[0]);
Console.WriteLine(weekDays2[1]);
Console.WriteLine(weekDays2[2]);

Array
Arrays
Multidimensional Arrays
Jagged Arrays

Console.WriteLine(weekDays2[3]);
Console.WriteLine(weekDays2[4]);
Console.WriteLine(weekDays2[5]);
Console.WriteLine(weekDays2[6]);

/*Output:
Sun
Mon
Tue
Wed
Thu
Fri
Sat
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.array

Multidimensional Arrays (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

Arrays can have more than one dimension. For example, the following declaration
creates a two-dimensional array of four rows and two columns.

C#

The following declaration creates an array of three dimensions, 4, 2, and 3.

C#

You can initialize the array upon declaration, as is shown in the following example.

C#

int[,] array = new int[4, 2];

int[,,] array1 = new int[4, 2, 3];

Array Initialization

// Two-dimensional array.
int[,] array2D = new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } };
// The same array with dimensions specified.
int[,] array2Da = new int[4, 2] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } };
// A similar array with string elements.
string[,] array2Db = new string[3, 2] { { "one", "two" }, { "three", "four"
},
 { "five", "six" } };

// Three-dimensional array.
int[,,] array3D = new int[,,] { { { 1, 2, 3 }, { 4, 5, 6 } },
 { { 7, 8, 9 }, { 10, 11, 12 } } };
// The same array with dimensions specified.
int[,,] array3Da = new int[2, 2, 3] { { { 1, 2, 3 }, { 4, 5, 6 } },
 { { 7, 8, 9 }, { 10, 11, 12 } } };

// Accessing array elements.
System.Console.WriteLine(array2D[0, 0]);
System.Console.WriteLine(array2D[0, 1]);
System.Console.WriteLine(array2D[1, 0]);
System.Console.WriteLine(array2D[1, 1]);
System.Console.WriteLine(array2D[3, 0]);

You can also initialize the array without specifying the rank.

C#

If you choose to declare an array variable without initialization, you must use the new
operator to assign an array to the variable. The use of new is shown in the following
example.

C#

The following example assigns a value to a particular array element.

C#

Similarly, the following example gets the value of a particular array element and assigns
it to variable elementValue .

System.Console.WriteLine(array2Db[1, 0]);
System.Console.WriteLine(array3Da[1, 0, 1]);
System.Console.WriteLine(array3D[1, 1, 2]);

// Getting the total count of elements or the length of a given dimension.
var allLength = array3D.Length;
var total = 1;
for (int i = 0; i < array3D.Rank; i++)
{
 total *= array3D.GetLength(i);
}
System.Console.WriteLine("{0} equals {1}", allLength, total);

// Output:
// 1
// 2
// 3
// 4
// 7
// three
// 8
// 12
// 12 equals 12

int[,] array4 = { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } };

int[,] array5;
array5 = new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } }; // OK
//array5 = {{1,2}, {3,4}, {5,6}, {7,8}}; // Error

array5[2, 1] = 25;

C#

The following code example initializes the array elements to default values (except for
jagged arrays).

C#

C# Programming Guide
Arrays
Single-Dimensional Arrays
Jagged Arrays

int elementValue = array5[2, 1];

int[,] array6 = new int[10, 10];

See also

Jagged Arrays (C# Programming Guide)
Article • 2021-09-15 • 3 minutes to read

A jagged array is an array whose elements are arrays, possibly of different sizes. A
jagged array is sometimes called an "array of arrays." The following examples show how
to declare, initialize, and access jagged arrays.

The following is a declaration of a single-dimensional array that has three elements,
each of which is a single-dimensional array of integers:

C#

Before you can use jaggedArray , its elements must be initialized. You can initialize the
elements like this:

C#

Each of the elements is a single-dimensional array of integers. The first element is an
array of 5 integers, the second is an array of 4 integers, and the third is an array of 2
integers.

It is also possible to use initializers to fill the array elements with values, in which case
you do not need the array size. For example:

C#

You can also initialize the array upon declaration like this:

C#

int[][] jaggedArray = new int[3][];

jaggedArray[0] = new int[5];
jaggedArray[1] = new int[4];
jaggedArray[2] = new int[2];

jaggedArray[0] = new int[] { 1, 3, 5, 7, 9 };
jaggedArray[1] = new int[] { 0, 2, 4, 6 };
jaggedArray[2] = new int[] { 11, 22 };

int[][] jaggedArray2 = new int[][]
{
new int[] { 1, 3, 5, 7, 9 },
new int[] { 0, 2, 4, 6 },

You can use the following shorthand form. Notice that you cannot omit the new
operator from the elements initialization because there is no default initialization for the
elements:

C#

A jagged array is an array of arrays, and therefore its elements are reference types and
are initialized to null .

You can access individual array elements like these examples:

C#

It's possible to mix jagged and multidimensional arrays. The following is a declaration
and initialization of a single-dimensional jagged array that contains three two-
dimensional array elements of different sizes. For more information, see
Multidimensional Arrays.

C#

You can access individual elements as shown in this example, which displays the value of
the element [1,0] of the first array (value 5):

new int[] { 11, 22 }
};

int[][] jaggedArray3 =
{
 new int[] { 1, 3, 5, 7, 9 },
 new int[] { 0, 2, 4, 6 },
 new int[] { 11, 22 }
};

// Assign 77 to the second element ([1]) of the first array ([0]):
jaggedArray3[0][1] = 77;

// Assign 88 to the second element ([1]) of the third array ([2]):
jaggedArray3[2][1] = 88;

int[][,] jaggedArray4 = new int[3][,]
{
 new int[,] { {1,3}, {5,7} },
 new int[,] { {0,2}, {4,6}, {8,10} },
 new int[,] { {11,22}, {99,88}, {0,9} }
};

C#

The method Length returns the number of arrays contained in the jagged array. For
example, assuming you have declared the previous array, this line:

C#

returns a value of 3.

This example builds an array whose elements are themselves arrays. Each one of the
array elements has a different size.

C#

System.Console.Write("{0}", jaggedArray4[0][1, 0]);

System.Console.WriteLine(jaggedArray4.Length);

Example

class ArrayTest
{
 static void Main()
 {
 // Declare the array of two elements.
 int[][] arr = new int[2][];

 // Initialize the elements.
 arr[0] = new int[5] { 1, 3, 5, 7, 9 };
 arr[1] = new int[4] { 2, 4, 6, 8 };

 // Display the array elements.
 for (int i = 0; i < arr.Length; i++)
 {
 System.Console.Write("Element({0}): ", i);

 for (int j = 0; j < arr[i].Length; j++)
 {
 System.Console.Write("{0}{1}", arr[i][j], j ==
(arr[i].Length - 1) ? "" : " ");
 }
 System.Console.WriteLine();
 }
 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
}
/* Output:

Array
C# Programming Guide
Arrays
Single-Dimensional Arrays
Multidimensional Arrays

 Element(0): 1 3 5 7 9
 Element(1): 2 4 6 8
*/

See also

https://learn.microsoft.com/en-us/dotnet/api/system.array

Using foreach with arrays (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

The foreach statement provides a simple, clean way to iterate through the elements of
an array.

For single-dimensional arrays, the foreach statement processes elements in increasing
index order, starting with index 0 and ending with index Length - 1 :

C#

For multi-dimensional arrays, elements are traversed such that the indices of the
rightmost dimension are increased first, then the next left dimension, and so on to the
left:

C#

However, with multidimensional arrays, using a nested for loop gives you more control
over the order in which to process the array elements.

Array
C# Programming Guide
Arrays

int[] numbers = { 4, 5, 6, 1, 2, 3, -2, -1, 0 };
foreach (int i in numbers)
{
 System.Console.Write("{0} ", i);
}
// Output: 4 5 6 1 2 3 -2 -1 0

int[,] numbers2D = new int[3, 2] { { 9, 99 }, { 3, 33 }, { 5, 55 } };
// Or use the short form:
// int[,] numbers2D = { { 9, 99 }, { 3, 33 }, { 5, 55 } };

foreach (int i in numbers2D)
{
 System.Console.Write("{0} ", i);
}
// Output: 9 99 3 33 5 55

See also

https://learn.microsoft.com/en-us/dotnet/api/system.array

Single-Dimensional Arrays
Multidimensional Arrays
Jagged Arrays

Passing arrays as arguments (C#
Programming Guide)
Article • 2021-09-15 • 3 minutes to read

Arrays can be passed as arguments to method parameters. Because arrays are reference
types, the method can change the value of the elements.

You can pass an initialized single-dimensional array to a method. For example, the
following statement sends an array to a print method.

C#

The following code shows a partial implementation of the print method.

C#

You can initialize and pass a new array in one step, as is shown in the following example.

C#

In the following example, an array of strings is initialized and passed as an argument to
a DisplayArray method for strings. The method displays the elements of the array. Next,
the ChangeArray method reverses the array elements, and then the ChangeArrayElements
method modifies the first three elements of the array. After each method returns, the
DisplayArray method shows that passing an array by value doesn't prevent changes to
the array elements.

Passing single-dimensional arrays as arguments

int[] theArray = { 1, 3, 5, 7, 9 };
PrintArray(theArray);

void PrintArray(int[] arr)
{
 // Method code.
}

PrintArray(new int[] { 1, 3, 5, 7, 9 });

Example

C#

using System;

class ArrayExample
{
 static void DisplayArray(string[] arr) =>
Console.WriteLine(string.Join(" ", arr));

 // Change the array by reversing its elements.
 static void ChangeArray(string[] arr) => Array.Reverse(arr);

 static void ChangeArrayElements(string[] arr)
 {
 // Change the value of the first three array elements.
 arr[0] = "Mon";
 arr[1] = "Wed";
 arr[2] = "Fri";
 }

 static void Main()
 {
 // Declare and initialize an array.
 string[] weekDays = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri",
"Sat" };
 // Display the array elements.
 DisplayArray(weekDays);
 Console.WriteLine();

 // Reverse the array.
 ChangeArray(weekDays);
 // Display the array again to verify that it stays reversed.
 Console.WriteLine("Array weekDays after the call to ChangeArray:");
 DisplayArray(weekDays);
 Console.WriteLine();

 // Assign new values to individual array elements.
 ChangeArrayElements(weekDays);
 // Display the array again to verify that it has changed.
 Console.WriteLine("Array weekDays after the call to
ChangeArrayElements:");
 DisplayArray(weekDays);
 }
}
// The example displays the following output:
// Sun Mon Tue Wed Thu Fri Sat
//
// Array weekDays after the call to ChangeArray:
// Sat Fri Thu Wed Tue Mon Sun
//
// Array weekDays after the call to ChangeArrayElements:
// Mon Wed Fri Wed Tue Mon Sun

You pass an initialized multidimensional array to a method in the same way that you
pass a one-dimensional array.

C#

The following code shows a partial declaration of a print method that accepts a two-
dimensional array as its argument.

C#

You can initialize and pass a new array in one step, as is shown in the following example:

C#

In the following example, a two-dimensional array of integers is initialized and passed to
the Print2DArray method. The method displays the elements of the array.

C#

Passing multidimensional arrays as arguments

int[,] theArray = { { 1, 2 }, { 2, 3 }, { 3, 4 } };
Print2DArray(theArray);

void Print2DArray(int[,] arr)
{
 // Method code.
}

Print2DArray(new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } });

Example

class ArrayClass2D
{
 static void Print2DArray(int[,] arr)
 {
 // Display the array elements.
 for (int i = 0; i < arr.GetLength(0); i++)
 {
 for (int j = 0; j < arr.GetLength(1); j++)
 {
 System.Console.WriteLine("Element({0},{1})={2}", i, j,
arr[i, j]);
 }
 }

C# Programming Guide
Arrays
Single-Dimensional Arrays
Multidimensional Arrays
Jagged Arrays

 }
 static void Main()
 {
 // Pass the array as an argument.
 Print2DArray(new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } });

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
}
/* Output:
 Element(0,0)=1
 Element(0,1)=2
 Element(1,0)=3
 Element(1,1)=4
 Element(2,0)=5
 Element(2,1)=6
 Element(3,0)=7
 Element(3,1)=8
*/

See also

Implicitly Typed Arrays (C#
Programming Guide)
Article • 2022-09-21 • 2 minutes to read

You can create an implicitly-typed array in which the type of the array instance is
inferred from the elements specified in the array initializer. The rules for any implicitly-
typed variable also apply to implicitly-typed arrays. For more information, see Implicitly
Typed Local Variables.

Implicitly-typed arrays are usually used in query expressions together with anonymous
types and object and collection initializers.

The following examples show how to create an implicitly-typed array:

C#

In the previous example, notice that with implicitly-typed arrays, no square brackets are
used on the left side of the initialization statement. Note also that jagged arrays are
initialized by using new [] just like single-dimension arrays.

class ImplicitlyTypedArraySample
{
 static void Main()
 {
 var a = new[] { 1, 10, 100, 1000 }; // int[]
 var b = new[] { "hello", null, "world" }; // string[]

 // single-dimension jagged array
 var c = new[]
 {
 new[]{1,2,3,4},
 new[]{5,6,7,8}
 };

 // jagged array of strings
 var d = new[]
 {
 new[]{"Luca", "Mads", "Luke", "Dinesh"},
 new[]{"Karen", "Suma", "Frances"}
 };
 }
}

Implicitly-typed Arrays in Object Initializers

When you create an anonymous type that contains an array, the array must be implicitly
typed in the type's object initializer. In the following example, contacts is an implicitly-
typed array of anonymous types, each of which contains an array named PhoneNumbers .
Note that the var keyword is not used inside the object initializers.

C#

C# Programming Guide
Implicitly Typed Local Variables
Arrays
Anonymous Types
Object and Collection Initializers
var
LINQ in C#

var contacts = new[]
{
 new {
 Name = " Eugene Zabokritski",
 PhoneNumbers = new[] { "206-555-0108", "425-555-0001" }
 },
 new {
 Name = " Hanying Feng",
 PhoneNumbers = new[] { "650-555-0199" }
 }
};

See also

Strings and string literals
Article • 2022-12-14 • 16 minutes to read

A string is an object of type String whose value is text. Internally, the text is stored as a
sequential read-only collection of Char objects. There's no null-terminating character at
the end of a C# string; therefore a C# string can contain any number of embedded null
characters ('\0'). The Length property of a string represents the number of Char objects
it contains, not the number of Unicode characters. To access the individual Unicode
code points in a string, use the StringInfo object.

In C#, the string keyword is an alias for String; therefore, String and string are
equivalent. It's recommended to use the provided alias string as it works even without
using System; . The String class provides many methods for safely creating,
manipulating, and comparing strings. In addition, the C# language overloads some
operators to simplify common string operations. For more information about the
keyword, see string. For more information about the type and its methods, see String.

You can declare and initialize strings in various ways, as shown in the following example:

C#

string vs. System.String

Declaring and initializing strings

// Declare without initializing.
string message1;

// Initialize to null.
string message2 = null;

// Initialize as an empty string.
// Use the Empty constant instead of the literal "".
string message3 = System.String.Empty;

// Initialize with a regular string literal.
string oldPath = "c:\\Program Files\\Microsoft Visual Studio 8.0";

// Initialize with a verbatim string literal.
string newPath = @"c:\Program Files\Microsoft Visual Studio 9.0";

// Use System.String if you prefer.
System.String greeting = "Hello World!";

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.char
https://learn.microsoft.com/en-us/dotnet/api/system.string.length
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.stringinfo
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.string

You don't use the new operator to create a string object except when initializing the
string with an array of chars.

Initialize a string with the Empty constant value to create a new String object whose
string is of zero length. The string literal representation of a zero-length string is "". By
initializing strings with the Empty value instead of null, you can reduce the chances of a
NullReferenceException occurring. Use the static IsNullOrEmpty(String) method to verify
the value of a string before you try to access it.

String objects are immutable: they can't be changed after they've been created. All of
the String methods and C# operators that appear to modify a string actually return the
results in a new string object. In the following example, when the contents of s1 and s2
are concatenated to form a single string, the two original strings are unmodified. The +=
operator creates a new string that contains the combined contents. That new object is
assigned to the variable s1 , and the original object that was assigned to s1 is released
for garbage collection because no other variable holds a reference to it.

C#

// In local variables (i.e. within a method body)
// you can use implicit typing.
var temp = "I'm still a strongly-typed System.String!";

// Use a const string to prevent 'message4' from
// being used to store another string value.
const string message4 = "You can't get rid of me!";

// Use the String constructor only when creating
// a string from a char*, char[], or sbyte*. See
// System.String documentation for details.
char[] letters = { 'A', 'B', 'C' };
string alphabet = new string(letters);

Immutability of strings

string s1 = "A string is more ";
string s2 = "than the sum of its chars.";

// Concatenate s1 and s2. This actually creates a new
// string object and stores it in s1, releasing the
// reference to the original object.
s1 += s2;

System.Console.WriteLine(s1);
// Output: A string is more than the sum of its chars.

https://learn.microsoft.com/en-us/dotnet/api/system.string.empty
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.string.empty
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.string.isnullorempty#system-string-isnullorempty(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.string

Because a string "modification" is actually a new string creation, you must use caution
when you create references to strings. If you create a reference to a string, and then
"modify" the original string, the reference will continue to point to the original object
instead of the new object that was created when the string was modified. The following
code illustrates this behavior:

C#

For more information about how to create new strings that are based on modifications
such as search and replace operations on the original string, see How to modify string
contents.

Quoted string literals start and end with a single double quote character (") on the same
line. Quoted string literals are best suited for strings that fit on a single line and don't
include any escape sequences. A quoted string literal must embed escape characters, as
shown in the following example:

C#

string str1 = "Hello ";
string str2 = str1;
str1 += "World";

System.Console.WriteLine(str2);
//Output: Hello

Quoted string literals

string columns = "Column 1\tColumn 2\tColumn 3";
//Output: Column 1 Column 2 Column 3

string rows = "Row 1\r\nRow 2\r\nRow 3";
/* Output:
 Row 1
 Row 2
 Row 3
*/

string title = "\"The \u00C6olean Harp\", by Samuel Taylor Coleridge";
//Output: "The Æolean Harp", by Samuel Taylor Coleridge

Verbatim string literals

Verbatim string literals are more convenient for multi-line strings, strings that contain
backslash characters, or embedded double quotes. Verbatim strings preserve new line
characters as part of the string text. Use double quotation marks to embed a quotation
mark inside a verbatim string. The following example shows some common uses for
verbatim strings:

C#

Beginning with C# 11, you can use raw string literals to more easily create strings that
are multi-line, or use any characters requiring escape sequences. Raw string literals
remove the need to ever use escape sequences. You can write the string, including
whitespace formatting, how you want it to appear in output. A raw string literal:

Starts and ends with a sequence of at least three double quote characters (""").
You're allowed more than three consecutive characters to start and end the
sequence in order to support string literals that contain three (or more) repeated
quote characters.
Single line raw string literals require the opening and closing quote characters on
the same line.
Multi-line raw string literals require both opening and closing quote characters on
their own line.
In multi-line raw string literals, any whitespace to the left of the closing quotes is
removed from all lines of the raw string literal.
In multi-line raw string literals, whitespace following the opening quote on the
same line is ignored.

string title = "\"The \u00C6olean Harp\", by Samuel Taylor Coleridge";
//Output: "The Æolean Harp", by Samuel Taylor Coleridge

string filePath = @"C:\Users\scoleridge\Documents\";
//Output: C:\Users\scoleridge\Documents\

string text = @"My pensive SARA ! thy soft cheek reclined
 Thus on mine arm, most soothing sweet it is
 To sit beside our Cot,...";
/* Output:
My pensive SARA ! thy soft cheek reclined
 Thus on mine arm, most soothing sweet it is
 To sit beside our Cot,...
*/

string quote = @"Her name was ""Sara.""";
//Output: Her name was "Sara."

Raw string literals

In multi-line raw string literals, whitespace only lines following the opening quote
are included in the string literal.

The following examples demonstrate these rules:

C#

The following examples demonstrate the compiler errors reported based on these rules:

C#

string singleLine = """Friends say "hello" as they pass by.""";
string multiLine = """
 "Hello World!" is typically the first program someone writes.
 """;
string embeddedXML = """
 <element attr = "content">
 <body style="normal">
 Here is the main text
 </body>
 <footer>
 Excerpts from "An amazing story"
 </footer>
 </element >
 """;
// The line "<element attr = "content">" starts in the first column.
// All whitespace left of that column is removed from the string.

string rawStringLiteralDelimiter = """"
 Raw string literals are delimited
 by a string of at least three double quotes,
 like this: """
 """";

// CS8997: Unterminated raw string literal.
var multiLineStart = """This
 is the beginning of a string
 """;

// CS9000: Raw string literal delimiter must be on its own line.
var multiLineEnd = """
 This is the beginning of a string """;

// CS8999: Line does not start with the same whitespace as the closing line
// of the raw string literal
var noOutdenting = """
 A line of text.
Trying to outdent the second line.
 """;

The first two examples are invalid because multiline raw string literals require the
opening and closing quote sequence on its own line. The third example is invalid
because the text is outdented from the closing quote sequence.

You should consider raw string literals when you're generating text that includes
characters that require escape sequences when using quoted string literals or verbatim
string literals. Raw string literals will be easier for you and others to read because it will
more closely resemble the output text. For example, consider the following code that
includes a string of formatted JSON:

C#

Compare that text with the equivalent text in our sample on JSON serialization, which
doesn't make use of this new feature.

Escape
sequence

Character name Unicode encoding

\' Single quote 0x0027

string jsonString = """
{
 "Date": "2019-08-01T00:00:00-07:00",
 "TemperatureCelsius": 25,
 "Summary": "Hot",
 "DatesAvailable": [
 "2019-08-01T00:00:00-07:00",
 "2019-08-02T00:00:00-07:00"
],
 "TemperatureRanges": {
 "Cold": {
 "High": 20,
 "Low": -10
 },
 "Hot": {
 "High": 60,
 "Low": 20
 }
 },
 "SummaryWords": [
 "Cool",
 "Windy",
 "Humid"
]
}
""";

String escape sequences

https://learn.microsoft.com/en-ca/dotnet/standard/serialization/system-text-json/how-to?pivots=dotnet-6-0#how-to-read-json-as-net-objects-deserialize

Escape
sequence

Character name Unicode encoding

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

\u Unicode escape sequence (UTF-16) \uHHHH (range: 0000 - FFFF; example:
\u00E7 = "ç")

\U Unicode escape sequence (UTF-32) \U00HHHHHH (range: 000000 - 10FFFF;
example: \U0001F47D = "👽")

\x Unicode escape sequence similar to "\u"
except with variable length

\xH[H][H][H] (range: 0 - FFFF; example:
\x00E7 or \x0E7 or \xE7 = "ç")

２ Warning

When using the \x escape sequence and specifying less than 4 hex digits, if the
characters that immediately follow the escape sequence are valid hex digits (i.e. 0-
9, A-F, and a-f), they will be interpreted as being part of the escape sequence. For
example, \xA1 produces "¡", which is code point U+00A1. However, if the next
character is "A" or "a", then the escape sequence will instead be interpreted as
being \xA1A and produce "ਚ", which is code point U+0A1A. In such cases,
specifying all 4 hex digits (e.g. \x00A1) will prevent any possible misinterpretation.

７ Note

At compile time, verbatim and raw strings are converted to ordinary strings with all
the same escape sequences. Therefore, if you view a verbatim or raw string in the

A format string is a string whose contents are determined dynamically at run time.
Format strings are created by embedding interpolated expressions or placeholders inside
of braces within a string. Everything inside the braces ({...}) will be resolved to a value
and output as a formatted string at run time. There are two methods to create format
strings: string interpolation and composite formatting.

Interpolated strings are identified by the $ special character and include interpolated
expressions in braces. If you're new to string interpolation, see the String interpolation -
C# interactive tutorial for a quick overview.

Use string interpolation to improve the readability and maintainability of your code.
String interpolation achieves the same results as the String.Format method, but
improves ease of use and inline clarity.

C#

Beginning with C# 10, you can use string interpolation to initialize a constant string
when all the expressions used for placeholders are also constant strings.

Beginning with C# 11, you can combine raw string literals with string interpolations. You
start and end the format string with three or more successive double quotes. If your

debugger watch window, you will see the escape characters that were added by the
compiler, not the verbatim or raw version from your source code. For example, the
verbatim string @"C:\files.txt" will appear in the watch window as "C:\\files.txt".

Format strings

String interpolation

var jh = (firstName: "Jupiter", lastName: "Hammon", born: 1711, published:
1761);
Console.WriteLine($"{jh.firstName} {jh.lastName} was an African American
poet born in {jh.born}.");
Console.WriteLine($"He was first published in {jh.published} at the age of
{jh.published - jh.born}.");
Console.WriteLine($"He'd be over {Math.Round((2018d - jh.born) / 100d) *
100d} years old today.");

// Output:
// Jupiter Hammon was an African American poet born in 1711.
// He was first published in 1761 at the age of 50.
// He'd be over 300 years old today.

https://learn.microsoft.com/en-ca/dotnet/csharp/tutorials/exploration/interpolated-strings

output string should contain the { or } character, you can use extra $ characters to
specify how many { and } characters start and end an interpolation. Any sequence of
fewer { or } characters is included in the output. The following example shows how
you can use that feature to display the distance of a point from the origin, and place the
point inside braces:

C#

C# also allows verbatim string interpolation, for example across multiple lines, using the
$@ or @$ syntax.

To interpret escape sequences literally, use a verbatim string literal. An interpolated
verbatim string starts with the $ character followed by the @ character. You can use the
$ and @ tokens in any order: both $@"..." and @$"..." are valid interpolated verbatim
strings.

C#

int X = 2;
int Y = 3;

var pointMessage = $$"""The point {{{X}}, {{Y}}} is {{Math.Sqrt(X * X + Y *
Y)}} from the origin.""";

Console.WriteLine(pointMessage);
// Output:
// The point {2, 3} is 3.605551275463989 from the origin.

Verbatim String Interpolation

var jh = (firstName: "Jupiter", lastName: "Hammon", born: 1711, published:
1761);
Console.WriteLine($@"{jh.firstName} {jh.lastName}
 was an African American poet born in {jh.born}.");
Console.WriteLine(@$"He was first published in {jh.published}
at the age of {jh.published - jh.born}.");

// Output:
// Jupiter Hammon
// was an African American poet born in 1711.
// He was first published in 1761
// at the age of 50.

Composite formatting

The String.Format utilizes placeholders in braces to create a format string. This example
results in similar output to the string interpolation method used above.

C#

For more information on formatting .NET types, see Formatting Types in .NET.

A substring is any sequence of characters that is contained in a string. Use the Substring
method to create a new string from a part of the original string. You can search for one
or more occurrences of a substring by using the IndexOf method. Use the Replace
method to replace all occurrences of a specified substring with a new string. Like the
Substring method, Replace actually returns a new string and doesn't modify the original
string. For more information, see How to search strings and How to modify string
contents.

C#

var pw = (firstName: "Phillis", lastName: "Wheatley", born: 1753, published:
1773);
Console.WriteLine("{0} {1} was an African American poet born in {2}.",
pw.firstName, pw.lastName, pw.born);
Console.WriteLine("She was first published in {0} at the age of {1}.",
pw.published, pw.published - pw.born);
Console.WriteLine("She'd be over {0} years old today.", Math.Round((2018d -
pw.born) / 100d) * 100d);

// Output:
// Phillis Wheatley was an African American poet born in 1753.
// She was first published in 1773 at the age of 20.
// She'd be over 300 years old today.

Substrings

string s3 = "Visual C# Express";
System.Console.WriteLine(s3.Substring(7, 2));
// Output: "C#"

System.Console.WriteLine(s3.Replace("C#", "Basic"));
// Output: "Visual Basic Express"

// Index values are zero-based
int index = s3.IndexOf("C");
// index = 7

Accessing individual characters

https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types
https://learn.microsoft.com/en-us/dotnet/api/system.string.substring
https://learn.microsoft.com/en-us/dotnet/api/system.string.indexof
https://learn.microsoft.com/en-us/dotnet/api/system.string.replace
https://learn.microsoft.com/en-us/dotnet/api/system.string.substring
https://learn.microsoft.com/en-us/dotnet/api/system.string.replace

You can use array notation with an index value to acquire read-only access to individual
characters, as in the following example:

C#

If the String methods don't provide the functionality that you must have to modify
individual characters in a string, you can use a StringBuilder object to modify the
individual chars "in-place", and then create a new string to store the results by using the
StringBuilder methods. In the following example, assume that you must modify the
original string in a particular way and then store the results for future use:

C#

An empty string is an instance of a System.String object that contains zero characters.
Empty strings are used often in various programming scenarios to represent a blank text
field. You can call methods on empty strings because they're valid System.String objects.
Empty strings are initialized as follows:

C#

string s5 = "Printing backwards";

for (int i = 0; i < s5.Length; i++)
{
 System.Console.Write(s5[s5.Length - i - 1]);
}
// Output: "sdrawkcab gnitnirP"

string question = "hOW DOES mICROSOFT wORD DEAL WITH THE cAPS lOCK KEY?";
System.Text.StringBuilder sb = new System.Text.StringBuilder(question);

for (int j = 0; j < sb.Length; j++)
{
 if (System.Char.IsLower(sb[j]) == true)
 sb[j] = System.Char.ToUpper(sb[j]);
 else if (System.Char.IsUpper(sb[j]) == true)
 sb[j] = System.Char.ToLower(sb[j]);
}
// Store the new string.
string corrected = sb.ToString();
System.Console.WriteLine(corrected);
// Output: How does Microsoft Word deal with the Caps Lock key?

Null strings and empty strings

string s = String.Empty;

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.string

By contrast, a null string doesn't refer to an instance of a System.String object and any
attempt to call a method on a null string causes a NullReferenceException. However, you
can use null strings in concatenation and comparison operations with other strings. The
following examples illustrate some cases in which a reference to a null string does and
doesn't cause an exception to be thrown:

C#

String operations in .NET are highly optimized and in most cases don't significantly
impact performance. However, in some scenarios such as tight loops that are executing
many hundreds or thousands of times, string operations can affect performance. The
StringBuilder class creates a string buffer that offers better performance if your program
performs many string manipulations. The StringBuilder string also enables you to

string str = "hello";
string nullStr = null;
string emptyStr = String.Empty;

string tempStr = str + nullStr;
// Output of the following line: hello
Console.WriteLine(tempStr);

bool b = (emptyStr == nullStr);
// Output of the following line: False
Console.WriteLine(b);

// The following line creates a new empty string.
string newStr = emptyStr + nullStr;

// Null strings and empty strings behave differently. The following
// two lines display 0.
Console.WriteLine(emptyStr.Length);
Console.WriteLine(newStr.Length);
// The following line raises a NullReferenceException.
//Console.WriteLine(nullStr.Length);

// The null character can be displayed and counted, like other chars.
string s1 = "\x0" + "abc";
string s2 = "abc" + "\x0";
// Output of the following line: * abc*
Console.WriteLine("*" + s1 + "*");
// Output of the following line: *abc *
Console.WriteLine("*" + s2 + "*");
// Output of the following line: 4
Console.WriteLine(s2.Length);

Using stringBuilder for fast string creation

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

reassign individual characters, something the built-in string data type doesn't support.
This code, for example, changes the content of a string without creating a new string:

C#

In this example, a StringBuilder object is used to create a string from a set of numeric
types:

C#

Because the String type implements IEnumerable<T>, you can use the extension
methods defined in the Enumerable class on strings. To avoid visual clutter, these
methods are excluded from IntelliSense for the String type, but they're available
nevertheless. You can also use LINQ query expressions on strings. For more information,
see LINQ and Strings.

How to modify string contents: Illustrates techniques to transform strings and
modify the contents of strings.
How to compare strings: Shows how to perform ordinal and culture specific
comparisons of strings.

System.Text.StringBuilder sb = new System.Text.StringBuilder("Rat: the ideal
pet");
sb[0] = 'C';
System.Console.WriteLine(sb.ToString());
//Outputs Cat: the ideal pet

var sb = new StringBuilder();

// Create a string composed of numbers 0 - 9
for (int i = 0; i < 10; i++)
{
 sb.Append(i.ToString());
}
Console.WriteLine(sb); // displays 0123456789

// Copy one character of the string (not possible with a System.String)
sb[0] = sb[9];

Console.WriteLine(sb); // displays 9123456789

Strings, extension methods and LINQ

Related articles

https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.string

How to concatenate multiple strings: Demonstrates various ways to join multiple
strings into one.
How to parse strings using String.Split: Contains code examples that illustrate how
to use the String.Split method to parse strings.
How to search strings: Explains how to use search for specific text or patterns in
strings.
How to determine whether a string represents a numeric value: Shows how to
safely parse a string to see whether it has a valid numeric value.
String interpolation: Describes the string interpolation feature that provides a
convenient syntax to format strings.
Basic String Operations: Provides links to articles that use System.String and
System.Text.StringBuilder methods to perform basic string operations.
Parsing Strings: Describes how to convert string representations of .NET base types
to instances of the corresponding types.
Parsing Date and Time Strings in .NET: Shows how to convert a string such as
"01/24/2008" to a System.DateTime object.
Comparing Strings: Includes information about how to compare strings and
provides examples in C# and Visual Basic.
Using the StringBuilder Class: Describes how to create and modify dynamic string
objects by using the StringBuilder class.
LINQ and Strings: Provides information about how to perform various string
operations by using LINQ queries.

https://learn.microsoft.com/en-us/dotnet/api/system.string.split
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/basic-string-operations
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/parsing-strings
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/parsing-datetime
https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/comparing
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/stringbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

How to determine whether a string
represents a numeric value (C#
Programming Guide)
Article • 2022-04-16 • 2 minutes to read

To determine whether a string is a valid representation of a specified numeric type, use
the static TryParse method that is implemented by all primitive numeric types and also
by types such as DateTime and IPAddress. The following example shows how to
determine whether "108" is a valid int.

C#

If the string contains nonnumeric characters or the numeric value is too large or too
small for the particular type you have specified, TryParse returns false and sets the out
parameter to zero. Otherwise, it returns true and sets the out parameter to the numeric
value of the string.

The following examples show how to use TryParse with string representations of long ,
byte , and decimal values.

C#

int i = 0;
string s = "108";
bool result = int.TryParse(s, out i); //i now = 108

７ Note

A string may contain only numeric characters and still not be valid for the type
whose TryParse method that you use. For example, "256" is not a valid value for
byte but it is valid for int . "98.6" is not a valid value for int but it is a valid
decimal .

Example

string numString = "1287543"; //"1287543.0" will return false for a long
long number1 = 0;
bool canConvert = long.TryParse(numString, out number1);

https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-us/dotnet/api/system.net.ipaddress

Primitive numeric types also implement the Parse static method, which throws an
exception if the string is not a valid number. TryParse is generally more efficient
because it just returns false if the number is not valid.

Always use the TryParse or Parse methods to validate user input from controls such as
text boxes and combo boxes.

How to convert a byte array to an int
How to convert a string to a number
How to convert between hexadecimal strings and numeric types
Parsing Numeric Strings
Formatting Types

if (canConvert == true)
Console.WriteLine("number1 now = {0}", number1);
else
Console.WriteLine("numString is not a valid long");

byte number2 = 0;
numString = "255"; // A value of 256 will return false
canConvert = byte.TryParse(numString, out number2);
if (canConvert == true)
Console.WriteLine("number2 now = {0}", number2);
else
Console.WriteLine("numString is not a valid byte");

decimal number3 = 0;
numString = "27.3"; //"27" is also a valid decimal
canConvert = decimal.TryParse(numString, out number3);
if (canConvert == true)
Console.WriteLine("number3 now = {0}", number3);
else
Console.WriteLine("number3 is not a valid decimal");

Robust Programming

.NET Security

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/parsing-numeric
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types

Indexers (C# Programming Guide)
Article • 2022-09-29 • 2 minutes to read

Indexers allow instances of a class or struct to be indexed just like arrays. The indexed
value can be set or retrieved without explicitly specifying a type or instance member.
Indexers resemble properties except that their accessors take parameters.

The following example defines a generic class with simple get and set accessor methods
to assign and retrieve values. The Program class creates an instance of this class for
storing strings.

C#

using System;

class SampleCollection<T>
{
 // Declare an array to store the data elements.
 private T[] arr = new T[100];

 // Define the indexer to allow client code to use [] notation.
 public T this[int i]
 {
 get { return arr[i]; }
 set { arr[i] = value; }
 }
}

class Program
{
 static void Main()
 {
 var stringCollection = new SampleCollection<string>();
 stringCollection[0] = "Hello, World";
 Console.WriteLine(stringCollection[0]);
 }
}
// The example displays the following output:
// Hello, World.

７ Note

For more examples, see Related Sections.

Expression Body Definitions

It is common for an indexer's get or set accessor to consist of a single statement that
either returns or sets a value. Expression-bodied members provide a simplified syntax to
support this scenario. A read-only indexer can be implemented as an expression-bodied
member, as the following example shows.

C#

Note that => introduces the expression body, and that the get keyword is not used.

Both the get and set accessor can be implemented as expression-bodied members. In
this case, both get and set keywords must be used. For example:

C#

using System;

class SampleCollection<T>
{
 // Declare an array to store the data elements.
 private T[] arr = new T[100];
 int nextIndex = 0;

 // Define the indexer to allow client code to use [] notation.
 public T this[int i] => arr[i];

 public void Add(T value)
 {
 if (nextIndex >= arr.Length)
 throw new IndexOutOfRangeException($"The collection can hold only
{arr.Length} elements.");
 arr[nextIndex++] = value;
 }
}

class Program
{
 static void Main()
 {
 var stringCollection = new SampleCollection<string>();
 stringCollection.Add("Hello, World");
 System.Console.WriteLine(stringCollection[0]);
 }
}
// The example displays the following output:
// Hello, World.

using System;

class SampleCollection<T>
{
 // Declare an array to store the data elements.

Indexers enable objects to be indexed in a similar manner to arrays.

A get accessor returns a value. A set accessor assigns a value.

The this keyword is used to define the indexer.

The value keyword is used to define the value being assigned by the set accessor.

Indexers do not have to be indexed by an integer value; it is up to you how to
define the specific look-up mechanism.

Indexers can be overloaded.

Indexers can have more than one formal parameter, for example, when accessing a
two-dimensional array.

Using Indexers

Indexers in Interfaces

Comparison Between Properties and Indexers

 private T[] arr = new T[100];

 // Define the indexer to allow client code to use [] notation.
 public T this[int i]
 {
 get => arr[i];
 set => arr[i] = value;
 }
}

class Program
{
 static void Main()
 {
 var stringCollection = new SampleCollection<string>();
 stringCollection[0] = "Hello, World.";
 Console.WriteLine(stringCollection[0]);
 }
}
// The example displays the following output:
// Hello, World.

Indexers Overview

Related Sections

Restricting Accessor Accessibility

For more information, see Indexers in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

C# Programming Guide
Properties

C# Language Specification

See also

Using indexers (C# Programming Guide)
Article • 2022-09-24 • 6 minutes to read

Indexers are a syntactic convenience that enable you to create a class, struct, or interface
that client applications can access as an array. The compiler will generate an Item
property (or an alternatively named property if IndexerNameAttribute is present), and
the appropriate accessor methods. Indexers are most frequently implemented in types
whose primary purpose is to encapsulate an internal collection or array. For example,
suppose you have a class TempRecord that represents the temperature in Fahrenheit as
recorded at 10 different times during a 24-hour period. The class contains a temps array
of type float[] to store the temperature values. By implementing an indexer in this
class, clients can access the temperatures in a TempRecord instance as float temp =
tempRecord[4] instead of as float temp = tempRecord.temps[4] . The indexer notation
not only simplifies the syntax for client applications; it also makes the class, and its
purpose more intuitive for other developers to understand.

To declare an indexer on a class or struct, use the this keyword, as the following example
shows:

C#

The type of an indexer and the type of its parameters must be at least as accessible as
the indexer itself. For more information about accessibility levels, see Access Modifiers.

// Indexer declaration
public int this[int index]
{
 // get and set accessors
}

） Important

Declaring an indexer will automatically generate a property named Item on the
object. The Item property is not directly accessible from the instance member
access expression. Additionally, if you add your own Item property to an object
with an indexer, you'll get a CS0102 compiler error. To avoid this error, use the
IndexerNameAttribute rename the indexer as detailed below.

Remarks

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.indexernameattribute
https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0102
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.indexernameattribute

For more information about how to use indexers with an interface, see Interface
Indexers.

The signature of an indexer consists of the number and types of its formal parameters. It
doesn't include the indexer type or the names of the formal parameters. If you declare
more than one indexer in the same class, they must have different signatures.

An indexer is not classified as a variable; therefore, an indexer value cannot be passed by
reference (as a ref or out parameter) unless its value is a reference (i.e., it returns by
reference.)

To provide the indexer with a name that other languages can use, use
System.Runtime.CompilerServices.IndexerNameAttribute, as the following example
shows:

C#

This indexer will have the name TheItem , as it is overridden by the indexer name
attribute. By default, the indexer name is Item .

The following example shows how to declare a private array field, temps , and an indexer.
The indexer enables direct access to the instance tempRecord[i] . The alternative to using
the indexer is to declare the array as a public member and access its members,
tempRecord.temps[i] , directly.

C#

// Indexer declaration
[System.Runtime.CompilerServices.IndexerName("TheItem")]
public int this[int index]
{
 // get and set accessors
}

Example 1

public class TempRecord
{
 // Array of temperature values
 float[] temps = new float[10]
 {
 56.2F, 56.7F, 56.5F, 56.9F, 58.8F,
 61.3F, 65.9F, 62.1F, 59.2F, 57.5F
 };

 // To enable client code to validate input

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.indexernameattribute

Notice that when an indexer's access is evaluated, for example, in a Console.Write
statement, the get accessor is invoked. Therefore, if no get accessor exists, a compile-
time error occurs.

C#

 // when accessing your indexer.
 public int Length => temps.Length;

 // Indexer declaration.
 // If index is out of range, the temps array will throw the exception.
 public float this[int index]
 {
 get => temps[index];
 set => temps[index] = value;
 }
}

class Program
{
 static void Main()
 {
 var tempRecord = new TempRecord();

 // Use the indexer's set accessor
 tempRecord[3] = 58.3F;
 tempRecord[5] = 60.1F;

 // Use the indexer's get accessor
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine($"Element #{i} = {tempRecord[i]}");
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 /* Output:
 Element #0 = 56.2
 Element #1 = 56.7
 Element #2 = 56.5
 Element #3 = 58.3
 Element #4 = 58.8
 Element #5 = 60.1
 Element #6 = 65.9
 Element #7 = 62.1
 Element #8 = 59.2
 Element #9 = 57.5
 */
}

C# doesn't limit the indexer parameter type to integer. For example, it may be useful to
use a string with an indexer. Such an indexer might be implemented by searching for
the string in the collection, and returning the appropriate value. As accessors can be
overloaded, the string and integer versions can coexist.

The following example declares a class that stores the days of the week. A get accessor
takes a string, the name of a day, and returns the corresponding integer. For example,
"Sunday" returns 0, "Monday" returns 1, and so on.

C#

C#

Indexing using other values

Example 2

// Using a string as an indexer value
class DayCollection
{
 string[] days = { "Sun", "Mon", "Tues", "Wed", "Thurs", "Fri", "Sat" };

 // Indexer with only a get accessor with the expression-bodied
definition:
 public int this[string day] => FindDayIndex(day);

 private int FindDayIndex(string day)
 {
 for (int j = 0; j < days.Length; j++)
 {
 if (days[j] == day)
 {
 return j;
 }
 }

 throw new ArgumentOutOfRangeException(
 nameof(day),
 $"Day {day} is not supported.\nDay input must be in the form
\"Sun\", \"Mon\", etc");
 }
}

Consuming example 2

class Program
{

The following example declares a class that stores the days of the week using the
System.DayOfWeek enum. A get accessor takes a DayOfWeek , the value of a day, and
returns the corresponding integer. For example, DayOfWeek.Sunday returns 0,
DayOfWeek.Monday returns 1, and so on.

C#

 static void Main(string[] args)
 {
 var week = new DayCollection();
 Console.WriteLine(week["Fri"]);

 try
 {
 Console.WriteLine(week["Made-up day"]);
 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.WriteLine($"Not supported input: {e.Message}");
 }
 }
 // Output:
 // 5
 // Not supported input: Day Made-up day is not supported.
 // Day input must be in the form "Sun", "Mon", etc (Parameter 'day')
}

Example 3

using Day = System.DayOfWeek;

class DayOfWeekCollection
{
 Day[] days =
 {
 Day.Sunday, Day.Monday, Day.Tuesday, Day.Wednesday,
 Day.Thursday, Day.Friday, Day.Saturday
 };

 // Indexer with only a get accessor with the expression-bodied
definition:
 public int this[Day day] => FindDayIndex(day);

 private int FindDayIndex(Day day)
 {
 for (int j = 0; j < days.Length; j++)
 {
 if (days[j] == day)
 {
 return j;

https://learn.microsoft.com/en-us/dotnet/api/system.dayofweek

C#

There are two main ways in which the security and reliability of indexers can be
improved:

Be sure to incorporate some type of error-handling strategy to handle the chance
of client code passing in an invalid index value. In the first example earlier in this
topic, the TempRecord class provides a Length property that enables the client
code to verify the input before passing it to the indexer. You can also put the error
handling code inside the indexer itself. Be sure to document for users any
exceptions that you throw inside an indexer accessor.

 }
 }
 throw new ArgumentOutOfRangeException(
 nameof(day),
 $"Day {day} is not supported.\nDay input must be a defined
System.DayOfWeek value.");
 }
}

Consuming example 3

class Program
{
 static void Main()
 {
 var week = new DayOfWeekCollection();
 Console.WriteLine(week[DayOfWeek.Friday]);

 try
 {
 Console.WriteLine(week[(DayOfWeek)43]);
 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.WriteLine($"Not supported input: {e.Message}");
 }
 }
 // Output:
 // 5
 // Not supported input: Day 43 is not supported.
 // Day input must be a defined System.DayOfWeek value. (Parameter 'day')
}

Robust programming

Set the accessibility of the get and set accessors to be as restrictive as is
reasonable. This is important for the set accessor in particular. For more
information, see Restricting Accessor Accessibility.

C# Programming Guide
Indexers
Properties

See also

Indexers in Interfaces (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

Indexers can be declared on an interface. Accessors of interface indexers differ from the
accessors of class indexers in the following ways:

Interface accessors do not use modifiers.
An interface accessor typically does not have a body.

The purpose of the accessor is to indicate whether the indexer is read-write, read-only,
or write-only. You may provide an implementation for an indexer defined in an interface,
but this is rare. Indexers typically define an API to access data fields, and data fields
cannot be defined in an interface.

The following is an example of an interface indexer accessor:

C#

The signature of an indexer must differ from the signatures of all other indexers
declared in the same interface.

The following example shows how to implement interface indexers.

C#

public interface ISomeInterface
{
 //...

 // Indexer declaration:
 string this[int index]
 {
 get;
 set;
 }
}

Example

// Indexer on an interface:
public interface IIndexInterface
{
 // Indexer declaration:

C#

In the preceding example, you could use the explicit interface member implementation
by using the fully qualified name of the interface member. For example

C#

 int this[int index]
 {
 get;
 set;
 }
}

// Implementing the interface.
class IndexerClass : IIndexInterface
{
 private int[] arr = new int[100];
 public int this[int index] // indexer declaration
 {
 // The arr object will throw IndexOutOfRange exception.
 get => arr[index];
 set => arr[index] = value;
 }
}

IndexerClass test = new IndexerClass();
System.Random rand = System.Random.Shared;
// Call the indexer to initialize its elements.
for (int i = 0; i < 10; i++)
{
 test[i] = rand.Next();
}
for (int i = 0; i < 10; i++)
{
 System.Console.WriteLine($"Element #{i} = {test[i]}");
}

/* Sample output:
 Element #0 = 360877544
 Element #1 = 327058047
 Element #2 = 1913480832
 Element #3 = 1519039937
 Element #4 = 601472233
 Element #5 = 323352310
 Element #6 = 1422639981
 Element #7 = 1797892494
 Element #8 = 875761049
 Element #9 = 393083859
*/

However, the fully qualified name is only needed to avoid ambiguity when the class is
implementing more than one interface with the same indexer signature. For example, if
an Employee class is implementing two interfaces, ICitizen and IEmployee , and both
interfaces have the same indexer signature, the explicit interface member
implementation is necessary. That is, the following indexer declaration:

C#

implements the indexer on the IEmployee interface, while the following declaration:

C#

implements the indexer on the ICitizen interface.

C# Programming Guide
Indexers
Properties
Interfaces

string IIndexInterface.this[int index]
{
}

string IEmployee.this[int index]
{
}

string ICitizen.this[int index]
{
}

See also

Comparison Between Properties and
Indexers (C# Programming Guide)
Article • 2021-09-15 • 2 minutes to read

Indexers are like properties. Except for the differences shown in the following table, all
the rules that are defined for property accessors apply to indexer accessors also.

Property Indexer

Allows methods to be called as if
they were public data members.

Allows elements of an internal collection of an object to be
accessed by using array notation on the object itself.

Accessed through a simple name. Accessed through an index.

Can be a static or an instance
member.

Must be an instance member.

A get accessor of a property has
no parameters.

A get accessor of an indexer has the same formal
parameter list as the indexer.

A set accessor of a property
contains the implicit value
parameter.

A set accessor of an indexer has the same formal
parameter list as the indexer, and also to the value
parameter.

Supports shortened syntax with
Auto-Implemented Properties.

Supports expression bodied members for get only indexers.

C# Programming Guide
Indexers
Properties

See also

Events (C# Programming Guide)
Article • 2022-09-29 • 2 minutes to read

Events enable a class or object to notify other classes or objects when something of
interest occurs. The class that sends (or raises) the event is called the publisher and the
classes that receive (or handle) the event are called subscribers.

In a typical C# Windows Forms or Web application, you subscribe to events raised by
controls such as buttons and list boxes. You can use the Visual C# integrated
development environment (IDE) to browse the events that a control publishes and select
the ones that you want to handle. The IDE provides an easy way to automatically add an
empty event handler method and the code to subscribe to the event. For more
information, see How to subscribe to and unsubscribe from events.

Events have the following properties:

The publisher determines when an event is raised; the subscribers determine what
action is taken in response to the event.

An event can have multiple subscribers. A subscriber can handle multiple events
from multiple publishers.

Events that have no subscribers are never raised.

Events are typically used to signal user actions such as button clicks or menu
selections in graphical user interfaces.

When an event has multiple subscribers, the event handlers are invoked
synchronously when an event is raised. To invoke events asynchronously, see
Calling Synchronous Methods Asynchronously.

In the .NET class library, events are based on the EventHandler delegate and the
EventArgs base class.

For more information, see:

How to subscribe to and unsubscribe from events

Events Overview

Related Sections

https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.eventargs

How to publish events that conform to .NET Guidelines

How to raise base class events in derived classes

How to implement interface events

How to implement custom event accessors

For more information, see Events in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

EventHandler
C# Programming Guide
Delegates
Creating Event Handlers in Windows Forms

C# Language Specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/creating-event-handlers-in-windows-forms

How to subscribe to and unsubscribe
from events (C# Programming Guide)
Article • 2021-10-12 • 3 minutes to read

You subscribe to an event that is published by another class when you want to write
custom code that is called when that event is raised. For example, you might subscribe
to a button's click event in order to make your application do something useful when
the user clicks the button.

1. If you cannot see the Properties window, in Design view, right-click the form or
control for which you want to create an event handler, and select Properties.

2. On top of the Properties window, click the Events icon.

3. Double-click the event that you want to create, for example the Load event.

Visual C# creates an empty event handler method and adds it to your code.
Alternatively you can add the code manually in Code view. For example, the
following lines of code declare an event handler method that will be called when
the Form class raises the Load event.

C#

The line of code that is required to subscribe to the event is also automatically
generated in the InitializeComponent method in the Form1.Designer.cs file in your
project. It resembles this:

C#

To subscribe to events by using the Visual Studio IDE

private void Form1_Load(object sender, System.EventArgs e)
{
 // Add your form load event handling code here.
}

this.Load += new System.EventHandler(this.Form1_Load);

To subscribe to events programmatically

1. Define an event handler method whose signature matches the delegate signature
for the event. For example, if the event is based on the EventHandler delegate
type, the following code represents the method stub:

C#

2. Use the addition assignment operator (+=) to attach an event handler to the event.
In the following example, assume that an object named publisher has an event
named RaiseCustomEvent . Note that the subscriber class needs a reference to the
publisher class in order to subscribe to its events.

C#

You can also use a lambda expression to specify an event handler:

C#

If you don't have to unsubscribe from an event later, you can use the addition
assignment operator (+=) to attach an anonymous function as an event handler. In the
following example, assume that an object named publisher has an event named
RaiseCustomEvent and that a CustomEventArgs class has also been defined to carry some
kind of specialized event information. Note that the subscriber class needs a reference
to publisher in order to subscribe to its events.

C#

void HandleCustomEvent(object sender, CustomEventArgs a)
{
 // Do something useful here.
}

publisher.RaiseCustomEvent += HandleCustomEvent;

public Form1()
{
 InitializeComponent();
 this.Click += (s,e) =>
 {
 MessageBox.Show(((MouseEventArgs)e).Location.ToString());
 };
}

To subscribe to events by using an anonymous function

https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler

You cannot easily unsubscribe from an event if you used an anonymous function to
subscribe to it. To unsubscribe in this scenario, go back to the code where you subscribe
to the event, store the anonymous function in a delegate variable, and then add the
delegate to the event. We recommend that you don't use anonymous functions to
subscribe to events if you have to unsubscribe from the event at some later point in
your code. For more information about anonymous functions, see Lambda expressions.

To prevent your event handler from being invoked when the event is raised, unsubscribe
from the event. In order to prevent resource leaks, you should unsubscribe from events
before you dispose of a subscriber object. Until you unsubscribe from an event, the
multicast delegate that underlies the event in the publishing object has a reference to
the delegate that encapsulates the subscriber's event handler. As long as the publishing
object holds that reference, garbage collection will not delete your subscriber object.

Use the subtraction assignment operator (-=) to unsubscribe from an event:

C#

When all subscribers have unsubscribed from an event, the event instance in the
publisher class is set to null .

Events
event
How to publish events that conform to .NET Guidelines
- and -= operators
+ and += operators

publisher.RaiseCustomEvent += (object o, CustomEventArgs e) =>
{
 string s = o.ToString() + " " + e.ToString();
 Console.WriteLine(s);
};

Unsubscribing

To unsubscribe from an event

publisher.RaiseCustomEvent -= HandleCustomEvent;

See also

How to publish events that conform to
.NET Guidelines (C# Programming
Guide)
Article • 2021-09-15 • 3 minutes to read

The following procedure demonstrates how to add events that follow the standard .NET
pattern to your classes and structs. All events in the .NET class library are based on the
EventHandler delegate, which is defined as follows:

C#

Although events in classes that you define can be based on any valid delegate type,
even delegates that return a value, it is generally recommended that you base your
events on the .NET pattern by using EventHandler, as shown in the following example.

The name EventHandler can lead to a bit of confusion as it doesn't actually handle the
event. The EventHandler, and generic EventHandler<TEventArgs> are delegate types. A
method or lambda expression whose signature matches the delegate definition is the
event handler and will be invoked when the event is raised.

1. (Skip this step and go to Step 3a if you do not have to send custom data with your
event.) Declare the class for your custom data at a scope that is visible to both
your publisher and subscriber classes. Then add the required members to hold
your custom event data. In this example, a simple string is returned.

C#

public delegate void EventHandler(object sender, EventArgs e);

７ Note

.NET Framework 2.0 introduces a generic version of this delegate,
EventHandler<TEventArgs>. The following examples show how to use both
versions.

Publish events based on the EventHandler
pattern

https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler-1
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler-1

2. (Skip this step if you are using the generic version of EventHandler<TEventArgs>.)
Declare a delegate in your publishing class. Give it a name that ends with
EventHandler . The second parameter specifies your custom EventArgs type.

C#

3. Declare the event in your publishing class by using one of the following steps.

a. If you have no custom EventArgs class, your Event type will be the non-generic
EventHandler delegate. You do not have to declare the delegate because it is
already declared in the System namespace that is included when you create
your C# project. Add the following code to your publisher class.

C#

b. If you are using the non-generic version of EventHandler and you have a
custom class derived from EventArgs, declare your event inside your publishing
class and use your delegate from step 2 as the type.

C#

c. If you are using the generic version, you do not need a custom delegate.
Instead, in your publishing class, you specify your event type as
EventHandler<CustomEventArgs> , substituting the name of your own class
between the angle brackets.

C#

public class CustomEventArgs : EventArgs
{
 public CustomEventArgs(string message)
 {
 Message = message;
 }

 public string Message { get; set; }
}

public delegate void CustomEventHandler(object sender, CustomEventArgs
args);

public event EventHandler RaiseCustomEvent;

public event CustomEventHandler RaiseCustomEvent;

https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler-1
https://learn.microsoft.com/en-us/dotnet/api/system
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.eventargs

The following example demonstrates the previous steps by using a custom EventArgs
class and EventHandler<TEventArgs> as the event type.

C#

public event EventHandler<CustomEventArgs> RaiseCustomEvent;

Example

using System;

namespace DotNetEvents
{
 // Define a class to hold custom event info
 public class CustomEventArgs : EventArgs
 {
 public CustomEventArgs(string message)
 {
 Message = message;
 }

 public string Message { get; set; }
 }

 // Class that publishes an event
 class Publisher
 {
 // Declare the event using EventHandler<T>
 public event EventHandler<CustomEventArgs> RaiseCustomEvent;

 public void DoSomething()
 {
 // Write some code that does something useful here
 // then raise the event. You can also raise an event
 // before you execute a block of code.
 OnRaiseCustomEvent(new CustomEventArgs("Event triggered"));
 }

 // Wrap event invocations inside a protected virtual method
 // to allow derived classes to override the event invocation
behavior
 protected virtual void OnRaiseCustomEvent(CustomEventArgs e)
 {
 // Make a temporary copy of the event to avoid possibility of
 // a race condition if the last subscriber unsubscribes
 // immediately after the null check and before the event is
raised.
 EventHandler<CustomEventArgs> raiseEvent = RaiseCustomEvent;

 // Event will be null if there are no subscribers
 if (raiseEvent != null)

https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler-1

Delegate

 {
 // Format the string to send inside the CustomEventArgs
parameter
 e.Message += $" at {DateTime.Now}";

 // Call to raise the event.
 raiseEvent(this, e);
 }
 }
 }

 //Class that subscribes to an event
 class Subscriber
 {
 private readonly string _id;

 public Subscriber(string id, Publisher pub)
 {
 _id = id;

 // Subscribe to the event
 pub.RaiseCustomEvent += HandleCustomEvent;
 }

 // Define what actions to take when the event is raised.
 void HandleCustomEvent(object sender, CustomEventArgs e)
 {
 Console.WriteLine($"{_id} received this message: {e.Message}");
 }
 }

 class Program
 {
 static void Main()
 {
 var pub = new Publisher();
 var sub1 = new Subscriber("sub1", pub);
 var sub2 = new Subscriber("sub2", pub);

 // Call the method that raises the event.
 pub.DoSomething();

 // Keep the console window open
 Console.WriteLine("Press any key to continue...");
 Console.ReadLine();
 }
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.delegate

C# Programming Guide
Events
Delegates

How to raise base class events in
derived classes (C# Programming Guide)
Article • 2021-09-15 • 3 minutes to read

The following simple example shows the standard way to declare events in a base class
so that they can also be raised from derived classes. This pattern is used extensively in
Windows Forms classes in the .NET class libraries.

When you create a class that can be used as a base class for other classes, you should
consider the fact that events are a special type of delegate that can only be invoked
from within the class that declared them. Derived classes cannot directly invoke events
that are declared within the base class. Although sometimes you may want an event that
can only be raised by the base class, most of the time, you should enable the derived
class to invoke base class events. To do this, you can create a protected invoking
method in the base class that wraps the event. By calling or overriding this invoking
method, derived classes can invoke the event indirectly.

C#

７ Note

Do not declare virtual events in a base class and override them in a derived class.
The C# compiler does not handle these correctly and it is unpredictable whether a
subscriber to the derived event will actually be subscribing to the base class event.

Example

namespace BaseClassEvents
{
 // Special EventArgs class to hold info about Shapes.
 public class ShapeEventArgs : EventArgs
 {
 public ShapeEventArgs(double area)
 {
 NewArea = area;
 }

 public double NewArea { get; }
 }

 // Base class event publisher
 public abstract class Shape

 {
 protected double _area;

 public double Area
 {
 get => _area;
 set => _area = value;
 }

 // The event. Note that by using the generic EventHandler<T> event
type
 // we do not need to declare a separate delegate type.
 public event EventHandler<ShapeEventArgs> ShapeChanged;

 public abstract void Draw();

 //The event-invoking method that derived classes can override.
 protected virtual void OnShapeChanged(ShapeEventArgs e)
 {
 // Safely raise the event for all subscribers
 ShapeChanged?.Invoke(this, e);
 }
 }

 public class Circle : Shape
 {
 private double _radius;

 public Circle(double radius)
 {
 _radius = radius;
 _area = 3.14 * _radius * _radius;
 }

 public void Update(double d)
 {
 _radius = d;
 _area = 3.14 * _radius * _radius;
 OnShapeChanged(new ShapeEventArgs(_area));
 }

 protected override void OnShapeChanged(ShapeEventArgs e)
 {
 // Do any circle-specific processing here.

 // Call the base class event invocation method.
 base.OnShapeChanged(e);
 }

 public override void Draw()
 {
 Console.WriteLine("Drawing a circle");
 }
 }

 public class Rectangle : Shape
 {
 private double _length;
 private double _width;

 public Rectangle(double length, double width)
 {
 _length = length;
 _width = width;
 _area = _length * _width;
 }

 public void Update(double length, double width)
 {
 _length = length;
 _width = width;
 _area = _length * _width;
 OnShapeChanged(new ShapeEventArgs(_area));
 }

 protected override void OnShapeChanged(ShapeEventArgs e)
 {
 // Do any rectangle-specific processing here.

 // Call the base class event invocation method.
 base.OnShapeChanged(e);
 }

 public override void Draw()
 {
 Console.WriteLine("Drawing a rectangle");
 }
 }

 // Represents the surface on which the shapes are drawn
 // Subscribes to shape events so that it knows
 // when to redraw a shape.
 public class ShapeContainer
 {
 private readonly List<Shape> _list;

 public ShapeContainer()
 {
 _list = new List<Shape>();
 }

 public void AddShape(Shape shape)
 {
 _list.Add(shape);

 // Subscribe to the base class event.
 shape.ShapeChanged += HandleShapeChanged;
 }

 // ...Other methods to draw, resize, etc.

C# Programming Guide
Events
Delegates
Access Modifiers

 private void HandleShapeChanged(object sender, ShapeEventArgs e)
 {
 if (sender is Shape shape)
 {
 // Diagnostic message for demonstration purposes.
 Console.WriteLine($"Received event. Shape area is now
{e.NewArea}");

 // Redraw the shape here.
 shape.Draw();
 }
 }
 }

 class Test
 {
 static void Main()
 {
 //Create the event publishers and subscriber
 var circle = new Circle(54);
 var rectangle = new Rectangle(12, 9);
 var container = new ShapeContainer();

 // Add the shapes to the container.
 container.AddShape(circle);
 container.AddShape(rectangle);

 // Cause some events to be raised.
 circle.Update(57);
 rectangle.Update(7, 7);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 }
}
/* Output:
 Received event. Shape area is now 10201.86
 Drawing a circle
 Received event. Shape area is now 49
 Drawing a rectangle
 */

See also

Creating Event Handlers in Windows Forms

https://learn.microsoft.com/en-us/dotnet/desktop/winforms/creating-event-handlers-in-windows-forms

How to implement interface events (C#
Programming Guide)
Article • 2021-09-15 • 3 minutes to read

An interface can declare an event. The following example shows how to implement
interface events in a class. Basically the rules are the same as when you implement any
interface method or property.

Declare the event in your class and then invoke it in the appropriate areas.

C#

To implement interface events in a class

namespace ImplementInterfaceEvents
{
 public interface IDrawingObject
 {
 event EventHandler ShapeChanged;
 }
 public class MyEventArgs : EventArgs
 {
 // class members
 }
 public class Shape : IDrawingObject
 {
 public event EventHandler ShapeChanged;
 void ChangeShape()
 {
 // Do something here before the event…

 OnShapeChanged(new MyEventArgs(/*arguments*/));

 // or do something here after the event.
 }
 protected virtual void OnShapeChanged(MyEventArgs e)
 {
 ShapeChanged?.Invoke(this, e);
 }
 }

}

Example

The following example shows how to handle the less-common situation in which your
class inherits from two or more interfaces and each interface has an event with the same
name. In this situation, you must provide an explicit interface implementation for at least
one of the events. When you write an explicit interface implementation for an event, you
must also write the add and remove event accessors. Normally these are provided by the
compiler, but in this case the compiler cannot provide them.

By providing your own accessors, you can specify whether the two events are
represented by the same event in your class, or by different events. For example, if the
events should be raised at different times according to the interface specifications, you
can associate each event with a separate implementation in your class. In the following
example, subscribers determine which OnDraw event they will receive by casting the
shape reference to either an IShape or an IDrawingObject .

C#

namespace WrapTwoInterfaceEvents
{
 using System;

 public interface IDrawingObject
 {
 // Raise this event before drawing
 // the object.
 event EventHandler OnDraw;
 }
 public interface IShape
 {
 // Raise this event after drawing
 // the shape.
 event EventHandler OnDraw;
 }

 // Base class event publisher inherits two
 // interfaces, each with an OnDraw event
 public class Shape : IDrawingObject, IShape
 {
 // Create an event for each interface event
 event EventHandler PreDrawEvent;
 event EventHandler PostDrawEvent;

 object objectLock = new Object();

 // Explicit interface implementation required.
 // Associate IDrawingObject's event with
 // PreDrawEvent
 #region IDrawingObjectOnDraw
 event EventHandler IDrawingObject.OnDraw
 {
 add

 {
 lock (objectLock)
 {
 PreDrawEvent += value;
 }
 }
 remove
 {
 lock (objectLock)
 {
 PreDrawEvent -= value;
 }
 }
 }
 #endregion
 // Explicit interface implementation required.
 // Associate IShape's event with
 // PostDrawEvent
 event EventHandler IShape.OnDraw
 {
 add
 {
 lock (objectLock)
 {
 PostDrawEvent += value;
 }
 }
 remove
 {
 lock (objectLock)
 {
 PostDrawEvent -= value;
 }
 }
 }

 // For the sake of simplicity this one method
 // implements both interfaces.
 public void Draw()
 {
 // Raise IDrawingObject's event before the object is drawn.
 PreDrawEvent?.Invoke(this, EventArgs.Empty);

 Console.WriteLine("Drawing a shape.");

 // Raise IShape's event after the object is drawn.
 PostDrawEvent?.Invoke(this, EventArgs.Empty);
 }
 }
 public class Subscriber1
 {
 // References the shape object as an IDrawingObject
 public Subscriber1(Shape shape)
 {
 IDrawingObject d = (IDrawingObject)shape;

C# Programming Guide
Events
Delegates
Explicit Interface Implementation
How to raise base class events in derived classes

 d.OnDraw += d_OnDraw;
 }

 void d_OnDraw(object sender, EventArgs e)
 {
 Console.WriteLine("Sub1 receives the IDrawingObject event.");
 }
 }
 // References the shape object as an IShape
 public class Subscriber2
 {
 public Subscriber2(Shape shape)
 {
 IShape d = (IShape)shape;
 d.OnDraw += d_OnDraw;
 }

 void d_OnDraw(object sender, EventArgs e)
 {
 Console.WriteLine("Sub2 receives the IShape event.");
 }
 }

 public class Program
 {
 static void Main(string[] args)
 {
 Shape shape = new Shape();
 Subscriber1 sub = new Subscriber1(shape);
 Subscriber2 sub2 = new Subscriber2(shape);
 shape.Draw();

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
 }
}
/* Output:
 Sub1 receives the IDrawingObject event.
 Drawing a shape.
 Sub2 receives the IShape event.
*/

See also

How to implement custom event
accessors (C# Programming Guide)
Article • 2021-09-15 • 2 minutes to read

An event is a special kind of multicast delegate that can only be invoked from within the
class that it is declared in. Client code subscribes to the event by providing a reference
to a method that should be invoked when the event is fired. These methods are added
to the delegate's invocation list through event accessors, which resemble property
accessors, except that event accessors are named add and remove . In most cases, you
do not have to supply custom event accessors. When no custom event accessors are
supplied in your code, the compiler will add them automatically. However, in some cases
you may have to provide custom behavior. One such case is shown in the topic How to
implement interface events.

The following example shows how to implement custom add and remove event
accessors. Although you can substitute any code inside the accessors, we recommend
that you lock the event before you add or remove a new event handler method.

C#

Example

event EventHandler IDrawingObject.OnDraw
{
 add
 {
 lock (objectLock)
 {
 PreDrawEvent += value;
 }
 }
 remove
 {
 lock (objectLock)
 {
 PreDrawEvent -= value;
 }
 }
}

See also

Events
event

Generic type parameters (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

In a generic type or method definition, a type parameter is a placeholder for a specific
type that a client specifies when they create an instance of the generic type. A generic
class, such as GenericList<T> listed in Introduction to Generics, cannot be used as-is
because it is not really a type; it is more like a blueprint for a type. To use
GenericList<T> , client code must declare and instantiate a constructed type by
specifying a type argument inside the angle brackets. The type argument for this
particular class can be any type recognized by the compiler. Any number of constructed
type instances can be created, each one using a different type argument, as follows:

C#

In each of these instances of GenericList<T> , every occurrence of T in the class is
substituted at run time with the type argument. By means of this substitution, we have
created three separate type-safe and efficient objects using a single class definition. For
more information on how this substitution is performed by the CLR, see Generics in the
Run Time.

Do name generic type parameters with descriptive names, unless a single letter
name is completely self explanatory and a descriptive name would not add value.

C#

Consider using T as the type parameter name for types with one single letter type
parameter.

C#

GenericList<float> list1 = new GenericList<float>();
GenericList<ExampleClass> list2 = new GenericList<ExampleClass>();
GenericList<ExampleStruct> list3 = new GenericList<ExampleStruct>();

Type parameter naming guidelines

public interface ISessionChannel<TSession> { /*...*/ }
public delegate TOutput Converter<TInput, TOutput>(TInput from);
public class List<T> { /*...*/ }

Do prefix descriptive type parameter names with "T".

C#

Consider indicating constraints placed on a type parameter in the name of
parameter. For example, a parameter constrained to ISession may be called
TSession .

The code analysis rule CA1715 can be used to ensure that type parameters are named
appropriately.

System.Collections.Generic
C# Programming Guide
Generics
Differences Between C++ Templates and C# Generics

public int IComparer<T>() { return 0; }
public delegate bool Predicate<T>(T item);
public struct Nullable<T> where T : struct { /*...*/ }

public interface ISessionChannel<TSession>
{
 TSession Session { get; }
}

See also

https://learn.microsoft.com/en-us/visualstudio/code-quality/ca1715
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic

Constraints on type parameters (C#
Programming Guide)
Article • 2022-11-15 • 11 minutes to read

Constraints inform the compiler about the capabilities a type argument must have.
Without any constraints, the type argument could be any type. The compiler can only
assume the members of System.Object, which is the ultimate base class for any .NET
type. For more information, see Why use constraints. If client code uses a type that
doesn't satisfy a constraint, the compiler issues an error. Constraints are specified by
using the where contextual keyword. The following table lists the various types of
constraints:

Constraint Description

where T :

struct

The type argument must be a non-nullable value type. For information about
nullable value types, see Nullable value types. Because all value types have an
accessible parameterless constructor, the struct constraint implies the new()
constraint and can't be combined with the new() constraint. You can't combine the
struct constraint with the unmanaged constraint.

where T :

class

The type argument must be a reference type. This constraint applies also to any
class, interface, delegate, or array type. In a nullable context, T must be a non-
nullable reference type.

where T :

class?

The type argument must be a reference type, either nullable or non-nullable. This
constraint applies also to any class, interface, delegate, or array type.

where T :

notnull

The type argument must be a non-nullable type. The argument can be a non-
nullable reference type or a non-nullable value type.

where T :

default

This constraint resolves the ambiguity when you need to specify an unconstrained
type parameter when you override a method or provide an explicit interface
implementation. The default constraint implies the base method without either the
class or struct constraint. For more information, see the default constraint spec
proposal.

where T :

unmanaged

The type argument must be a non-nullable unmanaged type. The unmanaged
constraint implies the struct constraint and can't be combined with either the
struct or new() constraints.

where T :

new()

The type argument must have a public parameterless constructor. When used
together with other constraints, the new() constraint must be specified last. The
new() constraint can't be combined with the struct and unmanaged constraints.

https://learn.microsoft.com/en-us/dotnet/api/system.object

Constraint Description

where T :

<base
class
name>

The type argument must be or derive from the specified base class. In a nullable
context, T must be a non-nullable reference type derived from the specified base
class.

where T :

<base
class
name>?

The type argument must be or derive from the specified base class. In a nullable
context, T may be either a nullable or non-nullable type derived from the specified
base class.

where T :

<interface
name>

The type argument must be or implement the specified interface. Multiple interface
constraints can be specified. The constraining interface can also be generic. In a
nullable context, T must be a non-nullable type that implements the specified
interface.

where T :

<interface
name>?

The type argument must be or implement the specified interface. Multiple interface
constraints can be specified. The constraining interface can also be generic. In a
nullable context, T may be a nullable reference type, a non-nullable reference type,
or a value type. T may not be a nullable value type.

where T :

U

The type argument supplied for T must be or derive from the argument supplied
for U . In a nullable context, if U is a non-nullable reference type, T must be non-
nullable reference type. If U is a nullable reference type, T may be either nullable or
non-nullable.

Constraints specify the capabilities and expectations of a type parameter. Declaring
those constraints means you can use the operations and method calls of the
constraining type. If your generic class or method uses any operation on the generic
members beyond simple assignment or calling any methods not supported by
System.Object, you'll apply constraints to the type parameter. For example, the base
class constraint tells the compiler that only objects of this type or derived from this type
will be used as type arguments. Once the compiler has this guarantee, it can allow
methods of that type to be called in the generic class. The following code example
demonstrates the functionality you can add to the GenericList<T> class (in Introduction
to Generics) by applying a base class constraint.

C#

Why use constraints

public class Employee
{
 public Employee(string name, int id) => (Name, ID) = (name, id);
 public string Name { get; set; }

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-ca/dotnet/standard/generics/

 public int ID { get; set; }
}

public class GenericList<T> where T : Employee
{
 private class Node
 {
 public Node(T t) => (Next, Data) = (null, t);

 public Node? Next { get; set; }
 public T Data { get; set; }
 }

 private Node? head;

 public void AddHead(T t)
 {
 Node n = new Node(t) { Next = head };
 head = n;
 }

 public IEnumerator<T> GetEnumerator()
 {
 Node? current = head;

 while (current != null)
 {
 yield return current.Data;
 current = current.Next;
 }
 }

 public T? FindFirstOccurrence(string s)
 {
 Node? current = head;
 T? t = null;

 while (current != null)
 {
 //The constraint enables access to the Name property.
 if (current.Data.Name == s)
 {
 t = current.Data;
 break;
 }
 else
 {
 current = current.Next;
 }
 }
 return t;
 }
}

The constraint enables the generic class to use the Employee.Name property. The
constraint specifies that all items of type T are guaranteed to be either an Employee
object or an object that inherits from Employee .

Multiple constraints can be applied to the same type parameter, and the constraints
themselves can be generic types, as follows:

C#

When applying the where T : class constraint, avoid the == and != operators on the
type parameter because these operators will test for reference identity only, not for
value equality. This behavior occurs even if these operators are overloaded in a type that
is used as an argument. The following code illustrates this point; the output is false even
though the String class overloads the == operator.

C#

The compiler only knows that T is a reference type at compile time and must use the
default operators that are valid for all reference types. If you must test for value equality,
the recommended way is to also apply the where T : IEquatable<T> or where T :
IComparable<T> constraint and implement the interface in any class that will be used to
construct the generic class.

class EmployeeList<T> where T : Employee, IEmployee, System.IComparable<T>,
new()
{
 // ...
}

public static void OpEqualsTest<T>(T s, T t) where T : class
{
 System.Console.WriteLine(s == t);
}

private static void TestStringEquality()
{
 string s1 = "target";
 System.Text.StringBuilder sb = new System.Text.StringBuilder("target");
 string s2 = sb.ToString();
 OpEqualsTest<string>(s1, s2);
}

Constraining multiple parameters

https://learn.microsoft.com/en-us/dotnet/api/system.string

You can apply constraints to multiple parameters, and multiple constraints to a single
parameter, as shown in the following example:

C#

Type parameters that have no constraints, such as T in public class SampleClass<T>{} ,
are called unbounded type parameters. Unbounded type parameters have the following
rules:

The != and == operators can't be used because there's no guarantee that the
concrete type argument will support these operators.
They can be converted to and from System.Object or explicitly converted to any
interface type.
You can compare them to null. If an unbounded parameter is compared to null ,
the comparison will always return false if the type argument is a value type.

The use of a generic type parameter as a constraint is useful when a member function
with its own type parameter has to constrain that parameter to the type parameter of
the containing type, as shown in the following example:

C#

In the previous example, T is a type constraint in the context of the Add method, and an
unbounded type parameter in the context of the List class.

Type parameters can also be used as constraints in generic class definitions. The type
parameter must be declared within the angle brackets together with any other type

class Base { }
class Test<T, U>
 where U : struct
 where T : Base, new()
{ }

Unbounded type parameters

Type parameters as constraints

public class List<T>
{
 public void Add<U>(List<U> items) where U : T {/*...*/}
}

parameters:

C#

The usefulness of type parameters as constraints with generic classes is limited because
the compiler can assume nothing about the type parameter except that it derives from
System.Object . Use type parameters as constraints on generic classes in scenarios in
which you want to enforce an inheritance relationship between two type parameters.

You can use the notnull constraint to specify that the type argument must be a non-
nullable value type or non-nullable reference type. Unlike most other constraints, if a
type argument violates the notnull constraint, the compiler generates a warning
instead of an error.

The notnull constraint has an effect only when used in a nullable context. If you add
the notnull constraint in a nullable oblivious context, the compiler doesn't generate any
warnings or errors for violations of the constraint.

The class constraint in a nullable context specifies that the type argument must be a
non-nullable reference type. In a nullable context, when a type argument is a nullable
reference type, the compiler generates a warning.

The addition of nullable reference types complicates the use of T? in a generic type or
method. T? can be used with either the struct or class constraint, but one of them
must be present. When the class constraint was used, T? referred to the nullable
reference type for T . Beginning with C# 9, T? can be used when neither constraint is
applied. In that case, T? is interpreted as T? for value types and reference types.
However, if T is an instance of Nullable<T>, T? is the same as T . In other words, it
doesn't become T?? .

//Type parameter V is used as a type constraint.
public class SampleClass<T, U, V> where T : V { }

notnull constraint

class constraint

default constraint

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

Because T? can now be used without either the class or struct constraint, ambiguities
can arise in overrides or explicit interface implementations. In both those cases, the
override doesn't include the constraints, but inherits them from the base class. When the
base class doesn't apply either the class or struct constraint, derived classes need to
somehow specify an override applies to the base method without either constraint.
That's when the derived method applies the default constraint. The default constraint
clarifies neither the class nor struct constraint.

You can use the unmanaged constraint to specify that the type parameter must be a non-
nullable unmanaged type. The unmanaged constraint enables you to write reusable
routines to work with types that can be manipulated as blocks of memory, as shown in
the following example:

C#

The preceding method must be compiled in an unsafe context because it uses the
sizeof operator on a type not known to be a built-in type. Without the unmanaged
constraint, the sizeof operator is unavailable.

The unmanaged constraint implies the struct constraint and can't be combined with it.
Because the struct constraint implies the new() constraint, the unmanaged constraint
can't be combined with the new() constraint as well.

You can use System.Delegate or System.MulticastDelegate as a base class constraint. The
CLR always allowed this constraint, but the C# language disallowed it. The
System.Delegate constraint enables you to write code that works with delegates in a

Unmanaged constraint

unsafe public static byte[] ToByteArray<T>(this T argument) where T :
unmanaged
{
 var size = sizeof(T);
 var result = new Byte[size];
 Byte* p = (byte*)&argument;
 for (var i = 0; i < size; i++)
 result[i] = *p++;
 return result;
}

Delegate constraints

https://learn.microsoft.com/en-us/dotnet/api/system.delegate
https://learn.microsoft.com/en-us/dotnet/api/system.multicastdelegate

type-safe manner. The following code defines an extension method that combines two
delegates provided they're the same type:

C#

You can use the above method to combine delegates that are the same type:

C#

If you uncomment the last line, it won't compile. Both first and test are delegate
types, but they're different delegate types.

You can also specify the System.Enum type as a base class constraint. The CLR always
allowed this constraint, but the C# language disallowed it. Generics using System.Enum
provide type-safe programming to cache results from using the static methods in
System.Enum . The following sample finds all the valid values for an enum type, and then
builds a dictionary that maps those values to its string representation.

C#

public static TDelegate? TypeSafeCombine<TDelegate>(this TDelegate source,
TDelegate target)
 where TDelegate : System.Delegate
 => Delegate.Combine(source, target) as TDelegate;

Action first = () => Console.WriteLine("this");
Action second = () => Console.WriteLine("that");

var combined = first.TypeSafeCombine(second);
combined!();

Func<bool> test = () => true;
// Combine signature ensures combined delegates must
// have the same type.
//var badCombined = first.TypeSafeCombine(test);

Enum constraints

public static Dictionary<int, string> EnumNamedValues<T>() where T :
System.Enum
{
 var result = new Dictionary<int, string>();
 var values = Enum.GetValues(typeof(T));

 foreach (int item in values)
 result.Add(item, Enum.GetName(typeof(T), item)!);

https://learn.microsoft.com/en-us/dotnet/api/system.enum

Enum.GetValues and Enum.GetName use reflection, which has performance implications.
You can call EnumNamedValues to build a collection that is cached and reused rather than
repeating the calls that require reflection.

You could use it as shown in the following sample to create an enum and build a
dictionary of its values and names:

C#

C#

Some scenarios require that an argument supplied for a type parameter implement that
interface. For example:

C#

This pattern enables the C# compiler to determine the containing type for the
overloaded operators, or any static virtual or static abstract method. It provides

 return result;
}

enum Rainbow
{
 Red,
 Orange,
 Yellow,
 Green,
 Blue,
 Indigo,
 Violet
}

var map = EnumNamedValues<Rainbow>();

foreach (var pair in map)
 Console.WriteLine($"{pair.Key}:\t{pair.Value}");

Type arguments implement declared interface

public interface IAdditionSubtraction<T> where T : IAdditionSubtraction<T>
{
 public abstract static T operator +(T left, T right);
 public abstract static T operator -(T left, T right);
}

the syntax so that the addition and subtraction operators can be defined on a
containing type. Without this constraint, the parameters and arguments would be
required to be declared as the interface, rather than the type parameter:

C#

The preceding syntax would require implementers to use explicit interface
implementation for those methods. Providing the extra constraint enables the interface
to define the operators in terms of the type parameters. Types that implement the
interface can implicitly implement the interface methods.

System.Collections.Generic
C# Programming Guide
Introduction to Generics
Generic Classes
new Constraint

public interface IAdditionSubtraction<T> where T : IAdditionSubtraction<T>
{
 public abstract static IAdditionSubtraction<T> operator +(
 IAdditionSubtraction<T> left,
 IAdditionSubtraction<T> right);

 public abstract static IAdditionSubtraction<T> operator -(
 IAdditionSubtraction<T> left,
 IAdditionSubtraction<T> right);
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic

Generic Classes (C# Programming
Guide)
Article • 2022-07-09 • 3 minutes to read

Generic classes encapsulate operations that are not specific to a particular data type.
The most common use for generic classes is with collections like linked lists, hash tables,
stacks, queues, trees, and so on. Operations such as adding and removing items from
the collection are performed in basically the same way regardless of the type of data
being stored.

For most scenarios that require collection classes, the recommended approach is to use
the ones provided in the .NET class library. For more information about using these
classes, see Generic Collections in .NET.

Typically, you create generic classes by starting with an existing concrete class, and
changing types into type parameters one at a time until you reach the optimal balance
of generalization and usability. When creating your own generic classes, important
considerations include the following:

Which types to generalize into type parameters.

As a rule, the more types you can parameterize, the more flexible and reusable
your code becomes. However, too much generalization can create code that is
difficult for other developers to read or understand.

What constraints, if any, to apply to the type parameters (See Constraints on Type
Parameters).

A good rule is to apply the maximum constraints possible that will still let you
handle the types you must handle. For example, if you know that your generic class
is intended for use only with reference types, apply the class constraint. That will
prevent unintended use of your class with value types, and will enable you to use
the as operator on T , and check for null values.

Whether to factor generic behavior into base classes and subclasses.

Because generic classes can serve as base classes, the same design considerations
apply here as with non-generic classes. See the rules about inheriting from generic
base classes later in this topic.

Whether to implement one or more generic interfaces.

https://learn.microsoft.com/en-ca/dotnet/standard/generics/collections

For example, if you are designing a class that will be used to create items in a
generics-based collection, you may have to implement an interface such as
IComparable<T> where T is the type of your class.

For an example of a simple generic class, see Introduction to Generics.

The rules for type parameters and constraints have several implications for generic class
behavior, especially regarding inheritance and member accessibility. Before proceeding,
you should understand some terms. For a generic class Node<T>, client code can
reference the class either by specifying a type argument - to create a closed constructed
type (Node<int>); or by leaving the type parameter unspecified - for example when you
specify a generic base class, to create an open constructed type (Node<T>). Generic
classes can inherit from concrete, closed constructed, or open constructed base classes:

C#

Non-generic, in other words, concrete, classes can inherit from closed constructed base
classes, but not from open constructed classes or from type parameters because there is
no way at run time for client code to supply the type argument required to instantiate
the base class.

C#

Generic classes that inherit from open constructed types must supply type arguments
for any base class type parameters that are not shared by the inheriting class, as

class BaseNode { }
class BaseNodeGeneric<T> { }

// concrete type
class NodeConcrete<T> : BaseNode { }

//closed constructed type
class NodeClosed<T> : BaseNodeGeneric<int> { }

//open constructed type
class NodeOpen<T> : BaseNodeGeneric<T> { }

//No error
class Node1 : BaseNodeGeneric<int> { }

//Generates an error
//class Node2 : BaseNodeGeneric<T> {}

//Generates an error
//class Node3 : T {}

https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1

demonstrated in the following code:

C#

Generic classes that inherit from open constructed types must specify constraints that
are a superset of, or imply, the constraints on the base type:

C#

Generic types can use multiple type parameters and constraints, as follows:

C#

Open constructed and closed constructed types can be used as method parameters:

C#

class BaseNodeMultiple<T, U> { }

//No error
class Node4<T> : BaseNodeMultiple<T, int> { }

//No error
class Node5<T, U> : BaseNodeMultiple<T, U> { }

//Generates an error
//class Node6<T> : BaseNodeMultiple<T, U> {}

class NodeItem<T> where T : System.IComparable<T>, new() { }
class SpecialNodeItem<T> : NodeItem<T> where T : System.IComparable<T>,
new() { }

class SuperKeyType<K, V, U>
 where U : System.IComparable<U>
 where V : new()
{ }

void Swap<T>(List<T> list1, List<T> list2)
{
 //code to swap items
}

void Swap(List<int> list1, List<int> list2)
{
 //code to swap items
}

If a generic class implements an interface, all instances of that class can be cast to that
interface.

Generic classes are invariant. In other words, if an input parameter specifies a
List<BaseClass> , you will get a compile-time error if you try to provide a
List<DerivedClass> .

System.Collections.Generic
C# Programming Guide
Generics
Saving the State of Enumerators
An Inheritance Puzzle, Part One

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-us/archive/blogs/wesdyer/saving-the-state-of-enumerators
https://learn.microsoft.com/en-us/archive/blogs/ericlippert/an-inheritance-puzzle-part-one

Generic Interfaces (C# Programming
Guide)
Article • 2022-07-09 • 5 minutes to read

It's often useful to define interfaces either for generic collection classes, or for the
generic classes that represent items in the collection. To avoid boxing and unboxing
operations on value types, it's better to use generic interfaces, such as IComparable<T>,
on generic classes. The .NET class library defines several generic interfaces for use with
the collection classes in the System.Collections.Generic namespace. For more
information about these interfaces, see Generic interfaces.

When an interface is specified as a constraint on a type parameter, only types that
implement the interface can be used. The following code example shows a
SortedList<T> class that derives from the GenericList<T> class. For more information,
see Introduction to Generics. SortedList<T> adds the constraint where T :
IComparable<T> . This constraint enables the BubbleSort method in SortedList<T> to use
the generic CompareTo method on list elements. In this example, list elements are a
simple class, Person that implements IComparable<Person> .

C#

//Type parameter T in angle brackets.
public class GenericList<T> : System.Collections.Generic.IEnumerable<T>
{
 protected Node head;
 protected Node current = null;

 // Nested class is also generic on T
 protected class Node
 {
 public Node next;
 private T data; //T as private member datatype

 public Node(T t) //T used in non-generic constructor
 {
 next = null;
 data = t;
 }

 public Node Next
 {
 get { return next; }
 set { next = value; }
 }

 public T Data //T as return type of property

https://learn.microsoft.com/en-ca/dotnet/standard/generics/interfaces
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-ca/dotnet/standard/generics/interfaces
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1.compareto

 {
 get { return data; }
 set { data = value; }
 }
 }

 public GenericList() //constructor
 {
 head = null;
 }

 public void AddHead(T t) //T as method parameter type
 {
 Node n = new Node(t);
 n.Next = head;
 head = n;
 }

 // Implementation of the iterator
 public System.Collections.Generic.IEnumerator<T> GetEnumerator()
 {
 Node current = head;
 while (current != null)
 {
 yield return current.Data;
 current = current.Next;
 }
 }

 // IEnumerable<T> inherits from IEnumerable, therefore this class
 // must implement both the generic and non-generic versions of
 // GetEnumerator. In most cases, the non-generic method can
 // simply call the generic method.
 System.Collections.IEnumerator
System.Collections.IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
}

public class SortedList<T> : GenericList<T> where T : System.IComparable<T>
{
 // A simple, unoptimized sort algorithm that
 // orders list elements from lowest to highest:

 public void BubbleSort()
 {
 if (null == head || null == head.Next)
 {
 return;
 }
 bool swapped;

 do
 {

 Node previous = null;
 Node current = head;
 swapped = false;

 while (current.next != null)
 {
 // Because we need to call this method, the SortedList
 // class is constrained on IComparable<T>
 if (current.Data.CompareTo(current.next.Data) > 0)
 {
 Node tmp = current.next;
 current.next = current.next.next;
 tmp.next = current;

 if (previous == null)
 {
 head = tmp;
 }
 else
 {
 previous.next = tmp;
 }
 previous = tmp;
 swapped = true;
 }
 else
 {
 previous = current;
 current = current.next;
 }
 }
 } while (swapped);
 }
}

// A simple class that implements IComparable<T> using itself as the
// type argument. This is a common design pattern in objects that
// are stored in generic lists.
public class Person : System.IComparable<Person>
{
 string name;
 int age;

 public Person(string s, int i)
 {
 name = s;
 age = i;
 }

 // This will cause list elements to be sorted on age values.
 public int CompareTo(Person p)
 {
 return age - p.age;
 }

 public override string ToString()
 {
 return name + ":" + age;
 }

 // Must implement Equals.
 public bool Equals(Person p)
 {
 return (this.age == p.age);
 }
}

public class Program
{
 public static void Main()
 {
 //Declare and instantiate a new generic SortedList class.
 //Person is the type argument.
 SortedList<Person> list = new SortedList<Person>();

 //Create name and age values to initialize Person objects.
 string[] names = new string[]
 {
 "Franscoise",
 "Bill",
 "Li",
 "Sandra",
 "Gunnar",
 "Alok",
 "Hiroyuki",
 "Maria",
 "Alessandro",
 "Raul"
 };

 int[] ages = new int[] { 45, 19, 28, 23, 18, 9, 108, 72, 30, 35 };

 //Populate the list.
 for (int x = 0; x < 10; x++)
 {
 list.AddHead(new Person(names[x], ages[x]));
 }

 //Print out unsorted list.
 foreach (Person p in list)
 {
 System.Console.WriteLine(p.ToString());
 }
 System.Console.WriteLine("Done with unsorted list");

 //Sort the list.
 list.BubbleSort();

 //Print out sorted list.
 foreach (Person p in list)

Multiple interfaces can be specified as constraints on a single type, as follows:

C#

An interface can define more than one type parameter, as follows:

C#

The rules of inheritance that apply to classes also apply to interfaces:

C#

Generic interfaces can inherit from non-generic interfaces if the generic interface is
covariant, which means it only uses its type parameter as a return value. In the .NET class
library, IEnumerable<T> inherits from IEnumerable because IEnumerable<T> only uses
T in the return value of GetEnumerator and in the Current property getter.

Concrete classes can implement closed constructed interfaces, as follows:

C#

 {
 System.Console.WriteLine(p.ToString());
 }
 System.Console.WriteLine("Done with sorted list");
 }
}

class Stack<T> where T : System.IComparable<T>, IEnumerable<T>
{
}

interface IDictionary<K, V>
{
}

interface IMonth<T> { }

interface IJanuary : IMonth<int> { } //No error
interface IFebruary<T> : IMonth<int> { } //No error
interface IMarch<T> : IMonth<T> { } //No error
 //interface IApril<T> : IMonth<T, U>
{} //Error

interface IBaseInterface<T> { }

class SampleClass : IBaseInterface<string> { }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1.getenumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1.current

Generic classes can implement generic interfaces or closed constructed interfaces as
long as the class parameter list supplies all arguments required by the interface, as
follows:

C#

The rules that control method overloading are the same for methods within generic
classes, generic structs, or generic interfaces. For more information, see Generic
Methods.

Beginning with C# 11, interfaces may declare static abstract or static virtual
members. Interfaces that declare either static abstract or static virtual members
are almost always generic interfaces. The compiler must resolve calls to static virtual
and static abstract methods at compile time. static virtual and static abstract
methods declared in interfaces don't have a runtime dispatch mechanism analogous to
virtual or abstract methods declared in classes. Instead, the compiler uses type
information available at compile time. These members are typically declared in generic
interfaces. Furthermore, most interfaces that declare static virtual or static abstract
methods declare that one of the type parameters must implement the declared
interface. The compiler then uses the supplied type arguments to resolve the type of the
declared member.

C# Programming Guide
Introduction to Generics
interface
Generics

interface IBaseInterface1<T> { }
interface IBaseInterface2<T, U> { }

class SampleClass1<T> : IBaseInterface1<T> { } //No error
class SampleClass2<T> : IBaseInterface2<T, string> { } //No error

See also

https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Generic Methods (C# Programming
Guide)
Article • 2022-01-25 • 2 minutes to read

A generic method is a method that is declared with type parameters, as follows:

C#

The following code example shows one way to call the method by using int for the
type argument:

C#

You can also omit the type argument and the compiler will infer it. The following call to
Swap is equivalent to the previous call:

C#

The same rules for type inference apply to static methods and instance methods. The
compiler can infer the type parameters based on the method arguments you pass in; it
cannot infer the type parameters only from a constraint or return value. Therefore type
inference does not work with methods that have no parameters. Type inference occurs
at compile time before the compiler tries to resolve overloaded method signatures. The
compiler applies type inference logic to all generic methods that share the same name.

static void Swap<T>(ref T lhs, ref T rhs)
{
 T temp;
 temp = lhs;
 lhs = rhs;
 rhs = temp;
}

public static void TestSwap()
{
 int a = 1;
 int b = 2;

 Swap<int>(ref a, ref b);
 System.Console.WriteLine(a + " " + b);
}

Swap(ref a, ref b);

In the overload resolution step, the compiler includes only those generic methods on
which type inference succeeded.

Within a generic class, non-generic methods can access the class-level type parameters,
as follows:

C#

If you define a generic method that takes the same type parameters as the containing
class, the compiler generates warning CS0693 because within the method scope, the
argument supplied for the inner T hides the argument supplied for the outer T . If you
require the flexibility of calling a generic class method with type arguments other than
the ones provided when the class was instantiated, consider providing another identifier
for the type parameter of the method, as shown in GenericList2<T> in the following
example.

C#

Use constraints to enable more specialized operations on type parameters in methods.
This version of Swap<T> , now named SwapIfGreater<T> , can only be used with type
arguments that implement IComparable<T>.

C#

class SampleClass<T>
{
 void Swap(ref T lhs, ref T rhs) { }
}

class GenericList<T>
{
 // CS0693
 void SampleMethod<T>() { }
}

class GenericList2<T>
{
 //No warning
 void SampleMethod<U>() { }
}

void SwapIfGreater<T>(ref T lhs, ref T rhs) where T : System.IComparable<T>
{
 T temp;
 if (lhs.CompareTo(rhs) > 0)
 {
 temp = lhs;

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0693
https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1

Generic methods can be overloaded on several type parameters. For example, the
following methods can all be located in the same class:

C#

For more information, see the C# Language Specification.

System.Collections.Generic
C# Programming Guide
Introduction to Generics
Methods

 lhs = rhs;
 rhs = temp;
 }
}

void DoWork() { }
void DoWork<T>() { }
void DoWork<T, U>() { }

C# Language Specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic

Generics and Arrays (C# Programming
Guide)
Article • 2022-09-29 • 2 minutes to read

Single-dimensional arrays that have a lower bound of zero automatically implement
IList<T>. This enables you to create generic methods that can use the same code to
iterate through arrays and other collection types. This technique is primarily useful for
reading data in collections. The IList<T> interface cannot be used to add or remove
elements from an array. An exception will be thrown if you try to call an IList<T>
method such as RemoveAt on an array in this context.

The following code example demonstrates how a single generic method that takes an
IList<T> input parameter can iterate through both a list and an array, in this case an
array of integers.

C#

class Program
{
 static void Main()
 {
 int[] arr = { 0, 1, 2, 3, 4 };
 List<int> list = new List<int>();

 for (int x = 5; x < 10; x++)
 {
 list.Add(x);
 }

 ProcessItems<int>(arr);
 ProcessItems<int>(list);
 }

 static void ProcessItems<T>(IList<T> coll)
 {
 // IsReadOnly returns True for the array and False for the List.
 System.Console.WriteLine
 ("IsReadOnly returns {0} for this collection.",
 coll.IsReadOnly);

 // The following statement causes a run-time exception for the
 // array, but not for the List.
 //coll.RemoveAt(4);

 foreach (T item in coll)
 {
 System.Console.Write(item.ToString() + " ");
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1.removeat
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ilist-1

System.Collections.Generic
C# Programming Guide
Generics
Arrays
Generics

 System.Console.WriteLine();
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Generic Delegates (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

A delegate can define its own type parameters. Code that references the generic
delegate can specify the type argument to create a closed constructed type, just like
when instantiating a generic class or calling a generic method, as shown in the following
example:

C#

C# version 2.0 has a new feature called method group conversion, which applies to
concrete as well as generic delegate types, and enables you to write the previous line
with this simplified syntax:

C#

Delegates defined within a generic class can use the generic class type parameters in the
same way that class methods do.

C#

Code that references the delegate must specify the type argument of the containing
class, as follows:

C#

public delegate void Del<T>(T item);
public static void Notify(int i) { }

Del<int> m1 = new Del<int>(Notify);

Del<int> m2 = Notify;

class Stack<T>
{
 T[] items;
 int index;

 public delegate void StackDelegate(T[] items);
}

private static void DoWork(float[] items) { }

Generic delegates are especially useful in defining events based on the typical design
pattern because the sender argument can be strongly typed and no longer has to be
cast to and from Object.

C#

System.Collections.Generic
C# Programming Guide
Introduction to Generics
Generic Methods
Generic Classes
Generic Interfaces
Delegates

public static void TestStack()
{
 Stack<float> s = new Stack<float>();
 Stack<float>.StackDelegate d = DoWork;
}

delegate void StackEventHandler<T, U>(T sender, U eventArgs);

class Stack<T>
{
 public class StackEventArgs : System.EventArgs { }
 public event StackEventHandler<Stack<T>, StackEventArgs> StackEvent;

 protected virtual void OnStackChanged(StackEventArgs a)
 {
 StackEvent(this, a);
 }
}

class SampleClass
{
 public void HandleStackChange<T>(Stack<T> stack, Stack<T>.StackEventArgs
args) { }
}

public static void Test()
{
 Stack<double> s = new Stack<double>();
 SampleClass o = new SampleClass();
 s.StackEvent += o.HandleStackChange;
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic

Generics

https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Differences Between C++ Templates
and C# Generics (C# Programming
Guide)
Article • 2021-11-05 • 2 minutes to read

C# Generics and C++ templates are both language features that provide support for
parameterized types. However, there are many differences between the two. At the
syntax level, C# generics are a simpler approach to parameterized types without the
complexity of C++ templates. In addition, C# does not attempt to provide all of the
functionality that C++ templates provide. At the implementation level, the primary
difference is that C# generic type substitutions are performed at run time and generic
type information is thereby preserved for instantiated objects. For more information, see
Generics in the Run Time.

The following are the key differences between C# Generics and C++ templates:

C# generics do not provide the same amount of flexibility as C++ templates. For
example, it is not possible to call arithmetic operators in a C# generic class,
although it is possible to call user defined operators.

C# does not allow non-type template parameters, such as template C<int i> {} .

C# does not support explicit specialization; that is, a custom implementation of a
template for a specific type.

C# does not support partial specialization: a custom implementation for a subset
of the type arguments.

C# does not allow the type parameter to be used as the base class for the generic
type.

C# does not allow type parameters to have default types.

In C#, a generic type parameter cannot itself be a generic, although constructed
types can be used as generics. C++ does allow template parameters.

C++ allows code that might not be valid for all type parameters in the template,
which is then checked for the specific type used as the type parameter. C# requires
code in a class to be written in such a way that it will work with any type that
satisfies the constraints. For example, in C++ it is possible to write a function that
uses the arithmetic operators + and - on objects of the type parameter, which will

produce an error at the time of instantiation of the template with a type that does
not support these operators. C# disallows this; the only language constructs
allowed are those that can be deduced from the constraints.

C# Programming Guide
Introduction to Generics
Templates

See also

https://learn.microsoft.com/en-us/cpp/cpp/templates-cpp

Generics in the Run Time (C#
Programming Guide)
Article • 2021-11-05 • 3 minutes to read

When a generic type or method is compiled into Microsoft intermediate language
(MSIL), it contains metadata that identifies it as having type parameters. How the MSIL
for a generic type is used differs based on whether the supplied type parameter is a
value type or reference type.

When a generic type is first constructed with a value type as a parameter, the runtime
creates a specialized generic type with the supplied parameter or parameters
substituted in the appropriate locations in the MSIL. Specialized generic types are
created one time for each unique value type that is used as a parameter.

For example, suppose your program code declared a stack that is constructed of
integers:

C#

At this point, the runtime generates a specialized version of the Stack<T> class that has
the integer substituted appropriately for its parameter. Now, whenever your program
code uses a stack of integers, the runtime reuses the generated specialized Stack<T>
class. In the following example, two instances of a stack of integers are created, and they
share a single instance of the Stack<int> code:

C#

However, suppose that another Stack<T> class with a different value type such as a
long or a user-defined structure as its parameter is created at another point in your
code. As a result, the runtime generates another version of the generic type and
substitutes a long in the appropriate locations in MSIL. Conversions are no longer
necessary because each specialized generic class natively contains the value type.

Generics work somewhat differently for reference types. The first time a generic type is
constructed with any reference type, the runtime creates a specialized generic type with
object references substituted for the parameters in the MSIL. Then, every time that a

Stack<int> stack;

Stack<int> stackOne = new Stack<int>();
Stack<int> stackTwo = new Stack<int>();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1

constructed type is instantiated with a reference type as its parameter, regardless of
what type it is, the runtime reuses the previously created specialized version of the
generic type. This is possible because all references are the same size.

For example, suppose you had two reference types, a Customer class and an Order class,
and also suppose that you created a stack of Customer types:

C#

C#

At this point, the runtime generates a specialized version of the Stack<T> class that
stores object references that will be filled in later instead of storing data. Suppose the
next line of code creates a stack of another reference type, which is named Order :

C#

Unlike with value types, another specialized version of the Stack<T> class is not created
for the Order type. Instead, an instance of the specialized version of the Stack<T> class
is created and the orders variable is set to reference it. Suppose that you then
encountered a line of code to create a stack of a Customer type:

C#

As with the previous use of the Stack<T> class created by using the Order type, another
instance of the specialized Stack<T> class is created. The pointers that are contained
therein are set to reference an area of memory the size of a Customer type. Because the
number of reference types can vary wildly from program to program, the C#
implementation of generics greatly reduces the amount of code by reducing to one the
number of specialized classes created by the compiler for generic classes of reference
types.

class Customer { }
class Order { }

Stack<Customer> customers;

Stack<Order> orders = new Stack<Order>();

customers = new Stack<Customer>();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1

Moreover, when a generic C# class is instantiated by using a value type or reference
type parameter, reflection can query it at run time and both its actual type and its type
parameter can be ascertained.

System.Collections.Generic
C# Programming Guide
Introduction to Generics
Generics

See also

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic
https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Generics and Reflection (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

Because the Common Language Runtime (CLR) has access to generic type information
at run time, you can use reflection to obtain information about generic types in the
same way as for non-generic types. For more information, see Generics in the Run Time.

In .NET Framework 2.0, several new members were added to the Type class to enable
run-time information for generic types. See the documentation on these classes for
more information on how to use these methods and properties. The
System.Reflection.Emit namespace also contains new members that support generics.
See How to: Define a Generic Type with Reflection Emit.

For a list of the invariant conditions for terms used in generic reflection, see the
IsGenericType property remarks.

System.Type Member Name Description

IsGenericType Returns true if a type is generic.

GetGenericArguments Returns an array of Type objects that represent the type
arguments supplied for a constructed type, or the type
parameters of a generic type definition.

GetGenericTypeDefinition Returns the underlying generic type definition for the current
constructed type.

GetGenericParameterConstraints Returns an array of Type objects that represent the constraints
on the current generic type parameter.

ContainsGenericParameters Returns true if the type or any of its enclosing types or
methods contain type parameters for which specific types have
not been supplied.

GenericParameterAttributes Gets a combination of GenericParameterAttributes flags that
describe the special constraints of the current generic type
parameter.

GenericParameterPosition For a Type object that represents a type parameter, gets the
position of the type parameter in the type parameter list of the
generic type definition or generic method definition that
declared the type parameter.

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.emit
https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/how-to-define-a-generic-type-with-reflection-emit
https://learn.microsoft.com/en-us/dotnet/api/system.type.isgenerictype
https://learn.microsoft.com/en-us/dotnet/api/system.type.isgenerictype
https://learn.microsoft.com/en-us/dotnet/api/system.type.getgenericarguments
https://learn.microsoft.com/en-us/dotnet/api/system.type.getgenerictypedefinition
https://learn.microsoft.com/en-us/dotnet/api/system.type.getgenericparameterconstraints
https://learn.microsoft.com/en-us/dotnet/api/system.type.containsgenericparameters
https://learn.microsoft.com/en-us/dotnet/api/system.type.genericparameterattributes
https://learn.microsoft.com/en-us/dotnet/api/system.type.genericparameterposition

System.Type Member Name Description

IsGenericParameter Gets a value that indicates whether the current Type
represents a type parameter of a generic type or method
definition.

IsGenericTypeDefinition Gets a value that indicates whether the current Type represents
a generic type definition, from which other generic types can
be constructed. Returns true if the type represents the
definition of a generic type.

DeclaringMethod Returns the generic method that defined the current generic
type parameter, or null if the type parameter was not defined
by a generic method.

MakeGenericType Substitutes the elements of an array of types for the type
parameters of the current generic type definition, and returns
a Type object representing the resulting constructed type.

In addition, members of the MethodInfo class enable run-time information for generic
methods. See the IsGenericMethod property remarks for a list of invariant conditions for
terms used to reflect on generic methods.

System.Reflection.MemberInfo
Member Name

Description

IsGenericMethod Returns true if a method is generic.

GetGenericArguments Returns an array of Type objects that represent the type
arguments of a constructed generic method or the type
parameters of a generic method definition.

GetGenericMethodDefinition Returns the underlying generic method definition for the
current constructed method.

ContainsGenericParameters Returns true if the method or any of its enclosing types
contain any type parameters for which specific types have not
been supplied.

IsGenericMethodDefinition Returns true if the current MethodInfo represents the
definition of a generic method.

MakeGenericMethod Substitutes the elements of an array of types for the type
parameters of the current generic method definition, and
returns a MethodInfo object representing the resulting
constructed method.

See also

https://learn.microsoft.com/en-us/dotnet/api/system.type.isgenericparameter
https://learn.microsoft.com/en-us/dotnet/api/system.type.isgenerictypedefinition
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.type.declaringmethod
https://learn.microsoft.com/en-us/dotnet/api/system.type.makegenerictype
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.isgenericmethod
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.isgenericmethod
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo.getgenericarguments
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo.getgenericmethoddefinition
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.containsgenericparameters
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.isgenericmethoddefinition
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo.makegenericmethod
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodinfo

C# Programming Guide
Generics
Reflection and Generic Types
Generics

https://learn.microsoft.com/en-ca/dotnet/framework/reflection-and-codedom/reflection-and-generic-types
https://learn.microsoft.com/en-ca/dotnet/standard/generics/

Generics and Attributes (C#
Programming Guide)
Article • 2022-10-27 • 2 minutes to read

Attributes can be applied to generic types in the same way as non-generic types. For
more information on applying attributes, see Attributes.

Custom attributes are only permitted to reference open generic types, which are generic
types for which no type arguments are supplied, and closed constructed generic types,
which supply arguments for all type parameters.

The following examples use this custom attribute:

C#

An attribute can reference an open generic type:

C#

Specify multiple type parameters using the appropriate number of commas. In this
example, GenericClass2 has two type parameters:

C#

An attribute can reference a closed constructed generic type:

C#

class CustomAttribute : Attribute
{
 public object? info;
}

public class GenericClass1<T> { }

[CustomAttribute(info = typeof(GenericClass1<>))]
class ClassA { }

public class GenericClass2<T, U> { }

[CustomAttribute(info = typeof(GenericClass2<,>))]
class ClassB { }

An attribute that references a generic type parameter will cause a compile-time error:

C#

Beginning with C# 11, a generic type can inherit from Attribute:

C#

To obtain information about a generic type or type parameter at run time, you can use
the methods of System.Reflection. For more information, see Generics and Reflection.

C# Programming Guide
Generics
Attributes

public class GenericClass3<T, U, V> { }

[CustomAttribute(info = typeof(GenericClass3<int, double, string>))]
class ClassC { }

[CustomAttribute(info = typeof(GenericClass3<int, T, string>))] //Error
CS0416
class ClassD<T> { }

public class CustomGenericAttribute<T> : Attribute { } //Requires C# 11

See also

https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/

File system and the registry (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

The following articles show how to use C# and .NET to perform various basic operations
on files, folders, and the registry.

Title Description

How to iterate through a directory tree Shows how to manually iterate through a directory
tree.

How to get information about files,
folders, and drives

Shows how to retrieve information such as creation
times and size, about files, folders and drives.

How to create a file or folder Shows how to create a new file or folder.

How to copy, delete, and move files and
folders (C# Programming Guide)

Shows how to copy, delete and move files and folders.

How to provide a progress dialog box
for file operations

Shows how to display a standard Windows progress
dialog for certain file operations.

How to write to a text file Shows how to write to a text file.

How to read from a text file Shows how to read from a text file.

How to read a text file one line at a time Shows how to retrieve text from a file one line at a
time.

How to create a key in the registry Shows how to write a key to the system registry.

File and Stream I/O
How to copy, delete, and move files and folders (C# Programming Guide)
C# Programming Guide
System.IO

In this section

Related sections

https://learn.microsoft.com/en-ca/dotnet/standard/io/
https://learn.microsoft.com/en-us/dotnet/api/system.io

How to iterate through a directory tree
(C# Programming Guide)
Article • 2021-09-15 • 7 minutes to read

The phrase "iterate a directory tree" means to access each file in each nested
subdirectory under a specified root folder, to any depth. You do not necessarily have to
open each file. You can just retrieve the name of the file or subdirectory as a string , or
you can retrieve additional information in the form of a System.IO.FileInfo or
System.IO.DirectoryInfo object.

In the simplest case, in which you know for certain that you have access permissions for
all directories under a specified root, you can use the
System.IO.SearchOption.AllDirectories flag. This flag returns all the nested
subdirectories that match the specified pattern. The following example shows how to
use this flag.

C#

The weakness in this approach is that if any one of the subdirectories under the
specified root causes a DirectoryNotFoundException or UnauthorizedAccessException,
the whole method fails and returns no directories. The same is true when you use the
GetFiles method. If you have to handle these exceptions on specific subfolders, you
must manually walk the directory tree, as shown in the following examples.

When you manually walk a directory tree, you can handle the files first (pre-order
traversal), or the subdirectories first (post-order traversal). If you perform a pre-order
traversal, you visit files directly under that folder itself, and then walk the whole tree
under the current folder. Post-order traversal is the other way around, walking the whole
tree beneath before getting to the current folder's files. The examples later in this
document perform pre-order traversal, but you can easily modify them to perform post-
order traversal.

７ Note

In Windows, the terms "directory" and "folder" are used interchangeably. Most
documentation and user interface text uses the term "folder," but .NET class
libraries use the term "directory."

root.GetDirectories("*.*", System.IO.SearchOption.AllDirectories);

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directorynotfoundexception
https://learn.microsoft.com/en-us/dotnet/api/system.unauthorizedaccessexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfiles

Another option is whether to use recursion or a stack-based traversal. The examples
later in this document show both approaches.

If you have to perform a variety of operations on files and folders, you can modularize
these examples by refactoring the operation into separate functions that you can invoke
by using a single delegate.

The following example shows how to walk a directory tree by using recursion. The
recursive approach is elegant but has the potential to cause a stack overflow exception
if the directory tree is large and deeply nested.

The particular exceptions that are handled, and the particular actions that are performed
on each file or folder, are provided as examples only. You should modify this code to
meet your specific requirements. See the comments in the code for more information.

C#

７ Note

NTFS file systems can contain reparse points in the form of junction points, symbolic
links, and hard links. .NET methods such as GetFiles and GetDirectories will not
return any subdirectories under a reparse point. This behavior guards against the
risk of entering into an infinite loop when two reparse points refer to each other. In
general, you should use extreme caution when you deal with reparse points to
ensure that you do not unintentionally modify or delete files. If you require precise
control over reparse points, use platform invoke or native code to call the
appropriate Win32 file system methods directly.

Examples

public class RecursiveFileSearch
{
 static System.Collections.Specialized.StringCollection log = new
System.Collections.Specialized.StringCollection();

 static void Main()
 {
 // Start with drives if you have to search the entire computer.
 string[] drives = System.Environment.GetLogicalDrives();

 foreach (string dr in drives)
 {
 System.IO.DriveInfo di = new System.IO.DriveInfo(dr);

 // Here we skip the drive if it is not ready to be read. This

https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfiles
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getdirectories

 // is not necessarily the appropriate action in all scenarios.
 if (!di.IsReady)
 {
 Console.WriteLine("The drive {0} could not be read",
di.Name);
 continue;
 }
 System.IO.DirectoryInfo rootDir = di.RootDirectory;
 WalkDirectoryTree(rootDir);
 }

 // Write out all the files that could not be processed.
 Console.WriteLine("Files with restricted access:");
 foreach (string s in log)
 {
 Console.WriteLine(s);
 }
 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key");
 Console.ReadKey();
 }

 static void WalkDirectoryTree(System.IO.DirectoryInfo root)
 {
 System.IO.FileInfo[] files = null;
 System.IO.DirectoryInfo[] subDirs = null;

 // First, process all the files directly under this folder
 try
 {
 files = root.GetFiles("*.*");
 }
 // This is thrown if even one of the files requires permissions
greater
 // than the application provides.
 catch (UnauthorizedAccessException e)
 {
 // This code just writes out the message and continues to
recurse.
 // You may decide to do something different here. For example,
you
 // can try to elevate your privileges and access the file again.
 log.Add(e.Message);
 }

 catch (System.IO.DirectoryNotFoundException e)
 {
 Console.WriteLine(e.Message);
 }

 if (files != null)
 {
 foreach (System.IO.FileInfo fi in files)
 {
 // In this example, we only access the existing FileInfo

The following example shows how to iterate through files and folders in a directory tree
without using recursion. This technique uses the generic Stack<T> collection type, which
is a last in first out (LIFO) stack.

The particular exceptions that are handled, and the particular actions that are performed
on each file or folder, are provided as examples only. You should modify this code to
meet your specific requirements. See the comments in the code for more information.

C#

object. If we
 // want to open, delete or modify the file, then
 // a try-catch block is required here to handle the case
 // where the file has been deleted since the call to
TraverseTree().
 Console.WriteLine(fi.FullName);
 }

 // Now find all the subdirectories under this directory.
 subDirs = root.GetDirectories();

 foreach (System.IO.DirectoryInfo dirInfo in subDirs)
 {
 // Resursive call for each subdirectory.
 WalkDirectoryTree(dirInfo);
 }
 }
 }
}

public class StackBasedIteration
{
 static void Main(string[] args)
 {
 // Specify the starting folder on the command line, or in
 // Visual Studio in the Project > Properties > Debug pane.
 TraverseTree(args[0]);

 Console.WriteLine("Press any key");
 Console.ReadKey();
 }

 public static void TraverseTree(string root)
 {
 // Data structure to hold names of subfolders to be
 // examined for files.
 Stack<string> dirs = new Stack<string>(20);

 if (!System.IO.Directory.Exists(root))
 {
 throw new ArgumentException();
 }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.stack-1

 dirs.Push(root);

 while (dirs.Count > 0)
 {
 string currentDir = dirs.Pop();
 string[] subDirs;
 try
 {
 subDirs = System.IO.Directory.GetDirectories(currentDir);
 }
 // An UnauthorizedAccessException exception will be thrown if we
do not have
 // discovery permission on a folder or file. It may or may not
be acceptable
 // to ignore the exception and continue enumerating the
remaining files and
 // folders. It is also possible (but unlikely) that a
DirectoryNotFound exception
 // will be raised. This will happen if currentDir has been
deleted by
 // another application or thread after our call to
Directory.Exists. The
 // choice of which exceptions to catch depends entirely on the
specific task
 // you are intending to perform and also on how much you know
with certainty
 // about the systems on which this code will run.
 catch (UnauthorizedAccessException e)
 {
 Console.WriteLine(e.Message);
 continue;
 }
 catch (System.IO.DirectoryNotFoundException e)
 {
 Console.WriteLine(e.Message);
 continue;
 }

 string[] files = null;
 try
 {
 files = System.IO.Directory.GetFiles(currentDir);
 }

 catch (UnauthorizedAccessException e)
 {

 Console.WriteLine(e.Message);
 continue;
 }

 catch (System.IO.DirectoryNotFoundException e)
 {
 Console.WriteLine(e.Message);
 continue;

It is generally too time-consuming to test every folder to determine whether your
application has permission to open it. Therefore, the code example just encloses that
part of the operation in a try/catch block. You can modify the catch block so that
when you are denied access to a folder, you try to elevate your permissions and then
access it again. As a rule, only catch those exceptions that you can handle without
leaving your application in an unknown state.

If you must store the contents of a directory tree, either in memory or on disk, the best
option is to store only the FullName property (of type string) for each file. You can then
use this string to create a new FileInfo or DirectoryInfo object as necessary, or open any
file that requires additional processing.

Robust file iteration code must take into account many complexities of the file system.
For more information on the Windows file system, see NTFS overview.

 }
 // Perform the required action on each file here.
 // Modify this block to perform your required task.
 foreach (string file in files)
 {
 try
 {
 // Perform whatever action is required in your scenario.
 System.IO.FileInfo fi = new System.IO.FileInfo(file);
 Console.WriteLine("{0}: {1}, {2}", fi.Name, fi.Length,
fi.CreationTime);
 }
 catch (System.IO.FileNotFoundException e)
 {
 // If file was deleted by a separate application
 // or thread since the call to TraverseTree()
 // then just continue.
 Console.WriteLine(e.Message);
 continue;
 }
 }

 // Push the subdirectories onto the stack for traversal.
 // This could also be done before handing the files.
 foreach (string str in subDirs)
 dirs.Push(str);
 }
 }
}

Robust Programming

https://learn.microsoft.com/en-us/dotnet/api/system.io.filesysteminfo.fullname
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://learn.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview

System.IO
LINQ and File Directories
File System and the Registry (C# Programming Guide)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io

How to get information about files,
folders, and drives (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

In .NET, you can access file system information by using the following classes:

System.IO.FileInfo

System.IO.DirectoryInfo

System.IO.DriveInfo

System.IO.Directory

System.IO.File

The FileInfo and DirectoryInfo classes represent a file or directory and contain properties
that expose many of the file attributes that are supported by the NTFS file system. They
also contain methods for opening, closing, moving, and deleting files and folders. You
can create instances of these classes by passing a string that represents the name of the
file, folder, or drive in to the constructor:

C#

You can also obtain the names of files, folders, or drives by using calls to
DirectoryInfo.GetDirectories, DirectoryInfo.GetFiles, and DriveInfo.RootDirectory.

The System.IO.Directory and System.IO.File classes provide static methods for retrieving
information about directories and files.

The following example shows various ways to access information about files and folders.

C#

System.IO.DriveInfo di = new System.IO.DriveInfo(@"C:\");

Example

class FileSysInfo
{
 static void Main()

https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.driveinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directory
https://learn.microsoft.com/en-us/dotnet/api/system.io.file
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getdirectories
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo.getfiles
https://learn.microsoft.com/en-us/dotnet/api/system.io.driveinfo.rootdirectory
https://learn.microsoft.com/en-us/dotnet/api/system.io.directory
https://learn.microsoft.com/en-us/dotnet/api/system.io.file

 {
 // You can also use System.Environment.GetLogicalDrives to
 // obtain names of all logical drives on the computer.
 System.IO.DriveInfo di = new System.IO.DriveInfo(@"C:\");
 Console.WriteLine(di.TotalFreeSpace);
 Console.WriteLine(di.VolumeLabel);

 // Get the root directory and print out some information about it.
 System.IO.DirectoryInfo dirInfo = di.RootDirectory;
 Console.WriteLine(dirInfo.Attributes.ToString());

 // Get the files in the directory and print out some information
about them.
 System.IO.FileInfo[] fileNames = dirInfo.GetFiles("*.*");

 foreach (System.IO.FileInfo fi in fileNames)
 {
 Console.WriteLine("{0}: {1}: {2}", fi.Name, fi.LastAccessTime,
fi.Length);
 }

 // Get the subdirectories directly that is under the root.
 // See "How to: Iterate Through a Directory Tree" for an example of
how to
 // iterate through an entire tree.
 System.IO.DirectoryInfo[] dirInfos = dirInfo.GetDirectories("*.*");

 foreach (System.IO.DirectoryInfo d in dirInfos)
 {
 Console.WriteLine(d.Name);
 }

 // The Directory and File classes provide several static methods
 // for accessing files and directories.

 // Get the current application directory.
 string currentDirName = System.IO.Directory.GetCurrentDirectory();
 Console.WriteLine(currentDirName);

 // Get an array of file names as strings rather than FileInfo
objects.
 // Use this method when storage space is an issue, and when you
might
 // hold on to the file name reference for a while before you try to
access
 // the file.
 string[] files = System.IO.Directory.GetFiles(currentDirName,
"*.txt");

 foreach (string s in files)
 {
 // Create the FileInfo object only when needed to ensure
 // the information is as current as possible.
 System.IO.FileInfo fi = null;
 try

When you process user-specified path strings, you should also handle exceptions for the
following conditions:

The file name is malformed. For example, it contains invalid characters or only
white space.

The file name is null.

The file name is longer than the system-defined maximum length.

The file name contains a colon (:).

 {
 fi = new System.IO.FileInfo(s);
 }
 catch (System.IO.FileNotFoundException e)
 {
 // To inform the user and continue is
 // sufficient for this demonstration.
 // Your application may require different behavior.
 Console.WriteLine(e.Message);
 continue;
 }
 Console.WriteLine("{0} : {1}",fi.Name, fi.Directory);
 }

 // Change the directory. In this case, first check to see
 // whether it already exists, and create it if it does not.
 // If this is not appropriate for your application, you can
 // handle the System.IO.IOException that will be raised if the
 // directory cannot be found.
 if (!System.IO.Directory.Exists(@"C:\Users\Public\TestFolder\"))
 {

System.IO.Directory.CreateDirectory(@"C:\Users\Public\TestFolder\");
 }

System.IO.Directory.SetCurrentDirectory(@"C:\Users\Public\TestFolder\");

 currentDirName = System.IO.Directory.GetCurrentDirectory();
 Console.WriteLine(currentDirName);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

Robust Programming

If the application does not have sufficient permissions to read the specified file, the
Exists method returns false regardless of whether a path exists; the method does not
throw an exception.

System.IO
C# Programming Guide
File System and the Registry (C# Programming Guide)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io

How to create a file or folder (C#
Programming Guide)
Article • 2021-09-15 • 3 minutes to read

You can programmatically create a folder on your computer, create a subfolder, create a
file in the subfolder, and write data to the file.

C#

Example

public class CreateFileOrFolder
{
 static void Main()
 {
 // Specify a name for your top-level folder.
 string folderName = @"c:\Top-Level Folder";

 // To create a string that specifies the path to a subfolder under
your
 // top-level folder, add a name for the subfolder to folderName.
 string pathString = System.IO.Path.Combine(folderName, "SubFolder");

 // You can write out the path name directly instead of using the
Combine
 // method. Combine just makes the process easier.
 string pathString2 = @"c:\Top-Level Folder\SubFolder2";

 // You can extend the depth of your path if you want to.
 //pathString = System.IO.Path.Combine(pathString, "SubSubFolder");

 // Create the subfolder. You can verify in File Explorer that you
have this
 // structure in the C: drive.
 // Local Disk (C:)
 // Top-Level Folder
 // SubFolder
 System.IO.Directory.CreateDirectory(pathString);

 // Create a file name for the file you want to create.
 string fileName = System.IO.Path.GetRandomFileName();

 // This example uses a random string for the name, but you also can
specify
 // a particular name.
 //string fileName = "MyNewFile.txt";

 // Use Combine again to add the file name to the path.

 pathString = System.IO.Path.Combine(pathString, fileName);

 // Verify the path that you have constructed.
 Console.WriteLine("Path to my file: {0}\n", pathString);

 // Check that the file doesn't already exist. If it doesn't exist,
create
 // the file and write integers 0 - 99 to it.
 // DANGER: System.IO.File.Create will overwrite the file if it
already exists.
 // This could happen even with random file names, although it is
unlikely.
 if (!System.IO.File.Exists(pathString))
 {
 using (System.IO.FileStream fs =
System.IO.File.Create(pathString))
 {
 for (byte i = 0; i < 100; i++)
 {
 fs.WriteByte(i);
 }
 }
 }
 else
 {
 Console.WriteLine("File \"{0}\" already exists.", fileName);
 return;
 }

 // Read and display the data from your file.
 try
 {
 byte[] readBuffer = System.IO.File.ReadAllBytes(pathString);
 foreach (byte b in readBuffer)
 {
 Console.Write(b + " ");
 }
 Console.WriteLine();
 }
 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 }

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
 // Sample output:

 // Path to my file: c:\Top-Level Folder\SubFolder\ttxvauxe.vv0

 //0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29
 //30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

If the folder already exists, CreateDirectory does nothing, and no exception is thrown.
However, File.Create replaces an existing file with a new file. The example uses an if -
else statement to prevent an existing file from being replaced.

By making the following changes in the example, you can specify different outcomes
based on whether a file with a certain name already exists. If such a file doesn't exist, the
code creates one. If such a file exists, the code appends data to that file.

Specify a non-random file name.

C#

Replace the if -else statement with the using statement in the following code.

C#

Run the example several times to verify that data is added to the file each time.

For more FileMode values that you can try, see FileMode.

The following conditions may cause an exception:

The folder name is malformed. For example, it contains illegal characters or is only
white space (ArgumentException class). Use the Path class to create valid path
names.

53 54 55 56
 // 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 8
 //3 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
}

// Comment out the following line.
//string fileName = System.IO.Path.GetRandomFileName();

// Replace that line with the following assignment.
string fileName = "MyNewFile.txt";

using (System.IO.FileStream fs = new System.IO.FileStream(pathString,
FileMode.Append))
{
 for (byte i = 0; i < 100; i++)
 {
 fs.WriteByte(i);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.io.directory.createdirectory
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.create
https://learn.microsoft.com/en-us/dotnet/api/system.io.filemode
https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.path

The parent folder of the folder to be created is read-only (IOException class).

The folder name is null (ArgumentNullException class).

The folder name is too long (PathTooLongException class).

The folder name is only a colon, ":" (PathTooLongException class).

An instance of the SecurityException class may be thrown in partial-trust situations.

If you don't have permission to create the folder, the example throws an instance of the
UnauthorizedAccessException class.

System.IO
C# Programming Guide
File System and the Registry (C# Programming Guide)

.NET Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.ioexception
https://learn.microsoft.com/en-us/dotnet/api/system.argumentnullexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.pathtoolongexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.pathtoolongexception
https://learn.microsoft.com/en-us/dotnet/api/system.security.securityexception
https://learn.microsoft.com/en-us/dotnet/api/system.unauthorizedaccessexception
https://learn.microsoft.com/en-us/dotnet/api/system.io

How to copy, delete, and move files and
folders (C# Programming Guide)
Article • 2021-09-15 • 3 minutes to read

The following examples show how to copy, move, and delete files and folders in a
synchronous manner by using the System.IO.File, System.IO.Directory, System.IO.FileInfo,
and System.IO.DirectoryInfo classes from the System.IO namespace. These examples do
not provide a progress bar or any other user interface. If you want to provide a standard
progress dialog box, see How to provide a progress dialog box for file operations.

Use System.IO.FileSystemWatcher to provide events that will enable you to calculate the
progress when operating on multiple files. Another approach is to use platform invoke
to call the relevant file-related methods in the Windows Shell. For information about
how to perform these file operations asynchronously, see Asynchronous File I/O.

The following example shows how to copy files and directories.

C#

Examples

// Simple synchronous file copy operations with no user interface.
// To run this sample, first create the following directories and files:
// C:\Users\Public\TestFolder
// C:\Users\Public\TestFolder\test.txt
// C:\Users\Public\TestFolder\SubDir\test.txt
public class SimpleFileCopy
{
 static void Main()
 {
 string fileName = "test.txt";
 string sourcePath = @"C:\Users\Public\TestFolder";
 string targetPath = @"C:\Users\Public\TestFolder\SubDir";

 // Use Path class to manipulate file and directory paths.
 string sourceFile = System.IO.Path.Combine(sourcePath, fileName);
 string destFile = System.IO.Path.Combine(targetPath, fileName);

 // To copy a folder's contents to a new location:
 // Create a new target folder.
 // If the directory already exists, this method does not create a
new directory.
 System.IO.Directory.CreateDirectory(targetPath);

 // To copy a file to another location and
 // overwrite the destination file if it already exists.

https://learn.microsoft.com/en-us/dotnet/api/system.io.file
https://learn.microsoft.com/en-us/dotnet/api/system.io.directory
https://learn.microsoft.com/en-us/dotnet/api/system.io.fileinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io.directoryinfo
https://learn.microsoft.com/en-us/dotnet/api/system.io
https://learn.microsoft.com/en-us/dotnet/api/system.io.filesystemwatcher
https://learn.microsoft.com/en-ca/dotnet/standard/io/asynchronous-file-i-o

The following example shows how to move files and directories.

C#

 System.IO.File.Copy(sourceFile, destFile, true);

 // To copy all the files in one directory to another directory.
 // Get the files in the source folder. (To recursively iterate
through
 // all subfolders under the current directory, see
 // "How to: Iterate Through a Directory Tree.")
 // Note: Check for target path was performed previously
 // in this code example.
 if (System.IO.Directory.Exists(sourcePath))
 {
 string[] files = System.IO.Directory.GetFiles(sourcePath);

 // Copy the files and overwrite destination files if they
already exist.
 foreach (string s in files)
 {
 // Use static Path methods to extract only the file name
from the path.
 fileName = System.IO.Path.GetFileName(s);
 destFile = System.IO.Path.Combine(targetPath, fileName);
 System.IO.File.Copy(s, destFile, true);
 }
 }
 else
 {
 Console.WriteLine("Source path does not exist!");
 }

 // Keep console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

// Simple synchronous file move operations with no user interface.
public class SimpleFileMove
{
 static void Main()
 {
 string sourceFile = @"C:\Users\Public\public\test.txt";
 string destinationFile = @"C:\Users\Public\private\test.txt";

 // To move a file or folder to a new location:
 System.IO.File.Move(sourceFile, destinationFile);

 // To move an entire directory. To programmatically modify or
combine
 // path strings, use the System.IO.Path class.

The following example shows how to delete files and directories.

C#

 System.IO.Directory.Move(@"C:\Users\Public\public\test\",
@"C:\Users\Public\private");
 }
}

// Simple synchronous file deletion operations with no user interface.
// To run this sample, create the following files on your drive:
// C:\Users\Public\DeleteTest\test1.txt
// C:\Users\Public\DeleteTest\test2.txt
// C:\Users\Public\DeleteTest\SubDir\test2.txt

public class SimpleFileDelete
{
 static void Main()
 {
 // Delete a file by using File class static method...
 if(System.IO.File.Exists(@"C:\Users\Public\DeleteTest\test.txt"))
 {
 // Use a try block to catch IOExceptions, to
 // handle the case of the file already being
 // opened by another process.
 try
 {

System.IO.File.Delete(@"C:\Users\Public\DeleteTest\test.txt");
 }
 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 return;
 }
 }

 // ...or by using FileInfo instance method.
 System.IO.FileInfo fi = new
System.IO.FileInfo(@"C:\Users\Public\DeleteTest\test2.txt");
 try
 {
 fi.Delete();
 }
 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 }

 // Delete a directory. Must be writable or empty.
 try
 {
 System.IO.Directory.Delete(@"C:\Users\Public\DeleteTest");

System.IO
C# Programming Guide
File System and the Registry (C# Programming Guide)
How to provide a progress dialog box for file operations
File and Stream I/O
Common I/O Tasks

 }
 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 }
 // Delete a directory and all subdirectories with Directory static
method...
 if(System.IO.Directory.Exists(@"C:\Users\Public\DeleteTest"))
 {
 try
 {
 System.IO.Directory.Delete(@"C:\Users\Public\DeleteTest",
true);
 }

 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 }
 }

 // ...or with DirectoryInfo instance method.
 System.IO.DirectoryInfo di = new
System.IO.DirectoryInfo(@"C:\Users\Public\public");
 // Delete this dir and all subdirs.
 try
 {
 di.Delete(true);
 }
 catch (System.IO.IOException e)
 {
 Console.WriteLine(e.Message);
 }
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io
https://learn.microsoft.com/en-ca/dotnet/standard/io/
https://learn.microsoft.com/en-ca/dotnet/standard/io/common-i-o-tasks

How to provide a progress dialog box
for file operations (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

You can provide a standard dialog box that shows progress on file operations in
Windows if you use the CopyFile(String, String, UIOption) method in the
Microsoft.VisualBasic namespace.

1. On the menu bar, choose Project, Add Reference.

The Reference Manager dialog box appears.

2. In the Assemblies area, choose Framework if it isn’t already chosen.

3. In the list of names, select the Microsoft.VisualBasic check box, and then choose
the OK button to close the dialog box.

The following code copies the directory that sourcePath specifies into the directory that
destinationPath specifies. This code also provides a standard dialog box that shows the
estimated amount of time remaining before the operation finishes.

C#

７ Note

Your computer might show different names or locations for some of the Visual
Studio user interface elements in the following instructions. The Visual Studio
edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

To add a reference in Visual Studio

Example

// The following using directive requires a project reference to
Microsoft.VisualBasic.
using Microsoft.VisualBasic.FileIO;

class FileProgress

https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.fileio.filesystem.copyfile#microsoft-visualbasic-fileio-filesystem-copyfile(system-string-system-string-microsoft-visualbasic-fileio-uioption)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualbasic
https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

File System and the Registry (C# Programming Guide)

{
 static void Main()
 {
 // Specify the path to a folder that you want to copy. If the folder
is small,
 // you won't have time to see the progress dialog box.
 string sourcePath = @"C:\Windows\symbols\";
 // Choose a destination for the copied files.
 string destinationPath = @"C:\TestFolder";

 FileSystem.CopyDirectory(sourcePath, destinationPath,
 UIOption.AllDialogs);
 }
}

See also

How to write to a text file (C#
Programming Guide)
Article • 2022-11-03 • 2 minutes to read

In this article, there are several examples showing various ways to write text to a file. The
first two examples use static convenience methods on the System.IO.File class to write
each element of any IEnumerable<string> and a string to a text file. The third example
shows how to add text to a file when you have to process each line individually as you
write to the file. In the first three examples, you overwrite all existing content in the file.
The final example shows how to append text to an existing file.

These examples all write string literals to files. If you want to format text written to a file,
use the Format method or C# string interpolation feature.

C#

The preceding source code example:

Instantiates a string array with three values.

Awaits a call to File.WriteAllLinesAsync which:
Asynchronously creates a file name WriteLines.txt. If the file already exists, it is
overwritten.
Writes the given lines to the file.
Closes the file, automatically flushing and disposing as needed.

Write a collection of strings to a file

class WriteAllLines
{
 public static async Task ExampleAsync()
 {
 string[] lines =
 {
 "First line", "Second line", "Third line"
 };

 await File.WriteAllLinesAsync("WriteLines.txt", lines);
 }
}

Write one string to a file

https://learn.microsoft.com/en-us/dotnet/api/system.io.file
https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.writealllinesasync

C#

The preceding source code example:

Instantiates a string given the assigned string literal.

Awaits a call to File.WriteAllTextAsync which:
Asynchronously creates a file name WriteText.txt. If the file already exists, it is
overwritten.
Writes the given text to the file.
Closes the file, automatically flushing and disposing as needed.

C#

The preceding source code example:

class WriteAllText
{
 public static async Task ExampleAsync()
 {
 string text =
 "A class is the most powerful data type in C#. Like a structure,
" +
 "a class defines the data and behavior of the data type. ";

 await File.WriteAllTextAsync("WriteText.txt", text);
 }
}

Write selected strings from an array to a file

class StreamWriterOne
{
 public static async Task ExampleAsync()
 {
 string[] lines = { "First line", "Second line", "Third line" };
 using StreamWriter file = new("WriteLines2.txt");

 foreach (string line in lines)
 {
 if (!line.Contains("Second"))
 {
 await file.WriteLineAsync(line);
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.io.file.writealltextasync

Instantiates a string array with three values.
Instantiates a StreamWriter with a file path of WriteLines2.txt as a using declaration.
Iterates through all the lines.
Conditionally awaits a call to StreamWriter.WriteLineAsync(String), which writes the
line to the file when the line doesn't contain "Second" .

C#

The preceding source code example:

Instantiates a string array with three values.
Instantiates a StreamWriter with a file path of WriteLines2.txt as a using declaration,
passing in true to append.
Awaits a call to StreamWriter.WriteLineAsync(String), which writes the string to the
file as an appended line.

The following conditions may cause an exception:

InvalidOperationException: The file exists and is read-only.
PathTooLongException: The path name may be too long.
IOException: The disk may be full.

There are additional conditions that may cause exceptions when working with the file
system, it is best to program defensively.

C# Programming Guide
File System and the Registry (C# Programming Guide)

Append text to an existing file

class StreamWriterTwo
{
 public static async Task ExampleAsync()
 {
 using StreamWriter file = new("WriteLines2.txt", append: true);
 await file.WriteLineAsync("Fourth line");
 }
}

Exceptions

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter.writelineasync#system-io-streamwriter-writelineasync(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamwriter.writelineasync#system-io-streamwriter-writelineasync(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.pathtoolongexception
https://learn.microsoft.com/en-us/dotnet/api/system.io.ioexception

How to read from a text file (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

This example reads the contents of a text file by using the static methods ReadAllText
and ReadAllLines from the System.IO.File class.

For an example that uses StreamReader, see How to read a text file one line at a time.

C#

７ Note

The files that are used in this example are created in the topic How to write to a
text file.

Example

class ReadFromFile
{
 static void Main()
 {
 // The files used in this example are created in the topic
 // How to: Write to a Text File. You can change the path and
 // file name to substitute text files of your own.

 // Example #1
 // Read the file as one string.
 string text =
System.IO.File.ReadAllText(@"C:\Users\Public\TestFolder\WriteText.txt");

 // Display the file contents to the console. Variable text is a
string.
 System.Console.WriteLine("Contents of WriteText.txt = {0}", text);

 // Example #2
 // Read each line of the file into a string array. Each element
 // of the array is one line of the file.
 string[] lines =
System.IO.File.ReadAllLines(@"C:\Users\Public\TestFolder\WriteLines2.txt");

 // Display the file contents by using a foreach loop.
 System.Console.WriteLine("Contents of WriteLines2.txt = ");
 foreach (string line in lines)
 {
 // Use a tab to indent each line of the file.

https://learn.microsoft.com/en-us/dotnet/api/system.io.file.readalltext
https://learn.microsoft.com/en-us/dotnet/api/system.io.file.readalllines
https://learn.microsoft.com/en-us/dotnet/api/system.io.file
https://learn.microsoft.com/en-us/dotnet/api/system.io.streamreader

Copy the code and paste it into a C# console application.

If you are not using the text files from How to write to a text file, replace the argument
to ReadAllText and ReadAllLines with the appropriate path and file name on your
computer.

The following conditions may cause an exception:

The file doesn't exist or doesn't exist at the specified location. Check the path and
the spelling of the file name.

Do not rely on the name of a file to determine the contents of the file. For example, the
file myFile.cs might not be a C# source file.

System.IO
C# Programming Guide
File System and the Registry (C# Programming Guide)

 Console.WriteLine("\t" + line);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
}

Compiling the Code

Robust Programming

.NET Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io

How to read a text file one line at a time
(C# Programming Guide)
Article • 2021-11-06 • 2 minutes to read

This example reads the contents of a text file, one line at a time, into a string using the
ReadLines method of the File class. Each text line is stored into the string line and
displayed on the screen.

C#

Copy the code and paste it into the Main method of a console application.

Replace "c:\test.txt" with the actual file name.

The following conditions may cause an exception:

The file may not exist.

Example

int counter = 0;

// Read the file and display it line by line.
foreach (string line in System.IO.File.ReadLines(@"c:\test.txt"))
{
 System.Console.WriteLine(line);
 counter++;
}

System.Console.WriteLine("There were {0} lines.", counter);
// Suspend the screen.
System.Console.ReadLine();

Compiling the Code

Robust Programming

.NET Security

Do not make decisions about the contents of the file based on the name of the file. For
example, the file myFile.cs may not be a C# source file.

System.IO
C# Programming Guide
File System and the Registry (C# Programming Guide)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io

How to create a key in the registry (C#
Programming Guide)
Article • 2021-09-15 • 2 minutes to read

This example adds the value pair, "Name" and "Isabella", to the current user's registry,
under the key "Names".

C#

Copy the code and paste it into the Main method of a console application.

Replace the Names parameter with the name of a key that exists directly under the
HKEY_CURRENT_USER node of the registry.

Replace the Name parameter with the name of a value that exists directly under the
Names node.

Examine the registry structure to find a suitable location for your key. For example, you
might want to open the Software key of the current user, and create a key with your
company's name. Then add the registry values to your company's key.

The following conditions might cause an exception:

The name of the key is null.

The user does not have permissions to create registry keys.

The key name exceeds the 255-character limit.

The key is closed.

Example

Microsoft.Win32.RegistryKey key;
key = Microsoft.Win32.Registry.CurrentUser.CreateSubKey("Names");
key.SetValue("Name", "Isabella");
key.Close();

Compiling the Code

Robust Programming

The registry key is read-only.

It is more secure to write data to the user folder —
Microsoft.Win32.Registry.CurrentUser — rather than to the local computer —
Microsoft.Win32.Registry.LocalMachine .

When you create a registry value, you need to decide what to do if that value already
exists. Another process, perhaps a malicious one, may have already created the value
and have access to it. When you put data in the registry value, the data is available to
the other process. To prevent this, use
the.Overload:Microsoft.Win32.RegistryKey.GetValue method. It returns null if the key
does not already exist.

It is not secure to store secrets, such as passwords, in the registry as plain text, even if
the registry key is protected by access control lists (ACL).

System.IO
C# Programming Guide
File System and the Registry (C# Programming Guide)
Read, write and delete from the registry with C#

.NET Security

See also

https://learn.microsoft.com/en-us/dotnet/api/system.io
https://www.codeproject.com/Articles/3389/Read-write-and-delete-from-registry-with-C

Interoperability (C# Programming
Guide)
Article • 2022-01-12 • 2 minutes to read

Interoperability enables you to preserve and take advantage of existing investments in
unmanaged code. Code that runs under the control of the common language runtime
(CLR) is called managed code, and code that runs outside the CLR is called unmanaged
code. COM, COM+, C++ components, ActiveX components, and Microsoft Windows API
are examples of unmanaged code.

.NET enables interoperability with unmanaged code through platform invoke services,
the System.Runtime.InteropServices namespace, C++ interoperability, and COM
interoperability (COM interop).

Interoperability Overview
Describes methods to interoperate between C# managed code and unmanaged code.

How to access Office interop objects by using C# features
Describes features that are introduced in Visual C# to facilitate Office programming.

How to use indexed properties in COM interop programming
Describes how to use indexed properties to access COM properties that have
parameters.

How to use platform invoke to play a WAV file
Describes how to use platform invoke services to play a .wav sound file on the Windows
operating system.

Walkthrough: Office Programming
Shows how to create an Excel workbook and a Word document that contains a link to
the workbook.

Example COM Class
Demonstrates how to expose a C# class as a COM object.

In This Section

C# Language Specification

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices

For more information, see Unsafe code in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

Marshal.ReleaseComObject
C# Programming Guide
Interoperating with Unmanaged Code
Walkthrough: Office Programming

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.releasecomobject
https://learn.microsoft.com/en-ca/dotnet/framework/interop/

Interoperability Overview (C#
Programming Guide)
Article • 2022-03-11 • 3 minutes to read

The topic describes methods to enable interoperability between C# managed code and
unmanaged code.

Platform invoke is a service that enables managed code to call unmanaged functions
that are implemented in dynamic link libraries (DLLs), such as those in the Microsoft
Windows API. It locates and invokes an exported function and marshals its arguments
(integers, strings, arrays, structures, and so on) across the interoperation boundary as
needed.

For more information, see Consuming Unmanaged DLL Functions and How to use
platform invoke to play a WAV file.

You can use C++ interop, also known as It Just Works (IJW), to wrap a native C++ class
so that it can be consumed by code that is authored in C# or another .NET language. To
do this, you write C++ code to wrap a native DLL or COM component. Unlike other .NET
languages, Visual C++ has interoperability support that enables managed and
unmanaged code to be located in the same application and even in the same file. You
then build the C++ code by using the /clr compiler switch to produce a managed
assembly. Finally, you add a reference to the assembly in your C# project and use the
wrapped objects just as you would use other managed classes.

Platform Invoke

７ Note

The Common Language Runtime (CLR) manages access to system resources.
Calling unmanaged code that is outside the CLR bypasses this security mechanism,
and therefore presents a security risk. For example, unmanaged code might call
resources in unmanaged code directly, bypassing CLR security mechanisms. For
more information, see Security in .NET.

C++ Interop

https://learn.microsoft.com/en-ca/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://learn.microsoft.com/en-ca/dotnet/standard/clr
https://learn.microsoft.com/en-ca/dotnet/standard/security/

You can consume a COM component from a C# project. The general steps are as
follows:

1. Locate a COM component to use and register it. Use regsvr32.exe to register or
un–register a COM DLL.

2. Add to the project a reference to the COM component or type library.

When you add the reference, Visual Studio uses the Tlbimp.exe (Type Library
Importer), which takes a type library as input, to output a .NET interop assembly.
The assembly, also named a runtime callable wrapper (RCW), contains managed
classes and interfaces that wrap the COM classes and interfaces that are in the type
library. Visual Studio adds to the project a reference to the generated assembly.

3. Create an instance of a class that is defined in the RCW. This, in turn, creates an
instance of the COM object.

4. Use the object just as you use other managed objects. When the object is
reclaimed by garbage collection, the instance of the COM object is also released
from memory.

For more information, see Exposing COM Components to the .NET Framework.

COM clients can consume C# types that have been correctly exposed. The basic steps to
expose C# types are as follows:

1. Add interop attributes in the C# project.

You can make an assembly COM visible by modifying Visual C# project properties.
For more information, see Assembly Information Dialog Box.

2. Generate a COM type library and register it for COM usage.

You can modify Visual C# project properties to automatically register the C#
assembly for COM interop. Visual Studio uses the Regasm.exe (Assembly
Registration Tool), using the /tlb command-line switch, which takes a managed
assembly as input, to generate a type library. This type library describes the public
types in the assembly and adds registry entries so that COM clients can create
managed classes.

Exposing COM Components to C#

Exposing C# to COM

https://learn.microsoft.com/en-ca/dotnet/framework/tools/tlbimp-exe-type-library-importer
https://learn.microsoft.com/en-ca/dotnet/framework/interop/exposing-com-components
https://learn.microsoft.com/en-us/visualstudio/ide/reference/assembly-information-dialog-box
https://learn.microsoft.com/en-ca/dotnet/framework/tools/regasm-exe-assembly-registration-tool

For more information, see Exposing .NET Framework Components to COM and Example
COM Class.

Improving Interop Performance
Introduction to Interoperability between COM and .NET
Introduction to COM Interop in Visual Basic
Marshalling between Managed and Unmanaged Code
Interoperating with Unmanaged Code
C# Programming Guide

See also

https://learn.microsoft.com/en-ca/dotnet/framework/interop/exposing-dotnet-components-to-com
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff647812(v=pandp.10)
https://learn.microsoft.com/en-us/office/client-developer/outlook/pia/introduction-to-interoperability-between-com-and-net
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/com-interop/introduction-to-com-interop
https://learn.microsoft.com/en-ca/dotnet/framework/interop/interop-marshalling
https://learn.microsoft.com/en-ca/dotnet/framework/interop/

How to access Office interop objects (C#
Programming Guide)
Article • 2022-09-29 • 10 minutes to read

C# has features that simplify access to Office API objects. The new features include
named and optional arguments, a new type called dynamic , and the ability to pass
arguments to reference parameters in COM methods as if they were value parameters.

In this topic you will use the new features to write code that creates and displays a
Microsoft Office Excel worksheet. You will then write code to add an Office Word
document that contains an icon that is linked to the Excel worksheet.

To complete this walkthrough, you must have Microsoft Office Excel 2007 and Microsoft
Office Word 2007, or later versions, installed on your computer.

1. Start Visual Studio.

2. On the File menu, point to New, and then click Project. The New Project dialog
box appears.

3. In the Installed Templates pane, expand Visual C#, and then click Windows.

4. Look at the top of the New Project dialog box to make sure that .NET Framework
4 (or later version) is selected as a target framework.

5. In the Templates pane, click Console Application.

6. Type a name for your project in the Name field.

7. Click OK.

The new project appears in Solution Explorer.

７ Note

Your computer might show different names or locations for some of the Visual
Studio user interface elements in the following instructions. The Visual Studio
edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

To create a new console application

https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

1. In Solution Explorer, right-click your project's name and then click Add Reference.
The Add Reference dialog box appears.

2. On the Assemblies page, select Microsoft.Office.Interop.Word in the Component
Name list, and then hold down the CTRL key and select
Microsoft.Office.Interop.Excel. If you do not see the assemblies, you may need to
ensure they are installed and displayed. See How to: Install Office Primary Interop
Assemblies.

3. Click OK.

1. In Solution Explorer, right-click the Program.cs file and then click View Code.

2. Add the following using directives to the top of the code file:

C#

1. Paste the following class definition into Program.cs, under the Program class.

C#

2. Add the following code to the Main method to create a bankAccounts list that
contains two accounts.

C#

To add references

To add necessary using directives

using Excel = Microsoft.Office.Interop.Excel;
using Word = Microsoft.Office.Interop.Word;

To create a list of bank accounts

public class Account
{
 public int ID { get; set; }
 public double Balance { get; set; }
}

// Create a list of accounts.
var bankAccounts = new List<Account> {
 new Account {

https://learn.microsoft.com/en-us/visualstudio/vsto/how-to-install-office-primary-interop-assemblies

1. Add the following method to the Program class to set up an Excel worksheet.

Method Add has an optional parameter for specifying a particular template.
Optional parameters enable you to omit the argument for that parameter if you
want to use the parameter's default value. Because no argument is sent in the
following code, Add uses the default template and creates a new workbook. The
equivalent statement in earlier versions of C# requires a placeholder argument:
ExcelApp.Workbooks.Add(Type.Missing) .

C#

2. Add the following code at the end of DisplayInExcel . The code inserts values into
the first two columns of the first row of the worksheet.

 ID = 345678,
 Balance = 541.27
 },
 new Account {
 ID = 1230221,
 Balance = -127.44
 }
};

To declare a method that exports account
information to Excel

static void DisplayInExcel(IEnumerable<Account> accounts)
{
 var excelApp = new Excel.Application();
 // Make the object visible.
 excelApp.Visible = true;

 // Create a new, empty workbook and add it to the collection
returned
 // by property Workbooks. The new workbook becomes the active
workbook.
 // Add has an optional parameter for specifying a particular
template.
 // Because no argument is sent in this example, Add creates a new
workbook.
 excelApp.Workbooks.Add();

 // This example uses a single workSheet. The explicit type casting
is
 // removed in a later procedure.
 Excel._Worksheet workSheet = (Excel.Worksheet)excelApp.ActiveSheet;
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.workbooks.add

C#

3. Add the following code at the end of DisplayInExcel . The foreach loop puts the
information from the list of accounts into the first two columns of successive rows
of the worksheet.

C#

4. Add the following code at the end of DisplayInExcel to adjust the column widths
to fit the content.

C#

Earlier versions of C# require explicit casting for these operations because
ExcelApp.Columns[1] returns an Object , and AutoFit is an Excel Range method.
The following lines show the casting.

C#

C# converts the returned Object to dynamic automatically if the assembly is
referenced by the EmbedInteropTypes compiler option or, equivalently, if the Excel
Embed Interop Types property is set to true. True is the default value for this
property.

// Establish column headings in cells A1 and B1.
workSheet.Cells[1, "A"] = "ID Number";
workSheet.Cells[1, "B"] = "Current Balance";

var row = 1;
foreach (var acct in accounts)
{
 row++;
 workSheet.Cells[row, "A"] = acct.ID;
 workSheet.Cells[row, "B"] = acct.Balance;
}

workSheet.Columns[1].AutoFit();
workSheet.Columns[2].AutoFit();

((Excel.Range)workSheet.Columns[1]).AutoFit();
((Excel.Range)workSheet.Columns[2]).AutoFit();

To run the project

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range

1. Add the following line at the end of Main .

C#

2. Press CTRL+F5.

An Excel worksheet appears that contains the data from the two accounts.

1. To illustrate additional ways in which C# enhances Office programming, the
following code opens a Word application and creates an icon that links to the Excel
worksheet.

Paste method CreateIconInWordDoc , provided later in this step, into the Program
class. CreateIconInWordDoc uses named and optional arguments to reduce the
complexity of the method calls to Add and PasteSpecial. These calls incorporate
two other features that simplify calls to COM methods that have reference
parameters. First, you can send arguments to the reference parameters as if they
were value parameters. That is, you can send values directly, without creating a
variable for each reference parameter. The compiler generates temporary variables
to hold the argument values, and discards the variables when you return from the
call. Second, you can omit the ref keyword in the argument list.

The Add method has four reference parameters, all of which are optional. You can
omit arguments for any or all of the parameters if you want to use their default
values.

The PasteSpecial method inserts the contents of the Clipboard. The method has
seven reference parameters, all of which are optional. The following code specifies
arguments for two of them: Link , to create a link to the source of the Clipboard
contents, and DisplayAsIcon , to display the link as an icon. You can use named
arguments for those two and omit the others. Although these are reference
parameters, you do not have to use the ref keyword, or to create variables to
send in as arguments. You can send the values directly.

C#

// Display the list in an Excel spreadsheet.
DisplayInExcel(bankAccounts);

To add a Word document

static void CreateIconInWordDoc()
{

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word.documents.add
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word.selection.pastespecial

2. Add the following statement at the end of Main .

C#

3. Add the following statement at the end of DisplayInExcel . The Copy method adds
the worksheet to the Clipboard.

C#

4. Press CTRL+F5.

A Word document appears that contains an icon. Double-click the icon to bring
the worksheet to the foreground.

1. Additional enhancements are possible when you call a COM type that does not
require a primary interop assembly (PIA) at run time. Removing the dependency on
PIAs results in version independence and easier deployment. For more information

 var wordApp = new Word.Application();
 wordApp.Visible = true;

 // The Add method has four reference parameters, all of which are
 // optional. Visual C# allows you to omit arguments for them if
 // the default values are what you want.
 wordApp.Documents.Add();

 // PasteSpecial has seven reference parameters, all of which are
 // optional. This example uses named arguments to specify values
 // for two of the parameters. Although these are reference
 // parameters, you do not need to use the ref keyword, or to create
 // variables to send in as arguments. You can send the values
directly.
 wordApp.Selection.PasteSpecial(Link: true, DisplayAsIcon: true);
}

// Create a Word document that contains an icon that links to
// the spreadsheet.
CreateIconInWordDoc();

// Put the spreadsheet contents on the clipboard. The Copy method has
one
// optional parameter for specifying a destination. Because no argument
// is sent, the destination is the Clipboard.
workSheet.Range["A1:B3"].Copy();

To set the Embed Interop Types property

about the advantages of programming without PIAs, see Walkthrough: Embedding
Types from Managed Assemblies.

In addition, programming is easier because the types that are required and
returned by COM methods can be represented by using the type dynamic instead
of Object . Variables that have type dynamic are not evaluated until run time, which
eliminates the need for explicit casting. For more information, see Using Type
dynamic.

Embedding type information instead of using PIAs is default behavior. Because of
that default, several of the previous examples are simplified because explicit
casting is not required. For example, the declaration of worksheet in
DisplayInExcel is written as Excel._Worksheet workSheet = excelApp.ActiveSheet
rather than Excel._Worksheet workSheet = (Excel.Worksheet)excelApp.ActiveSheet .
The calls to AutoFit in the same method also would require explicit casting
without the default, because ExcelApp.Columns[1] returns an Object , and AutoFit
is an Excel method. The following code shows the casting.

C#

2. To change the default and use PIAs instead of embedding type information,
expand the References node in Solution Explorer and then select
Microsoft.Office.Interop.Excel or Microsoft.Office.Interop.Word.

3. If you cannot see the Properties window, press F4.

4. Find Embed Interop Types in the list of properties, and change its value to False.
Equivalently, you can compile by using the References compiler option instead of
EmbedInteropTypes at a command prompt.

1. Replace the two calls to AutoFit in DisplayInExcel with the following statement.

C#

((Excel.Range)workSheet.Columns[1]).AutoFit();
((Excel.Range)workSheet.Columns[2]).AutoFit();

To add additional formatting to the table

// Call to AutoFormat in Visual C# 2010.
workSheet.Range["A1", "B3"].AutoFormat(
 Excel.XlRangeAutoFormat.xlRangeAutoFormatClassic2);

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/embed-types-visual-studio

The AutoFormat method has seven value parameters, all of which are optional.
Named and optional arguments enable you to provide arguments for none, some,
or all of them. In the previous statement, an argument is supplied for only one of
the parameters, Format . Because Format is the first parameter in the parameter list,
you do not have to provide the parameter name. However, the statement might be
easier to understand if the parameter name is included, as is shown in the
following code.

C#

2. Press CTRL+F5 to see the result. Other formats are listed in the
XlRangeAutoFormat enumeration.

The following code shows the complete example.

C#

// Call to AutoFormat in Visual C# 2010.
workSheet.Range["A1", "B3"].AutoFormat(Format:
 Excel.XlRangeAutoFormat.xlRangeAutoFormatClassic2);

Example

using System;
using System.Collections.Generic;
using System.Linq;
using Excel = Microsoft.Office.Interop.Excel;
using Word = Microsoft.Office.Interop.Word;

namespace OfficeProgramminWalkthruComplete
{
 class Walkthrough
 {
 static void Main(string[] args)
 {
 // Create a list of accounts.
 var bankAccounts = new List<Account>
 {
 new Account {
 ID = 345678,
 Balance = 541.27
 },
 new Account {
 ID = 1230221,
 Balance = -127.44
 }
 };

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range.autoformat
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.xlrangeautoformat

 // Display the list in an Excel spreadsheet.
 DisplayInExcel(bankAccounts);

 // Create a Word document that contains an icon that links to
 // the spreadsheet.
 CreateIconInWordDoc();
 }

 static void DisplayInExcel(IEnumerable<Account> accounts)
 {
 var excelApp = new Excel.Application();
 // Make the object visible.
 excelApp.Visible = true;

 // Create a new, empty workbook and add it to the collection
returned
 // by property Workbooks. The new workbook becomes the active
workbook.
 // Add has an optional parameter for specifying a praticular
template.
 // Because no argument is sent in this example, Add creates a
new workbook.
 excelApp.Workbooks.Add();

 // This example uses a single workSheet.
 Excel._Worksheet workSheet = excelApp.ActiveSheet;

 // Earlier versions of C# require explicit casting.
 //Excel._Worksheet workSheet =
(Excel.Worksheet)excelApp.ActiveSheet;

 // Establish column headings in cells A1 and B1.
 workSheet.Cells[1, "A"] = "ID Number";
 workSheet.Cells[1, "B"] = "Current Balance";

 var row = 1;
 foreach (var acct in accounts)
 {
 row++;
 workSheet.Cells[row, "A"] = acct.ID;
 workSheet.Cells[row, "B"] = acct.Balance;
 }

 workSheet.Columns[1].AutoFit();
 workSheet.Columns[2].AutoFit();

 // Call to AutoFormat in Visual C#. This statement replaces the
 // two calls to AutoFit.
 workSheet.Range["A1", "B3"].AutoFormat(
 Excel.XlRangeAutoFormat.xlRangeAutoFormatClassic2);

 // Put the spreadsheet contents on the clipboard. The Copy
method has one
 // optional parameter for specifying a destination. Because no
argument

Type.Missing
dynamic
Using Type dynamic
Named and Optional Arguments
How to use named and optional arguments in Office programming

 // is sent, the destination is the Clipboard.
 workSheet.Range["A1:B3"].Copy();
 }

 static void CreateIconInWordDoc()
 {
 var wordApp = new Word.Application();
 wordApp.Visible = true;

 // The Add method has four reference parameters, all of which
are
 // optional. Visual C# allows you to omit arguments for them if
 // the default values are what you want.
 wordApp.Documents.Add();

 // PasteSpecial has seven reference parameters, all of which are
 // optional. This example uses named arguments to specify values
 // for two of the parameters. Although these are reference
 // parameters, you do not need to use the ref keyword, or to
create
 // variables to send in as arguments. You can send the values
directly.
 wordApp.Selection.PasteSpecial(Link: true, DisplayAsIcon: true);
 }
 }

 public class Account
 {
 public int ID { get; set; }
 public double Balance { get; set; }
 }
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.type.missing

How to use indexed properties in COM
interop programming (C# Programming
Guide)
Article • 2022-09-29 • 2 minutes to read

Indexed properties improve the way in which COM properties that have parameters are
consumed in C# programming. Indexed properties work together with other features in
Visual C#, such as named and optional arguments, a new type (dynamic), and
embedded type information, to enhance Microsoft Office programming.

In earlier versions of C#, methods are accessible as properties only if the get method
has no parameters and the set method has one and only one value parameter.
However, not all COM properties meet those restrictions. For example, the Excel Range[]
property has a get accessor that requires a parameter for the name of the range. In the
past, because you could not access the Range property directly, you had to use the
get_Range method instead, as shown in the following example.

C#

Indexed properties enable you to write the following instead:

C#

The previous example also uses the optional arguments feature, which enables you to
omit Type.Missing .

Indexed properties enable you to write the following code.

C#

// Visual C# 2008 and earlier.
var excelApp = new Excel.Application();
// . . .
Excel.Range targetRange = excelApp.get_Range("A1", Type.Missing);

// Visual C# 2010.
var excelApp = new Excel.Application();
// . . .
Excel.Range targetRange = excelApp.Range["A1"];

// Visual C# 2010.
targetRange.Value = "Name";

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/embed-types-visual-studio
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range.range

You cannot create indexed properties of your own. The feature only supports
consumption of existing indexed properties.

The following code shows a complete example. For more information about how to set
up a project that accesses the Office API, see How to access Office interop objects by
using C# features.

C#

Example

// You must add a reference to Microsoft.Office.Interop.Excel to run
// this example.
using System;
using Excel = Microsoft.Office.Interop.Excel;

namespace IndexedProperties
{
 class Program
 {
 static void Main(string[] args)
 {
 CSharp2010();
 }

 static void CSharp2010()
 {
 var excelApp = new Excel.Application();
 excelApp.Workbooks.Add();
 excelApp.Visible = true;

 Excel.Range targetRange = excelApp.Range["A1"];
 targetRange.Value = "Name";
 }

 static void CSharp2008()
 {
 var excelApp = new Excel.Application();
 excelApp.Workbooks.Add(Type.Missing);
 excelApp.Visible = true;

 Excel.Range targetRange = excelApp.get_Range("A1",
Type.Missing);
 targetRange.set_Value(Type.Missing, "Name");
 // Or
 //targetRange.Value2 = "Name";
 }
 }
}

Named and Optional Arguments
dynamic
Using Type dynamic
How to use named and optional arguments in Office programming
How to access Office interop objects by using C# features
Walkthrough: Office Programming

See also

How to use platform invoke to play a
WAV file (C# Programming Guide)
Article • 2022-03-11 • 2 minutes to read

The following C# code example illustrates how to use platform invoke services to play a
WAV sound file on the Windows operating system.

This example code uses DllImportAttribute to import winmm.dll 's PlaySound method
entry point as Form1 PlaySound() . The example has a simple Windows Form with a
button. Clicking the button opens a standard windows OpenFileDialog dialog box so
that you can open a file to play. When a wave file is selected, it is played by using the
PlaySound() method of the winmm.dll library. For more information about this method,
see Using the PlaySound function with Waveform-Audio Files. Browse and select a file
that has a .wav extension, and then click Open to play the wave file by using platform
invoke. A text box shows the full path of the file selected.

The Open Files dialog box is filtered to show only files that have a .wav extension
through the filter settings:

C#

C#

Example

dialog1.Filter = "Wav Files (*.wav)|*.wav";

using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace WinSound
{
 public partial class Form1 : Form
 {
 private TextBox textBox1;
 private Button button1;

 public Form1() // Constructor.
 {
 InitializeComponent();
 }

 [DllImport("winmm.DLL", EntryPoint = "PlaySound", SetLastError =
true, CharSet = CharSet.Unicode, ThrowOnUnmappableChar = true)]

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.openfiledialog
https://learn.microsoft.com/en-us/windows/desktop/multimedia/using-playsound-to-play-waveform-audio-files

1. Create a new C# Windows Forms Application project in Visual Studio and name it
WinSound.

2. Copy the code above, and paste it over the contents of the Form1.cs file.

 private static extern bool PlaySound(string szSound, System.IntPtr
hMod, PlaySoundFlags flags);

 [System.Flags]
 public enum PlaySoundFlags : int
 {
 SND_SYNC = 0x0000,
 SND_ASYNC = 0x0001,
 SND_NODEFAULT = 0x0002,
 SND_LOOP = 0x0008,
 SND_NOSTOP = 0x0010,
 SND_NOWAIT = 0x00002000,
 SND_FILENAME = 0x00020000,
 SND_RESOURCE = 0x00040004
 }

 private void button1_Click(object sender, System.EventArgs e)
 {
 var dialog1 = new OpenFileDialog();

 dialog1.Title = "Browse to find sound file to play";
 dialog1.InitialDirectory = @"c:\";
 dialog1.Filter = "Wav Files (*.wav)|*.wav";
 dialog1.FilterIndex = 2;
 dialog1.RestoreDirectory = true;

 if (dialog1.ShowDialog() == DialogResult.OK)
 {
 textBox1.Text = dialog1.FileName;
 PlaySound(dialog1.FileName, new System.IntPtr(),
PlaySoundFlags.SND_SYNC);
 }
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 // Including this empty method in the sample because in the IDE,
 // when users click on the form, generates code that looks for a
default method
 // with this name. We add it here to prevent confusion for those
using the samples.
 }
 }
}

Compiling the code

3. Copy the following code, and paste it in the Form1.Designer.cs file, in the
InitializeComponent() method, after any existing code.

C#

4. Compile and run the code.

C# Programming Guide
Interoperability Overview
A Closer Look at Platform Invoke
Marshalling Data with Platform Invoke

this.button1 = new System.Windows.Forms.Button();
this.textBox1 = new System.Windows.Forms.TextBox();
this.SuspendLayout();
//
// button1
//
this.button1.Location = new System.Drawing.Point(192, 40);
this.button1.Name = "button1";
this.button1.Size = new System.Drawing.Size(88, 24);
this.button1.TabIndex = 0;
this.button1.Text = "Browse";
this.button1.Click += new System.EventHandler(this.button1_Click);
//
// textBox1
//
this.textBox1.Location = new System.Drawing.Point(8, 40);
this.textBox1.Name = "textBox1";
this.textBox1.Size = new System.Drawing.Size(168, 20);
this.textBox1.TabIndex = 1;
this.textBox1.Text = "FIle path";
//
// Form1
//
this.AutoScaleDimensions = new System.Drawing.SizeF(5, 13);
this.ClientSize = new System.Drawing.Size(292, 266);
this.Controls.Add(this.textBox1);
this.Controls.Add(this.button1);
this.Name = "Form1";
this.Text = "Platform Invoke WinSound C#";
this.ResumeLayout(false);
this.PerformLayout();

See also

https://learn.microsoft.com/en-ca/dotnet/framework/interop/consuming-unmanaged-dll-functions#a-closer-look-at-platform-invoke
https://learn.microsoft.com/en-ca/dotnet/framework/interop/marshalling-data-with-platform-invoke

Walkthrough: Office Programming (C#
and Visual Basic)
Article • 2022-09-29 • 11 minutes to read

Visual Studio offers features in C# and Visual Basic that improve Microsoft Office
programming. Helpful C# features include named and optional arguments and return
values of type dynamic . In COM programming, you can omit the ref keyword and gain
access to indexed properties. Features in Visual Basic include auto-implemented
properties, statements in lambda expressions, and collection initializers.

Both languages enable embedding of type information, which allows deployment of
assemblies that interact with COM components without deploying primary interop
assemblies (PIAs) to the user's computer. For more information, see Walkthrough:
Embedding Types from Managed Assemblies.

This walkthrough demonstrates these features in the context of Office programming,
but many of these features are also useful in general programming. In the walkthrough,
you use an Excel Add-in application to create an Excel workbook. Next, you create a
Word document that contains a link to the workbook. Finally, you see how to enable
and disable the PIA dependency.

You must have Microsoft Office Excel and Microsoft Office Word installed on your
computer to complete this walkthrough.

1. Start Visual Studio.

2. On the File menu, point to New, and then click Project.

Prerequisites

７ Note

Your computer might show different names or locations for some of the Visual
Studio user interface elements in the following instructions. The Visual Studio
edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

To set up an Excel Add-in application

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/embed-types-visual-studio
https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

3. In the Installed Templates pane, expand Visual Basic or Visual C#, expand Office,
and then click the version year of the Office product.

4. In the Templates pane, click Excel <version> Add-in.

5. Look at the top of the Templates pane to make sure that .NET Framework 4, or a
later version, appears in the Target Framework box.

6. Type a name for your project in the Name box, if you want to.

7. Click OK.

8. The new project appears in Solution Explorer.

1. In Solution Explorer, right-click your project's name and then click Add Reference.
The Add Reference dialog box appears.

2. On the Assemblies tab, select Microsoft.Office.Interop.Excel, version
<version>.0.0.0 (for a key to the Office product version numbers, see Microsoft
Versions), in the Component Name list, and then hold down the CTRL key and
select Microsoft.Office.Interop.Word, version <version>.0.0.0 . If you do not see
the assemblies, you may need to ensure they are installed and displayed (see How
to: Install Office Primary Interop Assemblies).

3. Click OK.

1. In Solution Explorer, right-click the ThisAddIn.vb or ThisAddIn.cs file and then
click View Code.

2. Add the following Imports statements (Visual Basic) or using directives (C#) to the
top of the code file if they are not already present.

C#

To add references

To add necessary Imports statements or using directives

using System.Collections.Generic;
using Excel = Microsoft.Office.Interop.Excel;
using Word = Microsoft.Office.Interop.Word;

To create a list of bank accounts

https://en.wikipedia.org/wiki/Microsoft_Office#Versions
https://learn.microsoft.com/en-us/visualstudio/vsto/how-to-install-office-primary-interop-assemblies

1. In Solution Explorer, right-click your project's name, click Add, and then click
Class. Name the class Account.vb if you are using Visual Basic or Account.cs if you
are using C#. Click Add.

2. Replace the definition of the Account class with the following code. The class
definitions use auto-implemented properties. For more information, see Auto-
Implemented Properties.

C#

3. To create a bankAccounts list that contains two accounts, add the following code to
the ThisAddIn_Startup method in ThisAddIn.vb or ThisAddIn.cs. The list
declarations use collection initializers. For more information, see Collection
Initializers.

C#

1. In the same file, add the following method to the ThisAddIn class. The method sets
up an Excel workbook and exports data to it.

C#

class Account
{
 public int ID { get; set; }
 public double Balance { get; set; }
}

var bankAccounts = new List<Account>
{
 new Account
 {
 ID = 345,
 Balance = 541.27
 },
 new Account
 {
 ID = 123,
 Balance = -127.44
 }
};

To export data to Excel

void DisplayInExcel(IEnumerable<Account> accounts,
 Action<Account, Excel.Range> DisplayFunc)

https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/procedures/auto-implemented-properties
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/collection-initializers/

Two new C# features are used in this method. Both of these features already exist
in Visual Basic.

Method Add has an optional parameter for specifying a particular template.
Optional parameters enable you to omit the argument for that parameter if
you want to use the parameter's default value. Because no argument is sent
in the previous example, Add uses the default template and creates a new
workbook. The equivalent statement in earlier versions of C# requires a
placeholder argument: excelApp.Workbooks.Add(Type.Missing) .

For more information, see Named and Optional Arguments.

The Range and Offset properties of the Range object use the indexed
properties feature. This feature enables you to consume these properties from
COM types by using the following typical C# syntax. Indexed properties also
enable you to use the Value property of the Range object, eliminating the
need to use the Value2 property. The Value property is indexed, but the
index is optional. Optional arguments and indexed properties work together
in the following example.

C#

In earlier versions of the language, the following special syntax is required.

C#

{
 var excelApp = this.Application;
 // Add a new Excel workbook.
 excelApp.Workbooks.Add();
 excelApp.Visible = true;
 excelApp.Range["A1"].Value = "ID";
 excelApp.Range["B1"].Value = "Balance";
 excelApp.Range["A2"].Select();

 foreach (var ac in accounts)
 {
 DisplayFunc(ac, excelApp.ActiveCell);
 excelApp.ActiveCell.Offset[1, 0].Select();
 }
 // Copy the results to the Clipboard.
 excelApp.Range["A1:B3"].Copy();
}

// Visual C# 2010 provides indexed properties for COM programming.
excelApp.Range["A1"].Value = "ID";
excelApp.ActiveCell.Offset[1, 0].Select();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.workbooks.add
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range

You cannot create indexed properties of your own. The feature only supports
consumption of existing indexed properties.

For more information, see How to use indexed properties in COM interop
programming.

2. Add the following code at the end of DisplayInExcel to adjust the column widths
to fit the content.

C#

These additions demonstrate another feature in C#: treating Object values
returned from COM hosts such as Office as if they have type dynamic. This
happens automatically when Embed Interop Types is set to its default value, True ,
or, equivalently, when the assembly is referenced by the EmbedInteropTypes
compiler option.

For example, excelApp.Columns[1] returns an Object , and AutoFit is an Excel
Range method. Without dynamic , you must cast the object returned by
excelApp.Columns[1] as an instance of Range before calling method AutoFit .

C#

For more information about embedding interop types, see procedures "To find the
PIA reference" and "To restore the PIA dependency" later in this topic. For more
information about dynamic , see dynamic or Using Type dynamic.

// In Visual C# 2008, you cannot access the Range, Offset, and
Value
// properties directly.
excelApp.get_Range("A1").Value2 = "ID";
excelApp.ActiveCell.get_Offset(1, 0).Select();

excelApp.Columns[1].AutoFit();
excelApp.Columns[2].AutoFit();

// Casting is required in Visual C# 2008.
((Excel.Range)excelApp.Columns[1]).AutoFit();

// Casting is not required in Visual C# 2010.
excelApp.Columns[1].AutoFit();

To invoke DisplayInExcel

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range

1. Add the following code at the end of the ThisAddIn_StartUp method. The call to
DisplayInExcel contains two arguments. The first argument is the name of the list
of accounts to be processed. The second argument is a multiline lambda
expression that defines how the data is to be processed. The ID and balance
values for each account are displayed in adjacent cells, and the row is displayed in
red if the balance is less than zero. For more information, see Lambda Expressions.

C#

2. To run the program, press F5. An Excel worksheet appears that contains the data
from the accounts.

1. Add the following code at the end of the ThisAddIn_StartUp method to create a
Word document that contains a link to the Excel workbook.

C#

This code demonstrates several of the new features in C#: the ability to omit the
ref keyword in COM programming, named arguments, and optional arguments.
These features already exist in Visual Basic. The PasteSpecial method has seven
parameters, all of which are defined as optional reference parameters. Named and
optional arguments enable you to designate the parameters you want to access by
name and to send arguments to only those parameters. In this example,
arguments are sent to indicate that a link to the workbook on the Clipboard should

DisplayInExcel(bankAccounts, (account, cell) =>
// This multiline lambda expression sets custom processing rules
// for the bankAccounts.
{
 cell.Value = account.ID;
 cell.Offset[0, 1].Value = account.Balance;
 if (account.Balance < 0)
 {
 cell.Interior.Color = 255;
 cell.Offset[0, 1].Interior.Color = 255;
 }
});

To add a Word document

var wordApp = new Word.Application();
wordApp.Visible = true;
wordApp.Documents.Add();
wordApp.Selection.PasteSpecial(Link: true, DisplayAsIcon: true);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.word.selection.pastespecial

be created (parameter Link) and that the link is to be displayed in the Word
document as an icon (parameter DisplayAsIcon). Visual C# also enables you to
omit the ref keyword for these arguments.

1. Press F5 to run the application. Excel starts and displays a table that contains the
information from the two accounts in bankAccounts . Then a Word document
appears that contains a link to the Excel table.

1. In Visual Studio, click Clean Solution on the Build menu. Otherwise, the add-in will
run every time that you open Excel on your computer.

1. Run the application again, but do not click Clean Solution.

2. Select the Start. Locate Microsoft Visual Studio <version> and open a developer
command prompt.

3. Type ildasm in the Developer Command Prompt for Visual Studio window, and
then press ENTER. The IL DASM window appears.

4. On the File menu in the IL DASM window, select File > Open. Double-click Visual
Studio <version>, and then double-click Projects. Open the folder for your
project, and look in the bin/Debug folder for your project name.dll. Double-click
your project name.dll. A new window displays your project's attributes, in addition
to references to other modules and assemblies. Note that namespaces
Microsoft.Office.Interop.Excel and Microsoft.Office.Interop.Word are included
in the assembly. By default in Visual Studio, the compiler imports the types you
need from a referenced PIA into your assembly.

For more information, see How to: View Assembly Contents.

5. Double-click the MANIFEST icon. A window appears that contains a list of
assemblies that contain items referenced by the project.
Microsoft.Office.Interop.Excel and Microsoft.Office.Interop.Word are not
included in the list. Because the types your project needs have been imported into
your assembly, references to a PIA are not required. This makes deployment easier.
The PIAs do not have to be present on the user's computer, and because an

To run the application

To clean up the completed project

To find the PIA reference

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/view-contents

application does not require deployment of a specific version of a PIA, applications
can be designed to work with multiple versions of Office, provided that the
necessary APIs exist in all versions.

Because deployment of PIAs is no longer necessary, you can create an application
in advanced scenarios that works with multiple versions of Office, including earlier
versions. However, this works only if your code does not use any APIs that are not
available in the version of Office you are working with. It is not always clear
whether a particular API was available in an earlier version, and for that reason
working with earlier versions of Office is not recommended.

6. Close the manifest window and the assembly window.

1. In Solution Explorer, click the Show All Files button. Expand the References folder
and select Microsoft.Office.Interop.Excel. Press F4 to display the Properties
window.

2. In the Properties window, change the Embed Interop Types property from True to
False.

3. Repeat steps 1 and 2 in this procedure for Microsoft.Office.Interop.Word .

4. In C#, comment out the two calls to Autofit at the end of the DisplayInExcel
method.

5. Press F5 to verify that the project still runs correctly.

6. Repeat steps 1-3 from the previous procedure to open the assembly window.
Notice that Microsoft.Office.Interop.Word and Microsoft.Office.Interop.Excel
are no longer in the list of embedded assemblies.

7. Double-click the MANIFEST icon and scroll through the list of referenced
assemblies. Both Microsoft.Office.Interop.Word and
Microsoft.Office.Interop.Excel are in the list. Because the application references

７ Note

Office did not publish PIAs before Office 2003. Therefore, the only way to
generate an interop assembly for Office 2002 or earlier versions is by
importing the COM reference.

To restore the PIA dependency

the Excel and Word PIAs, and the Embed Interop Types property is set to False,
both assemblies must exist on the end user's computer.

8. In Visual Studio, click Clean Solution on the Build menu to clean up the completed
project.

Auto-Implemented Properties (Visual Basic)
Auto-Implemented Properties (C#)
Collection Initializers
Object and Collection Initializers
Optional Parameters
Passing Arguments by Position and by Name
Named and Optional Arguments
Early and Late Binding
dynamic
Using Type dynamic
Lambda Expressions (Visual Basic)
Lambda Expressions (C#)
How to use indexed properties in COM interop programming
Walkthrough: Embedding Type Information from Microsoft Office Assemblies in
Visual Studio
Walkthrough: Embedding Types from Managed Assemblies
Walkthrough: Creating Your First VSTO Add-in for Excel
COM Interop
Interoperability

See also

https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/procedures/auto-implemented-properties
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/collection-initializers/
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/procedures/optional-parameters
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-position-and-by-name
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/early-late-binding/
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2013/ee317478(v=vs.120)
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/embed-types-visual-studio
https://learn.microsoft.com/en-us/visualstudio/vsto/walkthrough-creating-your-first-vsto-add-in-for-excel
https://learn.microsoft.com/en-ca/dotnet/visual-basic/programming-guide/com-interop/

Example COM Class (C# Programming
Guide)
Article • 2021-09-15 • 2 minutes to read

The following is an example of a class that you would expose as a COM object. After this
code has been placed in a .cs file and added to your project, set the Register for COM
Interop property to True. For more information, see How to: Register a Component for
COM Interop.

Exposing Visual C# objects to COM requires declaring a class interface, an events
interface if it is required, and the class itself. Class members must follow these rules to
be visible to COM:

The class must be public.

Properties, methods, and events must be public.

Properties and methods must be declared on the class interface.

Events must be declared in the event interface.

Other public members in the class that are not declared in these interfaces will not be
visible to COM, but they will be visible to other .NET objects.

To expose properties and methods to COM, you must declare them on the class
interface and mark them with a DispId attribute, and implement them in the class. The
order in which the members are declared in the interface is the order used for the COM
vtable.

To expose events from your class, you must declare them on the events interface and
mark them with a DispId attribute. The class should not implement this interface.

The class implements the class interface; it can implement more than one interface, but
the first implementation will be the default class interface. Implement the methods and
properties exposed to COM here. They must be marked public and must match the
declarations in the class interface. Also, declare the events raised by the class here. They
must be marked public and must match the declarations in the events interface.

C#

Example

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/w29wacsy(v=vs.100)

C# Programming Guide
Interoperability
Build Page, Project Designer (C#)

using System.Runtime.InteropServices;

namespace project_name
{
 [Guid("EAA4976A-45C3-4BC5-BC0B-E474F4C3C83F")]
 public interface ComClass1Interface
 {
 }

 [Guid("7BD20046-DF8C-44A6-8F6B-687FAA26FA71"),
 InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
 public interface ComClass1Events
 {
 }

 [Guid("0D53A3E8-E51A-49C7-944E-E72A2064F938"),
 ClassInterface(ClassInterfaceType.None),
 ComSourceInterfaces(typeof(ComClass1Events))]
 public class ComClass1 : ComClass1Interface
 {
 }
}

See also

https://learn.microsoft.com/en-us/visualstudio/ide/reference/build-page-project-designer-csharp

C# reference
Article • 2022-12-29 • 3 minutes to read

This section provides reference material about C# keywords, operators, special
characters, preprocessor directives, compiler options, and compiler errors and warnings.

C# Keywords
Provides links to information about C# keywords and syntax.

C# Operators
Provides links to information about C# operators and syntax.

C# Special Characters
Provides links to information about special contextual characters in C# and their usage.

C# Preprocessor Directives
Provides links to information about compiler commands for embedding in C# source
code.

C# Compiler Options
Includes information about compiler options and how to use them.

C# Compiler Errors
Includes code snippets that demonstrate the cause and correction of C# compiler errors
and warnings.

C# Language Specification
The C# 7.0 draft language specification. This is a draft proposal for the C# 7.0 language.
This document will be refined through work with the ECMA C# standards committee.
Version 6.0 has been released in June 2022 as the Standard ECMA-334 6th Edition
document.

The features that have been implemented in C# versions after 6.0, including those not
yet incorporated into the 7.0 draft standard, are represented in language specification
proposals. These documents describe the deltas to the language spec in order to add
these new features. These are in draft proposal form. These specifications will be refined
and submitted to the ECMA standards committee for formal review and incorporation
into a future version of the C# Standard.

In this section

https://www.ecma-international.org/wp-content/uploads/ECMA-334_6th_edition_june_2022.pdf

C# 7.0 Specification Proposals
There are a number of new features implemented in C# 7.0. They include pattern
matching, local functions, out variable declarations, throw expressions, binary literals,
and digit separators. This folder contains the specifications for each of those features.

C# 7.1 Specification Proposals
There are new features added in C# 7.1. The default expression can be used without a
type in locations where the type can be inferred. Also, tuple member names can be
inferred. Finally, pattern matching can be used with generics.

C# 7.2 Specification Proposals
C# 7.2 added a number of small features. You can pass arguments by readonly reference
using the in keyword. There are a number of low-level changes to support compile-
time safety for Span and related types. You can use named arguments where later
arguments are positional, in some situations. The private protected access modifier
enables you to specify that callers are limited to derived types implemented in the same
assembly. The ?: operator can resolve to a reference to a variable. You can also format
hexadecimal and binary numbers using a leading digit separator.

C# 7.3 Specification Proposals
C# 7.3 is another point release that includes several small updates. You can use new
constraints on generic type parameters. Other changes make it easier to work with
fixed fields, including using stackalloc allocations. Local variables declared with the ref
keyword may be reassigned to refer to new storage. You can place attributes on auto-
implemented properties that target the compiler-generated backing field. Expression
variables can be used in initializers. Tuples can be compared for equality (or inequality).
There have also been some improvements to overload resolution.

C# 8.0 Specification Proposals
C# 8.0 is available with .NET Core 3.0. The features include nullable reference types,
recursive pattern matching, default interface methods, async streams, ranges and
indexes, pattern based using and using declarations, null coalescing assignment, and
readonly instance members.

C# 9 Specification Proposals
C# 9 is available with .NET 5. The features include records, top-level statements, pattern
matching enhancements, init only setters, target-typed new expressions, module
initializers, extending partial methods, static anonymous functions, target-typed
conditional expressions, covariant return types, extension GetEnumerator in foreach
loops, lambda discard parameters, attributes on local functions, native sized integers,
function pointers, suppress emitting localsinit flag, and unconstrained type parameter
annotations.

C# 10 Specification Proposals
C# 10 is available with .NET 6. The features include record structs, parameterless struct
constructors, global using directives, file-scoped namespaces, extended property
patterns, improved interpolated strings, constant interpolated strings, lambda
improvements, caller-argument expression, enhanced #line directives, generic
attributes, improved definite assignment analysis, and AsyncMethodBuilder override.

C# 11 Specification Proposals
C# 11 is available with .NET 7. The new features include static abstract members in
interfaces, checked user-defined operators, unsigned right shift operator, relaxing shift
operator, numeric IntPtr , raw string literals, interpolated string newline, UTF-8 string
literals, pattern match span, list patterns, required members, auto-default struct, low-
level struct improvements, extended nameof scope, and file local types.

Using the Visual Studio Development Environment for C#
Provides links to conceptual and task topics that describe the IDE and editor.

C# Programming Guide
Includes information about how to use the C# programming language.

Related sections

https://learn.microsoft.com/en-us/visualstudio/get-started/csharp

C# language versioning
Article • 2022-11-30 • 4 minutes to read

The latest C# compiler determines a default language version based on your project's
target framework or frameworks. Visual Studio doesn't provide a UI to change the value,
but you can change it by editing the csproj file. The choice of default ensures that you
use the latest language version compatible with your target framework. You benefit
from access to the latest language features compatible with your project's target. This
default choice also ensures you don't use a language that requires types or runtime
behavior not available in your target framework. Choosing a language version newer
than the default can cause hard to diagnose compile-time and runtime errors.

C# 11 is supported only on .NET 7 and newer versions. C# 10 is supported only on .NET
6 and newer versions. C# 9 is supported only on .NET 5 and newer versions.

Check the Visual Studio platform compatibility page for details on which .NET versions
are supported by versions of Visual Studio. Check the Visual Studio for Mac platform
compatibility page for details on which .NET versions are supported by versions of
Visual Studio for Mac. Check the Mono page for C# for Mono compatibility with C#
versions.

The compiler determines a default based on these rules:

Target Version C# language version default

.NET 7.x C# 11

.NET 6.x C# 10

.NET 5.x C# 9.0

.NET Core 3.x C# 8.0

.NET Core 2.x C# 7.3

.NET Standard 2.1 C# 8.0

.NET Standard 2.0 C# 7.3

.NET Standard 1.x C# 7.3

.NET Framework all C# 7.3

Defaults

https://learn.microsoft.com/en-us/visualstudio/releases/2022/compatibility#-visual-studio-2022-support-for-net-development
https://learn.microsoft.com/en-us/visualstudio/mac/supported-versions-net
https://www.mono-project.com/docs/about-mono/languages/csharp/

When your project targets a preview framework that has a corresponding preview
language version, the language version used is the preview language version. You use
the latest features with that preview in any environment, without affecting projects that
target a released .NET Core version.

If you must specify your C# version explicitly, you can do so in several ways:

Manually edit your project file.
Set the language version for multiple projects in a subdirectory.
Configure the LangVersion compiler option.

You can set the language version in your project file. For example, if you explicitly want
access to preview features, add an element like this:

XML

） Important

The new project template for Visual Studio 2017 added a
<LangVersion>latest</LangVersion> entry to new project files. If you upgrade the
target framework for these projects, they override the default behavior. You should
remove the <LangVersion>latest</LangVersion> from your project file when you
update the .NET SDK. Then, your project will use the compiler version
recommended for your target framework. You can update the target framework to
access newer language features.

Override a default

 Tip

You can see the language version in Visual Studio in the project properties page.
Under the Build tab, the Advanced pane displays the version selected.

To know what language version you're currently using, put #error version (case
sensitive) in your code. This makes the compiler report a compiler error, CS8304,
with a message containing the compiler version being used and the current
selected language version. See #error (C# Reference) for more information.

Edit the project file

The value preview uses the latest available preview C# language version that your
compiler supports.

To configure multiple projects, you can create a Directory.Build.props file that contains
the <LangVersion> element. You typically do that in your solution directory. Add the
following to a Directory.Build.props file in your solution directory:

XML

Builds in all subdirectories of the directory containing that file will use the preview C#
version. For more information, see Customize your build.

The following table shows all current C# language versions. Your compiler may not
necessarily understand every value if it's older. If you install the latest .NET SDK, then
you have access to everything listed.

Value Meaning

preview The compiler accepts all valid language syntax from the latest preview version.

latest The compiler accepts syntax from the latest released version of the compiler
(including minor version).

latestMajor
or default

The compiler accepts syntax from the latest released major version of the compiler.

11.0 The compiler accepts only syntax that is included in C# 11 or lower.

10.0 The compiler accepts only syntax that is included in C# 10 or lower.

<PropertyGroup>
 <LangVersion>preview</LangVersion>
</PropertyGroup>

Configure multiple projects

<Project>
 <PropertyGroup>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>
</Project>

C# language version reference

https://learn.microsoft.com/en-us/visualstudio/msbuild/customize-your-build

Value Meaning

9.0 The compiler accepts only syntax that is included in C# 9 or lower.

8.0 The compiler accepts only syntax that is included in C# 8.0 or lower.

7.3 The compiler accepts only syntax that is included in C# 7.3 or lower.

7.2 The compiler accepts only syntax that is included in C# 7.2 or lower.

7.1 The compiler accepts only syntax that is included in C# 7.1 or lower.

7 The compiler accepts only syntax that is included in C# 7.0 or lower.

6 The compiler accepts only syntax that is included in C# 6.0 or lower.

5 The compiler accepts only syntax that is included in C# 5.0 or lower.

4 The compiler accepts only syntax that is included in C# 4.0 or lower.

3 The compiler accepts only syntax that is included in C# 3.0 or lower.

ISO-2
or 2

The compiler accepts only syntax that is included in ISO/IEC 23270:2006 C# (2.0).

ISO-1
or 1

The compiler accepts only syntax that is included in ISO/IEC 23270:2003 C#
(1.0/1.2).

Value types (C# reference)
Article • 2022-09-29 • 3 minutes to read

Value types and reference types are the two main categories of C# types. A variable of a
value type contains an instance of the type. This differs from a variable of a reference
type, which contains a reference to an instance of the type. By default, on assignment,
passing an argument to a method, and returning a method result, variable values are
copied. In the case of value-type variables, the corresponding type instances are copied.
The following example demonstrates that behavior:

C#

using System;

public struct MutablePoint
{
 public int X;
 public int Y;

 public MutablePoint(int x, int y) => (X, Y) = (x, y);

 public override string ToString() => $"({X}, {Y})";
}

public class Program
{
 public static void Main()
 {
 var p1 = new MutablePoint(1, 2);
 var p2 = p1;
 p2.Y = 200;
 Console.WriteLine($"{nameof(p1)} after {nameof(p2)} is modified:
{p1}");
 Console.WriteLine($"{nameof(p2)}: {p2}");

 MutateAndDisplay(p2);
 Console.WriteLine($"{nameof(p2)} after passing to a method: {p2}");
 }

 private static void MutateAndDisplay(MutablePoint p)
 {
 p.X = 100;
 Console.WriteLine($"Point mutated in a method: {p}");
 }
}
// Expected output:
// p1 after p2 is modified: (1, 2)
// p2: (1, 200)
// Point mutated in a method: (100, 200)
// p2 after passing to a method: (1, 200)

As the preceding example shows, operations on a value-type variable affect only that
instance of the value type, stored in the variable.

If a value type contains a data member of a reference type, only the reference to the
instance of the reference type is copied when a value-type instance is copied. Both the
copy and original value-type instance have access to the same reference-type instance.
The following example demonstrates that behavior:

C#

using System;
using System.Collections.Generic;

public struct TaggedInteger
{
 public int Number;
 private List<string> tags;

 public TaggedInteger(int n)
 {
 Number = n;
 tags = new List<string>();
 }

 public void AddTag(string tag) => tags.Add(tag);

 public override string ToString() => $"{Number} [{string.Join(", ",
tags)}]";
}

public class Program
{
 public static void Main()
 {
 var n1 = new TaggedInteger(0);
 n1.AddTag("A");
 Console.WriteLine(n1); // output: 0 [A]

 var n2 = n1;
 n2.Number = 7;
 n2.AddTag("B");

 Console.WriteLine(n1); // output: 0 [A, B]
 Console.WriteLine(n2); // output: 7 [A, B]
 }
}

７ Note

A value type can be one of the two following kinds:

a structure type, which encapsulates data and related functionality
an enumeration type, which is defined by a set of named constants and represents
a choice or a combination of choices

A nullable value type T? represents all values of its underlying value type T and an
additional null value. You cannot assign null to a variable of a value type, unless it's a
nullable value type.

You can use the struct constraint to specify that a type parameter is a non-nullable value
type. Both structure and enumeration types satisfy the struct constraint. You can use
System.Enum in a base class constraint (that is known as the enum constraint) to specify
that a type parameter is an enumeration type.

C# provides the following built-in value types, also known as simple types:

Integral numeric types
Floating-point numeric types
bool that represents a Boolean value
char that represents a Unicode UTF-16 character

All simple types are structure types and differ from other structure types in that they
permit certain additional operations:

You can use literals to provide a value of a simple type. For example, 'A' is a literal
of the type char and 2001 is a literal of the type int .

You can declare constants of the simple types with the const keyword. It's not
possible to have constants of other structure types.

Constant expressions, whose operands are all constants of the simple types, are
evaluated at compile time.

A value tuple is a value type, but not a simple type.

To make your code less error-prone and more robust, define and use immutable
value types. This article uses mutable value types only for demonstration purposes.

Kinds of value types and type constraints

Built-in value types

For more information, see the following sections of the C# language specification:

Value types
Simple types
Variables

C# reference
System.ValueType
Reference types

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype

Integral numeric types (C# reference)
Article • 2022-09-29 • 5 minutes to read

The integral numeric types represent integer numbers. All integral numeric types are
value types. They're also simple types and can be initialized with literals. All integral
numeric types support arithmetic, bitwise logical, comparison, and equality operators.

C# supports the following predefined integral types:

C#
type/keyword

Range Size .NET type

sbyte -128 to 127 Signed 8-bit integer System.SByte

byte 0 to 255 Unsigned 8-bit
integer

System.Byte

short -32,768 to 32,767 Signed 16-bit integer System.Int16

ushort 0 to 65,535 Unsigned 16-bit
integer

System.UInt16

int -2,147,483,648 to 2,147,483,647 Signed 32-bit integer System.Int32

uint 0 to 4,294,967,295 Unsigned 32-bit
integer

System.UInt32

long -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit integer System.Int64

ulong 0 to 18,446,744,073,709,551,615 Unsigned 64-bit
integer

System.UInt64

nint Depends on platform (computed at
runtime)

Signed 32-bit or 64-
bit integer

System.IntPtr

nuint Depends on platform (computed at
runtime)

Unsigned 32-bit or
64-bit integer

System.UIntPtr

In all of the table rows except the last two, each C# type keyword from the leftmost
column is an alias for the corresponding .NET type. The keyword and .NET type name
are interchangeable. For example, the following declarations declare variables of the
same type:

Characteristics of the integral types

https://learn.microsoft.com/en-us/dotnet/api/system.sbyte
https://learn.microsoft.com/en-us/dotnet/api/system.byte
https://learn.microsoft.com/en-us/dotnet/api/system.int16
https://learn.microsoft.com/en-us/dotnet/api/system.uint16
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.uint32
https://learn.microsoft.com/en-us/dotnet/api/system.int64
https://learn.microsoft.com/en-us/dotnet/api/system.uint64
https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr

C#

The nint and nuint types in the last two rows of the table are native-sized integers.
Starting in C# 9.0, you can use the nint and nuint keywords to define native-sized
integers. These are 32-bit integers when running in a 32-bit process, or 64-bit integers
when running in a 64-bit process. They can be used for interop scenarios, low-level
libraries, and to optimize performance in scenarios where integer math is used
extensively.

The native-sized integer types are represented internally as the .NET types System.IntPtr
and System.UIntPtr. Starting in C# 11, the nint and nuint types are aliases for the
underlying types.

The default value of each integral type is zero, 0 .

Each of the integral types has MinValue and MaxValue properties that provide the
minimum and maximum value of that type. These properties are compile-time constants
except for the case of the native-sized types (nint and nuint). The MinValue and
MaxValue properties are calculated at runtime for native-sized types. The sizes of those
types depend on the process settings.

Use the System.Numerics.BigInteger structure to represent a signed integer with no
upper or lower bounds.

Integer literals can be

decimal: without any prefix
hexadecimal: with the 0x or 0X prefix
binary: with the 0b or 0B prefix

The following code demonstrates an example of each:

C#

int a = 123;
System.Int32 b = 123;

Integer literals

var decimalLiteral = 42;
var hexLiteral = 0x2A;
var binaryLiteral = 0b_0010_1010;

https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr
https://learn.microsoft.com/en-us/dotnet/api/system.numerics.biginteger

The preceding example also shows the use of _ as a digit separator. You can use the
digit separator with all kinds of numeric literals.

The type of an integer literal is determined by its suffix as follows:

If the literal has no suffix, its type is the first of the following types in which its
value can be represented: int , uint , long , ulong .

If the literal is suffixed by U or u , its type is the first of the following types in which
its value can be represented: uint , ulong .

If the literal is suffixed by L or l , its type is the first of the following types in which
its value can be represented: long , ulong .

If the literal is suffixed by UL , Ul , uL , ul , LU , Lu , lU , or lu , its type is ulong .

If the value represented by an integer literal exceeds UInt64.MaxValue, a compiler error
CS1021 occurs.

If the determined type of an integer literal is int and the value represented by the
literal is within the range of the destination type, the value can be implicitly converted to
sbyte , byte , short , ushort , uint , ulong , nint or nuint :

C#

７ Note

Literals are interpreted as positive values. For example, the literal
0xFF_FF_FF_FF represents the number 4294967295 of the uint type, though it
has the same bit representation as the number -1 of the int type. If you
need a value of a certain type, cast a literal to that type. Use the unchecked
operator, if a literal value cannot be represented in the target type. For
example, unchecked((int)0xFF_FF_FF_FF) produces -1 .

７ Note

You can use the lowercase letter l as a suffix. However, this generates a
compiler warning because the letter l can be confused with the digit 1 . Use
L for clarity.

byte a = 17;
byte b = 300; // CS0031: Constant value '300' cannot be converted to a

https://learn.microsoft.com/en-us/dotnet/api/system.uint64.maxvalue
https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs1021

As the preceding example shows, if the literal's value isn't within the range of the
destination type, a compiler error CS0031 occurs.

You can also use a cast to convert the value represented by an integer literal to the type
other than the determined type of the literal:

C#

You can convert any integral numeric type to any other integral numeric type. If the
destination type can store all values of the source type, the conversion is implicit.
Otherwise, you need to use a cast expression to perform an explicit conversion. For
more information, see Built-in numeric conversions.

Native sized integer types have special behavior because the storage is determined by
the natural integer size on the target machine.

To get the size of a native-sized integer at run time, you can use sizeof() .
However, the code must be compiled in an unsafe context. For example:

C#

You can also get the equivalent value from the static IntPtr.Size and UIntPtr.Size
properties.

'byte'

var signedByte = (sbyte)42;
var longVariable = (long)42;

Conversions

Native sized integers

Console.WriteLine($"size of nint = {sizeof(nint)}");
Console.WriteLine($"size of nuint = {sizeof(nuint)}");

// output when run in a 64-bit process
//size of nint = 8
//size of nuint = 8

// output when run in a 32-bit process
//size of nint = 4
//size of nuint = 4

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0031
https://learn.microsoft.com/en-us/dotnet/api/system.intptr.size#system-intptr-size
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr.size#system-uintptr-size

To get the minimum and maximum values of native-sized integers at run time, use
MinValue and MaxValue as static properties with the nint and nuint keywords, as
in the following example:

C#

You can use constant values in the following ranges:
For nint : Int32.MinValue to Int32.MaxValue.
For nuint : UInt32.MinValue to UInt32.MaxValue.

The compiler provides implicit and explicit conversions to other numeric types. For
more information, see Built-in numeric conversions.

There's no direct syntax for native-sized integer literals. There's no suffix to indicate
that a literal is a native-sized integer, such as L to indicate a long . You can use
implicit or explicit casts of other integer values instead. For example:

C#

For more information, see the following sections of the C# language specification:

Integral types
Integer literals
C# 9 - Native sized integral types

Console.WriteLine($"nint.MinValue = {nint.MinValue}");
Console.WriteLine($"nint.MaxValue = {nint.MaxValue}");
Console.WriteLine($"nuint.MinValue = {nuint.MinValue}");
Console.WriteLine($"nuint.MaxValue = {nuint.MaxValue}");

// output when run in a 64-bit process
//nint.MinValue = -9223372036854775808
//nint.MaxValue = 9223372036854775807
//nuint.MinValue = 0
//nuint.MaxValue = 18446744073709551615

// output when run in a 32-bit process
//nint.MinValue = -2147483648
//nint.MaxValue = 2147483647
//nuint.MinValue = 0
//nuint.MaxValue = 4294967295

nint a = 42
nint a = (nint)42;

C# language specification

https://learn.microsoft.com/en-us/dotnet/api/system.int32.minvalue
https://learn.microsoft.com/en-us/dotnet/api/system.int32.maxvalue
https://learn.microsoft.com/en-us/dotnet/api/system.uint32.minvalue
https://learn.microsoft.com/en-us/dotnet/api/system.uint32.maxvalue

C# 11 - Numeric IntPtr and `UIntPtr

C# reference
Value types
Floating-point types
Standard numeric format strings
Numerics in .NET

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-numeric-format-strings
https://learn.microsoft.com/en-ca/dotnet/standard/numerics

Floating-point numeric types (C#
reference)
Article • 2022-09-29 • 4 minutes to read

The floating-point numeric types represent real numbers. All floating-point numeric
types are value types. They are also simple types and can be initialized with literals. All
floating-point numeric types support arithmetic, comparison, and equality operators.

C# supports the following predefined floating-point types:

C# type/keyword Approximate range Precision Size .NET type

float ±1.5 x 10 to ±3.4 x 10 ~6-9 digits 4 bytes System.Single

double ±5.0 × 10 to ±1.7 × 10 ~15-17 digits 8 bytes System.Double

decimal ±1.0 x 10 to ±7.9228 x 10 28-29 digits 16 bytes System.Decimal

In the preceding table, each C# type keyword from the leftmost column is an alias for
the corresponding .NET type. They are interchangeable. For example, the following
declarations declare variables of the same type:

C#

The default value of each floating-point type is zero, 0 . Each of the floating-point types
has the MinValue and MaxValue constants that provide the minimum and maximum
finite value of that type. The float and double types also provide constants that
represent not-a-number and infinity values. For example, the double type provides the
following constants: Double.NaN, Double.NegativeInfinity, and Double.PositiveInfinity.

The decimal type is appropriate when the required degree of precision is determined by
the number of digits to the right of the decimal point. Such numbers are commonly
used in financial applications, for currency amounts (for example, $1.00), interest rates
(for example, 2.625%), and so forth. Even numbers that are precise to only one decimal
digit are handled more accurately by the decimal type: 0.1, for example, can be exactly
represented by a decimal instance, while there's no double or float instance that

Characteristics of the floating-point types

−45 38

−324 308

-28 28

double a = 12.3;
System.Double b = 12.3;

https://learn.microsoft.com/en-us/dotnet/api/system.single
https://learn.microsoft.com/en-us/dotnet/api/system.double
https://learn.microsoft.com/en-us/dotnet/api/system.decimal
https://learn.microsoft.com/en-us/dotnet/api/system.double.nan
https://learn.microsoft.com/en-us/dotnet/api/system.double.negativeinfinity
https://learn.microsoft.com/en-us/dotnet/api/system.double.positiveinfinity

exactly represents 0.1. Because of this difference in numeric types, unexpected rounding
errors can occur in arithmetic calculations when you use double or float for decimal
data. You can use double instead of decimal when optimizing performance is more
important than ensuring accuracy. However, any difference in performance would go
unnoticed by all but the most calculation-intensive applications. Another possible
reason to avoid decimal is to minimize storage requirements. For example, ML.NET uses
float because the difference between 4 bytes and 16 bytes adds up for very large data
sets. For more information, see System.Decimal.

You can mix integral types and the float and double types in an expression. In this
case, integral types are implicitly converted to one of the floating-point types and, if
necessary, the float type is implicitly converted to double . The expression is evaluated
as follows:

If there is double type in the expression, the expression evaluates to double , or to
bool in relational and equality comparisons.
If there is no double type in the expression, the expression evaluates to float , or
to bool in relational and equality comparisons.

You can also mix integral types and the decimal type in an expression. In this case,
integral types are implicitly converted to the decimal type and the expression evaluates
to decimal , or to bool in relational and equality comparisons.

You cannot mix the decimal type with the float and double types in an expression. In
this case, if you want to perform arithmetic, comparison, or equality operations, you
must explicitly convert the operands either from or to the decimal type, as the following
example shows:

C#

You can use either standard numeric format strings or custom numeric format strings to
format a floating-point value.

The type of a real literal is determined by its suffix as follows:

double a = 1.0;
decimal b = 2.1m;
Console.WriteLine(a + (double)b);
Console.WriteLine((decimal)a + b);

Real literals

https://learn.microsoft.com/en-ca/dotnet/machine-learning/how-does-mldotnet-work
https://learn.microsoft.com/en-us/dotnet/api/system.decimal
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-numeric-format-strings
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/custom-numeric-format-strings

The literal without suffix or with the d or D suffix is of type double
The literal with the f or F suffix is of type float
The literal with the m or M suffix is of type decimal

The following code demonstrates an example of each:

C#

The preceding example also shows the use of _ as a digit separator. You can use the
digit separator with all kinds of numeric literals.

You can also use scientific notation, that is, specify an exponent part of a real literal, as
the following example shows:

C#

There is only one implicit conversion between floating-point numeric types: from float
to double . However, you can convert any floating-point type to any other floating-point
type with the explicit cast. For more information, see Built-in numeric conversions.

For more information, see the following sections of the C# language specification:

double d = 3D;
d = 4d;
d = 3.934_001;

float f = 3_000.5F;
f = 5.4f;

decimal myMoney = 3_000.5m;
myMoney = 400.75M;

double d = 0.42e2;
Console.WriteLine(d); // output 42

float f = 134.45E-2f;
Console.WriteLine(f); // output: 1.3445

decimal m = 1.5E6m;
Console.WriteLine(m); // output: 1500000

Conversions

C# language specification

Floating-point types
The decimal type
Real literals

C# reference
Value types
Integral types
Standard numeric format strings
Numerics in .NET
System.Numerics.Complex

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-numeric-format-strings
https://learn.microsoft.com/en-ca/dotnet/standard/numerics
https://learn.microsoft.com/en-us/dotnet/api/system.numerics.complex

Built-in numeric conversions (C#
reference)
Article • 2022-08-24 • 4 minutes to read

C# provides a set of integral and floating-point numeric types. There exists a conversion
between any two numeric types, either implicit or explicit. You must use a cast
expression to perform an explicit conversion.

The following table shows the predefined implicit conversions between the built-in
numeric types:

From To

sbyte short , int , long , float , double , decimal , or nint

byte short , ushort , int , uint , long , ulong , float , double , decimal , nint , or nuint

short int , long , float , double , or decimal , or nint

ushort int , uint , long , ulong , float , double , or decimal , nint , or nuint

int long , float , double , or decimal , nint

uint long , ulong , float , double , or decimal , or nuint

long float , double , or decimal

ulong float , double , or decimal

float double

nint long , float , double , or decimal

nuint ulong , float , double , or decimal

Implicit numeric conversions

７ Note

The implicit conversions from int , uint , long , ulong , nint , or nuint to float and
from long , ulong , nint , or nuint to double may cause a loss of precision, but
never a loss of an order of magnitude. The other implicit numeric conversions never
lose any information.

Also note that

Any integral numeric type is implicitly convertible to any floating-point numeric
type.

There are no implicit conversions to the byte and sbyte types. There are no
implicit conversions from the double and decimal types.

There are no implicit conversions between the decimal type and the float or
double types.

A value of a constant expression of type int (for example, a value represented by
an integer literal) can be implicitly converted to sbyte , byte , short , ushort , uint ,
ulong , nint , or nuint , if it's within the range of the destination type:

C#

As the preceding example shows, if the constant value is not within the range of
the destination type, a compiler error CS0031 occurs.

The following table shows the predefined explicit conversions between the built-in
numeric types for which there is no implicit conversion:

From To

sbyte byte , ushort , uint , ulong , or nuint

byte sbyte

short sbyte , byte , ushort , uint , ulong , or nuint

ushort sbyte , byte , or short

int sbyte , byte , short , ushort , uint , ulong , or nuint

uint sbyte , byte , short , ushort , or int

long sbyte , byte , short , ushort , int , uint , ulong , nint , or nuint

ulong sbyte , byte , short , ushort , int , uint , long , nint , or nuint

byte a = 13;
byte b = 300; // CS0031: Constant value '300' cannot be converted to a
'byte'

Explicit numeric conversions

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0031

From To

float sbyte , byte , short , ushort , int , uint , long , ulong , decimal , nint , or nuint

double sbyte , byte , short , ushort , int , uint , long , ulong , float , decimal , nint , or nuint

decimal sbyte , byte , short , ushort , int , uint , long , ulong , float , double , nint , or nuint

nint sbyte , byte , short , ushort , int , uint , ulong , or nuint

nuint sbyte , byte , short , ushort , int , uint , long , or nint

Also note that:

When you convert a value of an integral type to another integral type, the result
depends on the overflow-checking context. In a checked context, the conversion
succeeds if the source value is within the range of the destination type. Otherwise,
an OverflowException is thrown. In an unchecked context, the conversion always
succeeds, and proceeds as follows:

If the source type is larger than the destination type, then the source value is
truncated by discarding its "extra" most significant bits. The result is then
treated as a value of the destination type.

If the source type is smaller than the destination type, then the source value is
either sign-extended or zero-extended so that it's of the same size as the
destination type. Sign-extension is used if the source type is signed; zero-
extension is used if the source type is unsigned. The result is then treated as a
value of the destination type.

If the source type is the same size as the destination type, then the source value
is treated as a value of the destination type.

When you convert a decimal value to an integral type, this value is rounded
towards zero to the nearest integral value. If the resulting integral value is outside
the range of the destination type, an OverflowException is thrown.

When you convert a double or float value to an integral type, this value is
rounded towards zero to the nearest integral value. If the resulting integral value is

７ Note

An explicit numeric conversion might result in data loss or throw an exception,
typically an OverflowException.

https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

outside the range of the destination type, the result depends on the overflow-
checking context. In a checked context, an OverflowException is thrown, while in
an unchecked context, the result is an unspecified value of the destination type.

When you convert double to float , the double value is rounded to the nearest
float value. If the double value is too small or too large to fit into the float type,
the result is zero or infinity.

When you convert float or double to decimal , the source value is converted to
decimal representation and rounded to the nearest number after the 28th decimal
place if necessary. Depending on the value of the source value, one of the
following results may occur:

If the source value is too small to be represented as a decimal , the result
becomes zero.

If the source value is NaN (not a number), infinity, or too large to be
represented as a decimal , an OverflowException is thrown.

When you convert decimal to float or double , the source value is rounded to the
nearest float or double value, respectively.

For more information, see the following sections of the C# language specification:

Implicit numeric conversions
Explicit numeric conversions

C# reference
Casting and type conversions

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

bool (C# reference)
Article • 2022-01-25 • 2 minutes to read

The bool type keyword is an alias for the .NET System.Boolean structure type that
represents a Boolean value, which can be either true or false .

To perform logical operations with values of the bool type, use Boolean logical
operators. The bool type is the result type of comparison and equality operators. A
bool expression can be a controlling conditional expression in the if, do, while, and for
statements and in the conditional operator ?:.

The default value of the bool type is false .

You can use the true and false literals to initialize a bool variable or to pass a bool
value:

C#

Use the nullable bool? type, if you need to support the three-valued logic, for example,
when you work with databases that support a three-valued Boolean type. For the bool?
operands, the predefined & and | operators support the three-valued logic. For more
information, see the Nullable Boolean logical operators section of the Boolean logical
operators article.

For more information about nullable value types, see Nullable value types.

C# provides only two conversions that involve the bool type. Those are an implicit
conversion to the corresponding nullable bool? type and an explicit conversion from

Literals

bool check = true;
Console.WriteLine(check ? "Checked" : "Not checked"); // output: Checked

Console.WriteLine(false ? "Checked" : "Not checked"); // output: Not
checked

Three-valued Boolean logic

Conversions

https://learn.microsoft.com/en-us/dotnet/api/system.boolean

the bool? type. However, .NET provides additional methods that you can use to convert
to or from the bool type. For more information, see the Converting to and from
Boolean values section of the System.Boolean API reference page.

For more information, see The bool type section of the C# language specification.

C# reference
Value types
true and false operators

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.boolean#converting-to-and-from-boolean-values
https://learn.microsoft.com/en-us/dotnet/api/system.boolean

char (C# reference)
Article • 2022-01-25 • 2 minutes to read

The char type keyword is an alias for the .NET System.Char structure type that
represents a Unicode UTF-16 character.

Type Range Size .NET type

char U+0000 to U+FFFF 16 bit System.Char

The default value of the char type is \0 , that is, U+0000.

The char type supports comparison, equality, increment, and decrement operators.
Moreover, for char operands, arithmetic and bitwise logical operators perform an
operation on the corresponding character codes and produce the result of the int type.

The string type represents text as a sequence of char values.

You can specify a char value with:

a character literal.
a Unicode escape sequence, which is \u followed by the four-symbol hexadecimal
representation of a character code.
a hexadecimal escape sequence, which is \x followed by the hexadecimal
representation of a character code.

C#

As the preceding example shows, you can also cast the value of a character code into
the corresponding char value.

Literals

var chars = new[]
{
 'j',
 '\u006A',
 '\x006A',
 (char)106,
};
Console.WriteLine(string.Join(" ", chars)); // output: j j j j

https://learn.microsoft.com/en-us/dotnet/api/system.char
https://learn.microsoft.com/en-us/dotnet/api/system.char

The char type is implicitly convertible to the following integral types: ushort , int , uint ,
long , and ulong . It's also implicitly convertible to the built-in floating-point numeric
types: float , double , and decimal . It's explicitly convertible to sbyte , byte , and short
integral types.

There are no implicit conversions from other types to the char type. However, any
integral or floating-point numeric type is explicitly convertible to char .

For more information, see the Integral types section of the C# language specification.

C# reference
Value types
Strings
System.Text.Rune
Character encoding in .NET

７ Note

In the case of a Unicode escape sequence, you must specify all four hexadecimal
digits. That is, \u006A is a valid escape sequence, while \u06A and \u6A are not
valid.

In the case of a hexadecimal escape sequence, you can omit the leading zeros. That
is, the \x006A , \x06A , and \x6A escape sequences are valid and correspond to the
same character.

Conversions

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.text.rune
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/character-encoding-introduction

Enumeration types (C# reference)
Article • 2022-09-29 • 3 minutes to read

An enumeration type (or enum type) is a value type defined by a set of named constants
of the underlying integral numeric type. To define an enumeration type, use the enum
keyword and specify the names of enum members:

C#

By default, the associated constant values of enum members are of type int ; they start
with zero and increase by one following the definition text order. You can explicitly
specify any other integral numeric type as an underlying type of an enumeration type.
You can also explicitly specify the associated constant values, as the following example
shows:

C#

You cannot define a method inside the definition of an enumeration type. To add
functionality to an enumeration type, create an extension method.

The default value of an enumeration type E is the value produced by expression (E)0 ,
even if zero doesn't have the corresponding enum member.

You use an enumeration type to represent a choice from a set of mutually exclusive
values or a combination of choices. To represent a combination of choices, define an
enumeration type as bit flags.

enum Season
{
 Spring,
 Summer,
 Autumn,
 Winter
}

enum ErrorCode : ushort
{
 None = 0,
 Unknown = 1,
 ConnectionLost = 100,
 OutlierReading = 200
}

If you want an enumeration type to represent a combination of choices, define enum
members for those choices such that an individual choice is a bit field. That is, the
associated values of those enum members should be the powers of two. Then, you can
use the bitwise logical operators | or & to combine choices or intersect combinations of
choices, respectively. To indicate that an enumeration type declares bit fields, apply the
Flags attribute to it. As the following example shows, you can also include some typical
combinations in the definition of an enumeration type.

C#

Enumeration types as bit flags

[Flags]
public enum Days
{
 None = 0b_0000_0000, // 0
 Monday = 0b_0000_0001, // 1
 Tuesday = 0b_0000_0010, // 2
 Wednesday = 0b_0000_0100, // 4
 Thursday = 0b_0000_1000, // 8
 Friday = 0b_0001_0000, // 16
 Saturday = 0b_0010_0000, // 32
 Sunday = 0b_0100_0000, // 64
 Weekend = Saturday | Sunday
}

public class FlagsEnumExample
{
 public static void Main()
 {
 Days meetingDays = Days.Monday | Days.Wednesday | Days.Friday;
 Console.WriteLine(meetingDays);
 // Output:
 // Monday, Wednesday, Friday

 Days workingFromHomeDays = Days.Thursday | Days.Friday;
 Console.WriteLine($"Join a meeting by phone on {meetingDays &
workingFromHomeDays}");
 // Output:
 // Join a meeting by phone on Friday

 bool isMeetingOnTuesday = (meetingDays & Days.Tuesday) ==
Days.Tuesday;
 Console.WriteLine($"Is there a meeting on Tuesday:
{isMeetingOnTuesday}");
 // Output:
 // Is there a meeting on Tuesday: False

 var a = (Days)37;
 Console.WriteLine(a);
 // Output:

https://learn.microsoft.com/en-us/dotnet/api/system.flagsattribute

For more information and examples, see the System.FlagsAttribute API reference page
and the Non-exclusive members and the Flags attribute section of the System.Enum API
reference page.

The System.Enum type is the abstract base class of all enumeration types. It provides a
number of methods to get information about an enumeration type and its values. For
more information and examples, see the System.Enum API reference page.

You can use System.Enum in a base class constraint (that is known as the enum
constraint) to specify that a type parameter is an enumeration type. Any enumeration
type also satisfies the struct constraint, which is used to specify that a type parameter
is a non-nullable value type.

For any enumeration type, there exist explicit conversions between the enumeration
type and its underlying integral type. If you cast an enum value to its underlying type,
the result is the associated integral value of an enum member.

C#

 // Monday, Wednesday, Saturday
 }
}

The System.Enum type and enum constraint

Conversions

public enum Season
{
 Spring,
 Summer,
 Autumn,
 Winter
}

public class EnumConversionExample
{
 public static void Main()
 {
 Season a = Season.Autumn;
 Console.WriteLine($"Integral value of {a} is {(int)a}"); // output:
Integral value of Autumn is 2

 var b = (Season)1;
 Console.WriteLine(b); // output: Summer

https://learn.microsoft.com/en-us/dotnet/api/system.flagsattribute
https://learn.microsoft.com/en-us/dotnet/api/system.enum#non-exclusive-members-and-the-flags-attribute
https://learn.microsoft.com/en-us/dotnet/api/system.enum
https://learn.microsoft.com/en-us/dotnet/api/system.enum
https://learn.microsoft.com/en-us/dotnet/api/system.enum

Use the Enum.IsDefined method to determine whether an enumeration type contains an
enum member with the certain associated value.

For any enumeration type, there exist boxing and unboxing conversions to and from the
System.Enum type, respectively.

For more information, see the following sections of the C# language specification:

Enums
Enum values and operations
Enumeration logical operators
Enumeration comparison operators
Explicit enumeration conversions
Implicit enumeration conversions

C# reference
Enumeration format strings
Design guidelines - Enum design
Design guidelines - Enum naming conventions
switch expression
switch statement

 var c = (Season)4;
 Console.WriteLine(c); // output: 4
 }
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.enum.isdefined
https://learn.microsoft.com/en-us/dotnet/api/system.enum
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/enumeration-format-strings
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/enum
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/names-of-classes-structs-and-interfaces#naming-enumerations

Structure types (C# reference)
Article • 2022-10-25 • 9 minutes to read

A structure type (or struct type) is a value type that can encapsulate data and related
functionality. You use the struct keyword to define a structure type:

C#

ref struct types and readonly ref struct types are covered in the article on ref struct
types.

Structure types have value semantics. That is, a variable of a structure type contains an
instance of the type. By default, variable values are copied on assignment, passing an
argument to a method, and returning a method result. For structure-type variables, an
instance of the type is copied. For more information, see Value types.

Typically, you use structure types to design small data-centric types that provide little or
no behavior. For example, .NET uses structure types to represent a number (both integer
and real), a Boolean value, a Unicode character, a time instance. If you're focused on the
behavior of a type, consider defining a class. Class types have reference semantics. That
is, a variable of a class type contains a reference to an instance of the type, not the
instance itself.

Because structure types have value semantics, we recommend you define immutable
structure types.

You use the readonly modifier to declare that a structure type is immutable. All data
members of a readonly struct must be read-only as follows:

public struct Coords
{
 public Coords(double x, double y)
 {
 X = x;
 Y = y;
 }

 public double X { get; }
 public double Y { get; }

 public override string ToString() => $"({X}, {Y})";
}

readonly struct

https://learn.microsoft.com/en-us/dotnet/api/system.datetime

Any field declaration must have the readonly modifier
Any property, including auto-implemented ones, must be read-only. In C# 9.0 and
later, a property may have an init accessor.

That guarantees that no member of a readonly struct modifies the state of the struct.
That means that other instance members except constructors are implicitly readonly.

The following code defines a readonly struct with init-only property setters, available in
C# 9.0 and later:

C#

You can also use the readonly modifier to declare that an instance member doesn't
modify the state of a struct. If you can't declare the whole structure type as readonly ,
use the readonly modifier to mark the instance members that don't modify the state of
the struct.

Within a readonly instance member, you can't assign to structure's instance fields.
However, a readonly member can call a non-readonly member. In that case the
compiler creates a copy of the structure instance and calls the non-readonly member
on that copy. As a result, the original structure instance isn't modified.

７ Note

In a readonly struct, a data member of a mutable reference type still can mutate its
own state. For example, you can't replace a List<T> instance, but you can add new
elements to it.

public readonly struct Coords
{
 public Coords(double x, double y)
 {
 X = x;
 Y = y;
 }

 public double X { get; init; }
 public double Y { get; init; }

 public override string ToString() => $"({X}, {Y})";
}

readonly instance members

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1

Typically, you apply the readonly modifier to the following kinds of instance members:

methods:

C#

You can also apply the readonly modifier to methods that override methods
declared in System.Object:

C#

properties and indexers:

C#

If you need to apply the readonly modifier to both accessors of a property or
indexer, apply it in the declaration of the property or indexer.

In C# 9.0 and later, you may apply the readonly modifier to a property or indexer
with an init accessor:

C#

public readonly double Sum()
{
 return X + Y;
}

public readonly override string ToString() => $"({X}, {Y})";

private int counter;
public int Counter
{
 readonly get => counter;
 set => counter = value;
}

７ Note

The compiler declares a get accessor of an auto-implemented property as
readonly , regardless of presence of the readonly modifier in a property
declaration.

public readonly double X { get; init; }

https://learn.microsoft.com/en-us/dotnet/api/system.object

You can apply the readonly modifier to static fields of a structure type, but not any
other static members, such as properties or methods.

The compiler may make use of the readonly modifier for performance optimizations.
For more information, see Write safe and efficient C# code.

Beginning with C# 10, you can use the with expression to produce a copy of a structure-
type instance with the specified properties and fields modified. You use object initializer
syntax to specify what members to modify and their new values, as the following
example shows:

C#

Beginning with C# 10, you can define record structure types. Record types provide built-
in functionality for encapsulating data. You can define both record struct and readonly

Nondestructive mutation

public readonly struct Coords
{
 public Coords(double x, double y)
 {
 X = x;
 Y = y;
 }

 public double X { get; init; }
 public double Y { get; init; }

 public override string ToString() => $"({X}, {Y})";
}

public static void Main()
{
 var p1 = new Coords(0, 0);
 Console.WriteLine(p1); // output: (0, 0)

 var p2 = p1 with { X = 3 };
 Console.WriteLine(p2); // output: (3, 0)

 var p3 = p1 with { X = 1, Y = 4 };
 Console.WriteLine(p3); // output: (1, 4)
}

record struct

record struct types. A record struct can't be a ref struct. For more information and
examples, see Records.

A variable of a struct type directly contains the data for that struct . That creates a
distinction between an uninitialized struct , which has its default value and an initialized
struct , which stores values set by constructing it. For example consider the following
code:

C#

As the preceding example shows, the default value expression ignores a parameterless
constructor and produces the default value of the structure type. Structure-type array
instantiation also ignores a parameterless constructor and produces an array populated
with the default values of a structure type.

Struct initialization and default values

public readonly struct Measurement
{
 public Measurement()
 {
 Value = double.NaN;
 Description = "Undefined";
 }

 public Measurement(double value, string description)
 {
 Value = value;
 Description = description;
 }

 public double Value { get; init; }
 public string Description { get; init; }

 public override string ToString() => $"{Value} ({Description})";
}

public static void Main()
{
 var m1 = new Measurement();
 Console.WriteLine(m1); // output: NaN (Undefined)

 var m2 = default(Measurement);
 Console.WriteLine(m2); // output: 0 ()

 var ms = new Measurement[2];
 Console.WriteLine(string.Join(", ", ms)); // output: 0 (), 0 ()
}

The most common situation where you'll see default values is in arrays or in other
collections where internal storage includes blocks of variables. The following example
creates an array of 30 TemperatureRange structures, each of which has the default value:

C#

All of a struct's member fields must be definitely assigned when it's created because
struct types directly store their data. The default value of a struct has definitely
assigned all fields to 0. All fields must be definitely assigned when a constructor is
invoked. You initialize fields using the following mechanisms:

You can add field initializers to any field or auto implemented property.
You can initialize any fields, or auto properties, in the body of the constructor.

Beginning with C# 11, if you don't initialize all fields in a struct, the compiler adds code
to the constructor that initializes those fields to the default value. The compiler performs
its usual definite assignment analysis. Any fields that are accessed before being
assigned, or not definitely assigned when the constructor finishes executing are
assigned their default values before the constructor body executes. If this is accessed
before all fields are assigned, the struct is initialized to the default value before the
constructor body executes.

C#

// All elements have default values of 0:
TemperatureRange[] lastMonth = new TemperatureRange[30];

public readonly struct Measurement
{
 public Measurement(double value)
 {
 Value = value;
 }

 public Measurement(double value, string description)
 {
 Value = value;
 Description = description;
 }

 public Measurement(string description)
 {
 Description = description;
 }

 public double Value { get; init; }
 public string Description { get; init; } = "Ordinary measurement";

Every struct has a public parameterless constructor. If you write a parameterless
constructor, it must be public. If a struct declares any field initializers, it must explicitly
declare a constructor. That constructor need not be parameterless. If a struct declares a
field initializer but no constructors, the compiler reports an error. Any explicitly declared
constructor (with parameters, or parameterless) executes all field initializers for that
struct. All fields without a field initializer or an assignment in a constructor are set to the
default value. For more information, see the Parameterless struct constructors feature
proposal note.

If all instance fields of a structure type are accessible, you can also instantiate it without
the new operator. In that case you must initialize all instance fields before the first use of
the instance. The following example shows how to do that:

C#

 public override string ToString() => $"{Value} ({Description})";
}

public static void Main()
{
 var m1 = new Measurement(5);
 Console.WriteLine(m1); // output: 5 (Ordinary measurement)

 var m2 = new Measurement();
 Console.WriteLine(m2); // output: 0 ()

 var m3 = default(Measurement);
 Console.WriteLine(m3); // output: 0 ()
}

public static class StructWithoutNew
{
 public struct Coords
 {
 public double x;
 public double y;
 }

 public static void Main()
 {
 Coords p;
 p.x = 3;
 p.y = 4;
 Console.WriteLine($"({p.x}, {p.y})"); // output: (3, 4)
 }
}

In the case of the built-in value types, use the corresponding literals to specify a value of
the type.

Structs have most of the capabilities of a class type. There are some exceptions, and
some exceptions that have been removed in more recent versions:

A structure type can't inherit from other class or structure type and it can't be the
base of a class. However, a structure type can implement interfaces.
You can't declare a finalizer within a structure type.
Prior to C# 11, a constructor of a structure type must initialize all instance fields of
the type.
Prior to C# 10, you can't declare a parameterless constructor.
Prior to C# 10, you can't initialize an instance field or property at its declaration.

When you pass a structure-type variable to a method as an argument or return a
structure-type value from a method, the whole instance of a structure type is copied.
Pass by value can affect the performance of your code in high-performance scenarios
that involve large structure types. You can avoid value copying by passing a structure-
type variable by reference. Use the ref, out, or in method parameter modifiers to
indicate that an argument must be passed by reference. Use ref returns to return a
method result by reference. For more information, see Write safe and efficient C# code.

You also use the struct keyword in the struct constraint to specify that a type
parameter is a non-nullable value type. Both structure and enumeration types satisfy the
struct constraint.

For any structure type (except ref struct types), there exist boxing and unboxing
conversions to and from the System.ValueType and System.Object types. There exist also
boxing and unboxing conversions between a structure type and any interface that it
implements.

Limitations with the design of a structure type

Passing structure-type variables by reference

struct constraint

Conversions

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object

For more information, see the Structs section of the C# language specification.

For more information about struct features, see the following feature proposal notes:

C# 7.2 - Readonly structs
C# 8 - Readonly instance members
C# 10 - Parameterless struct constructors
C# 10 - Allow with expression on structs
C# 10 - Record structs
C# 11 - Auto default structs

C# reference
The C# type system
Design guidelines - Choosing between class and struct
Design guidelines - Struct design

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/choosing-between-class-and-struct
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/struct

ref structure types (C# reference)
Article • 2022-10-14 • 2 minutes to read

You can use the ref modifier in the declaration of a structure type. Instances of a ref
struct type are allocated on the stack and can't escape to the managed heap. To ensure
that, the compiler limits the usage of ref struct types as follows:

A ref struct can't be the element type of an array.
A ref struct can't be a declared type of a field of a class or a non-ref struct .
A ref struct can't implement interfaces.
A ref struct can't be boxed to System.ValueType or System.Object.
A ref struct can't be a type argument.
A ref struct variable can't be captured by a lambda expression or a local
function.
A ref struct variable can't be used in an async method. However, you can use ref
struct variables in synchronous methods, for example, in methods that return Task
or Task<TResult>.
A ref struct variable can't be used in iterators.

You can define a disposable ref struct . To do that, ensure that a ref struct fits the
disposable pattern. That is, it has an instance or extension Dispose method, which is
accessible, parameterless and has a void return type.

Typically, you define a ref struct type when you need a type that also includes data
members of ref struct types:

C#

To declare a ref struct as readonly , combine the readonly and ref modifiers in the
type declaration (the readonly modifier must come before the ref modifier):

C#

public ref struct CustomRef
{
 public bool IsValid;
 public Span<int> Inputs;
 public Span<int> Outputs;
}

public readonly ref struct ConversionRequest
{

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

In .NET, examples of a ref struct are System.Span<T> and System.ReadOnlySpan<T>.

Beginning with C# 11, you can declare a ref field in a ref struct , as the following
example shows:

C#

A ref field may have the null value. Use the Unsafe.IsNullRef<T>(T) method to
determine if a ref field is null .

You can apply the readonly modifier to a ref field in the following ways:

readonly ref : You can ref reassign such a field with the = ref operator only inside
a constructor or an init accessor. You can assign a value with the = operator at any
point allowed by the field access modifier.
ref readonly : At any point, you cannot assign a value with the = operator to such
a field. However, you can ref reassign a field with the = ref operator.

 public ConversionRequest(double rate, ReadOnlySpan<double> values)
 {
 Rate = rate;
 Values = values;
 }

 public double Rate { get; }
 public ReadOnlySpan<double> Values { get; }
}

ref fields

public ref struct RefFieldExample
{
 private ref int number;

 public int GetNumber()
 {
 if (System.Runtime.CompilerServices.Unsafe.IsNullRef(ref number))
 {
 throw new InvalidOperationException("The number ref field is not
initialized.");
 }

 return number;
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.unsafe.isnullref#system-runtime-compilerservices-unsafe-isnullref-1(-0@)

readonly ref readonly : You can only ref reassign such a field in a constructor or an
init accessor. At any point, you cannot assign a value to the field.

The compiler ensures that a reference stored in a ref field doesn't outlive the value to
which it refers. For information about the scope rules, see the Scope of reference and
values section of the Method parameters article.

For more information, see the Structs section of the C# language specification.

For more information about features introduced in C# 7.2 and later, see the following
feature proposal notes:

C# 7.2 - Compile-time safety for ref-like types
C# 11 - ref fields and scoped

C# reference
The C# type system

C# language specification

See also

Tuple types (C# reference)
Article • 2022-09-29 • 8 minutes to read

The tuples feature provides concise syntax to group multiple data elements in a
lightweight data structure. The following example shows how you can declare a tuple
variable, initialize it, and access its data members:

C#

As the preceding example shows, to define a tuple type, you specify types of all its data
members and, optionally, the field names. You cannot define methods in a tuple type,
but you can use the methods provided by .NET, as the following example shows:

C#

Tuple types support equality operators == and != . For more information, see the Tuple
equality section.

Tuple types are value types; tuple elements are public fields. That makes tuples mutable
value types.

(double, int) t1 = (4.5, 3);
Console.WriteLine($"Tuple with elements {t1.Item1} and {t1.Item2}.");
// Output:
// Tuple with elements 4.5 and 3.

(double Sum, int Count) t2 = (4.5, 3);
Console.WriteLine($"Sum of {t2.Count} elements is {t2.Sum}.");
// Output:
// Sum of 3 elements is 4.5.

(double, int) t = (4.5, 3);
Console.WriteLine(t.ToString());
Console.WriteLine($"Hash code of {t} is {t.GetHashCode()}.");
// Output:
// (4.5, 3)
// Hash code of (4.5, 3) is 718460086.

７ Note

The tuples feature requires the System.ValueTuple type and related generic types
(for example, System.ValueTuple<T1,T2>), which are available in .NET Core and
.NET Framework 4.7 and later. To use tuples in a project that targets .NET

https://learn.microsoft.com/en-us/dotnet/api/system.valuetuple
https://learn.microsoft.com/en-us/dotnet/api/system.valuetuple-2

You can define tuples with an arbitrary large number of elements:

C#

One of the most common use cases of tuples is as a method return type. That is, instead
of defining out method parameters, you can group method results in a tuple return
type, as the following example shows:

C#

Framework 4.6.2 or earlier, add the NuGet package System.ValueTuple to the
project.

var t =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26);
Console.WriteLine(t.Item26); // output: 26

Use cases of tuples

var xs = new[] { 4, 7, 9 };
var limits = FindMinMax(xs);
Console.WriteLine($"Limits of [{string.Join(" ", xs)}] are {limits.min} and
{limits.max}");
// Output:
// Limits of [4 7 9] are 4 and 9

var ys = new[] { -9, 0, 67, 100 };
var (minimum, maximum) = FindMinMax(ys);
Console.WriteLine($"Limits of [{string.Join(" ", ys)}] are {minimum} and
{maximum}");
// Output:
// Limits of [-9 0 67 100] are -9 and 100

(int min, int max) FindMinMax(int[] input)
{
 if (input is null || input.Length == 0)
 {
 throw new ArgumentException("Cannot find minimum and maximum of a
null or empty array.");
 }

 var min = int.MaxValue;
 var max = int.MinValue;
 foreach (var i in input)
 {
 if (i < min)
 {

https://www.nuget.org/packages/System.ValueTuple/

As the preceding example shows, you can work with the returned tuple instance directly
or deconstruct it in separate variables.

You can also use tuple types instead of anonymous types; for example, in LINQ queries.
For more information, see Choosing between anonymous and tuple types.

Typically, you use tuples to group loosely related data elements. That is usually useful
within private and internal utility methods. In the case of public API, consider defining a
class or a structure type.

You can explicitly specify the names of tuple fields either in a tuple initialization
expression or in the definition of a tuple type, as the following example shows:

C#

If you don't specify a field name, it may be inferred from the name of the corresponding
variable in a tuple initialization expression, as the following example shows:

C#

That's known as tuple projection initializers. The name of a variable isn't projected onto
a tuple field name in the following cases:

 min = i;
 }
 if (i > max)
 {
 max = i;
 }
 }
 return (min, max);
}

Tuple field names

var t = (Sum: 4.5, Count: 3);
Console.WriteLine($"Sum of {t.Count} elements is {t.Sum}.");

(double Sum, int Count) d = (4.5, 3);
Console.WriteLine($"Sum of {d.Count} elements is {d.Sum}.");

var sum = 4.5;
var count = 3;
var t = (sum, count);
Console.WriteLine($"Sum of {t.count} elements is {t.sum}.");

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/choosing-between-anonymous-and-tuple

The candidate name is a member name of a tuple type, for example, Item3 ,
ToString , or Rest .
The candidate name is a duplicate of another tuple field name, either explicit or
implicit.

In those cases you either explicitly specify the name of a field or access a field by its
default name.

The default names of tuple fields are Item1 , Item2 , Item3 and so on. You can always use
the default name of a field, even when a field name is specified explicitly or inferred, as
the following example shows:

C#

Tuple assignment and tuple equality comparisons don't take field names into account.

At compile time, the compiler replaces non-default field names with the corresponding
default names. As a result, explicitly specified or inferred field names aren't available at
run time.

C# supports assignment between tuple types that satisfy both of the following
conditions:

both tuple types have the same number of elements
for each tuple position, the type of the right-hand tuple element is the same as or
implicitly convertible to the type of the corresponding left-hand tuple element

var a = 1;
var t = (a, b: 2, 3);
Console.WriteLine($"The 1st element is {t.Item1} (same as {t.a}).");
Console.WriteLine($"The 2nd element is {t.Item2} (same as {t.b}).");
Console.WriteLine($"The 3rd element is {t.Item3}.");
// Output:
// The 1st element is 1 (same as 1).
// The 2nd element is 2 (same as 2).
// The 3rd element is 3.

 Tip

Enable .NET code style rule IDE0037 to set a preference on inferred or explicit tuple
field names.

Tuple assignment and deconstruction

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0037

Tuple element values are assigned following the order of tuple elements. The names of
tuple fields are ignored and not assigned, as the following example shows:

C#

You can also use the assignment operator = to deconstruct a tuple instance in separate
variables. You can do that in one of the following ways:

Explicitly declare the type of each variable inside parentheses:

C#

Use the var keyword outside the parentheses to declare implicitly typed variables
and let the compiler infer their types:

C#

Use existing variables:

C#

(int, double) t1 = (17, 3.14);
(double First, double Second) t2 = (0.0, 1.0);
t2 = t1;
Console.WriteLine($"{nameof(t2)}: {t2.First} and {t2.Second}");
// Output:
// t2: 17 and 3.14

(double A, double B) t3 = (2.0, 3.0);
t3 = t2;
Console.WriteLine($"{nameof(t3)}: {t3.A} and {t3.B}");
// Output:
// t3: 17 and 3.14

var t = ("post office", 3.6);
(string destination, double distance) = t;
Console.WriteLine($"Distance to {destination} is {distance}
kilometers.");
// Output:
// Distance to post office is 3.6 kilometers.

var t = ("post office", 3.6);
var (destination, distance) = t;
Console.WriteLine($"Distance to {destination} is {distance}
kilometers.");
// Output:
// Distance to post office is 3.6 kilometers.

For more information about deconstruction of tuples and other types, see
Deconstructing tuples and other types.

Tuple types support the == and != operators. These operators compare members of
the left-hand operand with the corresponding members of the right-hand operand
following the order of tuple elements.

C#

As the preceding example shows, the == and != operations don't take into account
tuple field names.

Two tuples are comparable when both of the following conditions are satisfied:

Both tuples have the same number of elements. For example, t1 != t2 doesn't
compile if t1 and t2 have different numbers of elements.
For each tuple position, the corresponding elements from the left-hand and right-
hand tuple operands are comparable with the == and != operators. For example,
(1, (2, 3)) == ((1, 2), 3) doesn't compile because 1 is not comparable with
(1, 2) .

The == and != operators compare tuples in short-circuiting way. That is, an operation
stops as soon as it meets a pair of non equal elements or reaches the ends of tuples.

var destination = string.Empty;
var distance = 0.0;

var t = ("post office", 3.6);
(destination, distance) = t;
Console.WriteLine($"Distance to {destination} is {distance}
kilometers.");
// Output:
// Distance to post office is 3.6 kilometers.

Tuple equality

(int a, byte b) left = (5, 10);
(long a, int b) right = (5, 10);
Console.WriteLine(left == right); // output: True
Console.WriteLine(left != right); // output: False

var t1 = (A: 5, B: 10);
var t2 = (B: 5, A: 10);
Console.WriteLine(t1 == t2); // output: True
Console.WriteLine(t1 != t2); // output: False

However, before any comparison, all tuple elements are evaluated, as the following
example shows:

C#

Typically, you refactor a method that has out parameters into a method that returns a
tuple. However, there are cases in which an out parameter can be of a tuple type. The
following example shows how to work with tuples as out parameters:

C#

C# tuples, which are backed by System.ValueTuple types, are different from tuples that
are represented by System.Tuple types. The main differences are as follows:

Console.WriteLine((Display(1), Display(2)) == (Display(3), Display(4)));

int Display(int s)
{
 Console.WriteLine(s);
 return s;
}
// Output:
// 1
// 2
// 3
// 4
// False

Tuples as out parameters

var limitsLookup = new Dictionary<int, (int Min, int Max)>()
{
 [2] = (4, 10),
 [4] = (10, 20),
 [6] = (0, 23)
};

if (limitsLookup.TryGetValue(4, out (int Min, int Max) limits))
{
 Console.WriteLine($"Found limits: min is {limits.Min}, max is
{limits.Max}");
}
// Output:
// Found limits: min is 10, max is 20

Tuples vs System.Tuple

https://learn.microsoft.com/en-us/dotnet/api/system.valuetuple
https://learn.microsoft.com/en-us/dotnet/api/system.tuple

System.ValueTuple types are value types. System.Tuple types are reference types.
System.ValueTuple types are mutable. System.Tuple types are immutable.
Data members of System.ValueTuple types are fields. Data members of
System.Tuple types are properties.

For more information, see the following feature proposal notes:

Infer tuple names (aka. tuple projection initializers)
Support for == and != on tuple types

C# reference
Value types
Choosing between anonymous and tuple types
System.ValueTuple

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/choosing-between-anonymous-and-tuple
https://learn.microsoft.com/en-us/dotnet/api/system.valuetuple

Nullable value types (C# reference)
Article • 2022-09-29 • 7 minutes to read

A nullable value type T? represents all values of its underlying value type T and an
additional null value. For example, you can assign any of the following three values to a
bool? variable: true , false , or null . An underlying value type T cannot be a nullable
value type itself.

Any nullable value type is an instance of the generic System.Nullable<T> structure. You
can refer to a nullable value type with an underlying type T in any of the following
interchangeable forms: Nullable<T> or T? .

You typically use a nullable value type when you need to represent the undefined value
of an underlying value type. For example, a Boolean, or bool , variable can only be either
true or false . However, in some applications a variable value can be undefined or
missing. For example, a database field may contain true or false , or it may contain no
value at all, that is, NULL . You can use the bool? type in that scenario.

As a value type is implicitly convertible to the corresponding nullable value type, you
can assign a value to a variable of a nullable value type as you would do that for its
underlying value type. You can also assign the null value. For example:

C#

The default value of a nullable value type represents null , that is, it's an instance whose
Nullable<T>.HasValue property returns false .

Declaration and assignment

double? pi = 3.14;
char? letter = 'a';

int m2 = 10;
int? m = m2;

bool? flag = null;

// An array of a nullable value type:
int?[] arr = new int?[10];

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue

You can use the is operator with a type pattern to both examine an instance of a
nullable value type for null and retrieve a value of an underlying type:

C#

You always can use the following read-only properties to examine and get a value of a
nullable value type variable:

Nullable<T>.HasValue indicates whether an instance of a nullable value type has a
value of its underlying type.

Nullable<T>.Value gets the value of an underlying type if HasValue is true . If
HasValue is false , the Value property throws an InvalidOperationException.

The following example uses the HasValue property to test whether the variable contains
a value before displaying it:

C#

Examination of an instance of a nullable value
type

int? a = 42;
if (a is int valueOfA)
{
 Console.WriteLine($"a is {valueOfA}");
}
else
{
 Console.WriteLine("a does not have a value");
}
// Output:
// a is 42

int? b = 10;
if (b.HasValue)
{
 Console.WriteLine($"b is {b.Value}");
}
else
{
 Console.WriteLine("b does not have a value");
}
// Output:
// b is 10

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.value
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.value
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception

You can also compare a variable of a nullable value type with null instead of using the
HasValue property, as the following example shows:

C#

If you want to assign a value of a nullable value type to a non-nullable value type
variable, you might need to specify the value to be assigned in place of null . Use the
null-coalescing operator ?? to do that (you can also use the
Nullable<T>.GetValueOrDefault(T) method for the same purpose):

C#

If you want to use the default value of the underlying value type in place of null , use
the Nullable<T>.GetValueOrDefault() method.

You can also explicitly cast a nullable value type to a non-nullable type, as the following
example shows:

C#

int? c = 7;
if (c != null)
{
 Console.WriteLine($"c is {c.Value}");
}
else
{
 Console.WriteLine("c does not have a value");
}
// Output:
// c is 7

Conversion from a nullable value type to an
underlying type

int? a = 28;
int b = a ?? -1;
Console.WriteLine($"b is {b}"); // output: b is 28

int? c = null;
int d = c ?? -1;
Console.WriteLine($"d is {d}"); // output: d is -1

int? n = null;

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.getvalueordefault#system-nullable-1-getvalueordefault(-0)
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.getvalueordefault#system-nullable-1-getvalueordefault

At run time, if the value of a nullable value type is null , the explicit cast throws an
InvalidOperationException.

A non-nullable value type T is implicitly convertible to the corresponding nullable value
type T? .

The predefined unary and binary operators or any overloaded operators that are
supported by a value type T are also supported by the corresponding nullable value
type T? . These operators, also known as lifted operators, produce null if one or both
operands are null ; otherwise, the operator uses the contained values of its operands to
calculate the result. For example:

C#

For the comparison operators < , > , <= , and >= , if one or both operands are null , the
result is false ; otherwise, the contained values of operands are compared. Do not
assume that because a particular comparison (for example, <=) returns false , the
opposite comparison (>) returns true . The following example shows that 10 is

neither greater than or equal to null
nor less than null

//int m1 = n; // Doesn't compile
int n2 = (int)n; // Compiles, but throws an exception if n is null

Lifted operators

int? a = 10;
int? b = null;
int? c = 10;

a++; // a is 11
a = a * c; // a is 110
a = a + b; // a is null

７ Note

For the bool? type, the predefined & and | operators don't follow the rules
described in this section: the result of an operator evaluation can be non-null even
if one of the operands is null . For more information, see the Nullable Boolean
logical operators section of the Boolean logical operators article.

https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception

C#

For the equality operator == , if both operands are null , the result is true , if only one of
the operands is null , the result is false ; otherwise, the contained values of operands
are compared.

For the inequality operator != , if both operands are null , the result is false , if only one
of the operands is null , the result is true ; otherwise, the contained values of operands
are compared.

If there exists a user-defined conversion between two value types, the same conversion
can also be used between the corresponding nullable value types.

An instance of a nullable value type T? is boxed as follows:

If HasValue returns false , the null reference is produced.
If HasValue returns true , the corresponding value of the underlying value type T
is boxed, not the instance of Nullable<T>.

You can unbox a boxed value of a value type T to the corresponding nullable value type
T? , as the following example shows:

C#

int? a = 10;
Console.WriteLine($"{a} >= null is {a >= null}");
Console.WriteLine($"{a} < null is {a < null}");
Console.WriteLine($"{a} == null is {a == null}");
// Output:
// 10 >= null is False
// 10 < null is False
// 10 == null is False

int? b = null;
int? c = null;
Console.WriteLine($"null >= null is {b >= c}");
Console.WriteLine($"null == null is {b == c}");
// Output:
// null >= null is False
// null == null is True

Boxing and unboxing

int a = 41;
object aBoxed = a;
int? aNullable = (int?)aBoxed;
Console.WriteLine($"Value of aNullable: {aNullable}");

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

The following example shows how to determine whether a System.Type instance
represents a constructed nullable value type, that is, the System.Nullable<T> type with a
specified type parameter T :

C#

As the example shows, you use the typeof operator to create a System.Type instance.

If you want to determine whether an instance is of a nullable value type, don't use the
Object.GetType method to get a Type instance to be tested with the preceding code.
When you call the Object.GetType method on an instance of a nullable value type, the
instance is boxed to Object. As boxing of a non-null instance of a nullable value type is
equivalent to boxing of a value of the underlying type, GetType returns a Type instance
that represents the underlying type of a nullable value type:

C#

object aNullableBoxed = aNullable;
if (aNullableBoxed is int valueOfA)
{
 Console.WriteLine($"aNullableBoxed is boxed int: {valueOfA}");
}
// Output:
// Value of aNullable: 41
// aNullableBoxed is boxed int: 41

How to identify a nullable value type

Console.WriteLine($"int? is {(IsNullable(typeof(int?)) ? "nullable" : "non
nullable")} value type");
Console.WriteLine($"int is {(IsNullable(typeof(int)) ? "nullable" : "non-
nullable")} value type");

bool IsNullable(Type type) => Nullable.GetUnderlyingType(type) != null;

// Output:
// int? is nullable value type
// int is non-nullable value type

int? a = 17;
Type typeOfA = a.GetType();
Console.WriteLine(typeOfA.FullName);
// Output:
// System.Int32

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.object.gettype
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.object.gettype
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object.gettype
https://learn.microsoft.com/en-us/dotnet/api/system.type

Also, don't use the is operator to determine whether an instance is of a nullable value
type. As the following example shows, you cannot distinguish types of a nullable value
type instance and its underlying type instance with the is operator:

C#

Instead use the Nullable.GetUnderlyingType from the first example and typeof operator
to check if an instance is of a nullable value type.

For more information, see the following sections of the C# language specification:

Nullable types
Lifted operators
Implicit nullable conversions
Explicit nullable conversions
Lifted conversion operators

C# reference
What exactly does 'lifted' mean?

int? a = 14;
if (a is int)
{
 Console.WriteLine("int? instance is compatible with int");
}

int b = 17;
if (b is int?)
{
 Console.WriteLine("int instance is compatible with int?");
}
// Output:
// int? instance is compatible with int
// int instance is compatible with int?

７ Note

The methods described in this section are not applicable in the case of nullable
reference types.

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.nullable.getunderlyingtype
https://learn.microsoft.com/en-us/archive/blogs/ericlippert/what-exactly-does-lifted-mean

System.Nullable<T>
System.Nullable
Nullable.GetUnderlyingType
Nullable reference types

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1
https://learn.microsoft.com/en-us/dotnet/api/system.nullable
https://learn.microsoft.com/en-us/dotnet/api/system.nullable.getunderlyingtype

Reference types (C# reference)
Article • 2023-01-06 • 2 minutes to read

There are two kinds of types in C#: reference types and value types. Variables of
reference types store references to their data (objects), while variables of value types
directly contain their data. With reference types, two variables can reference the same
object; therefore, operations on one variable can affect the object referenced by the
other variable. With value types, each variable has its own copy of the data, and it's not
possible for operations on one variable to affect the other (except in the case of in ,
ref , and out parameter variables; see in, ref, and out parameter modifier).

The following keywords are used to declare reference types:

class
interface
delegate
record

C# also provides the following built-in reference types:

dynamic
object
string

C# reference
C# keywords
Pointer types
Value types

See also

Built-in reference types (C# reference)
Article • 2022-12-14 • 10 minutes to read

C# has many built-in reference types. They have keywords or operators that are
synonyms for a type in the .NET library.

The object type is an alias for System.Object in .NET. In the unified type system of C#,
all types, predefined and user-defined, reference types and value types, inherit directly
or indirectly from System.Object. You can assign values of any type to variables of type
object . Any object variable can be assigned to its default value using the literal null .
When a variable of a value type is converted to object, it's said to be boxed. When a
variable of type object is converted to a value type, it's said to be unboxed. For more
information, see Boxing and Unboxing.

The string type represents a sequence of zero or more Unicode characters. string is
an alias for System.String in .NET.

Although string is a reference type, the equality operators == and != are defined to
compare the values of string objects, not references. Value based equality makes
testing for string equality more intuitive. For example:

C#

The previous example displays "True" and then "False" because the content of the
strings is equivalent, but a and b don't refer to the same string instance.

The + operator concatenates strings:

C#

The object type

The string type

string a = "hello";
string b = "h";
// Append to contents of 'b'
b += "ello";
Console.WriteLine(a == b);
Console.WriteLine(object.ReferenceEquals(a, b));

string a = "good " + "morning";

https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.string

The preceding code creates a string object that contains "good morning".

Strings are immutable--the contents of a string object can't be changed after the object
is created. For example, when you write this code, the compiler actually creates a new
string object to hold the new sequence of characters, and that new object is assigned to
b . The memory that had been allocated for b (when it contained the string "h") is then
eligible for garbage collection.

C#

The [] operator can be used for readonly access to individual characters of a string.
Valid index values start at 0 and must be less than the length of the string:

C#

In similar fashion, the [] operator can also be used for iterating over each character in a
string:

C#

String literals are of type string and can be written in three forms, raw, quoted, and
verbatim.

Raw string literals are available beginning in C# 11. Raw string literals can contain
arbitrary text without requiring escape sequences. Raw string literals can include
whitespace and new lines, embedded quotes, and other special characters. Raw string
literals are enclosed in a minimum of three double quotation marks ("""):

string b = "h";
b += "ello";

string str = "test";
char x = str[2]; // x = 's';

string str = "test";

for (int i = 0; i < str.Length; i++)
{
 Console.Write(str[i] + " ");
}
// Output: t e s t

String literals

C#

You can even include a sequence of three (or more) double quote characters. If your text
requires an embedded sequence of quotes, you start and end the raw string literal with
more quote marks, as needed:

C#

Raw string literals typically have the starting and ending quote sequences on separate
lines from the embedded text. Multiline raw string literals support strings that are
themselves quoted strings:

C#

When the starting and ending quotes are on separate lines, the newlines following the
opening quote and preceding the ending quote aren't included in the final content. The
closing quote sequence dictates the leftmost column for the string literal. You can
indent a raw string literal to match the overall code format:

C#

"""
This is a multi-line
 string literal with the second line indented.
"""

"""""
This raw string literal has four """", count them: """" four!
embedded quote characters in a sequence. That's why it starts and ends
with five double quotes.

You could extend this example with as many embedded quotes as needed for
your text.
"""""

var message = """
"This is a very important message."
""";
Console.WriteLine(message);
// output: "This is a very important message."

var message = """
 "This is a very important message."
 """;
Console.WriteLine(message);
// output: "This is a very important message."
// The leftmost whitespace is not part of the raw string literal

Columns to the right of the ending quote sequence are preserved. This behavior enables
raw strings for data formats such as JSON, YAML, or XML, as shown in the following
example:

C#

The compiler issues an error if any of the text lines extend to the left of the closing
quote sequence. The opening and closing quote sequences can be on the same line,
providing the string literal neither starts nor ends with a quote character:

C#

You can combine raw string literals with string interpolation to include quote characters
and braces in the output string.

Quoted string literals are enclosed in double quotation marks ("):

C#

String literals can contain any character literal. Escape sequences are included. The
following example uses escape sequence \\ for backslash, \u0066 for the letter f, and
\n for newline.

C#

var json= """
 {
 "prop": 0
 }
 """;

var shortText = """He said "hello!" this morning.""";

"good morning" // a string literal

string a = "\\\u0066\n F";
Console.WriteLine(a);
// Output:
// \f
// F

７ Note

Verbatim string literals start with @ and are also enclosed in double quotation marks.
For example:

C#

The advantage of verbatim strings is that escape sequences aren't processed, which
makes it easy to write. For example, the following text matches a fully qualified Windows
file name:

C#

To include a double quotation mark in an @-quoted string, double it:

C#

Strings in .NET are stored using UTF-16 encoding. UTF-8 is the standard for Web
protocols and other important libraries. Beginning in C# 11, you can add the u8 suffix to
a string literal to specify UTF-8 encoding. UTF-8 literals are stored as
ReadOnlySpan<byte> objects. The natural type of a UTF-8 string literal is
ReadOnlySpan<byte> . Using a UTF-8 string literal creates a more clear declaration than
declaring the equivalent System.ReadOnlySpan<T>, as shown in the following code:

C#

To store a UTF-8 string literal as an array requires the use of ReadOnlySpan<T>.ToArray()
to copy the bytes containing the literal to the mutable array:

The escape code \udddd (where dddd is a four-digit number) represents the
Unicode character U+dddd . Eight-digit Unicode escape codes are also recognized:
\Udddddddd .

@"good morning" // a string literal

@"c:\Docs\Source\a.txt" // rather than "c:\\Docs\\Source\\a.txt"

@"""Ahoy!"" cried the captain." // "Ahoy!" cried the captain.

UTF-8 string literals

ReadOnlySpan<byte> AuthWithTrailingSpace = new byte[] { 0x41, 0x55, 0x54,
0x48, 0x20 };
ReadOnlySpan<byte> AuthStringLiteral = "AUTH "u8;

https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1.toarray#system-readonlyspan-1-toarray

C#

UTF-8 string literals aren't compile time constants; they're runtime constants. Therefore,
they can't be used as the default value for an optional parameter. UTF-8 string literals
can't be combined with string interpolation. You can't use the $ token and the u8 suffix
on the same string expression.

The declaration of a delegate type is similar to a method signature. It has a return value
and any number of parameters of any type:

C#

In .NET, System.Action and System.Func types provide generic definitions for many
common delegates. You likely don't need to define new custom delegate types. Instead,
you can create instantiations of the provided generic types.

A delegate is a reference type that can be used to encapsulate a named or an
anonymous method. Delegates are similar to function pointers in C++; however,
delegates are type-safe and secure. For applications of delegates, see Delegates and
Generic Delegates. Delegates are the basis for Events. A delegate can be instantiated by
associating it either with a named or anonymous method.

The delegate must be instantiated with a method or lambda expression that has a
compatible return type and input parameters. For more information on the degree of
variance that is allowed in the method signature, see Variance in Delegates. For use with
anonymous methods, the delegate and the code to be associated with it are declared
together.

Delegate combination or removal fails with a runtime exception when the delegate
types involved at run time are different due to variant conversion. The following
example demonstrates a situation that fails:

C#

byte[] AuthStringLiteral = "AUTH "u8.ToArray();

The delegate type

public delegate void MessageDelegate(string message);
public delegate int AnotherDelegate(MyType m, long num);

Action<string> stringAction = str => {};
Action<object> objectAction = obj => {};

You can create a delegate with the correct runtime type by creating a new delegate
object. The following example demonstrates how this workaround may be applied to
the preceding example.

C#

Beginning with C# 9, you can declare function pointers, which use similar syntax. A
function pointer uses the calli instruction instead of instantiating a delegate type and
calling the virtual Invoke method.

The dynamic type indicates that use of the variable and references to its members
bypass compile-time type checking. Instead, these operations are resolved at run time.
The dynamic type simplifies access to COM APIs such as the Office Automation APIs, to
dynamic APIs such as IronPython libraries, and to the HTML Document Object Model
(DOM).

Type dynamic behaves like type object in most circumstances. In particular, any non-
null expression can be converted to the dynamic type. The dynamic type differs from
object in that operations that contain expressions of type dynamic aren't resolved or
type checked by the compiler. The compiler packages together information about the
operation, and that information is later used to evaluate the operation at run time. As
part of the process, variables of type dynamic are compiled into variables of type
object . Therefore, type dynamic exists only at compile time, not at run time.

The following example contrasts a variable of type dynamic to a variable of type object .
To verify the type of each variable at compile time, place the mouse pointer over dyn or

// Valid due to implicit reference conversion of
// objectAction to Action<string>, but may fail
// at run time.
Action<string> combination = stringAction + objectAction;

Action<string> stringAction = str => {};
Action<object> objectAction = obj => {};

// Creates a new delegate instance with a runtime type of Action<string>.
Action<string> wrappedObjectAction = new Action<string>(objectAction);

// The two Action<string> delegate instances can now be combined.
Action<string> combination = stringAction + wrappedObjectAction;

The dynamic type

obj in the WriteLine statements. Copy the following code into an editor where
IntelliSense is available. IntelliSense shows dynamic for dyn and object for obj .

C#

The WriteLine statements display the run-time types of dyn and obj . At that point, both
have the same type, integer. The following output is produced:

Console

To see the difference between dyn and obj at compile time, add the following two lines
between the declarations and the WriteLine statements in the previous example.

C#

A compiler error is reported for the attempted addition of an integer and an object in
expression obj + 3 . However, no error is reported for dyn + 3 . The expression that
contains dyn isn't checked at compile time because the type of dyn is dynamic .

The following example uses dynamic in several declarations. The Main method also
contrasts compile-time type checking with run-time type checking.

C#

class Program
{
 static void Main(string[] args)
 {
 dynamic dyn = 1;
 object obj = 1;

 // Rest the mouse pointer over dyn and obj to see their
 // types at compile time.
 System.Console.WriteLine(dyn.GetType());
 System.Console.WriteLine(obj.GetType());
 }
}

System.Int32
System.Int32

dyn = dyn + 3;
obj = obj + 3;

using System;

namespace DynamicExamples

https://learn.microsoft.com/en-us/dotnet/api/system.console.writeline

{
 class Program
 {
 static void Main(string[] args)
 {
 ExampleClass ec = new ExampleClass();
 Console.WriteLine(ec.ExampleMethod(10));
 Console.WriteLine(ec.ExampleMethod("value"));

 // The following line causes a compiler error because
ExampleMethod
 // takes only one argument.
 //Console.WriteLine(ec.ExampleMethod(10, 4));

 dynamic dynamic_ec = new ExampleClass();
 Console.WriteLine(dynamic_ec.ExampleMethod(10));

 // Because dynamic_ec is dynamic, the following call to
ExampleMethod
 // with two arguments does not produce an error at compile time.
 // However, it does cause a run-time error.
 //Console.WriteLine(dynamic_ec.ExampleMethod(10, 4));
 }
 }

 class ExampleClass
 {
 static dynamic _field;
 dynamic Prop { get; set; }

 public dynamic ExampleMethod(dynamic d)
 {
 dynamic local = "Local variable";
 int two = 2;

 if (d is int)
 {
 return local;
 }
 else
 {
 return two;
 }
 }
 }
}
// Results:
// Local variable
// 2
// Local variable

C# language specification

For more information, see the following sections of the C# language specification:

§8.2.3 The object type
§8.2.4 The dynamic type
§8.2.5 The string type
§8.2.8 Delegate types
C# 11 - Raw string literals
C# 11 - Raw string literals

C# Reference
C# Keywords
Events
Using Type dynamic
Best Practices for Using Strings
Basic String Operations
Creating New Strings
Type-testing and cast operators
How to safely cast using pattern matching and the as and is operators
Walkthrough: creating and using dynamic objects
System.Object
System.String
System.Dynamic.DynamicObject

See also

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/best-practices-strings
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/basic-string-operations
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/creating-new
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.dynamic.dynamicobject

Records (C# reference)
Article • 2022-10-07 • 17 minutes to read

Beginning with C# 9, you use the record keyword to define a reference type that
provides built-in functionality for encapsulating data. C# 10 allows the record class
syntax as a synonym to clarify a reference type, and record struct to define a value
type with similar functionality. You can create record types with immutable properties by
using positional parameters or standard property syntax.

The following two examples demonstrate record (or record class) reference types:

C#

C#

The following two examples demonstrate record struct value types:

C#

C#

You can also create records with mutable properties and fields:

C#

public record Person(string FirstName, string LastName);

public record Person
{
 public string FirstName { get; init; } = default!;
 public string LastName { get; init; } = default!;
};

public readonly record struct Point(double X, double Y, double Z);

public record struct Point
{
 public double X { get; init; }
 public double Y { get; init; }
 public double Z { get; init; }
}

public record Person
{

Record structs can be mutable as well, both positional record structs and record structs
with no positional parameters:

C#

C#

While records can be mutable, they're primarily intended for supporting immutable data
models. The record type offers the following features:

Concise syntax for creating a reference type with immutable properties
Built-in behavior useful for a data-centric reference type:

Value equality
Concise syntax for nondestructive mutation
Built-in formatting for display

Support for inheritance hierarchies

The preceding examples show some distinctions between records that are reference
types and records that are value types:

A record or a record class declares a reference type. The class keyword is
optional, but can add clarity for readers. A record struct declares a value type.
Positional properties are immutable in a record class and a readonly record
struct . They're mutable in a record struct .

The remainder of this article discusses both record class and record struct types. The
differences are detailed in each section. You should decide between a record class and
a record struct similar to deciding between a class and a struct . The term record is
used to describe behavior that applies to all record types. Either record struct or
record class is used to describe behavior that applies to only struct or class types,

 public string FirstName { get; set; } = default!;
 public string LastName { get; set; } = default!;
};

public record struct DataMeasurement(DateTime TakenAt, double Measurement);

public record struct Point
{
 public double X { get; set; }
 public double Y { get; set; }
 public double Z { get; set; }
}

respectively. The record type was introduced in C# 9; record struct types were
introduced in C# 10.

You can use positional parameters to declare properties of a record and to initialize the
property values when you create an instance:

C#

When you use the positional syntax for property definition, the compiler creates:

A public auto-implemented property for each positional parameter provided in the
record declaration.

For record types and readonly record struct types: An init-only property.
For record struct types: A read-write property.

A primary constructor whose parameters match the positional parameters on the
record declaration.
For record struct types, a parameterless constructor that sets each field to its
default value.
A Deconstruct method with an out parameter for each positional parameter
provided in the record declaration. The method deconstructs properties defined by
using positional syntax; it ignores properties that are defined by using standard
property syntax.

You may want to add attributes to any of these elements the compiler creates from the
record definition. You can add a target to any attribute you apply to the positional
record's properties. The following example applies the
System.Text.Json.Serialization.JsonPropertyNameAttribute to each property of the
Person record. The property: target indicates that the attribute is applied to the
compiler-generated property. Other values are field: to apply the attribute to the field,
and param: to apply the attribute to the parameter.

C#

Positional syntax for property definition

public record Person(string FirstName, string LastName);

public static void Main()
{
 Person person = new("Nancy", "Davolio");
 Console.WriteLine(person);
 // output: Person { FirstName = Nancy, LastName = Davolio }
}

https://learn.microsoft.com/en-us/dotnet/api/system.text.json.serialization.jsonpropertynameattribute

The preceding example also shows how to create XML documentation comments for
the record. You can add the <param> tag to add documentation for the primary
constructor's parameters.

If the generated auto-implemented property definition isn't what you want, you can
define your own property of the same name. For example, you may want to change
accessibility or mutability, or provide an implementation for either the get or set
accessor. If you declare the property in your source, you must initialize it from the
positional parameter of the record. If your property is an auto-implemented property,
you must initialize the property. If you add a backing field in your source, you must
initialize the backing field. The generated deconstructor will use your property
definition. For instance, the following example declares the FirstName and LastName
properties of a positional record public , but restricts the Id positional parameter to
internal . You can use this syntax for records and record struct types.

C#

A record type doesn't have to declare any positional properties. You can declare a
record without any positional properties, and you can declare other fields and

/// <summary>
/// Person record type
/// </summary>
/// <param name="FirstName">First Name</param>
/// <param name="LastName">Last Name</param>
/// <remarks>
/// The person type is a positional record containing the
/// properties for the first and last name. Those properties
/// map to the JSON elements "firstName" and "lastName" when
/// serialized or deserialized.
/// </remarks>
public record Person([property: JsonPropertyName("firstName")]string
FirstName,
 [property: JsonPropertyName("lastName")]string LastName);

public record Person(string FirstName, string LastName, string Id)
{
 internal string Id { get; init; } = Id;
}

public static void Main()
{
 Person person = new("Nancy", "Davolio", "12345");
 Console.WriteLine(person.FirstName); //output: Nancy

}

properties, as in the following example:

C#

If you define properties by using standard property syntax but omit the access modifier,
the properties are implicitly private .

A positional record and a positional readonly record struct declare init-only properties. A
positional record struct declares read-write properties. You can override either of those
defaults, as shown in the previous section.

Immutability can be useful when you need a data-centric type to be thread-safe or
you're depending on a hash code remaining the same in a hash table. Immutability isn't
appropriate for all data scenarios, however. Entity Framework Core, for example, doesn't
support updating with immutable entity types.

Init-only properties, whether created from positional parameters (record class , and
readonly record struct) or by specifying init accessors, have shallow immutability.
After initialization, you can't change the value of value-type properties or the reference
of reference-type properties. However, the data that a reference-type property refers to
can be changed. The following example shows that the content of a reference-type
immutable property (an array in this case) is mutable:

C#

public record Person(string FirstName, string LastName)
{
 public string[] PhoneNumbers { get; init; } = Array.Empty<string>();
};

Immutability

public record Person(string FirstName, string LastName, string[]
PhoneNumbers);

public static void Main()
{
 Person person = new("Nancy", "Davolio", new string[1] { "555-1234" });
 Console.WriteLine(person.PhoneNumbers[0]); // output: 555-1234

 person.PhoneNumbers[0] = "555-6789";
 Console.WriteLine(person.PhoneNumbers[0]); // output: 555-6789
}

https://learn.microsoft.com/en-us/ef/core/

The features unique to record types are implemented by compiler-synthesized methods,
and none of these methods compromises immutability by modifying object state.
Unless specified, the synthesized methods are generated for record , record struct , and
readonly record struct declarations.

If you don't override or replace equality methods, the type you declare governs how
equality is defined:

For class types, two objects are equal if they refer to the same object in memory.
For struct types, two objects are equal if they are of the same type and store the
same values.
For record types, including record struct and readonly record struct , two
objects are equal if they are of the same type and store the same values.

The definition of equality for a record struct is the same as for a struct . The difference
is that for a struct , the implementation is in ValueType.Equals(Object) and relies on
reflection. For records, the implementation is compiler synthesized and uses the
declared data members.

Reference equality is required for some data models. For example, Entity Framework
Core depends on reference equality to ensure that it uses only one instance of an entity
type for what is conceptually one entity. For this reason, records and record structs
aren't appropriate for use as entity types in Entity Framework Core.

The following example illustrates value equality of record types:

C#

Value equality

public record Person(string FirstName, string LastName, string[]
PhoneNumbers);

public static void Main()
{
 var phoneNumbers = new string[2];
 Person person1 = new("Nancy", "Davolio", phoneNumbers);
 Person person2 = new("Nancy", "Davolio", phoneNumbers);
 Console.WriteLine(person1 == person2); // output: True

 person1.PhoneNumbers[0] = "555-1234";
 Console.WriteLine(person1 == person2); // output: True

 Console.WriteLine(ReferenceEquals(person1, person2)); // output: False
}

https://learn.microsoft.com/en-us/dotnet/api/system.valuetype.equals#system-valuetype-equals(system-object)
https://learn.microsoft.com/en-us/ef/core/

To implement value equality, the compiler synthesizes several methods, including:

An override of Object.Equals(Object). It is an error if the override is declared
explicitly.

This method is used as the basis for the Object.Equals(Object, Object) static
method when both parameters are non-null.

A virtual , or sealed , Equals(R? other) where R is the record type. This method
implements IEquatable<T>. This method can be declared explicitly.

If the record type is derived from a base record type Base , Equals(Base? other) . It
is an error if the override is declared explicitly. If you provide your own
implementation of Equals(R? other) , provide an implementation of GetHashCode
also.

An override of Object.GetHashCode(). This method can be declared explicitly.

Overrides of operators == and != . It is an error if the operators are declared
explicitly.

If the record type is derived from a base record type, protected override Type
EqualityContract { get; }; . This property can be declared explicitly. For more
information, see Equality in inheritance hierarchies.

If a record type has a method that matches the signature of a synthesized method
allowed to be declared explicitly, the compiler doesn't synthesize that method.

If you need to copy an instance with some modifications, you can use a with expression
to achieve nondestructive mutation. A with expression makes a new record instance that
is a copy of an existing record instance, with specified properties and fields modified.
You use object initializer syntax to specify the values to be changed, as shown in the
following example:

C#

Nondestructive mutation

public record Person(string FirstName, string LastName)
{
 public string[] PhoneNumbers { get; init; }
}

public static void Main()
{

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals#system-object-equals(system-object-system-object)
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode#system-object-gethashcode

The with expression can set positional properties or properties created by using
standard property syntax. Non-positional properties must have an init or set accessor
to be changed in a with expression.

The result of a with expression is a shallow copy, which means that for a reference
property, only the reference to an instance is copied. Both the original record and the
copy end up with a reference to the same instance.

To implement this feature for record class types, the compiler synthesizes a clone
method and a copy constructor. The virtual clone method returns a new record
initialized by the copy constructor. When you use a with expression, the compiler
creates code that calls the clone method and then sets the properties that are specified
in the with expression.

If you need different copying behavior, you can write your own copy constructor in a
record class . If you do that, the compiler won't synthesize one. Make your constructor
private if the record is sealed , otherwise make it protected . The compiler doesn't
synthesize a copy constructor for record struct types. You can write one, but the
compiler won't generate calls to it for with expressions. The values of the record
struct are copied on assignment.

You can't override the clone method, and you can't create a member named Clone in
any record type. The actual name of the clone method is compiler-generated.

 Person person1 = new("Nancy", "Davolio") { PhoneNumbers = new string[1]
};
 Console.WriteLine(person1);
 // output: Person { FirstName = Nancy, LastName = Davolio, PhoneNumbers
= System.String[] }

 Person person2 = person1 with { FirstName = "John" };
 Console.WriteLine(person2);
 // output: Person { FirstName = John, LastName = Davolio, PhoneNumbers =
System.String[] }
 Console.WriteLine(person1 == person2); // output: False

 person2 = person1 with { PhoneNumbers = new string[1] };
 Console.WriteLine(person2);
 // output: Person { FirstName = Nancy, LastName = Davolio, PhoneNumbers
= System.String[] }
 Console.WriteLine(person1 == person2); // output: False

 person2 = person1 with { };
 Console.WriteLine(person1 == person2); // output: True
}

Record types have a compiler-generated ToString method that displays the names and
values of public properties and fields. The ToString method returns a string of the
following format:

<record type name> { <property name> = <value>, <property name> = <value>,
...}

The string printed for <value> is the string returned by the ToString() for the type of the
property. In the following example, ChildNames is a System.Array, where ToString
returns System.String[] :

To implement this feature, in record class types, the compiler synthesizes a virtual
PrintMembers method and a ToString override. In record struct types, this member is
private . The ToString override creates a StringBuilder object with the type name
followed by an opening bracket. It calls PrintMembers to add property names and
values, then adds the closing bracket. The following example shows code similar to what
the synthesized override contains:

C#

You can provide your own implementation of PrintMembers or the ToString override.
Examples are provided in the PrintMembers formatting in derived records section later
in this article. In C# 10 and later, your implementation of ToString may include the
sealed modifier, which prevents the compiler from synthesizing a ToString

Built-in formatting for display

Person { FirstName = Nancy, LastName = Davolio, ChildNames = System.String[]
}

public override string ToString()
{
 StringBuilder stringBuilder = new StringBuilder();
 stringBuilder.Append("Teacher"); // type name
 stringBuilder.Append(" { ");
 if (PrintMembers(stringBuilder))
 {
 stringBuilder.Append(" ");
 }
 stringBuilder.Append("}");
 return stringBuilder.ToString();
}

https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring#system-object-tostring
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring
https://learn.microsoft.com/en-us/dotnet/api/system.text.stringbuilder

implementation for any derived records. You can do this to create a consistent string
representation throughout a hierarchy of record types. (Derived records will still have a
PrintMembers method generated for all derived properties.)

This section only applies to record class types.

A record can inherit from another record. However, a record can't inherit from a class,
and a class can't inherit from a record.

The derived record declares positional parameters for all the parameters in the base
record primary constructor. The base record declares and initializes those properties.
The derived record doesn't hide them, but only creates and initializes properties for
parameters that aren't declared in its base record.

The following example illustrates inheritance with positional property syntax:

C#

This section applies to record class types, but not record struct types. For two record
variables to be equal, the run-time type must be equal. The types of the containing
variables might be different. Inherited equality comparison is illustrated in the following
code example:

C#

Inheritance

Positional parameters in derived record types

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 Console.WriteLine(teacher);
 // output: Teacher { FirstName = Nancy, LastName = Davolio, Grade = 3 }
}

Equality in inheritance hierarchies

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);

In the example, all variables are declared as Person , even when the instance is a derived
type of either Student or Teacher . The instances have the same properties and the same
property values. But student == teacher returns False although both are Person -type
variables, and student == student2 returns True although one is a Person variable and
one is a Student variable. The equality test depends on the runtime type of the actual
object, not the declared type of the variable.

To implement this behavior, the compiler synthesizes an EqualityContract property that
returns a Type object that matches the type of the record. The EqualityContract enables
the equality methods to compare the runtime type of objects when they're checking for
equality. If the base type of a record is object , this property is virtual . If the base type
is another record type, this property is an override. If the record type is sealed , this
property is effectively sealed because the type is sealed .

When comparing two instances of a derived type, the synthesized equality methods
check all properties of the base and derived types for equality. The synthesized
GetHashCode method uses the GetHashCode method from all properties and fields
declared in the base type and the derived record type.

The result of a with expression has the same run-time type as the expression's operand.
All properties of the run-time type get copied, but you can only set properties of the
compile-time type, as the following example shows:

C#

public record Student(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 Person student = new Student("Nancy", "Davolio", 3);
 Console.WriteLine(teacher == student); // output: False

 Student student2 = new Student("Nancy", "Davolio", 3);
 Console.WriteLine(student2 == student); // output: True
}

with expressions in derived records

public record Point(int X, int Y)
{
 public int Zbase { get; set; }
};
public record NamedPoint(string Name, int X, int Y) : Point(X, Y)
{

https://learn.microsoft.com/en-us/dotnet/api/system.type

The synthesized PrintMembers method of a derived record type calls the base
implementation. The result is that all public properties and fields of both derived and
base types are included in the ToString output, as shown in the following example:

C#

You can provide your own implementation of the PrintMembers method. If you do that,
use the following signature:

For a sealed record that derives from object (doesn't declare a base record):
private bool PrintMembers(StringBuilder builder) ;

 public int Zderived { get; set; }
};

public static void Main()
{
 Point p1 = new NamedPoint("A", 1, 2) { Zbase = 3, Zderived = 4 };

 Point p2 = p1 with { X = 5, Y = 6, Zbase = 7 }; // Can't set Name or
Zderived
 Console.WriteLine(p2 is NamedPoint); // output: True
 Console.WriteLine(p2);
 // output: NamedPoint { X = 5, Y = 6, Zbase = 7, Name = A, Zderived = 4
}

 Point p3 = (NamedPoint)p1 with { Name = "B", X = 5, Y = 6, Zbase = 7,
Zderived = 8 };
 Console.WriteLine(p3);
 // output: NamedPoint { X = 5, Y = 6, Zbase = 7, Name = B, Zderived = 8
}
}

PrintMembers formatting in derived records

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public record Student(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);

public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 Console.WriteLine(teacher);
 // output: Teacher { FirstName = Nancy, LastName = Davolio, Grade = 3 }
}

For a sealed record that derives from another record (note that the enclosing type
is sealed , so the method is effectively sealed): protected override bool
PrintMembers(StringBuilder builder) ;
For a record that isn't sealed and derives from object: protected virtual bool
PrintMembers(StringBuilder builder);

For a record that isn't sealed and derives from another record: protected override
bool PrintMembers(StringBuilder builder);

Here's an example of code that replaces the synthesized PrintMembers methods, one for
a record type that derives from object, and one for a record type that derives from
another record:

C#

public abstract record Person(string FirstName, string LastName, string[]
PhoneNumbers)
{
 protected virtual bool PrintMembers(StringBuilder stringBuilder)
 {
 stringBuilder.Append($"FirstName = {FirstName}, LastName =
{LastName}, ");
 stringBuilder.Append($"PhoneNumber1 = {PhoneNumbers[0]},
PhoneNumber2 = {PhoneNumbers[1]}");
 return true;
 }
}

public record Teacher(string FirstName, string LastName, string[]
PhoneNumbers, int Grade)
 : Person(FirstName, LastName, PhoneNumbers)
{
 protected override bool PrintMembers(StringBuilder stringBuilder)
 {
 if (base.PrintMembers(stringBuilder))
 {
 stringBuilder.Append(", ");
 };
 stringBuilder.Append($"Grade = {Grade}");
 return true;
 }
};

public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", new string[2] { "555-
1234", "555-6789" }, 3);
 Console.WriteLine(teacher);
 // output: Teacher { FirstName = Nancy, LastName = Davolio, PhoneNumber1
= 555-1234, PhoneNumber2 = 555-6789, Grade = 3 }
}

The Deconstruct method of a derived record returns the values of all positional
properties of the compile-time type. If the variable type is a base record, only the base
record properties are deconstructed unless the object is cast to the derived type. The
following example demonstrates calling a deconstructor on a derived record.

C#

There's no generic constraint that requires a type to be a record. Records satisfy either
the class or struct constraint. To make a constraint on a specific hierarchy of record
types, put the constraint on the base record as you would a base class. For more
information, see Constraints on type parameters.

For more information, see the Classes section of the C# language specification.

７ Note

In C# 10 and later, the compiler will synthesize PrintMembers in derived records
even when a base record has sealed the ToString method. You can also create your
own implementation of PrintMembers .

Deconstructor behavior in derived records

public abstract record Person(string FirstName, string LastName);
public record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);
public record Student(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName);

public static void Main()
{
 Person teacher = new Teacher("Nancy", "Davolio", 3);
 var (firstName, lastName) = teacher; // Doesn't deconstruct Grade
 Console.WriteLine($"{firstName}, {lastName}");// output: Nancy, Davolio

 var (fName, lName, grade) = (Teacher)teacher;
 Console.WriteLine($"{fName}, {lName}, {grade}");// output: Nancy,
Davolio, 3
}

Generic constraints

C# language specification

For more information about features introduced in C# 9 and later, see the following
feature proposal notes:

Records
Init-only setters
Covariant returns

C# reference
Design guidelines - Choosing between class and struct
Design guidelines - Struct design
The C# type system
with expression

See also

https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/choosing-between-class-and-struct
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/struct

class (C# Reference)
Article • 2021-09-17 • 2 minutes to read

Classes are declared using the keyword class , as shown in the following example:

C#

Only single inheritance is allowed in C#. In other words, a class can inherit
implementation from one base class only. However, a class can implement more than
one interface. The following table shows examples of class inheritance and interface
implementation:

Inheritance Example

None class ClassA { }

Single class DerivedClass : BaseClass { }

None, implements two interfaces class ImplClass : IFace1, IFace2 { }

Single, implements one interface class ImplDerivedClass : BaseClass, IFace1 { }

Classes that you declare directly within a namespace, not nested within other classes,
can be either public or internal. Classes are internal by default.

Class members, including nested classes, can be public, protected internal, protected,
internal, private, or private protected. Members are private by default.

For more information, see Access Modifiers.

You can declare generic classes that have type parameters. For more information, see
Generic Classes.

A class can contain declarations of the following members:

Constructors

class TestClass
{
 // Methods, properties, fields, events, delegates
 // and nested classes go here.
}

Remarks

Constants

Fields

Finalizers

Methods

Properties

Indexers

Operators

Events

Delegates

Classes

Interfaces

Structure types

Enumeration types

The following example demonstrates declaring class fields, constructors, and methods. It
also demonstrates object instantiation and printing instance data. In this example, two
classes are declared. The first class, Child , contains two private fields (name and age),
two public constructors and one public method. The second class, StringTest , is used
to contain Main .

C#

Example

class Child
{
 private int age;
 private string name;

 // Default constructor:
 public Child()
 {
 name = "N/A";
 }

 // Constructor:

Notice that in the previous example the private fields (name and age) can only be
accessed through the public method of the Child class. For example, you cannot print
the child's name, from the Main method, using a statement like this:

C#

 public Child(string name, int age)
 {
 this.name = name;
 this.age = age;
 }

 // Printing method:
 public void PrintChild()
 {
 Console.WriteLine("{0}, {1} years old.", name, age);
 }
}

class StringTest
{
 static void Main()
 {
 // Create objects by using the new operator:
 Child child1 = new Child("Craig", 11);
 Child child2 = new Child("Sally", 10);

 // Create an object using the default constructor:
 Child child3 = new Child();

 // Display results:
 Console.Write("Child #1: ");
 child1.PrintChild();
 Console.Write("Child #2: ");
 child2.PrintChild();
 Console.Write("Child #3: ");
 child3.PrintChild();
 }
}
/* Output:
 Child #1: Craig, 11 years old.
 Child #2: Sally, 10 years old.
 Child #3: N/A, 0 years old.
*/

Comments

Console.Write(child1.name); // Error

Accessing private members of Child from Main would only be possible if Main were a
member of the class.

Types declared inside a class without an access modifier default to private , so the data
members in this example would still be private if the keyword were removed.

Finally, notice that for the object created using the parameterless constructor (child3),
the age field was initialized to zero by default.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Reference Types

C# language specification

See also

interface (C# Reference)
Article • 2022-12-08 • 4 minutes to read

An interface defines a contract. Any class or struct that implements that contract must
provide an implementation of the members defined in the interface. An interface may
define a default implementation for members. It may also define static members in
order to provide a single implementation for common functionality. Beginning with C#
11, an interface may define static abstract or static virtual members to declare that
an implementing type must provide the declared members. Typically, static virtual
methods declare that an implementation must define a set of overloaded operators.

In the following example, class ImplementationClass must implement a method named
SampleMethod that has no parameters and returns void .

For more information and examples, see Interfaces.

C#

An interface can be a member of a namespace or a class. An interface declaration can
contain declarations (signatures without any implementation) of the following members:

Example interface

interface ISampleInterface
{
 void SampleMethod();
}

class ImplementationClass : ISampleInterface
{
 // Explicit interface member implementation:
 void ISampleInterface.SampleMethod()
 {
 // Method implementation.
 }

 static void Main()
 {
 // Declare an interface instance.
 ISampleInterface obj = new ImplementationClass();

 // Call the member.
 obj.SampleMethod();
 }
}

Methods
Properties
Indexers
Events

These preceding member declarations typically don't contain a body. An interface
member may declare a body. Member bodies in an interface are the default
implementation. Members with bodies permit the interface to provide a "default"
implementation for classes and structs that don't provide an overriding implementation.
An interface may include:

Constants
Operators
Static constructor.
Nested types
Static fields, methods, properties, indexers, and events
Member declarations using the explicit interface implementation syntax.
Explicit access modifiers (the default access is public).

Beginning with C# 11, an interface may declare static abstract and static virtual
members for all member types except fields. Interfaces can declare that implementing
types must define operators or other static members. This feature enables generic
algorithms to specify number-like behavior. You can see examples in the numeric types
in the .NET runtime, such as System.Numerics.INumber<TSelf>. These interfaces define
common mathematical operators that are implemented by many numeric types. The
compiler must resolve calls to static virtual and static abstract methods at compile
time. The static virtual and static abstract methods declared in interfaces don't
have a runtime dispatch mechanism analogous to virtual or abstract methods
declared in classes. Instead, the compiler uses type information available at compile
time. Therefore, static virtual methods are almost exclusively declared in generic
interfaces. Furthermore, most interfaces that declare static virtual or static abstract
methods declare that one of the type parameters must implement the declared
interface. For example, the INumber<T> interface declares that T must implement
INumber<T> . The compiler uses the type argument to resolve calls to the methods and
operators declared in the interface declaration. For example, the int type implements

Default interface members

Static abstract and virtual members

https://learn.microsoft.com/en-us/dotnet/api/system.numerics.inumber-1

INumber<int> . When the type parameter T denotes the type argument int , the static
members declared on int are invoked. Alternatively, when double is the type argument,
the static members declared on the double type are invoked.

You can try this feature by working with the tutorial on static abstract members in
interfaces.

Interfaces may not contain instance state. While static fields are now permitted, instance
fields aren't permitted in interfaces. Instance auto-properties aren't supported in
interfaces, as they would implicitly declare a hidden field. This rule has a subtle effect on
property declarations. In an interface declaration, the following code doesn't declare an
auto-implemented property as it does in a class or struct . Instead, it declares a
property that doesn't have a default implementation but must be implemented in any
type that implements the interface:

C#

An interface can inherit from one or more base interfaces. When an interface overrides a
method implemented in a base interface, it must use the explicit interface
implementation syntax.

When a base type list contains a base class and interfaces, the base class must come first
in the list.

A class that implements an interface can explicitly implement members of that interface.
An explicitly implemented member can't be accessed through a class instance, but only
through an instance of the interface. In addition, default interface members can only be
accessed through an instance of the interface.

） Important

Method dispatch for static abstract and static virtual methods declared in
interfaces is resolved using the compile time type of an expression. If the runtime
type of an expression is derived from a different compile time type, the static
methods on the base (compile time) type will be called.

Interface inheritance

public interface INamed
{
 public string Name {get; set;}
}

For more information about explicit interface implementation, see Explicit Interface
Implementation.

The following example demonstrates interface implementation. In this example, the
interface contains the property declaration and the class contains the implementation.
Any instance of a class that implements IPoint has integer properties x and y .

C#

Example interface implementation

interface IPoint
{
 // Property signatures:
 int X { get; set; }

 int Y { get; set; }

 double Distance { get; }
}

class Point : IPoint
{
 // Constructor:
 public Point(int x, int y)
 {
 X = x;
 Y = y;
 }

 // Property implementation:
 public int X { get; set; }

 public int Y { get; set; }

 // Property implementation
 public double Distance =>
 Math.Sqrt(X * X + Y * Y);
}

class MainClass
{
 static void PrintPoint(IPoint p)
 {
 Console.WriteLine("x={0}, y={1}", p.X, p.Y);
 }

 static void Main()
 {
 IPoint p = new Point(2, 3);
 Console.Write("My Point: ");

For more information, see the Interfaces section of the C# language specification, the
feature specification for C# 8 - Default interface members, and the feature spec for C#
11 - static abstract members in interfaces

C# Reference
C# Programming Guide
C# Keywords
Reference Types
Interfaces
Using Properties
Using Indexers

 PrintPoint(p);
 }
}
// Output: My Point: x=2, y=3

C# language specification

See also

Nullable reference types (C# reference)
Article • 2022-10-07 • 5 minutes to read

Nullable reference types are available in code that has opted in to a nullable aware
context. Nullable reference types, the null static analysis warnings, and the null-forgiving
operator are optional language features. All are turned off by default. A nullable context
is controlled at the project level using build settings, or in code using pragmas.

In a nullable aware context:

A variable of a reference type T must be initialized with non-null, and may never
be assigned a value that may be null .
A variable of a reference type T? may be initialized with null or assigned null ,
but is required to be checked against null before de-referencing.
A variable m of type T? is considered to be non-null when you apply the null-
forgiving operator, as in m! .

The distinctions between a non-nullable reference type T and a nullable reference type
T? are enforced by the compiler's interpretation of the preceding rules. A variable of
type T and a variable of type T? are represented by the same .NET type. The following
example declares a non-nullable string and a nullable string, and then uses the null-
forgiving operator to assign a value to a non-nullable string:

C#

７ Note

This article covers nullable reference types. You can also declare nullable value
types.

） Important

All project templates starting with .NET 6 (C# 10) enable the nullable context for the
project. Projects created with earlier templates don't include this element, and
these features are off unless you enable them in the project file or use pragmas.

string notNull = "Hello";
string? nullable = default;
notNull = nullable!; // null forgiveness

The variables notNull and nullable are both represented by the String type. Because
the non-nullable and nullable types are both stored as the same type, there are several
locations where using a nullable reference type isn't allowed. In general, a nullable
reference type can't be used as a base class or implemented interface. A nullable
reference type can't be used in any object creation or type testing expression. A nullable
reference type can't be the type of a member access expression. The following examples
show these constructs:

C#

The examples in the previous section illustrate the nature of nullable reference types.
Nullable reference types aren't new class types, but rather annotations on existing
reference types. The compiler uses those annotations to help you find potential null
reference errors in your code. There's no runtime difference between a non-nullable
reference type and a nullable reference type. The compiler doesn't add any runtime
checking for non-nullable reference types. The benefits are in the compile-time analysis.
The compiler generates warnings that help you find and fix potential null errors in your
code. You declare your intent, and the compiler warns you when your code violates that
intent.

In a nullable enabled context, the compiler performs static analysis on variables of any
reference type, both nullable and non-nullable. The compiler tracks the null-state of
each reference variable as either not-null or maybe-null. The default state of a non-
nullable reference is not-null. The default state of a nullable reference is maybe-null.

Non-nullable reference types should always be safe to dereference because their null-
state is not-null. To enforce that rule, the compiler issues warnings if a non-nullable

public MyClass : System.Object? // not allowed
{
}

var nullEmpty = System.String?.Empty; // Not allowed
var maybeObject = new object?(); // Not allowed
try
{
 if (thing is string? nullableString) // not allowed
 Console.WriteLine(nullableString);
} catch (Exception? e) // Not Allowed
{
 Console.WriteLine("error");
}

Nullable references and static analysis

https://learn.microsoft.com/en-us/dotnet/api/system.string

reference type isn't initialized to a non-null value. Local variables must be assigned
where they're declared. Every field must be assigned a not-null value, in a field initializer
or every constructor. The compiler issues warnings when a non-nullable reference is
assigned to a reference whose state is maybe-null. Generally, a non-nullable reference is
not-null and no warnings are issued when those variables are dereferenced.

Nullable reference types may be initialized or assigned to null . Therefore, static analysis
must determine that a variable is not-null before it's dereferenced. If a nullable reference
is determined to be maybe-null, assigning to a non-nullable reference variable
generates a compiler warning. The following class shows examples of these warnings:

C#

７ Note

If you assign a maybe-null expression to a non-nullable reference type, the
compiler generates a warning. The compiler then generates warnings for that
variable until it's assigned to a not-null expression.

public class ProductDescription
{
 private string shortDescription;
 private string? detailedDescription;

 public ProductDescription() // Warning! shortDescription not
initialized.
 {
 }

 public ProductDescription(string productDescription) =>
 this.shortDescription = productDescription;

 public void SetDescriptions(string productDescription, string?
details=null)
 {
 shortDescription = productDescription;
 detailedDescription = details;
 }

 public string GetDescription()
 {
 if (detailedDescription.Length == 0) // Warning! dereference
possible null
 {
 return shortDescription;
 }
 else
 {

The following snippet shows where the compiler emits warnings when using this class:

C#

The preceding examples demonstrate how compiler's static analysis determines the
null-state of reference variables. The compiler applies language rules for null checks and
assignments to inform its analysis. The compiler can't make assumptions about the
semantics of methods or properties. If you call methods that perform null checks, the
compiler can't know those methods affect a variable's null-state. There are attributes
you can add to your APIs to inform the compiler about the semantics of arguments and
return values. These attributes have been applied to many common APIs in the .NET
Core libraries. For example, IsNullOrEmpty has been updated, and the compiler correctly
interprets that method as a null check. For more information about the attributes that
apply to null-state static analysis, see the article on Nullable attributes.

There are two ways to control the nullable context. At the project level, you can add the
<Nullable>enable</Nullable> project setting. In a single C# source file, you can add the

 return $"{shortDescription}\n{detailedDescription}";
 }
 }

 public string FullDescription()
 {
 if (detailedDescription == null)
 {
 return shortDescription;
 }
 else if (detailedDescription.Length > 0) // OK, detailedDescription
can't be null.
 {
 return $"{shortDescription}\n{detailedDescription}";
 }
 return shortDescription;
 }
}

string shortDescription = default; // Warning! non-nullable set to null;
var product = new ProductDescription(shortDescription); // Warning! static
analysis knows shortDescription maybe null.

string description = "widget";
var item = new ProductDescription(description);

item.SetDescriptions(description, "These widgets will do everything.");

Setting the nullable context

https://learn.microsoft.com/en-us/dotnet/api/system.string.isnullorempty

#nullable enable pragma to enable the nullable context. See the article on setting a
nullable strategy. Prior to .NET 6, new projects use the default,
<Nullable>disable</Nullable> . Beginning with .NET 6, new projects include the
<Nullable>enable</Nullable> element in the project file.

For more information, see the following proposals for the C# language specification:

Nullable reference types
Draft nullable reference types specification

C# reference
Nullable value types

C# language specification

See also

void (C# reference)
Article • 2021-09-15 • 2 minutes to read

You use void as the return type of a method (or a local function) to specify that the
method doesn't return a value.

C#

You can also use void as a referent type to declare a pointer to an unknown type. For
more information, see Pointer types.

You cannot use void as the type of a variable.

C# reference
System.Void

public static void Display(IEnumerable<int> numbers)
{
 if (numbers is null)
 {
 return;
 }

 Console.WriteLine(string.Join(" ", numbers));
}

See also

https://learn.microsoft.com/en-us/dotnet/api/system.void

Built-in types (C# reference)
Article • 2022-06-18 • 2 minutes to read

The following table lists the C# built-in value types:

C# type keyword .NET type

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

nint System.IntPtr

nuint System.UIntPtr

long System.Int64

ulong System.UInt64

short System.Int16

ushort System.UInt16

The following table lists the C# built-in reference types:

C# type keyword .NET type

object System.Object

string System.String

dynamic System.Object

In the preceding tables, each C# type keyword from the left column (except dynamic) is
an alias for the corresponding .NET type. They are interchangeable. For example, the

https://learn.microsoft.com/en-us/dotnet/api/system.boolean
https://learn.microsoft.com/en-us/dotnet/api/system.byte
https://learn.microsoft.com/en-us/dotnet/api/system.sbyte
https://learn.microsoft.com/en-us/dotnet/api/system.char
https://learn.microsoft.com/en-us/dotnet/api/system.decimal
https://learn.microsoft.com/en-us/dotnet/api/system.double
https://learn.microsoft.com/en-us/dotnet/api/system.single
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.uint32
https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr
https://learn.microsoft.com/en-us/dotnet/api/system.int64
https://learn.microsoft.com/en-us/dotnet/api/system.uint64
https://learn.microsoft.com/en-us/dotnet/api/system.int16
https://learn.microsoft.com/en-us/dotnet/api/system.uint16
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.object

following declarations declare variables of the same type:

C#

The void keyword represents the absence of a type. You use it as the return type of a
method that doesn't return a value.

Use language keywords instead of framework type names (style rule IDE0049)
C# reference
Default values of C# types

int a = 123;
System.Int32 b = 123;

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0049

Unmanaged types (C# reference)
Article • 2022-09-29 • 2 minutes to read

A type is an unmanaged type if it's any of the following types:

sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double ,
decimal , or bool
Any enum type
Any pointer type
Any user-defined struct type that contains fields of unmanaged types only.

You can use the unmanaged constraint to specify that a type parameter is a non-pointer,
non-nullable unmanaged type.

A constructed struct type that contains fields of unmanaged types only is also
unmanaged, as the following example shows:

C#

A generic struct may be the source of both unmanaged and managed constructed
types. The preceding example defines a generic struct Coords<T> and presents the

using System;

public struct Coords<T>
{
 public T X;
 public T Y;
}

public class UnmanagedTypes
{
 public static void Main()
 {
 DisplaySize<Coords<int>>();
 DisplaySize<Coords<double>>();
 }

 private unsafe static void DisplaySize<T>() where T : unmanaged
 {
 Console.WriteLine($"{typeof(T)} is unmanaged and its size is
{sizeof(T)} bytes");
 }
}
// Output:
// Coords`1[System.Int32] is unmanaged and its size is 8 bytes
// Coords`1[System.Double] is unmanaged and its size is 16 bytes

examples of unmanaged constructed types. The example of a managed type is
Coords<object> . It's managed because it has the fields of the object type, which is
managed. If you want all constructed types to be unmanaged types, use the unmanaged
constraint in the definition of a generic struct:

C#

For more information, see the Pointer types section of the C# language specification.

C# reference
Pointer types
Memory and span-related types
sizeof operator
stackalloc

public struct Coords<T> where T : unmanaged
{
 public T X;
 public T Y;
}

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/standard/memory-and-spans/

Default values of C# types (C#
reference)
Article • 2022-09-29 • 2 minutes to read

The following table shows the default values of C# types:

Type Default value

Any reference
type

null

Any built-in
integral numeric
type

0 (zero)

Any built-in
floating-point
numeric type

0 (zero)

bool false

char '\0' (U+0000)

enum The value produced by the expression (E)0 , where E is the enum identifier.

struct The value produced by setting all value-type fields to their default values and
all reference-type fields to null .

Any nullable
value type

An instance for which the HasValue property is false and the Value property
is undefined. That default value is also known as the null value of a nullable
value type.

Use the default operator to produce the default value of a type, as the following
example shows:

C#

You can use the default literal to initialize a variable with the default value of its type:

C#

Default value expressions

int a = default(int);

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.value

For a value type, the implicit parameterless constructor also produces the default value
of the type, as the following example shows:

C#

At run time, if the System.Type instance represents a value type, you can use the
Activator.CreateInstance(Type) method to invoke the parameterless constructor to
obtain the default value of the type.

For more information, see the following sections of the C# language specification:

Default values
Default constructors\
C# 10 - Parameterless struct constructors
C# 11 - Auto default structs

C# reference
Constructors

int a = default;

Parameterless constructor of a value type

var n = new System.Numerics.Complex();
Console.WriteLine(n); // output: (0, 0)

７ Note

In C# 10 and later, a structure type (which is a value type) may have an explicit
parameterless constructor that may produce a non-default value of the type. Thus,
we recommend using the default operator or the default literal to produce the
default value of a type.

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.activator.createinstance#system-activator-createinstance(system-type)

C# Keywords
Article • 2022-10-13 • 2 minutes to read

Keywords are predefined, reserved identifiers that have special meanings to the
compiler. They can't be used as identifiers in your program unless they include @ as a
prefix. For example, @if is a valid identifier, but if isn't because if is a keyword.

The first table in this article lists keywords that are reserved identifiers in any part of a
C# program. The second table in this article lists the contextual keywords in C#.
Contextual keywords have special meaning only in a limited program context and can
be used as identifiers outside that context. Generally, as new keywords are added to the
C# language, they're added as contextual keywords in order to avoid breaking programs
written in earlier versions.

abstract
as
base
bool
break
byte
case
catch
char
checked
class
const
continue
decimal
default
delegate
do
double
else
enum

event
explicit
extern
false
finally

fixed
float
for
foreach
goto
if
implicit
in
int
interface
internal
is
lock
long

namespace
new
null
object
operator
out
override
params
private
protected
public
readonly
ref
return
sbyte
sealed
short
sizeof
stackalloc

static
string
struct
switch
this
throw

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/keywords/out

true
try
typeof
uint
ulong
unchecked
unsafe
ushort
using
virtual
void
volatile
while

A contextual keyword is used to provide a specific meaning in the code, but it isn't a
reserved word in C#. Some contextual keywords, such as partial and where , have
special meanings in two or more contexts.

add
and
alias
ascending
args
async
await
by
descending
dynamic
equals
file
from

get
global
group
init
into
join

Contextual keywords

let
managed (function pointer calling convention)
nameof
nint
not

notnull
nuint
on
or
orderby
partial (type)
partial (method)
record
remove
required
scoped

select
set
unmanaged (function pointer calling convention)
unmanaged (generic type constraint)
value
var
when (filter condition)
where (generic type constraint)
where (query clause)
with
yield

C# reference

See also

Access Modifiers (C# Reference)
Article • 2022-09-27 • 2 minutes to read

Access modifiers are keywords used to specify the declared accessibility of a member or
a type. This section introduces the five access modifiers:

public

protected

internal

private

file

The following seven accessibility levels can be specified using the access modifiers:

public: Access isn't restricted.
protected: Access is limited to the containing class or types derived from the
containing class.
internal: Access is limited to the current assembly.
protected internal: Access is limited to the current assembly or types derived from
the containing class.
private: Access is limited to the containing type.
private protected: Access is limited to the containing class or types derived from
the containing class within the current assembly.
file: The declared type is only visible in the current source file. File scoped types are
generally used for source generators.

This section also introduces the following concepts:

Accessibility Levels: Using the four access modifiers to declare six levels of
accessibility.
Accessibility Domain: Specifies where, in the program sections, a member can be
referenced.
Restrictions on Using Accessibility Levels: A summary of the restrictions on using
declared accessibility levels.

Add accessibility modifiers (style rule IDE0040)
C# Reference
C# Programming Guide
C# Keywords

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0040

Access Modifiers
Access Keywords
Modifiers

Accessibility Levels (C# Reference)
Article • 2022-09-29 • 2 minutes to read

Use the access modifiers, public , protected , internal , or private , to specify one of the
following declared accessibility levels for members.

Declared
accessibility

Meaning

public Access is not restricted.

protected Access is limited to the containing class or types derived from the containing
class.

internal Access is limited to the current assembly.

protected
internal

Access is limited to the current assembly or types derived from the containing
class.

private Access is limited to the containing type.

private
protected

Access is limited to the containing class or types derived from the containing
class within the current assembly.

Only one access modifier is allowed for a member or type, except when you use the
protected internal or private protected combinations.

Access modifiers are not allowed on namespaces. Namespaces have no access
restrictions.

Depending on the context in which a member declaration occurs, only certain declared
accessibilities are permitted. If no access modifier is specified in a member declaration, a
default accessibility is used.

Top-level types, which are not nested in other types, can only have internal or public
accessibility. The default accessibility for these types is internal .

Nested types, which are members of other types, can have declared accessibilities as
indicated in the following table.

Members of Default member accessibility Allowed declared accessibility of the member

enum public None

Members of Default member accessibility Allowed declared accessibility of the member

class private public

protected

internal

private

protected internal

private protected

interface public public

protected

internal

private *

protected internal

private protected

struct private public

internal

private

* An interface member with private accessibility must have a default implementation.

The accessibility of a nested type depends on its accessibility domain, which is
determined by both the declared accessibility of the member and the accessibility
domain of the immediately containing type. However, the accessibility domain of a
nested type cannot exceed that of the containing type.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Language Specification

See also

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Domain
Restrictions on Using Accessibility Levels
Access Modifiers
public
private
protected
internal

Accessibility Domain (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The accessibility domain of a member specifies in which program sections a member
can be referenced. If the member is nested within another type, its accessibility domain
is determined by both the accessibility level of the member and the accessibility domain
of the immediately containing type.

The accessibility domain of a top-level type is at least the program text of the project
that it is declared in. That is, the domain includes all of the source files of this project.
The accessibility domain of a nested type is at least the program text of the type in
which it is declared. That is, the domain is the type body, which includes all nested types.
The accessibility domain of a nested type never exceeds that of the containing type.
These concepts are demonstrated in the following example.

This example contains a top-level type, T1 , and two nested classes, M1 and M2 . The
classes contain fields that have different declared accessibilities. In the Main method, a
comment follows each statement to indicate the accessibility domain of each member.
Notice that the statements that try to reference the inaccessible members are
commented out. If you want to see the compiler errors caused by referencing an
inaccessible member, remove the comments one at a time.

C#

Example

public class T1
{
 public static int publicInt;
 internal static int internalInt;
 private static int privateInt = 0;

 static T1()
 {
 // T1 can access public or internal members
 // in a public or private (or internal) nested class.
 M1.publicInt = 1;
 M1.internalInt = 2;
 M2.publicInt = 3;
 M2.internalInt = 4;

 // Cannot access the private member privateInt
 // in either class:
 // M1.privateInt = 2; //CS0122
 }

 public class M1
 {
 public static int publicInt;
 internal static int internalInt;
 private static int privateInt = 0;
 }

 private class M2
 {
 public static int publicInt = 0;
 internal static int internalInt = 0;
 private static int privateInt = 0;
 }
}

class MainClass
{
 static void Main()
 {
 // Access is unlimited.
 T1.publicInt = 1;

 // Accessible only in current assembly.
 T1.internalInt = 2;

 // Error CS0122: inaccessible outside T1.
 // T1.privateInt = 3;

 // Access is unlimited.
 T1.M1.publicInt = 1;

 // Accessible only in current assembly.
 T1.M1.internalInt = 2;

 // Error CS0122: inaccessible outside M1.
 // T1.M1.privateInt = 3;

 // Error CS0122: inaccessible outside T1.
 // T1.M2.publicInt = 1;

 // Error CS0122: inaccessible outside T1.
 // T1.M2.internalInt = 2;

 // Error CS0122: inaccessible outside M2.
 // T1.M2.privateInt = 3;

 // Keep the console open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
}

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Restrictions on Using Accessibility Levels
Access Modifiers
public
private
protected
internal

C# Language Specification

See also

Restrictions on using accessibility levels
(C# Reference)
Article • 2021-09-15 • 2 minutes to read

When you specify a type in a declaration, check whether the accessibility level of the
type is dependent on the accessibility level of a member or of another type. For
example, the direct base class must be at least as accessible as the derived class. The
following declarations cause a compiler error because the base class BaseClass is less
accessible than MyClass :

C#

The following table summarizes the restrictions on declared accessibility levels.

Context Remarks

Classes The direct base class of a class type must be at least as accessible as the class type
itself.

Interfaces The explicit base interfaces of an interface type must be at least as accessible as
the interface type itself.

Delegates The return type and parameter types of a delegate type must be at least as
accessible as the delegate type itself.

Constants The type of a constant must be at least as accessible as the constant itself.

Fields The type of a field must be at least as accessible as the field itself.

Methods The return type and parameter types of a method must be at least as accessible as
the method itself.

Properties The type of a property must be at least as accessible as the property itself.

Events The type of an event must be at least as accessible as the event itself.

Indexers The type and parameter types of an indexer must be at least as accessible as the
indexer itself.

Operators The return type and parameter types of an operator must be at least as accessible
as the operator itself.

class BaseClass {...}
public class MyClass: BaseClass {...} // Error

Context Remarks

Constructors The parameter types of a constructor must be at least as accessible as the
constructor itself.

The following example contains erroneous declarations of different types. The comment
following each declaration indicates the expected compiler error.

C#

Example

// Restrictions on Using Accessibility Levels
// CS0052 expected as well as CS0053, CS0056, and CS0057
// To make the program work, change access level of both class B
// and MyPrivateMethod() to public.

using System;

// A delegate:
delegate int MyDelegate();

class B
{
 // A private method:
 static int MyPrivateMethod()
 {
 return 0;
 }
}

public class A
{
 // Error: The type B is less accessible than the field A.myField.
 public B myField = new B();

 // Error: The type B is less accessible
 // than the constant A.myConst.
 public readonly B myConst = new B();

 public B MyMethod()
 {
 // Error: The type B is less accessible
 // than the method A.MyMethod.
 return new B();
 }

 // Error: The type B is less accessible than the property A.MyProp
 public B MyProp
 {
 set

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Domain
Accessibility Levels
Access Modifiers
public
private
protected
internal

 {
 }
 }

 MyDelegate d = new MyDelegate(B.MyPrivateMethod);
 // Even when B is declared public, you still get the error:
 // "The parameter B.MyPrivateMethod is not accessible due to
 // protection level."

 public static B operator +(A m1, B m2)
 {
 // Error: The type B is less accessible
 // than the operator A.operator +(A,B)
 return new B();
 }

 static void Main()
 {
 Console.Write("Compiled successfully");
 }
}

C# language specification

See also

internal (C# Reference)
Article • 2022-01-25 • 2 minutes to read

The internal keyword is an access modifier for types and type members.

This page covers internal access. The internal keyword is also part of the
protected internal access modifier.

Internal types or members are accessible only within files in the same assembly, as in
this example:

C#

For a comparison of internal with the other access modifiers, see Accessibility Levels
and Access Modifiers.

For more information about assemblies, see Assemblies in .NET.

A common use of internal access is in component-based development because it
enables a group of components to cooperate in a private manner without being
exposed to the rest of the application code. For example, a framework for building
graphical user interfaces could provide Control and Form classes that cooperate by
using members with internal access. Since these members are internal, they are not
exposed to code that is using the framework.

It is an error to reference a type or a member with internal access outside the assembly
within which it was defined.

This example contains two files, Assembly1.cs and Assembly1_a.cs . The first file contains
an internal base class, BaseClass . In the second file, an attempt to instantiate BaseClass
will produce an error.

C#

public class BaseClass
{
 // Only accessible within the same assembly.
 internal static int x = 0;
}

Example 1

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/

C#

In this example, use the same files you used in example 1, and change the accessibility
level of BaseClass to public . Also change the accessibility level of the member intM to
internal . In this case, you can instantiate the class, but you cannot access the internal
member.

C#

C#

// Assembly1.cs
// Compile with: /target:library
internal class BaseClass
{
 public static int intM = 0;
}

// Assembly1_a.cs
// Compile with: /reference:Assembly1.dll
class TestAccess
{
 static void Main()
 {
 var myBase = new BaseClass(); // CS0122
 }
}

Example 2

// Assembly2.cs
// Compile with: /target:library
public class BaseClass
{
 internal static int intM = 0;
}

// Assembly2_a.cs
// Compile with: /reference:Assembly2.dll
public class TestAccess
{
 static void Main()
 {
 var myBase = new BaseClass(); // Ok.
 BaseClass.intM = 444; // CS0117
 }
}

For more information, see Declared accessibility in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
public
private
protected

C# Language Specification

See also

private (C# Reference)
Article • 2022-10-27 • 2 minutes to read

The private keyword is a member access modifier.

This page covers private access. The private keyword is also part of the private
protected access modifier.

Private access is the least permissive access level. Private members are accessible only
within the body of the class or the struct in which they are declared, as in this example:

C#

Nested types in the same body can also access those private members.

It is a compile-time error to reference a private member outside the class or the struct in
which it is declared.

For a comparison of private with the other access modifiers, see Accessibility Levels
and Access Modifiers.

In this example, the Employee class contains two private data members, _name and
_salary . As private members, they cannot be accessed except by member methods.
Public methods named GetName and Salary are added to allow controlled access to the
private members. The _name member is accessed by way of a public method, and the
_salary member is accessed by way of a public read-only property. For more
information, see Properties.

C#

class Employee
{
 private int _i;
 double _d; // private access by default
}

Example

class Employee2
{
 private readonly string _name = "FirstName, LastName";
 private readonly double _salary = 100.0;

For more information, see Declared accessibility in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
public
protected
internal

 public string GetName()
 {
 return _name;
 }

 public double Salary
 {
 get { return _salary; }
 }
}

class PrivateTest
{
 static void Main()
 {
 var e = new Employee2();

 // The data members are inaccessible (private), so
 // they can't be accessed like this:
 // string n = e._name;
 // double s = e._salary;

 // '_name' is indirectly accessed via method:
 string n = e.GetName();

 // '_salary' is indirectly accessed via property
 double s = e.Salary;
 }
}

C# language specification

See also

protected (C# Reference)
Article • 2022-01-25 • 2 minutes to read

The protected keyword is a member access modifier.

A protected member is accessible within its class and by derived class instances.

For a comparison of protected with the other access modifiers, see Accessibility Levels.

A protected member of a base class is accessible in a derived class only if the access
occurs through the derived class type. For example, consider the following code
segment:

C#

７ Note

This page covers protected access. The protected keyword is also part of the
protected internal and private protected access modifiers.

Example 1

class A
{
 protected int x = 123;
}

class B : A
{
 static void Main()
 {
 var a = new A();
 var b = new B();

 // Error CS1540, because x can only be accessed by
 // classes derived from A.
 // a.x = 10;

 // OK, because this class derives from A.
 b.x = 10;
 }
}

The statement a.x = 10 generates an error because it is made within the static method
Main, and not an instance of class B.

Struct members cannot be protected because the struct cannot be inherited.

In this example, the class DerivedPoint is derived from Point . Therefore, you can access
the protected members of the base class directly from the derived class.

C#

If you change the access levels of x and y to private, the compiler will issue the error
messages:

'Point.y' is inaccessible due to its protection level.

'Point.x' is inaccessible due to its protection level.

For more information, see Declared accessibility in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

Example 2

class Point
{
 protected int x;
 protected int y;
}

class DerivedPoint: Point
{
 static void Main()
 {
 var dpoint = new DerivedPoint();

 // Direct access to protected members.
 dpoint.x = 10;
 dpoint.y = 15;
 Console.WriteLine($"x = {dpoint.x}, y = {dpoint.y}");
 }
}
// Output: x = 10, y = 15

C# language specification

See also

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
public
private
internal
Security concerns for internal virtual keywords

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/heyd8kky(v=vs.100)

public (C# Reference)
Article • 2022-01-25 • 2 minutes to read

The public keyword is an access modifier for types and type members. Public access is
the most permissive access level. There are no restrictions on accessing public members,
as in this example:

C#

See Access Modifiers and Accessibility Levels for more information.

In the following example, two classes are declared, PointTest and Program . The public
members x and y of PointTest are accessed directly from Program .

C#

If you change the public access level to private or protected, you will get the error
message:

class SampleClass
{
 public int x; // No access restrictions.
}

Example

class PointTest
{
 public int x;
 public int y;
}

class Program
{
 static void Main()
 {
 var p = new PointTest();
 // Direct access to public members.
 p.x = 10;
 p.y = 15;
 Console.WriteLine($"x = {p.x}, y = {p.y}");
 }
}
// Output: x = 10, y = 15

'PointTest.y' is inaccessible due to its protection level.

For more information, see Declared accessibility in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
Access Modifiers
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
private
protected
internal

C# language specification

See also

protected internal (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The protected internal keyword combination is a member access modifier. A protected
internal member is accessible from the current assembly or from types that are derived
from the containing class. For a comparison of protected internal with the other access
modifiers, see Accessibility Levels.

A protected internal member of a base class is accessible from any type within its
containing assembly. It is also accessible in a derived class located in another assembly
only if the access occurs through a variable of the derived class type. For example,
consider the following code segment:

C#

C#

Example

// Assembly1.cs
// Compile with: /target:library
public class BaseClass
{
 protected internal int myValue = 0;
}

class TestAccess
{
 void Access()
 {
 var baseObject = new BaseClass();
 baseObject.myValue = 5;
 }
}

// Assembly2.cs
// Compile with: /reference:Assembly1.dll
class DerivedClass : BaseClass
{
 static void Main()
 {
 var baseObject = new BaseClass();
 var derivedObject = new DerivedClass();

 // Error CS1540, because myValue can only be accessed by
 // classes derived from BaseClass.

This example contains two files, Assembly1.cs and Assembly2.cs . The first file contains a
public base class, BaseClass , and another class, TestAccess . BaseClass owns a
protected internal member, myValue , which is accessed by the TestAccess type. In the
second file, an attempt to access myValue through an instance of BaseClass will produce
an error, while an access to this member through an instance of a derived class,
DerivedClass will succeed.

Struct members cannot be protected internal because the struct cannot be inherited.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
public
private
internal
Security concerns for internal virtual keywords

 // baseObject.myValue = 10;

 // OK, because this class derives from BaseClass.
 derivedObject.myValue = 10;
 }
}

C# language specification

See also

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/heyd8kky(v=vs.100)

private protected (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The private protected keyword combination is a member access modifier. A private
protected member is accessible by types derived from the containing class, but only
within its containing assembly. For a comparison of private protected with the other
access modifiers, see Accessibility Levels.

A private protected member of a base class is accessible from derived types in its
containing assembly only if the static type of the variable is the derived class type. For
example, consider the following code segment:

C#

C#

７ Note

The private protected access modifier is valid in C# version 7.2 and later.

Example

public class BaseClass
{
 private protected int myValue = 0;
}

public class DerivedClass1 : BaseClass
{
 void Access()
 {
 var baseObject = new BaseClass();

 // Error CS1540, because myValue can only be accessed by
 // classes derived from BaseClass.
 // baseObject.myValue = 5;

 // OK, accessed through the current derived class instance
 myValue = 5;
 }
}

// Assembly2.cs
// Compile with: /reference:Assembly1.dll

This example contains two files, Assembly1.cs and Assembly2.cs . The first file contains a
public base class, BaseClass , and a type derived from it, DerivedClass1 . BaseClass owns
a private protected member, myValue , which DerivedClass1 tries to access in two ways.
The first attempt to access myValue through an instance of BaseClass will produce an
error. However, the attempt to use it as an inherited member in DerivedClass1 will
succeed.

In the second file, an attempt to access myValue as an inherited member of
DerivedClass2 will produce an error, as it is only accessible by derived types in
Assembly1.

If Assembly1.cs contains an InternalsVisibleToAttribute that names Assembly2 , the
derived class DerivedClass2 will have access to private protected members declared in
BaseClass . InternalsVisibleTo makes private protected members visible to derived
classes in other assemblies.

Struct members cannot be private protected because the struct cannot be inherited.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
public

class DerivedClass2 : BaseClass
{
 void Access()
 {
 // Error CS0122, because myValue can only be
 // accessed by types in Assembly1
 // myValue = 10;
 }
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.internalsvisibletoattribute

private
internal
Security concerns for internal virtual keywords

https://learn.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/heyd8kky(v=vs.100)

file (C# Reference)
Article • 2022-11-18 • 2 minutes to read

Beginning with C# 11, the file contextual keyword is a type modifier.

The file modifier restricts a top-level type's scope and visibility to the file in which it's
declared. The file modifier will generally be applied to types written by a source
generator. File-local types provide source generators with a convenient way to avoid
name collisions among generated types. The file modifier declares a file-local type, as
in this example:

C#

Any types nested within a file-local type are also only visible within the file in which it's
declared. Other types in an assembly may use the same name as a file-local type.
Because the file-local type is visible only in the file where it's declared, these types don't
create a naming collision.

A file-local type can't be the return type or parameter type of any member that is more
visible than file scope. A file-local type can't be a field member of a type that has
greater visibility than file scope. However, a more visible type may implicitly
implement a file-local interface type. The type can also explicitly implement a file-local
interface but explicit implementations can only be used within the file scope.

The following example shows a public type that uses a file-local type to provide a
worker method. In addition, the public type implements a file-local interface implicitly:

C#

file class HiddenWidget
{
 // implementation
}

Example

// In File1.cs:
file interface IWidget
{
 int ProvideAnswer();
}

file class HiddenWidget

In another source file, you can declare types that have the same names as the file-local
types. The file-local types aren't visible:

C#

For more information, see Declared accessibility in the C# Language Specification, and
the C# 11 - File local types feature specification.

C# Reference
C# Programming Guide
C# Keywords
Access Modifiers
Accessibility Levels
Modifiers
public
protected
internal

{
 public int Work() => 42;
}

public class Widget : IWidget
{
 public int ProvideAnswer()
 {
 var worker = new HiddenWidget();
 return worker.Work();
 }
}

// In File2.cs:
// Doesn't conflict with HiddenWidget
// declared in File1.cs
public class HiddenWidget
{
 public void RunTask()
 {
 // omitted
 }
}

C# language specification

See also

abstract (C# Reference)
Article • 2021-09-15 • 3 minutes to read

The abstract modifier indicates that the thing being modified has a missing or
incomplete implementation. The abstract modifier can be used with classes, methods,
properties, indexers, and events. Use the abstract modifier in a class declaration to
indicate that a class is intended only to be a base class of other classes, not instantiated
on its own. Members marked as abstract must be implemented by non-abstract classes
that derive from the abstract class.

In this example, the class Square must provide an implementation of GetArea because it
derives from Shape :

C#

Abstract classes have the following features:

An abstract class cannot be instantiated.

An abstract class may contain abstract methods and accessors.

Example 1

abstract class Shape
{
 public abstract int GetArea();
}

class Square : Shape
{
 private int _side;

 public Square(int n) => _side = n;

 // GetArea method is required to avoid a compile-time error.
 public override int GetArea() => _side * _side;

 static void Main()
 {
 var sq = new Square(12);
 Console.WriteLine($"Area of the square = {sq.GetArea()}");
 }
}
// Output: Area of the square = 144

It is not possible to modify an abstract class with the sealed modifier because the
two modifiers have opposite meanings. The sealed modifier prevents a class from
being inherited and the abstract modifier requires a class to be inherited.

A non-abstract class derived from an abstract class must include actual
implementations of all inherited abstract methods and accessors.

Use the abstract modifier in a method or property declaration to indicate that the
method or property does not contain implementation.

Abstract methods have the following features:

An abstract method is implicitly a virtual method.

Abstract method declarations are only permitted in abstract classes.

Because an abstract method declaration provides no actual implementation, there
is no method body; the method declaration simply ends with a semicolon and
there are no curly braces ({ }) following the signature. For example:

C#

The implementation is provided by a method override, which is a member of a
non-abstract class.

It is an error to use the static or virtual modifiers in an abstract method declaration.

Abstract properties behave like abstract methods, except for the differences in
declaration and invocation syntax.

It is an error to use the abstract modifier on a static property.

An abstract inherited property can be overridden in a derived class by including a
property declaration that uses the override modifier.

For more information about abstract classes, see Abstract and Sealed Classes and Class
Members.

An abstract class must provide implementation for all interface members.

An abstract class that implements an interface might map the interface methods onto
abstract methods. For example:

C#

public abstract void MyMethod();

In this example, the class DerivedClass is derived from an abstract class BaseClass . The
abstract class contains an abstract method, AbstractMethod , and two abstract properties,
X and Y .

C#

interface I
{
 void M();
}

abstract class C : I
{
 public abstract void M();
}

Example 2

// Abstract class
abstract class BaseClass
{
 protected int _x = 100;
 protected int _y = 150;

 // Abstract method
 public abstract void AbstractMethod();

 // Abstract properties
 public abstract int X { get; }
 public abstract int Y { get; }
}

class DerivedClass : BaseClass
{
 public override void AbstractMethod()
 {
 _x++;
 _y++;
 }

 public override int X // overriding property
 {
 get
 {
 return _x + 10;
 }
 }

 public override int Y // overriding property
 {

In the preceding example, if you attempt to instantiate the abstract class by using a
statement like this:

C#

You will get an error saying that the compiler cannot create an instance of the abstract
class 'BaseClass'.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
Modifiers
virtual
override
C# Keywords

 get
 {
 return _y + 10;
 }
 }

 static void Main()
 {
 var o = new DerivedClass();
 o.AbstractMethod();
 Console.WriteLine($"x = {o.X}, y = {o.Y}");
 }
}
// Output: x = 111, y = 161

BaseClass bc = new BaseClass(); // Error

C# Language Specification

See also

async (C# Reference)
Article • 2022-10-04 • 4 minutes to read

Use the async modifier to specify that a method, lambda expression, or anonymous
method is asynchronous. If you use this modifier on a method or expression, it's referred
to as an async method. The following example defines an async method named
ExampleMethodAsync :

C#

If you're new to asynchronous programming or do not understand how an async
method uses the await operator to do potentially long-running work without blocking
the caller's thread, read the introduction in Asynchronous programming with async and
await. The following code is found inside an async method and calls the
HttpClient.GetStringAsync method:

C#

An async method runs synchronously until it reaches its first await expression, at which
point the method is suspended until the awaited task is complete. In the meantime,
control returns to the caller of the method, as the example in the next section shows.

If the method that the async keyword modifies doesn't contain an await expression or
statement, the method executes synchronously. A compiler warning alerts you to any
async methods that don't contain await statements, because that situation might
indicate an error. See Compiler Warning (level 1) CS4014.

The async keyword is contextual in that it's a keyword only when it modifies a method,
a lambda expression, or an anonymous method. In all other contexts, it's interpreted as
an identifier.

public async Task<int> ExampleMethodAsync()
{
 //...
}

string contents = await httpClient.GetStringAsync(requestUrl);

Example

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstringasync
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/cs4014

The following example shows the structure and flow of control between an async event
handler, StartButton_Click , and an async method, ExampleMethodAsync . The result from
the async method is the number of characters of a web page. The code is suitable for a
Windows Presentation Foundation (WPF) app or Windows Store app that you create in
Visual Studio; see the code comments for setting up the app.

You can run this code in Visual Studio as a Windows Presentation Foundation (WPF) app
or a Windows Store app. You need a Button control named StartButton and a Textbox
control named ResultsTextBox . Remember to set the names and handler so that you
have something like this:

XAML

To run the code as a WPF app:

Paste this code into the MainWindow class in MainWindow.xaml.cs.
Add a reference to System.Net.Http.
Add a using directive for System.Net.Http.

To run the code as a Windows Store app:

Paste this code into the MainPage class in MainPage.xaml.cs.
Add using directives for System.Net.Http and System.Threading.Tasks.

C#

<Button Content="Button" HorizontalAlignment="Left" Margin="88,77,0,0"
VerticalAlignment="Top" Width="75"
 Click="StartButton_Click" Name="StartButton"/>
<TextBox HorizontalAlignment="Left" Height="137" Margin="88,140,0,0"
TextWrapping="Wrap"
 Text="<Enter a URL>" VerticalAlignment="Top" Width="310"
Name="ResultsTextBox"/>

private async void StartButton_Click(object sender, RoutedEventArgs e)
{
 // ExampleMethodAsync returns a Task<int>, which means that the method
 // eventually produces an int result. However, ExampleMethodAsync
returns
 // the Task<int> value as soon as it reaches an await.
 ResultsTextBox.Text += "\n";

 try
 {
 int length = await ExampleMethodAsync();
 // Note that you could put "await ExampleMethodAsync()" in the next
line where
 // "length" is, but due to when '+=' fetches the value of

An async method can have the following return types:

Task
Task<TResult>
void. async void methods are generally discouraged for code other than event
handlers because callers cannot await those methods and must implement a
different mechanism to report successful completion or error conditions.
Any type that has an accessible GetAwaiter method. The
System.Threading.Tasks.ValueTask<TResult> type is one such implementation. It is
available by adding the NuGet package System.Threading.Tasks.Extensions .

ResultsTextBox, you
 // would not see the global side effect of ExampleMethodAsync
setting the text.
 ResultsTextBox.Text += String.Format("Length: {0:N0}\n", length);
 }
 catch (Exception)
 {
 // Process the exception if one occurs.
 }
}

public async Task<int> ExampleMethodAsync()
{
 var httpClient = new HttpClient();
 int exampleInt = (await
httpClient.GetStringAsync("http://msdn.microsoft.com")).Length;
 ResultsTextBox.Text += "Preparing to finish ExampleMethodAsync.\n";
 // After the following return statement, any method that's awaiting
 // ExampleMethodAsync (in this case, StartButton_Click) can get the
 // integer result.
 return exampleInt;
}
// The example displays the following output:
// Preparing to finish ExampleMethodAsync.
// Length: 53292

） Important

For more information about tasks and the code that executes while waiting for a
task, see Asynchronous programming with async and await. For a full console
example that uses similar elements, see Process asynchronous tasks as they
complete (C#).

Return Types

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1

The async method can't declare any in, ref or out parameters, nor can it have a reference
return value, but it can call methods that have such parameters.

You specify Task<TResult> as the return type of an async method if the return statement
of the method specifies an operand of type TResult . You use Task if no meaningful
value is returned when the method is completed. That is, a call to the method returns a
Task , but when the Task is completed, any await expression that's awaiting the Task
evaluates to void .

You use the void return type primarily to define event handlers, which require that
return type. The caller of a void -returning async method can't await it and can't catch
exceptions that the method throws.

You return another type, typically a value type, that has a GetAwaiter method to
minimize memory allocations in performance-critical sections of code.

For more information and examples, see Async Return Types.

AsyncStateMachineAttribute
await
Asynchronous programming with async and await
Process asynchronous tasks as they complete

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asyncstatemachineattribute

const (C# Reference)
Article • 2021-09-15 • 2 minutes to read

You use the const keyword to declare a constant field or a constant local. Constant
fields and locals aren't variables and may not be modified. Constants can be numbers,
Boolean values, strings, or a null reference. Don’t create a constant to represent
information that you expect to change at any time. For example, don’t use a constant
field to store the price of a service, a product version number, or the brand name of a
company. These values can change over time, and because compilers propagate
constants, other code compiled with your libraries will have to be recompiled to see the
changes. See also the readonly keyword. For example:

C#

Beginning with C# 10, interpolated strings may be constants, if all expressions used are
also constant strings. This feature can improve the code that builds constant strings:

C#

The type of a constant declaration specifies the type of the members that the
declaration introduces. The initializer of a constant local or a constant field must be a
constant expression that can be implicitly converted to the target type.

A constant expression is an expression that can be fully evaluated at compile time.
Therefore, the only possible values for constants of reference types are string and a
null reference.

The constant declaration can declare multiple constants, such as:

C#

const int X = 0;
public const double GravitationalConstant = 6.673e-11;
private const string ProductName = "Visual C#";

const string Language = "C#";
const string Platform = ".NET";
const string Version = "10.0";
const string FullProductName = $"{Platform} - Language: {Language} Version:
{Version}";

Remarks

The static modifier is not allowed in a constant declaration.

A constant can participate in a constant expression, as follows:

C#

C#

public const double X = 1.0, Y = 2.0, Z = 3.0;

public const int C1 = 5;
public const int C2 = C1 + 100;

７ Note

The readonly keyword differs from the const keyword. A const field can only be
initialized at the declaration of the field. A readonly field can be initialized either at
the declaration or in a constructor. Therefore, readonly fields can have different
values depending on the constructor used. Also, although a const field is a
compile-time constant, the readonly field can be used for run-time constants, as in
this line: public static readonly uint l1 = (uint)DateTime.Now.Ticks;

Examples

public class ConstTest
{
 class SampleClass
 {
 public int x;
 public int y;
 public const int C1 = 5;
 public const int C2 = C1 + 5;

 public SampleClass(int p1, int p2)
 {
 x = p1;
 y = p2;
 }
 }

 static void Main()
 {
 var mC = new SampleClass(11, 22);
 Console.WriteLine($"x = {mC.x}, y = {mC.y}");
 Console.WriteLine($"C1 = {SampleClass.C1}, C2 = {SampleClass.C2}");

This example demonstrates how to use constants as local variables.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Modifiers
readonly

 }
}
/* Output
 x = 11, y = 22
 C1 = 5, C2 = 10
*/

public class SealedTest
{
 static void Main()
 {
 const int C = 707;
 Console.WriteLine($"My local constant = {C}");
 }
}
// Output: My local constant = 707

C# language specification

See also

event (C# reference)
Article • 2022-05-03 • 2 minutes to read

The event keyword is used to declare an event in a publisher class.

The following example shows how to declare and raise an event that uses EventHandler
as the underlying delegate type. For the complete code example that also shows how to
use the generic EventHandler<TEventArgs> delegate type and how to subscribe to an
event and create an event handler method, see How to publish events that conform to
.NET Guidelines.

C#

Events are a special kind of multicast delegate that can only be invoked from within the
class (or derived classes) or struct where they are declared (the publisher class). If other
classes or structs subscribe to the event, their event handler methods will be called
when the publisher class raises the event. For more information and code examples, see
Events and Delegates.

Example

public class SampleEventArgs
{
 public SampleEventArgs(string text) { Text = text; }
 public string Text { get; } // readonly
}

public class Publisher
{
 // Declare the delegate (if using non-generic pattern).
 public delegate void SampleEventHandler(object sender, SampleEventArgs
e);

 // Declare the event.
 public event SampleEventHandler SampleEvent;

 // Wrap the event in a protected virtual method
 // to enable derived classes to raise the event.
 protected virtual void RaiseSampleEvent()
 {
 // Raise the event in a thread-safe manner using the ?. operator.
 SampleEvent?.Invoke(this, new SampleEventArgs("Hello"));
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler
https://learn.microsoft.com/en-us/dotnet/api/system.eventhandler-1

Events can be marked as public, private, protected, internal, protected internal, or
private protected. These access modifiers define how users of the class can access the
event. For more information, see Access Modifiers.

The following keywords apply to events.

Keyword Description For more
information

static Makes the event available to callers at any time, even if no
instance of the class exists.

Static Classes
and Static Class
Members

virtual Allows derived classes to override the event behavior by using the
override keyword.

Inheritance

sealed Specifies that for derived classes it is no longer virtual.

abstract The compiler will not generate the add and remove event accessor
blocks and therefore derived classes must provide their own
implementation.

An event may be declared as a static event by using the static keyword. This makes the
event available to callers at any time, even if no instance of the class exists. For more
information, see Static Classes and Static Class Members.

An event can be marked as a virtual event by using the virtual keyword. This enables
derived classes to override the event behavior by using the override keyword. For more
information, see Inheritance. An event overriding a virtual event can also be sealed,
which specifies that for derived classes it is no longer virtual. Lastly, an event can be
declared abstract, which means that the compiler will not generate the add and remove
event accessor blocks. Therefore derived classes must provide their own
implementation.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Keywords and events

C# language specification

See also

C# Reference
C# Programming Guide
C# Keywords
add
remove
Modifiers
How to combine delegates (Multicast Delegates)

extern (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The extern modifier is used to declare a method that is implemented externally. A
common use of the extern modifier is with the DllImport attribute when you are using
Interop services to call into unmanaged code. In this case, the method must also be
declared as static , as shown in the following example:

C#

The extern keyword can also define an external assembly alias, which makes it possible
to reference different versions of the same component from within a single assembly.
For more information, see extern alias.

It is an error to use the abstract and extern modifiers together to modify the same
member. Using the extern modifier means that the method is implemented outside the
C# code, whereas using the abstract modifier means that the method implementation
is not provided in the class.

The extern keyword has more limited uses in C# than in C++. To compare the C#
keyword with the C++ keyword, see Using extern to Specify Linkage in the C++
Language Reference.

In this example, the program receives a string from the user and displays it inside a
message box. The program uses the MessageBox method imported from the User32.dll
library.

C#

[DllImport("avifil32.dll")]
private static extern void AVIFileInit();

Example 1

//using System.Runtime.InteropServices;
class ExternTest
{
 [DllImport("User32.dll", CharSet=CharSet.Unicode)]
 public static extern int MessageBox(IntPtr h, string m, string c, int
type);

 static int Main()
 {

This example illustrates a C# program that calls into a C library (a native DLL).

1. Create the following C file and name it cmdll.c :

C

2. Open a Visual Studio x64 (or x32) Native Tools Command Prompt window from the
Visual Studio installation directory and compile the cmdll.c file by typing cl -LD
cmdll.c at the command prompt.

3. In the same directory, create the following C# file and name it cm.cs :

C#

4. Open a Visual Studio x64 (or x32) Native Tools Command Prompt window from the
Visual Studio installation directory and compile the cm.cs file by typing:

 string myString;
 Console.Write("Enter your message: ");
 myString = Console.ReadLine();
 return MessageBox((IntPtr)0, myString, "My Message Box", 0);
 }
}

Example 2

// cmdll.c
// Compile with: -LD
int __declspec(dllexport) SampleMethod(int i)
{
 return i*10;
}

// cm.cs
using System;
using System.Runtime.InteropServices;
public class MainClass
{
 [DllImport("Cmdll.dll")]
 public static extern int SampleMethod(int x);

 static void Main()
 {
 Console.WriteLine("SampleMethod() returns {0}.",
SampleMethod(5));
 }
}

csc cm.cs (for the x64 command prompt) —or— csc -platform:x86 cm.cs (for
the x32 command prompt)

This will create the executable file cm.exe .

5. Run cm.exe . The SampleMethod method passes the value 5 to the DLL file, which
returns the value multiplied by 10. The program produces the following output:

Output

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

System.Runtime.InteropServices.DllImportAttribute
C# Reference
C# Programming Guide
C# Keywords
Modifiers

SampleMethod() returns 50.

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute

in (Generic Modifier) (C# Reference)
Article • 2022-02-25 • 2 minutes to read

For generic type parameters, the in keyword specifies that the type parameter is
contravariant. You can use the in keyword in generic interfaces and delegates.

Contravariance enables you to use a less derived type than that specified by the generic
parameter. This allows for implicit conversion of classes that implement contravariant
interfaces and implicit conversion of delegate types. Covariance and contravariance in
generic type parameters are supported for reference types, but they are not supported
for value types.

A type can be declared contravariant in a generic interface or delegate only if it defines
the type of a method's parameters and not of a method's return type. In , ref , and out
parameters must be invariant, meaning they are neither covariant nor contravariant.

An interface that has a contravariant type parameter allows its methods to accept
arguments of less derived types than those specified by the interface type parameter.
For example, in the IComparer<T> interface, type T is contravariant, you can assign an
object of the IComparer<Person> type to an object of the IComparer<Employee> type
without using any special conversion methods if Employee inherits Person .

A contravariant delegate can be assigned another delegate of the same type, but with a
less derived generic type parameter.

For more information, see Covariance and Contravariance.

The following example shows how to declare, extend, and implement a contravariant
generic interface. It also shows how you can use implicit conversion for classes that
implement this interface.

C#

Contravariant generic interface

// Contravariant interface.
interface IContravariant<in A> { }

// Extending contravariant interface.
interface IExtContravariant<in A> : IContravariant<A> { }

// Implementing contravariant interface.
class Sample<A> : IContravariant<A> { }

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icomparer-1

The following example shows how to declare, instantiate, and invoke a contravariant
generic delegate. It also shows how you can implicitly convert a delegate type.

C#

class Program
{
 static void Test()
 {
 IContravariant<Object> iobj = new Sample<Object>();
 IContravariant<String> istr = new Sample<String>();

 // You can assign iobj to istr because
 // the IContravariant interface is contravariant.
 istr = iobj;
 }
}

Contravariant generic delegate

// Contravariant delegate.
public delegate void DContravariant<in A>(A argument);

// Methods that match the delegate signature.
public static void SampleControl(Control control)
{ }
public static void SampleButton(Button button)
{ }

public void Test()
{

 // Instantiating the delegates with the methods.
 DContravariant<Control> dControl = SampleControl;
 DContravariant<Button> dButton = SampleButton;

 // You can assign dControl to dButton
 // because the DContravariant delegate is contravariant.
 dButton = dControl;

 // Invoke the delegate.
 dButton(new Button());
}

C# language specification

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

out
Covariance and Contravariance
Modifiers

See also

new modifier (C# Reference)
Article • 2022-01-25 • 3 minutes to read

When used as a declaration modifier, the new keyword explicitly hides a member that is
inherited from a base class. When you hide an inherited member, the derived version of
the member replaces the base class version. This assumes that the base class version of
the member is visible, as it would already be hidden if it were marked as private or, in
some cases, internal . Although you can hide public or protected members without
using the new modifier, you get a compiler warning. If you use new to explicitly hide a
member, it suppresses this warning.

You can also use the new keyword to create an instance of a type or as a generic type
constraint.

To hide an inherited member, declare it in the derived class by using the same member
name, and modify it with the new keyword. For example:

C#

In this example, BaseC.Invoke is hidden by DerivedC.Invoke . The field x is not affected
because it is not hidden by a similar name.

Name hiding through inheritance takes one of the following forms:

Generally, a constant, field, property, or type that is introduced in a class or struct
hides all base class members that share its name. There are special cases. For
example, if you declare a new field with name N to have a type that is not
invocable, and a base type declares N to be a method, the new field does not hide
the base declaration in invocation syntax. For more information, see the Member
lookup section of the C# language specification.

A method introduced in a class or struct hides properties, fields, and types that
share that name in the base class. It also hides all base class methods that have the

public class BaseC
{
 public int x;
 public void Invoke() { }
}
public class DerivedC : BaseC
{
 new public void Invoke() { }
}

same signature.

An indexer introduced in a class or struct hides all base class indexers that have the
same signature.

It is an error to use both new and override on the same member, because the two
modifiers have mutually exclusive meanings. The new modifier creates a new member
with the same name and causes the original member to become hidden. The override
modifier extends the implementation for an inherited member.

Using the new modifier in a declaration that does not hide an inherited member
generates a warning.

In this example, a base class, BaseC , and a derived class, DerivedC , use the same field
name x , which hides the value of the inherited field. The example demonstrates the use
of the new modifier. It also demonstrates how to access the hidden members of the
base class by using their fully qualified names.

C#

Examples

public class BaseC
{
 public static int x = 55;
 public static int y = 22;
}

public class DerivedC : BaseC
{
 // Hide field 'x'.
 new public static int x = 100;

 static void Main()
 {
 // Display the new value of x:
 Console.WriteLine(x);

 // Display the hidden value of x:
 Console.WriteLine(BaseC.x);

 // Display the unhidden member y:
 Console.WriteLine(y);
 }
}
/*
Output:
100

In this example, a nested class hides a class that has the same name in the base class.
The example demonstrates how to use the new modifier to eliminate the warning
message and how to access the hidden class members by using their fully qualified
names.

C#

If you remove the new modifier, the program will still compile and run, but you will get
the following warning:

55
22
*/

public class BaseC
{
 public class NestedC
 {
 public int x = 200;
 public int y;
 }
}

public class DerivedC : BaseC
{
 // Nested type hiding the base type members.
 new public class NestedC
 {
 public int x = 100;
 public int y;
 public int z;
 }

 static void Main()
 {
 // Creating an object from the overlapping class:
 NestedC c1 = new NestedC();

 // Creating an object from the hidden class:
 BaseC.NestedC c2 = new BaseC.NestedC();

 Console.WriteLine(c1.x);
 Console.WriteLine(c2.x);
 }
}
/*
Output:
100
200
*/

text

For more information, see The new modifier section of the C# language specification.

C# Reference
C# Programming Guide
C# Keywords
Modifiers
Versioning with the Override and New Keywords
Knowing When to Use Override and New Keywords

The keyword new is required on 'MyDerivedC.x' because it hides inherited
member 'MyBaseC.x'.

C# language specification

See also

out (generic modifier) (C# Reference)
Article • 2021-09-15 • 2 minutes to read

For generic type parameters, the out keyword specifies that the type parameter is
covariant. You can use the out keyword in generic interfaces and delegates.

Covariance enables you to use a more derived type than that specified by the generic
parameter. This allows for implicit conversion of classes that implement covariant
interfaces and implicit conversion of delegate types. Covariance and contravariance are
supported for reference types, but they are not supported for value types.

An interface that has a covariant type parameter enables its methods to return more
derived types than those specified by the type parameter. For example, because in .NET
Framework 4, in IEnumerable<T>, type T is covariant, you can assign an object of the
IEnumerable(Of String) type to an object of the IEnumerable(Of Object) type without
using any special conversion methods.

A covariant delegate can be assigned another delegate of the same type, but with a
more derived generic type parameter.

For more information, see Covariance and Contravariance.

The following example shows how to declare, extend, and implement a covariant
generic interface. It also shows how to use implicit conversion for classes that
implement a covariant interface.

C#

Example - covariant generic interface

// Covariant interface.
interface ICovariant<out R> { }

// Extending covariant interface.
interface IExtCovariant<out R> : ICovariant<R> { }

// Implementing covariant interface.
class Sample<R> : ICovariant<R> { }

class Program
{
 static void Test()
 {
 ICovariant<Object> iobj = new Sample<Object>();
 ICovariant<String> istr = new Sample<String>();

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

In a generic interface, a type parameter can be declared covariant if it satisfies the
following conditions:

The type parameter is used only as a return type of interface methods and not
used as a type of method arguments.

The type parameter is not used as a generic constraint for the interface methods.

The following example shows how to declare, instantiate, and invoke a covariant generic
delegate. It also shows how to implicitly convert delegate types.

C#

 // You can assign istr to iobj because
 // the ICovariant interface is covariant.
 iobj = istr;
 }
}

７ Note

There is one exception to this rule. If in a covariant interface you have a
contravariant generic delegate as a method parameter, you can use the
covariant type as a generic type parameter for this delegate. For more
information about covariant and contravariant generic delegates, see Variance
in Delegates and Using Variance for Func and Action Generic Delegates.

Example - covariant generic delegate

// Covariant delegate.
public delegate R DCovariant<out R>();

// Methods that match the delegate signature.
public static Control SampleControl()
{ return new Control(); }

public static Button SampleButton()
{ return new Button(); }

public void Test()
{
 // Instantiate the delegates with the methods.
 DCovariant<Control> dControl = SampleControl;
 DCovariant<Button> dButton = SampleButton;

In a generic delegate, a type can be declared covariant if it is used only as a method
return type and not used for method arguments.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Variance in Generic Interfaces
in
Modifiers

 // You can assign dButton to dControl
 // because the DCovariant delegate is covariant.
 dControl = dButton;

 // Invoke the delegate.
 dControl();
}

C# language specification

See also

override (C# reference)
Article • 2022-10-07 • 2 minutes to read

The override modifier is required to extend or modify the abstract or virtual
implementation of an inherited method, property, indexer, or event.

In the following example, the Square class must provide an overridden implementation
of GetArea because GetArea is inherited from the abstract Shape class:

C#

An override method provides a new implementation of the method inherited from a
base class. The method that is overridden by an override declaration is known as the
overridden base method. An override method must have the same signature as the
overridden base method. override methods support covariant return types. In
particular, the return type of an override method can derive from the return type of the
corresponding base method.

You cannot override a non-virtual or static method. The overridden base method must
be virtual , abstract , or override .

An override declaration cannot change the accessibility of the virtual method. Both
the override method and the virtual method must have the same access level

abstract class Shape
{
 public abstract int GetArea();
}

class Square : Shape
{
 private int _side;

 public Square(int n) => _side = n;

 // GetArea method is required to avoid a compile-time error.
 public override int GetArea() => _side * _side;

 static void Main()
 {
 var sq = new Square(12);
 Console.WriteLine($"Area of the square = {sq.GetArea()}");
 }
}
// Output: Area of the square = 144

modifier.

You cannot use the new , static , or virtual modifiers to modify an override method.

An overriding property declaration must specify exactly the same access modifier, type,
and name as the inherited property. Beginning with C# 9.0, read-only overriding
properties support covariant return types. The overridden property must be virtual ,
abstract , or override .

For more information about how to use the override keyword, see Versioning with the
Override and New Keywords and Knowing when to use Override and New Keywords. For
information about inheritance, see Inheritance.

This example defines a base class named Employee , and a derived class named
SalesEmployee . The SalesEmployee class includes an extra field, salesbonus , and
overrides the method CalculatePay in order to take it into account.

C#

Example

class TestOverride
{
 public class Employee
 {
 public string Name { get; }

 // Basepay is defined as protected, so that it may be
 // accessed only by this class and derived classes.
 protected decimal _basepay;

 // Constructor to set the name and basepay values.
 public Employee(string name, decimal basepay)
 {
 Name = name;
 _basepay = basepay;
 }

 // Declared virtual so it can be overridden.
 public virtual decimal CalculatePay()
 {
 return _basepay;
 }
 }

 // Derive a new class from Employee.
 public class SalesEmployee : Employee
 {

For more information, see the Override methods section of the C# language
specification.

For more information about covariant return types, see the feature proposal note.

C# reference
Inheritance

 // New field that will affect the base pay.
 private decimal _salesbonus;

 // The constructor calls the base-class version, and
 // initializes the salesbonus field.
 public SalesEmployee(string name, decimal basepay, decimal
salesbonus)
 : base(name, basepay)
 {
 _salesbonus = salesbonus;
 }

 // Override the CalculatePay method
 // to take bonus into account.
 public override decimal CalculatePay()
 {
 return _basepay + _salesbonus;
 }
 }

 static void Main()
 {
 // Create some new employees.
 var employee1 = new SalesEmployee("Alice", 1000, 500);
 var employee2 = new Employee("Bob", 1200);

 Console.WriteLine($"Employee1 {employee1.Name} earned:
{employee1.CalculatePay()}");
 Console.WriteLine($"Employee2 {employee2.Name} earned:
{employee2.CalculatePay()}");
 }
}
/*
 Output:
 Employee1 Alice earned: 1500
 Employee2 Bob earned: 1200
*/

C# language specification

See also

C# keywords
Modifiers
abstract
virtual
new (modifier)
Polymorphism

readonly (C# Reference)
Article • 2022-09-29 • 3 minutes to read

The readonly keyword is a modifier that can be used in four contexts:

In a field declaration, readonly indicates that assignment to the field can only
occur as part of the declaration or in a constructor in the same class. A readonly
field can be assigned and reassigned multiple times within the field declaration
and constructor.

A readonly field can't be assigned after the constructor exits. This rule has
different implications for value types and reference types:

Because value types directly contain their data, a field that is a readonly value
type is immutable.
Because reference types contain a reference to their data, a field that is a
readonly reference type must always refer to the same object. That object isn't
immutable. The readonly modifier prevents the field from being replaced by a
different instance of the reference type. However, the modifier doesn't prevent
the instance data of the field from being modified through the read-only field.

In a readonly struct type definition, readonly indicates that the structure type is
immutable. For more information, see the readonly struct section of the Structure
types article.

In an instance member declaration within a structure type, readonly indicates that
an instance member doesn't modify the state of the structure. For more
information, see the readonly instance members section of the Structure types
article.

In a ref readonly method return, the readonly modifier indicates that method
returns a reference and writes aren't allowed to that reference.

２ Warning

An externally visible type that contains an externally visible read-only field
that is a mutable reference type may be a security vulnerability and may
trigger warning CA2104 : "Do not declare read only mutable reference types."

Readonly field example

https://learn.microsoft.com/en-us/visualstudio/code-quality/ca2104

In this example, the value of the field year can't be changed in the method ChangeYear ,
even though it's assigned a value in the class constructor:

C#

You can assign a value to a readonly field only in the following contexts:

When the variable is initialized in the declaration, for example:

C#

In an instance constructor of the class that contains the instance field declaration.

In the static constructor of the class that contains the static field declaration.

These constructor contexts are also the only contexts in which it's valid to pass a
readonly field as an out or ref parameter.

class Age
{
 private readonly int _year;
 Age(int year)
 {
 _year = year;
 }
 void ChangeYear()
 {
 //_year = 1967; // Compile error if uncommented.
 }
}

public readonly int y = 5;

７ Note

The readonly keyword is different from the const keyword. A const field can only
be initialized at the declaration of the field. A readonly field can be assigned
multiple times in the field declaration and in any constructor. Therefore, readonly
fields can have different values depending on the constructor used. Also, while a
const field is a compile-time constant, the readonly field can be used for run-time
constants as in the following example:

C#

public static readonly uint timeStamp = (uint)DateTime.Now.Ticks;

C#

In the preceding example, if you use a statement like the following example:

C#

you'll get the compiler error message:

A readonly field cannot be assigned to (except in a constructor or a variable
initializer)

public class SamplePoint
{
 public int x;
 // Initialize a readonly field
 public readonly int y = 25;
 public readonly int z;

 public SamplePoint()
 {
 // Initialize a readonly instance field
 z = 24;
 }

 public SamplePoint(int p1, int p2, int p3)
 {
 x = p1;
 y = p2;
 z = p3;
 }

 public static void Main()
 {
 SamplePoint p1 = new SamplePoint(11, 21, 32); // OK
 Console.WriteLine($"p1: x={p1.x}, y={p1.y}, z={p1.z}");
 SamplePoint p2 = new SamplePoint();
 p2.x = 55; // OK
 Console.WriteLine($"p2: x={p2.x}, y={p2.y}, z={p2.z}");
 }
 /*
 Output:
 p1: x=11, y=21, z=32
 p2: x=55, y=25, z=24
 */
}

p2.y = 66; // Error

The readonly modifier on a ref return indicates that the returned reference can't be
modified. The following example returns a reference to the origin. It uses the readonly
modifier to indicate that callers can't modify the origin:

C#

The type returned doesn't need to be a readonly struct . Any type that can be returned
by ref can be returned by ref readonly .

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

You can also see the language specification proposals:

readonly ref and readonly struct
readonly struct members

Add readonly modifier (style rule IDE0044)
C# Reference
C# Programming Guide
C# Keywords
Modifiers
const
Fields

Ref readonly return example

private static readonly SamplePoint s_origin = new SamplePoint(0, 0, 0);
public static ref readonly SamplePoint Origin => ref s_origin;

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0044

sealed (C# Reference)
Article • 2021-09-15 • 2 minutes to read

When applied to a class, the sealed modifier prevents other classes from inheriting
from it. In the following example, class B inherits from class A , but no class can inherit
from class B .

C#

You can also use the sealed modifier on a method or property that overrides a virtual
method or property in a base class. This enables you to allow classes to derive from your
class and prevent them from overriding specific virtual methods or properties.

In the following example, Z inherits from Y but Z cannot override the virtual function F
that is declared in X and sealed in Y .

C#

class A {}
sealed class B : A {}

Example

class X
{
 protected virtual void F() { Console.WriteLine("X.F"); }
 protected virtual void F2() { Console.WriteLine("X.F2"); }
}

class Y : X
{
 sealed protected override void F() { Console.WriteLine("Y.F"); }
 protected override void F2() { Console.WriteLine("Y.F2"); }
}

class Z : Y
{
 // Attempting to override F causes compiler error CS0239.
 // protected override void F() { Console.WriteLine("Z.F"); }

 // Overriding F2 is allowed.
 protected override void F2() { Console.WriteLine("Z.F2"); }
}

When you define new methods or properties in a class, you can prevent deriving classes
from overriding them by not declaring them as virtual.

It is an error to use the abstract modifier with a sealed class, because an abstract class
must be inherited by a class that provides an implementation of the abstract methods or
properties.

When applied to a method or property, the sealed modifier must always be used with
override.

Because structs are implicitly sealed, they cannot be inherited.

For more information, see Inheritance.

For more examples, see Abstract and Sealed Classes and Class Members.

C#

In the previous example, you might try to inherit from the sealed class by using the
following statement:

class MyDerivedC: SealedClass {} // Error

The result is an error message:

'MyDerivedC': cannot derive from sealed type 'SealedClass'

sealed class SealedClass
{
 public int x;
 public int y;
}

class SealedTest2
{
 static void Main()
 {
 var sc = new SealedClass();
 sc.x = 110;
 sc.y = 150;
 Console.WriteLine($"x = {sc.x}, y = {sc.y}");
 }
}
// Output: x = 110, y = 150

Remarks

To determine whether to seal a class, method, or property, you should generally
consider the following two points:

The potential benefits that deriving classes might gain through the ability to
customize your class.

The potential that deriving classes could modify your classes in such a way that
they would no longer work correctly or as expected.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Static Classes and Static Class Members
Abstract and Sealed Classes and Class Members
Access Modifiers
Modifiers
override
virtual

C# language specification

See also

static (C# Reference)
Article • 2022-09-29 • 3 minutes to read

This page covers the static modifier keyword. The static keyword is also part of the
using static directive.

Use the static modifier to declare a static member, which belongs to the type itself
rather than to a specific object. The static modifier can be used to declare static
classes. In classes, interfaces, and structs, you may add the static modifier to fields,
methods, properties, operators, events, and constructors. The static modifier can't be
used with indexers or finalizers. For more information, see Static Classes and Static Class
Members.

You can add the static modifier to a local function. A static local function can't capture
local variables or instance state.

Beginning with C# 9.0, you can add the static modifier to a lambda expression or
anonymous method. A static lambda or anonymous method can't capture local variables
or instance state.

The following class is declared as static and contains only static methods:

C#

A constant or type declaration is implicitly a static member. A static member can't be
referenced through an instance. Instead, it's referenced through the type name. For
example, consider the following class:

C#

Example - static class

static class CompanyEmployee
{
 public static void DoSomething() { /*...*/ }
 public static void DoSomethingElse() { /*...*/ }
}

public class MyBaseC
{
 public struct MyStruct
 {
 public static int x = 100;

To refer to the static member x , use the fully qualified name, MyBaseC.MyStruct.x ,
unless the member is accessible from the same scope:

C#

While an instance of a class contains a separate copy of all instance fields of the class,
there's only one copy of each static field.

It isn't possible to use this to reference static methods or property accessors.

If the static keyword is applied to a class, all the members of the class must be static .

Classes, interfaces, and static classes may have static constructors. A static
constructor is called at some point between when the program starts and the class is
instantiated.

To demonstrate static members, consider a class that represents a company employee.
Assume that the class contains a method to count employees and a field to store the
number of employees. Both the method and the field don't belong to any one
employee instance. Instead, they belong to the class of employees as a whole. They
should be declared as static members of the class.

This example reads the name and ID of a new employee, increments the employee
counter by one, and displays the information for the new employee and the new
number of employees. This program reads the current number of employees from the
keyboard.

C#

 }
}

Console.WriteLine(MyBaseC.MyStruct.x);

７ Note

The static keyword has more limited uses than in C++. To compare with the C++
keyword, see Storage classes (C++).

Example - static field and method

https://learn.microsoft.com/en-us/cpp/cpp/storage-classes-cpp#static

public class Employee4
{
 public string id;
 public string name;

 public Employee4()
 {
 }

 public Employee4(string name, string id)
 {
 this.name = name;
 this.id = id;
 }

 public static int employeeCounter;

 public static int AddEmployee()
 {
 return ++employeeCounter;
 }
}

class MainClass : Employee4
{
 static void Main()
 {
 Console.Write("Enter the employee's name: ");
 string name = Console.ReadLine();
 Console.Write("Enter the employee's ID: ");
 string id = Console.ReadLine();

 // Create and configure the employee object.
 Employee4 e = new Employee4(name, id);
 Console.Write("Enter the current number of employees: ");
 string n = Console.ReadLine();
 Employee4.employeeCounter = Int32.Parse(n);
 Employee4.AddEmployee();

 // Display the new information.
 Console.WriteLine($"Name: {e.name}");
 Console.WriteLine($"ID: {e.id}");
 Console.WriteLine($"New Number of Employees:
{Employee4.employeeCounter}");
 }
}
/*
Input:
Matthias Berndt
AF643G
15
 *
Sample Output:
Enter the employee's name: Matthias Berndt

This example shows that you can initialize a static field by using another static field
that is not yet declared. The results will be undefined until you explicitly assign a value
to the static field.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide

Enter the employee's ID: AF643G
Enter the current number of employees: 15
Name: Matthias Berndt
ID: AF643G
New Number of Employees: 16
*/

Example - static initialization

class Test
{
 static int x = y;
 static int y = 5;

 static void Main()
 {
 Console.WriteLine(Test.x);
 Console.WriteLine(Test.y);

 Test.x = 99;
 Console.WriteLine(Test.x);
 }
}
/*
Output:
 0
 5
 99
*/

C# language specification

See also

C# Keywords
Modifiers
using static directive
Static Classes and Static Class Members

unsafe (C# Reference)
Article • 2022-09-10 • 2 minutes to read

The unsafe keyword denotes an unsafe context, which is required for any operation
involving pointers. For more information, see Unsafe Code and Pointers.

You can use the unsafe modifier in the declaration of a type or a member. The entire
textual extent of the type or member is therefore considered an unsafe context. For
example, the following is a method declared with the unsafe modifier:

C#

The scope of the unsafe context extends from the parameter list to the end of the
method, so pointers can also be used in the parameter list:

C#

You can also use an unsafe block to enable the use of an unsafe code inside this block.
For example:

C#

To compile unsafe code, you must specify the AllowUnsafeBlocks compiler option.
Unsafe code is not verifiable by the common language runtime.

C#

unsafe static void FastCopy(byte[] src, byte[] dst, int count)
{
 // Unsafe context: can use pointers here.
}

unsafe static void FastCopy (byte* ps, byte* pd, int count) {...}

unsafe
{
 // Unsafe context: can use pointers here.
}

Example

// compile with: -unsafe
class UnsafeTest

For more information, see Unsafe code in the C# Language Specification. The language
specification is the definitive source for C# syntax and usage.

C# reference
C# keywords
fixed statement
Unsafe code, pointer types, and function pointers
Pointer related operators

{
 // Unsafe method: takes pointer to int.
 unsafe static void SquarePtrParam(int* p)
 {
 *p *= *p;
 }

 unsafe static void Main()
 {
 int i = 5;
 // Unsafe method: uses address-of operator (&).
 SquarePtrParam(&i);
 Console.WriteLine(i);
 }
}
// Output: 25

C# language specification

See also

virtual (C# Reference)
Article • 2021-09-15 • 3 minutes to read

The virtual keyword is used to modify a method, property, indexer, or event
declaration and allow for it to be overridden in a derived class. For example, this method
can be overridden by any class that inherits it:

C#

The implementation of a virtual member can be changed by an overriding member in a
derived class. For more information about how to use the virtual keyword, see
Versioning with the Override and New Keywords and Knowing When to Use Override
and New Keywords.

When a virtual method is invoked, the run-time type of the object is checked for an
overriding member. The overriding member in the most derived class is called, which
might be the original member, if no derived class has overridden the member.

By default, methods are non-virtual. You cannot override a non-virtual method.

You cannot use the virtual modifier with the static , abstract , private , or override
modifiers. The following example shows a virtual property:

C#

public virtual double Area()
{
 return x * y;
}

Remarks

class MyBaseClass
{
 // virtual auto-implemented property. Overrides can only
 // provide specialized behavior if they implement get and set accessors.
 public virtual string Name { get; set; }

 // ordinary virtual property with backing field
 private int _num;
 public virtual int Number
 {
 get { return _num; }
 set { _num = value; }
 }

Virtual properties behave like virtual methods, except for the differences in declaration
and invocation syntax.

It is an error to use the virtual modifier on a static property.

A virtual inherited property can be overridden in a derived class by including a
property declaration that uses the override modifier.

In this example, the Shape class contains the two coordinates x , y , and the Area()
virtual method. Different shape classes such as Circle , Cylinder , and Sphere inherit the
Shape class, and the surface area is calculated for each figure. Each derived class has its
own override implementation of Area() .

Notice that the inherited classes Circle , Sphere , and Cylinder all use constructors that
initialize the base class, as shown in the following declaration.

C#

}

class MyDerivedClass : MyBaseClass
{
 private string _name;

 // Override auto-implemented property with ordinary property
 // to provide specialized accessor behavior.
 public override string Name
 {
 get
 {
 return _name;
 }
 set
 {
 if (!string.IsNullOrEmpty(value))
 {
 _name = value;
 }
 else
 {
 _name = "Unknown";
 }
 }
 }
}

Example

The following program calculates and displays the appropriate area for each figure by
invoking the appropriate implementation of the Area() method, according to the object
that is associated with the method.

C#

public Cylinder(double r, double h): base(r, h) {}

class TestClass
{
 public class Shape
 {
 public const double PI = Math.PI;
 protected double _x, _y;

 public Shape()
 {
 }

 public Shape(double x, double y)
 {
 _x = x;
 _y = y;
 }

 public virtual double Area()
 {
 return _x * _y;
 }
 }

 public class Circle : Shape
 {
 public Circle(double r) : base(r, 0)
 {
 }

 public override double Area()
 {
 return PI * _x * _x;
 }
 }

 public class Sphere : Shape
 {
 public Sphere(double r) : base(r, 0)
 {
 }

 public override double Area()
 {
 return 4 * PI * _x * _x;

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Polymorphism
abstract
override
new (modifier)

 }
 }

 public class Cylinder : Shape
 {
 public Cylinder(double r, double h) : base(r, h)
 {
 }

 public override double Area()
 {
 return 2 * PI * _x * _x + 2 * PI * _x * _y;
 }
 }

 static void Main()
 {
 double r = 3.0, h = 5.0;
 Shape c = new Circle(r);
 Shape s = new Sphere(r);
 Shape l = new Cylinder(r, h);
 // Display results.
 Console.WriteLine("Area of Circle = {0:F2}", c.Area());
 Console.WriteLine("Area of Sphere = {0:F2}", s.Area());
 Console.WriteLine("Area of Cylinder = {0:F2}", l.Area());
 }
}
/*
Output:
Area of Circle = 28.27
Area of Sphere = 113.10
Area of Cylinder = 150.80
*/

C# language specification

See also

volatile (C# Reference)
Article • 2022-03-11 • 3 minutes to read

The volatile keyword indicates that a field might be modified by multiple threads that
are executing at the same time. The compiler, the runtime system, and even hardware
may rearrange reads and writes to memory locations for performance reasons. Fields
that are declared volatile are excluded from certain kinds of optimizations. There is no
guarantee of a single total ordering of volatile writes as seen from all threads of
execution. For more information, see the Volatile class.

The volatile keyword can be applied to fields of these types:

Reference types.
Pointer types (in an unsafe context). Note that although the pointer itself can be
volatile, the object that it points to cannot. In other words, you cannot declare a
"pointer to volatile."
Simple types such as sbyte , byte , short , ushort , int , uint , char , float , and
bool .
An enum type with one of the following base types: byte , sbyte , short , ushort ,
int , or uint .
Generic type parameters known to be reference types.
IntPtr and UIntPtr.

Other types, including double and long , cannot be marked volatile because reads and
writes to fields of those types cannot be guaranteed to be atomic. To protect multi-
threaded access to those types of fields, use the Interlocked class members or protect
access using the lock statement.

The volatile keyword can only be applied to fields of a class or struct . Local
variables cannot be declared volatile .

７ Note

On a multiprocessor system, a volatile read operation does not guarantee to obtain
the latest value written to that memory location by any processor. Similarly, a
volatile write operation does not guarantee that the value written would be
immediately visible to other processors.

Example

https://learn.microsoft.com/en-us/dotnet/api/system.threading.volatile
https://learn.microsoft.com/en-us/dotnet/api/system.intptr
https://learn.microsoft.com/en-us/dotnet/api/system.uintptr
https://learn.microsoft.com/en-us/dotnet/api/system.threading.interlocked

The following example shows how to declare a public field variable as volatile .

C#

The following example demonstrates how an auxiliary or worker thread can be created
and used to perform processing in parallel with that of the primary thread. For more
information about multithreading, see Managed Threading.

C#

class VolatileTest
{
 public volatile int sharedStorage;

 public void Test(int i)
 {
 sharedStorage = i;
 }
}

public class Worker
{
 // This method is called when the thread is started.
 public void DoWork()
 {
 bool work = false;
 while (!_shouldStop)
 {
 work = !work; // simulate some work
 }
 Console.WriteLine("Worker thread: terminating gracefully.");
 }
 public void RequestStop()
 {
 _shouldStop = true;
 }
 // Keyword volatile is used as a hint to the compiler that this data
 // member is accessed by multiple threads.
 private volatile bool _shouldStop;
}

public class WorkerThreadExample
{
 public static void Main()
 {
 // Create the worker thread object. This does not start the thread.
 Worker workerObject = new Worker();
 Thread workerThread = new Thread(workerObject.DoWork);

 // Start the worker thread.
 workerThread.Start();
 Console.WriteLine("Main thread: starting worker thread...");

https://learn.microsoft.com/en-ca/dotnet/standard/threading/managed-threading-basics

With the volatile modifier added to the declaration of _shouldStop in place, you'll
always get the same results (similar to the excerpt shown in the preceding code).
However, without that modifier on the _shouldStop member, the behavior is
unpredictable. The DoWork method may optimize the member access, resulting in
reading stale data. Because of the nature of multi-threaded programming, the number
of stale reads is unpredictable. Different runs of the program will produce somewhat
different results.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# language specification: volatile keyword
C# Reference
C# Programming Guide
C# Keywords
Modifiers
lock statement
Interlocked

 // Loop until the worker thread activates.
 while (!workerThread.IsAlive)
 ;

 // Put the main thread to sleep for 500 milliseconds to
 // allow the worker thread to do some work.
 Thread.Sleep(500);

 // Request that the worker thread stop itself.
 workerObject.RequestStop();

 // Use the Thread.Join method to block the current thread
 // until the object's thread terminates.
 workerThread.Join();
 Console.WriteLine("Main thread: worker thread has terminated.");
 }
 // Sample output:
 // Main thread: starting worker thread...
 // Worker thread: terminating gracefully.
 // Main thread: worker thread has terminated.
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.threading.interlocked

Statement keywords (C# Reference)
Article • 2022-09-29 • 2 minutes to read

Statements are program instructions. Except as described in the topics referenced in the
following table, statements are executed in sequence. The following table lists the C#
statement keywords. For more information about statements that are not expressed
with any keyword, see Statements.

Category C# keywords

Selection statements if , switch

Iteration statements do , for , foreach , while

Jump statements break , continue , goto , return

Exception handling statements throw, try-catch, try-finally, try-catch-finally

checked and unchecked statements checked , unchecked

fixed statement fixed

lock statement lock

yield statement yield

C# Reference
Statements
C# Keywords

See also

throw (C# Reference)
Article • 2022-09-29 • 3 minutes to read

Signals the occurrence of an exception during program execution.

The syntax of throw is:

C#

where e is an instance of a class derived from System.Exception. The following example
uses the throw statement to throw an IndexOutOfRangeException if the argument
passed to a method named GetNumber does not correspond to a valid index of an
internal array.

C#

Method callers then use a try-catch or try-catch-finally block to handle the thrown
exception. The following example handles the exception thrown by the GetNumber
method.

C#

Remarks

throw [e];

using System;

namespace Throw2
{
public class NumberGenerator
{
 int[] numbers = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 };

 public int GetNumber(int index)
 {
 if (index < 0 || index >= numbers.Length)
 {
 throw new IndexOutOfRangeException();
 }
 return numbers[index];
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.exception
https://learn.microsoft.com/en-us/dotnet/api/system.indexoutofrangeexception

throw can also be used in a catch block to re-throw an exception handled in a catch
block. In this case, throw does not take an exception operand. It is most useful when a
method passes on an argument from a caller to some other library method, and the
library method throws an exception that must be passed on to the caller. For example,
the following example re-throws an NullReferenceException that is thrown when
attempting to retrieve the first character of an uninitialized string.

C#

using System;

public class Example
{
 public static void Main()
 {
 var gen = new NumberGenerator();
 int index = 10;
 try
 {
 int value = gen.GetNumber(index);
 Console.WriteLine($"Retrieved {value}");
 }
 catch (IndexOutOfRangeException e)
 {
 Console.WriteLine($"{e.GetType().Name}: {index} is outside the
bounds of the array");
 }
 }
}
// The example displays the following output:
// IndexOutOfRangeException: 10 is outside the bounds of the array

Re-throwing an exception

using System;

namespace Throw
{
public class Sentence
{
 public Sentence(string s)
 {
 Value = s;
 }

 public string Value { get; set; }

 public char GetFirstCharacter()
 {

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

throw can be used as an expression as well as a statement. This allows an exception to
be thrown in contexts that were previously unsupported. These include:

the conditional operator. The following example uses a throw expression to throw
an ArgumentException if a method is passed an empty string array.

C#

 try
 {
 return Value[0];
 }
 catch (NullReferenceException e)
 {
 throw;
 }
 }
}

public class Example
{
 public static void Main()
 {
 var s = new Sentence(null);
 Console.WriteLine($"The first character is {s.GetFirstCharacter()}");
 }
}
// The example displays the following output:
// Unhandled Exception: System.NullReferenceException: Object reference
not set to an instance of an object.
// at Sentence.GetFirstCharacter()
// at Example.Main()

） Important

You can also use the throw e syntax in a catch block to instantiate a new exception
that you pass on to the caller. In this case, the stack trace of the original exception,
which is available from the StackTrace property, is not preserved.

The throw expression

private static void DisplayFirstNumber(string[] args)
{
 string arg = args.Length >= 1 ? args[0] :
 throw new ArgumentException("You must
supply an argument");
 if (Int64.TryParse(arg, out var number))
 Console.WriteLine($"You entered {number:F0}");

https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception
https://learn.microsoft.com/en-us/dotnet/api/system.exception.stacktrace#system-exception-stacktrace

the null-coalescing operator. In the following example, a throw expression is used
with a null-coalescing operator to throw an exception if the string assigned to a
Name property is null .

C#

an expression-bodied lambda or method. The following example illustrates an
expression-bodied method that throws an InvalidCastException because a
conversion to a DateTime value is not supported.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

throw preferences (style rule IDE0016)
C# Reference
C# Programming Guide
try-catch
C# Keywords
How to: Explicitly Throw Exceptions

 else
 Console.WriteLine($"{arg} is not a number.");
}

public string Name
{
 get => name;
 set => name = value ??
 throw new ArgumentNullException(paramName: nameof(value),
message: "Name cannot be null");
}

DateTime ToDateTime(IFormatProvider provider) =>
 throw new InvalidCastException("Conversion to a DateTime is
not supported.");

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception
https://learn.microsoft.com/en-us/dotnet/api/system.datetime
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0016
https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/how-to-explicitly-throw-exceptions

try-catch (C# Reference)
Article • 2022-02-04 • 9 minutes to read

The try-catch statement consists of a try block followed by one or more catch clauses,
which specify handlers for different exceptions.

When an exception is thrown, the common language runtime (CLR) looks for the catch
statement that handles this exception. If the currently executing method does not
contain such a catch block, the CLR looks at the method that called the current method,
and so on up the call stack. If no catch block is found, then the CLR displays an
unhandled exception message to the user and stops execution of the program.

The try block contains the guarded code that may cause the exception. The block is
executed until an exception is thrown or it is completed successfully. For example, the
following attempt to cast a null object raises the NullReferenceException exception:

C#

Although the catch clause can be used without arguments to catch any type of
exception, this usage is not recommended. In general, you should only catch those
exceptions that you know how to recover from. Therefore, you should always specify an
object argument derived from System.Exception. The exception type should be as
specific as possible in order to avoid incorrectly accepting exceptions that your
exception handler is actually not able to resolve. As such, prefer concrete exceptions
over the base Exception type. For example:

C#

It is possible to use more than one specific catch clause in the same try-catch
statement. In this case, the order of the catch clauses is important because the catch
clauses are examined in order. Catch the more specific exceptions before the less

object o2 = null;
try
{
 int i2 = (int)o2; // Error
}

catch (InvalidCastException e)
{
 // recover from exception
}

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.exception

specific ones. The compiler produces an error if you order your catch blocks so that a
later block can never be reached.

Using catch arguments is one way to filter for the exceptions you want to handle. You
can also use an exception filter that further examines the exception to decide whether to
handle it. If the exception filter returns false, then the search for a handler continues.

C#

Exception filters are preferable to catching and rethrowing (explained below) because
filters leave the stack unharmed. If a later handler dumps the stack, you can see where
the exception originally came from, rather than just the last place it was rethrown. A
common use of exception filter expressions is logging. You can create a filter that always
returns false that also outputs to a log, you can log exceptions as they go by without
having to handle them and rethrow.

A throw statement can be used in a catch block to re-throw the exception that is
caught by the catch statement. The following example extracts source information from
an IOException exception, and then throws the exception to the parent method.

C#

You can catch one exception and throw a different exception. When you do this, specify
the exception that you caught as the inner exception, as shown in the following
example.

C#

catch (ArgumentException e) when (e.ParamName == "…")
{
 // recover from exception
}

catch (FileNotFoundException e)
{
 // FileNotFoundExceptions are handled here.
}
catch (IOException e)
{
 // Extract some information from this exception, and then
 // throw it to the parent method.
 if (e.Source != null)
 Console.WriteLine("IOException source: {0}", e.Source);
 throw;
}

https://learn.microsoft.com/en-us/dotnet/api/system.io.ioexception

You can also re-throw an exception when a specified condition is true, as shown in the
following example.

C#

From inside a try block, initialize only variables that are declared therein. Otherwise, an
exception can occur before the execution of the block is completed. For example, in the
following code example, the variable n is initialized inside the try block. An attempt to
use this variable outside the try block in the Write(n) statement will generate a
compiler error.

catch (InvalidCastException e)
{
 // Perform some action here, and then throw a new exception.
 throw new YourCustomException("Put your error message here.", e);
}

catch (InvalidCastException e)
{
 if (e.Data == null)
 {
 throw;
 }
 else
 {
 // Take some action.
 }
}

７ Note

It is also possible to use an exception filter to get a similar result in an often cleaner
fashion (as well as not modifying the stack, as explained earlier in this document).
The following example has a similar behavior for callers as the previous example.
The function throws the InvalidCastException back to the caller when e.Data is
null .

C#

catch (InvalidCastException e) when (e.Data != null)
{
 // Take some action.
}

C#

For more information about catch, see try-catch-finally.

An async method is marked by an async modifier and usually contains one or more
await expressions or statements. An await expression applies the await operator to a
Task or Task<TResult>.

When control reaches an await in the async method, progress in the method is
suspended until the awaited task completes. When the task is complete, execution can
resume in the method. For more information, see Asynchronous programming with
async and await.

The completed task to which await is applied might be in a faulted state because of an
unhandled exception in the method that returns the task. Awaiting the task throws an
exception. A task can also end up in a canceled state if the asynchronous process that
returns it is canceled. Awaiting a canceled task throws an OperationCanceledException .

To catch the exception, await the task in a try block, and catch the exception in the
associated catch block. For an example, see the Async method example section.

A task can be in a faulted state because multiple exceptions occurred in the awaited
async method. For example, the task might be the result of a call to Task.WhenAll. When
you await such a task, only one of the exceptions is caught, and you can't predict which
exception will be caught. For an example, see the Task.WhenAll example section.

static void Main()
{
 int n;
 try
 {
 // Do not initialize this variable here.
 n = 123;
 }
 catch
 {
 }
 // Error: Use of unassigned local variable 'n'.
 Console.Write(n);
}

Exceptions in async methods

Example

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenall

In the following example, the try block contains a call to the ProcessString method
that may cause an exception. The catch clause contains the exception handler that just
displays a message on the screen. When the throw statement is called from inside
ProcessString , the system looks for the catch statement and displays the message
Exception caught .

C#

In the following example, two catch blocks are used, and the most specific exception,
which comes first, is caught.

To catch the least specific exception, you can replace the throw statement in
ProcessString with the following statement: throw new Exception() .

class TryFinallyTest
{
 static void ProcessString(string s)
 {
 if (s == null)
 {
 throw new ArgumentNullException(paramName: nameof(s), message:
"parameter can't be null.");
 }
 }

 public static void Main()
 {
 string s = null; // For demonstration purposes.

 try
 {
 ProcessString(s);
 }
 catch (Exception e)
 {
 Console.WriteLine("{0} Exception caught.", e);
 }
 }
}
/*
Output:
System.ArgumentNullException: Value cannot be null.
 at TryFinallyTest.Main() Exception caught.
 * */

Two catch blocks example

If you place the least-specific catch block first in the example, the following error
message appears: A previous catch clause already catches all exceptions of this or
a super type ('System.Exception') .

C#

The following example illustrates exception handling for async methods. To catch an
exception that an async task throws, place the await expression in a try block, and
catch the exception in a catch block.

class ThrowTest3
{
 static void ProcessString(string s)
 {
 if (s == null)
 {
 throw new ArgumentNullException(paramName: nameof(s), message:
"Parameter can't be null");
 }
 }

 public static void Main()
 {
 try
 {
 string s = null;
 ProcessString(s);
 }
 // Most specific:
 catch (ArgumentNullException e)
 {
 Console.WriteLine("{0} First exception caught.", e);
 }
 // Least specific:
 catch (Exception e)
 {
 Console.WriteLine("{0} Second exception caught.", e);
 }
 }
}
/*
 Output:
 System.ArgumentNullException: Value cannot be null.
 at Test.ThrowTest3.ProcessString(String s) ... First exception caught.
*/

Async method example

Uncomment the throw new Exception line in the example to demonstrate exception
handling. The task's IsFaulted property is set to True , the task's
Exception.InnerException property is set to the exception, and the exception is caught
in the catch block.

Uncomment the throw new OperationCanceledException line to demonstrate what
happens when you cancel an asynchronous process. The task's IsCanceled property is
set to true , and the exception is caught in the catch block. Under some conditions that
don't apply to this example, the task's IsFaulted property is set to true and IsCanceled
is set to false .

C#

public async Task DoSomethingAsync()
{
 Task<string> theTask = DelayAsync();

 try
 {
 string result = await theTask;
 Debug.WriteLine("Result: " + result);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Exception Message: " + ex.Message);
 }
 Debug.WriteLine("Task IsCanceled: " + theTask.IsCanceled);
 Debug.WriteLine("Task IsFaulted: " + theTask.IsFaulted);
 if (theTask.Exception != null)
 {
 Debug.WriteLine("Task Exception Message: "
 + theTask.Exception.Message);
 Debug.WriteLine("Task Inner Exception Message: "
 + theTask.Exception.InnerException.Message);
 }
}

private async Task<string> DelayAsync()
{
 await Task.Delay(100);

 // Uncomment each of the following lines to
 // demonstrate exception handling.

 //throw new OperationCanceledException("canceled");
 //throw new Exception("Something happened.");
 return "Done";
}

// Output when no exception is thrown in the awaited method:

The following example illustrates exception handling where multiple tasks can result in
multiple exceptions. The try block awaits the task that's returned by a call to
Task.WhenAll. The task is complete when the three tasks to which WhenAll is applied are
complete.

Each of the three tasks causes an exception. The catch block iterates through the
exceptions, which are found in the Exception.InnerExceptions property of the task that
was returned by Task.WhenAll.

C#

// Result: Done
// Task IsCanceled: False
// Task IsFaulted: False

// Output when an Exception is thrown in the awaited method:
// Exception Message: Something happened.
// Task IsCanceled: False
// Task IsFaulted: True
// Task Exception Message: One or more errors occurred.
// Task Inner Exception Message: Something happened.

// Output when a OperationCanceledException or TaskCanceledException
// is thrown in the awaited method:
// Exception Message: canceled
// Task IsCanceled: True
// Task IsFaulted: False

Task.WhenAll example

public async Task DoMultipleAsync()
{
 Task theTask1 = ExcAsync(info: "First Task");
 Task theTask2 = ExcAsync(info: "Second Task");
 Task theTask3 = ExcAsync(info: "Third Task");

 Task allTasks = Task.WhenAll(theTask1, theTask2, theTask3);

 try
 {
 await allTasks;
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Exception: " + ex.Message);
 Debug.WriteLine("Task IsFaulted: " + allTasks.IsFaulted);
 foreach (var inEx in allTasks.Exception.InnerExceptions)
 {
 Debug.WriteLine("Task Inner Exception: " + inEx.Message);

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenall
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.whenall

For more information, see The try statement section of the C# language specification.

C# Reference
C# Programming Guide
C# Keywords
try, throw, and catch Statements (C++)
throw
try-finally
How to: Explicitly Throw Exceptions
FirstChanceException
UnhandledException

 }
 }
}

private async Task ExcAsync(string info)
{
 await Task.Delay(100);

 throw new Exception("Error-" + info);
}

// Output:
// Exception: Error-First Task
// Task IsFaulted: True
// Task Inner Exception: Error-First Task
// Task Inner Exception: Error-Second Task
// Task Inner Exception: Error-Third Task

C# language specification

See also

https://learn.microsoft.com/en-us/cpp/cpp/try-throw-and-catch-statements-cpp
https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/how-to-explicitly-throw-exceptions
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.firstchanceexception
https://learn.microsoft.com/en-us/dotnet/api/system.appdomain.unhandledexception

try-finally (C# Reference)
Article • 2022-01-25 • 3 minutes to read

By using a finally block, you can clean up any resources that are allocated in a try
block, and you can run code even if an exception occurs in the try block. Typically, the
statements of a finally block run when control leaves a try statement. The transfer of
control can occur as a result of normal execution, of execution of a break , continue ,
goto , or return statement, or of propagation of an exception out of the try statement.

Within a handled exception, the associated finally block is guaranteed to be run.
However, if the exception is unhandled, execution of the finally block is dependent on
how the exception unwind operation is triggered. That, in turn, is dependent on how
your computer is set up. The only cases where finally clauses don't run involve a
program being immediately stopped. An example of this would be when
InvalidProgramException gets thrown because of the IL statements being corrupt. On
most operating systems, reasonable resource cleanup will take place as part of stopping
and unloading the process.

Usually, when an unhandled exception ends an application, whether or not the finally
block is run is not important. However, if you have statements in a finally block that
must be run even in that situation, one solution is to add a catch block to the try -
finally statement. Alternatively, you can catch the exception that might be thrown in
the try block of a try -finally statement higher up the call stack. That is, you can
catch the exception in the method that calls the method that contains the try -finally
statement, or in the method that calls that method, or in any method in the call stack. If
the exception is not caught, execution of the finally block depends on whether the
operating system chooses to trigger an exception unwind operation.

In the following example, an invalid conversion statement causes a
System.InvalidCastException exception. The exception is unhandled.

C#

Example

public class ThrowTestA
{
 public static void Main()
 {
 int i = 123;
 string s = "Some string";

https://learn.microsoft.com/en-us/dotnet/api/system.invalidprogramexception

In the following example, an exception from the TryCast method is caught in a method
farther up the call stack.

C#

 object obj = s;

 try
 {
 // Invalid conversion; obj contains a string, not a numeric
type.
 i = (int)obj;

 // The following statement is not run.
 Console.WriteLine("WriteLine at the end of the try block.");
 }
 finally
 {
 // To run the program in Visual Studio, type CTRL+F5. Then
 // click Cancel in the error dialog.
 Console.WriteLine("\nExecution of the finally block after an
unhandled\n" +
 "error depends on how the exception unwind operation is
triggered.");
 Console.WriteLine("i = {0}", i);
 }
 }
 // Output:
 // Unhandled Exception: System.InvalidCastException: Specified cast is
not valid.
 //
 // Execution of the finally block after an unhandled
 // error depends on how the exception unwind operation is triggered.
 // i = 123
}

public class ThrowTestB
{
 public static void Main()
 {
 try
 {
 // TryCast produces an unhandled exception.
 TryCast();
 }
 catch (Exception ex)
 {
 // Catch the exception that is unhandled in TryCast.
 Console.WriteLine
 ("Catching the {0} exception triggers the finally block.",
 ex.GetType());

 // Restore the original unhandled exception. You might not

For more information about finally , see try-catch-finally.

C# also contains the using statement, which provides similar functionality for
IDisposable objects in a convenient syntax.

For more information, see The try statement section of the C# language specification.

 // know what exception to expect, or how to handle it, so pass
 // it on.
 throw;
 }
 }

 static void TryCast()
 {
 int i = 123;
 string s = "Some string";
 object obj = s;

 try
 {
 // Invalid conversion; obj contains a string, not a numeric
type.
 i = (int)obj;

 // The following statement is not run.
 Console.WriteLine("WriteLine at the end of the try block.");
 }
 finally
 {
 // Report that the finally block is run, and show that the value
of
 // i has not been changed.
 Console.WriteLine("\nIn the finally block in TryCast, i =
{0}.\n", i);
 }
 }
 // Output:
 // In the finally block in TryCast, i = 123.

 // Catching the System.InvalidCastException exception triggers the
finally block.

 // Unhandled Exception: System.InvalidCastException: Specified cast is
not valid.
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable

C# Reference
C# Programming Guide
C# Keywords
try, throw, and catch Statements (C++)
throw
try-catch
How to: Explicitly Throw Exceptions

https://learn.microsoft.com/en-us/cpp/cpp/try-throw-and-catch-statements-cpp
https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/how-to-explicitly-throw-exceptions

try-catch-finally (C# Reference)
Article • 2022-01-25 • 2 minutes to read

A common usage of catch and finally together is to obtain and use resources in a
try block, deal with exceptional circumstances in a catch block, and release the
resources in the finally block.

For more information and examples on re-throwing exceptions, see try-catch and
Throwing Exceptions. For more information about the finally block, see try-finally.

C#

For more information, see The try statement section of the C# language specification.

Example

public class EHClass
{
 void ReadFile(int index)
 {
 // To run this code, substitute a valid path from your local machine
 string path = @"c:\users\public\test.txt";
 System.IO.StreamReader file = new System.IO.StreamReader(path);
 char[] buffer = new char[10];
 try
 {
 file.ReadBlock(buffer, index, buffer.Length);
 }
 catch (System.IO.IOException e)
 {
 Console.WriteLine("Error reading from {0}. Message = {1}", path,
e.Message);
 }
 finally
 {
 if (file != null)
 {
 file.Close();
 }
 }
 // Do something with buffer...
 }
}

C# language specification

https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/

C# Reference
C# Programming Guide
C# Keywords
try, throw, and catch Statements (C++)
throw
How to: Explicitly Throw Exceptions
using Statement

See also

https://learn.microsoft.com/en-us/cpp/cpp/try-throw-and-catch-statements-cpp
https://learn.microsoft.com/en-ca/dotnet/standard/exceptions/how-to-explicitly-throw-exceptions

Method Parameters (C# Reference)
Article • 2023-01-03 • 9 minutes to read

In C#, arguments can be passed to parameters either by value or by reference.
Remember that C# types can be either reference types (class) or value types (struct):

Pass by value means passing a copy of the variable to the method.
Pass by reference means passing access to the variable to the method.
A variable of a reference type contains a reference to its data.
A variable of a value type contains its data directly.

Because a struct is a value type, when you pass a struct by value to a method, the
method receives and operates on a copy of the struct argument. The method has no
access to the original struct in the calling method and therefore can't change it in any
way. The method can change only the copy.

A class instance is a reference type, not a value type. When a reference type is passed by
value to a method, the method receives a copy of the reference to the class instance.
That is, the called method receives a copy of the address of the instance, and the calling
method retains the original address of the instance. The class instance in the calling
method has an address, the parameter in the called method has a copy of the address,
and both addresses refer to the same object. Because the parameter contains only a
copy of the address, the called method cannot change the address of the class instance
in the calling method. However, the called method can use the copy of the address to
access the class members that both the original address and the copy of the address
reference. If the called method changes a class member, the original class instance in
the calling method also changes.

The output of the following example illustrates the difference. The value of the
willIChange field of the class instance is changed by the call to method ClassTaker
because the method uses the address in the parameter to find the specified field of the
class instance. The willIChange field of the struct in the calling method is not changed
by the call to method StructTaker because the value of the argument is a copy of the
struct itself, not a copy of its address. StructTaker changes the copy, and the copy is
lost when the call to StructTaker is completed.

C#

class TheClass
{
 public string? willIChange;
}

How an argument is passed, and whether it's a reference type or value type controls
what modifications made to the argument are visible from the caller.

When you pass a value type by value:

If the method assigns the parameter to refer to a different object, those changes
aren't visible from the caller.

struct TheStruct
{
 public string willIChange;
}

class TestClassAndStruct
{
 static void ClassTaker(TheClass c)
 {
 c.willIChange = "Changed";
 }

 static void StructTaker(TheStruct s)
 {
 s.willIChange = "Changed";
 }

 public static void Main()
 {
 TheClass testClass = new TheClass();
 TheStruct testStruct = new TheStruct();

 testClass.willIChange = "Not Changed";
 testStruct.willIChange = "Not Changed";

 ClassTaker(testClass);
 StructTaker(testStruct);

 Console.WriteLine("Class field = {0}", testClass.willIChange);
 Console.WriteLine("Struct field = {0}", testStruct.willIChange);

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Class field = Changed
 Struct field = Not Changed
*/

Pass a value type by value

If the method modifies the state of the object referred to by the parameter, those
changes aren't visible from the caller.

The following example demonstrates passing value-type parameters by value. The
variable n is passed by value to the method SquareIt . Any changes that take place
inside the method have no effect on the original value of the variable.

C#

The variable n is a value type. It contains its data, the value 5 . When SquareIt is
invoked, the contents of n are copied into the parameter x , which is squared inside the
method. In Main , however, the value of n is the same after calling the SquareIt method
as it was before. The change that takes place inside the method only affects the local
variable x .

When you pass a value type by reference:

If the method assigns the parameter to refer to a different object, those changes
aren't visible from the caller.
If the method modifies the state of the object referred to by the parameter, those
changes are visible from the caller.

int n = 5;
System.Console.WriteLine("The value before calling the method: {0}", n);

SquareIt(n); // Passing the variable by value.
System.Console.WriteLine("The value after calling the method: {0}", n);

// Keep the console window open in debug mode.
System.Console.WriteLine("Press any key to exit.");
System.Console.ReadKey();

static void SquareIt(int x)
// The parameter x is passed by value.
// Changes to x will not affect the original value of x.
{
 x *= x;
 System.Console.WriteLine("The value inside the method: {0}", x);
}
/* Output:
 The value before calling the method: 5
 The value inside the method: 25
 The value after calling the method: 5
*/

Pass a value type by reference

The following example is the same as the previous example, except that the argument is
passed as a ref parameter. The value of the underlying argument, n , is changed when
x is changed in the method.

C#

In this example, it is not the value of n that is passed; rather, a reference to n is passed.
The parameter x is not an int; it is a reference to an int , in this case, a reference to n .
Therefore, when x is squared inside the method, what actually is squared is what x
refers to, n .

When you pass a reference type by value:

If the method assigns the parameter to refer to a different object, those changes
aren't visible from the caller.
If the method modifies the state of the object referred to by the parameter, those
changes are visible from the caller.

The following example demonstrates passing a reference-type parameter, arr , by value,
to a method, Change . Because the parameter is a reference to arr , it is possible to
change the values of the array elements. However, the attempt to reassign the

int n = 5;
System.Console.WriteLine("The value before calling the method: {0}", n);

SquareIt(ref n); // Passing the variable by reference.
System.Console.WriteLine("The value after calling the method: {0}", n);

// Keep the console window open in debug mode.
System.Console.WriteLine("Press any key to exit.");
System.Console.ReadKey();

static void SquareIt(ref int x)
// The parameter x is passed by reference.
// Changes to x will affect the original value of x.
{
 x *= x;
 System.Console.WriteLine("The value inside the method: {0}", x);
}
/* Output:
 The value before calling the method: 5
 The value inside the method: 25
 The value after calling the method: 25
*/

Pass a reference type by value

parameter to a different memory location only works inside the method and does not
affect the original variable, arr .

C#

In the preceding example, the array, arr , which is a reference type, is passed to the
method without the ref parameter. In such a case, a copy of the reference, which points
to arr , is passed to the method. The output shows that it is possible for the method to
change the contents of an array element, in this case from 1 to 888 . However,
allocating a new portion of memory by using the new operator inside the Change
method makes the variable pArray reference a new array. Thus, any changes after that
will not affect the original array, arr , which is created inside Main . In fact, two arrays are
created in this example, one inside Main and one inside the Change method.

When you pass a reference type by reference:

If the method assigns the parameter to refer to a different object, those changes
are visible from the caller.
If the method modifies the state of the object referred to by the parameter, those
changes are visible from the caller.

int[] arr = { 1, 4, 5 };
System.Console.WriteLine("Inside Main, before calling the method, the first
element is: {0}", arr[0]);

Change(arr);
System.Console.WriteLine("Inside Main, after calling the method, the first
element is: {0}", arr[0]);

static void Change(int[] pArray)
{
 pArray[0] = 888; // This change affects the original element.
 pArray = new int[5] { -3, -1, -2, -3, -4 }; // This change is local.
 System.Console.WriteLine("Inside the method, the first element is: {0}",
pArray[0]);
}
/* Output:
 Inside Main, before calling the method, the first element is: 1
 Inside the method, the first element is: -3
 Inside Main, after calling the method, the first element is: 888
*/

Pass a reference type by reference

The following example is the same as the previous example, except that the ref
keyword is added to the method header and call. Any changes that take place in the
method affect the original variable in the calling program.

C#

All of the changes that take place inside the method affect the original array in Main . In
fact, the original array is reallocated using the new operator. Thus, after calling the
Change method, any reference to arr points to the five-element array, which is created
in the Change method.

Methods can store the values of parameters in fields. When parameters are passed by
value, that's always safe. Values are copied, and reference types are reachable when
stored in a field. Passing parameters by reference safely requires the compiler to define
when it's safe to assign a reference to a new variable. For every expression, the compiler
defines a scope that bounds access to an expression or variable. The compiler uses two
scopes: safe_to_escape and ref_safe_to_escape.

The safe_to_escape scope defines the scope where any expression can be safely
accessed.
The ref_safe_to_escape scope defines the scope where a reference to any expression
can be safely accessed or modified.

int[] arr = { 1, 4, 5 };
System.Console.WriteLine("Inside Main, before calling the method, the first
element is: {0}", arr[0]);

Change(ref arr);
System.Console.WriteLine("Inside Main, after calling the method, the first
element is: {0}", arr[0]);

static void Change(ref int[] pArray)
{
 // Both of the following changes will affect the original variables:
 pArray[0] = 888;
 pArray = new int[5] { -3, -1, -2, -3, -4 };
 System.Console.WriteLine("Inside the method, the first element is: {0}",
pArray[0]);
}
/* Output:
 Inside Main, before calling the method, the first element is: 1
 Inside the method, the first element is: -3
 Inside Main, after calling the method, the first element is: -3
*/

Scope of references and values

Informally, you can think of these scopes as the mechanism to ensure your code never
accesses or modifies a reference that's no longer valid. A reference is valid as long as it
refers to a valid object or struct. The safe_to_escape scope defines when a variable can
be assigned or reassigned. The ref_safe_to_escape scope defines when a variable can be
ref assigned or ref reassigned. Assignment assigns a variable to a new value; ref
assignment assigns the variable to refer to a different storage location.

Parameters declared for a method without in, ref or out, are passed to the called
method by value. The ref , in , and out modifiers differ in assignment rules:

The argument for a ref parameter must be definitely assigned. The called method
may reassign that parameter.
The argument for an in parameter must be definitely assigned. The called method
can't reassign that parameter.
The argument for an out parameter needn't be definitely assigned. The called
method must assign the parameter.

This section describes the keywords you can use when declaring method parameters:

params specifies that this parameter may take a variable number of arguments.
in specifies that this parameter is passed by reference but is only read by the called
method.
ref specifies that this parameter is passed by reference and may be read or written
by the called method.
out specifies that this parameter is passed by reference and is written by the called
method.

C# Reference
C# Keywords
Argument lists in the C# Language Specification. The language specification is the
definitive source for C# syntax and usage.

Modifiers

See also

params (C# Reference)
Article • 2021-09-15 • 2 minutes to read

By using the params keyword, you can specify a method parameter that takes a variable
number of arguments. The parameter type must be a single-dimensional array.

No additional parameters are permitted after the params keyword in a method
declaration, and only one params keyword is permitted in a method declaration.

If the declared type of the params parameter is not a single-dimensional array, compiler
error CS0225 occurs.

When you call a method with a params parameter, you can pass in:

A comma-separated list of arguments of the type of the array elements.
An array of arguments of the specified type.
No arguments. If you send no arguments, the length of the params list is zero.

The following example demonstrates various ways in which arguments can be sent to a
params parameter.

C#

Example

public class MyClass
{
 public static void UseParams(params int[] list)
 {
 for (int i = 0; i < list.Length; i++)
 {
 Console.Write(list[i] + " ");
 }
 Console.WriteLine();
 }

 public static void UseParams2(params object[] list)
 {
 for (int i = 0; i < list.Length; i++)
 {
 Console.Write(list[i] + " ");
 }
 Console.WriteLine();
 }

 static void Main()

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0225

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Method Parameters

 {
 // You can send a comma-separated list of arguments of the
 // specified type.
 UseParams(1, 2, 3, 4);
 UseParams2(1, 'a', "test");

 // A params parameter accepts zero or more arguments.
 // The following calling statement displays only a blank line.
 UseParams2();

 // An array argument can be passed, as long as the array
 // type matches the parameter type of the method being called.
 int[] myIntArray = { 5, 6, 7, 8, 9 };
 UseParams(myIntArray);

 object[] myObjArray = { 2, 'b', "test", "again" };
 UseParams2(myObjArray);

 // The following call causes a compiler error because the object
 // array cannot be converted into an integer array.
 //UseParams(myObjArray);

 // The following call does not cause an error, but the entire
 // integer array becomes the first element of the params array.
 UseParams2(myIntArray);
 }
}
/*
Output:
 1 2 3 4
 1 a test

 5 6 7 8 9
 2 b test again
 System.Int32[]
*/

C# language specification

See also

in parameter modifier (C# Reference)
Article • 2022-09-29 • 5 minutes to read

The in keyword causes arguments to be passed by reference but ensures the argument
is not modified. It makes the formal parameter an alias for the argument, which must be
a variable. In other words, any operation on the parameter is made on the argument. It
is like the ref or out keywords, except that in arguments cannot be modified by the
called method. Whereas ref arguments may be modified, out arguments must be
modified by the called method, and those modifications are observable in the calling
context.

C#

The preceding example demonstrates that the in modifier is usually unnecessary at the
call site. It is only required in the method declaration.

Variables passed as in arguments must be initialized before being passed in a method
call. However, the called method may not assign a value or modify the argument.

Although in , out , and ref parameter modifiers are considered part of a signature,
members declared in a single type cannot differ in signature solely by in , ref and out .
Therefore, methods cannot be overloaded if the only difference is that one method
takes a ref or out argument and the other takes an in argument. The following code,
for example, will not compile:

int readonlyArgument = 44;
InArgExample(readonlyArgument);
Console.WriteLine(readonlyArgument); // value is still 44

void InArgExample(in int number)
{
 // Uncomment the following line to see error CS8331
 //number = 19;
}

７ Note

The in keyword can also be used with a generic type parameter to specify that the
type parameter is contravariant, as part of a foreach statement, or as part of a
join clause in a LINQ query. For more information on the use of the in keyword in
these contexts, see in, which provides links to all those uses.

C#

Overloading based on the presence of in is allowed:

C#

You can understand the overload resolution rules for methods with by value vs. in
arguments by understanding the motivation for in arguments. Defining methods using
in parameters is a potential performance optimization. Some struct type arguments
may be large in size, and when methods are called in tight loops or critical code paths,
the cost of copying those structures is critical. Methods declare in parameters to
specify that arguments may be passed by reference safely because the called method
does not modify the state of that argument. Passing those arguments by reference
avoids the (potentially) expensive copy.

Specifying in for arguments at the call site is typically optional. There is no semantic
difference between passing arguments by value and passing them by reference using
the in modifier. The in modifier at the call site is optional because you don't need to
indicate that the argument's value might be changed. You explicitly add the in modifier
at the call site to ensure the argument is passed by reference, not by value. Explicitly
using in has the following two effects:

First, specifying in at the call site forces the compiler to select a method defined with a
matching in parameter. Otherwise, when two methods differ only in the presence of
in , the by value overload is a better match.

class CS0663_Example
{
 // Compiler error CS0663: "Cannot define overloaded
 // methods that differ only on in, ref and out".
 public void SampleMethod(in int i) { }
 public void SampleMethod(ref int i) { }
}

class InOverloads
{
 public void SampleMethod(in int i) { }
 public void SampleMethod(int i) { }
}

Overload resolution rules

Second, specifying in declares your intent to pass an argument by reference. The
argument used with in must represent a location that can be directly referred to. The
same general rules for out and ref arguments apply: You cannot use constants,
ordinary properties, or other expressions that produce values. Otherwise, omitting in at
the call site informs the compiler that you will allow it to create a temporary variable to
pass by read-only reference to the method. The compiler creates a temporary variable
to overcome several restrictions with in arguments:

A temporary variable allows compile-time constants as in parameters.
A temporary variable allows properties, or other expressions for in parameters.
A temporary variable allows arguments where there is an implicit conversion from
the argument type to the parameter type.

In all the preceding instances, the compiler creates a temporary variable that stores the
value of the constant, property, or other expression.

The following code illustrates these rules:

C#

Now, suppose another method using by value arguments was available. The results
change as shown in the following code:

C#

static void Method(in int argument)
{
 // implementation removed
}

Method(5); // OK, temporary variable created.
Method(5L); // CS1503: no implicit conversion from long to int
short s = 0;
Method(s); // OK, temporary int created with the value 0
Method(in s); // CS1503: cannot convert from in short to in int
int i = 42;
Method(i); // passed by readonly reference
Method(in i); // passed by readonly reference, explicitly using `in`

static void Method(int argument)
{
 // implementation removed
}

static void Method(in int argument)
{
 // implementation removed

The only method call where the argument is passed by reference is the final one.

You can't use the in , ref , and out keywords for the following kinds of methods:

Async methods, which you define by using the async modifier.
Iterator methods, which include a yield return or yield break statement.
The first argument of an extension method cannot have the in modifier unless
that argument is a struct.
The first argument of an extension method where that argument is a generic type
(even when that type is constrained to be a struct.)

You can learn more about the in modifier, how it differs from ref and out in the article
on Write safe efficient code.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

}

Method(5); // Calls overload passed by value
Method(5L); // CS1503: no implicit conversion from long to int
short s = 0;
Method(s); // Calls overload passed by value.
Method(in s); // CS1503: cannot convert from in short to in int
int i = 42;
Method(i); // Calls overload passed by value
Method(in i); // passed by readonly reference, explicitly using `in`

７ Note

The preceding code uses int as the argument type for simplicity. Because int is
no larger than a reference in most modern machines, there is no benefit to passing
a single int as a readonly reference.

Limitations on in parameters

C# Language Specification

ref (C# Reference)
Article • 2022-10-07 • 9 minutes to read

The ref keyword indicates that a variable is a reference, or an alias for another object.
It's used in five different contexts:

In a method signature and in a method call, to pass an argument to a method by
reference. For more information, see Passing an argument by reference.
In a method signature, to return a value to the caller by reference. For more
information, see Reference return values.
In a member body, to indicate that a reference return value is stored locally as a
reference that the caller intends to modify. Or to indicate that a local variable
accesses another value by reference. For more information, see Ref locals.
In a struct declaration, to declare a ref struct or a readonly ref struct . For
more information, see the ref struct article.
In a ref struct declaration, to declare that a field is a reference. See the ref field
article.

When used in a method's parameter list, the ref keyword indicates that an argument is
passed by reference, not by value. The ref keyword makes the formal parameter an
alias for the argument, which must be a variable. In other words, any operation on the
parameter is made on the argument.

For example, suppose the caller passes a local variable expression or an array element
access expression. The called method can then replace the object to which the ref
parameter refers. In that case, the caller's local variable or the array element refers to the
new object when the method returns.

To use a ref parameter, both the method definition and the calling method must
explicitly use the ref keyword, as shown in the following example. (Except that the

Passing an argument by reference

７ Note

Don't confuse the concept of passing by reference with the concept of reference
types. The two concepts are not the same. A method parameter can be modified by
ref regardless of whether it is a value type or a reference type. There is no boxing
of a value type when it is passed by reference.

calling method can omit ref when making a COM call.)

C#

An argument that is passed to a ref or in parameter must be initialized before it's
passed. This requirement differs from out parameters, whose arguments don't have to
be explicitly initialized before they're passed.

Members of a class can't have signatures that differ only by ref , in , or out . A compiler
error occurs if the only difference between two members of a type is that one of them
has a ref parameter and the other has an out , or in parameter. The following code, for
example, doesn't compile.

C#

However, methods can be overloaded when one method has a ref , in , or out
parameter and the other has a parameter that is passed by value, as shown in the
following example.

C#

void Method(ref int refArgument)
{
 refArgument = refArgument + 44;
}

int number = 1;
Method(ref number);
Console.WriteLine(number);
// Output: 45

class CS0663_Example
{
 // Compiler error CS0663: "Cannot define overloaded
 // methods that differ only on ref and out".
 public void SampleMethod(out int i) { }
 public void SampleMethod(ref int i) { }
}

class RefOverloadExample
{
 public void SampleMethod(int i) { }
 public void SampleMethod(ref int i) { }
}

In other situations that require signature matching, such as hiding or overriding, in ,
ref , and out are part of the signature and don't match each other.

Properties aren't variables. They're methods, and can't be passed to ref parameters.

You can't use the ref , in , and out keywords for the following kinds of methods:

Async methods, which you define by using the async modifier.
Iterator methods, which include a yield return or yield break statement.

extension methods also have restrictions on the use of these keywords:

The out keyword can't be used on the first argument of an extension method.
The ref keyword can't be used on the first argument of an extension method
when the argument isn't a struct, or a generic type not constrained to be a struct.
The in keyword can't be used unless the first argument is a struct. The in
keyword can't be used on any generic type, even when constrained to be a struct.

The previous examples pass value types by reference. You can also use the ref keyword
to pass reference types by reference. Passing a reference type by reference enables the
called method to replace the object to which the reference parameter refers in the caller.
The storage location of the object is passed to the method as the value of the reference
parameter. If you change the value in the storage location of the parameter (to point to
a new object), you also change the storage location to which the caller refers. The
following example passes an instance of a reference type as a ref parameter.

C#

Passing an argument by reference: An example

class Product
{
 public Product(string name, int newID)
 {
 ItemName = name;
 ItemID = newID;
 }

 public string ItemName { get; set; }
 public int ItemID { get; set; }
}

private static void ChangeByReference(ref Product itemRef)
{
 // Change the address that is stored in the itemRef parameter.
 itemRef = new Product("Stapler", 99999);

For more information about how to pass reference types by value and by reference, see
Passing Reference-Type Parameters.

Reference return values (or ref returns) are values that a method returns by reference to
the caller. That is, the caller can modify the value returned by a method, and that change
is reflected in the state of the object in the called method.

A reference return value is defined by using the ref keyword:

In the method signature. For example, the following method signature indicates
that the GetCurrentPrice method returns a Decimal value by reference.

C#

Between the return token and the variable returned in a return statement in the
method. For example:

C#

 // You can change the value of one of the properties of
 // itemRef. The change happens to item in Main as well.
 itemRef.ItemID = 12345;
}

private static void ModifyProductsByReference()
{
 // Declare an instance of Product and display its initial values.
 Product item = new Product("Fasteners", 54321);
 System.Console.WriteLine("Original values in Main. Name: {0}, ID:
{1}\n",
 item.ItemName, item.ItemID);

 // Pass the product instance to ChangeByReference.
 ChangeByReference(ref item);
 System.Console.WriteLine("Back in Main. Name: {0}, ID: {1}\n",
 item.ItemName, item.ItemID);
}

// This method displays the following output:
// Original values in Main. Name: Fasteners, ID: 54321
// Back in Main. Name: Stapler, ID: 12345

Reference return values

public ref decimal GetCurrentPrice()

return ref DecimalArray[0];

https://learn.microsoft.com/en-us/dotnet/api/system.decimal

In order for the caller to modify the object's state, the reference return value must be
stored to a variable that is explicitly defined as a ref local.

Here's a more complete ref return example, showing both the method signature and
method body.

C#

The called method may also declare the return value as ref readonly to return the value
by reference, and enforce that the calling code can't modify the returned value. The
calling method can avoid copying the returned value by storing the value in a local ref
readonly variable.

For an example, see A ref returns and ref locals example.

A ref local variable is used to refer to values returned using return ref . A ref local
variable can't be initialized to a non-ref return value. In other words, the right-hand side
of the initialization must be a reference. Any modifications to the value of the ref local
are reflected in the state of the object whose method returned the value by reference.

You define a ref local by using the ref keyword in two places:

Before the variable declaration.
Immediately before the call to the method that returns the value by reference.

For example, the following statement defines a ref local value that is returned by a
method named GetEstimatedValue :

C#

public static ref int Find(int[,] matrix, Func<int, bool> predicate)
{
 for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 if (predicate(matrix[i, j]))
 return ref matrix[i, j];
 throw new InvalidOperationException("Not found");
}

Ref locals

ref decimal estValue = ref Building.GetEstimatedValue();

You can access a value by reference in the same way. In some cases, accessing a value
by reference increases performance by avoiding a potentially expensive copy operation.
For example, the following statement shows how to define a ref local variable that is
used to reference a value.

C#

In both examples the ref keyword must be used in both places, or the compiler
generates error CS8172, "Can't initialize a by-reference variable with a value."

The iteration variable of the foreach statement can be a ref local or ref readonly local
variable. For more information, see the foreach statement article. You can reassign a ref
local or ref readonly local variable with the ref assignment operator.

A ref readonly local is used to refer to values returned by a method or property that has
ref readonly in its signature and uses return ref . A ref readonly variable combines
the properties of a ref local variable with a readonly variable: it's an alias to the storage
it's assigned to, and it can't be modified.

The following example defines a Book class that has two String fields, Title and Author .
It also defines a BookCollection class that includes a private array of Book objects.
Individual book objects are returned by reference by calling its GetBookByTitle method.

C#

ref VeryLargeStruct reflocal = ref veryLargeStruct;

Ref readonly locals

A ref returns and ref locals example

public class Book
{
 public string Author;
 public string Title;
}

public class BookCollection
{
 private Book[] books = { new Book { Title = "Call of the Wild, The",
Author = "Jack London" },
 new Book { Title = "Tale of Two Cities, A", Author =
"Charles Dickens" }

https://learn.microsoft.com/en-us/dotnet/api/system.string

When the caller stores the value returned by the GetBookByTitle method as a ref local,
changes that the caller makes to the return value are reflected in the BookCollection
object, as the following example shows.

C#

In ref struct types, you can declare fields that are ref fields. ref fields are valid only in
ref struct types to ensure the reference doesn't outlive the object it refers to. This
feature enables types like System.Span<T>:

 };
 private Book nobook = null;

 public ref Book GetBookByTitle(string title)
 {
 for (int ctr = 0; ctr < books.Length; ctr++)
 {
 if (title == books[ctr].Title)
 return ref books[ctr];
 }
 return ref nobook;
 }

 public void ListBooks()
 {
 foreach (var book in books)
 {
 Console.WriteLine($"{book.Title}, by {book.Author}");
 }
 Console.WriteLine();
 }
}

var bc = new BookCollection();
bc.ListBooks();

ref var book = ref bc.GetBookByTitle("Call of the Wild, The");
if (book != null)
 book = new Book { Title = "Republic, The", Author = "Plato" };
bc.ListBooks();
// The example displays the following output:
// Call of the Wild, The, by Jack London
// Tale of Two Cities, A, by Charles Dickens
//
// Republic, The, by Plato
// Tale of Two Cities, A, by Charles Dickens

ref fields

https://learn.microsoft.com/en-us/dotnet/api/system.span-1

C#

The Span<T> type stores a reference through which it accesses the consecutive elements.
A reference enables the Span<T> object to avoid making copies of the storage it refers
to.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Write safe efficient code
Ref locals
Conditional ref expression
Method Parameters
C# Reference
C# Programming Guide
C# Keywords

public readonly ref struct Span<T>
{
 internal readonly ref T _reference;
 private readonly int _length;

 // Omitted for brevity...
}

C# language specification

See also

out parameter modifier (C# Reference)
Article • 2022-09-29 • 4 minutes to read

The out keyword causes arguments to be passed by reference. It makes the formal
parameter an alias for the argument, which must be a variable. In other words, any
operation on the parameter is made on the argument. It is like the ref keyword, except
that ref requires that the variable be initialized before it is passed. It is also like the in
keyword, except that in does not allow the called method to modify the argument
value. To use an out parameter, both the method definition and the calling method
must explicitly use the out keyword. For example:

C#

Variables passed as out arguments do not have to be initialized before being passed in
a method call. However, the called method is required to assign a value before the
method returns.

The in , ref , and out keywords are not considered part of the method signature for the
purpose of overload resolution. Therefore, methods cannot be overloaded if the only
difference is that one method takes a ref or in argument and the other takes an out
argument. The following code, for example, will not compile:

C#

int initializeInMethod;
OutArgExample(out initializeInMethod);
Console.WriteLine(initializeInMethod); // value is now 44

void OutArgExample(out int number)
{
 number = 44;
}

７ Note

The out keyword can also be used with a generic type parameter to specify that
the type parameter is covariant. For more information on the use of the out
keyword in this context, see out (Generic Modifier).

class CS0663_Example
{
 // Compiler error CS0663: "Cannot define overloaded

Overloading is legal, however, if one method takes a ref , in , or out argument and the
other has none of those modifiers, like this:

C#

The compiler chooses the best overload by matching the parameter modifiers at the call
site to the parameter modifiers used in the method call.

Properties are not variables and therefore cannot be passed as out parameters.

You can't use the in , ref , and out keywords for the following kinds of methods:

Async methods, which you define by using the async modifier.

Iterator methods, which include a yield return or yield break statement.

In addition, extension methods have the following restrictions:

The out keyword cannot be used on the first argument of an extension method.
The ref keyword cannot be used on the first argument of an extension method
when the argument is not a struct, or a generic type not constrained to be a struct.
The in keyword cannot be used unless the first argument is a struct. The in
keyword cannot be used on any generic type, even when constrained to be a
struct.

Declaring a method with out arguments is a classic workaround to return multiple
values. Consider value tuples for similar scenarios. The following example uses out to
return three variables with a single method call. The third argument is assigned to null.
This enables methods to return values optionally.

C#

 // methods that differ only on ref and out".
 public void SampleMethod(out int i) { }
 public void SampleMethod(ref int i) { }
}

class OutOverloadExample
{
 public void SampleMethod(int i) { }
 public void SampleMethod(out int i) => i = 5;
}

Declaring out parameters

You can declare a variable in a separate statement before you pass it as an out
argument. The following example declares a variable named number before it is passed
to the Int32.TryParse method, which attempts to convert a string to a number.

C#

You can also declare the out variable in the argument list of the method call, rather than
in a separate variable declaration. This produces more compact, readable code, and also
prevents you from inadvertently assigning a value to the variable before the method
call. The following example is like the previous example, except that it defines the
number variable in the call to the Int32.TryParse method.

C#

void Method(out int answer, out string message, out string stillNull)
{
 answer = 44;
 message = "I've been returned";
 stillNull = null;
}

int argNumber;
string argMessage, argDefault;
Method(out argNumber, out argMessage, out argDefault);
Console.WriteLine(argNumber);
Console.WriteLine(argMessage);
Console.WriteLine(argDefault == null);

// The example displays the following output:
// 44
// I've been returned
// True

Calling a method with an out argument

string numberAsString = "1640";

int number;
if (Int32.TryParse(numberAsString, out number))
 Console.WriteLine($"Converted '{numberAsString}' to {number}");
else
 Console.WriteLine($"Unable to convert '{numberAsString}'");
// The example displays the following output:
// Converted '1640' to 1640

string numberAsString = "1640";

https://learn.microsoft.com/en-us/dotnet/api/system.int32.tryparse#system-int32-tryparse(system-string-system-int32@)
https://learn.microsoft.com/en-us/dotnet/api/system.int32.tryparse#system-int32-tryparse(system-string-system-int32@)

In the previous example, the number variable is strongly typed as an int . You can also
declare an implicitly typed local variable, as the following example does.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

Inline variable declaration (style rule IDE0018)
C# Reference
C# Programming Guide
C# Keywords
Method Parameters

if (Int32.TryParse(numberAsString, out int number))
 Console.WriteLine($"Converted '{numberAsString}' to {number}");
else
 Console.WriteLine($"Unable to convert '{numberAsString}'");
// The example displays the following output:
// Converted '1640' to 1640

string numberAsString = "1640";

if (Int32.TryParse(numberAsString, out var number))
 Console.WriteLine($"Converted '{numberAsString}' to {number}");
else
 Console.WriteLine($"Unable to convert '{numberAsString}'");
// The example displays the following output:
// Converted '1640' to 1640

C# Language Specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0018

namespace
Article • 2022-07-09 • 2 minutes to read

The namespace keyword is used to declare a scope that contains a set of related objects.
You can use a namespace to organize code elements and to create globally unique
types.

C#

File scoped namespace declarations enable you to declare that all types in a file are in a
single namespace. File scoped namespace declarations are available with C# 10. The
following example is similar to the previous example, but uses a file scoped namespace
declaration:

C#

namespace SampleNamespace
{
 class SampleClass { }

 interface ISampleInterface { }

 struct SampleStruct { }

 enum SampleEnum { a, b }

 delegate void SampleDelegate(int i);

 namespace Nested
 {
 class SampleClass2 { }
 }
}

using System;

namespace SampleFileScopedNamespace;

class SampleClass { }

interface ISampleInterface { }

struct SampleStruct { }

enum SampleEnum { a, b }

delegate void SampleDelegate(int i);

The preceding example doesn't include a nested namespace. File scoped namespaces
can't include additional namespace declarations. You cannot declare a nested
namespace or a second file-scoped namespace:

C#

Within a namespace, you can declare zero or more of the following types:

class
interface
struct
enum
delegate
nested namespaces can be declared except in file scoped namespace declarations

The compiler adds a default namespace. This unnamed namespace, sometimes referred
to as the global namespace, is present in every file. It contains declarations not included
in a declared namespace. Any identifier in the global namespace is available for use in a
named namespace.

Namespaces implicitly have public access. For a discussion of the access modifiers you
can assign to elements in a namespace, see Access Modifiers.

It's possible to define a namespace in two or more declarations. For example, the
following example defines two classes as part of the MyCompany namespace:

C#

namespace SampleNamespace;

class AnotherSampleClass
{
 public void AnotherSampleMethod()
 {
 System.Console.WriteLine(
 "SampleMethod inside SampleNamespace");
 }
}

namespace AnotherNamespace; // Not allowed!

namespace ANestedNamespace // Not allowed!
{
 // declarations...
}

namespace MyCompany.Proj1
{

The following example shows how to call a static method in a nested namespace.

C#

For more information, see the Namespaces section of the C# language specification. For
more information on file scoped namespace declarations, see the feature specification.

Namespace declaration preferences (IDE0160 and IDE0161)

 class MyClass
 {
 }
}

namespace MyCompany.Proj1
{
 class MyClass1
 {
 }
}

namespace SomeNameSpace
{
 public class MyClass
 {
 static void Main()
 {
 Nested.NestedNameSpaceClass.SayHello();
 }
 }

 // a nested namespace
 namespace Nested
 {
 public class NestedNameSpaceClass
 {
 public static void SayHello()
 {
 Console.WriteLine("Hello");
 }
 }
 }
}
// Output: Hello

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0160-ide0161

C# reference
C# keywords
using
using static
Namespace alias qualifier ::
Namespaces

using (C# Reference)
Article • 2021-12-21 • 2 minutes to read

The using keyword has two major uses:

The using statement defines a scope at the end of which an object will be
disposed.
The using directive creates an alias for a namespace or imports types defined in
other namespaces.

C# Reference
C# Programming Guide
C# Keywords
Namespaces
extern

See also

using directive
Article • 2022-09-29 • 9 minutes to read

The using directive allows you to use types defined in a namespace without specifying
the fully qualified namespace of that type. In its basic form, the using directive imports
all the types from a single namespace, as shown in the following example:

C#

You can apply two modifiers to a using directive:

The global modifier has the same effect as adding the same using directive to
every source file in your project. This modifier was introduced in C# 10.
The static modifier imports the static members and nested types from a single
type rather than importing all the types in a namespace.

You can combine both modifiers to import the static members from a type in all source
files in your project.

You can also create an alias for a namespace or a type with a using alias directive.

C#

You can use the global modifier on a using alias directive.

The scope of a using directive without the global modifier is the file in which it
appears.

The using directive can appear:

At the beginning of a source code file, before any namespace or type declarations.

using System.Text;

using Project = PC.MyCompany.Project;

７ Note

The using keyword is also used to create using statements, which help ensure that
IDisposable objects such as files and fonts are handled correctly. For more
information about the using statement, see using Statement.

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable

In any namespace, but before any namespaces or types declared in that
namespace, unless the global modifier is used, in which case the directive must
appear before all namespace and type declarations.

Otherwise, compiler error CS1529 is generated.

Create a using directive to use the types in a namespace without having to specify the
namespace. A using directive doesn't give you access to any namespaces that are
nested in the namespace you specify. Namespaces come in two categories: user-defined
and system-defined. User-defined namespaces are namespaces defined in your code.
For a list of the system-defined namespaces, see .NET API Browser.

Adding the global modifier to a using directive means that using is applied to all files
in the compilation (typically a project). The global using directive was added in C# 10.
Its syntax is:

C#

where fully-qualified-namespace is the fully qualified name of the namespace whose
types can be referenced without specifying the namespace.

A global using directive can appear at the beginning of any source code file. All global
using directives in a single file must appear before:

All using directives without the global modifier.
All namespace and type declarations in the file.

You may add global using directives to any source file. Typically, you'll want to keep
them in a single location. The order of global using directives doesn't matter, either in
a single file, or between files.

The global modifier may be combined with the static modifier. The global modifier
may be applied to a using alias directive. In both cases, the directive's scope is all files in
the current compilation. The following example enables using all the methods declared
in the System.Math in all files in your project:

C#

global modifier

global using <fully-qualified-namespace>;

global using static System.Math;

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs1529
https://learn.microsoft.com/en-ca/dotnet/api/
https://learn.microsoft.com/en-us/dotnet/api/system.math

You can also globally include a namespace by adding a <Using> item to your project file,
for example, <Using Include="My.Awesome.Namespace" /> . For more information, see
<Using> item.

The using static directive names a type whose static members and nested types you
can access without specifying a type name. Its syntax is:

C#

The <fully-qualified-type-name> is the name of the type whose static members and
nested types can be referenced without specifying a type name. If you don't provide a
fully qualified type name (the full namespace name along with the type name), C#
generates compiler error CS0246: "The type or namespace name 'type/namespace'
couldn't be found (are you missing a using directive or an assembly reference?)".

The using static directive applies to any type that has static members (or nested
types), even if it also has instance members. However, instance members can only be
invoked through the type instance.

） Important

The C# templates for .NET 6 use top level statements. Your application may not
match the code in this article, if you've already upgraded to the .NET 6. For more
information see the article on New C# templates generate top level statements

The .NET 6 SDK also adds a set of implicit global using directives for projects that
use the following SDKs:

Microsoft.NET.Sdk
Microsoft.NET.Sdk.Web

Microsoft.NET.Sdk.Worker

These implicit global using directives include the most common namespaces for
the project type.

static modifier

using static <fully-qualified-type-name>;

https://learn.microsoft.com/en-ca/dotnet/core/project-sdk/msbuild-props#using
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/cs0246
https://learn.microsoft.com/en-ca/dotnet/core/tutorials/top-level-templates

You can access static members of a type without having to qualify the access with the
type name:

C#

Ordinarily, when you call a static member, you provide the type name along with the
member name. Repeatedly entering the same type name to invoke members of the type
can result in verbose, obscure code. For example, the following definition of a Circle
class references many members of the Math class.

C#

using static System.Console;
using static System.Math;
class Program
{
 static void Main()
 {
 WriteLine(Sqrt(3*3 + 4*4));
 }
}

using System;

public class Circle
{
 public Circle(double radius)
 {
 Radius = radius;
 }

 public double Radius { get; set; }

 public double Diameter
 {
 get { return 2 * Radius; }
 }

 public double Circumference
 {
 get { return 2 * Radius * Math.PI; }
 }

 public double Area
 {
 get { return Math.PI * Math.Pow(Radius, 2); }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.math

By eliminating the need to explicitly reference the Math class each time a member is
referenced, the using static directive produces cleaner code:

C#

using static imports only accessible static members and nested types declared in the
specified type. Inherited members aren't imported. You can import from any named
type with a using static directive, including Visual Basic modules. If F# top-level
functions appear in metadata as static members of a named type whose name is a valid
C# identifier, then the F# functions can be imported.

using static makes extension methods declared in the specified type available for
extension method lookup. However, the names of the extension methods aren't
imported into scope for unqualified reference in code.

Methods with the same name imported from different types by different using static
directives in the same compilation unit or namespace form a method group. Overload
resolution within these method groups follows normal C# rules.

using System;
using static System.Math;

public class Circle
{
 public Circle(double radius)
 {
 Radius = radius;
 }

 public double Radius { get; set; }

 public double Diameter
 {
 get { return 2 * Radius; }
 }

 public double Circumference
 {
 get { return 2 * Radius * PI; }
 }

 public double Area
 {
 get { return PI * Pow(Radius, 2); }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.math

The following example uses the using static directive to make the static members of
the Console, Math, and String classes available without having to specify their type
name.

C#

using System;
using static System.Console;
using static System.Math;
using static System.String;

class Program
{
 static void Main()
 {
 Write("Enter a circle's radius: ");
 var input = ReadLine();
 if (!IsNullOrEmpty(input) && double.TryParse(input, out var radius)) {
 var c = new Circle(radius);

 string s = "\nInformation about the circle:\n";
 s = s + Format(" Radius: {0:N2}\n", c.Radius);
 s = s + Format(" Diameter: {0:N2}\n", c.Diameter);
 s = s + Format(" Circumference: {0:N2}\n", c.Circumference);
 s = s + Format(" Area: {0:N2}\n", c.Area);
 WriteLine(s);
 }
 else {
 WriteLine("Invalid input...");
 }
 }
}

public class Circle
{
 public Circle(double radius)
 {
 Radius = radius;
 }

 public double Radius { get; set; }

 public double Diameter
 {
 get { return 2 * Radius; }
 }

 public double Circumference
 {
 get { return 2 * Radius * PI; }
 }

 public double Area

https://learn.microsoft.com/en-us/dotnet/api/system.console
https://learn.microsoft.com/en-us/dotnet/api/system.math
https://learn.microsoft.com/en-us/dotnet/api/system.string

In the example, the using static directive could also have been applied to the Double
type. Adding that directive would make it possible to call the TryParse(String, Double)
method without specifying a type name. However, using TryParse without a type name
creates less readable code, since it becomes necessary to check the using static
directives to determine which numeric type's TryParse method is called.

using static also applies to enum types. By adding using static with the enum, the
type is no longer required to use the enum members.

C#

Create a using alias directive to make it easier to qualify an identifier to a namespace or
type. In any using directive, the fully qualified namespace or type must be used
regardless of the using directives that come before it. No using alias can be used in the

 {
 get { return PI * Pow(Radius, 2); }
 }
}
// The example displays the following output:
// Enter a circle's radius: 12.45
//
// Information about the circle:
// Radius: 12.45
// Diameter: 24.90
// Circumference: 78.23
// Area: 486.95

using static Color;

enum Color
{
 Red,
 Green,
 Blue
}

class Program
{
 public static void Main()
 {
 Color color = Green;
 }
}

using alias

https://learn.microsoft.com/en-us/dotnet/api/system.double
https://learn.microsoft.com/en-us/dotnet/api/system.double.tryparse#system-double-tryparse(system-string-system-double@)

declaration of a using directive. For example, the following example generates a
compiler error:

C#

The following example shows how to define and use a using alias for a namespace:

C#

A using alias directive can't have an open generic type on the right-hand side. For
example, you can't create a using alias for a List<T> , but you can create one for a
List<int> .

The following example shows how to define a using directive and a using alias for a
class:

C#

using s = System.Text;
using s.RegularExpressions; // Generates a compiler error.

namespace PC
{
 // Define an alias for the nested namespace.
 using Project = PC.MyCompany.Project;
 class A
 {
 void M()
 {
 // Use the alias
 var mc = new Project.MyClass();
 }
 }
 namespace MyCompany
 {
 namespace Project
 {
 public class MyClass { }
 }
 }
}

using System;

// Using alias directive for a class.
using AliasToMyClass = NameSpace1.MyClass;

// Using alias directive for a generic class.
using UsingAlias = NameSpace2.MyClass<int>;

The Microsoft.VisualBasic.MyServices namespace (My in Visual Basic) provides easy and
intuitive access to a number of .NET classes, enabling you to write code that interacts
with the computer, application, settings, resources, and so on. Although originally
designed for use with Visual Basic, the MyServices namespace can be used in C#
applications.

namespace NameSpace1
{
 public class MyClass
 {
 public override string ToString()
 {
 return "You are in NameSpace1.MyClass.";
 }
 }
}

namespace NameSpace2
{
 class MyClass<T>
 {
 public override string ToString()
 {
 return "You are in NameSpace2.MyClass.";
 }
 }
}

namespace NameSpace3
{
 class MainClass
 {
 static void Main()
 {
 var instance1 = new AliasToMyClass();
 Console.WriteLine(instance1);

 var instance2 = new UsingAlias();
 Console.WriteLine(instance2);
 }
 }
}
// Output:
// You are in NameSpace1.MyClass.
// You are in NameSpace2.MyClass.

How to use the Visual Basic My namespace

https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.myservices

For more information about using the MyServices namespace from Visual Basic, see
Development with My.

You need to add a reference to the Microsoft.VisualBasic.dll assembly in your project.
Not all the classes in the MyServices namespace can be called from a C# application: for
example, the FileSystemProxy class is not compatible. In this particular case, the static
methods that are part of FileSystem, which are also contained in VisualBasic.dll, can be
used instead. For example, here is how to use one such method to duplicate a directory:

C#

For more information, see Using directives in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

For more information on the global using modifier, see the global usings feature
specification - C# 10.

Style rule IDE0005 - Remove unnecessary 'using' directives
Style rule IDE0065 - 'using' directive placement
C# Reference
C# Programming Guide
C# Keywords
Namespaces
using Statement

// Duplicate a directory
Microsoft.VisualBasic.FileIO.FileSystem.CopyDirectory(
 @"C:\original_directory",
 @"C:\copy_of_original_directory");

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/visual-basic/developing-apps/development-with-my/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.myservices.filesystemproxy
https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualbasic.fileio.filesystem
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0005
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0065

using statement (C# Reference)
Article • 2022-11-03 • 4 minutes to read

The using statement provides a convenient syntax that ensures the correct use of
IDisposable objects. The await using statement ensures the correct use of
IAsyncDisposable objects. The language supports asynchronous disposable types that
implement the System.IAsyncDisposable interface.

The following example shows how to use the using statement.

C#

The using declaration doesn't require braces:

C#

Example

string manyLines = @"This is line one
This is line two
Here is line three
The penultimate line is line four
This is the final, fifth line.";

using (var reader = new StringReader(manyLines))
{
 string? item;
 do
 {
 item = reader.ReadLine();
 Console.WriteLine(item);
 } while (item != null);
}

string manyLines = @"This is line one
This is line two
Here is line three
The penultimate line is line four
This is the final, fifth line.";

using var reader = new StringReader(manyLines);
string? item;
do
{
 item = reader.ReadLine();
 Console.WriteLine(item);
} while (item != null);

https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable

File and Font are examples of managed types that access unmanaged resources (in this
case file handles and device contexts). There are many other kinds of unmanaged
resources and class library types that encapsulate them. All such types must implement
the IDisposable interface, or the IAsyncDisposable interface.

When the lifetime of an IDisposable object is limited to a single method, you should
declare and instantiate it in the using statement or using declaration. The using
declaration calls the Dispose method on the object in the correct way when it goes out
of scope. The using statement causes the object itself to go out of scope as soon as
Dispose is called. Within the using block, the object is read-only and can't be modified
or reassigned. A variable declared with a using declaration is read-only. If the object
implements IAsyncDisposable instead of IDisposable , either using form calls the
DisposeAsync and awaits the returned ValueTask. For more information on
IAsyncDisposable, see Implement a DisposeAsync method.

Both using forms ensure that Dispose (or DisposeAsync) is called even if an exception
occurs within the using block. You can achieve the same result by putting the object
inside a try block and then calling Dispose (or DisposeAsync) in a finally block; in
fact, this is how the using statement and the using declaration are translated by the
compiler. The code example earlier expands to the following code at compile time (note
the extra curly braces to create the limited scope for the object):

C#

Remarks

string manyLines = @"This is line one
This is line two
Here is line three
The penultimate line is line four
This is the final, fifth line.";

{
 var reader = new StringReader(manyLines);
 try
 {
 string? item;
 do
 {
 item = reader.ReadLine();
 Console.WriteLine(item);
 } while (item != null);
 }
 finally

https://learn.microsoft.com/en-us/dotnet/api/system.io.file
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.font
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable.disposeasync
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/implementing-disposeasync
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable.disposeasync
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable.dispose
https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable.disposeasync

The newer using statement syntax translates to similar code. The try block opens
where the variable is declared. The finally block is added at the close of the enclosing
block, typically at the end of a method.

For more information about the try -finally statement, see the try-finally article.

Multiple instances of a type can be declared in a single using statement, as shown in
the following example. Notice that you can't use implicitly typed variables (var) when
you declare multiple variables in a single statement:

C#

You can combine multiple declarations of the same type using the declaration syntax as
well, as shown in the following example:

C#

 {
 reader?.Dispose();
 }
}

string numbers = @"One
Two
Three
Four.";
string letters = @"A
B
C
D.";

using (StringReader left = new StringReader(numbers),
 right = new StringReader(letters))
{
 string? item;
 do
 {
 item = left.ReadLine();
 Console.Write(item);
 Console.Write(" ");
 item = right.ReadLine();
 Console.WriteLine(item);
 } while (item != null);
}

string numbers = @"One
Two
Three
Four.";

You can instantiate the resource object and then pass the variable to the using
statement, but this isn't a best practice. In this case, after control leaves the using block,
the object remains in scope but probably has no access to its unmanaged resources. In
other words, it's not fully initialized anymore. If you try to use the object outside the
using block, you risk causing an exception to be thrown. For this reason, it's better to
instantiate the object in the using statement and limit its scope to the using block.

C#

For more information about disposing of IDisposable objects, see Using objects that
implement IDisposable.

string letters = @"A
B
C
D.";

using StringReader left = new StringReader(numbers),
 right = new StringReader(letters);
string? item;
do
{
 item = left.ReadLine();
 Console.Write(item);
 Console.Write(" ");
 item = right.ReadLine();
 Console.WriteLine(item);
} while (item != null);

string manyLines = @"This is line one
This is line two
Here is line three
The penultimate line is line four
This is the final, fifth line.";

var reader = new StringReader(manyLines);
using (reader)
{
 string? item;
 do
 {
 item = reader.ReadLine();
 Console.WriteLine(item);
 } while (item != null);
}
// reader is in scope here, but has been disposed

C# language specification

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/using-objects

For more information, see The using statement in the C# Language Specification. The
language specification is the definitive source for C# syntax and usage.

Use simple 'using' statement (style rule IDE0063)
C# Reference
C# Programming Guide
C# Keywords
using Directive
Garbage Collection
Using objects that implement IDisposable
IDisposable interface
using statement in C# 8.0
Implement a DisposeAsync method article.

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0063
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/using-objects
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/implementing-disposeasync

extern alias (C# Reference)
Article • 2021-09-15 • 2 minutes to read

You might have to reference two versions of assemblies that have the same fully-
qualified type names. For example, you might have to use two or more versions of an
assembly in the same application. By using an external assembly alias, the namespaces
from each assembly can be wrapped inside root-level namespaces named by the alias,
which enables them to be used in the same file.

To reference two assemblies with the same fully-qualified type names, an alias must be
specified at a command prompt, as follows:

/r:GridV1=grid.dll

/r:GridV2=grid20.dll

This creates the external aliases GridV1 and GridV2 . To use these aliases from within a
program, reference them by using the extern keyword. For example:

extern alias GridV1;

extern alias GridV2;

Each extern alias declaration introduces an additional root-level namespace that
parallels (but does not lie within) the global namespace. Thus types from each assembly
can be referred to without ambiguity by using their fully qualified name, rooted in the
appropriate namespace-alias.

In the previous example, GridV1::Grid would be the grid control from grid.dll , and
GridV2::Grid would be the grid control from grid20.dll .

If you are using Visual Studio, aliases can be provided in similar way.

７ Note

The extern keyword is also used as a method modifier, declaring a method written
in unmanaged code.

Using Visual Studio

Add reference of grid.dll and grid20.dll to your project in Visual Studio. Open a property
tab and change the Aliases from global to GridV1 and GridV2 respectively.

Use these aliases the same way above

C#

Now you can create alias for a namespace or a type by using alias directive. For more
information, see using directive.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
:: Operator
References (C# Compiler Options)

 extern alias GridV1;

 extern alias GridV2;

using Class1V1 = GridV1::Namespace.Class1;

using Class1V2 = GridV2::Namespace.Class1;

C# Language Specification

See also

new constraint (C# Reference)
Article • 2022-05-17 • 2 minutes to read

The new constraint specifies that a type argument in a generic class or method
declaration must have a public parameterless constructor. To use the new constraint, the
type cannot be abstract.

Apply the new constraint to a type parameter when a generic class creates new
instances of the type, as shown in the following example:

C#

When you use the new() constraint with other constraints, it must be specified last:

C#

For more information, see Constraints on Type Parameters.

You can also use the new keyword to create an instance of a type or as a member
declaration modifier.

For more information, see the Type parameter constraints section of the C# language
specification.

C# Reference
C# Programming Guide

class ItemFactory<T> where T : new()
{
 public T GetNewItem()
 {
 return new T();
 }
}

public class ItemFactory2<T>
 where T : IComparable, new()
{ }

C# language specification

See also

C# Keywords
Generics

where (generic type constraint) (C#
Reference)
Article • 2022-09-29 • 5 minutes to read

The where clause in a generic definition specifies constraints on the types that are used
as arguments for type parameters in a generic type, method, delegate, or local function.
Constraints can specify interfaces, base classes, or require a generic type to be a
reference, value, or unmanaged type. They declare capabilities that the type argument
must have, and must be placed after any declared base class or implemented interfaces.

For example, you can declare a generic class, AGenericClass , such that the type
parameter T implements the IComparable<T> interface:

C#

The where clause can also include a base class constraint. The base class constraint
states that a type to be used as a type argument for that generic type has the specified
class as a base class, or is that base class. If the base class constraint is used, it must
appear before any other constraints on that type parameter. Some types are disallowed
as a base class constraint: Object, Array, and ValueType. The following example shows
the types that can now be specified as a base class:

C#

In a nullable context, the nullability of the base class type is enforced. If the base class is
non-nullable (for example Base), the type argument must be non-nullable. If the base
class is nullable (for example Base?), the type argument may be either a nullable or non-

public class AGenericClass<T> where T : IComparable<T> { }

７ Note

For more information on the where clause in a query expression, see where clause.

public class UsingEnum<T> where T : System.Enum { }

public class UsingDelegate<T> where T : System.Delegate { }

public class Multicaster<T> where T : System.MulticastDelegate { }

https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.valuetype

nullable reference type. The compiler issues a warning if the type argument is a nullable
reference type when the base class is non-nullable.

The where clause can specify that the type is a class or a struct . The struct constraint
removes the need to specify a base class constraint of System.ValueType . The
System.ValueType type may not be used as a base class constraint. The following
example shows both the class and struct constraints:

C#

In a nullable context, the class constraint requires a type to be a non-nullable reference
type. To allow nullable reference types, use the class? constraint, which allows both
nullable and non-nullable reference types.

The where clause may include the notnull constraint. The notnull constraint limits the
type parameter to non-nullable types. The type may be a value type or a non-nullable
reference type. The notnull constraint is available for code compiled in a nullable
enable context. Unlike other constraints, if a type argument violates the notnull
constraint, the compiler generates a warning instead of an error. Warnings are only
generated in a nullable enable context.

The addition of nullable reference types introduces a potential ambiguity in the
meaning of T? in generic methods. If T is a struct , T? is the same as
System.Nullable<T>. However, if T is a reference type, T? means that null is a valid
value. The ambiguity arises because overriding methods can't include constraints. The
new default constraint resolves this ambiguity. You'll add it when a base class or
interface declares two overloads of a method, one that specifies the struct constraint,
and one that doesn't have either the struct or class constraint applied:

C#

class MyClass<T, U>
 where T : class
 where U : struct
{ }

public abstract class B
{
 public void M<T>(T? item) where T : struct { }
 public abstract void M<T>(T? item);

}

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1

You use the default constraint to specify that your derived class overrides the method
without the constraint in your derived class, or explicit interface implementation. It's
only valid on methods that override base methods, or explicit interface
implementations:

C#

C#

The where clause may also include an unmanaged constraint. The unmanaged constraint
limits the type parameter to types known as unmanaged types. The unmanaged
constraint makes it easier to write low-level interop code in C#. This constraint enables
reusable routines across all unmanaged types. The unmanaged constraint can't be
combined with the class or struct constraint. The unmanaged constraint enforces that
the type must be a struct :

C#

The where clause may also include a constructor constraint, new() . That constraint
makes it possible to create an instance of a type parameter using the new operator. The

public class D : B
{
 // Without the "default" constraint, the compiler tries to override the
first method in B
 public override void M<T>(T? item) where T : default { }
}

） Important

Generic declarations that include the notnull constraint can be used in a nullable
oblivious context, but compiler does not enforce the constraint.

#nullable enable
 class NotNullContainer<T>
 where T : notnull
 {
 }
#nullable restore

class UnManagedWrapper<T>
 where T : unmanaged
{ }

new() Constraint lets the compiler know that any type argument supplied must have an
accessible parameterless constructor. For example:

C#

The new() constraint appears last in the where clause. The new() constraint can't be
combined with the struct or unmanaged constraints. All types satisfying those
constraints must have an accessible parameterless constructor, making the new()
constraint redundant.

With multiple type parameters, use one where clause for each type parameter, for
example:

C#

You can also attach constraints to type parameters of generic methods, as shown in the
following example:

C#

Notice that the syntax to describe type parameter constraints on delegates is the same
as that of methods:

C#

public class MyGenericClass<T> where T : IComparable<T>, new()
{
 // The following line is not possible without new() constraint:
 T item = new T();
}

public interface IMyInterface { }

namespace CodeExample
{
 class Dictionary<TKey, TVal>
 where TKey : IComparable<TKey>
 where TVal : IMyInterface
 {
 public void Add(TKey key, TVal val) { }
 }
}

public void MyMethod<T>(T t) where T : IMyInterface { }

delegate T MyDelegate<T>() where T : new();

For information on generic delegates, see Generic Delegates.

For details on the syntax and use of constraints, see Constraints on Type Parameters.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
Introduction to Generics
new Constraint
Constraints on Type Parameters

C# language specification

See also

base (C# Reference)
Article • 2022-12-09 • 2 minutes to read

The base keyword is used to access members of the base class from within a derived
class. Use it if you want to:

Call a method on the base class that has been overridden by another method.

Specify which base-class constructor should be called when creating instances of
the derived class.

The base class access is permitted only in a constructor, in an instance method, and in
an instance property accessor.

Using the base keyword from within a static method will give an error.

The base class that is accessed is the base class specified in the class declaration. For
example, if you specify class ClassB : ClassA , the members of ClassA are accessed
from ClassB, regardless of the base class of ClassA.

In this example, both the base class Person and the derived class Employee have a
method named Getinfo . By using the base keyword, it is possible to call the Getinfo
method of the base class from within the derived class.

C#

Example 1

public class Person
{
 protected string ssn = "444-55-6666";
 protected string name = "John L. Malgraine";

 public virtual void GetInfo()
 {
 Console.WriteLine("Name: {0}", name);
 Console.WriteLine("SSN: {0}", ssn);
 }
}
class Employee : Person
{
 public string id = "ABC567EFG";
 public override void GetInfo()
 {
 // Calling the base class GetInfo method:
 base.GetInfo();

For additional examples, see new, virtual, and override.

This example shows how to specify the base-class constructor called when creating
instances of a derived class.

C#

 Console.WriteLine("Employee ID: {0}", id);
 }
}

class TestClass
{
 static void Main()
 {
 Employee E = new Employee();
 E.GetInfo();
 }
}
/*
Output
Name: John L. Malgraine
SSN: 444-55-6666
Employee ID: ABC567EFG
*/

Example 2

public class BaseClass
{
 int num;

 public BaseClass()
 {
 Console.WriteLine("in BaseClass()");
 }

 public BaseClass(int i)
 {
 num = i;
 Console.WriteLine("in BaseClass(int i)");
 }

 public int GetNum()
 {
 return num;
 }
}

public class DerivedClass : BaseClass

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
this

{
 // This constructor will call BaseClass.BaseClass()
 public DerivedClass() : base()
 {
 }

 // This constructor will call BaseClass.BaseClass(int i)
 public DerivedClass(int i) : base(i)
 {
 }

 static void Main()
 {
 DerivedClass md = new DerivedClass();
 DerivedClass md1 = new DerivedClass(1);
 }
}
/*
Output:
in BaseClass()
in BaseClass(int i)
*/

C# language specification

See also

this (C# Reference)
Article • 2023-01-14 • 2 minutes to read

The this keyword refers to the current instance of the class and is also used as a
modifier of the first parameter of an extension method.

The following are common uses of this :

To qualify members hidden by similar names, for example:

C#

To pass an object as a parameter to other methods, for example:

C#

To declare indexers, for example:

C#

７ Note

This article discusses the use of this with class instances. For more information
about its use in extension methods, see Extension Methods.

public class Employee
{
 private string alias;
 private string name;

 public Employee(string name, string alias)
 {
 // Use this to qualify the members of the class
 // instead of the constructor parameters.
 this.name = name;
 this.alias = alias;
 }
}

CalcTax(this);

public int this[int param]
{
 get { return array[param]; }

Static member functions, because they exist at the class level and not as part of an
object, do not have a this pointer. It is an error to refer to this in a static method.

In this example, this is used to qualify the Employee class members, name and alias ,
which are hidden by similar names. It is also used to pass an object to the method
CalcTax , which belongs to another class.

C#

 set { array[param] = value; }
}

Example

class Employee
{
 private string name;
 private string alias;
 private decimal salary = 3000.00m;

 // Constructor:
 public Employee(string name, string alias)
 {
 // Use this to qualify the fields, name and alias:
 this.name = name;
 this.alias = alias;
 }

 // Printing method:
 public void printEmployee()
 {
 Console.WriteLine("Name: {0}\nAlias: {1}", name, alias);
 // Passing the object to the CalcTax method by using this:
 Console.WriteLine("Taxes: {0:C}", Tax.CalcTax(this));
 }

 public decimal Salary
 {
 get { return salary; }
 }
}

class Tax
{
 public static decimal CalcTax(Employee E)
 {
 return 0.08m * E.Salary;
 }
}

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

this code-style preferences (IDE0003 and IDE0009)
C# Reference
C# Programming Guide
C# Keywords
base
Methods

class MainClass
{
 static void Main()
 {
 // Create objects:
 Employee E1 = new Employee("Mingda Pan", "mpan");

 // Display results:
 E1.printEmployee();
 }
}
/*
Output:
 Name: Mingda Pan
 Alias: mpan
 Taxes: $240.00
 */

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0003-ide0009

null (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The null keyword is a literal that represents a null reference, one that does not refer to
any object. null is the default value of reference-type variables. Ordinary value types
cannot be null, except for nullable value types.

The following example demonstrates some behaviors of the null keyword:

C#

class Program
{
 class MyClass
 {
 public void MyMethod() { }
 }

 static void Main(string[] args)
 {
 // Set a breakpoint here to see that mc = null.
 // However, the compiler considers it "unassigned."
 // and generates a compiler error if you try to
 // use the variable.
 MyClass mc;

 // Now the variable can be used, but...
 mc = null;

 // ... a method call on a null object raises
 // a run-time NullReferenceException.
 // Uncomment the following line to see for yourself.
 // mc.MyMethod();

 // Now mc has a value.
 mc = new MyClass();

 // You can call its method.
 mc.MyMethod();

 // Set mc to null again. The object it referenced
 // is no longer accessible and can now be garbage-collected.
 mc = null;

 // A null string is not the same as an empty string.
 string s = null;
 string t = String.Empty; // Logically the same as ""

 // Equals applied to any null object returns false.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# reference
C# keywords
Default values of C# types
Nothing (Visual Basic)

 bool b = (t.Equals(s));
 Console.WriteLine(b);

 // Equality operator also returns false when one
 // operand is null.
 Console.WriteLine("Empty string {0} null string", s == t ? "equals":
"does not equal");

 // Returns true.
 Console.WriteLine("null == null is {0}", null == null);

 // A value type cannot be null
 // int i = null; // Compiler error!

 // Use a nullable value type instead:
 int? i = null;

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
}

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/visual-basic/language-reference/nothing

bool (C# reference)
Article • 2022-01-25 • 2 minutes to read

The bool type keyword is an alias for the .NET System.Boolean structure type that
represents a Boolean value, which can be either true or false .

To perform logical operations with values of the bool type, use Boolean logical
operators. The bool type is the result type of comparison and equality operators. A
bool expression can be a controlling conditional expression in the if, do, while, and for
statements and in the conditional operator ?:.

The default value of the bool type is false .

You can use the true and false literals to initialize a bool variable or to pass a bool
value:

C#

Use the nullable bool? type, if you need to support the three-valued logic, for example,
when you work with databases that support a three-valued Boolean type. For the bool?
operands, the predefined & and | operators support the three-valued logic. For more
information, see the Nullable Boolean logical operators section of the Boolean logical
operators article.

For more information about nullable value types, see Nullable value types.

C# provides only two conversions that involve the bool type. Those are an implicit
conversion to the corresponding nullable bool? type and an explicit conversion from

Literals

bool check = true;
Console.WriteLine(check ? "Checked" : "Not checked"); // output: Checked

Console.WriteLine(false ? "Checked" : "Not checked"); // output: Not
checked

Three-valued Boolean logic

Conversions

https://learn.microsoft.com/en-us/dotnet/api/system.boolean

the bool? type. However, .NET provides additional methods that you can use to convert
to or from the bool type. For more information, see the Converting to and from
Boolean values section of the System.Boolean API reference page.

For more information, see The bool type section of the C# language specification.

C# reference
Value types
true and false operators

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.boolean#converting-to-and-from-boolean-values
https://learn.microsoft.com/en-us/dotnet/api/system.boolean

default (C# reference)
Article • 2021-09-15 • 2 minutes to read

You can use the default keyword in the following contexts:

To specify the default case in the switch statement.
As the default operator or literal to produce the default value of a type.
As the default type constraint on a generic method override or explicit interface
implementation.

C# reference
C# keywords

See also

add (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The add contextual keyword is used to define a custom event accessor that is invoked
when client code subscribes to your event. If you supply a custom add accessor, you
must also supply a remove accessor.

The following example shows an event that has custom add and remove accessors. For
the full example, see How to implement interface events.

C#

You do not typically need to provide your own custom event accessors. The accessors
that are automatically generated by the compiler when you declare an event are
sufficient for most scenarios.

Events

Example

class Events : IDrawingObject
{
 event EventHandler PreDrawEvent;

 event EventHandler IDrawingObject.OnDraw
 {
 add => PreDrawEvent += value;
 remove => PreDrawEvent -= value;
 }
}

See also

get (C# Reference)
Article • 2022-09-29 • 2 minutes to read

The get keyword defines an accessor method in a property or indexer that returns the
property value or the indexer element. For more information, see Properties, Auto-
Implemented Properties and Indexers.

The following example defines both a get and a set accessor for a property named
Seconds . It uses a private field named _seconds to back the property value.

C#

Often, the get accessor consists of a single statement that returns a value, as it did in
the previous example. You can implement the get accessor as an expression-bodied
member. The following example implements both the get and the set accessor as
expression-bodied members.

C#

For simple cases in which a property's get and set accessors perform no other
operation than setting or retrieving a value in a private backing field, you can take

class TimePeriod
{
 private double _seconds;

 public double Seconds
 {
 get { return _seconds; }
 set { _seconds = value; }
 }
}

class TimePeriod
{
 private double _seconds;

 public double Seconds
 {
 get => _seconds;
 set => _seconds = value;
 }
}

advantage of the C# compiler's support for auto-implemented properties. The following
example implements Hours as an auto-implemented property.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Properties

class TimePeriod2
{
 public double Hours { get; set; }
}

C# Language Specification

See also

init (C# Reference)
Article • 2022-06-30 • 2 minutes to read

In C# 9 and later, the init keyword defines an accessor method in a property or indexer.
An init-only setter assigns a value to the property or the indexer element only during
object construction. This enforces immutability, so that once the object is initialized, it
can't be changed again.

For more information and examples, see Properties, Auto-Implemented Properties, and
Indexers.

The following example defines both a get and an init accessor for a property named
YearOfBirth . It uses a private field named _yearOfBirth to back the property value.

C#

Often, the init accessor consists of a single statement that assigns a value, as it did in
the previous example. Note that, because of init , the following will not work:

C#

The init accessor can be used as an expression-bodied member. Example:

C#

class Person_InitExample
{
 private int _yearOfBirth;

 public int YearOfBirth
 {
 get { return _yearOfBirth; }
 init { _yearOfBirth = value; }
 }
}

var john = new Person_InitExample
{
 YearOfBirth = 1984
};

john.YearOfBirth = 1926; //Not allowed, as its value can only be set once in
the constructor

class Person_InitExampleExpressionBodied
{

The init accessor can also be used in auto-implemented properties as the following
example code demonstrates:

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Properties

 private int _yearOfBirth;

 public int YearOfBirth
 {
 get => _yearOfBirth;
 init => _yearOfBirth = value;
 }
}

class Person_InitExampleAutoProperty
{
 public int YearOfBirth { get; init; }
}

C# language specification

See also

partial type (C# Reference)
Article • 2021-09-15 • 2 minutes to read

Partial type definitions allow for the definition of a class, struct, interface, or record to be
split into multiple files.

In File1.cs:

C#

In File2.cs the declaration:

C#

Splitting a class, struct or interface type over several files can be useful when you are
working with large projects, or with automatically generated code such as that provided
by the Windows Forms Designer. A partial type may contain a partial method. For more
information, see Partial Classes and Methods.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

namespace PC
{
 partial class A
 {
 int num = 0;
 void MethodA() { }
 partial void MethodC();
 }
}

namespace PC
{
 partial class A
 {
 void MethodB() { }
 partial void MethodC() { }
 }
}

Remarks

C# language specification

https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/developing-windows-forms-controls-at-design-time

C# Reference
C# Programming Guide
Modifiers
Introduction to Generics

See also

partial method (C# Reference)
Article • 2023-01-05 • 2 minutes to read

A partial method has its signature defined in one part of a partial type, and its
implementation defined in another part of the type. Partial methods enable class
designers to provide method hooks, similar to event handlers, that developers may
decide to implement or not. If the developer does not supply an implementation, the
compiler removes the signature at compile time. The following conditions apply to
partial methods:

Declarations must begin with the contextual keyword partial.

Signatures in both parts of the partial type must match.

The partial keyword isn't allowed on constructors, finalizers, overloaded operators,
property declarations, or event declarations.

A partial method isn't required to have an implementation in the following cases:

It doesn't have any accessibility modifiers (including the default private).

It returns void.

It doesn't have any out parameters.

It doesn't have any of the following modifiers virtual, override, sealed, new, or
extern.

Any method that doesn't conform to all those restrictions (for example, public virtual
partial void method), must provide an implementation.

The following example shows a partial method defined in two parts of a partial class:

C#

namespace PM
{
 partial class A
 {
 partial void OnSomethingHappened(string s);
 }

 // This part can be in a separate file.
 partial class A
 {
 // Comment out this method and the program
 // will still compile.

Partial methods can also be useful in combination with source generators. For example a
regex could be defined using the following pattern:

C#

For more information, see Partial Classes and Methods.

C# Reference
partial type

 partial void OnSomethingHappened(String s)
 {
 Console.WriteLine("Something happened: {0}", s);
 }
 }
}

[GeneratedRegex("(dog|cat|fish)")]
partial bool IsPetMatch(string input);

See also

remove (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The remove contextual keyword is used to define a custom event accessor that is
invoked when client code unsubscribes from your event. If you supply a custom remove
accessor, you must also supply an add accessor.

The following example shows an event with custom add and remove accessors. For the
full example, see How to implement interface events.

C#

You do not typically need to provide your own custom event accessors. The accessors
that are automatically generated by the compiler when you declare an event are
sufficient for most scenarios.

Events

Example

class Events : IDrawingObject
{
 event EventHandler PreDrawEvent;

 event EventHandler IDrawingObject.OnDraw
 {
 add => PreDrawEvent += value;
 remove => PreDrawEvent -= value;
 }
}

See also

required modifier (C# Reference)
Article • 2022-09-29 • 3 minutes to read

The required modifier indicates that the field or property it's applied to must be
initialized by all constructors or by using an object initializer. Any expression that
initializes a new instance of the type must initialize all required members. The required
modifier is available beginning with C# 11. The required modifier enables developers to
create types where properties or fields must be properly initialized, yet still allow
initialization using object initializers. Several rules ensure this behavior:

The required modifier can be applied to fields and properties declared in struct ,
and class types, including record and record struct types. The required
modifier can't be applied to members of an interface .
Explicit interface implementations can't be marked as required . They can't be set
in object initializers.
Required members must be initialized, but they may be initialized to null . If the
type is a non-nullable reference type, the compiler issues a warning if you initialize
the member to null . The compiler issues an error if the member isn't initialized at
all.
Required members must be at least as visible as their containing type. For example,
a public class can't contain a required field that's protected . Furthermore,
required properties must have setters (set or init accessors) that are at least as
visible as their containing types. Members that aren't accessible can't be set by
code that creates an instance.
Derived classes can't hide a required member declared in the base class. Hiding a
required member prevents callers from using object initializers for it. Furthermore,
derived types that override a required property must include the required
modifier. The derived type can't remove the required state. Derived types can add
the required modifier when overriding a property.
A type with any required members may not be used as a type argument when the
type parameter includes the new() constraint. The compiler can't enforce that all
required members are initialized in the generic code.
The required modifier isn't allowed on the declaration for positional parameters
on a record. You can add an explicit declaration for a positional property that does
include the required modifier.

Some types, such as positional records, use a primary constructor to initialize positional
properties. If any of those properties include the required modifier, the primary
constructor adds the SetsRequiredMembers attribute. This indicates that the primary

constructor initializes all required members. You can write your own constructor with the
System.Diagnostics.CodeAnalysis.SetsRequiredMembersAttribute attribute. However, the
compiler doesn't verify that these constructors do initialize all required members.
Rather, the attribute asserts to the compiler that the constructor does initialize all
required members. The SetsRequiredMembers attribute adds these rules to constructors:

A constructor that chains to another constructor annotated with the
SetsRequiredMembers attribute, either this() , or base() , must also include the
SetsRequiredMembers attribute. That ensures that callers can correctly use all
appropriate constructors.
Copy constructors generated for record types have the SetsRequiredMembers
attribute applied if any of the members are required .

The following code shows a class hierarchy that uses the required modifier for the
FirstName and LastName properties:

C#

２ Warning

The SetsRequiredMembers disables the compiler's checks that all required members
are initialized when an object is created. Use it with caution.

public class Person
{
 public Person() { }

 [SetsRequiredMembers]
 public Person(string firstName, string lastName) =>
 (FirstName, LastName) = (firstName, lastName);

 public required string FirstName { get; init; }
 public required string LastName { get; init; }

 public int? Age { get; set; }
}

public class Student : Person
{
 public Student() : base()
 {
 }

 [SetsRequiredMembers]
 public Student(string firstName, string lastName) :
 base(firstName, lastName)
 {

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.setsrequiredmembersattribute

For more information on required members, see the C#11 - Required members feature
specification.

 }

 public double GPA { get; set; }
}

set (C# Reference)
Article • 2022-09-29 • 2 minutes to read

The set keyword defines an accessor method in a property or indexer that assigns a
value to the property or the indexer element. For more information and examples, see
Properties, Auto-Implemented Properties, and Indexers.

The following example defines both a get and a set accessor for a property named
Seconds . It uses a private field named _seconds to back the property value.

C#

Often, the set accessor consists of a single statement that assigns a value, as it did in
the previous example. You can implement the set accessor as an expression-bodied
member. The following example implements both the get and the set accessors as
expression-bodied members.

C#

For simple cases in which a property's get and set accessors perform no other
operation than setting or retrieving a value in a private backing field, you can take

class TimePeriod
{
 private double _seconds;

 public double Seconds
 {
 get { return _seconds; }
 set { _seconds = value; }
 }
}

class TimePeriod
{
 private double _seconds;

 public double Seconds
 {
 get => _seconds;
 set => _seconds = value;
 }
}

advantage of the C# compiler's support for auto-implemented properties. The following
example implements Hours as an auto-implemented property.

C#

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords
Properties

class TimePeriod2
{
 public double Hours { get; set; }
}

C# language specification

See also

when (C# reference)
Article • 2022-11-10 • 2 minutes to read

You use the when contextual keyword to specify a filter condition in the following
contexts:

In the catch statement of a try/catch or try/catch/finally block.
As a case guard in the switch statement.
As a case guard in the switch expression.

The when keyword can be used in a catch statement to specify a condition that must be
true for the handler for a specific exception to execute. Its syntax is:

C#

where expr is an expression that evaluates to a Boolean value. If it returns true , the
exception handler executes; if false , it does not.

The following example uses the when keyword to conditionally execute handlers for an
HttpRequestException depending on the text of the exception message.

C#

when in a catch statement

catch (ExceptionType [e]) when (expr)

using System;
using System.Net.Http;
using System.Threading.Tasks;

class Program
{
 static void Main()
 {
 Console.WriteLine(MakeRequest().Result);
 }

 public static async Task<string> MakeRequest()
 {
 var client = new HttpClient();
 var streamTask = client.GetStringAsync("https://localHost:10000");
 try
 {
 var responseText = await streamTask;

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httprequestexception

try/catch statement
try/catch/finally statement

 return responseText;
 }
 catch (HttpRequestException e) when (e.Message.Contains("301"))
 {
 return "Site Moved";
 }
 catch (HttpRequestException e) when (e.Message.Contains("404"))
 {
 return "Page Not Found";
 }
 catch (HttpRequestException e)
 {
 return e.Message;
 }
 }
}

See also

value (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The contextual keyword value is used in the set accessor in property and indexer
declarations. It is similar to an input parameter of a method. The word value references
the value that client code is attempting to assign to the property or indexer. In the
following example, MyDerivedClass has a property called Name that uses the value
parameter to assign a new string to the backing field name . From the point of view of
client code, the operation is written as a simple assignment.

C#

class MyBaseClass
{
 // virtual auto-implemented property. Overrides can only
 // provide specialized behavior if they implement get and set accessors.
 public virtual string Name { get; set; }

 // ordinary virtual property with backing field
 private int _num;
 public virtual int Number
 {
 get { return _num; }
 set { _num = value; }
 }
}

class MyDerivedClass : MyBaseClass
{
 private string _name;

 // Override auto-implemented property with ordinary property
 // to provide specialized accessor behavior.
 public override string Name
 {
 get
 {
 return _name;
 }
 set
 {
 if (!string.IsNullOrEmpty(value))
 {
 _name = value;
 }
 else
 {
 _name = "Unknown";
 }
 }

For more information, see the Properties and Indexers articles.

For more information, see the C# Language Specification. The language specification is
the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
C# Keywords

 }
}

C# language specification

See also

Query keywords (C# Reference)
Article • 2021-09-15 • 2 minutes to read

This section contains the contextual keywords used in query expressions.

Clause Description

from Specifies a data source and a range variable (similar to an iteration variable).

where Filters source elements based on one or more Boolean expressions separated by
logical AND and OR operators (&& or ||).

select Specifies the type and shape that the elements in the returned sequence will have
when the query is executed.

group Groups query results according to a specified key value.

into Provides an identifier that can serve as a reference to the results of a join, group or
select clause.

orderby Sorts query results in ascending or descending order based on the default
comparer for the element type.

join Joins two data sources based on an equality comparison between two specified
matching criteria.

let Introduces a range variable to store sub-expression results in a query expression.

in Contextual keyword in a join clause.

on Contextual keyword in a join clause.

equals Contextual keyword in a join clause.

by Contextual keyword in a group clause.

ascending Contextual keyword in an orderby clause.

descending Contextual keyword in an orderby clause.

C# Keywords
LINQ (Language-Integrated Query)

In this section

See also

LINQ in C#

from clause (C# Reference)
Article • 2022-09-21 • 5 minutes to read

A query expression must begin with a from clause. Additionally, a query expression can
contain sub-queries, which also begin with a from clause. The from clause specifies the
following:

The data source on which the query or sub-query will be run.

A local range variable that represents each element in the source sequence.

Both the range variable and the data source are strongly typed. The data source
referenced in the from clause must have a type of IEnumerable, IEnumerable<T>, or a
derived type such as IQueryable<T>.

In the following example, numbers is the data source and num is the range variable. Note
that both variables are strongly typed even though the var keyword is used.

C#

The compiler infers the type of the range variable when the data source implements
IEnumerable<T>. For example, if the source has a type of IEnumerable<Customer> , then

class LowNums
{
 static void Main()
 {
 // A simple data source.
 int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

 // Create the query.
 // lowNums is an IEnumerable<int>
 var lowNums = from num in numbers
 where num < 5
 select num;

 // Execute the query.
 foreach (int i in lowNums)
 {
 Console.Write(i + " ");
 }
 }
}
// Output: 4 1 3 2 0

The range variable

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.iqueryable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

the range variable is inferred to be Customer . The only time that you must specify the
type explicitly is when the source is a non-generic IEnumerable type such as ArrayList.
For more information, see How to query an ArrayList with LINQ.

In the previous example num is inferred to be of type int . Because the range variable is
strongly typed, you can call methods on it or use it in other operations. For example,
instead of writing select num , you could write select num.ToString() to cause the
query expression to return a sequence of strings instead of integers. Or you could write
select num + 10 to cause the expression to return the sequence 14, 11, 13, 12, 10. For
more information, see select clause.

The range variable is like an iteration variable in a foreach statement except for one very
important difference: a range variable never actually stores data from the source. It's just
a syntactic convenience that enables the query to describe what will occur when the
query is executed. For more information, see Introduction to LINQ Queries (C#).

In some cases, each element in the source sequence may itself be either a sequence or
contain a sequence. For example, your data source may be an IEnumerable<Student>
where each student object in the sequence contains a list of test scores. To access the
inner list within each Student element, you can use compound from clauses. The
technique is like using nested foreach statements. You can add where or orderby clauses
to either from clause to filter the results. The following example shows a sequence of
Student objects, each of which contains an inner List of integers representing test
scores. To access the inner list, use a compound from clause. You can insert clauses
between the two from clauses if necessary.

C#

Compound from clauses

class CompoundFrom
{
 // The element type of the data source.
 public class Student
 {
 public string LastName { get; set; }
 public List<int> Scores {get; set;}
 }

 static void Main()
 {

 // Use a collection initializer to create the data source. Note that
 // each element in the list contains an inner sequence of scores.

https://learn.microsoft.com/en-us/dotnet/api/system.collections.arraylist

 List<Student> students = new List<Student>
 {
 new Student {LastName="Omelchenko", Scores= new List<int> {97,
72, 81, 60}},
 new Student {LastName="O'Donnell", Scores= new List<int> {75, 84,
91, 39}},
 new Student {LastName="Mortensen", Scores= new List<int> {88, 94,
65, 85}},
 new Student {LastName="Garcia", Scores= new List<int> {97, 89,
85, 82}},
 new Student {LastName="Beebe", Scores= new List<int> {35, 72, 91,
70}}
 };

 // Use a compound from to access the inner sequence within each
element.
 // Note the similarity to a nested foreach statement.
 var scoreQuery = from student in students
 from score in student.Scores
 where score > 90
 select new { Last = student.LastName, score };

 // Execute the queries.
 Console.WriteLine("scoreQuery:");
 // Rest the mouse pointer on scoreQuery in the following line to
 // see its type. The type is IEnumerable<'a>, where 'a is an
 // anonymous type defined as new {string Last, int score}. That is,
 // each instance of this anonymous type has two members, a string
 // (Last) and an int (score).
 foreach (var student in scoreQuery)
 {
 Console.WriteLine("{0} Score: {1}", student.Last,
student.score);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/*
scoreQuery:
Omelchenko Score: 97
O'Donnell Score: 91
Mortensen Score: 94
Garcia Score: 97
Beebe Score: 91
*/

Using Multiple from Clauses to Perform Joins

A compound from clause is used to access inner collections in a single data source.
However, a query can also contain multiple from clauses that generate supplemental
queries from independent data sources. This technique enables you to perform certain
types of join operations that are not possible by using the join clause.

The following example shows how two from clauses can be used to form a complete
cross join of two data sources.

C#

class CompoundFrom2
{
 static void Main()
 {
 char[] upperCase = { 'A', 'B', 'C' };
 char[] lowerCase = { 'x', 'y', 'z' };

 // The type of joinQuery1 is IEnumerable<'a>, where 'a
 // indicates an anonymous type. This anonymous type has two
 // members, upper and lower, both of type char.
 var joinQuery1 =
 from upper in upperCase
 from lower in lowerCase
 select new { upper, lower };

 // The type of joinQuery2 is IEnumerable<'a>, where 'a
 // indicates an anonymous type. This anonymous type has two
 // members, upper and lower, both of type char.
 var joinQuery2 =
 from lower in lowerCase
 where lower != 'x'
 from upper in upperCase
 select new { lower, upper };

 // Execute the queries.
 Console.WriteLine("Cross join:");
 // Rest the mouse pointer on joinQuery1 to verify its type.
 foreach (var pair in joinQuery1)
 {
 Console.WriteLine("{0} is matched to {1}", pair.upper,
pair.lower);
 }

 Console.WriteLine("Filtered non-equijoin:");
 // Rest the mouse pointer over joinQuery2 to verify its type.
 foreach (var pair in joinQuery2)
 {
 Console.WriteLine("{0} is matched to {1}", pair.lower,
pair.upper);
 }

 // Keep the console window open in debug mode.

For more information about join operations that use multiple from clauses, see Perform
left outer joins.

Query Keywords (LINQ)
Language Integrated Query (LINQ)

 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Cross join:
 A is matched to x
 A is matched to y
 A is matched to z
 B is matched to x
 B is matched to y
 B is matched to z
 C is matched to x
 C is matched to y
 C is matched to z
 Filtered non-equijoin:
 y is matched to A
 y is matched to B
 y is matched to C
 z is matched to A
 z is matched to B
 z is matched to C
 */

See also

where clause (C# Reference)
Article • 2021-09-15 • 3 minutes to read

The where clause is used in a query expression to specify which elements from the data
source will be returned in the query expression. It applies a Boolean condition
(predicate) to each source element (referenced by the range variable) and returns those
for which the specified condition is true. A single query expression may contain multiple
where clauses and a single clause may contain multiple predicate subexpressions.

In the following example, the where clause filters out all numbers except those that are
less than five. If you remove the where clause, all numbers from the data source would
be returned. The expression num < 5 is the predicate that is applied to each element.

C#

Within a single where clause, you can specify as many predicates as necessary by using
the && and || operators. In the following example, the query specifies two predicates in
order to select only the even numbers that are less than five.

Example 1

class WhereSample
{
 static void Main()
 {
 // Simple data source. Arrays support IEnumerable<T>.
 int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

 // Simple query with one predicate in where clause.
 var queryLowNums =
 from num in numbers
 where num < 5
 select num;

 // Execute the query.
 foreach (var s in queryLowNums)
 {
 Console.Write(s.ToString() + " ");
 }
 }
}
//Output: 4 1 3 2 0

Example 2

C#

A where clause may contain one or more methods that return Boolean values. In the
following example, the where clause uses a method to determine whether the current
value of the range variable is even or odd.

C#

class WhereSample2
{
 static void Main()
 {
 // Data source.
 int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

 // Create the query with two predicates in where clause.
 var queryLowNums2 =
 from num in numbers
 where num < 5 && num % 2 == 0
 select num;

 // Execute the query
 foreach (var s in queryLowNums2)
 {
 Console.Write(s.ToString() + " ");
 }
 Console.WriteLine();

 // Create the query with two where clause.
 var queryLowNums3 =
 from num in numbers
 where num < 5
 where num % 2 == 0
 select num;

 // Execute the query
 foreach (var s in queryLowNums3)
 {
 Console.Write(s.ToString() + " ");
 }
 }
}
// Output:
// 4 2 0
// 4 2 0

Example 3

class WhereSample3
{

The where clause is a filtering mechanism. It can be positioned almost anywhere in a
query expression, except it cannot be the first or last clause. A where clause may appear
either before or after a group clause depending on whether you have to filter the source
elements before or after they are grouped.

If a specified predicate is not valid for the elements in the data source, a compile-time
error will result. This is one benefit of the strong type-checking provided by LINQ.

At compile time the where keyword is converted into a call to the Where Standard
Query Operator method.

Query Keywords (LINQ)
from clause
select clause
Filtering Data

 static void Main()
 {
 // Data source
 int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };

 // Create the query with a method call in the where clause.
 // Note: This won't work in LINQ to SQL unless you have a
 // stored procedure that is mapped to a method by this name.
 var queryEvenNums =
 from num in numbers
 where IsEven(num)
 select num;

 // Execute the query.
 foreach (var s in queryEvenNums)
 {
 Console.Write(s.ToString() + " ");
 }
 }

 // Method may be instance method or static method.
 static bool IsEven(int i)
 {
 return i % 2 == 0;
 }
}
//Output: 4 8 6 2 0

Remarks

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.where

LINQ in C#
Language Integrated Query (LINQ)

select clause (C# Reference)
Article • 2021-09-15 • 6 minutes to read

In a query expression, the select clause specifies the type of values that will be
produced when the query is executed. The result is based on the evaluation of all the
previous clauses and on any expressions in the select clause itself. A query expression
must terminate with either a select clause or a group clause.

The following example shows a simple select clause in a query expression.

C#

The type of the sequence produced by the select clause determines the type of the
query variable queryHighScores . In the simplest case, the select clause just specifies the
range variable. This causes the returned sequence to contain elements of the same type
as the data source. For more information, see Type Relationships in LINQ Query
Operations. However, the select clause also provides a powerful mechanism for
transforming (or projecting) source data into new types. For more information, see Data
Transformations with LINQ (C#).

class SelectSample1
{
 static void Main()
 {
 //Create the data source
 List<int> Scores = new List<int>() { 97, 92, 81, 60 };

 // Create the query.
 IEnumerable<int> queryHighScores =
 from score in Scores
 where score > 80
 select score;

 // Execute the query.
 foreach (int i in queryHighScores)
 {
 Console.Write(i + " ");
 }
 }
}
//Output: 97 92 81

Example

The following example shows all the different forms that a select clause may take. In
each query, note the relationship between the select clause and the type of the query
variable (studentQuery1 , studentQuery2 , and so on).

C#

 class SelectSample2
 {
 // Define some classes
 public class Student
 {
 public string First { get; set; }
 public string Last { get; set; }
 public int ID { get; set; }
 public List<int> Scores;
 public ContactInfo GetContactInfo(SelectSample2 app, int id)
 {
 ContactInfo cInfo =
 (from ci in app.contactList
 where ci.ID == id
 select ci)
 .FirstOrDefault();

 return cInfo;
 }

 public override string ToString()
 {
 return First + " " + Last + ":" + ID;
 }
 }

 public class ContactInfo
 {
 public int ID { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public override string ToString() { return Email + "," + Phone;
}
 }

 public class ScoreInfo
 {
 public double Average { get; set; }
 public int ID { get; set; }
 }

 // The primary data source
 List<Student> students = new List<Student>()
 {
 new Student {First="Svetlana", Last="Omelchenko", ID=111,
Scores= new List<int>() {97, 92, 81, 60}},
 new Student {First="Claire", Last="O'Donnell", ID=112, Scores=

new List<int>() {75, 84, 91, 39}},
 new Student {First="Sven", Last="Mortensen", ID=113, Scores=
new List<int>() {88, 94, 65, 91}},
 new Student {First="Cesar", Last="Garcia", ID=114, Scores= new
List<int>() {97, 89, 85, 82}},
 };

 // Separate data source for contact info.
 List<ContactInfo> contactList = new List<ContactInfo>()
 {
 new ContactInfo {ID=111, Email="SvetlanO@Contoso.com",
Phone="206-555-0108"},
 new ContactInfo {ID=112, Email="ClaireO@Contoso.com",
Phone="206-555-0298"},
 new ContactInfo {ID=113, Email="SvenMort@Contoso.com",
Phone="206-555-1130"},
 new ContactInfo {ID=114, Email="CesarGar@Contoso.com",
Phone="206-555-0521"}
 };

 static void Main(string[] args)
 {
 SelectSample2 app = new SelectSample2();

 // Produce a filtered sequence of unmodified Students.
 IEnumerable<Student> studentQuery1 =
 from student in app.students
 where student.ID > 111
 select student;

 Console.WriteLine("Query1: select range_variable");
 foreach (Student s in studentQuery1)
 {
 Console.WriteLine(s.ToString());
 }

 // Produce a filtered sequence of elements that contain
 // only one property of each Student.
 IEnumerable<String> studentQuery2 =
 from student in app.students
 where student.ID > 111
 select student.Last;

 Console.WriteLine("\r\n studentQuery2: select
range_variable.Property");
 foreach (string s in studentQuery2)
 {
 Console.WriteLine(s);
 }

 // Produce a filtered sequence of objects created by
 // a method call on each Student.
 IEnumerable<ContactInfo> studentQuery3 =
 from student in app.students
 where student.ID > 111

 select student.GetContactInfo(app, student.ID);

 Console.WriteLine("\r\n studentQuery3: select
range_variable.Method");
 foreach (ContactInfo ci in studentQuery3)
 {
 Console.WriteLine(ci.ToString());
 }

 // Produce a filtered sequence of ints from
 // the internal array inside each Student.
 IEnumerable<int> studentQuery4 =
 from student in app.students
 where student.ID > 111
 select student.Scores[0];

 Console.WriteLine("\r\n studentQuery4: select
range_variable[index]");
 foreach (int i in studentQuery4)
 {
 Console.WriteLine("First score = {0}", i);
 }

 // Produce a filtered sequence of doubles
 // that are the result of an expression.
 IEnumerable<double> studentQuery5 =
 from student in app.students
 where student.ID > 111
 select student.Scores[0] * 1.1;

 Console.WriteLine("\r\n studentQuery5: select expression");
 foreach (double d in studentQuery5)
 {
 Console.WriteLine("Adjusted first score = {0}", d);
 }

 // Produce a filtered sequence of doubles that are
 // the result of a method call.
 IEnumerable<double> studentQuery6 =
 from student in app.students
 where student.ID > 111
 select student.Scores.Average();

 Console.WriteLine("\r\n studentQuery6: select expression2");
 foreach (double d in studentQuery6)
 {
 Console.WriteLine("Average = {0}", d);
 }

 // Produce a filtered sequence of anonymous types
 // that contain only two properties from each Student.
 var studentQuery7 =
 from student in app.students
 where student.ID > 111
 select new { student.First, student.Last };

 Console.WriteLine("\r\n studentQuery7: select new anonymous
type");
 foreach (var item in studentQuery7)
 {
 Console.WriteLine("{0}, {1}", item.Last, item.First);
 }

 // Produce a filtered sequence of named objects that contain
 // a method return value and a property from each Student.
 // Use named types if you need to pass the query variable
 // across a method boundary.
 IEnumerable<ScoreInfo> studentQuery8 =
 from student in app.students
 where student.ID > 111
 select new ScoreInfo
 {
 Average = student.Scores.Average(),
 ID = student.ID
 };

 Console.WriteLine("\r\n studentQuery8: select new named type");
 foreach (ScoreInfo si in studentQuery8)
 {
 Console.WriteLine("ID = {0}, Average = {1}", si.ID,
si.Average);
 }

 // Produce a filtered sequence of students who appear on a
contact list
 // and whose average is greater than 85.
 IEnumerable<ContactInfo> studentQuery9 =
 from student in app.students
 where student.Scores.Average() > 85
 join ci in app.contactList on student.ID equals ci.ID
 select ci;

 Console.WriteLine("\r\n studentQuery9: select result of join
clause");
 foreach (ContactInfo ci in studentQuery9)
 {
 Console.WriteLine("ID = {0}, Email = {1}", ci.ID, ci.Email);
 }

 // Keep the console window open in debug mode
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }
 /* Output
 Query1: select range_variable
 Claire O'Donnell:112
 Sven Mortensen:113
 Cesar Garcia:114

As shown in studentQuery8 in the previous example, sometimes you might want the
elements of the returned sequence to contain only a subset of the properties of the
source elements. By keeping the returned sequence as small as possible you can reduce
the memory requirements and increase the speed of the execution of the query. You can
accomplish this by creating an anonymous type in the select clause and using an
object initializer to initialize it with the appropriate properties from the source element.
For an example of how to do this, see Object and Collection Initializers.

 studentQuery2: select range_variable.Property
 O'Donnell
 Mortensen
 Garcia

 studentQuery3: select range_variable.Method
 ClaireO@Contoso.com,206-555-0298
 SvenMort@Contoso.com,206-555-1130
 CesarGar@Contoso.com,206-555-0521

 studentQuery4: select range_variable[index]
 First score = 75
 First score = 88
 First score = 97

 studentQuery5: select expression
 Adjusted first score = 82.5
 Adjusted first score = 96.8
 Adjusted first score = 106.7

 studentQuery6: select expression2
 Average = 72.25
 Average = 84.5
 Average = 88.25

 studentQuery7: select new anonymous type
 O'Donnell, Claire
 Mortensen, Sven
 Garcia, Cesar

 studentQuery8: select new named type
 ID = 112, Average = 72.25
 ID = 113, Average = 84.5
 ID = 114, Average = 88.25

 studentQuery9: select result of join clause
 ID = 114, Email = CesarGar@Contoso.com
*/

Remarks

At compile time, the select clause is translated to a method call to the Select standard
query operator.

C# Reference
Query Keywords (LINQ)
from clause
partial (Method) (C# Reference)
Anonymous Types
LINQ in C#
Language Integrated Query (LINQ)

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select

group clause (C# Reference)
Article • 2021-09-15 • 8 minutes to read

The group clause returns a sequence of IGrouping<TKey,TElement> objects that contain
zero or more items that match the key value for the group. For example, you can group
a sequence of strings according to the first letter in each string. In this case, the first
letter is the key and has a type char, and is stored in the Key property of each
IGrouping<TKey,TElement> object. The compiler infers the type of the key.

You can end a query expression with a group clause, as shown in the following example:

C#

If you want to perform additional query operations on each group, you can specify a
temporary identifier by using the into contextual keyword. When you use into , you
must continue with the query, and eventually end it with either a select statement or
another group clause, as shown in the following excerpt:

C#

More complete examples of the use of group with and without into are provided in the
Example section of this article.

Because the IGrouping<TKey,TElement> objects produced by a group query are
essentially a list of lists, you must use a nested foreach loop to access the items in each
group. The outer loop iterates over the group keys, and the inner loop iterates over each

// Query variable is an IEnumerable<IGrouping<char, Student>>
var studentQuery1 =
 from student in students
 group student by student.Last[0];

// Group students by the first letter of their last name
// Query variable is an IEnumerable<IGrouping<char, Student>>
var studentQuery2 =
 from student in students
 group student by student.Last[0] into g
 orderby g.Key
 select g;

Enumerating the results of a group query

https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2

item in the group itself. A group may have a key but no elements. The following is the
foreach loop that executes the query in the previous code examples:

C#

Group keys can be any type, such as a string, a built-in numeric type, or a user-defined
named type or anonymous type.

The previous code examples used a char . A string key could easily have been specified
instead, for example the complete last name:

C#

The following example shows the use of a bool value for a key to divide the results into
two groups. Note that the value is produced by a sub-expression in the group clause.

C#

// Iterate group items with a nested foreach. This IGrouping encapsulates
// a sequence of Student objects, and a Key of type char.
// For convenience, var can also be used in the foreach statement.
foreach (IGrouping<char, Student> studentGroup in studentQuery2)
{
 Console.WriteLine(studentGroup.Key);
 // Explicit type for student could also be used here.
 foreach (var student in studentGroup)
 {
 Console.WriteLine(" {0}, {1}", student.Last, student.First);
 }
 }

Key types

Grouping by string

// Same as previous example except we use the entire last name as a key.
// Query variable is an IEnumerable<IGrouping<string, Student>>
var studentQuery3 =
 from student in students
 group student by student.Last;

Grouping by bool

class GroupSample1
{

 // The element type of the data source.
 public class Student
 {
 public string First { get; set; }
 public string Last { get; set; }
 public int ID { get; set; }
 public List<int> Scores;
 }

 public static List<Student> GetStudents()
 {
 // Use a collection initializer to create the data source. Note that
each element
 // in the list contains an inner sequence of scores.
 List<Student> students = new List<Student>
 {
 new Student {First="Svetlana", Last="Omelchenko", ID=111, Scores=
new List<int> {97, 72, 81, 60}},
 new Student {First="Claire", Last="O'Donnell", ID=112, Scores=
new List<int> {75, 84, 91, 39}},
 new Student {First="Sven", Last="Mortensen", ID=113, Scores= new
List<int> {99, 89, 91, 95}},
 new Student {First="Cesar", Last="Garcia", ID=114, Scores= new
List<int> {72, 81, 65, 84}},
 new Student {First="Debra", Last="Garcia", ID=115, Scores= new
List<int> {97, 89, 85, 82}}
 };

 return students;
 }

 static void Main()
 {
 // Obtain the data source.
 List<Student> students = GetStudents();

 // Group by true or false.
 // Query variable is an IEnumerable<IGrouping<bool, Student>>
 var booleanGroupQuery =
 from student in students
 group student by student.Scores.Average() >= 80; //pass or fail!

 // Execute the query and access items in each group
 foreach (var studentGroup in booleanGroupQuery)
 {
 Console.WriteLine(studentGroup.Key == true ? "High averages" :
"Low averages");
 foreach (var student in studentGroup)
 {
 Console.WriteLine(" {0}, {1}:{2}", student.Last,
student.First, student.Scores.Average());
 }
 }

 // Keep the console window open in debug mode.

The next example uses an expression to create numeric group keys that represent a
percentile range. Note the use of let as a convenient location to store a method call
result, so that you don't have to call the method two times in the group clause. For
more information about how to safely use methods in query expressions, see Handle
exceptions in query expressions.

C#

 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Low averages
 Omelchenko, Svetlana:77.5
 O'Donnell, Claire:72.25
 Garcia, Cesar:75.5
 High averages
 Mortensen, Sven:93.5
 Garcia, Debra:88.25
*/

Grouping by numeric range

class GroupSample2
{
 // The element type of the data source.
 public class Student
 {
 public string First { get; set; }
 public string Last { get; set; }
 public int ID { get; set; }
 public List<int> Scores;
 }

 public static List<Student> GetStudents()
 {
 // Use a collection initializer to create the data source. Note that
each element
 // in the list contains an inner sequence of scores.
 List<Student> students = new List<Student>
 {
 new Student {First="Svetlana", Last="Omelchenko", ID=111, Scores=
new List<int> {97, 72, 81, 60}},
 new Student {First="Claire", Last="O'Donnell", ID=112, Scores=
new List<int> {75, 84, 91, 39}},
 new Student {First="Sven", Last="Mortensen", ID=113, Scores= new
List<int> {99, 89, 91, 95}},
 new Student {First="Cesar", Last="Garcia", ID=114, Scores= new
List<int> {72, 81, 65, 84}},

 new Student {First="Debra", Last="Garcia", ID=115, Scores= new
List<int> {97, 89, 85, 82}}
 };

 return students;
 }

 // This method groups students into percentile ranges based on their
 // grade average. The Average method returns a double, so to produce a
whole
 // number it is necessary to cast to int before dividing by 10.
 static void Main()
 {
 // Obtain the data source.
 List<Student> students = GetStudents();

 // Write the query.
 var studentQuery =
 from student in students
 let avg = (int)student.Scores.Average()
 group student by (avg / 10) into g
 orderby g.Key
 select g;

 // Execute the query.
 foreach (var studentGroup in studentQuery)
 {
 int temp = studentGroup.Key * 10;
 Console.WriteLine("Students with an average between {0} and
{1}", temp, temp + 10);
 foreach (var student in studentGroup)
 {
 Console.WriteLine(" {0}, {1}:{2}", student.Last,
student.First, student.Scores.Average());
 }
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Students with an average between 70 and 80
 Omelchenko, Svetlana:77.5
 O'Donnell, Claire:72.25
 Garcia, Cesar:75.5
 Students with an average between 80 and 90
 Garcia, Debra:88.25
 Students with an average between 90 and 100
 Mortensen, Sven:93.5
 */

Use a composite key when you want to group elements according to more than one
key. You create a composite key by using an anonymous type or a named type to hold
the key element. In the following example, assume that a class Person has been
declared with members named surname and city . The group clause causes a separate
group to be created for each set of persons with the same last name and the same city.

C#

Use a named type if you must pass the query variable to another method. Create a
special class using auto-implemented properties for the keys, and then override the
Equals and GetHashCode methods. You can also use a struct, in which case you do not
strictly have to override those methods. For more information see How to implement a
lightweight class with auto-implemented properties and How to query for duplicate files
in a directory tree. The latter article has a code example that demonstrates how to use a
composite key with a named type.

The following example shows the standard pattern for ordering source data into groups
when no additional query logic is applied to the groups. This is called a grouping
without a continuation. The elements in an array of strings are grouped according to
their first letter. The result of the query is an IGrouping<TKey,TElement> type that
contains a public Key property of type char and an IEnumerable<T> collection that
contains each item in the grouping.

The result of a group clause is a sequence of sequences. Therefore, to access the
individual elements within each returned group, use a nested foreach loop inside the
loop that iterates the group keys, as shown in the following example.

C#

Grouping by composite keys

group person by new {name = person.surname, city = person.city};

Example 1

class GroupExample1
{
 static void Main()
 {
 // Create a data source.
 string[] words = { "blueberry", "chimpanzee", "abacus", "banana",
"apple", "cheese" };

 // Create the query.

https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.object.gethashcode
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

This example shows how to perform additional logic on the groups after you have
created them, by using a continuation with into . For more information, see into. The
following example queries each group to select only those whose key value is a vowel.

C#

 var wordGroups =
 from w in words
 group w by w[0];

 // Execute the query.
 foreach (var wordGroup in wordGroups)
 {
 Console.WriteLine("Words that start with the letter '{0}':",
wordGroup.Key);
 foreach (var word in wordGroup)
 {
 Console.WriteLine(word);
 }
 }

 // Keep the console window open in debug mode
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Words that start with the letter 'b':
 blueberry
 banana
 Words that start with the letter 'c':
 chimpanzee
 cheese
 Words that start with the letter 'a':
 abacus
 apple
 */

Example 2

class GroupClauseExample2
{
 static void Main()
 {
 // Create the data source.
 string[] words2 = { "blueberry", "chimpanzee", "abacus", "banana",
"apple", "cheese", "elephant", "umbrella", "anteater" };

 // Create the query.
 var wordGroups2 =
 from w in words2

At compile time, group clauses are translated into calls to the GroupBy method.

IGrouping<TKey,TElement>
GroupBy
ThenBy
ThenByDescending
Query Keywords
Language Integrated Query (LINQ)
Create a nested group
Group query results
Perform a subquery on a grouping operation

 group w by w[0] into grps
 where (grps.Key == 'a' || grps.Key == 'e' || grps.Key == 'i'
 || grps.Key == 'o' || grps.Key == 'u')
 select grps;

 // Execute the query.
 foreach (var wordGroup in wordGroups2)
 {
 Console.WriteLine("Groups that start with a vowel: {0}",
wordGroup.Key);
 foreach (var word in wordGroup)
 {
 Console.WriteLine(" {0}", word);
 }
 }

 // Keep the console window open in debug mode
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 Groups that start with a vowel: a
 abacus
 apple
 anteater
 Groups that start with a vowel: e
 elephant
 Groups that start with a vowel: u
 umbrella
*/

Remarks

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.igrouping-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenbydescending

into (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The into contextual keyword can be used to create a temporary identifier to store the
results of a group, join or select clause into a new identifier. This identifier can itself be a
generator for additional query commands. When used in a group or select clause, the
use of the new identifier is sometimes referred to as a continuation.

The following example shows the use of the into keyword to enable a temporary
identifier fruitGroup which has an inferred type of IGrouping . By using the identifier,
you can invoke the Count method on each group and select only those groups that
contain two or more words.

C#

Example

class IntoSample1
{
 static void Main()
 {

 // Create a data source.
 string[] words = { "apples", "blueberries", "oranges", "bananas",
"apricots"};

 // Create the query.
 var wordGroups1 =
 from w in words
 group w by w[0] into fruitGroup
 where fruitGroup.Count() >= 2
 select new { FirstLetter = fruitGroup.Key, Words =
fruitGroup.Count() };

 // Execute the query. Note that we only iterate over the groups,
 // not the items in each group
 foreach (var item in wordGroups1)
 {
 Console.WriteLine(" {0} has {1} elements.", item.FirstLetter,
item.Words);
 }

 // Keep the console window open in debug mode
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count

The use of into in a group clause is only necessary when you want to perform
additional query operations on each group. For more information, see group clause.

For an example of the use of into in a join clause, see join clause.

Query Keywords (LINQ)
LINQ in C#
group clause

/* Output:
 a has 2 elements.
 b has 2 elements.
*/

See also

orderby clause (C# Reference)
Article • 2021-09-15 • 2 minutes to read

In a query expression, the orderby clause causes the returned sequence or subsequence
(group) to be sorted in either ascending or descending order. Multiple keys can be
specified in order to perform one or more secondary sort operations. The sorting is
performed by the default comparer for the type of the element. The default sort order is
ascending. You can also specify a custom comparer. However, it is only available by
using method-based syntax. For more information, see Sorting Data.

In the following example, the first query sorts the words in alphabetical order starting
from A, and second query sorts the same words in descending order. (The ascending
keyword is the default sort value and can be omitted.)

C#

Example 1

class OrderbySample1
{
 static void Main()
 {
 // Create a delicious data source.
 string[] fruits = { "cherry", "apple", "blueberry" };

 // Query for ascending sort.
 IEnumerable<string> sortAscendingQuery =
 from fruit in fruits
 orderby fruit //"ascending" is default
 select fruit;

 // Query for descending sort.
 IEnumerable<string> sortDescendingQuery =
 from w in fruits
 orderby w descending
 select w;

 // Execute the query.
 Console.WriteLine("Ascending:");
 foreach (string s in sortAscendingQuery)
 {
 Console.WriteLine(s);
 }

 // Execute the query.
 Console.WriteLine(Environment.NewLine + "Descending:");
 foreach (string s in sortDescendingQuery)

The following example performs a primary sort on the students' last names, and then a
secondary sort on their first names.

C#

 {
 Console.WriteLine(s);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
Ascending:
apple
blueberry
cherry

Descending:
cherry
blueberry
apple
*/

Example 2

class OrderbySample2
{
 // The element type of the data source.
 public class Student
 {
 public string First { get; set; }
 public string Last { get; set; }
 public int ID { get; set; }
 }

 public static List<Student> GetStudents()
 {
 // Use a collection initializer to create the data source. Note that
each element
 // in the list contains an inner sequence of scores.
 List<Student> students = new List<Student>
 {
 new Student {First="Svetlana", Last="Omelchenko", ID=111},
 new Student {First="Claire", Last="O'Donnell", ID=112},
 new Student {First="Sven", Last="Mortensen", ID=113},
 new Student {First="Cesar", Last="Garcia", ID=114},
 new Student {First="Debra", Last="Garcia", ID=115}
 };

 return students;
 }
 static void Main(string[] args)
 {
 // Create the data source.
 List<Student> students = GetStudents();

 // Create the query.
 IEnumerable<Student> sortedStudents =
 from student in students
 orderby student.Last ascending, student.First ascending
 select student;

 // Execute the query.
 Console.WriteLine("sortedStudents:");
 foreach (Student student in sortedStudents)
 Console.WriteLine(student.Last + " " + student.First);

 // Now create groups and sort the groups. The query first sorts the
names
 // of all students so that they will be in alphabetical order after
they are
 // grouped. The second orderby sorts the group keys in alpha order.
 var sortedGroups =
 from student in students
 orderby student.Last, student.First
 group student by student.Last[0] into newGroup
 orderby newGroup.Key
 select newGroup;

 // Execute the query.
 Console.WriteLine(Environment.NewLine + "sortedGroups:");
 foreach (var studentGroup in sortedGroups)
 {
 Console.WriteLine(studentGroup.Key);
 foreach (var student in studentGroup)
 {
 Console.WriteLine(" {0}, {1}", student.Last,
student.First);
 }
 }

 // Keep the console window open in debug mode
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
sortedStudents:
Garcia Cesar
Garcia Debra
Mortensen Sven
O'Donnell Claire
Omelchenko Svetlana

At compile time, the orderby clause is translated to a call to the OrderBy method.
Multiple keys in the orderby clause translate to ThenBy method calls.

C# Reference
Query Keywords (LINQ)
LINQ in C#
group clause
Language Integrated Query (LINQ)

sortedGroups:
G
 Garcia, Cesar
 Garcia, Debra
M
 Mortensen, Sven
O
 O'Donnell, Claire
 Omelchenko, Svetlana
*/

Remarks

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.orderby
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.thenby

join clause (C# Reference)
Article • 2021-11-03 • 10 minutes to read

The join clause is useful for associating elements from different source sequences that
have no direct relationship in the object model. The only requirement is that the
elements in each source share some value that can be compared for equality. For
example, a food distributor might have a list of suppliers of a certain product, and a list
of buyers. A join clause can be used, for example, to create a list of the suppliers and
buyers of that product who are all in the same specified region.

A join clause takes two source sequences as input. The elements in each sequence
must either be or contain a property that can be compared to a corresponding property
in the other sequence. The join clause compares the specified keys for equality by
using the special equals keyword. All joins performed by the join clause are equijoins.
The shape of the output of a join clause depends on the specific type of join you are
performing. The following are three most common join types:

Inner join

Group join

Left outer join

The following example shows a simple inner equijoin. This query produces a flat
sequence of "product name / category" pairs. The same category string will appear in
multiple elements. If an element from categories has no matching products , that
category will not appear in the results.

C#

For more information, see Perform inner joins.

Inner join

var innerJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID
 select new { ProductName = prod.Name, Category = category.Name };
//produces flat sequence

Group join

A join clause with an into expression is called a group join.

C#

A group join produces a hierarchical result sequence, which associates elements in the
left source sequence with one or more matching elements in the right side source
sequence. A group join has no equivalent in relational terms; it is essentially a sequence
of object arrays.

If no elements from the right source sequence are found to match an element in the left
source, the join clause will produce an empty array for that item. Therefore, the group
join is still basically an inner-equijoin except that the result sequence is organized into
groups.

If you just select the results of a group join, you can access the items, but you cannot
identify the key that they match on. Therefore, it is generally more useful to select the
results of the group join into a new type that also has the key name, as shown in the
previous example.

You can also, of course, use the result of a group join as the generator of another
subquery:

C#

For more information, see Perform grouped joins.

In a left outer join, all the elements in the left source sequence are returned, even if no
matching elements are in the right sequence. To perform a left outer join in LINQ, use
the DefaultIfEmpty method in combination with a group join to specify a default right-

var innerGroupJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 select new { CategoryName = category.Name, Products = prodGroup };

var innerGroupJoinQuery2 =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 from prod2 in prodGroup
 where prod2.UnitPrice > 2.50M
 select prod2;

Left outer join

side element to produce if a left-side element has no matches. You can use null as the
default value for any reference type, or you can specify a user-defined default type. In
the following example, a user-defined default type is shown:

C#

For more information, see Perform left outer joins.

A join clause performs an equijoin. In other words, you can only base matches on the
equality of two keys. Other types of comparisons such as "greater than" or "not equals"
are not supported. To make clear that all joins are equijoins, the join clause uses the
equals keyword instead of the == operator. The equals keyword can only be used in a
join clause and it differs from the == operator in some important ways. When
comparing strings, equals has an overload to compare by value and the operator ==
uses reference equality. When both sides of comparison have identical string variables,
equals and == will reach the same result: true. That's because, when a program declares
two or more equivalent string variables, the compiler stores all of them in the same
location, see Reference equality and string interning for more information. Another
important difference is the null comparison: null equals null is evaluated as false with
equals operator, instead of == operator that evaluates it as true. Lastly, the scoping
behavior is different: with equals , the left key consumes the outer source sequence, and
the right key consumes the inner source. The outer source is only in scope on the left
side of equals and the inner source sequence is only in scope on the right side.

You can perform non-equijoins, cross joins, and other custom join operations by using
multiple from clauses to introduce new sequences independently into a query. For more
information, see Perform custom join operations.

var leftOuterJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 from item in prodGroup.DefaultIfEmpty(new Product { Name = String.Empty,
CategoryID = 0 })
 select new { CatName = category.Name, ProdName = item.Name };

The equals operator

Non-equijoins

In a LINQ query expression, join operations are performed on object collections. Object
collections cannot be "joined" in exactly the same way as two relational tables. In LINQ,
explicit join clauses are only required when two source sequences are not tied by any
relationship. When working with LINQ to SQL, foreign key tables are represented in the
object model as properties of the primary table. For example, in the Northwind
database, the Customer table has a foreign key relationship with the Orders table. When
you map the tables to the object model, the Customer class has an Orders property that
contains the collection of Orders associated with that Customer. In effect, the join has
already been done for you.

For more information about querying across related tables in the context of LINQ to
SQL, see How to: Map Database Relationships.

You can test for equality of multiple values by using a composite key. For more
information, see Join by using composite keys. Composite keys can be also used in a
group clause.

The following example compares the results of an inner join, a group join, and a left
outer join on the same data sources by using the same matching keys. Some extra code
is added to these examples to clarify the results in the console display.

C#

Joins on object collections vs. relational tables

Composite keys

Example

class JoinDemonstration
{
 #region Data

 class Product
 {
 public string Name { get; set; }
 public int CategoryID { get; set; }
 }

 class Category
 {
 public string Name { get; set; }
 public int ID { get; set; }
 }

https://learn.microsoft.com/en-ca/dotnet/framework/data/adonet/sql/linq/how-to-map-database-relationships

 // Specify the first data source.
 List<Category> categories = new List<Category>()
 {
 new Category {Name="Beverages", ID=001},
 new Category {Name="Condiments", ID=002},
 new Category {Name="Vegetables", ID=003},
 new Category {Name="Grains", ID=004},
 new Category {Name="Fruit", ID=005}
 };

 // Specify the second data source.
 List<Product> products = new List<Product>()
 {
 new Product {Name="Cola", CategoryID=001},
 new Product {Name="Tea", CategoryID=001},
 new Product {Name="Mustard", CategoryID=002},
 new Product {Name="Pickles", CategoryID=002},
 new Product {Name="Carrots", CategoryID=003},
 new Product {Name="Bok Choy", CategoryID=003},
 new Product {Name="Peaches", CategoryID=005},
 new Product {Name="Melons", CategoryID=005},
 };
 #endregion

 static void Main(string[] args)
 {
 JoinDemonstration app = new JoinDemonstration();

 app.InnerJoin();
 app.GroupJoin();
 app.GroupInnerJoin();
 app.GroupJoin3();
 app.LeftOuterJoin();
 app.LeftOuterJoin2();

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }

 void InnerJoin()
 {
 // Create the query that selects
 // a property from each element.
 var innerJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID
 select new { Category = category.ID, Product = prod.Name };

 Console.WriteLine("InnerJoin:");
 // Execute the query. Access results
 // with a simple foreach statement.
 foreach (var item in innerJoinQuery)
 {
 Console.WriteLine("{0,-10}{1}", item.Product, item.Category);

 }
 Console.WriteLine("InnerJoin: {0} items in 1 group.",
innerJoinQuery.Count());
 Console.WriteLine(System.Environment.NewLine);
 }

 void GroupJoin()
 {
 // This is a demonstration query to show the output
 // of a "raw" group join. A more typical group join
 // is shown in the GroupInnerJoin method.
 var groupJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 select prodGroup;

 // Store the count of total items (for demonstration only).
 int totalItems = 0;

 Console.WriteLine("Simple GroupJoin:");

 // A nested foreach statement is required to access group items.
 foreach (var prodGrouping in groupJoinQuery)
 {
 Console.WriteLine("Group:");
 foreach (var item in prodGrouping)
 {
 totalItems++;
 Console.WriteLine(" {0,-10}{1}", item.Name,
item.CategoryID);
 }
 }
 Console.WriteLine("Unshaped GroupJoin: {0} items in {1} unnamed
groups", totalItems, groupJoinQuery.Count());
 Console.WriteLine(System.Environment.NewLine);
 }

 void GroupInnerJoin()
 {
 var groupJoinQuery2 =
 from category in categories
 orderby category.ID
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 select new
 {
 Category = category.Name,
 Products = from prod2 in prodGroup
 orderby prod2.Name
 select prod2
 };

 //Console.WriteLine("GroupInnerJoin:");
 int totalItems = 0;

 Console.WriteLine("GroupInnerJoin:");
 foreach (var productGroup in groupJoinQuery2)
 {
 Console.WriteLine(productGroup.Category);
 foreach (var prodItem in productGroup.Products)
 {
 totalItems++;
 Console.WriteLine(" {0,-10} {1}", prodItem.Name,
prodItem.CategoryID);
 }
 }
 Console.WriteLine("GroupInnerJoin: {0} items in {1} named groups",
totalItems, groupJoinQuery2.Count());
 Console.WriteLine(System.Environment.NewLine);
 }

 void GroupJoin3()
 {

 var groupJoinQuery3 =
 from category in categories
 join product in products on category.ID equals
product.CategoryID into prodGroup
 from prod in prodGroup
 orderby prod.CategoryID
 select new { Category = prod.CategoryID, ProductName = prod.Name
};

 //Console.WriteLine("GroupInnerJoin:");
 int totalItems = 0;

 Console.WriteLine("GroupJoin3:");
 foreach (var item in groupJoinQuery3)
 {
 totalItems++;
 Console.WriteLine(" {0}:{1}", item.ProductName,
item.Category);
 }

 Console.WriteLine("GroupJoin3: {0} items in 1 group", totalItems);
 Console.WriteLine(System.Environment.NewLine);
 }

 void LeftOuterJoin()
 {
 // Create the query.
 var leftOuterQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 select prodGroup.DefaultIfEmpty(new Product() { Name =
"Nothing!", CategoryID = category.ID });

 // Store the count of total items (for demonstration only).

 int totalItems = 0;

 Console.WriteLine("Left Outer Join:");

 // A nested foreach statement is required to access group items
 foreach (var prodGrouping in leftOuterQuery)
 {
 Console.WriteLine("Group:");
 foreach (var item in prodGrouping)
 {
 totalItems++;
 Console.WriteLine(" {0,-10}{1}", item.Name,
item.CategoryID);
 }
 }
 Console.WriteLine("LeftOuterJoin: {0} items in {1} groups",
totalItems, leftOuterQuery.Count());
 Console.WriteLine(System.Environment.NewLine);
 }

 void LeftOuterJoin2()
 {
 // Create the query.
 var leftOuterQuery2 =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID into
prodGroup
 from item in prodGroup.DefaultIfEmpty()
 select new { Name = item == null ? "Nothing!" : item.Name,
CategoryID = category.ID };

 Console.WriteLine("LeftOuterJoin2: {0} items in 1 group",
leftOuterQuery2.Count());
 // Store the count of total items
 int totalItems = 0;

 Console.WriteLine("Left Outer Join 2:");

 // Groups have been flattened.
 foreach (var item in leftOuterQuery2)
 {
 totalItems++;
 Console.WriteLine("{0,-10}{1}", item.Name, item.CategoryID);
 }
 Console.WriteLine("LeftOuterJoin2: {0} items in 1 group",
totalItems);
 }
}
/*Output:

InnerJoin:
Cola 1
Tea 1
Mustard 2
Pickles 2

Carrots 3
Bok Choy 3
Peaches 5
Melons 5
InnerJoin: 8 items in 1 group.

Unshaped GroupJoin:
Group:
 Cola 1
 Tea 1
Group:
 Mustard 2
 Pickles 2
Group:
 Carrots 3
 Bok Choy 3
Group:
Group:
 Peaches 5
 Melons 5
Unshaped GroupJoin: 8 items in 5 unnamed groups

GroupInnerJoin:
Beverages
 Cola 1
 Tea 1
Condiments
 Mustard 2
 Pickles 2
Vegetables
 Bok Choy 3
 Carrots 3
Grains
Fruit
 Melons 5
 Peaches 5
GroupInnerJoin: 8 items in 5 named groups

GroupJoin3:
 Cola:1
 Tea:1
 Mustard:2
 Pickles:2
 Carrots:3
 Bok Choy:3
 Peaches:5
 Melons:5
GroupJoin3: 8 items in 1 group

Left Outer Join:
Group:

A join clause that is not followed by into is translated into a Join method call. A join
clause that is followed by into is translated to a GroupJoin method call.

Query Keywords (LINQ)
Language Integrated Query (LINQ)
Join Operations
group clause
Perform left outer joins
Perform inner joins
Perform grouped joins
Order the results of a join clause
Join by using composite keys

 Cola 1
 Tea 1
Group:
 Mustard 2
 Pickles 2
Group:
 Carrots 3
 Bok Choy 3
Group:
 Nothing! 4
Group:
 Peaches 5
 Melons 5
LeftOuterJoin: 9 items in 5 groups

LeftOuterJoin2: 9 items in 1 group
Left Outer Join 2:
Cola 1
Tea 1
Mustard 2
Pickles 2
Carrots 3
Bok Choy 3
Nothing! 4
Peaches 5
Melons 5
LeftOuterJoin2: 9 items in 1 group
Press any key to exit.
*/

Remarks

See also

https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.join
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.groupjoin

Compatible database systems for Visual Studio

https://learn.microsoft.com/en-us/visualstudio/data-tools/installing-database-systems-tools-and-samples

let clause (C# Reference)
Article • 2021-09-15 • 2 minutes to read

In a query expression, it is sometimes useful to store the result of a sub-expression in
order to use it in subsequent clauses. You can do this with the let keyword, which
creates a new range variable and initializes it with the result of the expression you
supply. Once initialized with a value, the range variable cannot be used to store another
value. However, if the range variable holds a queryable type, it can be queried.

In the following example let is used in two ways:

1. To create an enumerable type that can itself be queried.

2. To enable the query to call ToLower only one time on the range variable word .
Without using let , you would have to call ToLower in each predicate in the where
clause.

C#

Example

class LetSample1
{
 static void Main()
 {
 string[] strings =
 {
 "A penny saved is a penny earned.",
 "The early bird catches the worm.",
 "The pen is mightier than the sword."
 };

 // Split the sentence into an array of words
 // and select those whose first letter is a vowel.
 var earlyBirdQuery =
 from sentence in strings
 let words = sentence.Split(' ')
 from word in words
 let w = word.ToLower()
 where w[0] == 'a' || w[0] == 'e'
 || w[0] == 'i' || w[0] == 'o'
 || w[0] == 'u'
 select word;

 // Execute the query.
 foreach (var v in earlyBirdQuery)
 {

C# Reference
Query Keywords (LINQ)
LINQ in C#
Language Integrated Query (LINQ)
Handle exceptions in query expressions

 Console.WriteLine("\"{0}\" starts with a vowel", v);
 }

 // Keep the console window open in debug mode.
 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
/* Output:
 "A" starts with a vowel
 "is" starts with a vowel
 "a" starts with a vowel
 "earned." starts with a vowel
 "early" starts with a vowel
 "is" starts with a vowel
*/

See also

ascending (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The ascending contextual keyword is used in the orderby clause in query expressions to
specify that the sort order is from smallest to largest. Because ascending is the default
sort order, you do not have to specify it.

The following example shows the use of ascending in an orderby clause.

C#

C# Reference
LINQ in C#
descending

Example

IEnumerable<string> sortAscendingQuery =
 from vegetable in vegetables
 orderby vegetable ascending
 select vegetable;

See also

descending (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The descending contextual keyword is used in the orderby clause in query expressions
to specify that the sort order is from largest to smallest.

The following example shows the use of descending in an orderby clause.

C#

C# Reference
LINQ in C#
ascending

Example

IEnumerable<string> sortDescendingQuery =
 from vegetable in vegetables
 orderby vegetable descending
 select vegetable;

See also

on (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The on contextual keyword is used in the join clause of a query expression to specify the
join condition.

The following example shows the use of on in a join clause.

C#

C# Reference
Language Integrated Query (LINQ)

Example

var innerJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID
 select new { ProductName = prod.Name, Category = category.Name };

See also

equals (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The equals contextual keyword is used in a join clause in a query expression to
compare the elements of two sequences. For more information, see join clause.

The following example shows the use of the equals keyword in a join clause.

C#

Language Integrated Query (LINQ)

Example

var innerJoinQuery =
 from category in categories
 join prod in products on category.ID equals prod.CategoryID
 select new { ProductName = prod.Name, Category = category.Name };

See also

by (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The by contextual keyword is used in the group clause in a query expression to specify
how the returned items should be grouped. For more information, see group clause.

The following example shows the use of the by contextual keyword in a group clause to
specify that the students should be grouped according to the first letter of the last name
of each student.

C#

LINQ in C#

Example

var query = from student in students
 group student by student.LastName[0];

See also

in (C# Reference)
Article • 2021-09-15 • 2 minutes to read

The in keyword is used in the following contexts:

generic type parameters in generic interfaces and delegates.
As a parameter modifier, which lets you pass an argument to a method by
reference rather than by value.
foreach statements.
from clauses in LINQ query expressions.
join clauses in LINQ query expressions.

C# Keywords
C# Reference

See also

C# operators and expressions
Article • 2022-12-02 • 5 minutes to read

C# provides a number of operators. Many of them are supported by the built-in types
and allow you to perform basic operations with values of those types. Those operators
include the following groups:

Arithmetic operators that perform arithmetic operations with numeric operands
Comparison operators that compare numeric operands
Boolean logical operators that perform logical operations with bool operands
Bitwise and shift operators that perform bitwise or shift operations with operands
of the integral types
Equality operators that check if their operands are equal or not

Typically, you can overload those operators, that is, specify the operator behavior for the
operands of a user-defined type.

The simplest C# expressions are literals (for example, integer and real numbers) and
names of variables. You can combine them into complex expressions by using operators.
Operator precedence and associativity determine the order in which the operations in
an expression are performed. You can use parentheses to change the order of
evaluation imposed by operator precedence and associativity.

In the following code, examples of expressions are at the right-hand side of
assignments:

C#

Typically, an expression produces a result and can be included in another expression. A
void method call is an example of an expression that doesn't produce a result. It can be
used only as a statement, as the following example shows:

int a, b, c;
a = 7;
b = a;
c = b++;
b = a + b * c;
c = a >= 100 ? b : c / 10;
a = (int)Math.Sqrt(b * b + c * c);

string s = "String literal";
char l = s[s.Length - 1];

var numbers = new List<int>(new[] { 1, 2, 3 });
b = numbers.FindLast(n => n > 1);

C#

Here are some other kinds of expressions that C# provides:

Interpolated string expressions that provide convenient syntax to create formatted
strings:

C#

Lambda expressions that allow you to create anonymous functions:

C#

Query expressions that allow you to use query capabilities directly in C#:

C#

You can use an expression body definition to provide a concise definition for a method,
constructor, property, indexer, or finalizer.

Console.WriteLine("Hello, world!");

var r = 2.3;
var message = $"The area of a circle with radius {r} is {Math.PI * r *
r:F3}.";
Console.WriteLine(message);
// Output:
// The area of a circle with radius 2.3 is 16.619.

int[] numbers = { 2, 3, 4, 5 };
var maximumSquare = numbers.Max(x => x * x);
Console.WriteLine(maximumSquare);
// Output:
// 25

var scores = new[] { 90, 97, 78, 68, 85 };
IEnumerable<int> highScoresQuery =
 from score in scores
 where score > 80
 orderby score descending
 select score;
Console.WriteLine(string.Join(" ", highScoresQuery));
// Output:
// 97 90 85

Operator precedence

In an expression with multiple operators, the operators with higher precedence are
evaluated before the operators with lower precedence. In the following example, the
multiplication is performed first because it has higher precedence than addition:

C#

Use parentheses to change the order of evaluation imposed by operator precedence:

C#

The following table lists the C# operators starting with the highest precedence to the
lowest. The operators within each row have the same precedence.

Operators Category or name

x.y, f(x), a[i], x?.y, x?[y], x++, x--, x!, new, typeof, checked, unchecked,
default, nameof, delegate, sizeof, stackalloc, x->y

Primary

+x, -x, !x, ~x, ++x, --x, ^x, (T)x, await, &x, *x, true and false Unary

x..y Range

switch, with switch and with
expressions

x * y, x / y, x % y Multiplicative

x + y, x – y Additive

x << y, x >> y, x >>> y Shift

x < y, x > y, x <= y, x >= y, is, as Relational and type-
testing

x == y, x != y Equality

x & y Boolean logical AND or
bitwise logical AND

x ^ y Boolean logical XOR or
bitwise logical XOR

var a = 2 + 2 * 2;
Console.WriteLine(a); // output: 6

var a = (2 + 2) * 2;
Console.WriteLine(a); // output: 8

Operators Category or name

x | y Boolean logical OR or
bitwise logical OR

x && y Conditional AND

x || y Conditional OR

x ?? y Null-coalescing operator

c ? t : f Conditional operator

x = y, x += y, x -= y, x *= y, x /= y, x %= y, x &= y, x |= y, x ^= y, x
<<= y, x >>= y, x >>>= y, x ??= y, =>

Assignment and lambda
declaration

When operators have the same precedence, associativity of the operators determines
the order in which the operations are performed:

Left-associative operators are evaluated in order from left to right. Except for the
assignment operators and the null-coalescing operators, all binary operators are
left-associative. For example, a + b - c is evaluated as (a + b) - c .
Right-associative operators are evaluated in order from right to left. The
assignment operators, the null-coalescing operators, lambdas, and the conditional
operator ?: are right-associative. For example, x = y = z is evaluated as x = (y =
z) .

Use parentheses to change the order of evaluation imposed by operator associativity:

C#

Operator associativity

） Important

In an expression of the form P?.A0?.A1 , if P is null , neither A0 nor A1 are
evaluated. Similarly, in an expression of the form P?.A0.A1 , because A0 isn't
evaluated when P is null, neither is A0.A1 . See the C# language specification for
more details.

int a = 13 / 5 / 2;
int b = 13 / (5 / 2);
Console.WriteLine($"a = {a}, b = {b}"); // output: a = 1, b = 6

Unrelated to operator precedence and associativity, operands in an expression are
evaluated from left to right. The following examples demonstrate the order in which
operators and operands are evaluated:

Expression Order of evaluation

a + b a, b, +

a + b * c a, b, c, *, +

a / b + c * d a, b, /, c, d, *, +

a / (b + c) * d a, b, c, +, /, d, *

Typically, all operator operands are evaluated. However, some operators evaluate
operands conditionally. That is, the value of the leftmost operand of such an operator
defines if (or which) other operands should be evaluated. These operators are the
conditional logical AND (&&) and OR (||) operators, the null-coalescing operators ?? and
??=, the null-conditional operators ?. and ?[], and the conditional operator ?:. For more
information, see the description of each operator.

For more information, see the following sections of the C# language specification:

Expressions
Operators

C# reference
Operator overloading
Expression trees

Operand evaluation

C# language specification

See also

Arithmetic operators (C# reference)
Article • 2022-10-13 • 11 minutes to read

The following operators perform arithmetic operations with operands of numeric types:

Unary ++ (increment), -- (decrement), + (plus), and - (minus) operators
Binary * (multiplication), / (division), % (remainder), + (addition), and - (subtraction)
operators

Those operators are supported by all integral and floating-point numeric types.

In the case of integral types, those operators (except the ++ and -- operators) are
defined for the int , uint , long , and ulong types. When operands are of other integral
types (sbyte , byte , short , ushort , or char), their values are converted to the int type,
which is also the result type of an operation. When operands are of different integral or
floating-point types, their values are converted to the closest containing type, if such a
type exists. For more information, see the Numeric promotions section of the C#
language specification. The ++ and -- operators are defined for all integral and
floating-point numeric types and the char type. The result type of a compound
assignment expression is the type of the left-hand operand.

The unary increment operator ++ increments its operand by 1. The operand must be a
variable, a property access, or an indexer access.

The increment operator is supported in two forms: the postfix increment operator, x++ ,
and the prefix increment operator, ++x .

The result of x++ is the value of x before the operation, as the following example shows:

C#

Increment operator ++

Postfix increment operator

int i = 3;
Console.WriteLine(i); // output: 3
Console.WriteLine(i++); // output: 3
Console.WriteLine(i); // output: 4

The result of ++x is the value of x after the operation, as the following example shows:

C#

The unary decrement operator -- decrements its operand by 1. The operand must be a
variable, a property access, or an indexer access.

The decrement operator is supported in two forms: the postfix decrement operator, x-- ,
and the prefix decrement operator, --x .

The result of x-- is the value of x before the operation, as the following example shows:

C#

The result of --x is the value of x after the operation, as the following example shows:

C#

Prefix increment operator

double a = 1.5;
Console.WriteLine(a); // output: 1.5
Console.WriteLine(++a); // output: 2.5
Console.WriteLine(a); // output: 2.5

Decrement operator --

Postfix decrement operator

int i = 3;
Console.WriteLine(i); // output: 3
Console.WriteLine(i--); // output: 3
Console.WriteLine(i); // output: 2

Prefix decrement operator

double a = 1.5;
Console.WriteLine(a); // output: 1.5
Console.WriteLine(--a); // output: 0.5
Console.WriteLine(a); // output: 0.5

Unary plus and minus operators

The unary + operator returns the value of its operand. The unary - operator computes
the numeric negation of its operand.

C#

The ulong type doesn't support the unary - operator.

The multiplication operator * computes the product of its operands:

C#

The unary * operator is the pointer indirection operator.

The division operator / divides its left-hand operand by its right-hand operand.

For the operands of integer types, the result of the / operator is of an integer type and
equals the quotient of the two operands rounded towards zero:

C#

Console.WriteLine(+4); // output: 4

Console.WriteLine(-4); // output: -4
Console.WriteLine(-(-4)); // output: 4

uint a = 5;
var b = -a;
Console.WriteLine(b); // output: -5
Console.WriteLine(b.GetType()); // output: System.Int64

Console.WriteLine(-double.NaN); // output: NaN

Multiplication operator *

Console.WriteLine(5 * 2); // output: 10
Console.WriteLine(0.5 * 2.5); // output: 1.25
Console.WriteLine(0.1m * 23.4m); // output: 2.34

Division operator /

Integer division

Console.WriteLine(13 / 5); // output: 2
Console.WriteLine(-13 / 5); // output: -2

To obtain the quotient of the two operands as a floating-point number, use the float ,
double , or decimal type:

C#

For the float , double , and decimal types, the result of the / operator is the quotient of
the two operands:

C#

If one of the operands is decimal , another operand can be neither float nor double ,
because neither float nor double is implicitly convertible to decimal . You must
explicitly convert the float or double operand to the decimal type. For more
information about conversions between numeric types, see Built-in numeric conversions.

The remainder operator % computes the remainder after dividing its left-hand operand
by its right-hand operand.

For the operands of integer types, the result of a % b is the value produced by a - (a /
b) * b . The sign of the non-zero remainder is the same as the sign of the left-hand
operand, as the following example shows:

C#

Console.WriteLine(13 / -5); // output: -2
Console.WriteLine(-13 / -5); // output: 2

Console.WriteLine(13 / 5.0); // output: 2.6

int a = 13;
int b = 5;
Console.WriteLine((double)a / b); // output: 2.6

Floating-point division

Console.WriteLine(16.8f / 4.1f); // output: 4.097561
Console.WriteLine(16.8d / 4.1d); // output: 4.09756097560976
Console.WriteLine(16.8m / 4.1m); // output: 4.0975609756097560975609756098

Remainder operator %

Integer remainder

Use the Math.DivRem method to compute both integer division and remainder results.

For the float and double operands, the result of x % y for the finite x and y is the
value z such that

The sign of z , if non-zero, is the same as the sign of x .
The absolute value of z is the value produced by |x| - n * |y| where n is the
largest possible integer that is less than or equal to |x| / |y| and |x| and |y|
are the absolute values of x and y , respectively.

For information about the behavior of the % operator with non-finite operands, see the
Remainder operator section of the C# language specification.

For the decimal operands, the remainder operator % is equivalent to the remainder
operator of the System.Decimal type.

The following example demonstrates the behavior of the remainder operator with
floating-point operands:

C#

Console.WriteLine(5 % 4); // output: 1
Console.WriteLine(5 % -4); // output: 1
Console.WriteLine(-5 % 4); // output: -1
Console.WriteLine(-5 % -4); // output: -1

Floating-point remainder

７ Note

This method of computing the remainder is analogous to that used for integer
operands, but different from the IEEE 754 specification. If you need the remainder
operation that complies with the IEEE 754 specification, use the
Math.IEEERemainder method.

Console.WriteLine(-5.2f % 2.0f); // output: -1.2
Console.WriteLine(5.9 % 3.1); // output: 2.8
Console.WriteLine(5.9m % 3.1m); // output: 2.8

Addition operator +

https://learn.microsoft.com/en-us/dotnet/api/system.math.divrem
https://learn.microsoft.com/en-us/dotnet/api/system.decimal.op_modulus#system-decimal-op-modulus(system-decimal-system-decimal)
https://learn.microsoft.com/en-us/dotnet/api/system.decimal
https://learn.microsoft.com/en-us/dotnet/api/system.math.ieeeremainder

The addition operator + computes the sum of its operands:

C#

You can also use the + operator for string concatenation and delegate combination. For
more information, see the + and += operators article.

The subtraction operator - subtracts its right-hand operand from its left-hand operand:

C#

You can also use the - operator for delegate removal. For more information, see the -
and -= operators article.

For a binary operator op , a compound assignment expression of the form

C#

is equivalent to

C#

except that x is only evaluated once.

The following example demonstrates the usage of compound assignment with
arithmetic operators:

Console.WriteLine(5 + 4); // output: 9
Console.WriteLine(5 + 4.3); // output: 9.3
Console.WriteLine(5.1m + 4.2m); // output: 9.3

Subtraction operator -

Console.WriteLine(47 - 3); // output: 44
Console.WriteLine(5 - 4.3); // output: 0.7
Console.WriteLine(7.5m - 2.3m); // output: 5.2

Compound assignment

x op= y

x = x op y

C#

Because of numeric promotions, the result of the op operation might be not implicitly
convertible to the type T of x . In such a case, if op is a predefined operator and the
result of the operation is explicitly convertible to the type T of x , a compound
assignment expression of the form x op= y is equivalent to x = (T)(x op y) , except
that x is only evaluated once. The following example demonstrates that behavior:

C#

You also use the += and -= operators to subscribe to and unsubscribe from an event,
respectively. For more information, see How to subscribe to and unsubscribe from
events.

The following list orders arithmetic operators starting from the highest precedence to
the lowest:

Postfix increment x++ and decrement x-- operators

int a = 5;
a += 9;
Console.WriteLine(a); // output: 14

a -= 4;
Console.WriteLine(a); // output: 10

a *= 2;
Console.WriteLine(a); // output: 20

a /= 4;
Console.WriteLine(a); // output: 5

a %= 3;
Console.WriteLine(a); // output: 2

byte a = 200;
byte b = 100;

var c = a + b;
Console.WriteLine(c.GetType()); // output: System.Int32
Console.WriteLine(c); // output: 300

a += b;
Console.WriteLine(a); // output: 44

Operator precedence and associativity

Prefix increment ++x and decrement --x and unary + and - operators
Multiplicative * , / , and % operators
Additive + and - operators

Binary arithmetic operators are left-associative. That is, operators with the same
precedence level are evaluated from left to right.

Use parentheses, () , to change the order of evaluation imposed by operator
precedence and associativity.

C#

For the complete list of C# operators ordered by precedence level, see the Operator
precedence section of the C# operators article.

When the result of an arithmetic operation is outside the range of possible finite values
of the involved numeric type, the behavior of an arithmetic operator depends on the
type of its operands.

Integer division by zero always throws a DivideByZeroException.

If integer arithmetic overflow occurs, the overflow-checking context, which can be
checked or unchecked, controls the resulting behavior:

In a checked context, if overflow happens in a constant expression, a compile-time
error occurs. Otherwise, when the operation is performed at run time, an
OverflowException is thrown.
In an unchecked context, the result is truncated by discarding any high-order bits
that don't fit in the destination type.

Along with the checked and unchecked statements, you can use the checked and
unchecked operators to control the overflow-checking context, in which an expression is
evaluated:

Console.WriteLine(2 + 2 * 2); // output: 6
Console.WriteLine((2 + 2) * 2); // output: 8

Console.WriteLine(9 / 5 / 2); // output: 0
Console.WriteLine(9 / (5 / 2)); // output: 4

Arithmetic overflow and division by zero

Integer arithmetic overflow

https://learn.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception
https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

C#

By default, arithmetic operations occur in an unchecked context.

Arithmetic operations with the float and double types never throw an exception. The
result of arithmetic operations with those types can be one of special values that
represent infinity and not-a-number:

C#

For the operands of the decimal type, arithmetic overflow always throws an
OverflowException. Division by zero always throws a DivideByZeroException.

Because of general limitations of the floating-point representation of real numbers and
floating-point arithmetic, round-off errors might occur in calculations with floating-
point types. That is, the produced result of an expression might differ from the expected
mathematical result. The following example demonstrates several such cases:

C#

int a = int.MaxValue;
int b = 3;

Console.WriteLine(unchecked(a + b)); // output: -2147483646
try
{
 int d = checked(a + b);
}
catch(OverflowException)
{
 Console.WriteLine($"Overflow occurred when adding {a} to {b}.");
}

Floating-point arithmetic overflow

double a = 1.0 / 0.0;
Console.WriteLine(a); // output: Infinity
Console.WriteLine(double.IsInfinity(a)); // output: True

Console.WriteLine(double.MaxValue + double.MaxValue); // output: Infinity

double b = 0.0 / 0.0;
Console.WriteLine(b); // output: NaN
Console.WriteLine(double.IsNaN(b)); // output: True

Round-off errors

https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.dividebyzeroexception

For more information, see remarks at the System.Double, System.Single, or
System.Decimal reference pages.

A user-defined type can overload the unary (++ , -- , + , and -) and binary (* , / , % , + ,
and -) arithmetic operators. When a binary operator is overloaded, the corresponding
compound assignment operator is also implicitly overloaded. A user-defined type can't
explicitly overload a compound assignment operator.

Beginning with C# 11, when you overload an arithmetic operator, you can use the
checked keyword to define the checked version of that operator. The following example
shows how to do that:

C#

Console.WriteLine(.41f % .2f); // output: 0.00999999

double a = 0.1;
double b = 3 * a;
Console.WriteLine(b == 0.3); // output: False
Console.WriteLine(b - 0.3); // output: 5.55111512312578E-17

decimal c = 1 / 3.0m;
decimal d = 3 * c;
Console.WriteLine(d == 1.0m); // output: False
Console.WriteLine(d); // output: 0.9999999999999999999999999999

Operator overloadability

User-defined checked operators

public record struct Point(int X, int Y)
{
 public static Point operator checked +(Point left, Point right)
 {
 checked
 {
 return new Point(left.X + right.X, left.Y + right.Y);
 }
 }

 public static Point operator +(Point left, Point right)
 {
 return new Point(left.X + right.X, left.Y + right.Y);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.double#remarks
https://learn.microsoft.com/en-us/dotnet/api/system.single#remarks
https://learn.microsoft.com/en-us/dotnet/api/system.decimal#remarks

When you define a checked operator, you must also define the corresponding operator
without the checked modifier. The checked operator is called in a checked context; the
operator without the checked modifier is called in an unchecked context. If you only
provide the operator without the checked modifier, it's called in both a checked and
unchecked context.

When you define both versions of an operator, it's expected that their behavior differs
only when the result of an operation is too large to represent in the result type as
follows:

A checked operator throws an OverflowException.
An operator without the checked modifier returns an instance representing a
truncated result.

For information about the difference in behavior of the built-in arithmetic operators, see
the Arithmetic overflow and division by zero section.

You can use the checked modifier only when you overload any of the following
operators:

Unary ++ , -- , and - operators
Binary * , / , + , and - operators
Explicit conversion operators

For more information, see the following sections of the C# language specification:

Postfix increment and decrement operators
Prefix increment and decrement operators
Unary plus operator
Unary minus operator
Multiplication operator

７ Note

The overflow-checking context within the body of a checked operator is not
affected by the presence of the checked modifier. The default context is defined by
the value of the CheckForOverflowUnderflow compiler option. Use the checked
and unchecked statements to explicitly specify the overflow-checking context, as
the example at the beginning of this section demonstrates.

C# language specification

https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

Division operator
Remainder operator
Addition operator
Subtraction operator
Compound assignment
The checked and unchecked operators
Numeric promotions

C# reference
C# operators and expressions
System.Math
System.MathF
Numerics in .NET

See also

https://learn.microsoft.com/en-us/dotnet/api/system.math
https://learn.microsoft.com/en-us/dotnet/api/system.mathf
https://learn.microsoft.com/en-ca/dotnet/standard/numerics

Boolean logical operators - AND, OR,
NOT, XOR
Article • 2022-12-02 • 7 minutes to read

The logical Boolean operators perform logical operations with bool operands. The
operators include the unary logical negation (!), binary logical AND (&), OR (|), and
exclusive OR (^), and the binary conditional logical AND (&&) and OR (||).

Unary ! (logical negation) operator.
Binary & (logical AND), | (logical OR), and ^ (logical exclusive OR) operators. Those
operators always evaluate both operands.
Binary && (conditional logical AND) and || (conditional logical OR) operators.
Those operators evaluate the right-hand operand only if it's necessary.

For operands of the integral numeric types, the & , | , and ^ operators perform bitwise
logical operations. For more information, see Bitwise and shift operators.

The unary prefix ! operator computes logical negation of its operand. That is, it
produces true , if the operand evaluates to false , and false , if the operand evaluates
to true :

C#

The unary postfix ! operator is the null-forgiving operator.

The & operator computes the logical AND of its operands. The result of x & y is true if
both x and y evaluate to true . Otherwise, the result is false .

The & operator evaluates both operands even if the left-hand operand evaluates to
false , so that the operation result is false regardless of the value of the right-hand
operand.

Logical negation operator !

bool passed = false;
Console.WriteLine(!passed); // output: True
Console.WriteLine(!true); // output: False

Logical AND operator &

In the following example, the right-hand operand of the & operator is a method call,
which is performed regardless of the value of the left-hand operand:

C#

The conditional logical AND operator && also computes the logical AND of its operands,
but doesn't evaluate the right-hand operand if the left-hand operand evaluates to
false .

For operands of the integral numeric types, the & operator computes the bitwise logical
AND of its operands. The unary & operator is the address-of operator.

The ^ operator computes the logical exclusive OR, also known as the logical XOR, of its
operands. The result of x ^ y is true if x evaluates to true and y evaluates to false ,
or x evaluates to false and y evaluates to true . Otherwise, the result is false . That is,
for the bool operands, the ^ operator computes the same result as the inequality
operator != .

C#

bool SecondOperand()
{
 Console.WriteLine("Second operand is evaluated.");
 return true;
}

bool a = false & SecondOperand();
Console.WriteLine(a);
// Output:
// Second operand is evaluated.
// False

bool b = true & SecondOperand();
Console.WriteLine(b);
// Output:
// Second operand is evaluated.
// True

Logical exclusive OR operator ^

Console.WriteLine(true ^ true); // output: False
Console.WriteLine(true ^ false); // output: True
Console.WriteLine(false ^ true); // output: True
Console.WriteLine(false ^ false); // output: False

For operands of the integral numeric types, the ^ operator computes the bitwise logical
exclusive OR of its operands.

The | operator computes the logical OR of its operands. The result of x | y is true if
either x or y evaluates to true . Otherwise, the result is false .

The | operator evaluates both operands even if the left-hand operand evaluates to
true , so that the operation result is true regardless of the value of the right-hand
operand.

In the following example, the right-hand operand of the | operator is a method call,
which is performed regardless of the value of the left-hand operand:

C#

The conditional logical OR operator || also computes the logical OR of its operands,
but doesn't evaluate the right-hand operand if the left-hand operand evaluates to true .

For operands of the integral numeric types, the | operator computes the bitwise logical
OR of its operands.

The conditional logical AND operator && , also known as the "short-circuiting" logical
AND operator, computes the logical AND of its operands. The result of x && y is true if

Logical OR operator |

bool SecondOperand()
{
 Console.WriteLine("Second operand is evaluated.");
 return true;
}

bool a = true | SecondOperand();
Console.WriteLine(a);
// Output:
// Second operand is evaluated.
// True

bool b = false | SecondOperand();
Console.WriteLine(b);
// Output:
// Second operand is evaluated.
// True

Conditional logical AND operator &&

both x and y evaluate to true . Otherwise, the result is false . If x evaluates to false ,
y isn't evaluated.

In the following example, the right-hand operand of the && operator is a method call,
which isn't performed if the left-hand operand evaluates to false :

C#

The logical AND operator & also computes the logical AND of its operands, but always
evaluates both operands.

The conditional logical OR operator || , also known as the "short-circuiting" logical OR
operator, computes the logical OR of its operands. The result of x || y is true if either
x or y evaluates to true . Otherwise, the result is false . If x evaluates to true , y isn't
evaluated.

In the following example, the right-hand operand of the || operator is a method call,
which isn't performed if the left-hand operand evaluates to true :

C#

bool SecondOperand()
{
 Console.WriteLine("Second operand is evaluated.");
 return true;
}

bool a = false && SecondOperand();
Console.WriteLine(a);
// Output:
// False

bool b = true && SecondOperand();
Console.WriteLine(b);
// Output:
// Second operand is evaluated.
// True

Conditional logical OR operator ||

bool SecondOperand()
{
 Console.WriteLine("Second operand is evaluated.");
 return true;
}

bool a = true || SecondOperand();

The logical OR operator | also computes the logical OR of its operands, but always
evaluates both operands.

For bool? operands, the & (logical AND) and | (logical OR) operators support the three-
valued logic as follows:

The & operator produces true only if both its operands evaluate to true . If either
x or y evaluates to false , x & y produces false (even if another operand
evaluates to null). Otherwise, the result of x & y is null .

The | operator produces false only if both its operands evaluate to false . If
either x or y evaluates to true , x | y produces true (even if another operand
evaluates to null). Otherwise, the result of x | y is null .

The following table presents that semantics:

x y x&y x|y

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

null null null null

Console.WriteLine(a);
// Output:
// True

bool b = false || SecondOperand();
Console.WriteLine(b);
// Output:
// Second operand is evaluated.
// True

Nullable Boolean logical operators

The behavior of those operators differs from the typical operator behavior with nullable
value types. Typically, an operator that is defined for operands of a value type can be
also used with operands of the corresponding nullable value type. Such an operator
produces null if any of its operands evaluates to null . However, the & and |
operators can produce non-null even if one of the operands evaluates to null . For more
information about the operator behavior with nullable value types, see the Lifted
operators section of the Nullable value types article.

You can also use the ! and ^ operators with bool? operands, as the following example
shows:

C#

The conditional logical operators && and || don't support bool? operands.

For a binary operator op , a compound assignment expression of the form

C#

is equivalent to

C#

except that x is only evaluated once.

The & , | , and ^ operators support compound assignment, as the following example
shows:

C#

bool? test = null;
Display(!test); // output: null
Display(test ^ false); // output: null
Display(test ^ null); // output: null
Display(true ^ null); // output: null

void Display(bool? b) => Console.WriteLine(b is null ? "null" :
b.Value.ToString());

Compound assignment

x op= y

x = x op y

The following list orders logical operators starting from the highest precedence to the
lowest:

Logical negation operator !
Logical AND operator &
Logical exclusive OR operator ^
Logical OR operator |
Conditional logical AND operator &&
Conditional logical OR operator ||

Use parentheses, () , to change the order of evaluation imposed by operator
precedence:

C#

bool test = true;
test &= false;
Console.WriteLine(test); // output: False

test |= true;
Console.WriteLine(test); // output: True

test ^= false;
Console.WriteLine(test); // output: True

７ Note

The conditional logical operators && and || don't support compound assignment.

Operator precedence

Console.WriteLine(true | true & false); // output: True
Console.WriteLine((true | true) & false); // output: False

bool Operand(string name, bool value)
{
 Console.WriteLine($"Operand {name} is evaluated.");
 return value;
}

var byDefaultPrecedence = Operand("A", true) || Operand("B", true) &&
Operand("C", false);
Console.WriteLine(byDefaultPrecedence);
// Output:
// Operand A is evaluated.

For the complete list of C# operators ordered by precedence level, see the Operator
precedence section of the C# operators article.

A user-defined type can overload the ! , & , | , and ^ operators. When a binary operator
is overloaded, the corresponding compound assignment operator is also implicitly
overloaded. A user-defined type can't explicitly overload a compound assignment
operator.

A user-defined type can't overload the conditional logical operators && and || .
However, if a user-defined type overloads the true and false operators and the & or |
operator in a certain way, the && or || operation, respectively, can be evaluated for the
operands of that type. For more information, see the User-defined conditional logical
operators section of the C# language specification.

For more information, see the following sections of the C# language specification:

Logical negation operator
Logical operators
Conditional logical operators
Compound assignment

C# reference
C# operators and expressions
Bitwise and shift operators

// True

var changedOrder = (Operand("A", true) || Operand("B", true)) &&
Operand("C", false);
Console.WriteLine(changedOrder);
// Output:
// Operand A is evaluated.
// Operand C is evaluated.
// False

Operator overloadability

C# language specification

See also

Bitwise and shift operators (C#
reference)
Article • 2022-12-02 • 9 minutes to read

The bitwise and shift operators include unary bitwise complement, binary left and right
shift, unsigned right shift, amd the binary logical AND, OR, and exclusive OR operators.
These operands take operands of the integral numeric types or the char type.

Unary ~ (bitwise complement) operator
Binary << (left shift), >> (right shift), and >>> (unsigned right shift) operators
Binary & (logical AND), | (logical OR), and ^ (logical exclusive OR) operators

Those operators are defined for the int , uint , long , and ulong types. When both
operands are of other integral types (sbyte , byte , short , ushort , or char), their values
are converted to the int type, which is also the result type of an operation. When
operands are of different integral types, their values are converted to the closest
containing integral type. For more information, see the Numeric promotions section of
the C# language specification. The compound operators (such as >>=) don't convert
their arguments to int or have the result type as int .

The & , | , and ^ operators are also defined for operands of the bool type. For more
information, see Boolean logical operators.

Bitwise and shift operations never cause overflow and produce the same results in
checked and unchecked contexts.

The ~ operator produces a bitwise complement of its operand by reversing each bit:

C#

You can also use the ~ symbol to declare finalizers. For more information, see Finalizers.

Bitwise complement operator ~

uint a = 0b_0000_1111_0000_1111_0000_1111_0000_1100;
uint b = ~a;
Console.WriteLine(Convert.ToString(b, toBase: 2));
// Output:
// 11110000111100001111000011110011

The << operator shifts its left-hand operand left by the number of bits defined by its
right-hand operand. For information about how the right-hand operand defines the
shift count, see the Shift count of the shift operators section.

The left-shift operation discards the high-order bits that are outside the range of the
result type and sets the low-order empty bit positions to zero, as the following example
shows:

C#

Because the shift operators are defined only for the int , uint , long , and ulong types,
the result of an operation always contains at least 32 bits. If the left-hand operand is of
another integral type (sbyte , byte , short , ushort , or char), its value is converted to the
int type, as the following example shows:

C#

The >> operator shifts its left-hand operand right by the number of bits defined by its
right-hand operand. For information about how the right-hand operand defines the
shift count, see the Shift count of the shift operators section.

The right-shift operation discards the low-order bits, as the following example shows:

Left-shift operator <<

uint x = 0b_1100_1001_0000_0000_0000_0000_0001_0001;
Console.WriteLine($"Before: {Convert.ToString(x, toBase: 2)}");

uint y = x << 4;
Console.WriteLine($"After: {Convert.ToString(y, toBase: 2)}");
// Output:
// Before: 11001001000000000000000000010001
// After: 10010000000000000000000100010000

byte a = 0b_1111_0001;

var b = a << 8;
Console.WriteLine(b.GetType());
Console.WriteLine($"Shifted byte: {Convert.ToString(b, toBase: 2)}");
// Output:
// System.Int32
// Shifted byte: 1111000100000000

Right-shift operator >>

C#

The high-order empty bit positions are set based on the type of the left-hand operand
as follows:

If the left-hand operand is of type int or long , the right-shift operator performs
an arithmetic shift: the value of the most significant bit (the sign bit) of the left-
hand operand is propagated to the high-order empty bit positions. That is, the
high-order empty bit positions are set to zero if the left-hand operand is non-
negative and set to one if it's negative.

C#

If the left-hand operand is of type uint or ulong , the right-shift operator performs
a logical shift: the high-order empty bit positions are always set to zero.

C#

uint x = 0b_1001;
Console.WriteLine($"Before: {Convert.ToString(x, toBase: 2), 4}");

uint y = x >> 2;
Console.WriteLine($"After: {Convert.ToString(y, toBase: 2).PadLeft(4, '0'),
4}");
// Output:
// Before: 1001
// After: 0010

int a = int.MinValue;
Console.WriteLine($"Before: {Convert.ToString(a, toBase: 2)}");

int b = a >> 3;
Console.WriteLine($"After: {Convert.ToString(b, toBase: 2)}");
// Output:
// Before: 10000000000000000000000000000000
// After: 11110000000000000000000000000000

uint c = 0b_1000_0000_0000_0000_0000_0000_0000_0000;
Console.WriteLine($"Before: {Convert.ToString(c, toBase: 2), 32}");

uint d = c >> 3;
Console.WriteLine($"After: {Convert.ToString(d, toBase: 2).PadLeft(32,
'0'), 32}");
// Output:
// Before: 10000000000000000000000000000000
// After: 00010000000000000000000000000000

Available in C# 11 and later, the >>> operator shifts its left-hand operand right by the
number of bits defined by its right-hand operand. For information about how the right-
hand operand defines the shift count, see the Shift count of the shift operators section.

The >>> operator always performs a logical shift. That is, the high-order empty bit
positions are always set to zero, regardless of the type of the left-hand operand. The >>
operator performs an arithmetic shift (that is, the value of the most significant bit is
propagated to the high-order empty bit positions) if the left-hand operand is of a
signed type. The following example demonstrates the difference between >> and >>>
operators for a negative left-hand operand:

C#

７ Note

Use the unsigned right-shift operator to perform a logical shift on operands of
signed integer types. This is preferred to casting a left-hand operand to an
unsigned type and then casting the result of a shift operation back to a signed
type.

Unsigned right-shift operator >>>

int x = -8;
Console.WriteLine($"Before: {x,11}, hex: {x,8:x}, binary:
{Convert.ToString(x, toBase: 2), 32}");

int y = x >> 2;
Console.WriteLine($"After >>: {y,11}, hex: {y,8:x}, binary:
{Convert.ToString(y, toBase: 2), 32}");

int z = x >>> 2;
Console.WriteLine($"After >>>: {z,11}, hex: {z,8:x}, binary:
{Convert.ToString(z, toBase: 2).PadLeft(32, '0'), 32}");
// Output:
// Before: -8, hex: fffffff8, binary:
11111111111111111111111111111000
// After >>: -2, hex: fffffffe, binary:
11111111111111111111111111111110
// After >>>: 1073741822, hex: 3ffffffe, binary:
00111111111111111111111111111110

Logical AND operator &

The & operator computes the bitwise logical AND of its integral operands:

C#

For bool operands, the & operator computes the logical AND of its operands. The unary
& operator is the address-of operator.

The ^ operator computes the bitwise logical exclusive OR, also known as the bitwise
logical XOR, of its integral operands:

C#

For bool operands, the ^ operator computes the logical exclusive OR of its operands.

The | operator computes the bitwise logical OR of its integral operands:

C#

For bool operands, the | operator computes the logical OR of its operands.

uint a = 0b_1111_1000;
uint b = 0b_1001_1101;
uint c = a & b;
Console.WriteLine(Convert.ToString(c, toBase: 2));
// Output:
// 10011000

Logical exclusive OR operator ^

uint a = 0b_1111_1000;
uint b = 0b_0001_1100;
uint c = a ^ b;
Console.WriteLine(Convert.ToString(c, toBase: 2));
// Output:
// 11100100

Logical OR operator |

uint a = 0b_1010_0000;
uint b = 0b_1001_0001;
uint c = a | b;
Console.WriteLine(Convert.ToString(c, toBase: 2));
// Output:
// 10110001

For a binary operator op , a compound assignment expression of the form

C#

is equivalent to

C#

except that x is only evaluated once.

The following example demonstrates the usage of compound assignment with bitwise
and shift operators:

C#

Compound assignment

x op= y

x = x op y

uint INITIAL_VALUE = 0b_1111_1000;

uint a = INITIAL_VALUE;
a &= 0b_1001_1101;
Display(a); // output: 10011000

a = INITIAL_VALUE;
a |= 0b_0011_0001;
Display(a); // output: 11111001

a = INITIAL_VALUE;
a ^= 0b_1000_0000;
Display(a); // output: 01111000

a = INITIAL_VALUE;
a <<= 2;
Display(a); // output: 1111100000

a = INITIAL_VALUE;
a >>= 4;
Display(a); // output: 00001111

a = INITIAL_VALUE;
a >>>= 4;
Display(a); // output: 00001111

void Display(uint x) => Console.WriteLine($"{Convert.ToString(x, toBase:
2).PadLeft(8, '0'), 8}");

Because of numeric promotions, the result of the op operation might be not implicitly
convertible to the type T of x . In such a case, if op is a predefined operator and the
result of the operation is explicitly convertible to the type T of x , a compound
assignment expression of the form x op= y is equivalent to x = (T)(x op y) , except
that x is only evaluated once. The following example demonstrates that behavior:

C#

The following list orders bitwise and shift operators starting from the highest
precedence to the lowest:

Bitwise complement operator ~
Shift operators << , >> , and >>>
Logical AND operator &
Logical exclusive OR operator ^
Logical OR operator |

Use parentheses, () , to change the order of evaluation imposed by operator
precedence:

C#

byte x = 0b_1111_0001;

int b = x << 8;
Console.WriteLine($"{Convert.ToString(b, toBase: 2)}"); // output:
1111000100000000

x <<= 8;
Console.WriteLine(x); // output: 0

Operator precedence

uint a = 0b_1101;
uint b = 0b_1001;
uint c = 0b_1010;

uint d1 = a | b & c;
Display(d1); // output: 1101

uint d2 = (a | b) & c;
Display(d2); // output: 1000

void Display(uint x) => Console.WriteLine($"{Convert.ToString(x, toBase: 2),
4}");

For the complete list of C# operators ordered by precedence level, see the Operator
precedence section of the C# operators article.

For the built-in shift operators << , >> , and >>> , the type of the right-hand operand
must be int or a type that has a predefined implicit numeric conversion to int .

For the x << count , x >> count , and x >>> count expressions, the actual shift count
depends on the type of x as follows:

If the type of x is int or uint , the shift count is defined by the low-order five bits
of the right-hand operand. That is, the shift count is computed from count & 0x1F
(or count & 0b_1_1111).

If the type of x is long or ulong , the shift count is defined by the low-order six
bits of the right-hand operand. That is, the shift count is computed from count &
0x3F (or count & 0b_11_1111).

The following example demonstrates that behavior:

C#

Shift count of the shift operators

int count1 = 0b_0000_0001;
int count2 = 0b_1110_0001;

int a = 0b_0001;
Console.WriteLine($"{a} << {count1} is {a << count1}; {a} << {count2} is {a
<< count2}");
// Output:
// 1 << 1 is 2; 1 << 225 is 2

int b = 0b_0100;
Console.WriteLine($"{b} >> {count1} is {b >> count1}; {b} >> {count2} is {b
>> count2}");
// Output:
// 4 >> 1 is 2; 4 >> 225 is 2

７ Note

As the preceding example shows, the result of a shift operation can be non-zero
even if the value of the right-hand operand is greater than the number of bits in
the left-hand operand.

The ~ , & , | , and ^ operators are also supported by any enumeration type. For
operands of the same enumeration type, a logical operation is performed on the
corresponding values of the underlying integral type. For example, for any x and y of
an enumeration type T with an underlying type U , the x & y expression produces the
same result as the (T)((U)x & (U)y) expression.

You typically use bitwise logical operators with an enumeration type that is defined with
the Flags attribute. For more information, see the Enumeration types as bit flags section
of the Enumeration types article.

A user-defined type can overload the ~ , << , >> , >>> , & , | , and ^ operators. When a
binary operator is overloaded, the corresponding compound assignment operator is
also implicitly overloaded. A user-defined type can't explicitly overload a compound
assignment operator.

If a user-defined type T overloads the << , >> , or >>> operator, the type of the left-hand
operand must be T . In C# 10 and earlier, the type of the right-hand operand must be
int ; beginning with C# 11, the type of the right-hand operand of an overloaded shift
operator can be any.

For more information, see the following sections of the C# language specification:

Bitwise complement operator
Shift operators
Logical operators
Compound assignment
Numeric promotions
C# 11 - Relaxed shift requirements
C# 11 - Logical right-shift operator

C# reference
C# operators and expressions

Enumeration logical operators

Operator overloadability

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.flagsattribute

Boolean logical operators

Equality operators - test if two objects
are equal or not
Article • 2022-12-02 • 4 minutes to read

The == (equality) and != (inequality) operators check if their operands are equal or not.
Value types are equal when their contents are equal. Reference types are equal when the
two variables refer to the same storage.

The equality operator == returns true if its operands are equal, false otherwise.

Operands of the built-in value types are equal if their values are equal:

C#

Two operands of the same enum type are equal if the corresponding values of the
underlying integral type are equal.

User-defined struct types don't support the == operator by default. To support the ==
operator, a user-defined struct must overload it.

Equality operator ==

Value types equality

int a = 1 + 2 + 3;
int b = 6;
Console.WriteLine(a == b); // output: True

char c1 = 'a';
char c2 = 'A';
Console.WriteLine(c1 == c2); // output: False
Console.WriteLine(c1 == char.ToLower(c2)); // output: True

７ Note

For the == , <, >, <=, and >= operators, if any of the operands is not a number
(Double.NaN or Single.NaN), the result of operation is false . That means that the
NaN value is neither greater than, less than, nor equal to any other double (or
float) value, including NaN . For more information and examples, see the
Double.NaN or Single.NaN reference article.

https://learn.microsoft.com/en-us/dotnet/api/system.double.nan
https://learn.microsoft.com/en-us/dotnet/api/system.single.nan
https://learn.microsoft.com/en-us/dotnet/api/system.double.nan
https://learn.microsoft.com/en-us/dotnet/api/system.single.nan

The == and != operators are supported by C# tuples. For more information, see the
Tuple equality section of the Tuple types article.

By default, two non-record reference-type operands are equal if they refer to the same
object:

C#

As the example shows, user-defined reference types support the == operator by default.
However, a reference type can overload the == operator. If a reference type overloads
the == operator, use the Object.ReferenceEquals method to check if two references of
that type refer to the same object.

Available in C# 9.0 and later, record types support the == and != operators that by
default provide value equality semantics. That is, two record operands are equal when
both of them are null or corresponding values of all fields and auto-implemented
properties are equal.

C#

Reference types equality

public class ReferenceTypesEquality
{
 public class MyClass
 {
 private int id;

 public MyClass(int id) => this.id = id;
 }

 public static void Main()
 {
 var a = new MyClass(1);
 var b = new MyClass(1);
 var c = a;
 Console.WriteLine(a == b); // output: False
 Console.WriteLine(a == c); // output: True
 }
}

Record types equality

public class RecordTypesEquality
{
 public record Point(int X, int Y, string Name);

https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals

As the preceding example shows, for non-record reference-type members their
reference values are compared, not the referenced instances.

Two string operands are equal when both of them are null or both string instances are
of the same length and have identical characters in each character position:

C#

String equality comparisons are case-sensitive ordinal comparisons. For more
information about string comparison, see How to compare strings in C#.

Two delegate operands of the same run-time type are equal when both of them are
null or their invocation lists are of the same length and have equal entries in each
position:

C#

 public record TaggedNumber(int Number, List<string> Tags);

 public static void Main()
 {
 var p1 = new Point(2, 3, "A");
 var p2 = new Point(1, 3, "B");
 var p3 = new Point(2, 3, "A");

 Console.WriteLine(p1 == p2); // output: False
 Console.WriteLine(p1 == p3); // output: True

 var n1 = new TaggedNumber(2, new List<string>() { "A" });
 var n2 = new TaggedNumber(2, new List<string>() { "A" });
 Console.WriteLine(n1 == n2); // output: False
 }
}

String equality

string s1 = "hello!";
string s2 = "HeLLo!";
Console.WriteLine(s1 == s2.ToLower()); // output: True

string s3 = "Hello!";
Console.WriteLine(s1 == s3); // output: False

Delegate equality

Action a = () => Console.WriteLine("a");

For more information, see the Delegate equality operators section of the C# language
specification.

Delegates that are produced from evaluation of semantically identical lambda
expressions aren't equal, as the following example shows:

C#

The inequality operator != returns true if its operands aren't equal, false otherwise.
For the operands of the built-in types, the expression x != y produces the same result
as the expression !(x == y) . For more information about type equality, see the Equality
operator section.

The following example demonstrates the usage of the != operator:

C#

Action b = a + a;
Action c = a + a;
Console.WriteLine(object.ReferenceEquals(b, c)); // output: False
Console.WriteLine(b == c); // output: True

Action a = () => Console.WriteLine("a");
Action b = () => Console.WriteLine("a");

Console.WriteLine(a == b); // output: False
Console.WriteLine(a + b == a + b); // output: True
Console.WriteLine(b + a == a + b); // output: False

Inequality operator !=

int a = 1 + 1 + 2 + 3;
int b = 6;
Console.WriteLine(a != b); // output: True

string s1 = "Hello";
string s2 = "Hello";
Console.WriteLine(s1 != s2); // output: False

object o1 = 1;
object o2 = 1;
Console.WriteLine(o1 != o2); // output: True

Operator overloadability

A user-defined type can overload the == and != operators. If a type overloads one of
the two operators, it must also overload the other one.

A record type can't explicitly overload the == and != operators. If you need to change
the behavior of the == and != operators for record type T , implement the
IEquatable<T>.Equals method with the following signature:

C#

For more information, see the Relational and type-testing operators section of the C#
language specification.

For more information about equality of record types, see the Equality members section
of the records feature proposal note.

C# reference
C# operators and expressions
System.IEquatable<T>
Object.Equals
Object.ReferenceEquals
Equality comparisons
Comparison operators

public virtual bool Equals(T? other);

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1.equals
https://learn.microsoft.com/en-us/dotnet/api/system.iequatable-1
https://learn.microsoft.com/en-us/dotnet/api/system.object.equals
https://learn.microsoft.com/en-us/dotnet/api/system.object.referenceequals

Comparison operators (C# reference)
Article • 2022-12-02 • 2 minutes to read

The < (less than), > (greater than), <= (less than or equal), and >= (greater than or
equal) comparison, also known as relational, operators compare their operands. Those
operators are supported by all integral and floating-point numeric types.

The char type also supports comparison operators. In the case of char operands, the
corresponding character codes are compared.

Enumeration types also support comparison operators. For operands of the same enum
type, the corresponding values of the underlying integral type are compared.

The == and != operators check if their operands are equal or not.

The < operator returns true if its left-hand operand is less than its right-hand operand,
false otherwise:

C#

７ Note

For the == , < , > , <= , and >= operators, if any of the operands is not a number
(Double.NaN or Single.NaN), the result of operation is false . That means that the
NaN value is neither greater than, less than, nor equal to any other double (or
float) value, including NaN . For more information and examples, see the
Double.NaN or Single.NaN reference article.

Less than operator <

Console.WriteLine(7.0 < 5.1); // output: False
Console.WriteLine(5.1 < 5.1); // output: False
Console.WriteLine(0.0 < 5.1); // output: True

Console.WriteLine(double.NaN < 5.1); // output: False
Console.WriteLine(double.NaN >= 5.1); // output: False

Greater than operator >

https://learn.microsoft.com/en-us/dotnet/api/system.double.nan
https://learn.microsoft.com/en-us/dotnet/api/system.single.nan
https://learn.microsoft.com/en-us/dotnet/api/system.double.nan
https://learn.microsoft.com/en-us/dotnet/api/system.single.nan

The > operator returns true if its left-hand operand is greater than its right-hand
operand, false otherwise:

C#

The <= operator returns true if its left-hand operand is less than or equal to its right-
hand operand, false otherwise:

C#

The >= operator returns true if its left-hand operand is greater than or equal to its
right-hand operand, false otherwise:

C#

A user-defined type can overload the < , > , <= , and >= operators.

Console.WriteLine(7.0 > 5.1); // output: True
Console.WriteLine(5.1 > 5.1); // output: False
Console.WriteLine(0.0 > 5.1); // output: False

Console.WriteLine(double.NaN > 5.1); // output: False
Console.WriteLine(double.NaN <= 5.1); // output: False

Less than or equal operator <=

Console.WriteLine(7.0 <= 5.1); // output: False
Console.WriteLine(5.1 <= 5.1); // output: True
Console.WriteLine(0.0 <= 5.1); // output: True

Console.WriteLine(double.NaN > 5.1); // output: False
Console.WriteLine(double.NaN <= 5.1); // output: False

Greater than or equal operator >=

Console.WriteLine(7.0 >= 5.1); // output: True
Console.WriteLine(5.1 >= 5.1); // output: True
Console.WriteLine(0.0 >= 5.1); // output: False

Console.WriteLine(double.NaN < 5.1); // output: False
Console.WriteLine(double.NaN >= 5.1); // output: False

Operator overloadability

If a type overloads one of the < or > operators, it must overload both < and > . If a
type overloads one of the <= or >= operators, it must overload both <= and >= .

For more information, see the Relational and type-testing operators section of the C#
language specification.

C# reference
C# operators and expressions
System.IComparable<T>
Equality operators

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.icomparable-1

Member access operators and
expressions - the dot, indexer, and
invocation operators.
Article • 2022-12-02 • 9 minutes to read

You use several operators and expressions to access a type member. These operators
include member access (.), array element or indexer access ([]), index-from-end (^),
range (..), null-conditional operators (?. and ?[]), and method invocation (()).

. (member access): to access a member of a namespace or a type
[] (array element or indexer access): to access an array element or a type indexer
?. and ?[] (null-conditional operators): to perform a member or element access
operation only if an operand is non-null
() (invocation): to call an accessed method or invoke a delegate
^ (index from end): to indicate that the element position is from the end of a
sequence
.. (range): to specify a range of indices that you can use to obtain a range of
sequence elements

You use the . token to access a member of a namespace or a type, as the following
examples demonstrate:

Use . to access a nested namespace within a namespace, as the following
example of a using directive shows:

C#

Use . to form a qualified name to access a type within a namespace, as the
following code shows:

C#

Use a using directive to make the use of qualified names optional.

Member access expression .

using System.Collections.Generic;

System.Collections.Generic.IEnumerable<int> numbers = new int[] { 1, 2, 3 };

Use . to access type members, static and non-static, as the following code shows:

C#

You can also use . to access an extension method.

Square brackets, [] , are typically used for array, indexer, or pointer element access.

The following example demonstrates how to access array elements:

C#

If an array index is outside the bounds of the corresponding dimension of an array, an
IndexOutOfRangeException is thrown.

As the preceding example shows, you also use square brackets when you declare an
array type or instantiate an array instance.

For more information about arrays, see Arrays.

var constants = new List<double>();
constants.Add(Math.PI);
constants.Add(Math.E);
Console.WriteLine($"{constants.Count} values to show:");
Console.WriteLine(string.Join(", ", constants));
// Output:
// 2 values to show:
// 3.14159265358979, 2.71828182845905

Indexer operator []

Array access

int[] fib = new int[10];
fib[0] = fib[1] = 1;
for (int i = 2; i < fib.Length; i++)
{
 fib[i] = fib[i - 1] + fib[i - 2];
}
Console.WriteLine(fib[fib.Length - 1]); // output: 55

double[,] matrix = new double[2,2];
matrix[0,0] = 1.0;
matrix[0,1] = 2.0;
matrix[1,0] = matrix[1,1] = 3.0;
var determinant = matrix[0,0] * matrix[1,1] - matrix[1,0] * matrix[0,1];
Console.WriteLine(determinant); // output: -3

https://learn.microsoft.com/en-us/dotnet/api/system.indexoutofrangeexception

The following example uses the .NET Dictionary<TKey,TValue> type to demonstrate
indexer access:

C#

Indexers allow you to index instances of a user-defined type in the similar way as array
indexing. Unlike array indices, which must be integer, the indexer parameters can be
declared to be of any type.

For more information about indexers, see Indexers.

For information about pointer element access, see the Pointer element access operator
[] section of the Pointer related operators article.

You also use square brackets to specify attributes:

C#

A null-conditional operator applies a member access, ?. , or element access, ?[] ,
operation to its operand only if that operand evaluates to non-null; otherwise, it returns
null . That is,

If a evaluates to null , the result of a?.x or a?[x] is null .

If a evaluates to non-null, the result of a?.x or a?[x] is the same as the result of
a.x or a[x] , respectively.

Indexer access

var dict = new Dictionary<string, double>();
dict["one"] = 1;
dict["pi"] = Math.PI;
Console.WriteLine(dict["one"] + dict["pi"]); // output: 4.14159265358979

Other usages of []

[System.Diagnostics.Conditional("DEBUG")]
void TraceMethod() {}

Null-conditional operators ?. and ?[]

７ Note

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2

The null-conditional operators are short-circuiting. That is, if one operation in a chain of
conditional member or element access operations returns null , the rest of the chain
doesn't execute. In the following example, B isn't evaluated if A evaluates to null and
C isn't evaluated if A or B evaluates to null :

C#

If A might be null but B and C wouldn't be null if A isn't null, you only need to apply
the null-conditional operator to A :

C#

In the preceding example, B isn't evaluated and C() isn't called if A is null. However, if
the chained member access is interrupted, for example by parentheses as in (A?.B).C() ,
short-circuiting doesn't happen.

The following examples demonstrate the usage of the ?. and ?[] operators:

C#

If a.x or a[x] throws an exception, a?.x or a?[x] would throw the same
exception for non-null a . For example, if a is a non-null array instance and x
is outside the bounds of a , a?[x] would throw an
IndexOutOfRangeException.

A?.B?.Do(C);
A?.B?[C];

A?.B.C();

double SumNumbers(List<double[]> setsOfNumbers, int indexOfSetToSum)
{
 return setsOfNumbers?[indexOfSetToSum]?.Sum() ?? double.NaN;
}

var sum1 = SumNumbers(null, 0);
Console.WriteLine(sum1); // output: NaN

var numberSets = new List<double[]>
{
 new[] { 1.0, 2.0, 3.0 },
 null
};

var sum2 = SumNumbers(numberSets, 0);
Console.WriteLine(sum2); // output: 6

https://learn.microsoft.com/en-us/dotnet/api/system.indexoutofrangeexception

C#

The first of the preceding two examples also uses the null-coalescing operator ?? to
specify an alternative expression to evaluate in case the result of a null-conditional
operation is null .

If a.x or a[x] is of a non-nullable value type T , a?.x or a?[x] is of the corresponding
nullable value type T? . If you need an expression of type T , apply the null-coalescing
operator ?? to a null-conditional expression, as the following example shows:

C#

var sum3 = SumNumbers(numberSets, 1);
Console.WriteLine(sum3); // output: NaN

namespace MemberAccessOperators2;

public static class NullConditionalShortCircuiting
{
 public static void Main()
 {
 Person person = null;
 person?.Name.Write(); // no output: Write() is not called due to
short-circuit.
 try
 {
 (person?.Name).Write();
 }
 catch (NullReferenceException)
 {
 Console.WriteLine("NullReferenceException");
 }; // output: NullReferenceException
 }
}

public class Person
{
 public FullName Name { get; set; }
}

public class FullName
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public void Write()
 {
 Console.WriteLine($"{FirstName} {LastName}");
 }
}

In the preceding example, if you don't use the ?? operator, numbers?.Length < 2
evaluates to false when numbers is null .

The null-conditional member access operator ?. is also known as the Elvis operator.

Use the ?. operator to check if a delegate is non-null and invoke it in a thread-safe way
(for example, when you raise an event), as the following code shows:

C#

That code is equivalent to the following code:

C#

int GetSumOfFirstTwoOrDefault(int[] numbers)
{
 if ((numbers?.Length ?? 0) < 2)
 {
 return 0;
 }
 return numbers[0] + numbers[1];
}

Console.WriteLine(GetSumOfFirstTwoOrDefault(null)); // output: 0
Console.WriteLine(GetSumOfFirstTwoOrDefault(new int[0])); // output: 0
Console.WriteLine(GetSumOfFirstTwoOrDefault(new[] { 3, 4, 5 })); // output:
7

７ Note

The ?. operator evaluates its left-hand operand no more than once, guaranteeing
that it cannot be changed to null after being verified as non-null.

Thread-safe delegate invocation

PropertyChanged?.Invoke(…)

var handler = this.PropertyChanged;
if (handler != null)
{
 handler(…);
}

https://learn.microsoft.com/en-ca/dotnet/standard/events/how-to-raise-and-consume-events

The preceding example is a thread-safe way to ensure that only a non-null handler is
invoked. Because delegate instances are immutable, no thread can change the object
referenced by the handler local variable. In particular, if the code executed by another
thread unsubscribes from the PropertyChanged event and PropertyChanged becomes
null before handler is invoked, the object referenced by handler remains unaffected.

Use parentheses, () , to call a method or invoke a delegate.

The following example demonstrates how to call a method, with or without arguments,
and invoke a delegate:

C#

You also use parentheses when you invoke a constructor with the new operator.

You also use parentheses to adjust the order in which to evaluate operations in an
expression. For more information, see C# operators.

Cast expressions, which perform explicit type conversions, also use parentheses.

The ^ operator indicates the element position from the end of a sequence. For a
sequence of length length , ^n points to the element with offset length - n from the
start of a sequence. For example, ^1 points to the last element of a sequence and
^length points to the first element of a sequence.

C#

Invocation expression ()

Action<int> display = s => Console.WriteLine(s);

var numbers = new List<int>();
numbers.Add(10);
numbers.Add(17);
display(numbers.Count); // output: 2

numbers.Clear();
display(numbers.Count); // output: 0

Other usages of ()

Index from end operator ^

As the preceding example shows, expression ^e is of the System.Index type. In
expression ^e , the result of e must be implicitly convertible to int .

You can also use the ^ operator with the range operator to create a range of indices.
For more information, see Indices and ranges.

The .. operator specifies the start and end of a range of indices as its operands. The
left-hand operand is an inclusive start of a range. The right-hand operand is an exclusive
end of a range. Either of operands can be an index from the start or from the end of a
sequence, as the following example shows:

C#

int[] xs = new[] { 0, 10, 20, 30, 40 };
int last = xs[^1];
Console.WriteLine(last); // output: 40

var lines = new List<string> { "one", "two", "three", "four" };
string prelast = lines[^2];
Console.WriteLine(prelast); // output: three

string word = "Twenty";
Index toFirst = ^word.Length;
char first = word[toFirst];
Console.WriteLine(first); // output: T

Range operator ..

int[] numbers = new[] { 0, 10, 20, 30, 40, 50 };
int start = 1;
int amountToTake = 3;
int[] subset = numbers[start..(start + amountToTake)];
Display(subset); // output: 10 20 30

int margin = 1;
int[] inner = numbers[margin..^margin];
Display(inner); // output: 10 20 30 40

string line = "one two three";
int amountToTakeFromEnd = 5;
Range endIndices = ^amountToTakeFromEnd..^0;
string end = line[endIndices];
Console.WriteLine(end); // output: three

void Display<T>(IEnumerable<T> xs) => Console.WriteLine(string.Join(" ",
xs));

https://learn.microsoft.com/en-us/dotnet/api/system.index

As the preceding example shows, expression a..b is of the System.Range type. In
expression a..b , the results of a and b must be implicitly convertible to Int32 or Index.

You can omit any of the operands of the .. operator to obtain an open-ended range:

a.. is equivalent to a..^0
..b is equivalent to 0..b
.. is equivalent to 0..^0

C#

The following table shows various ways to express collection ranges:

Range operator
expression

Description

.. All values in the collection.

..end Values from the start to the end exclusively.

start.. Values from the start inclusively to the end.

start..end Values from the start inclusively to the end exclusively.

^start.. Values from the start inclusively to the end counting from the end.

..^end Values from the start to the end exclusively counting from the end.

） Important

Implicit conversions from int to Index throw an ArgumentOutOfRangeException
when the value is negative.

int[] numbers = new[] { 0, 10, 20, 30, 40, 50 };
int amountToDrop = numbers.Length / 2;

int[] rightHalf = numbers[amountToDrop..];
Display(rightHalf); // output: 30 40 50

int[] leftHalf = numbers[..^amountToDrop];
Display(leftHalf); // output: 0 10 20

int[] all = numbers[..];
Display(all); // output: 0 10 20 30 40 50

void Display<T>(IEnumerable<T> xs) => Console.WriteLine(string.Join(" ",
xs));

https://learn.microsoft.com/en-us/dotnet/api/system.range
https://learn.microsoft.com/en-us/dotnet/api/system.int32
https://learn.microsoft.com/en-us/dotnet/api/system.index
https://learn.microsoft.com/en-us/dotnet/api/system.argumentoutofrangeexception

Range operator
expression

Description

start..^end Values from start inclusively to end exclusively counting from the
end.

^start..^end Values from start inclusively to end exclusively both counting from
the end.

The following example demonstrates the effect of using all the ranges presented in the
preceding table:

C#

For more information, see Indices and ranges.

The . , () , ^ , and .. operators can't be overloaded. The [] operator is also considered
a non-overloadable operator. Use indexers to support indexing with user-defined types.

int[] oneThroughTen =
{
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
};

Write(oneThroughTen, ..);
Write(oneThroughTen, ..3);
Write(oneThroughTen, 2..);
Write(oneThroughTen, 3..5);
Write(oneThroughTen, ^2..);
Write(oneThroughTen, ..^3);
Write(oneThroughTen, 3..^4);
Write(oneThroughTen, ^4..^2);

static void Write(int[] values, Range range) =>
 Console.WriteLine($"{range}:\t{string.Join(", ", values[range])}");
// Sample output:
// 0..^0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
// 0..3: 1, 2, 3
// 2..^0: 3, 4, 5, 6, 7, 8, 9, 10
// 3..5: 4, 5
// ^2..^0: 9, 10
// 0..^3: 1, 2, 3, 4, 5, 6, 7
// 3..^4: 4, 5, 6
// ^4..^2: 7, 8

Operator overloadability

For more information, see the following sections of the C# language specification:

Member access
Element access
Null-conditional member access
Invocation expressions

For more information about indices and ranges, see the feature proposal note.

Use index operator (style rule IDE0056)
Use range operator (style rule IDE0057)
Use conditional delegate call (style rule IDE1005)
C# reference
C# operators and expressions
?? (null-coalescing operator)
:: operator

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0056
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0057
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide1005

Type-testing operators and cast
expressions - is , as , typeof and casts
Article • 2022-12-02 • 6 minutes to read

These operators and expressions perform type checking or type conversion. The is
operator checks if the run-time type of an expression is compatible with a given type.
The as operator explicitly converts an expression to a given type if its run-time type is
compatible with that type. Cast expressions perform an explicit conversion to a target
type. The typeof operator obtains the System.Type instance for a type.

The is operator checks if the run-time type of an expression result is compatible with a
given type. The is operator also tests an expression result against a pattern.

The expression with the type-testing is operator has the following form

C#

where E is an expression that returns a value and T is the name of a type or a type
parameter. E can't be an anonymous method or a lambda expression.

The is operator returns true when an expression result is non-null and any of the
following conditions are true:

The run-time type of an expression result is T .

The run-time type of an expression result derives from type T , implements
interface T , or another implicit reference conversion exists from it to T .

The run-time type of an expression result is a nullable value type with the
underlying type T and the Nullable<T>.HasValue is true .

A boxing or unboxing conversion exists from the run-time type of an expression
result to type T .

The is operator doesn't consider user-defined conversions.

is operator

E is T

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.hasvalue#system-nullable-1-hasvalue

The following example demonstrates that the is operator returns true if the run-time
type of an expression result derives from a given type, that is, there exists a reference
conversion between types:

C#

The next example shows that the is operator takes into account boxing and unboxing
conversions but doesn't consider numeric conversions:

C#

For information about C# conversions, see the Conversions chapter of the C# language
specification.

The is operator also tests an expression result against a pattern. The following example
shows how to use a declaration pattern to check the run-time type of an expression:

C#

public class Base { }

public class Derived : Base { }

public static class IsOperatorExample
{
 public static void Main()
 {
 object b = new Base();
 Console.WriteLine(b is Base); // output: True
 Console.WriteLine(b is Derived); // output: False

 object d = new Derived();
 Console.WriteLine(d is Base); // output: True
 Console.WriteLine(d is Derived); // output: True
 }
}

int i = 27;
Console.WriteLine(i is System.IFormattable); // output: True

object iBoxed = i;
Console.WriteLine(iBoxed is int); // output: True
Console.WriteLine(iBoxed is long); // output: False

Type testing with pattern matching

int i = 23;
object iBoxed = i;

For information about the supported patterns, see Patterns.

The as operator explicitly converts the result of an expression to a given reference or
nullable value type. If the conversion isn't possible, the as operator returns null . Unlike
a cast expression, the as operator never throws an exception.

The expression of the form

C#

where E is an expression that returns a value and T is the name of a type or a type
parameter, produces the same result as

C#

except that E is only evaluated once.

The as operator considers only reference, nullable, boxing, and unboxing conversions.
You can't use the as operator to perform a user-defined conversion. To do that, use a
cast expression.

The following example demonstrates the usage of the as operator:

C#

int? jNullable = 7;
if (iBoxed is int a && jNullable is int b)
{
 Console.WriteLine(a + b); // output 30
}

as operator

E as T

E is T ? (T)(E) : (T)null

IEnumerable<int> numbers = new[] { 10, 20, 30 };
IList<int> indexable = numbers as IList<int>;
if (indexable != null)
{
 Console.WriteLine(indexable[0] + indexable[indexable.Count - 1]); //
output: 40
}

A cast expression of the form (T)E performs an explicit conversion of the result of
expression E to type T . If no explicit conversion exists from the type of E to type T , a
compile-time error occurs. At run time, an explicit conversion might not succeed and a
cast expression might throw an exception.

The following example demonstrates explicit numeric and reference conversions:

C#

For information about supported explicit conversions, see the Explicit conversions
section of the C# language specification. For information about how to define a custom
explicit or implicit type conversion, see User-defined conversion operators.

You also use parentheses to call a method or invoke a delegate.

Other use of parentheses is to adjust the order in which to evaluate operations in an
expression. For more information, see C# operators.

７ Note

As the preceding example shows, you need to compare the result of the as
expression with null to check if the conversion is successful. You can use the is
operator both to test if the conversion succeeds and, if it succeeds, assign its result
to a new variable.

Cast expression

double x = 1234.7;
int a = (int)x;
Console.WriteLine(a); // output: 1234

IEnumerable<int> numbers = new int[] { 10, 20, 30 };
IList<int> list = (IList<int>)numbers;
Console.WriteLine(list.Count); // output: 3
Console.WriteLine(list[1]); // output: 20

Other usages of ()

typeof operator

The typeof operator obtains the System.Type instance for a type. The argument to the
typeof operator must be the name of a type or a type parameter, as the following
example shows:

C#

The argument mustn't be a type that requires metadata annotations. Examples include
the following types:

dynamic

string? (or any nullable reference type)

These types aren't directly represented in metadata. The types include attributes that
describe the underlying type. In both cases, you can use the underlying type. Instead of
dynamic , you can use object . Instead of string? , you can use string .

You can also use the typeof operator with unbound generic types. The name of an
unbound generic type must contain the appropriate number of commas, which is one
less than the number of type parameters. The following example shows the usage of the
typeof operator with an unbound generic type:

C#

An expression can't be an argument of the typeof operator. To get the System.Type
instance for the run-time type of an expression result, use the Object.GetType method.

void PrintType<T>() => Console.WriteLine(typeof(T));

Console.WriteLine(typeof(List<string>));
PrintType<int>();
PrintType<System.Int32>();
PrintType<Dictionary<int, char>>();
// Output:
// System.Collections.Generic.List`1[System.String]
// System.Int32
// System.Int32
// System.Collections.Generic.Dictionary`2[System.Int32,System.Char]

Console.WriteLine(typeof(Dictionary<,>));
// Output:
// System.Collections.Generic.Dictionary`2[TKey,TValue]

Type testing with the typeof operator

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.object.gettype

Use the typeof operator to check if the run-time type of the expression result exactly
matches a given type. The following example demonstrates the difference between type
checking done with the typeof operator and the is operator:

C#

The is , as , and typeof operators can't be overloaded.

A user-defined type can't overload the () operator, but can define custom type
conversions that can be performed by a cast expression. For more information, see
User-defined conversion operators.

For more information, see the following sections of the C# language specification:

The is operator
The as operator
Cast expressions
The typeof operator

C# reference
C# operators and expressions

public class Animal { }

public class Giraffe : Animal { }

public static class TypeOfExample
{
 public static void Main()
 {
 object b = new Giraffe();
 Console.WriteLine(b is Animal); // output: True
 Console.WriteLine(b.GetType() == typeof(Animal)); // output: False

 Console.WriteLine(b is Giraffe); // output: True
 Console.WriteLine(b.GetType() == typeof(Giraffe)); // output: True
 }
}

Operator overloadability

C# language specification

See also

How to safely cast by using pattern matching and the is and as operators
Generics in .NET

https://learn.microsoft.com/en-ca/dotnet/standard/generics/

User-defined explicit and implicit
conversion operators
Article • 2022-12-02 • 2 minutes to read

A user-defined type can define a custom implicit or explicit conversion from or to
another type. Implicit conversions don't require special syntax to be invoked and can
occur in various situations, for example, in assignments and methods invocations.
Predefined C# implicit conversions always succeed and never throw an exception. User-
defined implicit conversions should behave in that way as well. If a custom conversion
can throw an exception or lose information, define it as an explicit conversion.

User-defined conversions aren't considered by the is and as operators. Use a cast
expression to invoke a user-defined explicit conversion.

Use the operator and implicit or explicit keywords to define an implicit or explicit
conversion, respectively. The type that defines a conversion must be either a source type
or a target type of that conversion. A conversion between two user-defined types can be
defined in either of the two types.

The following example demonstrates how to define an implicit and explicit conversion:

C#

using System;

public readonly struct Digit
{
 private readonly byte digit;

 public Digit(byte digit)
 {
 if (digit > 9)
 {
 throw new ArgumentOutOfRangeException(nameof(digit), "Digit
cannot be greater than nine.");
 }
 this.digit = digit;
 }

 public static implicit operator byte(Digit d) => d.digit;
 public static explicit operator Digit(byte b) => new Digit(b);

 public override string ToString() => $"{digit}";
}

public static class UserDefinedConversions
{

Beginning with C# 11, you can define checked explicit conversion operators. For more
information, see the User-defined checked operators section of the Arithmetic operators
article.

You also use the operator keyword to overload a predefined C# operator. For more
information, see Operator overloading.

For more information, see the following sections of the C# language specification:

Conversion operators
User-defined conversions
Implicit conversions
Explicit conversions

C# reference
C# operators and expressions
Operator overloading
Type-testing and cast operators
Casting and type conversion
Design guidelines - Conversion operators
Chained user-defined explicit conversions in C#

 public static void Main()
 {
 var d = new Digit(7);

 byte number = d;
 Console.WriteLine(number); // output: 7

 Digit digit = (Digit)number;
 Console.WriteLine(digit); // output: 7
 }
}

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/operator-overloads#conversion-operators
https://learn.microsoft.com/en-us/archive/blogs/ericlippert/chained-user-defined-explicit-conversions-in-c

Pointer related operators - take the
address of variables, dereference
storage locations, and access memory
locations
Article • 2022-12-02 • 7 minutes to read

The pointer operators enable you to take the address of a variable (&), dereference a
pointer (*), compare pointer values, and add or subtract pointers and integers.

You use the following operators to work with pointers:

Unary & (address-of) operator: to get the address of a variable
Unary * (pointer indirection) operator: to obtain the variable pointed by a pointer
The -> (member access) and [] (element access) operators
Arithmetic operators +, -, ++, and --
Comparison operators ==, !=, <, >, <=, and >=

For information about pointer types, see Pointer types.

The unary & operator returns the address of its operand:

C#

７ Note

Any operation with pointers requires an unsafe context. The code that contains
unsafe blocks must be compiled with the AllowUnsafeBlocks compiler option.

Address-of operator &

unsafe
{
 int number = 27;
 int* pointerToNumber = &number;

 Console.WriteLine($"Value of the variable: {number}");
 Console.WriteLine($"Address of the variable:
{(long)pointerToNumber:X}");
}
// Output is similar to:

The operand of the & operator must be a fixed variable. Fixed variables are variables
that reside in storage locations that are unaffected by operation of the garbage
collector. In the preceding example, the local variable number is a fixed variable, because
it resides on the stack. Variables that reside in storage locations that can be affected by
the garbage collector (for example, relocated) are called movable variables. Object fields
and array elements are examples of movable variables. You can get the address of a
movable variable if you "fix", or "pin", it with a fixed statement. The obtained address is
valid only inside the block of a fixed statement. The following example shows how to
use a fixed statement and the & operator:

C#

You can't get the address of a constant or a value.

For more information about fixed and movable variables, see the Fixed and moveable
variables section of the C# language specification.

The binary & operator computes the logical AND of its Boolean operands or the bitwise
logical AND of its integral operands.

The unary pointer indirection operator * obtains the variable to which its operand
points. It's also known as the dereference operator. The operand of the * operator must
be of a pointer type.

C#

// Value of the variable: 27
// Address of the variable: 6C1457DBD4

unsafe
{
 byte[] bytes = { 1, 2, 3 };
 fixed (byte* pointerToFirst = &bytes[0])
 {
 // The address stored in pointerToFirst
 // is valid only inside this fixed statement block.
 }
}

Pointer indirection operator *

unsafe
{
 char letter = 'A';
 char* pointerToLetter = &letter;

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/

You can't apply the * operator to an expression of type void* .

The binary * operator computes the product of its numeric operands.

The -> operator combines pointer indirection and member access. That is, if x is a
pointer of type T* and y is an accessible member of type T , an expression of the form

C#

is equivalent to

C#

The following example demonstrates the usage of the -> operator:

C#

 Console.WriteLine($"Value of the `letter` variable: {letter}");
 Console.WriteLine($"Address of the `letter` variable:
{(long)pointerToLetter:X}");

 *pointerToLetter = 'Z';
 Console.WriteLine($"Value of the `letter` variable after update:
{letter}");
}
// Output is similar to:
// Value of the `letter` variable: A
// Address of the `letter` variable: DCB977DDF4
// Value of the `letter` variable after update: Z

Pointer member access operator ->

x->y

(*x).y

public struct Coords
{
 public int X;
 public int Y;
 public override string ToString() => $"({X}, {Y})";
}

public class PointerMemberAccessExample
{
 public static unsafe void Main()
 {

You can't apply the -> operator to an expression of type void* .

For an expression p of a pointer type, a pointer element access of the form p[n] is
evaluated as *(p + n) , where n must be of a type implicitly convertible to int , uint ,
long , or ulong . For information about the behavior of the + operator with pointers, see
the Addition or subtraction of an integral value to or from a pointer section.

The following example demonstrates how to access array elements with a pointer and
the [] operator:

C#

In the preceding example, a stackalloc expression allocates a block of memory on the
stack.

 Coords coords;
 Coords* p = &coords;
 p->X = 3;
 p->Y = 4;
 Console.WriteLine(p->ToString()); // output: (3, 4)
 }
}

Pointer element access operator []

unsafe
{
 char* pointerToChars = stackalloc char[123];

 for (int i = 65; i < 123; i++)
 {
 pointerToChars[i] = (char)i;
 }

 Console.Write("Uppercase letters: ");
 for (int i = 65; i < 91; i++)
 {
 Console.Write(pointerToChars[i]);
 }
}
// Output:
// Uppercase letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ

７ Note

The pointer element access operator doesn't check for out-of-bounds errors.

You can't use [] for pointer element access with an expression of type void* .

You can also use the [] operator for array element or indexer access.

You can perform the following arithmetic operations with pointers:

Add or subtract an integral value to or from a pointer
Subtract two pointers
Increment or decrement a pointer

You can't perform those operations with pointers of type void* .

For information about supported arithmetic operations with numeric types, see
Arithmetic operators.

For a pointer p of type T* and an expression n of a type implicitly convertible to int ,
uint , long , or ulong , addition and subtraction are defined as follows:

Both p + n and n + p expressions produce a pointer of type T* that results from
adding n * sizeof(T) to the address given by p .
The p - n expression produces a pointer of type T* that results from subtracting
n * sizeof(T) from the address given by p .

The sizeof operator obtains the size of a type in bytes.

The following example demonstrates the usage of the + operator with a pointer:

C#

Pointer arithmetic operators

Addition or subtraction of an integral value to or from a
pointer

unsafe
{
 const int Count = 3;
 int[] numbers = new int[Count] { 10, 20, 30 };
 fixed (int* pointerToFirst = &numbers[0])
 {
 int* pointerToLast = pointerToFirst + (Count - 1);

 Console.WriteLine($"Value {*pointerToFirst} at address
{(long)pointerToFirst}");
 Console.WriteLine($"Value {*pointerToLast} at address

For two pointers p1 and p2 of type T* , the expression p1 - p2 produces the difference
between the addresses given by p1 and p2 divided by sizeof(T) . The type of the result
is long . That is, p1 - p2 is computed as ((long)(p1) - (long)(p2)) / sizeof(T) .

The following example demonstrates the pointer subtraction:

C#

The ++ increment operator adds 1 to its pointer operand. The -- decrement operator
subtracts 1 from its pointer operand.

Both operators are supported in two forms: postfix (p++ and p--) and prefix (++p and -
-p). The result of p++ and p-- is the value of p before the operation. The result of ++p
and --p is the value of p after the operation.

The following example demonstrates the behavior of both postfix and prefix increment
operators:

C#

{(long)pointerToLast}");
 }
}
// Output is similar to:
// Value 10 at address 1818345918136
// Value 30 at address 1818345918144

Pointer subtraction

unsafe
{
 int* numbers = stackalloc int[] { 0, 1, 2, 3, 4, 5 };
 int* p1 = &numbers[1];
 int* p2 = &numbers[5];
 Console.WriteLine(p2 - p1); // output: 4
}

Pointer increment and decrement

unsafe
{
 int* numbers = stackalloc int[] { 0, 1, 2 };
 int* p1 = &numbers[0];
 int* p2 = p1;
 Console.WriteLine($"Before operation: p1 - {(long)p1}, p2 -
{(long)p2}");

You can use the == , != , < , > , <= , and >= operators to compare operands of any
pointer type, including void* . Those operators compare the addresses given by the two
operands as if they're unsigned integers.

For information about the behavior of those operators for operands of other types, see
the Equality operators and Comparison operators articles.

The following list orders pointer related operators starting from the highest precedence
to the lowest:

Postfix increment x++ and decrement x-- operators and the -> and [] operators
Prefix increment ++x and decrement --x operators and the & and * operators
Additive + and - operators
Comparison < , > , <= , and >= operators
Equality == and != operators

Use parentheses, () , to change the order of evaluation imposed by operator
precedence.

For the complete list of C# operators ordered by precedence level, see the Operator
precedence section of the C# operators article.

A user-defined type can't overload the pointer related operators & , * , -> , and [] .

 Console.WriteLine($"Postfix increment of p1: {(long)(p1++)}");
 Console.WriteLine($"Prefix increment of p2: {(long)(++p2)}");
 Console.WriteLine($"After operation: p1 - {(long)p1}, p2 - {(long)p2}");
}
// Output is similar to
// Before operation: p1 - 816489946512, p2 - 816489946512
// Postfix increment of p1: 816489946512
// Prefix increment of p2: 816489946516
// After operation: p1 - 816489946516, p2 - 816489946516

Pointer comparison operators

Operator precedence

Operator overloadability

C# language specification

For more information, see the following sections of the C# language specification:

Fixed and moveable variables
The address-of operator
Pointer indirection
Pointer member access
Pointer element access
Pointer arithmetic
Pointer increment and decrement
Pointer comparison

C# reference
C# operators and expressions
Unsafe code, pointer types, and function pointers
unsafe keyword
fixed statement
stackalloc expression
sizeof operator

See also

Assignment operators (C# reference)
Article • 2022-12-02 • 2 minutes to read

The assignment operator = assigns the value of its right-hand operand to a variable, a
property, or an indexer element given by its left-hand operand. The result of an
assignment expression is the value assigned to the left-hand operand. The type of the
right-hand operand must be the same as the type of the left-hand operand or implicitly
convertible to it.

The assignment operator = is right-associative, that is, an expression of the form

C#

is evaluated as

C#

The following example demonstrates the usage of the assignment operator with a local
variable, a property, and an indexer element as its left-hand operand:

C#

a = b = c

a = (b = c)

var numbers = new List<double>() { 1.0, 2.0, 3.0 };

Console.WriteLine(numbers.Capacity);
numbers.Capacity = 100;
Console.WriteLine(numbers.Capacity);
// Output:
// 4
// 100

int newFirstElement;
double originalFirstElement = numbers[0];
newFirstElement = 5;
numbers[0] = newFirstElement;
Console.WriteLine(originalFirstElement);
Console.WriteLine(numbers[0]);
// Output:
// 1
// 5

The left-hand operand of an assignment receives the value of the right-hand operand.
When the operands are of value types, assignment copies the contents of the right-
hand operand. When the operands are of reference types, assignment copies the
reference to the object.

This is called value assignment: the value is assigned.

Ref assignment = ref makes its left-hand operand an alias to the right-hand operand.
The left-hand operand must be a ref local, ref readonly local, or a ref field in a ref
struct . Both operands must be of the same type.

The following example demonstrates the usage of the ref assignment operator:

C#

In the preceding example, the ref local arrayElement variable is initialized as an alias to
the first array element. Then, it's reassigned to become an alias to the last array element.
As it's an alias, when you update its value with an ordinary assignment operator = , the
corresponding array element is also updated.

For a binary operator op , a compound assignment expression of the form

C#

ref assignment

void Display(double[] s) => Console.WriteLine(string.Join(" ", s));

double[] arr = { 0.0, 0.0, 0.0 };
Display(arr);

ref double arrayElement = ref arr[0];
arrayElement = 3.0;
Display(arr);

arrayElement = ref arr[arr.Length - 1];
arrayElement = 5.0;
Display(arr);
// Output:
// 0 0 0
// 3 0 0
// 3 0 5

Compound assignment

is equivalent to

C#

except that x is only evaluated once.

Compound assignment is supported by arithmetic, Boolean logical, and bitwise logical
and shift operators.

You can use the null-coalescing assignment operator ??= to assign the value of its right-
hand operand to its left-hand operand only if the left-hand operand evaluates to null .
For more information, see the ?? and ??= operators article.

A user-defined type can't overload the assignment operator. However, a user-defined
type can define an implicit conversion to another type. That way, the value of a user-
defined type can be assigned to a variable, a property, or an indexer element of another
type. For more information, see User-defined conversion operators.

A user-defined type can't explicitly overload a compound assignment operator.
However, if a user-defined type overloads a binary operator op , the op= operator, if it
exists, is also implicitly overloaded.

For more information, see the Assignment operators section of the C# language
specification.

For more information about the ref assignment operator = ref , see the feature
proposal note.

x op= y

x = x op y

Null-coalescing assignment

Operator overloadability

C# language specification

See also

C# reference
C# operators and expressions
ref keyword
Use compound assignment (style rules IDE0054 and IDE0074)

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0054-ide0074

Lambda expressions and anonymous
functions
Article • 2022-12-02 • 15 minutes to read

You use a lambda expression to create an anonymous function. Use the lambda
declaration operator => to separate the lambda's parameter list from its body. A
lambda expression can be of any of the following two forms:

Expression lambda that has an expression as its body:

C#

Statement lambda that has a statement block as its body:

C#

To create a lambda expression, you specify input parameters (if any) on the left side of
the lambda operator and an expression or a statement block on the other side.

Any lambda expression can be converted to a delegate type. The delegate type to which
a lambda expression can be converted is defined by the types of its parameters and
return value. If a lambda expression doesn't return a value, it can be converted to one of
the Action delegate types; otherwise, it can be converted to one of the Func delegate
types. For example, a lambda expression that has two parameters and returns no value
can be converted to an Action<T1,T2> delegate. A lambda expression that has one
parameter and returns a value can be converted to a Func<T,TResult> delegate. In the
following example, the lambda expression x => x * x , which specifies a parameter
that's named x and returns the value of x squared, is assigned to a variable of a
delegate type:

C#

(input-parameters) => expression

(input-parameters) => { <sequence-of-statements> }

Func<int, int> square = x => x * x;
Console.WriteLine(square(5));
// Output:
// 25

https://learn.microsoft.com/en-us/dotnet/api/system.action-2
https://learn.microsoft.com/en-us/dotnet/api/system.func-2

Expression lambdas can also be converted to the expression tree types, as the following
example shows:

C#

You can use lambda expressions in any code that requires instances of delegate types or
expression trees, for example as an argument to the Task.Run(Action) method to pass
the code that should be executed in the background. You can also use lambda
expressions when you write LINQ in C#, as the following example shows:

C#

When you use method-based syntax to call the Enumerable.Select method in the
System.Linq.Enumerable class, for example in LINQ to Objects and LINQ to XML, the
parameter is a delegate type System.Func<T,TResult>. When you call the
Queryable.Select method in the System.Linq.Queryable class, for example in LINQ to
SQL, the parameter type is an expression tree type
Expression<Func<TSource,TResult>>. In both cases, you can use the same lambda
expression to specify the parameter value. That makes the two Select calls to look
similar although in fact the type of objects created from the lambdas is different.

A lambda expression with an expression on the right side of the => operator is called an
expression lambda. An expression lambda returns the result of the expression and takes
the following basic form:

C#

System.Linq.Expressions.Expression<Func<int, int>> e = x => x * x;
Console.WriteLine(e);
// Output:
// x => (x * x)

int[] numbers = { 2, 3, 4, 5 };
var squaredNumbers = numbers.Select(x => x * x);
Console.WriteLine(string.Join(" ", squaredNumbers));
// Output:
// 4 9 16 25

Expression lambdas

(input-parameters) => expression

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.run#system-threading-tasks-task-run(system-action)
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.select
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable
https://learn.microsoft.com/en-us/dotnet/api/system.func-2
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable.select
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1

The body of an expression lambda can consist of a method call. However, if you're
creating expression trees that are evaluated outside the context of the .NET Common
Language Runtime (CLR), such as in SQL Server, you shouldn't use method calls in
lambda expressions. The methods will have no meaning outside the context of the .NET
Common Language Runtime (CLR).

A statement lambda resembles an expression lambda except that its statements are
enclosed in braces:

C#

The body of a statement lambda can consist of any number of statements; however, in
practice there are typically no more than two or three.

C#

You can't use statement lambdas to create expression trees.

You enclose input parameters of a lambda expression in parentheses. Specify zero input
parameters with empty parentheses:

C#

If a lambda expression has only one input parameter, parentheses are optional:

C#

Statement lambdas

(input-parameters) => { <sequence-of-statements> }

Action<string> greet = name =>
{
 string greeting = $"Hello {name}!";
 Console.WriteLine(greeting);
};
greet("World");
// Output:
// Hello World!

Input parameters of a lambda expression

Action line = () => Console.WriteLine();

Two or more input parameters are separated by commas:

C#

Sometimes the compiler can't infer the types of input parameters. You can specify the
types explicitly as shown in the following example:

C#

Input parameter types must be all explicit or all implicit; otherwise, a CS0748 compiler
error occurs.

Beginning with C# 9.0, you can use discards to specify two or more input parameters of
a lambda expression that aren't used in the expression:

C#

Lambda discard parameters may be useful when you use a lambda expression to
provide an event handler.

You can easily create lambda expressions and statements that incorporate asynchronous
processing by using the async and await keywords. For example, the following Windows
Forms example contains an event handler that calls and awaits an async method,
ExampleMethodAsync .

C#

Func<double, double> cube = x => x * x * x;

Func<int, int, bool> testForEquality = (x, y) => x == y;

Func<int, string, bool> isTooLong = (int x, string s) => s.Length > x;

Func<int, int, int> constant = (_, _) => 42;

７ Note

For backwards compatibility, if only a single input parameter is named _ , then,
within a lambda expression, _ is treated as the name of that parameter.

Async lambdas

https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs0748

You can add the same event handler by using an async lambda. To add this handler, add
an async modifier before the lambda parameter list, as the following example shows:

C#

For more information about how to create and use async methods, see Asynchronous
Programming with async and await.

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 button1.Click += button1_Click;
 }

 private async void button1_Click(object sender, EventArgs e)
 {
 await ExampleMethodAsync();
 textBox1.Text += "\r\nControl returned to Click event handler.\n";
 }

 private async Task ExampleMethodAsync()
 {
 // The following line simulates a task-returning asynchronous
process.
 await Task.Delay(1000);
 }
}

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 button1.Click += async (sender, e) =>
 {
 await ExampleMethodAsync();
 textBox1.Text += "\r\nControl returned to Click event
handler.\n";
 };
 }

 private async Task ExampleMethodAsync()
 {
 // The following line simulates a task-returning asynchronous
process.
 await Task.Delay(1000);
 }
}

The C# language provides built-in support for tuples. You can provide a tuple as an
argument to a lambda expression, and your lambda expression can also return a tuple.
In some cases, the C# compiler uses type inference to determine the types of tuple
components.

You define a tuple by enclosing a comma-delimited list of its components in
parentheses. The following example uses tuple with three components to pass a
sequence of numbers to a lambda expression, which doubles each value and returns a
tuple with three components that contains the result of the multiplications.

C#

Ordinarily, the fields of a tuple are named Item1 , Item2 , and so on. You can, however,
define a tuple with named components, as the following example does.

C#

For more information about C# tuples, see Tuple types.

LINQ to Objects, among other implementations, has an input parameter whose type is
one of the Func<TResult> family of generic delegates. These delegates use type
parameters to define the number and type of input parameters, and the return type of
the delegate. Func delegates are useful for encapsulating user-defined expressions that
are applied to each element in a set of source data. For example, consider the
Func<T,TResult> delegate type:

Lambda expressions and tuples

Func<(int, int, int), (int, int, int)> doubleThem = ns => (2 * ns.Item1, 2 *
ns.Item2, 2 * ns.Item3);
var numbers = (2, 3, 4);
var doubledNumbers = doubleThem(numbers);
Console.WriteLine($"The set {numbers} doubled: {doubledNumbers}");
// Output:
// The set (2, 3, 4) doubled: (4, 6, 8)

Func<(int n1, int n2, int n3), (int, int, int)> doubleThem = ns => (2 *
ns.n1, 2 * ns.n2, 2 * ns.n3);
var numbers = (2, 3, 4);
var doubledNumbers = doubleThem(numbers);
Console.WriteLine($"The set {numbers} doubled: {doubledNumbers}");

Lambdas with the standard query operators

https://learn.microsoft.com/en-us/dotnet/api/system.func-1
https://learn.microsoft.com/en-us/dotnet/api/system.func-2

C#

The delegate can be instantiated as a Func<int, bool> instance where int is an input
parameter and bool is the return value. The return value is always specified in the last
type parameter. For example, Func<int, string, bool> defines a delegate with two
input parameters, int and string , and a return type of bool . The following Func
delegate, when it's invoked, returns Boolean value that indicates whether the input
parameter is equal to five:

C#

You can also supply a lambda expression when the argument type is an
Expression<TDelegate>, for example in the standard query operators that are defined in
the Queryable type. When you specify an Expression<TDelegate> argument, the lambda
is compiled to an expression tree.

The following example uses the Count standard query operator:

C#

The compiler can infer the type of the input parameter, or you can also specify it
explicitly. This particular lambda expression counts those integers (n) which when
divided by two have a remainder of 1.

The following example produces a sequence that contains all elements in the numbers
array that precede the 9, because that's the first number in the sequence that doesn't
meet the condition:

C#

public delegate TResult Func<in T, out TResult>(T arg)

Func<int, bool> equalsFive = x => x == 5;
bool result = equalsFive(4);
Console.WriteLine(result); // False

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };
int oddNumbers = numbers.Count(n => n % 2 == 1);
Console.WriteLine($"There are {oddNumbers} odd numbers in {string.Join(" ",
numbers)}");

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };
var firstNumbersLessThanSix = numbers.TakeWhile(n => n < 6);
Console.WriteLine(string.Join(" ", firstNumbersLessThanSix));

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.queryable
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1
https://learn.microsoft.com/en-us/dotnet/api/system.linq.enumerable.count

The following example specifies multiple input parameters by enclosing them in
parentheses. The method returns all the elements in the numbers array until it finds a
number whose value is less than its ordinal position in the array:

C#

You don't use lambda expressions directly in query expressions, but you can use them in
method calls within query expressions, as the following example shows:

C#

When writing lambdas, you often don't have to specify a type for the input parameters
because the compiler can infer the type based on the lambda body, the parameter
types, and other factors as described in the C# language specification. For most of the
standard query operators, the first input is the type of the elements in the source

// Output:
// 5 4 1 3

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };
var firstSmallNumbers = numbers.TakeWhile((n, index) => n >= index);
Console.WriteLine(string.Join(" ", firstSmallNumbers));
// Output:
// 5 4

var numberSets = new List<int[]>
{
 new[] { 1, 2, 3, 4, 5 },
 new[] { 0, 0, 0 },
 new[] { 9, 8 },
 new[] { 1, 0, 1, 0, 1, 0, 1, 0 }
};

var setsWithManyPositives =
 from numberSet in numberSets
 where numberSet.Count(n => n > 0) > 3
 select numberSet;

foreach (var numberSet in setsWithManyPositives)
{
 Console.WriteLine(string.Join(" ", numberSet));
}
// Output:
// 1 2 3 4 5
// 1 0 1 0 1 0 1 0

Type inference in lambda expressions

sequence. If you're querying an IEnumerable<Customer> , then the input variable is
inferred to be a Customer object, which means you have access to its methods and
properties:

C#

The general rules for type inference for lambdas are as follows:

The lambda must contain the same number of parameters as the delegate type.
Each input parameter in the lambda must be implicitly convertible to its
corresponding delegate parameter.
The return value of the lambda (if any) must be implicitly convertible to the
delegate's return type.

A lambda expression in itself doesn't have a type because the common type system has
no intrinsic concept of "lambda expression." However, it's sometimes convenient to
speak informally of the "type" of a lambda expression. That informal "type" refers to the
delegate type or Expression type to which the lambda expression is converted.

Beginning with C# 10, a lambda expression may have a natural type. Instead of forcing
you to declare a delegate type, such as Func<...> or Action<...> for a lambda
expression, the compiler may infer the delegate type from the lambda expression. For
example, consider the following declaration:

C#

The compiler can infer parse to be a Func<string, int> . The compiler chooses an
available Func or Action delegate, if a suitable one exists. Otherwise, it synthesizes a
delegate type. For example, the delegate type is synthesized if the lambda expression
has ref parameters. When a lambda expression has a natural type, it can be assigned to
a less explicit type, such as System.Object or System.Delegate:

C#

customers.Where(c => c.City == "London");

Natural type of a lambda expression

var parse = (string s) => int.Parse(s);

object parse = (string s) => int.Parse(s); // Func<string, int>
Delegate parse = (string s) => int.Parse(s); // Func<string, int>

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression
https://learn.microsoft.com/en-us/dotnet/api/system.object
https://learn.microsoft.com/en-us/dotnet/api/system.delegate

Method groups (that is, method names without parameter lists) with exactly one
overload have a natural type:

C#

If you assign a lambda expression to System.Linq.Expressions.LambdaExpression, or
System.Linq.Expressions.Expression, and the lambda has a natural delegate type, the
expression has a natural type of System.Linq.Expressions.Expression<TDelegate>, with
the natural delegate type used as the argument for the type parameter:

C#

Not all lambda expressions have a natural type. Consider the following declaration:

C#

The compiler can't infer a parameter type for s . When the compiler can't infer a natural
type, you must declare the type:

C#

Typically, the return type of a lambda expression is obvious and inferred. For some
expressions that doesn't work:

C#

var read = Console.Read; // Just one overload; Func<int> inferred
var write = Console.Write; // ERROR: Multiple overloads, can't choose

LambdaExpression parseExpr = (string s) => int.Parse(s); //
Expression<Func<string, int>>
Expression parseExpr = (string s) => int.Parse(s); //
Expression<Func<string, int>>

var parse = s => int.Parse(s); // ERROR: Not enough type info in the lambda

Func<string, int> parse = s => int.Parse(s);

Explicit return type

var choose = (bool b) => b ? 1 : "two"; // ERROR: Can't infer return type

https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.lambdaexpression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression
https://learn.microsoft.com/en-us/dotnet/api/system.linq.expressions.expression-1

Beginning with C# 10, you can specify the return type of a lambda expression before the
input parameters. When you specify an explicit return type, you must parenthesize the
input parameters:

C#

Beginning with C# 10, you can add attributes to a lambda expression and its
parameters. The following example shows how to add attributes to a lambda expression:

C#

You can also add attributes to the input parameters or return value, as the following
example shows:

C#

As the preceding examples show, you must parenthesize the input parameters when you
add attributes to a lambda expression or its parameters.

var choose = object (bool b) => b ? 1 : "two"; // Func<bool, object>

Attributes

Func<string?, int?> parse = [ProvidesNullCheck] (s) => (s is not null) ?
int.Parse(s) : null;

var concat = ([DisallowNull] string a, [DisallowNull] string b) => a + b;
var inc = [return: NotNullifNotNull(nameof(s))] (int? s) => s.HasValue ? s++
: null;

） Important

Lambda expressions are invoked through the underlying delegate type. That is
different than methods and local functions. The delegate's Invoke method doesn't
check attributes on the lambda expression. Attributes don't have any effect when
the lambda expression is invoked. Attributes on lambda expressions are useful for
code analysis, and can be discovered via reflection. One consequence of this
decision is that the System.Diagnostics.ConditionalAttribute cannot be applied to
a lambda expression.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute

Lambdas can refer to outer variables. These outer variables are the variables that are in
scope in the method that defines the lambda expression, or in scope in the type that
contains the lambda expression. Variables that are captured in this manner are stored
for use in the lambda expression even if the variables would otherwise go out of scope
and be garbage collected. An outer variable must be definitely assigned before it can be
consumed in a lambda expression. The following example demonstrates these rules:

C#

Capture of outer variables and variable scope in
lambda expressions

public static class VariableScopeWithLambdas
{
 public class VariableCaptureGame
 {
 internal Action<int>? updateCapturedLocalVariable;
 internal Func<int, bool>? isEqualToCapturedLocalVariable;

 public void Run(int input)
 {
 int j = 0;

 updateCapturedLocalVariable = x =>
 {
 j = x;
 bool result = j > input;
 Console.WriteLine($"{j} is greater than {input}: {result}");
 };

 isEqualToCapturedLocalVariable = x => x == j;

 Console.WriteLine($"Local variable before lambda invocation:
{j}");
 updateCapturedLocalVariable(10);
 Console.WriteLine($"Local variable after lambda invocation:
{j}");
 }
 }

 public static void Main()
 {
 var game = new VariableCaptureGame();

 int gameInput = 5;
 game.Run(gameInput);

 int jTry = 10;
 bool result = game.isEqualToCapturedLocalVariable!(jTry);
 Console.WriteLine($"Captured local variable is equal to {jTry}:
{result}");

The following rules apply to variable scope in lambda expressions:

A variable that is captured won't be garbage-collected until the delegate that
references it becomes eligible for garbage collection.
Variables introduced within a lambda expression aren't visible in the enclosing
method.
A lambda expression can't directly capture an in, ref, or out parameter from the
enclosing method.
A return statement in a lambda expression doesn't cause the enclosing method to
return.
A lambda expression can't contain a goto, break, or continue statement if the
target of that jump statement is outside the lambda expression block. It's also an
error to have a jump statement outside the lambda expression block if the target is
inside the block.

Beginning with C# 9.0, you can apply the static modifier to a lambda expression to
prevent unintentional capture of local variables or instance state by the lambda:

C#

A static lambda can't capture local variables or instance state from enclosing scopes, but
may reference static members and constant definitions.

 int anotherJ = 3;
 game.updateCapturedLocalVariable!(anotherJ);

 bool equalToAnother = game.isEqualToCapturedLocalVariable(anotherJ);
 Console.WriteLine($"Another lambda observes a new value of captured
variable: {equalToAnother}");
 }
 // Output:
 // Local variable before lambda invocation: 0
 // 10 is greater than 5: True
 // Local variable after lambda invocation: 10
 // Captured local variable is equal to 10: True
 // 3 is greater than 5: False
 // Another lambda observes a new value of captured variable: True
}

Func<double, double> square = static x => x * x;

C# language specification

For more information, see the Anonymous function expressions section of the C#
language specification.

For more information about features added in C# 9.0 and later, see the following feature
proposal notes:

Lambda discard parameters (C# 9.0)
Static anonymous functions (C# 9.0)
Lambda improvements (C# 10)

Use local function instead of lambda (style rule IDE0039)
C# reference
C# operators and expressions
LINQ (Language-Integrated Query)
Expression trees
Local functions vs. lambda expressions
LINQ sample queries
XQuery sample
101 LINQ samples

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0039
https://github.com/microsoftarchive/msdn-code-gallery-microsoft/tree/master/Visual%20Studio%20Product%20Team/Official%20Visual%20Studio%202008%20C%23%20Samples/%5BC%23%5D-Official%20Visual%20Studio%202008%20C%23%20Samples/LINQ%20-%20Sample%20Queries/C%23
https://github.com/microsoftarchive/msdn-code-gallery-microsoft/tree/master/Visual%20Studio%20Product%20Team/Official%20Visual%20Studio%202008%20C%23%20Samples/%5BC%23%5D-Official%20Visual%20Studio%202008%20C%23%20Samples/XQuery/C%23
https://learn.microsoft.com/en-us/samples/dotnet/try-samples/101-linq-samples/

Pattern matching - the is and switch
expressions, and operators and , or and
not in patterns

Article • 2022-12-02 • 17 minutes to read

You use the is expression, the switch statement and the switch expression to match an
input expression against any number of characteristics. C# supports multiple patterns,
including declaration, type, constant, relational, property, list, var, and discard. Patterns
can be combined using boolean logic keywords and , or , and not .

The following C# expressions and statements support pattern matching:

is expression
switch statement
switch expression

In those constructs, you can match an input expression against any of the following
patterns:

Declaration pattern: to check the run-time type of an expression and, if a match
succeeds, assign an expression result to a declared variable.
Type pattern: to check the run-time type of an expression. Introduced in C# 9.0.
Constant pattern: to test if an expression result equals a specified constant.
Relational patterns: to compare an expression result with a specified constant.
Introduced in C# 9.0.
Logical patterns: to test if an expression matches a logical combination of patterns.
Introduced in C# 9.0.
Property pattern: to test if an expression's properties or fields match nested
patterns.
Positional pattern: to deconstruct an expression result and test if the resulting
values match nested patterns.
var pattern: to match any expression and assign its result to a declared variable.
Discard pattern: to match any expression.
List patterns: to test if sequence elements match corresponding nested patterns.
Introduced in C# 11.

Logical, property, positional, and list patterns are recursive patterns. That is, they can
contain nested patterns.

For the example of how to use those patterns to build a data-driven algorithm, see
Tutorial: Use pattern matching to build type-driven and data-driven algorithms.

You use declaration and type patterns to check if the run-time type of an expression is
compatible with a given type. With a declaration pattern, you can also declare a new
local variable. When a declaration pattern matches an expression, that variable is
assigned a converted expression result, as the following example shows:

C#

A declaration pattern with type T matches an expression when an expression result is
non-null and any of the following conditions are true:

The run-time type of an expression result is T .

The run-time type of an expression result derives from type T , implements
interface T , or another implicit reference conversion exists from it to T . The
following example demonstrates two cases when this condition is true:

C#

In the preceding example, at the first call to the GetSourceLabel method, the first
pattern matches an argument value because the argument's run-time type int[]
derives from the Array type. At the second call to the GetSourceLabel method, the

Declaration and type patterns

object greeting = "Hello, World!";
if (greeting is string message)
{
 Console.WriteLine(message.ToLower()); // output: hello, world!
}

var numbers = new int[] { 10, 20, 30 };
Console.WriteLine(GetSourceLabel(numbers)); // output: 1

var letters = new List<char> { 'a', 'b', 'c', 'd' };
Console.WriteLine(GetSourceLabel(letters)); // output: 2

static int GetSourceLabel<T>(IEnumerable<T> source) => source switch
{
 Array array => 1,
 ICollection<T> collection => 2,
 _ => 3,
};

https://learn.microsoft.com/en-us/dotnet/api/system.array

argument's run-time type List<T> doesn't derive from the Array type but
implements the ICollection<T> interface.

The run-time type of an expression result is a nullable value type with the
underlying type T .

A boxing or unboxing conversion exists from the run-time type of an expression
result to type T .

The following example demonstrates the last two conditions:

C#

If you want to check only the type of an expression, you can use a discard _ in place of
a variable's name, as the following example shows:

C#

Beginning with C# 9.0, for that purpose you can use a type pattern, as the following
example shows:

C#

int? xNullable = 7;
int y = 23;
object yBoxed = y;
if (xNullable is int a && yBoxed is int b)
{
 Console.WriteLine(a + b); // output: 30
}

public abstract class Vehicle {}
public class Car : Vehicle {}
public class Truck : Vehicle {}

public static class TollCalculator
{
 public static decimal CalculateToll(this Vehicle vehicle) => vehicle
switch
 {
 Car _ => 2.00m,
 Truck _ => 7.50m,
 null => throw new ArgumentNullException(nameof(vehicle)),
 _ => throw new ArgumentException("Unknown type of a vehicle",
nameof(vehicle)),
 };
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1
https://learn.microsoft.com/en-us/dotnet/api/system.array
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1

Like a declaration pattern, a type pattern matches an expression when an expression
result is non-null and its run-time type satisfies any of the conditions listed above.

To check for non-null, you can use a negated null constant pattern, as the following
example shows:

C#

For more information, see the Declaration pattern and Type pattern sections of the
feature proposal notes.

You use a constant pattern to test if an expression result equals a specified constant, as
the following example shows:

C#

In a constant pattern, you can use any constant expression, such as:

public static decimal CalculateToll(this Vehicle vehicle) => vehicle switch
{
 Car => 2.00m,
 Truck => 7.50m,
 null => throw new ArgumentNullException(nameof(vehicle)),
 _ => throw new ArgumentException("Unknown type of a vehicle",
nameof(vehicle)),
};

if (input is not null)
{
 // ...
}

Constant pattern

public static decimal GetGroupTicketPrice(int visitorCount) => visitorCount
switch
{
 1 => 12.0m,
 2 => 20.0m,
 3 => 27.0m,
 4 => 32.0m,
 0 => 0.0m,
 _ => throw new ArgumentException($"Not supported number of visitors:
{visitorCount}", nameof(visitorCount)),
};

an integer or floating-point numerical literal
a char
a string literal.
a Boolean value true or false
an enum value
the name of a declared const field or local
null

The expression must be a type that is convertible to the constant type, with one
exception: An expression whose type is Span<char> or ReadOnlySpan<char> can be
matched against constant strings in C# 11 and later versions.

Use a constant pattern to check for null , as the following example shows:

C#

The compiler guarantees that no user-overloaded equality operator == is invoked when
expression x is null is evaluated.

Beginning with C# 9.0, you can use a negated null constant pattern to check for non-
null, as the following example shows:

C#

For more information, see the Constant pattern section of the feature proposal note.

Beginning with C# 9.0, you use a relational pattern to compare an expression result with
a constant, as the following example shows:

C#

if (input is null)
{
 return;
}

if (input is not null)
{
 // ...
}

Relational patterns

In a relational pattern, you can use any of the relational operators < , > , <= , or >= . The
right-hand part of a relational pattern must be a constant expression. The constant
expression can be of an integer, floating-point, char, or enum type.

To check if an expression result is in a certain range, match it against a conjunctive and
pattern, as the following example shows:

C#

If an expression result is null or fails to convert to the type of a constant by a nullable
or unboxing conversion, a relational pattern doesn't match an expression.

For more information, see the Relational patterns section of the feature proposal note.

Beginning with C# 9.0, you use the not , and , and or pattern combinators to create the
following logical patterns:

Console.WriteLine(Classify(13)); // output: Too high
Console.WriteLine(Classify(double.NaN)); // output: Unknown
Console.WriteLine(Classify(2.4)); // output: Acceptable

static string Classify(double measurement) => measurement switch
{
 < -4.0 => "Too low",
 > 10.0 => "Too high",
 double.NaN => "Unknown",
 _ => "Acceptable",
};

Console.WriteLine(GetCalendarSeason(new DateTime(2021, 3, 14))); // output:
spring
Console.WriteLine(GetCalendarSeason(new DateTime(2021, 7, 19))); // output:
summer
Console.WriteLine(GetCalendarSeason(new DateTime(2021, 2, 17))); // output:
winter

static string GetCalendarSeason(DateTime date) => date.Month switch
{
 >= 3 and < 6 => "spring",
 >= 6 and < 9 => "summer",
 >= 9 and < 12 => "autumn",
 12 or (>= 1 and < 3) => "winter",
 _ => throw new ArgumentOutOfRangeException(nameof(date), $"Date with
unexpected month: {date.Month}."),
};

Logical patterns

Negation not pattern that matches an expression when the negated pattern
doesn't match the expression. The following example shows how you can negate a
constant null pattern to check if an expression is non-null:

C#

Conjunctive and pattern that matches an expression when both patterns match the
expression. The following example shows how you can combine relational patterns
to check if a value is in a certain range:

C#

Disjunctive or pattern that matches an expression when either pattern matches
the expression, as the following example shows:

C#

if (input is not null)
{
 // ...
}

Console.WriteLine(Classify(13)); // output: High
Console.WriteLine(Classify(-100)); // output: Too low
Console.WriteLine(Classify(5.7)); // output: Acceptable

static string Classify(double measurement) => measurement switch
{
 < -40.0 => "Too low",
 >= -40.0 and < 0 => "Low",
 >= 0 and < 10.0 => "Acceptable",
 >= 10.0 and < 20.0 => "High",
 >= 20.0 => "Too high",
 double.NaN => "Unknown",
};

Console.WriteLine(GetCalendarSeason(new DateTime(2021, 1, 19))); //
output: winter
Console.WriteLine(GetCalendarSeason(new DateTime(2021, 10, 9))); //
output: autumn
Console.WriteLine(GetCalendarSeason(new DateTime(2021, 5, 11))); //
output: spring

static string GetCalendarSeason(DateTime date) => date.Month switch
{
 3 or 4 or 5 => "spring",
 6 or 7 or 8 => "summer",
 9 or 10 or 11 => "autumn",
 12 or 1 or 2 => "winter",

As the preceding example shows, you can repeatedly use the pattern combinators in a
pattern.

The following list orders pattern combinators starting from the highest precedence to
the lowest:

not

and

or

To explicitly specify the precedence, use parentheses, as the following example shows:

C#

For more information, see the Pattern combinators section of the feature proposal note.

You use a property pattern to match an expression's properties or fields against nested
patterns, as the following example shows:

C#

A property pattern matches an expression when an expression result is non-null and
every nested pattern matches the corresponding property or field of the expression

 _ => throw new ArgumentOutOfRangeException(nameof(date), $"Date
with unexpected month: {date.Month}."),
};

Precedence and order of checking

static bool IsLetter(char c) => c is (>= 'a' and <= 'z') or (>= 'A' and <=
'Z');

７ Note

The order in which patterns are checked is undefined. At run time, the right-hand
nested patterns of or and and patterns can be checked first.

Property pattern

static bool IsConferenceDay(DateTime date) => date is { Year: 2020, Month:
5, Day: 19 or 20 or 21 };

result.

You can also add a run-time type check and a variable declaration to a property pattern,
as the following example shows:

C#

A property pattern is a recursive pattern. That is, you can use any pattern as a nested
pattern. Use a property pattern to match parts of data against nested patterns, as the
following example shows:

C#

The preceding example uses two features available in C# 9.0 and later: or pattern
combinator and record types.

Beginning with C# 10, you can reference nested properties or fields within a property
pattern. This capability is known as an extended property pattern. For example, you can
refactor the method from the preceding example into the following equivalent code:

C#

Console.WriteLine(TakeFive("Hello, world!")); // output: Hello
Console.WriteLine(TakeFive("Hi!")); // output: Hi!
Console.WriteLine(TakeFive(new[] { '1', '2', '3', '4', '5', '6', '7' }));
// output: 12345
Console.WriteLine(TakeFive(new[] { 'a', 'b', 'c' })); // output: abc

static string TakeFive(object input) => input switch
{
 string { Length: >= 5 } s => s.Substring(0, 5),
 string s => s,

 ICollection<char> { Count: >= 5 } symbols => new
string(symbols.Take(5).ToArray()),
 ICollection<char> symbols => new string(symbols.ToArray()),

 null => throw new ArgumentNullException(nameof(input)),
 _ => throw new ArgumentException("Not supported input type."),
};

public record Point(int X, int Y);
public record Segment(Point Start, Point End);

static bool IsAnyEndOnXAxis(Segment segment) =>
 segment is { Start: { Y: 0 } } or { End: { Y: 0 } };

static bool IsAnyEndOnXAxis(Segment segment) =>
 segment is { Start.Y: 0 } or { End.Y: 0 };

For more information, see the Property pattern section of the feature proposal note and
the Extended property patterns feature proposal note.

You use a positional pattern to deconstruct an expression result and match the resulting
values against the corresponding nested patterns, as the following example shows:

C#

At the preceding example, the type of an expression contains the Deconstruct method,
which is used to deconstruct an expression result. You can also match expressions of
tuple types against positional patterns. In that way, you can match multiple inputs
against various patterns, as the following example shows:

C#

 Tip

You can use the Simplify property pattern (IDE0170) style rule to improve code
readability by suggesting places to use extended property patterns.

Positional pattern

public readonly struct Point
{
 public int X { get; }
 public int Y { get; }

 public Point(int x, int y) => (X, Y) = (x, y);

 public void Deconstruct(out int x, out int y) => (x, y) = (X, Y);
}

static string Classify(Point point) => point switch
{
 (0, 0) => "Origin",
 (1, 0) => "positive X basis end",
 (0, 1) => "positive Y basis end",
 _ => "Just a point",
};

static decimal GetGroupTicketPriceDiscount(int groupSize, DateTime
visitDate)
 => (groupSize, visitDate.DayOfWeek) switch
 {
 (<= 0, _) => throw new ArgumentException("Group size must be

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0170

The preceding example uses relational and logical patterns, which are available in C# 9.0
and later.

You can use the names of tuple elements and Deconstruct parameters in a positional
pattern, as the following example shows:

C#

You can also extend a positional pattern in any of the following ways:

Add a run-time type check and a variable declaration, as the following example
shows:

C#

positive."),
 (_, DayOfWeek.Saturday or DayOfWeek.Sunday) => 0.0m,
 (>= 5 and < 10, DayOfWeek.Monday) => 20.0m,
 (>= 10, DayOfWeek.Monday) => 30.0m,
 (>= 5 and < 10, _) => 12.0m,
 (>= 10, _) => 15.0m,
 _ => 0.0m,
 };

var numbers = new List<int> { 1, 2, 3 };
if (SumAndCount(numbers) is (Sum: var sum, Count: > 0))
{
 Console.WriteLine($"Sum of [{string.Join(" ", numbers)}] is {sum}"); //
output: Sum of [1 2 3] is 6
}

static (double Sum, int Count) SumAndCount(IEnumerable<int> numbers)
{
 int sum = 0;
 int count = 0;
 foreach (int number in numbers)
 {
 sum += number;
 count++;
 }
 return (sum, count);
}

public record Point2D(int X, int Y);
public record Point3D(int X, int Y, int Z);

static string PrintIfAllCoordinatesArePositive(object point) => point
switch
{
 Point2D (> 0, > 0) p => p.ToString(),

The preceding example uses positional records that implicitly provide the
Deconstruct method.

Use a property pattern within a positional pattern, as the following example shows:

C#

Combine two preceding usages, as the following example shows:

C#

A positional pattern is a recursive pattern. That is, you can use any pattern as a nested
pattern.

For more information, see the Positional pattern section of the feature proposal note.

You use a var pattern to match any expression, including null , and assign its result to a
new local variable, as the following example shows:

C#

 Point3D (> 0, > 0, > 0) p => p.ToString(),
 _ => string.Empty,
};

public record WeightedPoint(int X, int Y)
{
 public double Weight { get; set; }
}

static bool IsInDomain(WeightedPoint point) => point is (>= 0, >= 0) {
Weight: >= 0.0 };

if (input is WeightedPoint (> 0, > 0) { Weight: > 0.0 } p)
{
 // ..
}

var pattern

static bool IsAcceptable(int id, int absLimit) =>
 SimulateDataFetch(id) is var results
 && results.Min() >= -absLimit
 && results.Max() <= absLimit;

static int[] SimulateDataFetch(int id)
{

A var pattern is useful when you need a temporary variable within a Boolean expression
to hold the result of intermediate calculations. You can also use a var pattern when you
need to perform more checks in when case guards of a switch expression or statement,
as the following example shows:

C#

In the preceding example, pattern var (x, y) is equivalent to a positional pattern (var
x, var y) .

In a var pattern, the type of a declared variable is the compile-time type of the
expression that is matched against the pattern.

For more information, see the Var pattern section of the feature proposal note.

You use a discard pattern _ to match any expression, including null , as the following
example shows:

C#

 var rand = new Random();
 return Enumerable
 .Range(start: 0, count: 5)
 .Select(s => rand.Next(minValue: -10, maxValue: 11))
 .ToArray();
}

public record Point(int X, int Y);

static Point Transform(Point point) => point switch
{
 var (x, y) when x < y => new Point(-x, y),
 var (x, y) when x > y => new Point(x, -y),
 var (x, y) => new Point(x, y),
};

static void TestTransform()
{
 Console.WriteLine(Transform(new Point(1, 2))); // output: Point { X =
-1, Y = 2 }
 Console.WriteLine(Transform(new Point(5, 2))); // output: Point { X =
5, Y = -2 }
}

Discard pattern

In the preceding example, a discard pattern is used to handle null and any integer
value that doesn't have the corresponding member of the DayOfWeek enumeration.
That guarantees that a switch expression in the example handles all possible input
values. If you don't use a discard pattern in a switch expression and none of the
expression's patterns matches an input, the runtime throws an exception. The compiler
generates a warning if a switch expression doesn't handle all possible input values.

A discard pattern can't be a pattern in an is expression or a switch statement. In those
cases, to match any expression, use a var pattern with a discard: var _ .

For more information, see the Discard pattern section of the feature proposal note.

Beginning with C# 9.0, you can put parentheses around any pattern. Typically, you do
that to emphasize or change the precedence in logical patterns, as the following
example shows:

C#

Console.WriteLine(GetDiscountInPercent(DayOfWeek.Friday)); // output: 5.0
Console.WriteLine(GetDiscountInPercent(null)); // output: 0.0
Console.WriteLine(GetDiscountInPercent((DayOfWeek)10)); // output: 0.0

static decimal GetDiscountInPercent(DayOfWeek? dayOfWeek) => dayOfWeek
switch
{
 DayOfWeek.Monday => 0.5m,
 DayOfWeek.Tuesday => 12.5m,
 DayOfWeek.Wednesday => 7.5m,
 DayOfWeek.Thursday => 12.5m,
 DayOfWeek.Friday => 5.0m,
 DayOfWeek.Saturday => 2.5m,
 DayOfWeek.Sunday => 2.0m,
 _ => 0.0m,
};

Parenthesized pattern

if (input is not (float or double))
{
 return;
}

List patterns

https://learn.microsoft.com/en-us/dotnet/api/system.dayofweek

Beginning with C# 11, you can match an array or a list against a sequence of patterns, as
the following example shows:

C#

As the preceding example shows, a list pattern is matched when each nested pattern is
matched by the corresponding element of an input sequence. You can use any pattern
within a list pattern. To match any element, use the discard pattern or, if you also want
to capture the element, the var pattern, as the following example shows:

C#

The preceding examples match a whole input sequence against a list pattern. To match
elements only at the start or/and the end of an input sequence, use the slice pattern ..
within a list pattern, as the following example shows:

C#

int[] numbers = { 1, 2, 3 };

Console.WriteLine(numbers is [1, 2, 3]); // True
Console.WriteLine(numbers is [1, 2, 4]); // False
Console.WriteLine(numbers is [1, 2, 3, 4]); // False
Console.WriteLine(numbers is [0 or 1, <= 2, >= 3]); // True

List<int> numbers = new() { 1, 2, 3 };

if (numbers is [var first, _, _])
{
 Console.WriteLine($"The first element of a three-item list is
{first}.");
}
// Output:
// The first element of a three-item list is 1.

Console.WriteLine(new[] { 1, 2, 3, 4, 5 } is [> 0, > 0, ..]); // True
Console.WriteLine(new[] { 1, 1 } is [_, _, ..]); // True
Console.WriteLine(new[] { 0, 1, 2, 3, 4 } is [> 0, > 0, ..]); // False
Console.WriteLine(new[] { 1 } is [1, 2, ..]); // False

Console.WriteLine(new[] { 1, 2, 3, 4 } is [.., > 0, > 0]); // True
Console.WriteLine(new[] { 2, 4 } is [.., > 0, 2, 4]); // False
Console.WriteLine(new[] { 2, 4 } is [.., 2, 4]); // True

Console.WriteLine(new[] { 1, 2, 3, 4 } is [>= 0, .., 2 or 4]); // True
Console.WriteLine(new[] { 1, 0, 0, 1 } is [1, 0, .., 0, 1]); // True
Console.WriteLine(new[] { 1, 0, 1 } is [1, 0, .., 0, 1]); // False

A slice pattern matches zero or more elements. You can use at most one slice pattern in
a list pattern.

You can also nest a subpattern within a slice pattern, as the following example shows:

C#

For more information, see the List patterns feature proposal note.

For more information, see the following feature proposal notes:

C# 7 - Pattern matching
C# 8 - Recursive pattern matching
C# 9 - Pattern-matching updates
C# 10 - Extended property patterns
C# 11 - List patterns
C# 11 - Pattern match Span<char> on string literal

C# reference
C# operators and expressions
Pattern matching overview

void MatchMessage(string message)
{
 var result = message is ['a' or 'A', .. var s, 'a' or 'A']
 ? $"Message {message} matches; inner part is {s}."
 : $"Message {message} doesn't match.";
 Console.WriteLine(result);
}

MatchMessage("aBBA"); // output: Message aBBA matches; inner part is BB.
MatchMessage("apron"); // output: Message apron doesn't match.

void Validate(int[] numbers)
{
 var result = numbers is [< 0, .. { Length: 2 or 4 }, > 0] ? "valid" :
"not valid";
 Console.WriteLine(result);
}

Validate(new[] { -1, 0, 1 }); // output: not valid
Validate(new[] { -1, 0, 0, 1 }); // output: valid

C# language specification

See also

Tutorial: Use pattern matching to build type-driven and data-driven algorithms

Addition operators - + and +=
Article • 2022-12-02 • 2 minutes to read

The + and += operators are supported by the built-in integral and floating-point
numeric types, the string type, and delegate types.

For information about the arithmetic + operator, see the Unary plus and minus
operators and Addition operator + sections of the Arithmetic operators article.

When one or both operands are of type string, the + operator concatenates the string
representations of its operands (the string representation of null is an empty string):

C#

String interpolation provides a more convenient way to format strings:

C#

Beginning with C# 10, you can use string interpolation to initialize a constant string
when all the expressions used for placeholders are also constant strings.

Beginning with C# 11, the + operator performs string concatenation for UTF-8 literal
strings. This operator concatenates two ReadOnlySpan<byte> objects.

For operands of the same delegate type, the + operator returns a new delegate instance
that, when invoked, invokes the left-hand operand and then invokes the right-hand

String concatenation

Console.WriteLine("Forgot" + "white space");
Console.WriteLine("Probably the oldest constant: " + Math.PI);
Console.WriteLine(null + "Nothing to add.");
// Output:
// Forgotwhite space
// Probably the oldest constant: 3.14159265358979
// Nothing to add.

Console.WriteLine($"Probably the oldest constant: {Math.PI:F2}");
// Output:
// Probably the oldest constant: 3.14

Delegate combination

operand. If any of the operands is null , the + operator returns the value of another
operand (which also might be null). The following example shows how delegates can
be combined with the + operator:

C#

To perform delegate removal, use the - operator.

For more information about delegate types, see Delegates.

An expression using the += operator, such as

C#

is equivalent to

C#

except that x is only evaluated once.

The following example demonstrates the usage of the += operator:

C#

Action a = () => Console.Write("a");
Action b = () => Console.Write("b");
Action ab = a + b;
ab(); // output: ab

Addition assignment operator +=

x += y

x = x + y

int i = 5;
i += 9;
Console.WriteLine(i);
// Output: 14

string story = "Start. ";
story += "End.";
Console.WriteLine(story);
// Output: Start. End.

Action printer = () => Console.Write("a");

You also use the += operator to specify an event handler method when you subscribe to
an event. For more information, see How to: subscribe to and unsubscribe from events.

A user-defined type can overload the + operator. When a binary + operator is
overloaded, the += operator is also implicitly overloaded. A user-defined type can't
explicitly overload the += operator.

For more information, see the Unary plus operator and Addition operator sections of the
C# language specification.

C# reference
C# operators and expressions
How to concatenate multiple strings
Events
Arithmetic operators
- and -= operators

printer(); // output: a

Console.WriteLine();
printer += () => Console.Write("b");
printer(); // output: ab

Operator overloadability

C# language specification

See also

- and -= operators - subtraction (minus)
Article • 2022-12-02 • 3 minutes to read

The - and -= operators are supported by the built-in integral and floating-point
numeric types and delegate types.

For information about the arithmetic - operator, see the Unary plus and minus
operators and Subtraction operator - sections of the Arithmetic operators article.

For operands of the same delegate type, the - operator returns a delegate instance that
is calculated as follows:

If both operands are non-null and the invocation list of the right-hand operand is a
proper contiguous sublist of the invocation list of the left-hand operand, the result
of the operation is a new invocation list that is obtained by removing the right-
hand operand's entries from the invocation list of the left-hand operand. If the
right-hand operand's list matches multiple contiguous sublists in the left-hand
operand's list, only the right-most matching sublist is removed. If removal results
in an empty list, the result is null .

C#

If the invocation list of the right-hand operand isn't a proper contiguous sublist of
the invocation list of the left-hand operand, the result of the operation is the left-
hand operand. For example, removing a delegate that isn't part of the multicast
delegate does nothing and results in the unchanged multicast delegate.

Delegate removal

Action a = () => Console.Write("a");
Action b = () => Console.Write("b");

var abbaab = a + b + b + a + a + b;
abbaab(); // output: abbaab
Console.WriteLine();

var ab = a + b;
var abba = abbaab - ab;
abba(); // output: abba
Console.WriteLine();

var nihil = abbaab - abbaab;
Console.WriteLine(nihil is null); // output: True

C#

The preceding example also demonstrates that during delegate removal delegate
instances are compared. For example, delegates that are produced from evaluation
of identical lambda expressions aren't equal. For more information about delegate
equality, see the Delegate equality operators section of the C# language
specification.

If the left-hand operand is null , the result of the operation is null . If the right-
hand operand is null , the result of the operation is the left-hand operand.

C#

To combine delegates, use the + operator.

For more information about delegate types, see Delegates.

Action a = () => Console.Write("a");
Action b = () => Console.Write("b");

var abbaab = a + b + b + a + a + b;
var aba = a + b + a;

var first = abbaab - aba;
first(); // output: abbaab
Console.WriteLine();
Console.WriteLine(object.ReferenceEquals(abbaab, first)); // output:
True

Action a2 = () => Console.Write("a");
var changed = aba - a;
changed(); // output: ab
Console.WriteLine();
var unchanged = aba - a2;
unchanged(); // output: aba
Console.WriteLine();
Console.WriteLine(object.ReferenceEquals(aba, unchanged)); // output:
True

Action a = () => Console.Write("a");

var nothing = null - a;
Console.WriteLine(nothing is null); // output: True

var first = a - null;
a(); // output: a
Console.WriteLine();
Console.WriteLine(object.ReferenceEquals(first, a)); // output: True

An expression using the -= operator, such as

C#

is equivalent to

C#

except that x is only evaluated once.

The following example demonstrates the usage of the -= operator:

C#

You also use the -= operator to specify an event handler method to remove when you
unsubscribe from an event. For more information, see How to subscribe to and
unsubscribe from events.

A user-defined type can overload the - operator. When a binary - operator is
overloaded, the -= operator is also implicitly overloaded. A user-defined type can't
explicitly overload the -= operator.

Subtraction assignment operator -=

x -= y

x = x - y

int i = 5;
i -= 9;
Console.WriteLine(i);
// Output: -4

Action a = () => Console.Write("a");
Action b = () => Console.Write("b");
var printer = a + b + a;
printer(); // output: aba

Console.WriteLine();
printer -= a;
printer(); // output: ab

Operator overloadability

For more information, see the Unary minus operator and Subtraction operator sections
of the C# language specification.

C# reference
C# operators and expressions
Events
Arithmetic operators
+ and += operators

C# language specification

See also

?: operator - the ternary conditional
operator
Article • 2022-12-02 • 3 minutes to read

The conditional operator ?: , also known as the ternary conditional operator, evaluates a
Boolean expression and returns the result of one of the two expressions, depending on
whether the Boolean expression evaluates to true or false , as the following example
shows:

C#

As the preceding example shows, the syntax for the conditional operator is as follows:

C#

The condition expression must evaluate to true or false . If condition evaluates to
true , the consequent expression is evaluated, and its result becomes the result of the
operation. If condition evaluates to false , the alternative expression is evaluated, and
its result becomes the result of the operation. Only consequent or alternative is
evaluated.

Beginning with C# 9.0, conditional expressions are target-typed. That is, if a target type
of a conditional expression is known, the types of consequent and alternative must be
implicitly convertible to the target type, as the following example shows:

C#

string GetWeatherDisplay(double tempInCelsius) => tempInCelsius < 20.0 ?
"Cold." : "Perfect!";

Console.WriteLine(GetWeatherDisplay(15)); // output: Cold.
Console.WriteLine(GetWeatherDisplay(27)); // output: Perfect!

condition ? consequent : alternative

var rand = new Random();
var condition = rand.NextDouble() > 0.5;

int? x = condition ? 12 : null;

IEnumerable<int> xs = x is null ? new List<int>() { 0, 1 } : new int[] { 2,
3 };

If a target type of a conditional expression is unknown (for example, when you use the
var keyword) or the type of consequent and alternative must be the same or there
must be an implicit conversion from one type to the other:

C#

The conditional operator is right-associative, that is, an expression of the form

C#

is evaluated as

C#

A ref local or ref readonly local variable can be assigned conditionally with a conditional
ref expression. You can also use a conditional ref expression as a reference return value
or as a ref method argument.

The syntax for a conditional ref expression is as follows:

C#

var rand = new Random();
var condition = rand.NextDouble() > 0.5;

var x = condition ? 12 : (int?)null;

a ? b : c ? d : e

a ? b : (c ? d : e)

 Tip

You can use the following mnemonic device to remember how the conditional
operator is evaluated:

text

is this condition true ? yes : no

Conditional ref expression

condition ? ref consequent : ref alternative

Like the original conditional operator, a conditional ref expression evaluates only one of
the two expressions: either consequent or alternative .

In a conditional ref expression, the type of consequent and alternative must be the
same. Conditional ref expressions aren't target-typed.

The following example demonstrates the usage of a conditional ref expression:

C#

Use of the conditional operator instead of an if statement might result in more concise
code in cases when you need conditionally to compute a value. The following example
demonstrates two ways to classify an integer as negative or nonnegative:

C#

var smallArray = new int[] { 1, 2, 3, 4, 5 };
var largeArray = new int[] { 10, 20, 30, 40, 50 };

int index = 7;
ref int refValue = ref ((index < 5) ? ref smallArray[index] : ref
largeArray[index - 5]);
refValue = 0;

index = 2;
((index < 5) ? ref smallArray[index] : ref largeArray[index - 5]) = 100;

Console.WriteLine(string.Join(" ", smallArray));
Console.WriteLine(string.Join(" ", largeArray));
// Output:
// 1 2 100 4 5
// 10 20 0 40 50

Conditional operator and an if statement

int input = new Random().Next(-5, 5);

string classify;
if (input >= 0)
{
 classify = "nonnegative";
}
else
{
 classify = "negative";
}

A user-defined type can't overload the conditional operator.

For more information, see the Conditional operator section of the C# language
specification.

Specifications for newer features are:

Conditional ref expressions (C# 7.2)
Target-typed conditional expression (C# 9.0)

Simplify conditional expression (style rule IDE0075)
C# reference
C# operators and expressions
if statement
?. and ?[] operators
?? and ??= operators
ref keyword

classify = (input >= 0) ? "nonnegative" : "negative";

Operator overloadability

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0075

! (null-forgiving) operator (C# reference)
Article • 2022-12-02 • 2 minutes to read

The unary postfix ! operator is the null-forgiving, or null-suppression, operator. In an
enabled nullable annotation context, you use the null-forgiving operator to suppress all
nullable warnings for the preceding expression. The unary prefix ! operator is the
logical negation operator. The null-forgiving operator has no effect at run time. It only
affects the compiler's static flow analysis by changing the null state of the expression. At
run time, expression x! evaluates to the result of the underlying expression x .

For more information about the nullable reference types feature, see Nullable reference
types.

One of the use cases of the null-forgiving operator is in testing the argument validation
logic. For example, consider the following class:

C#

Using the MSTest test framework, you can create the following test for the validation
logic in the constructor:

C#

Without the null-forgiving operator, the compiler generates the following warning for
the preceding code: Warning CS8625: Cannot convert null literal to non-nullable

Examples

#nullable enable
public class Person
{
 public Person(string name) => Name = name ?? throw new
ArgumentNullException(nameof(name));

 public string Name { get; }
}

[TestMethod, ExpectedException(typeof(ArgumentNullException))]
public void NullNameShouldThrowTest()
{
 var person = new Person(null!);
}

https://learn.microsoft.com/en-ca/dotnet/core/testing/unit-testing-with-mstest

reference type . By using the null-forgiving operator, you inform the compiler that
passing null is expected and shouldn't be warned about.

You can also use the null-forgiving operator when you definitely know that an
expression can't be null but the compiler doesn't manage to recognize that. In the
following example, if the IsValid method returns true , its argument isn't null and you
can safely dereference it:

C#

Without the null-forgiving operator, the compiler generates the following warning for
the p.Name code: Warning CS8602: Dereference of a possibly null reference .

If you can modify the IsValid method, you can use the NotNullWhen attribute to
inform the compiler that an argument of the IsValid method can't be null when the
method returns true :

C#

In the preceding example, you don't need to use the null-forgiving operator because the
compiler has enough information to find out that p can't be null inside the if
statement. For more information about the attributes that allow you to provide

public static void Main()
{
 Person? p = Find("John");
 if (IsValid(p))
 {
 Console.WriteLine($"Found {p!.Name}");
 }
}

public static bool IsValid(Person? person)
 => person is not null && person.Name is not null;

public static void Main()
{
 Person? p = Find("John");
 if (IsValid(p))
 {
 Console.WriteLine($"Found {p.Name}");
 }
}

public static bool IsValid([NotNullWhen(true)] Person? person)
 => person is not null && person.Name is not null;

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullwhenattribute

additional information about the null state of a variable, see Upgrade APIs with
attributes to define null expectations.

For more information, see The null-forgiving operator section of the draft of the nullable
reference types specification.

Remove unnecessary suppression operator (style rule IDE0080)
C# reference
C# operators and expressions
Tutorial: Design with nullable reference types

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0080

?? and ??= operators - the null-
coalescing operators
Article • 2022-12-06 • 2 minutes to read

The null-coalescing operator ?? returns the value of its left-hand operand if it isn't
null ; otherwise, it evaluates the right-hand operand and returns its result. The ??
operator doesn't evaluate its right-hand operand if the left-hand operand evaluates to
non-null. The null-coalescing assignment operator ??= assigns the value of its right-
hand operand to its left-hand operand only if the left-hand operand evaluates to null .
The ??= operator doesn't evaluate its right-hand operand if the left-hand operand
evaluates to non-null.

C#

The left-hand operand of the ??= operator must be a variable, a property, or an indexer
element.

The type of the left-hand operand of the ?? and ??= operators can't be a non-nullable
value type. In particular, you can use the null-coalescing operators with unconstrained
type parameters:

C#

List<int> numbers = null;
int? a = null;

Console.WriteLine((numbers is null)); // expected: true
// if numbers is null, initialize it. Then, add 5 to numbers
(numbers ??= new List<int>()).Add(5);
Console.WriteLine(string.Join(" ", numbers)); // output: 5
Console.WriteLine((numbers is null)); // expected: false

Console.WriteLine((a is null)); // expected: true
Console.WriteLine((a ?? 3)); // expected: 3 since a is still null
// if a is null then assign 0 to a and add a to the list
numbers.Add(a ??= 0);
Console.WriteLine((a is null)); // expected: false
Console.WriteLine(string.Join(" ", numbers)); // output: 5 0
Console.WriteLine(a); // output: 0

private static void Display<T>(T a, T backup)
{
 Console.WriteLine(a ?? backup);
}

The null-coalescing operators are right-associative. That is, expressions of the form

C#

are evaluated as

C#

The ?? and ??= operators can be useful in the following scenarios:

In expressions with the null-conditional operators ?. and ?[], you can use the ??
operator to provide an alternative expression to evaluate in case the result of the
expression with null-conditional operations is null :

C#

When you work with nullable value types and need to provide a value of an
underlying value type, use the ?? operator to specify the value to provide in case a
nullable type value is null :

C#

a ?? b ?? c
d ??= e ??= f

a ?? (b ?? c)
d ??= (e ??= f)

Examples

double SumNumbers(List<double[]> setsOfNumbers, int indexOfSetToSum)
{
 return setsOfNumbers?[indexOfSetToSum]?.Sum() ?? double.NaN;
}

var sum = SumNumbers(null, 0);
Console.WriteLine(sum); // output: NaN

int? a = null;
int b = a ?? -1;
Console.WriteLine(b); // output: -1

Use the Nullable<T>.GetValueOrDefault() method if the value to be used when a
nullable type value is null should be the default value of the underlying value
type.

You can use a throw expression as the right-hand operand of the ?? operator to
make the argument-checking code more concise:

C#

The preceding example also demonstrates how to use expression-bodied
members to define a property.

You can use the ??= operator to replace the code of the form

C#

with the following code:

C#

The operators ?? and ??= can't be overloaded.

For more information about the ?? operator, see The null coalescing operator section of
the C# language specification.

For more information about the ??= operator, see the feature proposal note.

public string Name
{
 get => name;
 set => name = value ?? throw new
ArgumentNullException(nameof(value), "Name cannot be null");
}

if (variable is null)
{
 variable = expression;
}

variable ??= expression;

Operator overloadability

C# language specification

https://learn.microsoft.com/en-us/dotnet/api/system.nullable-1.getvalueordefault#system-nullable-1-getvalueordefault

Use coalesce expression (style rules IDE0029 and IDE0030)
C# reference
C# operators and expressions
?. and ?[] operators
?: operator

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0029-ide0030

Lambda expression (=>) operator
defines a lambda expression
Article • 2022-12-02 • 2 minutes to read

The => token is supported in two forms: as the lambda operator and as a separator of a
member name and the member implementation in an expression body definition.

In lambda expressions, the lambda operator => separates the input parameters on the
left side from the lambda body on the right side.

The following example uses the LINQ feature with method syntax to demonstrate the
usage of lambda expressions:

C#

Input parameters of a lambda expression are strongly typed at compile time. When the
compiler can infer the types of input parameters, like in the preceding example, you may
omit type declarations. If you need to specify the type of input parameters, you must do
that for each parameter, as the following example shows:

C#

The following example shows how to define a lambda expression without input
parameters:

C#

Lambda operator

string[] words = { "bot", "apple", "apricot" };
int minimalLength = words
 .Where(w => w.StartsWith("a"))
 .Min(w => w.Length);
Console.WriteLine(minimalLength); // output: 5

int[] numbers = { 4, 7, 10 };
int product = numbers.Aggregate(1, (interim, next) => interim * next);
Console.WriteLine(product); // output: 280

int[] numbers = { 4, 7, 10 };
int product = numbers.Aggregate(1, (int interim, int next) => interim *
next);
Console.WriteLine(product); // output: 280

For more information, see Lambda expressions.

An expression body definition has the following general syntax:

C#

where expression is a valid expression. The return type of expression must be implicitly
convertible to the member's return type. If the member:

Has a void return type or
Is a:

Constructor
Finalizer
Property or indexer set accessor

expression must be a statement expression. Because the expression's result is discarded,
the return type of that expression can be any type.

The following example shows an expression body definition for a Person.ToString
method:

C#

It's a shorthand version of the following method definition:

C#

You can create expression body definitions for methods, operators, read-only properties,
constructors, finalizers, and property and indexer accessors. For more information, see

Func<string> greet = () => "Hello, World!";
Console.WriteLine(greet());

Expression body definition

member => expression;

public override string ToString() => $"{fname} {lname}".Trim();

public override string ToString()
{
 return $"{fname} {lname}".Trim();
}

Expression-bodied members.

The => operator can't be overloaded.

For more information about the lambda operator, see the Anonymous function
expressions section of the C# language specification.

C# reference
C# operators and expressions

Operator overloadability

C# language specification

See also

:: operator - the namespace alias
operator
Article • 2022-12-02 • 2 minutes to read

Use the namespace alias qualifier :: to access a member of an aliased namespace. You
can use the :: qualifier only between two identifiers. The left-hand identifier can be one
of a namespace alias, an extern alias, or the global alias. For example:

A namespace alias created with a using alias directive:

C#

An extern alias.

The global alias, which is the global namespace alias. The global namespace is the
namespace that contains namespaces and types that aren't declared inside a
named namespace. When used with the :: qualifier, the global alias always
references the global namespace, even if there's the user-defined global
namespace alias.

The following example uses the global alias to access the .NET System namespace,
which is a member of the global namespace. Without the global alias, the user-
defined System namespace, which is a member of the MyCompany.MyProduct
namespace, would be accessed:

C#

using forwinforms = System.Drawing;
using forwpf = System.Windows;

public class Converters
{
 public static forwpf::Point Convert(forwinforms::Point point) =>
new forwpf::Point(point.X, point.Y);
}

namespace MyCompany.MyProduct.System
{
 class Program
 {
 static void Main() => global::System.Console.WriteLine("Using
global alias");
 }

https://learn.microsoft.com/en-us/dotnet/api/system

You can also use the . token to access a member of an aliased namespace. However, the
. token is also used to access a type member. The :: qualifier ensures that its left-hand
identifier always references a namespace alias, even if there exists a type or namespace
with the same name.

For more information, see the Namespace alias qualifiers section of the C# language
specification.

C# reference
C# operators and expressions

 class Console
 {
 string Suggestion => "Consider renaming this class";
 }
}

７ Note

The global keyword is the global namespace alias only when it's the left-hand
identifier of the :: qualifier.

C# language specification

See also

await operator - asynchronously await
for a task to complete
Article • 2022-12-02 • 3 minutes to read

The await operator suspends evaluation of the enclosing async method until the
asynchronous operation represented by its operand completes. When the asynchronous
operation completes, the await operator returns the result of the operation, if any.
When the await operator is applied to the operand that represents an already
completed operation, it returns the result of the operation immediately without
suspension of the enclosing method. The await operator doesn't block the thread that
evaluates the async method. When the await operator suspends the enclosing async
method, the control returns to the caller of the method.

In the following example, the HttpClient.GetByteArrayAsync method returns the
Task<byte[]> instance, which represents an asynchronous operation that produces a
byte array when it completes. Until the operation completes, the await operator
suspends the DownloadDocsMainPageAsync method. When DownloadDocsMainPageAsync
gets suspended, control is returned to the Main method, which is the caller of
DownloadDocsMainPageAsync . The Main method executes until it needs the result of the
asynchronous operation performed by the DownloadDocsMainPageAsync method. When
GetByteArrayAsync gets all the bytes, the rest of the DownloadDocsMainPageAsync method
is evaluated. After that, the rest of the Main method is evaluated.

C#

using System;
using System.Net.Http;
using System.Threading.Tasks;

public class AwaitOperator
{
 public static async Task Main()
 {
 Task<int> downloading = DownloadDocsMainPageAsync();
 Console.WriteLine($"{nameof(Main)}: Launched downloading.");

 int bytesLoaded = await downloading;
 Console.WriteLine($"{nameof(Main)}: Downloaded {bytesLoaded}
bytes.");
 }

 private static async Task<int> DownloadDocsMainPageAsync()
 {
 Console.WriteLine($"{nameof(DownloadDocsMainPageAsync)}: About to

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getbytearrayasync
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getbytearrayasync

The preceding example uses the async Main method. For more information, see the
await operator in the Main method section.

You can use the await operator only in a method, lambda expression, or anonymous
method that is modified by the async keyword. Within an async method, you can't use
the await operator in the body of a synchronous function, inside the block of a lock
statement, and in an unsafe context.

The operand of the await operator is usually of one of the following .NET types: Task,
Task<TResult>, ValueTask, or ValueTask<TResult>. However, any awaitable expression
can be the operand of the await operator. For more information, see the Awaitable
expressions section of the C# language specification.

The type of expression await t is TResult if the type of expression t is Task<TResult>
or ValueTask<TResult>. If the type of t is Task or ValueTask, the type of await t is void .
In both cases, if t throws an exception, await t rethrows the exception. For more
information about exception handling, see the Exceptions in async methods section of
the try-catch statement article.

start downloading.");

 var client = new HttpClient();
 byte[] content = await
client.GetByteArrayAsync("https://docs.microsoft.com/en-us/");

 Console.WriteLine($"{nameof(DownloadDocsMainPageAsync)}: Finished
downloading.");
 return content.Length;
 }
}
// Output similar to:
// DownloadDocsMainPageAsync: About to start downloading.
// Main: Launched downloading.
// DownloadDocsMainPageAsync: Finished downloading.
// Main: Downloaded 27700 bytes.

７ Note

For an introduction to asynchronous programming, see Asynchronous
programming with async and await. Asynchronous programming with async and
await follows the task-based asynchronous pattern.

Asynchronous streams and disposables

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask
https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

You use the await foreach statement to consume an asynchronous stream of data. For
more information, see the foreach statement section of the Iteration statements article.

You use the await using statement to work with an asynchronously disposable object,
that is, an object of a type that implements an IAsyncDisposable interface. For more
information, see the Using async disposable section of the Implement a DisposeAsync
method article.

The Main method, which is the application entry point, can return Task or Task<int> ,
enabling it to be async so you can use the await operator in its body. In earlier C#
versions, to ensure that the Main method waits for the completion of an asynchronous
operation, you can retrieve the value of the Task<TResult>.Result property of the
Task<TResult> instance that is returned by the corresponding async method. For
asynchronous operations that don't produce a value, you can call the Task.Wait method.
For information about how to select the language version, see C# language versioning.

For more information, see the Await expressions section of the C# language
specification.

C# reference
C# operators and expressions
async
Task asynchronous programming model
Asynchronous programming
Walkthrough: accessing the Web by using async and await
Tutorial: Generate and consume async streams

await operator in the Main method

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.iasyncdisposable
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/implementing-disposeasync#using-async-disposable
https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/implementing-disposeasync
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1.result#system-threading-tasks-task-1-result
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.wait

default value expressions - produce the
default value
Article • 2022-12-29 • 2 minutes to read

A default value expression produces the default value of a type. There are two kinds of
default value expressions: the default operator call and a default literal.

You also use the default keyword as the default case label within a switch statement.

The argument to the default operator must be the name of a type or a type parameter,
as the following example shows:

C#

You can use the default literal to produce the default value of a type when the compiler
can infer the expression type. The default literal expression produces the same value as
the default(T) expression where T is the inferred type. You can use the default literal
in any of the following cases:

In the assignment or initialization of a variable.
In the declaration of the default value for an optional method parameter.

default operator

Console.WriteLine(default(int)); // output: 0
Console.WriteLine(default(object) is null); // output: True

void DisplayDefaultOf<T>()
{
 var val = default(T);
 Console.WriteLine($"Default value of {typeof(T)} is {(val == null ?
"null" : val.ToString())}.");
}

DisplayDefaultOf<int?>();
DisplayDefaultOf<System.Numerics.Complex>();
DisplayDefaultOf<System.Collections.Generic.List<int>>();
// Output:
// Default value of System.Nullable`1[System.Int32] is null.
// Default value of System.Numerics.Complex is (0, 0).
// Default value of System.Collections.Generic.List`1[System.Int32] is null.

default literal

In a method call to provide an argument value.
In a return statement or as an expression in an expression-bodied member.

The following example shows the usage of the default literal:

C#

For more information, see the Default value expressions section of the C# language
specification.

T[] InitializeArray<T>(int length, T initialValue = default)
{
 if (length < 0)
 {
 throw new ArgumentOutOfRangeException(nameof(length), "Array length
must be nonnegative.");
 }

 var array = new T[length];
 for (var i = 0; i < length; i++)
 {
 array[i] = initialValue;
 }
 return array;
}

void Display<T>(T[] values) => Console.WriteLine($"[{string.Join(", ",
values)}]");

Display(InitializeArray<int>(3)); // output: [0, 0, 0]
Display(InitializeArray<bool>(4, default)); // output: [False, False,
False, False]

System.Numerics.Complex fillValue = default;
Display(InitializeArray(3, fillValue)); // output: [(0, 0), (0, 0), (0, 0)
]

 Tip

Use .NET style rule IDE0034 to specify a preference on the use of the default literal
in your codebase.

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0034

C# reference
C# operators and expressions
Default values of C# types
Generics in .NET

https://learn.microsoft.com/en-ca/dotnet/standard/generics/

delegate operator
Article • 2022-12-02 • 2 minutes to read

The delegate operator creates an anonymous method that can be converted to a
delegate type. An anonymous method can be converted to types such as System.Action
and System.Func<TResult> types used as arguments to many methods.

C#

When you use the delegate operator, you might omit the parameter list. If you do that,
the created anonymous method can be converted to a delegate type with any list of
parameters, as the following example shows:

C#

Func<int, int, int> sum = delegate (int a, int b) { return a + b; };
Console.WriteLine(sum(3, 4)); // output: 7

７ Note

Lambda expressions provide a more concise and expressive way to create an
anonymous function. Use the => operator to construct a lambda expression:

C#

For more information about features of lambda expressions, for example, capturing
outer variables, see Lambda expressions.

Func<int, int, int> sum = (a, b) => a + b;
Console.WriteLine(sum(3, 4)); // output: 7

Action greet = delegate { Console.WriteLine("Hello!"); };
greet();

Action<int, double> introduce = delegate { Console.WriteLine("This is
world!"); };
introduce(42, 2.7);

// Output:
// Hello!
// This is world!

https://learn.microsoft.com/en-us/dotnet/api/system.action
https://learn.microsoft.com/en-us/dotnet/api/system.func-1

That's the only functionality of anonymous methods that isn't supported by lambda
expressions. In all other cases, a lambda expression is a preferred way to write inline
code.

Beginning with C# 9.0, you can use discards to specify two or more input parameters of
an anonymous method that aren't used by the method:

C#

For backwards compatibility, if only a single parameter is named _ , _ is treated as the
name of that parameter within an anonymous method.

Also beginning with C# 9.0, you can use the static modifier at the declaration of an
anonymous method:

C#

A static anonymous method can't capture local variables or instance state from
enclosing scopes.

You also use the delegate keyword to declare a delegate type.

Beginning with C# 11, the compiler may cache the delegate object created from a
method group. Consider the following method:

C#

When you assign the method group to a delegate, the compiler will cache the delegate:

C#

Before C# 11, you'd need to use a lambda expression to reuse a single delegate object:

C#

Func<int, int, int> constant = delegate (int _, int _) { return 42; };
Console.WriteLine(constant(3, 4)); // output: 42

Func<int, int, int> sum = static delegate (int a, int b) { return a + b; };
Console.WriteLine(sum(10, 4)); // output: 14

static void StaticFunction() { }

Action a = StaticFunction;

For more information, see the Anonymous function expressions section of the C#
language specification.

C# reference
C# operators and expressions
=> operator

Action a = () => StaticFunction();

C# language specification

See also

is operator (C# reference)
Article • 2022-12-02 • 2 minutes to read

The is operator checks if the result of an expression is compatible with a given type.
For information about the type-testing is operator, see the is operator section of the
Type-testing and cast operators article. You can also use the is operator to match an
expression against a pattern, as the following example shows:

C#

In the preceding example, the is operator matches an expression against a property
pattern with nested constant and relational (available in C# 9.0 and later) patterns.

The is operator can be useful in the following scenarios:

To check the run-time type of an expression, as the following example shows:

C#

The preceding example shows the use of a declaration pattern.

To check for null , as the following example shows:

C#

When you match an expression against null , the compiler guarantees that no
user-overloaded == or != operator is invoked.

static bool IsFirstFridayOfOctober(DateTime date) =>
 date is { Month: 10, Day: <=7, DayOfWeek: DayOfWeek.Friday };

int i = 34;
object iBoxed = i;
int? jNullable = 42;
if (iBoxed is int a && jNullable is int b)
{
 Console.WriteLine(a + b); // output 76
}

if (input is null)
{
 return;
}

Beginning with C# 9.0, you can use a negation pattern to do a non-null check, as
the following example shows:

C#

Beginning with C# 11, you can use list patterns to match elements of a list or array.
The following code checks arrays for integer values in expected positions:

C#

For more information, see The is operator section of the C# language specification and
the following C# language proposals:

Pattern matching
Pattern matching with generics

if (result is not null)
{
 Console.WriteLine(result.ToString());
}

int[] empty = { };
int[] one = { 1 };
int[] odd = { 1, 3, 5 };
int[] even = { 2, 4, 6 };
int[] fib = { 1, 1, 2, 3, 5 };

Console.WriteLine(odd is [1, _, 2, ..]); // false
Console.WriteLine(fib is [1, _, 2, ..]); // true
Console.WriteLine(fib is [_, 1, 2, 3, ..]); // true
Console.WriteLine(fib is [.., 1, 2, 3, _]); // true
Console.WriteLine(even is [2, _, 6]); // true
Console.WriteLine(even is [2, .., 6]); // true
Console.WriteLine(odd is [.., 3, 5]); // true
Console.WriteLine(even is [.., 3, 5]); // false
Console.WriteLine(fib is [.., 3, 5]); // true

７ Note

For the complete list of patterns supported by the is operator, see Patterns.

C# language specification

See also

C# reference
C# operators and expressions
Patterns
Tutorial: Use pattern matching to build type-driven and data-driven algorithms
Type-testing and cast operators

nameof expression (C# reference)
Article • 2022-12-02 • 2 minutes to read

A nameof expression produces the name of a variable, type, or member as the string
constant. A nameof expression is evaluated at compile time and has no effect at run
time. When the operand is a type or a namespace, the produced name isn't fully
qualified. The following example shows the use of a nameof expression:

C#

When the operand is a verbatim identifier, the @ character isn't the part of a name, as
the following example shows:

C#

You can use a nameof expression to make the argument-checking code more
maintainable:

C#

Beginning with C# 11, you can use a nameof expression with a method parameter inside
an attribute on a method or its parameter. The following code shows how to do that for
an attribute on a method, a local function, and the parameter of a lambda expression:

Console.WriteLine(nameof(System.Collections.Generic)); // output: Generic
Console.WriteLine(nameof(List<int>)); // output: List
Console.WriteLine(nameof(List<int>.Count)); // output: Count
Console.WriteLine(nameof(List<int>.Add)); // output: Add

var numbers = new List<int> { 1, 2, 3 };
Console.WriteLine(nameof(numbers)); // output: numbers
Console.WriteLine(nameof(numbers.Count)); // output: Count
Console.WriteLine(nameof(numbers.Add)); // output: Add

var @new = 5;
Console.WriteLine(nameof(@new)); // output: new

public string Name
{
 get => name;
 set => name = value ?? throw new ArgumentNullException(nameof(value), $"
{nameof(Name)} cannot be null");
}

C#

A nameof expression with a parameter is useful when you use the nullable analysis
attributes or the CallerArgumentExpression attribute.

For more information, see the Nameof expressions section of the C# language
specification, and the C# 11 - Extended nameof scope feature specification.

C# reference
C# operators and expressions
Convert typeof to nameof (style rule IDE0082)

[ParameterString(nameof(msg))]
public static void Method(string msg)
{
 [ParameterString(nameof(T))]
 void LocalFunction<T>(T param) { }

 var lambdaExpression = ([ParameterString(nameof(aNumber))] int aNumber)
=> aNumber.ToString();
}

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0082

new operator - The new operator
creates a new instance of a type
Article • 2022-12-02 • 2 minutes to read

The new operator creates a new instance of a type. You can also use the new keyword as
a member declaration modifier or a generic type constraint.

To create a new instance of a type, you typically invoke one of the constructors of that
type using the new operator:

C#

You can use an object or collection initializer with the new operator to instantiate and
initialize an object in one statement, as the following example shows:

C#

Beginning with C# 9.0, constructor invocation expressions are target-typed. That is, if a
target type of an expression is known, you can omit a type name, as the following
example shows:

Constructor invocation

var dict = new Dictionary<string, int>();
dict["first"] = 10;
dict["second"] = 20;
dict["third"] = 30;

Console.WriteLine(string.Join("; ", dict.Select(entry => $"{entry.Key}:
{entry.Value}")));
// Output:
// first: 10; second: 20; third: 30

var dict = new Dictionary<string, int>
{
 ["first"] = 10,
 ["second"] = 20,
 ["third"] = 30
};

Console.WriteLine(string.Join("; ", dict.Select(entry => $"{entry.Key}:
{entry.Value}")));
// Output:
// first: 10; second: 20; third: 30

C#

As the preceding example shows, you always use parentheses in a target-typed new
expression.

If a target type of a new expression is unknown (for example, when you use the var
keyword), you must specify a type name.

You also use the new operator to create an array instance, as the following example
shows:

C#

Use array initialization syntax to create an array instance and populate it with elements
in one statement. The following example shows various ways how you can do that:

C#

For more information about arrays, see Arrays.

List<int> xs = new();
List<int> ys = new(capacity: 10_000);
List<int> zs = new() { Capacity = 20_000 };

Dictionary<int, List<int>> lookup = new()
{
 [1] = new() { 1, 2, 3 },
 [2] = new() { 5, 8, 3 },
 [5] = new() { 1, 0, 4 }
};

Array creation

var numbers = new int[3];
numbers[0] = 10;
numbers[1] = 20;
numbers[2] = 30;

Console.WriteLine(string.Join(", ", numbers));
// Output:
// 10, 20, 30

var a = new int[3] { 10, 20, 30 };
var b = new int[] { 10, 20, 30 };
var c = new[] { 10, 20, 30 };
Console.WriteLine(c.GetType()); // output: System.Int32[]

To create an instance of an anonymous type, use the new operator and object initializer
syntax:

C#

You don't have to destroy earlier created type instances. Instances of both reference and
value types are destroyed automatically. Instances of value types are destroyed as soon
as the context that contains them is destroyed. Instances of reference types are
destroyed by the garbage collector at some unspecified time after the last reference to
them is removed.

For type instances that contain unmanaged resources, for example, a file handle, it's
recommended to employ deterministic clean-up to ensure that the resources they
contain are released as soon as possible. For more information, see the
System.IDisposable API reference and the using statement article.

A user-defined type can't overload the new operator.

For more information, see The new operator section of the C# language specification.

For more information about a target-typed new expression, see the feature proposal
note.

C# reference
C# operators and expressions

Instantiation of anonymous types

var example = new { Greeting = "Hello", Name = "World" };
Console.WriteLine($"{example.Greeting}, {example.Name}!");
// Output:
// Hello, World!

Destruction of type instances

Operator overloadability

C# language specification

See also

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/api/system.idisposable

Object and collection initializers

sizeof operator - determine the memory
needs for a given type
Article • 2022-12-02 • 2 minutes to read

The sizeof operator returns the number of bytes occupied by a variable of a given type.
The argument to the sizeof operator must be the name of an unmanaged type or a
type parameter that is constrained to be an unmanaged type.

The sizeof operator requires an unsafe context. However, the expressions presented in
the following table are evaluated in compile time to the corresponding constant values
and don't require an unsafe context:

Expression Constant value

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(decimal) 16

sizeof(bool) 1

You also don't need to use an unsafe context when the operand of the sizeof operator
is the name of an enum type.

The following example demonstrates the usage of the sizeof operator:

C#

The sizeof operator returns a number of bytes that would be allocated by the common
language runtime in managed memory. For struct types, that value includes any
padding, as the preceding example demonstrates. The result of the sizeof operator
might differ from the result of the Marshal.SizeOf method, which returns the size of a
type in unmanaged memory.

For more information, see The sizeof operator section of the C# language specification.

C# reference
C# operators and expressions
Pointer related operators
Pointer types

public struct Point
{
 public Point(byte tag, double x, double y) => (Tag, X, Y) = (tag, x, y);

 public byte Tag { get; }
 public double X { get; }
 public double Y { get; }
}

public class SizeOfOperator
{
 public static void Main()
 {
 Console.WriteLine(sizeof(byte)); // output: 1
 Console.WriteLine(sizeof(double)); // output: 8

 DisplaySizeOf<Point>(); // output: Size of Point is 24
 DisplaySizeOf<decimal>(); // output: Size of System.Decimal is 16

 unsafe
 {
 Console.WriteLine(sizeof(Point*)); // output: 8
 }
 }

 static unsafe void DisplaySizeOf<T>() where T : unmanaged
 {
 Console.WriteLine($"Size of {typeof(T)} is {sizeof(T)}");
 }
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.sizeof

Memory and span-related types
Generics in .NET

https://learn.microsoft.com/en-ca/dotnet/standard/memory-and-spans/
https://learn.microsoft.com/en-ca/dotnet/standard/generics/

stackalloc expression (C# reference)
Article • 2022-12-02 • 3 minutes to read

A stackalloc expression allocates a block of memory on the stack. A stack allocated
memory block created during the method execution is automatically discarded when
that method returns. You can't explicitly free the memory allocated with stackalloc . A
stack allocated memory block isn't subject to garbage collection and doesn't have to be
pinned with a fixed statement.

You can assign the result of a stackalloc expression to a variable of one of the
following types:

System.Span<T> or System.ReadOnlySpan<T>, as the following example shows:

C#

You don't have to use an unsafe context when you assign a stack allocated
memory block to a Span<T> or ReadOnlySpan<T> variable.

When you work with those types, you can use a stackalloc expression in
conditional or assignment expressions, as the following example shows:

C#

You can use a stackalloc expression inside other expressions whenever a
Span<T> or ReadOnlySpan<T> variable is allowed, as the following example
shows:

C#

int length = 3;
Span<int> numbers = stackalloc int[length];
for (var i = 0; i < length; i++)
{
 numbers[i] = i;
}

int length = 1000;
Span<byte> buffer = length <= 1024 ? stackalloc byte[length] : new
byte[length];

Span<int> numbers = stackalloc[] { 1, 2, 3, 4, 5, 6 };
var ind = numbers.IndexOfAny(stackalloc[] { 2, 4, 6, 8 });
Console.WriteLine(ind); // output: 1

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1

A pointer type, as the following example shows:

C#

As the preceding example shows, you must use an unsafe context when you work
with pointer types.

In the case of pointer types, you can use a stackalloc expression only in a local
variable declaration to initialize the variable.

The amount of memory available on the stack is limited. If you allocate too much
memory on the stack, a StackOverflowException is thrown. To avoid that, follow the rules
below:

Limit the amount of memory you allocate with stackalloc . For example, if the
intended buffer size is below a certain limit, you allocate the memory on the stack;
otherwise, use an array of the required length, as the following code shows:

C#

７ Note

We recommend using Span<T> or ReadOnlySpan<T> types to work with
stack allocated memory whenever possible.

unsafe
{
 int length = 3;
 int* numbers = stackalloc int[length];
 for (var i = 0; i < length; i++)
 {
 numbers[i] = i;
 }
}

const int MaxStackLimit = 1024;
Span<byte> buffer = inputLength <= MaxStackLimit ? stackalloc
byte[MaxStackLimit] : new byte[inputLength];

７ Note

Because the amount of memory available on the stack depends on the
environment in which the code is executed, be conservative when you define
the actual limit value.

https://learn.microsoft.com/en-us/dotnet/api/system.stackoverflowexception
https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1

Avoid using stackalloc inside loops. Allocate the memory block outside a loop
and reuse it inside the loop.

The content of the newly allocated memory is undefined. You should initialize it before
the use. For example, you can use the Span<T>.Clear method that sets all the items to
the default value of type T .

You can use array initializer syntax to define the content of the newly allocated memory.
The following example demonstrates various ways to do that:

C#

In expression stackalloc T[E] , T must be an unmanaged type and E must evaluate to
a non-negative int value.

The use of stackalloc automatically enables buffer overrun detection features in the
common language runtime (CLR). If a buffer overrun is detected, the process is
terminated as quickly as possible to minimize the chance that malicious code is
executed.

For more information, see the Stack allocation section of the C# language specification
and the Permit stackalloc in nested contexts feature proposal note.

C# reference
C# operators and expressions
Pointer related operators
Pointer types
Memory and span-related types
Dos and Don'ts of stackalloc

Span<int> first = stackalloc int[3] { 1, 2, 3 };
Span<int> second = stackalloc int[] { 1, 2, 3 };
ReadOnlySpan<int> third = stackalloc[] { 1, 2, 3 };

Security

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.span-1.clear
https://learn.microsoft.com/en-ca/dotnet/standard/memory-and-spans/
https://vcsjones.dev/2020/02/24/stackalloc/

switch expression - pattern matching
expressions using the switch keyword
Article • 2022-12-02 • 3 minutes to read

You use the switch expression to evaluate a single expression from a list of candidate
expressions based on a pattern match with an input expression. For information about
the switch statement that supports switch -like semantics in a statement context, see
the switch statement section of the Selection statements article.

The following example demonstrates a switch expression, which converts values of an
enum representing visual directions in an online map to the corresponding cardinal
directions:

C#

public static class SwitchExample
{
 public enum Direction
 {
 Up,
 Down,
 Right,
 Left
 }

 public enum Orientation
 {
 North,
 South,
 East,
 West
 }

 public static Orientation ToOrientation(Direction direction) =>
direction switch
 {
 Direction.Up => Orientation.North,
 Direction.Right => Orientation.East,
 Direction.Down => Orientation.South,
 Direction.Left => Orientation.West,
 _ => throw new ArgumentOutOfRangeException(nameof(direction), $"Not
expected direction value: {direction}"),
 };

 public static void Main()
 {
 var direction = Direction.Right;
 Console.WriteLine($"Map view direction is {direction}");

The preceding example shows the basic elements of a switch expression:

An expression followed by the switch keyword. In the preceding example, it's the
direction method parameter.
The switch expression arms, separated by commas. Each switch expression arm
contains a pattern, an optional case guard, the => token, and an expression.

At the preceding example, a switch expression uses the following patterns:

A constant pattern: to handle the defined values of the Direction enumeration.
A discard pattern: to handle any integer value that doesn't have the corresponding
member of the Direction enumeration (for example, (Direction)10). That makes
the switch expression exhaustive.

The result of a switch expression is the value of the expression of the first switch
expression arm whose pattern matches the input expression and whose case guard, if
present, evaluates to true . The switch expression arms are evaluated in text order.

The compiler generates an error when a lower switch expression arm can't be chosen
because a higher switch expression arm matches all its values.

A pattern may be not expressive enough to specify the condition for the evaluation of
an arm's expression. In such a case, you can use a case guard. A case guard is another
condition that must be satisfied together with a matched pattern. A case guard must be
a Boolean expression. You specify a case guard after the when keyword that follows a
pattern, as the following example shows:

 Console.WriteLine($"Cardinal orientation is
{ToOrientation(direction)}");
 // Output:
 // Map view direction is Right
 // Cardinal orientation is East
 }
}

） Important

For information about the patterns supported by the switch expression and more
examples, see Patterns.

Case guards

C#

The preceding example uses property patterns with nested var patterns.

If none of a switch expression's patterns matches an input value, the runtime throws an
exception. In .NET Core 3.0 and later versions, the exception is a
System.Runtime.CompilerServices.SwitchExpressionException. In .NET Framework, the
exception is an InvalidOperationException. In most cases, the compiler generates a
warning if a switch expression doesn't handle all possible input values. List patterns
don't generate a warning when all possible inputs aren't handled.

For more information, see the switch expression section of the feature proposal note.

Use switch expression (style rule IDE0066)
Add missing cases to switch expression (style rule IDE0072)

public readonly struct Point
{
 public Point(int x, int y) => (X, Y) = (x, y);

 public int X { get; }
 public int Y { get; }
}

static Point Transform(Point point) => point switch
{
 { X: 0, Y: 0 } => new Point(0, 0),
 { X: var x, Y: var y } when x < y => new Point(x + y, y),
 { X: var x, Y: var y } when x > y => new Point(x - y, y),
 { X: var x, Y: var y } => new Point(2 * x, 2 * y),
};

Non-exhaustive switch expressions

 Tip

To guarantee that a switch expression handles all possible input values, provide a
switch expression arm with a discard pattern.

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.switchexpressionexception
https://learn.microsoft.com/en-us/dotnet/api/system.invalidoperationexception
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0066
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0072

C# reference
C# operators and expressions
Patterns
Tutorial: Use pattern matching to build type-driven and data-driven algorithms
switch statement

true and false operators - treat your
objects as a Boolean value
Article • 2022-12-02 • 2 minutes to read

The true operator returns the bool value true to indicate that its operand is definitely
true. The false operator returns the bool value true to indicate that its operand is
definitely false. The true and false operators aren't guaranteed to complement each
other. That is, both the true and false operator might return the bool value false for
the same operand. If a type defines one of the two operators, it must also define
another operator.

A type with the defined true operator can be the type of a result of a controlling
conditional expression in the if, do, while, and for statements and in the conditional
operator ?:. For more information, see the Boolean expressions section of the C#
language specification.

If a type with the defined true and false operators overloads the logical OR operator
| or the logical AND operator & in a certain way, the conditional logical OR operator
|| or conditional logical AND operator && , respectively, can be evaluated for the
operands of that type. For more information, see the User-defined conditional logical
operators section of the C# language specification.

 Tip

Use the bool? type, if you need to support the three-valued logic (for example,
when you work with databases that support a three-valued Boolean type). C#
provides the & and | operators that support the three-valued logic with the bool?
operands. For more information, see the Nullable Boolean logical operators
section of the Boolean logical operators article.

Boolean expressions

User-defined conditional logical operators

Example

The following example presents the type that defines both true and false operators.
The type also overloads the logical AND operator & in such a way that the && operator
also can be evaluated for the operands of that type.

C#

public struct LaunchStatus
{
 public static readonly LaunchStatus Green = new LaunchStatus(0);
 public static readonly LaunchStatus Yellow = new LaunchStatus(1);
 public static readonly LaunchStatus Red = new LaunchStatus(2);

 private int status;

 private LaunchStatus(int status)
 {
 this.status = status;
 }

 public static bool operator true(LaunchStatus x) => x == Green || x ==
Yellow;
 public static bool operator false(LaunchStatus x) => x == Red;

 public static LaunchStatus operator &(LaunchStatus x, LaunchStatus y)
 {
 if (x == Red || y == Red || (x == Yellow && y == Yellow))
 {
 return Red;
 }

 if (x == Yellow || y == Yellow)
 {
 return Yellow;
 }

 return Green;
 }

 public static bool operator ==(LaunchStatus x, LaunchStatus y) =>
x.status == y.status;
 public static bool operator !=(LaunchStatus x, LaunchStatus y) => !(x ==
y);

 public override bool Equals(object obj) => obj is LaunchStatus other &&
this == other;
 public override int GetHashCode() => status;
}

public class LaunchStatusTest
{
 public static void Main()
 {
 LaunchStatus okToLaunch = GetFuelLaunchStatus() &&

Notice the short-circuiting behavior of the && operator. When the GetFuelLaunchStatus
method returns LaunchStatus.Red , the right-hand operand of the && operator isn't
evaluated. That is because LaunchStatus.Red is definitely false. Then the result of the
logical AND doesn't depend on the value of the right-hand operand. The output of the
example is as follows:

Console

C# reference
C# operators and expressions

GetNavigationLaunchStatus();
 Console.WriteLine(okToLaunch ? "Ready to go!" : "Wait!");
 }

 static LaunchStatus GetFuelLaunchStatus()
 {
 Console.WriteLine("Getting fuel launch status...");
 return LaunchStatus.Red;
 }

 static LaunchStatus GetNavigationLaunchStatus()
 {
 Console.WriteLine("Getting navigation launch status...");
 return LaunchStatus.Yellow;
 }
}

Getting fuel launch status...
Wait!

See also

with expression - Nondestructive
mutation creates a new object with
modified properties
Article • 2022-12-02 • 3 minutes to read

Available in C# 9.0 and later, a with expression produces a copy of its operand with the
specified properties and fields modified. you use object initializer syntax to specify what
members to modify and their new values:

C#

using System;

public class WithExpressionBasicExample
{
 public record NamedPoint(string Name, int X, int Y);

 public static void Main()
 {
 var p1 = new NamedPoint("A", 0, 0);
 Console.WriteLine($"{nameof(p1)}: {p1}"); // output: p1: NamedPoint
{ Name = A, X = 0, Y = 0 }

 var p2 = p1 with { Name = "B", X = 5 };
 Console.WriteLine($"{nameof(p2)}: {p2}"); // output: p2: NamedPoint
{ Name = B, X = 5, Y = 0 }

 var p3 = p1 with
 {
 Name = "C",
 Y = 4
 };
 Console.WriteLine($"{nameof(p3)}: {p3}"); // output: p3: NamedPoint
{ Name = C, X = 0, Y = 4 }

 Console.WriteLine($"{nameof(p1)}: {p1}"); // output: p1: NamedPoint
{ Name = A, X = 0, Y = 0 }

 var apples = new { Item = "Apples", Price = 1.19m };
 Console.WriteLine($"Original: {apples}"); // output: Original: {
Item = Apples, Price = 1.19 }
 var saleApples = apples with { Price = 0.79m };
 Console.WriteLine($"Sale: {saleApples}"); // output: Sale: { Item =
Apples, Price = 0.79 }
 }
}

In C# 9.0, a left-hand operand of a with expression must be of a record type. Beginning
with C# 10, a left-hand operand of a with expression can also be of a structure type or
an anonymous type.

The result of a with expression has the same run-time type as the expression's operand,
as the following example shows:

C#

In the case of a reference-type member, only the reference to a member instance is
copied when an operand is copied. Both the copy and original operand have access to
the same reference-type instance. The following example demonstrates that behavior:

C#

using System;

public class InheritanceExample
{
 public record Point(int X, int Y);
 public record NamedPoint(string Name, int X, int Y) : Point(X, Y);

 public static void Main()
 {
 Point p1 = new NamedPoint("A", 0, 0);
 Point p2 = p1 with { X = 5, Y = 3 };
 Console.WriteLine(p2 is NamedPoint); // output: True
 Console.WriteLine(p2); // output: NamedPoint { X = 5, Y = 3, Name =
A }
 }
}

using System;
using System.Collections.Generic;

public class ExampleWithReferenceType
{
 public record TaggedNumber(int Number, List<string> Tags)
 {
 public string PrintTags() => string.Join(", ", Tags);
 }

 public static void Main()
 {
 var original = new TaggedNumber(1, new List<string> { "A", "B" });

 var copy = original with { Number = 2 };
 Console.WriteLine($"Tags of {nameof(copy)}: {copy.PrintTags()}");
 // output: Tags of copy: A, B

Any record class type has the copy constructor. A copy constructor is a constructor with a
single parameter of the containing record type. It copies the state of its argument to a
new record instance. At evaluation of a with expression, the copy constructor gets
called to instantiate a new record instance based on an original record. After that, the
new instance gets updated according to the specified modifications. By default, the copy
constructor is implicit, that is, compiler-generated. If you need to customize the record
copy semantics, explicitly declare a copy constructor with the desired behavior. The
following example updates the preceding example with an explicit copy constructor. The
new copy behavior is to copy list items instead of a list reference when a record is
copied:

C#

 original.Tags.Add("C");
 Console.WriteLine($"Tags of {nameof(copy)}: {copy.PrintTags()}");
 // output: Tags of copy: A, B, C
 }
}

Custom copy semantics

using System;
using System.Collections.Generic;

public class UserDefinedCopyConstructorExample
{
 public record TaggedNumber(int Number, List<string> Tags)
 {
 protected TaggedNumber(TaggedNumber original)
 {
 Number = original.Number;
 Tags = new List<string>(original.Tags);
 }

 public string PrintTags() => string.Join(", ", Tags);
 }

 public static void Main()
 {
 var original = new TaggedNumber(1, new List<string> { "A", "B" });

 var copy = original with { Number = 2 };
 Console.WriteLine($"Tags of {nameof(copy)}: {copy.PrintTags()}");
 // output: Tags of copy: A, B

 original.Tags.Add("C");
 Console.WriteLine($"Tags of {nameof(copy)}: {copy.PrintTags()}");
 // output: Tags of copy: A, B

You can't customize the copy semantics for structure types.

For more information, see the following sections of the records feature proposal note:

with expression
Copy and Clone members

C# reference
C# operators and expressions
Records
Structure types

 }
}

C# language specification

See also

Operator overloading - predefined
unary, arithmetic, equality and
comparison operators
Article • 2022-12-02 • 3 minutes to read

A user-defined type can overload a predefined C# operator. That is, a type can provide
the custom implementation of an operation in case one or both of the operands are of
that type. The Overloadable operators section shows which C# operators can be
overloaded.

Use the operator keyword to declare an operator. An operator declaration must satisfy
the following rules:

It includes both a public and a static modifier.
A unary operator has one input parameter. A binary operator has two input
parameters. In each case, at least one parameter must have type T or T? where T
is the type that contains the operator declaration.

The following example defines a simplified structure to represent a rational number. The
structure overloads some of the arithmetic operators:

C#

public readonly struct Fraction
{
 private readonly int num;
 private readonly int den;

 public Fraction(int numerator, int denominator)
 {
 if (denominator == 0)
 {
 throw new ArgumentException("Denominator cannot be zero.",
nameof(denominator));
 }
 num = numerator;
 den = denominator;
 }

 public static Fraction operator +(Fraction a) => a;
 public static Fraction operator -(Fraction a) => new Fraction(-a.num,
a.den);

 public static Fraction operator +(Fraction a, Fraction b)
 => new Fraction(a.num * b.den + b.num * a.den, a.den * b.den);

You could extend the preceding example by defining an implicit conversion from int to
Fraction . Then, overloaded operators would support arguments of those two types.
That is, it would become possible to add an integer to a fraction and obtain a fraction as
a result.

You also use the operator keyword to define a custom type conversion. For more
information, see User-defined conversion operators.

The following table shows the operators that can be overloaded:

Operators Notes

+x, -x, !x, ~x, ++, --, true, false The true and false operators must be overloaded together.

 public static Fraction operator -(Fraction a, Fraction b)
 => a + (-b);

 public static Fraction operator *(Fraction a, Fraction b)
 => new Fraction(a.num * b.num, a.den * b.den);

 public static Fraction operator /(Fraction a, Fraction b)
 {
 if (b.num == 0)
 {
 throw new DivideByZeroException();
 }
 return new Fraction(a.num * b.den, a.den * b.num);
 }

 public override string ToString() => $"{num} / {den}";
}

public static class OperatorOverloading
{
 public static void Main()
 {
 var a = new Fraction(5, 4);
 var b = new Fraction(1, 2);
 Console.WriteLine(-a); // output: -5 / 4
 Console.WriteLine(a + b); // output: 14 / 8
 Console.WriteLine(a - b); // output: 6 / 8
 Console.WriteLine(a * b); // output: 5 / 8
 Console.WriteLine(a / b); // output: 10 / 4
 }
}

Overloadable operators

Operators Notes

x + y, x - y, x * y, x / y, x % y,
x & y, x | y, x ^ y,

x << y, x >> y, x >>> y

x == y, x != y, x < y, x > y, x <= y,
x >= y

Must be overloaded in pairs as follows: == and != , < and > ,
<= and >= .

The following table shows the operators that can't be overloaded:

Operators Alternatives

x && y, x || y Overload both the true and false operators and the & or |
operators. For more information, see User-defined
conditional logical operators.

a[i], a?[i] Define an indexer.

(T)x Define custom type conversions that can be performed by a
cast expression. For more information, see User-defined
conversion operators.

+=, -=, *=, /=, %=, &=, |=, ^=,
<<=, >>=, >>>=

Overload the corresponding binary operator. For example,
when you overload the binary + operator, += is implicitly
overloaded.

^x, x = y, x.y, x?.y, c ? t : f, x ?? y, ??
= y,

x..y, x->y, =>, f(x), as, await,
checked, unchecked, default,
delegate, is, nameof, new,

sizeof, stackalloc, switch, typeof,
with

None.

For more information, see the following sections of the C# language specification:

Operator overloading
Operators

Non overloadable operators

C# language specification

See also

C# reference
C# operators and expressions
User-defined conversion operators
Design guidelines - Operator overloads
Design guidelines - Equality operators
Why are overloaded operators always static in C#?

https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/operator-overloads
https://learn.microsoft.com/en-ca/dotnet/standard/design-guidelines/equality-operators
https://learn.microsoft.com/en-us/archive/blogs/ericlippert/why-are-overloaded-operators-always-static-in-c

Declaration statements
Article • 2022-12-02 • 7 minutes to read

A declaration statement declares a new variable, and optionally, initializes it. All variables
have declared type. You can learn more about types in the article on the .NET type
system. Typically, a declaration includes a type and a variable name. It can also include
an initialization: the = operator followed by an expression. The type may be replaced
with var . The declaration or the expression may include the ref modifier to declare
that the new variable refers to an existing storage location.

Variables that are declared at method scope can have an implicit "type" var . An
implicitly typed local variable is strongly typed as if you had declared the type yourself,
but the compiler determines the type. The following two declarations of a and b are
functionally equivalent:

C#

A common use of the var keyword is with constructor invocation expressions. The use
of var allows you to not repeat a type name in a variable declaration and object
instantiation, as the following example shows:

C#

Implicitly typed local variables

var a = 10; // Implicitly typed.
int b = 10; // Explicitly typed.

） Important

When var is used with nullable reference types enabled, it always implies a
nullable reference type even if the expression type isn't nullable. The compiler's null
state analysis protects against dereferencing a potential null value. If the variable
is never assigned to an expression that maybe null, the compiler won't emit any
warnings. If you assign the variable to an expression that might be null, you must
test that it isn't null before dereferencing it to avoid any warnings.

var xs = new List<int>();

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/common-type-system

Beginning with C# 9.0, you can use a target-typed new expression as an alternative:

C#

In pattern matching, the var keyword is used in a var pattern.

The following example shows two query expressions. In the first expression, the use of
var is permitted but isn't required, because the type of the query result can be stated
explicitly as an IEnumerable<string> . However, in the second expression, var allows the
result to be a collection of anonymous types, and the name of that type isn't accessible
except to the compiler itself. Use of var eliminates the requirement to create a new
class for the result. In Example #2, the foreach iteration variable item must also be
implicitly typed.

C#

List<int> xs = new();
List<int>? ys = new();

// Example #1: var is optional when
// the select clause specifies a string
string[] words = { "apple", "strawberry", "grape", "peach", "banana" };
var wordQuery = from word in words
 where word[0] == 'g'
 select word;

// Because each element in the sequence is a string,
// not an anonymous type, var is optional here also.
foreach (string s in wordQuery)
{
 Console.WriteLine(s);
}

// Example #2: var is required because
// the select clause specifies an anonymous type
var custQuery = from cust in customers
 where cust.City == "Phoenix"
 select new { cust.Name, cust.Phone };

// var must be used because each item
// in the sequence is an anonymous type
foreach (var item in custQuery)
{
 Console.WriteLine("Name={0}, Phone={1}", item.Name, item.Phone);
}

Ref locals

You add the ref keyword before the type of a variable to declare a ref local. Assume
the GetContactInformation method is declared as a ref return:

C#

A by-value assignment reads the value of a variable and assigns it to a new variable:

C#

The preceding assignment declares p as a local variable. Its initial value is copied from
reading the value returned by GetContactInformation . Any future assignments to p
won't change the value of the variable returned by GetContactInformation . The variable
p is no longer an alias to the variable returned.

You declare a ref variable to copy the alias to the original value. In the following
assignment, p is an alias to the variable returned from GetContactInformation .

C#

Subsequent usage of p is the same as using the variable returned by
GetContactInformation because p is an alias for that variable. Changes to p also change
the variable returned from GetContactInformation .

You can access a value by reference in the same way. In some cases, accessing a value
by reference increases performance by avoiding a potentially expensive copy operation.
For example, the following statement shows how one can define a ref local value that is
used to reference a value.

C#

The ref keyword is used both before the local variable declaration and before the value
in the second example. Failure to include both ref keywords in the variable declaration
and assignment in both examples results in compiler error CS8172, "Can't initialize a by-
reference variable with a value."

public ref Person GetContactInformation(string fname, string lname)

Person p = contacts.GetContactInformation("Brandie", "Best");

ref Person p = ref contacts.GetContactInformation("Brandie", "Best");

ref VeryLargeStruct reflocal = ref veryLargeStruct;

C#

Ref local variables must still be initialized when they're declared.

The following example defines a NumberStore class that stores an array of integer values.
The FindNumber method returns by reference the first number that is greater than or
equal to the number passed as an argument. If no number is greater than or equal to
the argument, the method returns the number in index 0.

C#

The following example calls the NumberStore.FindNumber method to retrieve the first
value that is greater than or equal to 16. The caller then doubles the value returned by
the method. The output from the example shows the change reflected in the value of
the array elements of the NumberStore instance.

C#

ref VeryLargeStruct reflocal = ref veryLargeStruct; // initialization
refLocal = ref anotherVeryLargeStruct; // reassigned, refLocal refers to
different storage.

using System;

class NumberStore
{
 int[] numbers = { 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023 };

 public ref int FindNumber(int target)
 {
 for (int ctr = 0; ctr < numbers.Length; ctr++)
 {
 if (numbers[ctr] >= target)
 return ref numbers[ctr];
 }
 return ref numbers[0];
 }

 public override string ToString() => string.Join(" ", numbers);
}

var store = new NumberStore();
Console.WriteLine($"Original sequence: {store.ToString()}");
int number = 16;
ref var value = ref store.FindNumber(number);
value *= 2;
Console.WriteLine($"New sequence: {store.ToString()}");
// The example displays the following output:

Without support for reference return values, such an operation is performed by
returning the index of the array element along with its value. The caller can then use this
index to modify the value in a separate method call. However, the caller can also modify
the index to access and possibly modify other array values.

The following example shows how the FindNumber method could be rewritten to use ref
local reassignment:

C#

This second version is more efficient with longer sequences in scenarios where the
number sought is closer to the end of the array, as the array is iterated from end
towards the beginning, causing fewer items to be examined.

The compiler enforces scope rules on ref variables: ref locals, ref parameters, and
ref fields in ref struct types. The rules ensure that a reference doesn't outlive the
object to which it refers. See the section on scoping rules in the article on method
parameters.

// Original sequence: 1 3 7 15 31 63 127 255 511 1023
// New sequence: 1 3 7 15 62 63 127 255 511 1023

using System;

class NumberStore
{
 int[] numbers = { 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023 };

 public ref int FindNumber(int target)
 {
 ref int returnVal = ref numbers[0];
 var ctr = numbers.Length - 1;
 while ((ctr >= 0) && (numbers[ctr] >= target))
 {
 returnVal = ref numbers[ctr];
 ctr--;
 }
 return ref returnVal;
 }

 public override string ToString() => string.Join(" ", numbers);
}

ref and readonly

The readonly modifier can be applied to ref local variables and ref fields. The
readonly modifier affects the expression to its right. See the following example
declarations:

C#

value reassignment means the value of the variable is reassigned.
ref assignment means the variable now refers to a different object.

The readonly ref and readonly ref readonly declarations are valid only on ref fields
in a ref struct .

The contextual keyword scoped restricts the lifetime of a value. The scoped modifier
restricts the ref-safe-to-escape or safe-to-escape lifetime, respectively, to the current
method. Effectively, adding the scoped modifier asserts that your code won't extend the
lifetime of the variable.

You can apply scoped to a parameter or local variable. The scoped modifier may be
applied to parameters and locals when the type is a ref struct. Otherwise, the scoped
modifier may be applied only to local variables that are ref types. That includes local
variables declared with the ref modifier and parameters declared with the in , ref or
out modifiers.

The scoped modifier is implicitly added to this in methods declared in a struct , out
parameters, and ref parameters when the type is a ref struct .

ref keyword
Write safe efficient code
'var' preferences (style rules IDE0007 and IDE0008)
C# reference
Type relationships in LINQ query operations
C# 11 - scoped modifier

ref readonly int aConstant; // aConstant can't be value-reassigned.
readonly ref int Storage; // Storage can't be ref-reassigned.
readonly ref readonly int CantChange; // CantChange can't be value-
reassigned or ref-reassigned.

scoped ref

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0007-ide0008

Iteration statements - for , foreach , do ,
and while
Article • 2022-12-02 • 6 minutes to read

The iteration statements repeatedly execute a statement or a block of statements. The
for statement: executes its body while a specified Boolean expression evaluates to true .
The foreach statement: enumerates the elements of a collection and executes its body
for each element of the collection. The do statement: conditionally executes its body
one or more times. The while statement: conditionally executes its body zero or more
times.

At any point within the body of an iteration statement, you can break out of the loop
using the break statement. You can step to the next iteration in the loop using the
continue statement.

The for statement executes a statement or a block of statements while a specified
Boolean expression evaluates to true . The following example shows the for statement
that executes its body while an integer counter is less than three:

C#

The preceding example shows the elements of the for statement:

The initializer section that is executed only once, before entering the loop.
Typically, you declare and initialize a local loop variable in that section. The
declared variable can't be accessed from outside the for statement.

The initializer section in the preceding example declares and initializes an integer
counter variable:

C#

The for statement

for (int i = 0; i < 3; i++)
{
 Console.Write(i);
}
// Output:
// 012

int i = 0

The condition section that determines if the next iteration in the loop should be
executed. If it evaluates to true or isn't present, the next iteration is executed;
otherwise, the loop is exited. The condition section must be a Boolean expression.

The condition section in the preceding example checks if a counter value is less
than three:

C#

The iterator section that defines what happens after each execution of the body of
the loop.

The iterator section in the preceding example increments the counter:

C#

The body of the loop, which must be a statement or a block of statements.

The iterator section can contain zero or more of the following statement expressions,
separated by commas:

prefix or postfix increment expression, such as ++i or i++
prefix or postfix decrement expression, such as --i or i--
assignment
invocation of a method
await expression
creation of an object by using the new operator

If you don't declare a loop variable in the initializer section, you can use zero or more of
the expressions from the preceding list in the initializer section as well. The following
example shows several less common usages of the initializer and iterator sections:
assigning a value to an external variable in the initializer section, invoking a method in
both the initializer and the iterator sections, and changing the values of two variables in
the iterator section:

C#

i < 3

i++

int i;
int j = 3;

All the sections of the for statement are optional. For example, the following code
defines the infinite for loop:

C#

The foreach statement executes a statement or a block of statements for each element
in an instance of the type that implements the System.Collections.IEnumerable or
System.Collections.Generic.IEnumerable<T> interface, as the following example shows:

C#

The foreach statement isn't limited to those types. You can use it with an instance of
any type that satisfies the following conditions:

A type has the public parameterless GetEnumerator method. Beginning with C# 9.0,
the GetEnumerator method can be a type's extension method.
The return type of the GetEnumerator method has the public Current property and
the public parameterless MoveNext method whose return type is bool .

for (i = 0, Console.WriteLine($"Start: i={i}, j={j}"); i < j; i++, j--,
Console.WriteLine($"Step: i={i}, j={j}"))
{
 //...
}
// Output:
// Start: i=0, j=3
// Step: i=1, j=2
// Step: i=2, j=1

for (; ;)
{
 //...
}

The foreach statement

var fibNumbers = new List<int> { 0, 1, 1, 2, 3, 5, 8, 13 };
foreach (int element in fibNumbers)
{
 Console.Write($"{element} ");
}
// Output:
// 0 1 1 2 3 5 8 13

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1

The following example uses the foreach statement with an instance of the
System.Span<T> type, which doesn't implement any interfaces:

C#

If the enumerator's Current property returns a reference return value (ref T where T is
the type of a collection element), you can declare an iteration variable with the ref or
ref readonly modifier, as the following example shows:

C#

If the foreach statement is applied to null , a NullReferenceException is thrown. If the
source collection of the foreach statement is empty, the body of the foreach statement
isn't executed and skipped.

You can use the await foreach statement to consume an asynchronous stream of data,
that is, the collection type that implements the IAsyncEnumerable<T> interface. Each
iteration of the loop may be suspended while the next element is retrieved
asynchronously. The following example shows how to use the await foreach statement:

C#

Span<int> numbers = new int[] { 3, 14, 15, 92, 6 };
foreach (int number in numbers)
{
 Console.Write($"{number} ");
}
// Output:
// 3 14 15 92 6

Span<int> storage = stackalloc int[10];
int num = 0;
foreach (ref int item in storage)
{
 item = num++;
}
foreach (ref readonly var item in storage)
{
 Console.Write($"{item} ");
}
// Output:
// 0 1 2 3 4 5 6 7 8 9

await foreach

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1

You can also use the await foreach statement with an instance of any type that satisfies
the following conditions:

A type has the public parameterless GetAsyncEnumerator method. That method can
be a type's extension method.
The return type of the GetAsyncEnumerator method has the public Current
property and the public parameterless MoveNextAsync method whose return type is
Task<bool>, ValueTask<bool>, or any other awaitable type whose awaiter's
GetResult method returns a bool value.

By default, stream elements are processed in the captured context. If you want to
disable capturing of the context, use the
TaskAsyncEnumerableExtensions.ConfigureAwait extension method. For more
information about synchronization contexts and capturing the current context, see
Consuming the Task-based asynchronous pattern. For more information about
asynchronous streams, see the Asynchronous streams tutorial.

You can use the var keyword to let the compiler infer the type of an iteration variable in
the foreach statement, as the following code shows:

C#

You can also explicitly specify the type of an iteration variable, as the following code
shows:

C#

In the preceding form, type T of a collection element must be implicitly or explicitly
convertible to type V of an iteration variable. If an explicit conversion from T to V fails
at run time, the foreach statement throws an InvalidCastException. For example, if T is

await foreach (var item in GenerateSequenceAsync())
{
 Console.WriteLine(item);
}

Type of an iteration variable

foreach (var item in collection) { }

IEnumerable<T> collection = new T[5];
foreach (V item in collection) { }

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskasyncenumerableextensions.configureawait
https://learn.microsoft.com/en-ca/dotnet/standard/asynchronous-programming-patterns/consuming-the-task-based-asynchronous-pattern
https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception

a non-sealed class type, V can be any interface type, even the one that T doesn't
implement. At run time, the type of a collection element may be the one that derives
from T and actually implements V . If that's not the case, an InvalidCastException is
thrown.

The do statement executes a statement or a block of statements while a specified
Boolean expression evaluates to true . Because that expression is evaluated after each
execution of the loop, a do loop executes one or more times. The do statement differs
from a while loop, which executes zero or more times.

The following example shows the usage of the do statement:

C#

The while statement executes a statement or a block of statements while a specified
Boolean expression evaluates to true . Because that expression is evaluated before each
execution of the loop, a while loop executes zero or more times. The while statement
differs from a do loop, which executes one or more times.

The following example shows the usage of the while statement:

C#

The do statement

int n = 0;
do
{
 Console.Write(n);
 n++;
} while (n < 5);
// Output:
// 01234

The while statement

int n = 0;
while (n < 5)
{
 Console.Write(n);
 n++;
}
// Output:
// 01234

https://learn.microsoft.com/en-us/dotnet/api/system.invalidcastexception

For more information, see the following sections of the C# language specification:

The for statement
The foreach statement
The do statement
The while statement

For more information about features added in C# 8.0 and later, see the following feature
proposal notes:

Async streams (C# 8.0)
Extension GetEnumerator support for foreach loops (C# 9.0)

C# reference
Using foreach with arrays
Iterators

C# language specification

See also

Selection statements - if , else and
switch

Article • 2022-12-02 • 5 minutes to read

The if , else and switch statements select statements to execute from many possible
paths based on the value of an expression. The if statement selects a statement to
execute based on the value of a Boolean expression. An if statement can be combined
with else to choose two distinct paths based on the Boolean expression. The switch
statement selects a statement list to execute based on a pattern match with an
expression.

An if statement can be any of the following two forms:

An if statement with an else part selects one of the two statements to execute
based on the value of a Boolean expression, as the following example shows:

C#

An if statement without an else part executes its body only if a Boolean
expression evaluates to true , as the following example shows:

C#

The if statement

DisplayWeatherReport(15.0); // Output: Cold.
DisplayWeatherReport(24.0); // Output: Perfect!

void DisplayWeatherReport(double tempInCelsius)
{
 if (tempInCelsius < 20.0)
 {
 Console.WriteLine("Cold.");
 }
 else
 {
 Console.WriteLine("Perfect!");
 }
}

DisplayMeasurement(45); // Output: The measurement value is 45
DisplayMeasurement(-3); // Output: Warning: not acceptable value! The
measurement value is -3

You can nest if statements to check multiple conditions, as the following example
shows:

C#

In an expression context, you can use the conditional operator ?: to evaluate one of the
two expressions based on the value of a Boolean expression.

The switch statement selects a statement list to execute based on a pattern match with
a match expression, as the following example shows:

void DisplayMeasurement(double value)
{
 if (value < 0 || value > 100)
 {
 Console.Write("Warning: not acceptable value! ");
 }

 Console.WriteLine($"The measurement value is {value}");
}

DisplayCharacter('f'); // Output: A lowercase letter: f
DisplayCharacter('R'); // Output: An uppercase letter: R
DisplayCharacter('8'); // Output: A digit: 8
DisplayCharacter(','); // Output: Not alphanumeric character: ,

void DisplayCharacter(char ch)
{
 if (char.IsUpper(ch))
 {
 Console.WriteLine($"An uppercase letter: {ch}");
 }
 else if (char.IsLower(ch))
 {
 Console.WriteLine($"A lowercase letter: {ch}");
 }
 else if (char.IsDigit(ch))
 {
 Console.WriteLine($"A digit: {ch}");
 }
 else
 {
 Console.WriteLine($"Not alphanumeric character: {ch}");
 }
}

The switch statement

C#

At the preceding example, the switch statement uses the following patterns:

A relational pattern (available in C# 9.0 and later): to compare an expression result
with a constant.
A constant pattern: test if an expression result equals a constant.

The preceding example also demonstrates the default case. The default case specifies
statements to execute when a match expression doesn't match any other case pattern. If
a match expression doesn't match any case pattern and there's no default case, control
falls through a switch statement.

A switch statement executes the statement list in the first switch section whose case
pattern matches a match expression and whose case guard, if present, evaluates to

DisplayMeasurement(-4); // Output: Measured value is -4; too low.
DisplayMeasurement(5); // Output: Measured value is 5.
DisplayMeasurement(30); // Output: Measured value is 30; too high.
DisplayMeasurement(double.NaN); // Output: Failed measurement.

void DisplayMeasurement(double measurement)
{
 switch (measurement)
 {
 case < 0.0:
 Console.WriteLine($"Measured value is {measurement}; too low.");
 break;

 case > 15.0:
 Console.WriteLine($"Measured value is {measurement}; too
high.");
 break;

 case double.NaN:
 Console.WriteLine("Failed measurement.");
 break;

 default:
 Console.WriteLine($"Measured value is {measurement}.");
 break;
 }
}

） Important

For information about the patterns supported by the switch statement, see
Patterns.

true . A switch statement evaluates case patterns in text order from top to bottom. The
compiler generates an error when a switch statement contains an unreachable case.
That is a case that is already handled by an upper case or whose pattern is impossible to
match.

You can specify multiple case patterns for one section of a switch statement, as the
following example shows:

C#

Within a switch statement, control can't fall through from one switch section to the
next. As the examples in this section show, typically you use the break statement at the
end of each switch section to pass control out of a switch statement. You can also use
the return and throw statements to pass control out of a switch statement. To imitate
the fall-through behavior and pass control to other switch section, you can use the goto
statement.

７ Note

The default case can appear in any place within a switch statement. Regardless of
its position, the default case is always evaluated last and only if all other case
patterns aren't matched, except if goto default is encountered.

DisplayMeasurement(-4); // Output: Measured value is -4; out of an
acceptable range.
DisplayMeasurement(50); // Output: Measured value is 50.
DisplayMeasurement(132); // Output: Measured value is 132; out of an
acceptable range.

void DisplayMeasurement(int measurement)
{
 switch (measurement)
 {
 case < 0:
 case > 100:
 Console.WriteLine($"Measured value is {measurement}; out of an
acceptable range.");
 break;

 default:
 Console.WriteLine($"Measured value is {measurement}.");
 break;
 }
}

In an expression context, you can use the switch expression to evaluate a single
expression from a list of candidate expressions based on a pattern match with an
expression.

A case pattern may be not expressive enough to specify the condition for the execution
of the switch section. In such a case, you can use a case guard. That is an additional
condition that must be satisfied together with a matched pattern. A case guard must be
a Boolean expression. You specify a case guard after the when keyword that follows a
pattern, as the following example shows:

C#

The preceding example uses positional patterns with nested relational patterns.

For more information, see the following sections of the C# language specification:

The if statement
The switch statement

Case guards

DisplayMeasurements(3, 4); // Output: First measurement is 3, second
measurement is 4.
DisplayMeasurements(5, 5); // Output: Both measurements are valid and equal
to 5.

void DisplayMeasurements(int a, int b)
{
 switch ((a, b))
 {
 case (> 0, > 0) when a == b:
 Console.WriteLine($"Both measurements are valid and equal to
{a}.");
 break;

 case (> 0, > 0):
 Console.WriteLine($"First measurement is {a}, second measurement
is {b}.");
 break;

 default:
 Console.WriteLine("One or both measurements are not valid.");
 break;
 }
}

C# language specification

For more information about pattern matching switch statement, see the following
feature proposal notes:

Switch statement (Pattern matching)

C# reference
Conditional operator ?:
Logical operators
Patterns
switch expression
Add missing cases to switch statement (style rule IDE0010)

See also

https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0010

Jump statements - break , continue ,
return and goto

Article • 2022-12-02 • 8 minutes to read

Four C# statements unconditionally transfer control. The break statement, terminates
the closest enclosing iteration statement or switch statement. The continue statement
starts a new iteration of the closest enclosing iteration statement. The return statement:
terminates execution of the function in which it appears and returns control to the caller.
The ref modifier on a return statement indicates the returned expression is returned
by reference, not by value. The goto statement: transfers control to a statement that is
marked by a label.

For information about the throw statement that throws an exception and
unconditionally transfers control as well, see throw.

The break statement terminates the closest enclosing iteration statement (that is, for ,
foreach , while , or do loop) or switch statement. The break statement transfers control
to the statement that follows the terminated statement, if any.

C#

In nested loops, the break statement terminates only the innermost loop that contains
it, as the following example shows:

The break statement

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
foreach (int number in numbers)
{
 if (number == 3)
 {
 break;
 }

 Console.Write($"{number} ");
}
Console.WriteLine();
Console.WriteLine("End of the example.");
// Output:
// 0 1 2
// End of the example.

C#

When you use the switch statement inside a loop, a break statement at the end of a
switch section transfers control only out of the switch statement. The loop that contains
the switch statement is unaffected, as the following example shows:

C#

for (int outer = 0; outer < 5; outer++)
{
 for (int inner = 0; inner < 5; inner++)
 {
 if (inner > outer)
 {
 break;
 }

 Console.Write($"{inner} ");
 }
 Console.WriteLine();
}
// Output:
// 0
// 0 1
// 0 1 2
// 0 1 2 3
// 0 1 2 3 4

double[] measurements = { -4, 5, 30, double.NaN };
foreach (double measurement in measurements)
{
 switch (measurement)
 {
 case < 0.0:
 Console.WriteLine($"Measured value is {measurement}; too low.");
 break;

 case > 15.0:
 Console.WriteLine($"Measured value is {measurement}; too
high.");
 break;

 case double.NaN:
 Console.WriteLine("Failed measurement.");
 break;

 default:
 Console.WriteLine($"Measured value is {measurement}.");
 break;
 }
}
// Output:

The continue statement starts a new iteration of the closest enclosing iteration
statement (that is, for , foreach , while , or do loop), as the following example shows:

C#

The return statement terminates execution of the function in which it appears and
returns control and the function's result, if any, to the caller.

If a function member doesn't compute a value, you use the return statement without
expression, as the following example shows:

C#

// Measured value is -4; too low.
// Measured value is 5.
// Measured value is 30; too high.
// Failed measurement.

The continue statement

for (int i = 0; i < 5; i++)
{
 Console.Write($"Iteration {i}: ");

 if (i < 3)
 {
 Console.WriteLine("skip");
 continue;
 }

 Console.WriteLine("done");
}
// Output:
// Iteration 0: skip
// Iteration 1: skip
// Iteration 2: skip
// Iteration 3: done
// Iteration 4: done

The return statement

Console.WriteLine("First call:");
DisplayIfNecessary(6);

Console.WriteLine("Second call:");
DisplayIfNecessary(5);

As the preceding example shows, you typically use the return statement without
expression to terminate a function member early. If a function member doesn't contain
the return statement, it terminates after its last statement is executed.

If a function member computes a value, you use the return statement with an
expression, as the following example shows:

C#

When the return statement has an expression, that expression must be implicitly
convertible to the return type of a function member unless it's async. The expression
returned from an async function must be implicitly convertible to the type argument of
Task<TResult> or ValueTask<TResult>, whichever is the return type of the function. If the
return type of an async function is Task or ValueTask, you use the return statement
without expression.

By default, the return statement returns the value of an expression. You can return a
reference to a variable. To do that, use the return statement with the ref keyword, as
the following example shows:

C#

void DisplayIfNecessary(int number)
{
 if (number % 2 == 0)
 {
 return;
 }

 Console.WriteLine(number);
}
// Output:
// First call:
// Second call:
// 5

double surfaceArea = CalculateCylinderSurfaceArea(1, 1);
Console.WriteLine($"{surfaceArea:F2}"); // output: 12.57

double CalculateCylinderSurfaceArea(double baseRadius, double height)
{
 double baseArea = Math.PI * baseRadius * baseRadius;
 double sideArea = 2 * Math.PI * baseRadius * height;
 return 2 * baseArea + sideArea;
}

https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask

Return values can be returned by reference (ref returns). A reference return value
allows a method to return a reference to a variable, rather than a value, back to a caller.
The caller can then choose to treat the returned variable as if it were returned by value
or by reference. The caller can create a new variable that is itself a reference to the
returned value, called a ref local. A reference return value means that a method returns a
reference (or an alias) to some variable. That variable's scope must include the method.
That variable's lifetime must extend beyond the return of the method. Modifications to
the method's return value by the caller are made to the variable that is returned by the
method.

Declaring that a method returns a reference return value indicates that the method
returns an alias to a variable. The design intent is often that calling code accesses that
variable through the alias, including to modify it. Methods returning by reference can't
have the return type void .

The ref return value is an alias to another variable in the called method's scope. You
can interpret any use of the ref return as using the variable it aliases:

When you assign its value, you're assigning a value to the variable it aliases.
When you read its value, you're reading the value of the variable it aliases.
If you return it by reference, you're returning an alias to that same variable.
If you pass it to another method by reference, you're passing a reference to the
variable it aliases.
When you make a ref local alias, you make a new alias to the same variable.

var xs = new int[] { 10, 20, 30, 40 };
ref int found = ref FindFirst(xs, s => s == 30);
found = 0;
Console.WriteLine(string.Join(" ", xs)); // output: 10 20 0 40

ref int FindFirst(int[] numbers, Func<int, bool> predicate)
{
 for (int i = 0; i < numbers.Length; i++)
 {
 if (predicate(numbers[i]))
 {
 return ref numbers[i];
 }
 }
 throw new InvalidOperationException("No element satisfies the given
condition.");
}

Ref returns

A ref return must be ref_safe_to_escape to the calling method. That means:

The return value must have a lifetime that extends beyond the execution of the
method. In other words, it can't be a local variable in the method that returns it. It
can be an instance or static field of a class, or it can be an argument passed to the
method. Attempting to return a local variable generates compiler error CS8168,
"Can't return local 'obj' by reference because it isn't a ref local."
The return value can't be the literal null . A method with a ref return can return an
alias to a variable whose value is currently the null (uninstantiated) value or a
nullable value type for a value type.
The return value can't be a constant, an enumeration member, the by-value return
value from a property, or a method of a class or struct .

In addition, reference return values aren't allowed on async methods. An asynchronous
method may return before it has finished execution, while its return value is still
unknown.

A method that returns a reference return value must:

Include the ref keyword in front of the return type.
Each return statement in the method body includes the ref keyword in front of the
name of the returned instance.

The following example shows a method that satisfies those conditions and returns a
reference to a Person object named p :

C#

The goto statement transfers control to a statement that is marked by a label, as the
following example shows:

C#

public ref Person GetContactInformation(string fname, string lname)
{
 // ...method implementation...
 return ref p;
}

The goto statement

var matrices = new Dictionary<string, int[][]>
{
 ["A"] = new[]

As the preceding example shows, you can use the goto statement to get out of a nested
loop.

You can also use the goto statement in the switch statement to transfer control to a
switch section with a constant case label, as the following example shows:

 {
 new[] { 1, 2, 3, 4 },
 new[] { 4, 3, 2, 1 }
 },
 ["B"] = new[]
 {
 new[] { 5, 6, 7, 8 },
 new[] { 8, 7, 6, 5 }
 },
};

CheckMatrices(matrices, 4);

void CheckMatrices(Dictionary<string, int[][]> matrixLookup, int target)
{
 foreach (var (key, matrix) in matrixLookup)
 {
 for (int row = 0; row < matrix.Length; row++)
 {
 for (int col = 0; col < matrix[row].Length; col++)
 {
 if (matrix[row][col] == target)
 {
 goto Found;
 }
 }
 }
 Console.WriteLine($"Not found {target} in matrix {key}.");
 continue;

 Found:
 Console.WriteLine($"Found {target} in matrix {key}.");
 }
}
// Output:
// Found 4 in matrix A.
// Not found 4 in matrix B.

 Tip

When you work with nested loops, consider refactoring separate loops into
separate methods. That may lead to a simpler, more readable code without the
goto statement.

C#

Within the switch statement, you can also use the statement goto default; to transfer
control to the switch section with the default label.

If a label with the given name doesn't exist in the current function member, or if the
goto statement isn't within the scope of the label, a compile-time error occurs. That is,
you can't use the goto statement to transfer control out of the current function member
or into any nested scope, for example, a try block.

using System;

public enum CoffeeChoice
{
 Plain,
 WithMilk,
 WithIceCream,
}

public class GotoInSwitchExample
{
 public static void Main()
 {
 Console.WriteLine(CalculatePrice(CoffeeChoice.Plain)); // output:
10.0
 Console.WriteLine(CalculatePrice(CoffeeChoice.WithMilk)); //
output: 15.0
 Console.WriteLine(CalculatePrice(CoffeeChoice.WithIceCream)); //
output: 17.0
 }

 private static decimal CalculatePrice(CoffeeChoice choice)
 {
 decimal price = 0;
 switch (choice)
 {
 case CoffeeChoice.Plain:
 price += 10.0m;
 break;

 case CoffeeChoice.WithMilk:
 price += 5.0m;
 goto case CoffeeChoice.Plain;

 case CoffeeChoice.WithIceCream:
 price += 7.0m;
 goto case CoffeeChoice.Plain;
 }
 return price;
 }
}

For more information, see the following sections of the C# language specification:

The break statement
The continue statement
The return statement
The goto statement

C# reference
yield statement

C# language specification

See also

checked and unchecked statements (C#
reference)
Article • 2022-12-02 • 3 minutes to read

The checked and unchecked statements specify the overflow-checking context for
integral-type arithmetic operations and conversions. When integer arithmetic overflow
occurs, the overflow-checking context defines what happens. In a checked context, a
System.OverflowException is thrown; if overflow happens in a constant expression, a
compile-time error occurs. In an unchecked context, the operation result is truncated by
discarding any high-order bits that don't fit in the destination type. For example, in the
case of addition it wraps from the maximum value to the minimum value. The following
example shows both the same operation in both a checked and unchecked context:

C#

uint a = uint.MaxValue;

unchecked
{
 Console.WriteLine(a + 1); // output: 0
}

try
{
 checked
 {
 Console.WriteLine(a + 1);
 }
}
catch (OverflowException e)
{
 Console.WriteLine(e.Message); // output: Arithmetic operation resulted
in an overflow.
}

７ Note

The behavior of user-defined operators and conversions in the case of the overflow
of the corresponding result type can differ from the one described in the previous
paragraph. In particular, user-defined checked operators might not throw an
exception in a checked context.

https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

For more information, see the Arithmetic overflow and division by zero and User-
defined checked operators sections of the Arithmetic operators article.

To specify the overflow-checking context for an expression, you can also use the
checked and unchecked operators, as the following example shows:

C#

The checked and unchecked statements and operators only affect the overflow-checking
context for those operations that are textually inside the statement block or operator's
parentheses, as the following example shows:

C#

double a = double.MaxValue;

int b = unchecked((int)a);
Console.WriteLine(b); // output: -2147483648

try
{
 b = checked((int)a);
}
catch (OverflowException e)
{
 Console.WriteLine(e.Message); // output: Arithmetic operation resulted
in an overflow.
}

int Multiply(int a, int b) => a * b;

int factor = 2;

try
{
 checked
 {
 Console.WriteLine(Multiply(factor, int.MaxValue)); // output: -2
 }
}
catch (OverflowException e)
{
 Console.WriteLine(e.Message);
}

try
{
 checked
 {
 Console.WriteLine(Multiply(factor, factor * int.MaxValue));
 }

At the preceding example, the first invocation of the Multiply local function shows that
the checked statement doesn't affect the overflow-checking context within the Multiply
function as no exception is thrown. At the second invocation of the Multiply function,
the expression that calculates the second argument of the function is evaluated in a
checked context and results in an exception as it's textually inside the block of the
checked statement.

The overflow-checking context affects the following operations:

The following built-in arithmetic operators: unary ++ , -- , - and binary + , - , * ,
and / operators, when their operands are of integral type (that is, either integral
numeric or char type) or enum type.

Explicit numeric conversions between integral types or from float or double to an
integral type.

Beginning with C# 11, user-defined checked operators and conversions. For more
information, see the User-defined checked operators section of the Arithmetic
operators article.

If you don't specify the overflow-checking context, the value of the
CheckForOverflowUnderflow compiler option defines the default context for non-

}
catch (OverflowException e)
{
 Console.WriteLine(e.Message); // output: Arithmetic operation resulted
in an overflow.
}

Operations affected by the overflow-checking
context

７ Note

When you convert a decimal value to an integral type and the result is
outside the range of the destination type, an OverflowException is always
thrown, regardless of the overflow-checking context.

Default overflow-checking context

https://learn.microsoft.com/en-us/dotnet/api/system.overflowexception

constant expressions. By default the value of that option is unset and integral-type
arithmetic operations and conversions are executed in an unchecked context.

Constant expressions are evaluated by default in a checked context and a compile-time
error occurs in the case of an overflow. You can explicitly specify an unchecked context
for a constant expression with the unchecked statement or operator.

For more information, see the following sections of the C# language specification:

The checked and unchecked statements
The checked and unchecked operators
User defined checked and unchecked operators - C# 11

C# reference
CheckForOverflowUnderflow compiler option

C# language specification

See also

fixed statement - safely access memory
underlying a variable
Article • 2022-12-02 • 2 minutes to read

The fixed statement prevents the garbage collector from relocating a moveable
variable and declares a pointer to that variable. The address of a fixed, or pinned,
variable doesn't change during execution of the statement. You can use the declared
pointer only inside the corresponding fixed statement. The declared pointer is readonly
and can't be modified:

C#

You can initialize the declared pointer as follows:

With an array, as the example at the beginning of this article shows. The initialized
pointer contains the address of the first array element.

With an address of a variable. Use the address-of & operator, as the following
example shows:

C#

unsafe
{
 byte[] bytes = { 1, 2, 3 };
 fixed (byte* pointerToFirst = bytes)
 {
 Console.WriteLine($"The address of the first array element:
{(long)pointerToFirst:X}.");
 Console.WriteLine($"The value of the first array element:
{*pointerToFirst}.");
 }
}
// Output is similar to:
// The address of the first array element: 2173F80B5C8.
// The value of the first array element: 1.

７ Note

You can use the fixed statement only in an unsafe context. The code that contains
unsafe blocks must be compiled with the AllowUnsafeBlocks compiler option.

unsafe
{

https://learn.microsoft.com/en-ca/dotnet/standard/garbage-collection/

Object fields are another example of moveable variables that can be pinned.

When the initialized pointer contains the address of an object field or an array
element, the fixed statement guarantees that the garbage collector doesn't
relocate or dispose of the containing object instance during the execution of the
statement body.

With the instance of the type that implements a method named
GetPinnableReference . That method must return a ref variable of an unmanaged
type. The .NET types System.Span<T> and System.ReadOnlySpan<T> make use of
this pattern. You can pin span instances, as the following example shows:

C#

For more information, see the Span<T>.GetPinnableReference() API reference.

With a string, as the following example shows:

C#

 int[] numbers = { 10, 20, 30 };
 fixed (int* toFirst = &numbers[0], toLast = &numbers[^1])
 {
 Console.WriteLine(toLast - toFirst); // output: 2
 }
}

unsafe
{
 int[] numbers = { 10, 20, 30, 40, 50 };
 Span<int> interior = numbers.AsSpan()[1..^1];
 fixed (int* p = interior)
 {
 for (int i = 0; i < interior.Length; i++)
 {
 Console.Write(p[i]);
 }
 // output: 203040
 }
}

unsafe
{
 var message = "Hello!";
 fixed (char* p = message)
 {
 Console.WriteLine(*p); // output: H
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.span-1
https://learn.microsoft.com/en-us/dotnet/api/system.readonlyspan-1
https://learn.microsoft.com/en-us/dotnet/api/system.span-1.getpinnablereference#system-span-1-getpinnablereference

With a fixed-size buffer.

You can allocate memory on the stack, where it's not subject to garbage collection and
therefore doesn't need to be pinned. To do that, use a stackalloc expression.

You can also use the fixed keyword to declare a fixed-size buffer.

For more information, see the following sections of the C# language specification:

The fixed statement
Fixed and moveable variables

For information about the pattern-based fixed statement, see the Pattern-based fixed
statement feature proposal note.

C# reference
Unsafe code, pointer types, and function pointers
Pointer related operators
unsafe

C# language specification

See also

lock statement - ensure exclusive access
to a shared resource.
Article • 2022-12-02 • 2 minutes to read

The lock statement acquires the mutual-exclusion lock for a given object, executes a
statement block, and then releases the lock. While a lock is held, the thread that holds
the lock can again acquire and release the lock. Any other thread is blocked from
acquiring the lock and waits until the lock is released. The lock statement ensures that a
single thread has exclusive access to that object.

The lock statement is of the form

C#

where x is an expression of a reference type. It's precisely equivalent to

C#

Since the code uses a try...finally block, the lock is released even if an exception is
thrown within the body of a lock statement.

You can't use the await operator in the body of a lock statement.

lock (x)
{
 // Your code...
}

object __lockObj = x;
bool __lockWasTaken = false;
try
{
 System.Threading.Monitor.Enter(__lockObj, ref __lockWasTaken);
 // Your code...
}
finally
{
 if (__lockWasTaken) System.Threading.Monitor.Exit(__lockObj);
}

Guidelines

When you synchronize thread access to a shared resource, lock on a dedicated object
instance (for example, private readonly object balanceLock = new object();) or
another instance that is unlikely to be used as a lock object by unrelated parts of the
code. Avoid using the same lock object instance for different shared resources, as it
might result in deadlock or lock contention. In particular, avoid using the following types
as lock objects:

this , as it might be used by the callers as a lock.
Type instances, as those objects might be obtained by the typeof operator or
reflection.
string instances, including string literals, as string literals might be interned.

Hold a lock for as short time as possible to reduce lock contention.

The following example defines an Account class that synchronizes access to its private
balance field by locking on a dedicated balanceLock instance. Using the same instance
for locking ensures that the balance field can't be updated simultaneously by two
threads attempting to call the Debit or Credit methods simultaneously.

C#

Example

using System;
using System.Threading.Tasks;

public class Account
{
 private readonly object balanceLock = new object();
 private decimal balance;

 public Account(decimal initialBalance) => balance = initialBalance;

 public decimal Debit(decimal amount)
 {
 if (amount < 0)
 {
 throw new ArgumentOutOfRangeException(nameof(amount), "The debit
amount cannot be negative.");
 }

 decimal appliedAmount = 0;
 lock (balanceLock)
 {
 if (balance >= amount)
 {
 balance -= amount;

https://learn.microsoft.com/en-us/dotnet/api/system.type
https://learn.microsoft.com/en-us/dotnet/api/system.string.intern#remarks

 appliedAmount = amount;
 }
 }
 return appliedAmount;
 }

 public void Credit(decimal amount)
 {
 if (amount < 0)
 {
 throw new ArgumentOutOfRangeException(nameof(amount), "The
credit amount cannot be negative.");
 }

 lock (balanceLock)
 {
 balance += amount;
 }
 }

 public decimal GetBalance()
 {
 lock (balanceLock)
 {
 return balance;
 }
 }
}

class AccountTest
{
 static async Task Main()
 {
 var account = new Account(1000);
 var tasks = new Task[100];
 for (int i = 0; i < tasks.Length; i++)
 {
 tasks[i] = Task.Run(() => Update(account));
 }
 await Task.WhenAll(tasks);
 Console.WriteLine($"Account's balance is {account.GetBalance()}");
 // Output:
 // Account's balance is 2000
 }

 static void Update(Account account)
 {
 decimal[] amounts = { 0, 2, -3, 6, -2, -1, 8, -5, 11, -6 };
 foreach (var amount in amounts)
 {
 if (amount >= 0)
 {
 account.Credit(amount);
 }
 else

For more information, see The lock statement section of the C# language specification.

C# reference
System.Threading.Monitor
System.Threading.SpinLock
System.Threading.Interlocked
Overview of synchronization primitives
Introduction to System.Threading.Channels

 {
 account.Debit(Math.Abs(amount));
 }
 }
 }
}

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.threading.monitor
https://learn.microsoft.com/en-us/dotnet/api/system.threading.spinlock
https://learn.microsoft.com/en-us/dotnet/api/system.threading.interlocked
https://learn.microsoft.com/en-ca/dotnet/standard/threading/overview-of-synchronization-primitives
https://devblogs.microsoft.com/dotnet/an-introduction-to-system-threading-channels

yield statement - provide the next
element
Article • 2022-12-02 • 3 minutes to read

You use the yield statement in an iterator to provide the next value from a sequence
when iterating the sequence. The yield statement has the two following forms:

yield return : to provide the next value in iteration, as the following example
shows:

C#

yield break : to explicitly signal the end of iteration, as the following example
shows:

C#

foreach (int i in ProduceEvenNumbers(9))
{
 Console.Write(i);
 Console.Write(" ");
}
// Output: 0 2 4 6 8

IEnumerable<int> ProduceEvenNumbers(int upto)
{
 for (int i = 0; i <= upto; i += 2)
 {
 yield return i;
 }
}

Console.WriteLine(string.Join(" ", TakeWhilePositive(new[] { 2, 3, 4,
5, -1, 3, 4})));
// Output: 2 3 4 5

Console.WriteLine(string.Join(" ", TakeWhilePositive(new[] { 9, 8, 7
})));
// Output: 9 8 7

IEnumerable<int> TakeWhilePositive(IEnumerable<int> numbers)
{
 foreach (int n in numbers)
 {
 if (n > 0)
 {
 yield return n;

Iteration also finishes when control reaches the end of an iterator.

In the preceding examples, the return type of iterators is IEnumerable<T> (in non-
generic cases, use IEnumerable as the return type of an iterator). You can also use
IAsyncEnumerable<T> as the return type of an iterator. That makes an iterator async.
Use the await foreach statement to iterate over iterator's result, as the following
example shows:

C#

IEnumerator<T> or IEnumerator can also be the return type of an iterator. That is useful
when you implement the GetEnumerator method in the following scenarios:

You design the type that implements IEnumerable<T> or IEnumerable interface.

You add an instance or extension GetEnumerator method to enable iteration over
the type's instance with the foreach statement, as the following example shows:

C#

 }
 else
 {
 yield break;
 }
 }
}

await foreach (int n in GenerateNumbersAsync(5))
{
 Console.Write(n);
 Console.Write(" ");
}
// Output: 0 2 4 6 8

async IAsyncEnumerable<int> GenerateNumbersAsync(int count)
{
 for (int i = 0; i < count; i++)
 {
 yield return await ProduceNumberAsync(i);
 }
}

async Task<int> ProduceNumberAsync(int seed)
{
 await Task.Delay(1000);
 return 2 * seed;
}

https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.iasyncenumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerator-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerator
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

You can't use the yield statements in:

methods with in, ref, or out parameters
lambda expressions and anonymous methods
methods that contain unsafe blocks

The call of an iterator doesn't execute it immediately, as the following example shows:

C#

public static void Example()
{
 var point = new Point(1, 2, 3);
 foreach (int coordinate in point)
 {
 Console.Write(coordinate);
 Console.Write(" ");
 }
 // Output: 1 2 3
}

public readonly record struct Point(int X, int Y, int Z)
{
 public IEnumerator<int> GetEnumerator()
 {
 yield return X;
 yield return Y;
 yield return Z;
 }
}

Execution of an iterator

var numbers = ProduceEvenNumbers(5);
Console.WriteLine("Caller: about to iterate.");
foreach (int i in numbers)
{
 Console.WriteLine($"Caller: {i}");
}

IEnumerable<int> ProduceEvenNumbers(int upto)
{
 Console.WriteLine("Iterator: start.");
 for (int i = 0; i <= upto; i += 2)
 {
 Console.WriteLine($"Iterator: about to yield {i}");
 yield return i;
 Console.WriteLine($"Iterator: yielded {i}");
 }
 Console.WriteLine("Iterator: end.");

As the preceding example shows, when you start to iterate over an iterator's result, an
iterator is executed until the first yield return statement is reached. Then, the
execution of an iterator is suspended and the caller gets the first iteration value and
processes it. On each subsequent iteration, the execution of an iterator resumes after
the yield return statement that caused the previous suspension and continues until
the next yield return statement is reached. The iteration completes when control
reaches the end of an iterator or a yield break statement.

For more information, see The yield statement section of the C# language specification.

C# reference
Iterators
Iterate through collections in C#
foreach
await foreach

}
// Output:
// Caller: about to iterate.
// Iterator: start.
// Iterator: about to yield 0
// Caller: 0
// Iterator: yielded 0
// Iterator: about to yield 2
// Caller: 2
// Iterator: yielded 2
// Iterator: about to yield 4
// Caller: 4
// Iterator: yielded 4
// Iterator: end.

C# language specification

See also

C# Special Characters
Article • 2021-10-27 • 2 minutes to read

Special characters are predefined, contextual characters that modify the program
element (a literal string, an identifier, or an attribute name) to which they are prepended.
C# supports the following special characters:

@, the verbatim identifier character.
$, the interpolated string character.

This section only includes those tokens that are not operators. See the operators section
for all operators.

C# Reference
C# Programming Guide

See also

Code comments - // and /* . */
Article • 2022-12-13 • 2 minutes to read

C# supports two different forms of comments. Single line comments start with // and
end at the end of that line of code. Multiline comments start with /* and end with */ .
The following code shows an example of each:

C#

The multi-line comment can also be used to insert text in a line of code. Because these
comments have an explicit closing character, you can include more executable code
after the comment:

C#

The single line comment can appear after executable code on the same line. The
comment ends at the end of the text line:

C#

Some comments start with three slashes: /// . Triple-slash comments are XML
documentation comments. The compiler reads these to produce human documentation.
You can read more about XML doc comments in the section on triple-slash comments.

// This is a single line comment.

/* This could be a summary of all the
 code that's in this class.
 You might add multiple paragraphs, or links to pages
 like https://learn.microsoft.com/dotnet/csharp.

 You could even include emojis. This example is 🔥
 Then, when you're done, close with
 */

public static int Add(int left, int right)
{
 return left /* first operand */ + right /* second operand */;
}

return source++; // increment the source.

String interpolation using $
Article • 2022-12-02 • 7 minutes to read

The $ special character identifies a string literal as an interpolated string. An interpolated
string is a string literal that might contain interpolation expressions. When an
interpolated string is resolved to a result string, items with interpolation expressions are
replaced by the string representations of the expression results.

String interpolation provides a more readable, convenient syntax to format strings. It's
easier to read than string composite formatting. Compare the following example that
uses both features to produce the same output:

C#

To identify a string literal as an interpolated string, prepend it with the $ symbol. You
can't have any white space between the $ and the " that starts a string literal. To
concatenate multiple interpolated strings, add the $ special character to each string
literal.

The structure of an item with an interpolation expression is as follows:

C#

Elements in square brackets are optional. The following table describes each element:

Element Description

string name = "Mark";
var date = DateTime.Now;

// Composite formatting:
Console.WriteLine("Hello, {0}! Today is {1}, it's {2:HH:mm} now.", name,
date.DayOfWeek, date);
// String interpolation:
Console.WriteLine($"Hello, {name}! Today is {date.DayOfWeek}, it's
{date:HH:mm} now.");
// Both calls produce the same output that is similar to:
// Hello, Mark! Today is Wednesday, it's 19:40 now.

Structure of an interpolated string

{<interpolationExpression>[,<alignment>][:<formatString>]}

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting

Element Description

interpolationExpression The expression that produces a result to be formatted. String
representation of null is String.Empty.

alignment The constant expression whose value defines the minimum number of
characters in the string representation of the expression result. If
positive, the string representation is right-aligned; if negative, it's left-
aligned. For more information, see Alignment Component.

formatString A format string that is supported by the type of the expression result.
For more information, see Format String Component.

The following example uses optional formatting components described above:

C#

Beginning with C# 10, you can use string interpolation to initialize a constant string. All
expressions used for placeholders must be constant strings. In other words, every
interpolation expression must be a string, and it must be a compile time constant.

Beginning with C# 11, the interpolated expressions can include newlines. The text
between the { and } must be valid C#, therefore it can include newlines that improve
readability. The following example shows how newlines can improve the readability of
an expression involving pattern matching:

C#

Console.WriteLine($"|{"Left",-7}|{"Right",7}|");

const int FieldWidthRightAligned = 20;
Console.WriteLine($"{Math.PI,FieldWidthRightAligned} - default formatting of
the pi number");
Console.WriteLine($"{Math.PI,FieldWidthRightAligned:F3} - display only three
decimal digits of the pi number");
// Expected output is:
// |Left | Right|
// 3.14159265358979 - default formatting of the pi number
// 3.142 - display only three decimal digits of the pi number

string message = $"The usage policy for {safetyScore} is {
 safetyScore switch
 {
 > 90 => "Unlimited usage",
 > 80 => "General usage, with daily safety check",
 > 70 => "Issues must be addressed within 1 week",
 > 50 => "Issues must be addressed within 1 day",
 _ => "Issues must be addressed before continued use",

https://learn.microsoft.com/en-us/dotnet/api/system.string.empty
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting#alignment-component
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting#format-string-component

Also, beginning in C# 11, you can use a raw string literal for the format string:

C#

You can use multiple $ characters in an interpolated raw string literal to embed { and
} characters in the output string without escaping them:

C#

If your output string should contain repeated { or } characters, you can add more $ to
designate the interpolated string. Any sequence of { or } shorter than the number of $
will be embedded in the output string. As shown in the preceding example, sequences
longer than the sequence of $ characters embed the additional { or } characters in the
output. The compiler issues an error if the sequence of brace characters is equal to or
greater than double the length of the sequence of $ characters.

You can try these features using the .NET 7 SDK. Or, if you have the .NET SDK 6.00.200 or
later, you can set the <LangVersion> element in your csproj file to preview .

To include a brace, "{" or "}", in the text produced by an interpolated string, use two
braces, "{{" or "}}". For more information, see Escaping Braces.

 }
 }";

int X = 2;
int Y = 3;

var pointMessage = $"""The point "{X}, {Y}" is {Math.Sqrt(X * X + Y * Y)}
from the origin""";

Console.WriteLine(pointMessage);
// output: The point "2, 3" is 3.605551275463989 from the origin.

int X = 2;
int Y = 3;

var pointMessage = $$"""The point {{{X}}, {{Y}}} is {{Math.Sqrt(X * X + Y *
Y)}} from the origin""";
Console.WriteLine(pointMessage);
// output: The point {2, 3} is 3.605551275463989 from the origin.

Special characters

https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting#escaping-braces

As the colon (":") has special meaning in an interpolation expression item, to use a
conditional operator in an interpolation expression, enclose that expression in
parentheses.

The following example shows how to include a brace in a result string. It also shows how
to use a conditional operator:

C#

An interpolated verbatim string starts with the $ character followed by the @ character.
You can use the $ and @ tokens in any order: both $@"..." and @$"..." are valid
interpolated verbatim strings. For more information about verbatim strings, see the
string and verbatim identifier articles.

There are three implicit conversions from an interpolated string:

1. Conversion of an interpolated string to a String instance. The string is the result of
interpolated string resolution. All interpolation expression items are replaced with
the properly formatted string representations of their results. This conversion uses
the CurrentCulture to format expression results.

2. Conversion of an interpolated string to a FormattableString instance that
represents a composite format string along with the expression results to be
formatted. That allows you to create multiple result strings with culture-specific
content from a single FormattableString instance. To do that, call one of the
following methods:

A ToString() overload that produces a result string for the CurrentCulture.
An Invariant method that produces a result string for the InvariantCulture.
A ToString(IFormatProvider) method that produces a result string for a
specified culture.

string name = "Horace";
int age = 34;
Console.WriteLine($"He asked, \"Is your name {name}?\", but didn't wait for
a reply :-{{");
Console.WriteLine($"{name} is {age} year{(age == 1 ? "" : "s")} old.");
// Expected output is:
// He asked, "Is your name Horace?", but didn't wait for a reply :-{
// Horace is 34 years old.

Implicit conversions and how to specify
IFormatProvider implementation

https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture#system-globalization-cultureinfo-currentculture
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.tostring#system-formattablestring-tostring
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.currentculture#system-globalization-cultureinfo-currentculture
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.invariant
https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.invariantculture#system-globalization-cultureinfo-invariantculture
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.tostring#system-formattablestring-tostring(system-iformatprovider)

The ToString(IFormatProvider) provides a user-defined implementation of the
IFormatProvider interface that supports custom formatting. For more information,
see the Custom formatting with ICustomFormatter section of the Formatting types
in .NET article.

3. Conversion of an interpolated string to an IFormattable instance that also allows
you to create multiple result strings with culture-specific content from a single
IFormattable instance.

The following example uses implicit conversion to FormattableString to create culture-
specific result strings:

C#

If you're new to string interpolation, see the String interpolation in C# interactive
tutorial. You can also check another String interpolation in C# tutorial. That tutorial
demonstrates how to use interpolated strings to produce formatted strings.

double speedOfLight = 299792.458;
FormattableString message = $"The speed of light is {speedOfLight:N3}
km/s.";

System.Globalization.CultureInfo.CurrentCulture =
System.Globalization.CultureInfo.GetCultureInfo("nl-NL");
string messageInCurrentCulture = message.ToString();

var specificCulture = System.Globalization.CultureInfo.GetCultureInfo("en-
IN");
string messageInSpecificCulture = message.ToString(specificCulture);

string messageInInvariantCulture = FormattableString.Invariant(message);

Console.WriteLine($"{System.Globalization.CultureInfo.CurrentCulture,-10}
{messageInCurrentCulture}");
Console.WriteLine($"{specificCulture,-10} {messageInSpecificCulture}");
Console.WriteLine($"{"Invariant",-10} {messageInInvariantCulture}");
// Expected output is:
// nl-NL The speed of light is 299.792,458 km/s.
// en-IN The speed of light is 2,99,792.458 km/s.
// Invariant The speed of light is 299,792.458 km/s.

Other resources

Compilation of interpolated strings

https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring.tostring#system-formattablestring-tostring(system-iformatprovider)
https://learn.microsoft.com/en-us/dotnet/api/system.iformatprovider
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types#custom-formatting-with-icustomformatter
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/formatting-types
https://learn.microsoft.com/en-us/dotnet/api/system.iformattable
https://learn.microsoft.com/en-us/dotnet/api/system.iformattable
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-ca/dotnet/csharp/tutorials/exploration/interpolated-strings

If an interpolated string has the type string , it's typically transformed into a
String.Format method call. The compiler may replace String.Format with String.Concat if
the analyzed behavior would be equivalent to concatenation.

If an interpolated string has the type IFormattable or FormattableString, the compiler
generates a call to the FormattableStringFactory.Create method.

Beginning with C# 10, when an interpolated string is used, the compiler checks if the
interpolated string is assigned to a type that satisfies the interpolated string handler
pattern. An interpolated string handler is a custom type that converts the interpolated
string into a string. An interpolated string handler is an advanced scenario, typically
used for performance reasons. You can learn about the requirements to build an
interpolated string handler in the language specification for interpolated string
improvements. You can build one following the interpolated string handler tutorial in
the What's new in C# section. In .NET 6, when you use an interpolated string for an
argument of type string , the interpolated string is processed by the
System.Runtime.CompilerServices.DefaultInterpolatedStringHandler.

For more information, see the Interpolated strings section of the C# language
specification, the C# 11 - Raw string literals feature specification and the C# 11 -
Newlines in string interpolations feature specification.

Simplify interpolation (style rule IDE0071)
C# reference
C# special characters
Strings
Standard numeric format strings
Composite formatting
String.Format

７ Note

One side effect of interpolated string handlers is that a custom handler, including
System.Runtime.CompilerServices.DefaultInterpolatedStringHandler, may not
evaluate all the expressions used as placeholders in the interpolated string under all
conditions. That means side-effects in those expressions may not occur.

C# language specification

See also

https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.string.concat
https://learn.microsoft.com/en-us/dotnet/api/system.iformattable
https://learn.microsoft.com/en-us/dotnet/api/system.formattablestring
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.formattablestringfactory.create
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.defaultinterpolatedstringhandler
https://learn.microsoft.com/en-ca/dotnet/fundamentals/code-analysis/style-rules/ide0071
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/standard-numeric-format-strings
https://learn.microsoft.com/en-ca/dotnet/standard/base-types/composite-formatting
https://learn.microsoft.com/en-us/dotnet/api/system.string.format
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.defaultinterpolatedstringhandler

Verbatim text - @ in variables,
attributes, and string literals
Article • 2022-12-02 • 2 minutes to read

The @ special character serves as a verbatim identifier. It can be used in the following
ways:

1. To enable C# keywords to be used as identifiers. The @ character prefixes a code
element that the compiler is to interpret as an identifier rather than a C# keyword.
The following example uses the @ character to define an identifier named for that
it uses in a for loop.

C#

2. To indicate that a string literal is to be interpreted verbatim. The @ character in this
instance defines a verbatim string literal. Simple escape sequences (such as "\\"
for a backslash), hexadecimal escape sequences (such as "\x0041" for an
uppercase A), and Unicode escape sequences (such as "\u0041" for an uppercase
A) are interpreted literally. Only a quote escape sequence ("") isn't interpreted
literally; it produces one double quotation mark. Additionally, in case of a verbatim
interpolated string brace escape sequences ({{ and }}) aren't interpreted literally;
they produce single brace characters. The following example defines two identical
file paths, one by using a regular string literal and the other by using a verbatim
string literal. This is one of the more common uses of verbatim string literals.

C#

string[] @for = { "John", "James", "Joan", "Jamie" };
for (int ctr = 0; ctr < @for.Length; ctr++)
{
 Console.WriteLine($"Here is your gift, {@for[ctr]}!");
}
// The example displays the following output:
// Here is your gift, John!
// Here is your gift, James!
// Here is your gift, Joan!
// Here is your gift, Jamie!

string filename1 = @"c:\documents\files\u0066.txt";
string filename2 = "c:\\documents\\files\\u0066.txt";

Console.WriteLine(filename1);
Console.WriteLine(filename2);

The following example illustrates the effect of defining a regular string literal and a
verbatim string literal that contain identical character sequences.

C#

3. To enable the compiler to distinguish between attributes in cases of a naming
conflict. An attribute is a class that derives from Attribute. Its type name typically
includes the suffix Attribute, although the compiler doesn't enforce this
convention. The attribute can then be referenced in code either by its full type
name (for example, [InfoAttribute] or its shortened name (for example, [Info]).
However, a naming conflict occurs if two shortened attribute type names are
identical, and one type name includes the Attribute suffix but the other doesn't.
For example, the following code fails to compile because the compiler can't
determine whether the Info or InfoAttribute attribute is applied to the Example
class. For more information, see CS1614.

C#

// The example displays the following output:
// c:\documents\files\u0066.txt
// c:\documents\files\u0066.txt

string s1 = "He said, \"This is the last \u0063hance\x0021\"";
string s2 = @"He said, ""This is the last \u0063hance\x0021""";

Console.WriteLine(s1);
Console.WriteLine(s2);
// The example displays the following output:
// He said, "This is the last chance!"
// He said, "This is the last \u0063hance\x0021"

using System;

[AttributeUsage(AttributeTargets.Class)]
public class Info : Attribute
{
 private string information;

 public Info(string info)
 {
 information = info;
 }
}

[AttributeUsage(AttributeTargets.Method)]
public class InfoAttribute : Attribute
{
 private string information;

https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/cs1614

C# Reference
C# Programming Guide
C# Special Characters

 public InfoAttribute(string info)
 {
 information = info;
 }
}

[Info("A simple executable.")] // Generates compiler error CS1614.
Ambiguous Info and InfoAttribute.
// Prepend '@' to select 'Info' ([@Info("A simple executable.")]).
Specify the full name 'InfoAttribute' to select it.
public class Example
{
 [InfoAttribute("The entry point.")]
 public static void Main()
 {
 }
}

See also

Raw string literal text - """ in string
literals
Article • 2022-12-17 • 2 minutes to read

A raw string literal starts and ends with a minimum of three double quote (")
characters:

C#

Raw string literals can span multiple lines:

C#

The following rules govern the interpretation of a multi-line raw string literal:

Both opening and closing quote characters must be on their own line.
Any whitespace to the left of the closing quotes is removed from all lines of the
raw string literal.
Whitespace following the opening quote on the same line is ignored.
Whitespace only lines following the opening quote are included in the string literal.

You may need to create a raw string literal that has three or more consecutive double-
quote characters. Raw string literals can start and end with a sequence of at least three
double-quote characters. When your string literal contains three consecutive double-
quotes, you start and end the raw string literal with four double quote characters:

C#

If you need to start or end a raw string literal with quote characters, use the multi-line
format:

var singleLine = """This is a "raw string literal". It can contain
characters like \, ' and ".""";

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>
 """;

var moreQuotes = """" As you can see,"""Raw string literals""" can start and
end with more than three double-quotes when needed."""";

C#

Raw strings can also be combined with interpolated strings to embed the { and }
characters in the output string. You use multiple $ characters in an interpolated raw
string literal to embed { and } characters in the output string without escaping them.

C# interpolated strings
C# Special Characters
Raw string literals feature specification

var MultiLineQuotes = """"
 """Raw string literals""" can start and end with more than
three double-quotes when needed.
 """";

See also

Assembly level attributes interpreted by
the C# compiler
Article • 2021-12-18 • 2 minutes to read

Most attributes are applied to specific language elements such as classes or methods;
however, some attributes are global—they apply to an entire assembly or module. For
example, the AssemblyVersionAttribute attribute can be used to embed version
information into an assembly, like this:

C#

Global attributes appear in the source code after any top level using directives and
before any type, module, or namespace declarations. Global attributes can appear in
multiple source files, but the files must be compiled in a single compilation pass. Visual
Studio adds global attributes to the AssemblyInfo.cs file in .NET Framework projects.
These attributes aren't added to .NET Core projects.

Assembly attributes are values that provide information about an assembly. They fall
into the following categories:

Assembly identity attributes
Informational attributes
Assembly manifest attributes

Three attributes (with a strong name, if applicable) determine the identity of an
assembly: name, version, and culture. These attributes form the full name of the
assembly and are required when you reference it in code. You can set an assembly's
version and culture using attributes. However, the name value is set by the compiler, the
Visual Studio IDE in the Assembly Information Dialog Box, or the Assembly Linker
(Al.exe) when the assembly is created. The assembly name is based on the assembly
manifest. The AssemblyFlagsAttribute attribute specifies whether multiple copies of the
assembly can coexist.

The following table shows the identity attributes.

Attribute Purpose

[assembly: AssemblyVersion("1.0.0.0")]

Assembly identity attributes

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyversionattribute
https://learn.microsoft.com/en-us/visualstudio/ide/reference/assembly-information-dialog-box
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyflagsattribute

Attribute Purpose

AssemblyVersionAttribute Specifies the version of an assembly.

AssemblyCultureAttribute Specifies which culture the assembly supports.

AssemblyFlagsAttribute Specifies whether an assembly supports side-by-side execution on
the same computer, in the same process, or in the same application
domain.

You use informational attributes to provide additional company or product information
for an assembly. The following table shows the informational attributes defined in the
System.Reflection namespace.

Attribute Purpose

AssemblyProductAttribute Specifies a product name for an assembly manifest.

AssemblyTrademarkAttribute Specifies a trademark for an assembly manifest.

AssemblyInformationalVersionAttribute Specifies an informational version for an assembly
manifest.

AssemblyCompanyAttribute Specifies a company name for an assembly manifest.

AssemblyCopyrightAttribute Defines a custom attribute that specifies a copyright for
an assembly manifest.

AssemblyFileVersionAttribute Sets a specific version number for the Win32 file version
resource.

CLSCompliantAttribute Indicates whether the assembly is compliant with the
Common Language Specification (CLS).

You can use assembly manifest attributes to provide information in the assembly
manifest. The attributes include title, description, default alias, and configuration. The
following table shows the assembly manifest attributes defined in the System.Reflection
namespace.

Attribute Purpose

AssemblyTitleAttribute Specifies an assembly title for an assembly manifest.

Informational attributes

Assembly manifest attributes

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyversionattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblycultureattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyflagsattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyproductattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblytrademarkattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyinformationalversionattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblycompanyattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblycopyrightattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyfileversionattribute
https://learn.microsoft.com/en-us/dotnet/api/system.clscompliantattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblytitleattribute

Attribute Purpose

AssemblyDescriptionAttribute Specifies an assembly description for an assembly manifest.

AssemblyConfigurationAttribute Specifies an assembly configuration (such as retail or debug)
for an assembly manifest.

AssemblyDefaultAliasAttribute Defines a friendly default alias for an assembly manifest

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblydescriptionattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblyconfigurationattribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblydefaultaliasattribute

Determine caller information using
attributes interpreted by the C#
compiler
Article • 2022-06-15 • 4 minutes to read

Using info attributes, you obtain information about the caller to a method. You obtain
the file path of the source code, the line number in the source code, and the member
name of the caller. To obtain member caller information, you use attributes that are
applied to optional parameters. Each optional parameter specifies a default value. The
following table lists the Caller Info attributes that are defined in the
System.Runtime.CompilerServices namespace:

Attribute Description Type

CallerFilePathAttribute Full path of the source file that contains the
caller. The full path is the path at compile time.

String

CallerLineNumberAttribute Line number in the source file from which the
method is called.

Integer

CallerMemberNameAttribute Method name or property name of the caller. String

CallerArgumentExpressionAttribute String representation of the argument
expression.

String

This information helps you with tracing and debugging, and helps you to create
diagnostic tools. The following example shows how to use caller info attributes. On each
call to the TraceMessage method, the caller information is inserted for the arguments to
the optional parameters.

C#

public void DoProcessing()
{
 TraceMessage("Something happened.");
}

public void TraceMessage(string message,
 [CallerMemberName] string memberName = "",
 [CallerFilePath] string sourceFilePath = "",
 [CallerLineNumber] int sourceLineNumber = 0)
{
 Trace.WriteLine("message: " + message);
 Trace.WriteLine("member name: " + memberName);
 Trace.WriteLine("source file path: " + sourceFilePath);

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerfilepathattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerlinenumberattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callermembernameattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerargumentexpressionattribute

You specify an explicit default value for each optional parameter. You can't apply caller
info attributes to parameters that aren't specified as optional. The caller info attributes
don't make a parameter optional. Instead, they affect the default value that's passed in
when the argument is omitted. Caller info values are emitted as literals into the
Intermediate Language (IL) at compile time. Unlike the results of the StackTrace property
for exceptions, the results aren't affected by obfuscation. You can explicitly supply the
optional arguments to control the caller information or to hide caller information.

You can use the CallerMemberName attribute to avoid specifying the member name as a
String argument to the called method. By using this technique, you avoid the problem
that Rename Refactoring doesn't change the String values. This benefit is especially
useful for the following tasks:

Using tracing and diagnostic routines.
Implementing the INotifyPropertyChanged interface when binding data. This
interface allows the property of an object to notify a bound control that the
property has changed. The control can display the updated information. Without
the CallerMemberName attribute, you must specify the property name as a literal.

The following chart shows the member names that are returned when you use the
CallerMemberName attribute.

Calls occur within Member name result

Method, property, or
event

The name of the method, property, or event from which the call
originated.

Constructor The string ".ctor"

Static constructor The string ".cctor"

Finalizer The string "Finalize"

 Trace.WriteLine("source line number: " + sourceLineNumber);
}

// Sample Output:
// message: Something happened.
// member name: DoProcessing
// source file path: c:\Visual Studio
Projects\CallerInfoCS\CallerInfoCS\Form1.cs
// source line number: 31

Member names

https://learn.microsoft.com/en-us/dotnet/api/system.exception.stacktrace
https://learn.microsoft.com/en-us/dotnet/api/system.componentmodel.inotifypropertychanged

Calls occur within Member name result

User-defined operators
or conversions

The generated name for the member, for example, "op_Addition".

Attribute constructor The name of the method or property to which the attribute is applied.
If the attribute is any element within a member (such as a parameter, a
return value, or a generic type parameter), this result is the name of the
member that's associated with that element.

No containing member
(for example, assembly-
level or attributes that
are applied to types)

The default value of the optional parameter.

You use the System.Runtime.CompilerServices.CallerArgumentExpressionAttribute when
you want the expression passed as an argument. Diagnostic libraries may want to
provide more details about the expressions passed to arguments. By providing the
expression that triggered the diagnostic, in addition to the parameter name, developers
have more details about the condition that triggered the diagnostic. That extra
information makes it easier to fix.

The following example shows how you can provide detailed information about the
argument when it's invalid:

C#

You would invoke it as shown in the following example:

C#

Argument expressions

public static void ValidateArgument(string parameterName, bool condition,
[CallerArgumentExpression("condition")] string? message=null)
{
 if (!condition)
 {
 throw new ArgumentException($"Argument failed validation:
<{message}>", parameterName);
 }
}

public void Operation(Action func)
{
 Utilities.ValidateArgument(nameof(func), func is not null);

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerargumentexpressionattribute

The expression used for condition is injected by the compiler into the message
argument. When a developer calls Operation with a null argument, the following
message is stored in the ArgumentException :

.NET CLI

This attribute enables you to write diagnostic utilities that provide more details.
Developers can more quickly understand what changes are needed. You can also use the
CallerArgumentExpressionAttribute to determine what expression was used as the
receiver for extension methods. The following method samples a sequence at regular
intervals. If the sequence has fewer elements than the frequency, it reports an error:

C#

The previous example uses the nameof operator for the parameter sequence . That
feature is available in C# 11. Before C# 11, you'll need to type the name of the
parameter as a string. You could call this method as follows:

C#

The preceding example would throw an ArgumentException whose message is the
following text:

 func();
}

Argument failed validation: <func is not null>

public static IEnumerable<T> Sample<T>(this IEnumerable<T> sequence, int
frequency,
 [CallerArgumentExpression(nameof(sequence))] string? message = null)
{
 if (sequence.Count() < frequency)
 throw new ArgumentException($"Expression doesn't have enough
elements: {message}", nameof(sequence));
 int i = 0;
 foreach (T item in sequence)
 {
 if (i++ % frequency == 0)
 yield return item;
 }
}

sample = Enumerable.Range(0, 10).Sample(100);

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerargumentexpressionattribute
https://learn.microsoft.com/en-us/dotnet/api/system.argumentexception

.NET CLI

Named and Optional Arguments
System.Reflection
Attribute
Attributes

Expression doesn't have enough elements: Enumerable.Range(0, 10) (Parameter
'sequence')

See also

https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/

Attributes for null-state static analysis
interpreted by the C# compiler
Article • 2022-10-07 • 14 minutes to read

In a nullable enabled context, the compiler performs static analysis of code to determine
the null-state of all reference type variables:

not-null: Static analysis determines that a variable has a non-null value.
maybe-null: Static analysis can't determine that a variable is assigned a non-null
value.

These states enable the compiler to provide warnings when you may dereference a null
value, throwing a System.NullReferenceException. These attributes provide the compiler
with semantic information about the null-state of arguments, return values, and object
members based on the state of arguments and return values. The compiler provides
more accurate warnings when your APIs have been properly annotated with this
semantic information.

This article provides a brief description of each of the nullable reference type attributes
and how to use them.

Let's start with an example. Imagine your library has the following API to retrieve a
resource string. This method was originally compiled in a nullable oblivious context:

C#

The preceding example follows the familiar Try* pattern in .NET. There are two
reference parameters for this API: the key and the message . This API has the following
rules relating to the null-state of these parameters:

Callers shouldn't pass null as the argument for key .
Callers can pass a variable whose value is null as the argument for message .

bool TryGetMessage(string key, out string message)
{
 if (_messageMap.ContainsKey(key))
 message = _messageMap[key];
 else
 message = null;
 return message != null;
}

https://learn.microsoft.com/en-us/dotnet/api/system.nullreferenceexception

If the TryGetMessage method returns true , the value of message isn't null. If the
return value is false, the value of message is null.

The rule for key can be expressed succinctly: key should be a non-nullable reference
type. The message parameter is more complex. It allows a variable that is null as the
argument, but guarantees, on success, that the out argument isn't null . For these
scenarios, you need a richer vocabulary to describe the expectations. The NotNullWhen
attribute, described below describes the null-state for the argument used for the
message parameter.

Attribute Category Meaning

AllowNull Precondition A non-nullable parameter, field, or property may be
null.

DisallowNull Precondition A nullable parameter, field, or property should
never be null.

MaybeNull Postcondition A non-nullable parameter, field, property, or return
value may be null.

NotNull Postcondition A nullable parameter, field, property, or return
value will never be null.

MaybeNullWhen Conditional
postcondition

A non-nullable argument may be null when the
method returns the specified bool value.

NotNullWhen Conditional
postcondition

A nullable argument won't be null when the
method returns the specified bool value.

NotNullIfNotNull Conditional
postcondition

A return value, property, or argument isn't null if
the argument for the specified parameter isn't null.

MemberNotNull Method and
property helper
methods

The listed member won't be null when the method
returns.

７ Note

Adding these attributes gives the compiler more information about the rules for
your API. When calling code is compiled in a nullable enabled context, the compiler
will warn callers when they violate those rules. These attributes don't enable more
checks on your implementation.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.allownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.disallownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullifnotnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullattribute

Attribute Category Meaning

MemberNotNullWhen Method and
property helper
methods

The listed member won't be null when the method
returns the specified bool value.

DoesNotReturn Unreachable code A method or property never returns. In other
words, it always throws an exception.

DoesNotReturnIf Unreachable code This method or property never returns if the
associated bool parameter has the specified value.

The preceding descriptions are a quick reference to what each attribute does. The
following sections describe the behavior and meaning of these attributes more
thoroughly.

Consider a read/write property that never returns null because it has a reasonable
default value. Callers pass null to the set accessor when setting it to that default value.
For example, consider a messaging system that asks for a screen name in a chat room. If
none is provided, the system generates a random name:

C#

When you compile the preceding code in a nullable oblivious context, everything is fine.
Once you enable nullable reference types, the ScreenName property becomes a non-
nullable reference. That's correct for the get accessor: it never returns null . Callers
don't need to check the returned property for null . But now setting the property to
null generates a warning. To support this type of code, you add the
System.Diagnostics.CodeAnalysis.AllowNullAttribute attribute to the property, as shown
in the following code:

C#

Preconditions: AllowNull and DisallowNull

public string ScreenName
{
 get => _screenName;
 set => _screenName = value ?? GenerateRandomScreenName();
}
private string _screenName;

[AllowNull]
public string ScreenName
{

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnifattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.allownullattribute

You may need to add a using directive for System.Diagnostics.CodeAnalysis to use this
and other attributes discussed in this article. The attribute is applied to the property, not
the set accessor. The AllowNull attribute specifies pre-conditions, and only applies to
arguments. The get accessor has a return value, but no parameters. Therefore, the
AllowNull attribute only applies to the set accessor.

The preceding example demonstrates what to look for when adding the AllowNull
attribute on an argument:

1. The general contract for that variable is that it shouldn't be null , so you want a
non-nullable reference type.

2. There are scenarios for a caller to pass null as the argument, though they aren't
the most common usage.

Most often you'll need this attribute for properties, or in , out , and ref arguments. The
AllowNull attribute is the best choice when a variable is typically non-null, but you need
to allow null as a precondition.

Contrast that with scenarios for using DisallowNull : You use this attribute to specify
that an argument of a nullable reference type shouldn't be null . Consider a property
where null is the default value, but clients can only set it to a non-null value. Consider
the following code:

C#

The preceding code is the best way to express your design that the ReviewComment could
be null , but can't be set to null . Once this code is nullable aware, you can express this
concept more clearly to callers using the
System.Diagnostics.CodeAnalysis.DisallowNullAttribute:

C#

 get => _screenName;
 set => _screenName = value ?? GenerateRandomScreenName();
}
private string _screenName = GenerateRandomScreenName();

public string ReviewComment
{
 get => _comment;
 set => _comment = value ?? throw new
ArgumentNullException(nameof(value), "Cannot set to null");
}
string _comment;

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.disallownullattribute

In a nullable context, the ReviewComment get accessor could return the default value of
null . The compiler warns that it must be checked before access. Furthermore, it warns
callers that, even though it could be null , callers shouldn't explicitly set it to null . The
DisallowNull attribute also specifies a pre-condition, it doesn't affect the get accessor.
You use the DisallowNull attribute when you observe these characteristics about:

1. The variable could be null in core scenarios, often when first instantiated.
2. The variable shouldn't be explicitly set to null .

These situations are common in code that was originally null oblivious. It may be that
object properties are set in two distinct initialization operations. It may be that some
properties are set only after some asynchronous work has completed.

The AllowNull and DisallowNull attributes enable you to specify that preconditions on
variables may not match the nullable annotations on those variables. These provide
more detail about the characteristics of your API. This additional information helps
callers use your API correctly. Remember you specify preconditions using the following
attributes:

AllowNull: A non-nullable argument may be null.
DisallowNull: A nullable argument should never be null.

Suppose you have a method with the following signature:

C#

You've likely written a method like this to return null when the name sought wasn't
found. The null clearly indicates that the record wasn't found. In this example, you'd
likely change the return type from Customer to Customer? . Declaring the return value as
a nullable reference type specifies the intent of this API clearly:

[DisallowNull]
public string? ReviewComment
{
 get => _comment;
 set => _comment = value ?? throw new
ArgumentNullException(nameof(value), "Cannot set to null");
}
string? _comment;

Postconditions: MaybeNull and NotNull

public Customer FindCustomer(string lastName, string firstName)

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.allownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.disallownullattribute

C#

For reasons covered under Generics nullability that technique may not produce the
static analysis that matches your API. You may have a generic method that follows a
similar pattern:

C#

The method returns null when the sought item isn't found. You can clarify that the
method returns null when an item isn't found by adding the MaybeNull annotation to
the method return:

C#

The preceding code informs callers that the return value may actually be null. It also
informs the compiler that the method may return a null expression even though the
type is non-nullable. When you have a generic method that returns an instance of its
type parameter, T , you can express that it never returns null by using the NotNull
attribute.

You can also specify that a return value or an argument isn't null even though the type is
a nullable reference type. The following method is a helper method that throws if its first
argument is null :

C#

You could call this routine as follows:

C#

public Customer? FindCustomer(string lastName, string firstName)

public T Find<T>(IEnumerable<T> sequence, Func<T, bool> predicate)

[return: MaybeNull]
public T Find<T>(IEnumerable<T> sequence, Func<T, bool> predicate)

public static void ThrowWhenNull(object value, string valueExpression = "")
{
 if (value is null) throw new ArgumentNullException(nameof(value),
valueExpression);
}

After enabling null reference types, you want to ensure that the preceding code
compiles without warnings. When the method returns, the value parameter is
guaranteed to be not null. However, it's acceptable to call ThrowWhenNull with a null
reference. You can make value a nullable reference type, and add the NotNull post-
condition to the parameter declaration:

C#

The preceding code expresses the existing contract clearly: Callers can pass a variable
with the null value, but the argument is guaranteed to never be null if the method
returns without throwing an exception.

You specify unconditional postconditions using the following attributes:

MaybeNull: A non-nullable return value may be null.
NotNull: A nullable return value will never be null.

You're likely familiar with the string method String.IsNullOrEmpty(String). This method
returns true when the argument is null or an empty string. It's a form of null-check:
Callers don't need to null-check the argument if the method returns false . To make a
method like this nullable aware, you'd set the argument to a nullable reference type,
and add the NotNullWhen attribute:

C#

public static void LogMessage(string? message)
{
 ThrowWhenNull(message, $"{nameof(message)} must not be null");

 Console.WriteLine(message.Length);
}

public static void ThrowWhenNull([NotNull] object? value, string
valueExpression = "")
{
 _ = value ?? throw new ArgumentNullException(nameof(value),
valueExpression);
 // other logic elided

Conditional post-conditions: NotNullWhen ,
MaybeNullWhen , and NotNullIfNotNull

bool IsNullOrEmpty([NotNullWhen(false)] string? value)

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.string.isnullorempty#system-string-isnullorempty(system-string)

That informs the compiler that any code where the return value is false doesn't need
null checks. The addition of the attribute informs the compiler's static analysis that
IsNullOrEmpty performs the necessary null check: when it returns false , the argument
isn't null .

C#

The String.IsNullOrEmpty(String) method will be annotated as shown above for .NET
Core 3.0. You may have similar methods in your codebase that check the state of objects
for null values. The compiler won't recognize custom null check methods, and you'll
need to add the annotations yourself. When you add the attribute, the compiler's static
analysis knows when the tested variable has been null checked.

Another use for these attributes is the Try* pattern. The postconditions for ref and
out arguments are communicated through the return value. Consider this method
shown earlier (in a nullable disabled context):

C#

The preceding method follows a typical .NET idiom: the return value indicates if message
was set to the found value or, if no message is found, to the default value. If the method
returns true , the value of message isn't null; otherwise, the method sets message to null.

In a nullable enabled context, you can communicate that idiom using the NotNullWhen
attribute. When you annotate parameters for nullable reference types, make message a
string? and add an attribute:

C#

string? userInput = GetUserInput();
if (!string.IsNullOrEmpty(userInput))
{
 int messageLength = userInput.Length; // no null check needed.
}
// null check needed on userInput here.

bool TryGetMessage(string key, out string message)
{
 if (_messageMap.ContainsKey(key))
 message = _messageMap[key];
 else
 message = null;
 return message != null;
}

https://learn.microsoft.com/en-us/dotnet/api/system.string.isnullorempty#system-string-isnullorempty(system-string)

In the preceding example, the value of message is known to be not null when
TryGetMessage returns true . You should annotate similar methods in your codebase in
the same way: the arguments could equal null , and are known to be not null when the
method returns true .

There's one final attribute you may also need. Sometimes the null state of a return value
depends on the null state of one or more arguments. These methods will return a non-
null value whenever certain arguments aren't null . To correctly annotate these
methods, you use the NotNullIfNotNull attribute. Consider the following method:

C#

If the url argument isn't null, the output isn't null . Once nullable references are
enabled, you need to add more annotations if your API may accept a null argument. You
could annotate the return type as shown in the following code:

C#

That also works, but will often force callers to implement extra null checks. The
contract is that the return value would be null only when the argument url is null . To
express that contract, you would annotate this method as shown in the following code:

C#

The previous example uses the nameof operator for the parameter url . That feature is
available in C# 11. Before C# 11, you'll need to type the name of the parameter as a
string. The return value and the argument have both been annotated with the ?

bool TryGetMessage(string key, [NotNullWhen(true)] out string? message)
{
 if (_messageMap.ContainsKey(key))
 message = _messageMap[key];
 else
 message = null;
 return message is not null;
}

string GetTopLevelDomainFromFullUrl(string url)

string? GetTopLevelDomainFromFullUrl(string? url)

[return: NotNullIfNotNull(nameof(url))]
string? GetTopLevelDomainFromFullUrl(string? url)

indicating that either could be null . The attribute further clarifies that the return value
won't be null when the url argument isn't null .

You specify conditional postconditions using these attributes:

MaybeNullWhen: A non-nullable argument may be null when the method returns
the specified bool value.
NotNullWhen: A nullable argument won't be null when the method returns the
specified bool value.
NotNullIfNotNull: A return value isn't null if the argument for the specified
parameter isn't null.

These attributes specify your intent when you've refactored common code from
constructors into helper methods. The C# compiler analyzes constructors and field
initializers to make sure that all non-nullable reference fields have been initialized before
each constructor returns. However, the C# compiler doesn't track field assignments
through all helper methods. The compiler issues warning CS8618 when fields aren't
initialized directly in the constructor, but rather in a helper method. You add the
MemberNotNullAttribute to a method declaration and specify the fields that are
initialized to a non-null value in the method. For example, consider the following
example:

C#

Helper methods: MemberNotNull and
MemberNotNullWhen

public class Container
{
 private string _uniqueIdentifier; // must be initialized.
 private string? _optionalMessage;

 public Container()
 {
 Helper();
 }

 public Container(string message)
 {
 Helper();
 _optionalMessage = message;
 }

 [MemberNotNull(nameof(_uniqueIdentifier))]
 private void Helper()

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullifnotnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullattribute

You can specify multiple field names as arguments to the MemberNotNull attribute
constructor.

The MemberNotNullWhenAttribute has a bool argument. You use MemberNotNullWhen in
situations where your helper method returns a bool indicating whether your helper
method initialized fields.

Some methods, typically exception helpers or other utility methods, always exit by
throwing an exception. Or, a helper may throw an exception based on the value of a
Boolean argument.

In the first case, you can add the DoesNotReturnAttribute attribute to the method
declaration. The compiler's null-state analysis doesn't check any code in a method that
follows a call to a method annotated with DoesNotReturn . Consider this method:

C#

The compiler doesn't issue any warnings after the call to FailFast .

In the second case, you add the
System.Diagnostics.CodeAnalysis.DoesNotReturnIfAttribute attribute to a Boolean

 {
 _uniqueIdentifier = DateTime.Now.Ticks.ToString();
 }
}

Stop nullable analysis when called method
throws

[DoesNotReturn]
private void FailFast()
{
 throw new InvalidOperationException();
}

public void SetState(object containedField)
{
 if (containedField is null)
 {
 FailFast();
 }

 // containedField can't be null:
 _field = containedField;
}

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnifattribute

parameter of the method. You can modify the previous example as follows:

C#

When the value of the argument matches the value of the DoesNotReturnIf constructor,
the compiler doesn't perform any null-state analysis after that method.

Adding nullable reference types provides an initial vocabulary to describe your APIs
expectations for variables that could be null . The attributes provide a richer vocabulary
to describe the null state of variables as preconditions and postconditions. These
attributes more clearly describe your expectations and provide a better experience for
the developers using your APIs.

As you update libraries for a nullable context, add these attributes to guide users of your
APIs to the correct usage. These attributes help you fully describe the null-state of
arguments and return values.

AllowNull: A non-nullable field, parameter, or property may be null.
DisallowNull: A nullable field, parameter, or property should never be null.
MaybeNull: A non-nullable field, parameter, property, or return value may be null.
NotNull: A nullable field, parameter, property, or return value will never be null.
MaybeNullWhen: A non-nullable argument may be null when the method returns
the specified bool value.
NotNullWhen: A nullable argument won't be null when the method returns the
specified bool value.
NotNullIfNotNull: A parameter, property, or return value isn't null if the argument
for the specified parameter isn't null.

private void FailFastIf([DoesNotReturnIf(true)] bool isNull)
{
 if (isNull)
 {
 throw new InvalidOperationException();
 }
}

public void SetFieldState(object? containedField)
{
 FailFastIf(containedField == null);
 // No warning: containedField can't be null here:
 _field = containedField;
}

Summary

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.allownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.disallownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullifnotnullattribute

DoesNotReturn: A method or property never returns. In other words, it always
throws an exception.
DoesNotReturnIf: This method or property never returns if the associated bool
parameter has the specified value.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnifattribute

Miscellaneous attributes interpreted by
the C# compiler
Article • 2022-09-29 • 10 minutes to read

The attributes Conditional , Obsolete , AttributeUsage , AsyncMethodBuilder ,
InterpolatedStringHandler , and ModuleInitializer can be applied to elements in your
code. They add semantic meaning to those elements. The compiler uses those semantic
meanings to alter its output and report possible mistakes by developers using your
code.

The Conditional attribute makes the execution of a method dependent on a
preprocessing identifier. The Conditional attribute is an alias for ConditionalAttribute,
and can be applied to a method or an attribute class.

In the following example, Conditional is applied to a method to enable or disable the
display of program-specific diagnostic information:

C#

Conditional attribute

#define TRACE_ON
using System.Diagnostics;

namespace AttributeExamples;

public class Trace
{
 [Conditional("TRACE_ON")]
 public static void Msg(string msg)
 {
 Console.WriteLine(msg);
 }
}

public class TraceExample
{
 public static void Main()
 {
 Trace.Msg("Now in Main...");
 Console.WriteLine("Done.");
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute

If the TRACE_ON identifier isn't defined, the trace output isn't displayed. Explore for
yourself in the interactive window.

The Conditional attribute is often used with the DEBUG identifier to enable trace and
logging features for debug builds but not in release builds, as shown in the following
example:

C#

When a method marked conditional is called, the presence or absence of the specified
preprocessing symbol determines whether the compiler includes or omits calls to the
method. If the symbol is defined, the call is included; otherwise, the call is omitted. A
conditional method must be a method in a class or struct declaration and must have a
void return type. Using Conditional is cleaner, more elegant, and less error-prone than
enclosing methods inside #if…#endif blocks.

If a method has multiple Conditional attributes, compiler includes calls to the method if
one or more conditional symbols are defined (the symbols are logically linked together
by using the OR operator). In the following example, the presence of either A or B
results in a method call:

C#

The Conditional attribute can also be applied to an attribute class definition. In the
following example, the custom attribute Documentation will only add information to the
metadata if DEBUG is defined.

C#

[Conditional("DEBUG")]
static void DebugMethod()
{
}

[Conditional("A"), Conditional("B")]
static void DoIfAorB()
{
 // ...
}

Using Conditional with attribute classes

[Conditional("DEBUG")]
public class DocumentationAttribute : System.Attribute

The Obsolete attribute marks a code element as no longer recommended for use. Use
of an entity marked obsolete generates a warning or an error. The Obsolete attribute is
a single-use attribute and can be applied to any entity that allows attributes. Obsolete is
an alias for ObsoleteAttribute.

In the following example, the Obsolete attribute is applied to class A and to method
B.OldMethod . Because the second argument of the attribute constructor applied to
B.OldMethod is set to true , this method will cause a compiler error, whereas using class
A will just produce a warning. Calling B.NewMethod , however, produces no warning or
error. For example, when you use it with the previous definitions, the following code
generates two warnings and one error:

C#

{
 string text;

 public DocumentationAttribute(string text)
 {
 this.text = text;
 }
}

class SampleClass
{
 // This attribute will only be included if DEBUG is defined.
 [Documentation("This method displays an integer.")]
 static void DoWork(int i)
 {
 System.Console.WriteLine(i.ToString());
 }
}

Obsolete attribute

namespace AttributeExamples
{
 [Obsolete("use class B")]
 public class A
 {
 public void Method() { }
 }

 public class B
 {
 [Obsolete("use NewMethod", true)]
 public void OldMethod() { }

https://learn.microsoft.com/en-us/dotnet/api/system.obsoleteattribute

The string provided as the first argument to the attribute constructor will be displayed
as part of the warning or error. Two warnings for class A are generated: one for the
declaration of the class reference, and one for the class constructor. The Obsolete
attribute can be used without arguments, but including an explanation what to use
instead is recommended.

In C# 10, you can use constant string interpolation and the nameof operator to ensure
the names match:

C#

The SetsRequiredMembers attribute informs the compiler that a constructor sets all
required members in that class or struct. The compiler assumes any constructor with
the System.Diagnostics.CodeAnalysis.SetsRequiredMembersAttribute attribute initializes
all required members. Any code that invokes such a constructor doesn't need object

 public void NewMethod() { }
 }

 public static class ObsoleteProgram
 {
 public static void Main()
 {
 // Generates 2 warnings:
 A a = new A();

 // Generate no errors or warnings:
 B b = new B();
 b.NewMethod();

 // Generates an error, compilation fails.
 // b.OldMethod();
 }
 }
}

public class B
{
 [Obsolete($"use {nameof(NewMethod)} instead", true)]
 public void OldMethod() { }

 public void NewMethod() { }
}

SetsRequiredMembers attribute

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.setsrequiredmembersattribute

initializers to set required members. This is primarily useful for positional records and
primary constructors.

The AttributeUsage attribute determines how a custom attribute class can be used.
AttributeUsageAttribute is an attribute you apply to custom attribute definitions. The
AttributeUsage attribute enables you to control:

Which program elements attribute may be applied to. Unless you restrict its usage,
an attribute may be applied to any of the following program elements:

Assembly
Module
Field
Event
Method
Param
Property
Return
Type

Whether an attribute can be applied to a single program element multiple times.
Whether attributes are inherited by derived classes.

The default settings look like the following example when applied explicitly:

C#

In this example, the NewAttribute class can be applied to any supported program
element. But it can be applied only once to each entity. The attribute is inherited by
derived classes when applied to a base class.

The AllowMultiple and Inherited arguments are optional, so the following code has the
same effect:

C#

AttributeUsage attribute

[AttributeUsage(AttributeTargets.All,
 AllowMultiple = false,
 Inherited = true)]
class NewAttribute : Attribute { }

[AttributeUsage(AttributeTargets.All)]
class NewAttribute : Attribute { }

https://learn.microsoft.com/en-us/dotnet/api/system.attributeusageattribute
https://learn.microsoft.com/en-us/dotnet/api/system.attributeusageattribute.allowmultiple#system-attributeusageattribute-allowmultiple
https://learn.microsoft.com/en-us/dotnet/api/system.attributeusageattribute.inherited#system-attributeusageattribute-inherited

The first AttributeUsageAttribute argument must be one or more elements of the
AttributeTargets enumeration. Multiple target types can be linked together with the OR
operator, like the following example shows:

C#

Attributes can be applied to either the property or the backing field for an auto-
implemented property. The attribute applies to the property, unless you specify the
field specifier on the attribute. Both are shown in the following example:

C#

If the AllowMultiple argument is true , then the resulting attribute can be applied more
than once to a single entity, as shown in the following example:

C#

In this case, MultiUseAttribute can be applied repeatedly because AllowMultiple is set
to true . Both formats shown for applying multiple attributes are valid.

If Inherited is false , then the attribute isn't inherited by classes derived from an
attributed class. For example:

[AttributeUsage(AttributeTargets.Property | AttributeTargets.Field)]
class NewPropertyOrFieldAttribute : Attribute { }

class MyClass
{
 // Attribute attached to property:
 [NewPropertyOrField]
 public string Name { get; set; } = string.Empty;

 // Attribute attached to backing field:
 [field: NewPropertyOrField]
 public string Description { get; set; } = string.Empty;
}

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
class MultiUse : Attribute { }

[MultiUse]
[MultiUse]
class Class1 { }

[MultiUse, MultiUse]
class Class2 { }

https://learn.microsoft.com/en-us/dotnet/api/system.attributeusageattribute
https://learn.microsoft.com/en-us/dotnet/api/system.attributetargets
https://learn.microsoft.com/en-us/dotnet/api/system.attributeusageattribute.allowmultiple#system-attributeusageattribute-allowmultiple
https://learn.microsoft.com/en-us/dotnet/api/system.attributeusageattribute.inherited#system-attributeusageattribute-inherited

C#

In this case NonInheritedAttribute isn't applied to DClass via inheritance.

You can also use these keywords to specify where an attribute should be applied. For
example, you can use the field: specifier to add an attribute to the backing field of an
auto-implemented property. Or you can use the field: , property: or param: specifier
to apply an attribute to any of the elements generated from a positional record. For an
example, see Positional syntax for property definition.

You add the System.Runtime.CompilerServices.AsyncMethodBuilderAttribute attribute to
a type that can be an async return type. The attribute specifies the type that builds the
async method implementation when the specified type is returned from an async
method. The AsyncMethodBuilder attribute can be applied to a type that:

Has an accessible GetAwaiter method.
The object returned by the GetAwaiter method implements the
System.Runtime.CompilerServices.ICriticalNotifyCompletion interface.

The constructor to the AsyncMethodBuilder attribute specifies the type of the associated
builder. The builder must implement the following accessible members:

A static Create() method that returns the type of the builder.

A readable Task property that returns the async return type.

A void SetException(Exception) method that sets the exception when a task
faults.

A void SetResult() or void SetResult(T result) method that marks the task as
completed and optionally sets the task's result

A Start method with the following API signature:

[AttributeUsage(AttributeTargets.Class, Inherited = false)]
class NonInheritedAttribute : Attribute { }

[NonInherited]
class BClass { }

class DClass : BClass { }

AsyncMethodBuilder attribute

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asyncmethodbuilderattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.icriticalnotifycompletion

C#

An AwaitOnCompleted method with the following signature:

C#

An AwaitUnsafeOnCompleted method with the following signature:

C#

You can learn about async method builders by reading about the following builders
supplied by .NET:

System.Runtime.CompilerServices.AsyncTaskMethodBuilder
System.Runtime.CompilerServices.AsyncTaskMethodBuilder<TResult>
System.Runtime.CompilerServices.AsyncValueTaskMethodBuilder
System.Runtime.CompilerServices.AsyncValueTaskMethodBuilder<TResult>

In C# 10 and later, the AsyncMethodBuilder attribute can be applied to an async method
to override the builder for that type.

Starting with C# 10, you use these attributes to specify that a type is an interpolated
string handler. The .NET 6 library already includes
System.Runtime.CompilerServices.DefaultInterpolatedStringHandler for scenarios where

void Start<TStateMachine>(ref TStateMachine stateMachine)
 where TStateMachine :
System.Runtime.CompilerServices.IAsyncStateMachine

public void AwaitOnCompleted<TAwaiter, TStateMachine>(ref TAwaiter
awaiter, ref TStateMachine stateMachine)
 where TAwaiter : System.Runtime.CompilerServices.INotifyCompletion
 where TStateMachine :
System.Runtime.CompilerServices.IAsyncStateMachine

 public void AwaitUnsafeOnCompleted<TAwaiter, TStateMachine>(ref
TAwaiter awaiter, ref TStateMachine stateMachine)
 where TAwaiter :
System.Runtime.CompilerServices.ICriticalNotifyCompletion
 where TStateMachine :
System.Runtime.CompilerServices.IAsyncStateMachine

InterpolatedStringHandler and
InterpolatedStringHandlerArguments attributes

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asynctaskmethodbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asynctaskmethodbuilder-1
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asyncvaluetaskmethodbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.asyncvaluetaskmethodbuilder-1
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.defaultinterpolatedstringhandler

you use an interpolated string as the argument for a string parameter. You may have
other instances where you want to control how interpolated strings are processed. You
apply the System.Runtime.CompilerServices.InterpolatedStringHandlerAttribute to the
type that implements your handler. You apply the
System.Runtime.CompilerServices.InterpolatedStringHandlerArgumentAttribute to
parameters of that type's constructor.

You can learn more about building an interpolated string handler in the C# 10 feature
specification for interpolated string improvements.

Beginning with C# 9, the ModuleInitializer attribute marks a method that the runtime
calls when the assembly loads. ModuleInitializer is an alias for
ModuleInitializerAttribute.

The ModuleInitializer attribute can only be applied to a method that:

Is static.
Is parameterless.
Returns void .
Is accessible from the containing module, that is, internal or public .
Isn't a generic method.
Isn't contained in a generic class.
Isn't a local function.

The ModuleInitializer attribute can be applied to multiple methods. In that case, the
order in which the runtime calls them is deterministic but not specified.

The following example illustrates use of multiple module initializer methods. The Init1
and Init2 methods run before Main , and each adds a string to the Text property. So
when Main runs, the Text property already has strings from both initializer methods.

C#

ModuleInitializer attribute

using System;

internal class ModuleInitializerExampleMain
{
 public static void Main()
 {
 Console.WriteLine(ModuleInitializerExampleModule.Text);
 //output: Hello from Init1! Hello from Init2!

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.interpolatedstringhandlerattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.interpolatedstringhandlerargumentattribute
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.moduleinitializerattribute

C#

Source code generators sometimes need to generate initialization code. Module
initializers provide a standard place for that code. In most other cases, you should write
a static constructor instead of a module initializer.

Beginning in C# 9, the SkipLocalsInit attribute prevents the compiler from setting the
.locals init flag when emitting to metadata. The SkipLocalsInit attribute is a single-
use attribute and can be applied to a method, a property, a class, a struct, an interface,
or a module, but not to an assembly. SkipLocalsInit is an alias for
SkipLocalsInitAttribute.

The .locals init flag causes the CLR to initialize all of the local variables declared in a
method to their default values. Since the compiler also makes sure that you never use a
variable before assigning some value to it, .locals init is typically not necessary.
However, the extra zero-initialization may have measurable performance impact in some
scenarios, such as when you use stackalloc to allocate an array on the stack. In those
cases, you can add the SkipLocalsInit attribute. If applied to a method directly, the
attribute affects that method and all its nested functions, including lambdas and local
functions. If applied to a type or module, it affects all methods nested inside. This

 }
}

using System.Runtime.CompilerServices;

internal class ModuleInitializerExampleModule
{
 public static string? Text { get; set; }

 [ModuleInitializer]
 public static void Init1()
 {
 Text += "Hello from Init1! ";
 }

 [ModuleInitializer]
 public static void Init2()
 {
 Text += "Hello from Init2! ";
 }
}

SkipLocalsInit attribute

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.skiplocalsinitattribute

attribute doesn't affect abstract methods, but it does affect code generated for the
implementation.

This attribute requires the AllowUnsafeBlocks compiler option. This requirement signals
that in some cases code could view unassigned memory (for example, reading from
uninitialized stack-allocated memory).

The following example illustrates the effect of SkipLocalsInit attribute on a method
that uses stackalloc . The method displays whatever was in memory when the array of
integers was allocated.

C#

To try this code yourself, set the AllowUnsafeBlocks compiler option in your .csproj file:

XML

[SkipLocalsInit]
static void ReadUninitializedMemory()
{
 Span<int> numbers = stackalloc int[120];
 for (int i = 0; i < 120; i++)
 {
 Console.WriteLine(numbers[i]);
 }
}
// output depends on initial contents of memory, for example:
//0
//0
//0
//168
//0
//-1271631451
//32767
//38
//0
//0
//0
//38
// Remaining rows omitted for brevity.

<PropertyGroup>
 ...
 <AllowUnsafeBlocks>true</AllowUnsafeBlocks>
</PropertyGroup>

See also

Attribute
System.Reflection
Attributes
Reflection

https://learn.microsoft.com/en-us/dotnet/api/system.attribute
https://learn.microsoft.com/en-us/dotnet/api/system.reflection
https://learn.microsoft.com/en-ca/dotnet/standard/attributes/

Unsafe code, pointer types, and
function pointers
Article • 2022-09-29 • 13 minutes to read

Most of the C# code you write is "verifiably safe code." Verifiably safe code means .NET
tools can verify that the code is safe. In general, safe code doesn't directly access
memory using pointers. It also doesn't allocate raw memory. It creates managed objects
instead.

C# supports an unsafe context, in which you may write unverifiable code. In an unsafe
context, code may use pointers, allocate and free blocks of memory, and call methods
using function pointers. Unsafe code in C# isn't necessarily dangerous; it's just code
whose safety cannot be verified.

Unsafe code has the following properties:

Methods, types, and code blocks can be defined as unsafe.
In some cases, unsafe code may increase an application's performance by
removing array bounds checks.
Unsafe code is required when you call native functions that require pointers.
Using unsafe code introduces security and stability risks.
The code that contains unsafe blocks must be compiled with the
AllowUnsafeBlocks compiler option.

In an unsafe context, a type may be a pointer type, in addition to a value type, or a
reference type. A pointer type declaration takes one of the following forms:

C#

The type specified before the * in a pointer type is called the referent type. Only an
unmanaged type can be a referent type.

Pointer types don't inherit from object and no conversions exist between pointer types
and object . Also, boxing and unboxing don't support pointers. However, you can
convert between different pointer types and between pointer types and integral types.

Pointer types

type* identifier;
void* identifier; //allowed but not recommended

When you declare multiple pointers in the same declaration, you write the asterisk (*)
together with the underlying type only. It isn't used as a prefix to each pointer name. For
example:

C#

A pointer can't point to a reference or to a struct that contains references, because an
object reference can be garbage collected even if a pointer is pointing to it. The garbage
collector doesn't keep track of whether an object is being pointed to by any pointer
types.

The value of the pointer variable of type MyType* is the address of a variable of type
MyType . The following are examples of pointer type declarations:

int* p : p is a pointer to an integer.
int** p : p is a pointer to a pointer to an integer.
int*[] p : p is a single-dimensional array of pointers to integers.
char* p : p is a pointer to a char.
void* p : p is a pointer to an unknown type.

The pointer indirection operator * can be used to access the contents at the location
pointed to by the pointer variable. For example, consider the following declaration:

C#

The expression *myVariable denotes the int variable found at the address contained in
myVariable .

There are several examples of pointers in the articles on the fixed statement. The
following example uses the unsafe keyword and the fixed statement, and shows how
to increment an interior pointer. You can paste this code into the Main function of a
console application to run it. These examples must be compiled with the
AllowUnsafeBlocks compiler option set.

C#

int* p1, p2, p3; // Ok
int *p1, *p2, *p3; // Invalid in C#

int* myVariable;

// Normal pointer to an object.
int[] a = new int[5] { 10, 20, 30, 40, 50 };
// Must be in unsafe code to use interior pointers.

You can't apply the indirection operator to a pointer of type void* . However, you can
use a cast to convert a void pointer to any other pointer type, and vice versa.

A pointer can be null . Applying the indirection operator to a null pointer causes an
implementation-defined behavior.

Passing pointers between methods can cause undefined behavior. Consider a method
that returns a pointer to a local variable through an in , out , or ref parameter or as the

unsafe
{
 // Must pin object on heap so that it doesn't move while using interior
pointers.
 fixed (int* p = &a[0])
 {
 // p is pinned as well as object, so create another pointer to show
incrementing it.
 int* p2 = p;
 Console.WriteLine(*p2);
 // Incrementing p2 bumps the pointer by four bytes due to its type
...
 p2 += 1;
 Console.WriteLine(*p2);
 p2 += 1;
 Console.WriteLine(*p2);
 Console.WriteLine("--------");
 Console.WriteLine(*p);
 // Dereferencing p and incrementing changes the value of a[0] ...
 *p += 1;
 Console.WriteLine(*p);
 *p += 1;
 Console.WriteLine(*p);
 }
}

Console.WriteLine("--------");
Console.WriteLine(a[0]);

/*
Output:
10
20
30

10
11
12

12
*/

function result. If the pointer was set in a fixed block, the variable to which it points may
no longer be fixed.

The following table lists the operators and statements that can operate on pointers in an
unsafe context:

Operator/Statement Use

* Performs pointer indirection.

-> Accesses a member of a struct through a pointer.

[] Indexes a pointer.

& Obtains the address of a variable.

++ and -- Increments and decrements pointers.

+ and - Performs pointer arithmetic.

== , != , < , > , <= , and >= Compares pointers.

stackalloc Allocates memory on the stack.

fixed statement Temporarily fixes a variable so that its address may be found.

For more information about pointer-related operators, see Pointer-related operators.

Any pointer type can be implicitly converted to a void* type. Any pointer type can be
assigned the value null . Any pointer type can be explicitly converted to any other
pointer type using a cast expression. You can also convert any integral type to a pointer
type, or any pointer type to an integral type. These conversions require an explicit cast.

The following example converts an int* to a byte* . Notice that the pointer points to
the lowest addressed byte of the variable. When you successively increment the result,
up to the size of int (4 bytes), you can display the remaining bytes of the variable.

C#

int number = 1024;

unsafe
{
 // Convert to byte:
 byte* p = (byte*)&number;

 System.Console.Write("The 4 bytes of the integer:");

 // Display the 4 bytes of the int variable:

You can use the fixed keyword to create a buffer with a fixed-size array in a data
structure. Fixed-size buffers are useful when you write methods that interoperate with
data sources from other languages or platforms. The fixed-size buffer can take any
attributes or modifiers that are allowed for regular struct members. The only restriction
is that the array type must be bool , byte , char , short , int , long , sbyte , ushort , uint ,
ulong , float , or double .

C#

In safe code, a C# struct that contains an array doesn't contain the array elements. The
struct contains a reference to the elements instead. You can embed an array of fixed size
in a struct when it's used in an unsafe code block.

The size of the following struct doesn't depend on the number of elements in the
array, since pathName is a reference:

C#

A struct can contain an embedded array in unsafe code. In the following example, the
fixedBuffer array has a fixed size. You use a fixed statement to get a pointer to the first

 for (int i = 0 ; i < sizeof(int) ; ++i)
 {
 System.Console.Write(" {0:X2}", *p);
 // Increment the pointer:
 p++;
 }
 System.Console.WriteLine();
 System.Console.WriteLine("The value of the integer: {0}", number);

 /* Output:
 The 4 bytes of the integer: 00 04 00 00
 The value of the integer: 1024
 */
}

Fixed-size buffers

private fixed char name[30];

public struct PathArray
{
 public char[] pathName;
 private int reserved;
}

element. You access the elements of the array through this pointer. The fixed statement
pins the fixedBuffer instance field to a specific location in memory.

C#

The size of the 128 element char array is 256 bytes. Fixed-size char buffers always take
2 bytes per character, regardless of the encoding. This array size is the same even when
char buffers are marshalled to API methods or structs with CharSet = CharSet.Auto or
CharSet = CharSet.Ansi . For more information, see CharSet.

The preceding example demonstrates accessing fixed fields without pinning. Another
common fixed-size array is the bool array. The elements in a bool array are always 1
byte in size. bool arrays aren't appropriate for creating bit arrays or buffers.

Fixed-size buffers are compiled with the
System.Runtime.CompilerServices.UnsafeValueTypeAttribute, which instructs the
common language runtime (CLR) that a type contains an unmanaged array that can
potentially overflow. Memory allocated using stackalloc also automatically enables

internal unsafe struct Buffer
{
 public fixed char fixedBuffer[128];
}

internal unsafe class Example
{
 public Buffer buffer = default;
}

private static void AccessEmbeddedArray()
{
 var example = new Example();

 unsafe
 {
 // Pin the buffer to a fixed location in memory.
 fixed (char* charPtr = example.buffer.fixedBuffer)
 {
 *charPtr = 'A';
 }
 // Access safely through the index:
 char c = example.buffer.fixedBuffer[0];
 Console.WriteLine(c);

 // Modify through the index:
 example.buffer.fixedBuffer[0] = 'B';
 Console.WriteLine(example.buffer.fixedBuffer[0]);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.charset
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.unsafevaluetypeattribute

buffer overrun detection features in the CLR. The previous example shows how a fixed-
size buffer could exist in an unsafe struct .

C#

The compiler-generated C# for Buffer is attributed as follows:

C#

Fixed-size buffers differ from regular arrays in the following ways:

May only be used in an unsafe context.
May only be instance fields of structs.
They're always vectors, or one-dimensional arrays.
The declaration should include the length, such as fixed char id[8] . You can't use
fixed char id[] .

The following example uses pointers to copy bytes from one array to another.

This example uses the unsafe keyword, which enables you to use pointers in the Copy
method. The fixed statement is used to declare pointers to the source and destination
arrays. The fixed statement pins the location of the source and destination arrays in
memory so that they will not be moved by garbage collection. The memory blocks for
the arrays are unpinned when the fixed block is completed. Because the Copy method

internal unsafe struct Buffer
{
 public fixed char fixedBuffer[128];
}

internal struct Buffer
{
 [StructLayout(LayoutKind.Sequential, Size = 256)]
 [CompilerGenerated]
 [UnsafeValueType]
 public struct <fixedBuffer>e__FixedBuffer
 {
 public char FixedElementField;
 }

 [FixedBuffer(typeof(char), 128)]
 public <fixedBuffer>e__FixedBuffer fixedBuffer;
}

How to use pointers to copy an array of bytes

in this example uses the unsafe keyword, it must be compiled with the
AllowUnsafeBlocks compiler option.

This example accesses the elements of both arrays using indices rather than a second
unmanaged pointer. The declaration of the pSource and pTarget pointers pins the
arrays.

C#

static unsafe void Copy(byte[] source, int sourceOffset, byte[] target,
 int targetOffset, int count)
{
 // If either array is not instantiated, you cannot complete the copy.
 if ((source == null) || (target == null))
 {
 throw new System.ArgumentException("source or target is null");
 }

 // If either offset, or the number of bytes to copy, is negative, you
 // cannot complete the copy.
 if ((sourceOffset < 0) || (targetOffset < 0) || (count < 0))
 {
 throw new System.ArgumentException("offset or bytes to copy is
negative");
 }

 // If the number of bytes from the offset to the end of the array is
 // less than the number of bytes you want to copy, you cannot complete
 // the copy.
 if ((source.Length - sourceOffset < count) ||
 (target.Length - targetOffset < count))
 {
 throw new System.ArgumentException("offset to end of array is less
than bytes to be copied");
 }

 // The following fixed statement pins the location of the source and
 // target objects in memory so that they will not be moved by garbage
 // collection.
 fixed (byte* pSource = source, pTarget = target)
 {
 // Copy the specified number of bytes from source to target.
 for (int i = 0; i < count; i++)
 {
 pTarget[targetOffset + i] = pSource[sourceOffset + i];
 }
 }
}

static void UnsafeCopyArrays()
{
 // Create two arrays of the same length.
 int length = 100;

 byte[] byteArray1 = new byte[length];
 byte[] byteArray2 = new byte[length];

 // Fill byteArray1 with 0 - 99.
 for (int i = 0; i < length; ++i)
 {
 byteArray1[i] = (byte)i;
 }

 // Display the first 10 elements in byteArray1.
 System.Console.WriteLine("The first 10 elements of the original are:");
 for (int i = 0; i < 10; ++i)
 {
 System.Console.Write(byteArray1[i] + " ");
 }
 System.Console.WriteLine("\n");

 // Copy the contents of byteArray1 to byteArray2.
 Copy(byteArray1, 0, byteArray2, 0, length);

 // Display the first 10 elements in the copy, byteArray2.
 System.Console.WriteLine("The first 10 elements of the copy are:");
 for (int i = 0; i < 10; ++i)
 {
 System.Console.Write(byteArray2[i] + " ");
 }
 System.Console.WriteLine("\n");

 // Copy the contents of the last 10 elements of byteArray1 to the
 // beginning of byteArray2.
 // The offset specifies where the copying begins in the source array.
 int offset = length - 10;
 Copy(byteArray1, offset, byteArray2, 0, length - offset);

 // Display the first 10 elements in the copy, byteArray2.
 System.Console.WriteLine("The first 10 elements of the copy are:");
 for (int i = 0; i < 10; ++i)
 {
 System.Console.Write(byteArray2[i] + " ");
 }
 System.Console.WriteLine("\n");
 /* Output:
 The first 10 elements of the original are:
 0 1 2 3 4 5 6 7 8 9

 The first 10 elements of the copy are:
 0 1 2 3 4 5 6 7 8 9

 The first 10 elements of the copy are:
 90 91 92 93 94 95 96 97 98 99
 */
}

C# provides delegate types to define safe function pointer objects. Invoking a delegate
involves instantiating a type derived from System.Delegate and making a virtual method
call to its Invoke method. This virtual call uses the callvirt IL instruction. In
performance critical code paths, using the calli IL instruction is more efficient.

You can define a function pointer using the delegate* syntax. The compiler will call the
function using the calli instruction rather than instantiating a delegate object and
calling Invoke . The following code declares two methods that use a delegate or a
delegate* to combine two objects of the same type. The first method uses a
System.Func<T1,T2,TResult> delegate type. The second method uses a delegate*
declaration with the same parameters and return type:

C#

The following code shows how you would declare a static local function and invoke the
UnsafeCombine method using a pointer to that local function:

C#

The preceding code illustrates several of the rules on the function accessed as a function
pointer:

Function pointers can only be declared in an unsafe context.
Methods that take a delegate* (or return a delegate*) can only be called in an
unsafe context.
The & operator to obtain the address of a function is allowed only on static
functions. (This rule applies to both member functions and local functions).

The syntax has parallels with declaring delegate types and using pointers. The * suffix
on delegate indicates the declaration is a function pointer. The & when assigning a

Function pointers

public static T Combine<T>(Func<T, T, T> combinator, T left, T right) =>
 combinator(left, right);

public static T UnsafeCombine<T>(delegate*<T, T, T> combinator, T left, T
right) =>
 combinator(left, right);

static int localMultiply(int x, int y) => x * y;
int product = UnsafeCombine(&localMultiply, 3, 4);

https://learn.microsoft.com/en-us/dotnet/api/system.delegate
https://learn.microsoft.com/en-us/dotnet/api/system.func-3

method group to a function pointer indicates the operation takes the address of the
method.

You can specify the calling convention for a delegate* using the keywords managed and
unmanaged . In addition, for unmanaged function pointers, you can specify the calling
convention. The following declarations show examples of each. The first declaration uses
the managed calling convention, which is the default. The next four use an unmanaged
calling convention. Each specifies one of the ECMA 335 calling conventions: Cdecl ,
Stdcall , Fastcall , or Thiscall . The last declaration uses the unmanaged calling
convention, instructing the CLR to pick the default calling convention for the platform.
The CLR will choose the calling convention at run time.

C#

You can learn more about function pointers in the Function pointer proposal for C# 9.0.

For more information, see the Unsafe code chapter of the C# language specification.

public static T ManagedCombine<T>(delegate* managed<T, T, T> combinator, T
left, T right) =>
 combinator(left, right);
public static T CDeclCombine<T>(delegate* unmanaged[Cdecl]<T, T, T>
combinator, T left, T right) =>
 combinator(left, right);
public static T StdcallCombine<T>(delegate* unmanaged[Stdcall]<T, T, T>
combinator, T left, T right) =>
 combinator(left, right);
public static T FastcallCombine<T>(delegate* unmanaged[Fastcall]<T, T, T>
combinator, T left, T right) =>
 combinator(left, right);
public static T ThiscallCombine<T>(delegate* unmanaged[Thiscall]<T, T, T>
combinator, T left, T right) =>
 combinator(left, right);
public static T UnmanagedCombine<T>(delegate* unmanaged<T, T, T> combinator,
T left, T right) =>
 combinator(left, right);

C# language specification

C# preprocessor directives
Article • 2022-11-23 • 13 minutes to read

Although the compiler doesn't have a separate preprocessor, the directives described in
this section are processed as if there were one. You use them to help in conditional
compilation. Unlike C and C++ directives, you can't use these directives to create
macros. A preprocessor directive must be the only instruction on a line.

The #nullable preprocessor directive sets the nullable annotation context and nullable
warning context. This directive controls whether nullable annotations have effect, and
whether nullability warnings are given. Each context is either disabled or enabled.

Both contexts can be specified at the project level (outside of C# source code). The
#nullable directive controls the annotation and warning contexts and takes precedence
over the project-level settings. A directive sets the context(s) it controls until another
directive overrides it, or until the end of the source file.

The effect of the directives is as follows:

#nullable disable : Sets the nullable annotation and warning contexts to disabled.
#nullable enable : Sets the nullable annotation and warning contexts to enabled.
#nullable restore : Restores the nullable annotation and warning contexts to
project settings.
#nullable disable annotations : Sets the nullable annotation context to disabled.
#nullable enable annotations : Sets the nullable annotation context to enabled.
#nullable restore annotations : Restores the nullable annotation context to
project settings.
#nullable disable warnings : Sets the nullable warning context to disabled.
#nullable enable warnings : Sets the nullable warning context to enabled.
#nullable restore warnings : Restores the nullable warning context to project
settings.

You use four preprocessor directives to control conditional compilation:

Nullable context

Conditional compilation

#if : Opens a conditional compilation, where code is compiled only if the specified
symbol is defined.
#elif : Closes the preceding conditional compilation and opens a new conditional
compilation based on if the specified symbol is defined.
#else : Closes the preceding conditional compilation and opens a new conditional
compilation if the previous specified symbol isn't defined.
#endif : Closes the preceding conditional compilation.

The C# compiler compiles the code between the #if directive and #endif directive only
if the specified symbol is defined, or not defined when the ! not operator is used.
Unlike C and C++, a numeric value to a symbol can't be assigned. The #if statement in
C# is Boolean and only tests whether the symbol has been defined or not. For example,
the following code is compiled when DEBUG is defined:

C#

The following code is compiled when MYTEST is not defined:

C#

You can use the operators == (equality) and != (inequality) to test for the bool values
true or false . true means the symbol is defined. The statement #if DEBUG has the
same meaning as #if (DEBUG == true) . You can use the && (and), || (or), and ! (not)
operators to evaluate whether multiple symbols have been defined. You can also group
symbols and operators with parentheses.

#if , along with the #else , #elif , #endif , #define , and #undef directives, lets you
include or exclude code based on the existence of one or more symbols. Conditional
compilation can be useful when compiling code for a debug build or when compiling
for a specific configuration.

A conditional directive beginning with an #if directive must explicitly be terminated
with an #endif directive. #define lets you define a symbol. By using the symbol as the
expression passed to the #if directive, the expression evaluates to true . You can also

#if DEBUG
 Console.WriteLine("Debug version");
#endif

#if !MYTEST
 Console.WriteLine("MYTEST is not defined");
#endif

define a symbol with the DefineConstants compiler option. You can undefine a symbol
with #undef . The scope of a symbol created with #define is the file in which it was
defined. A symbol that you define with DefineConstants or with #define doesn't
conflict with a variable of the same name. That is, a variable name shouldn't be passed
to a preprocessor directive, and a symbol can only be evaluated by a preprocessor
directive.

#elif lets you create a compound conditional directive. The #elif expression will be
evaluated if neither the preceding #if nor any preceding, optional, #elif directive
expressions evaluate to true . If an #elif expression evaluates to true , the compiler
evaluates all the code between the #elif and the next conditional directive. For
example:

C#

#else lets you create a compound conditional directive, so that, if none of the
expressions in the preceding #if or (optional) #elif directives evaluate to true , the
compiler will evaluate all code between #else and the next #endif . #endif (#endif) must
be the next preprocessor directive after #else .

#endif specifies the end of a conditional directive, which began with the #if directive.

The build system is also aware of predefined preprocessor symbols representing
different target frameworks in SDK-style projects. They're useful when creating
applications that can target more than one .NET version.

Target
Frameworks

Symbols Additional symbols
(available in .NET 5+ SDKs)

Platform symbols
(available only
when you specify an
OS-specific TFM)

#define VC7
//...
#if DEBUG
 Console.WriteLine("Debug build");
#elif VC7
 Console.WriteLine("Visual Studio 7");
#endif

https://learn.microsoft.com/en-ca/dotnet/standard/frameworks

Target
Frameworks

Symbols Additional symbols
(available in .NET 5+ SDKs)

Platform symbols
(available only
when you specify an
OS-specific TFM)

.NET
Framework

NETFRAMEWORK ,
NET48 , NET472 ,
NET471 , NET47 ,
NET462 , NET461 ,
NET46 , NET452 ,
NET451 , NET45 ,
NET40 , NET35 , NET20

NET48_OR_GREATER ,
NET472_OR_GREATER ,
NET471_OR_GREATER ,
NET47_OR_GREATER ,
NET462_OR_GREATER ,
NET461_OR_GREATER ,
NET46_OR_GREATER ,
NET452_OR_GREATER ,
NET451_OR_GREATER ,
NET45_OR_GREATER ,
NET40_OR_GREATER ,
NET35_OR_GREATER ,
NET20_OR_GREATER

.NET
Standard

NETSTANDARD ,
NETSTANDARD2_1 ,
NETSTANDARD2_0 ,
NETSTANDARD1_6 ,
NETSTANDARD1_5 ,
NETSTANDARD1_4 ,
NETSTANDARD1_3 ,
NETSTANDARD1_2 ,
NETSTANDARD1_1 ,
NETSTANDARD1_0

NETSTANDARD2_1_OR_GREATER ,
NETSTANDARD2_0_OR_GREATER ,
NETSTANDARD1_6_OR_GREATER ,
NETSTANDARD1_5_OR_GREATER ,
NETSTANDARD1_4_OR_GREATER ,
NETSTANDARD1_3_OR_GREATER ,
NETSTANDARD1_2_OR_GREATER ,
NETSTANDARD1_1_OR_GREATER ,
NETSTANDARD1_0_OR_GREATER

.NET 5+
(and .NET
Core)

NET , NET7_0 ,
NET6_0 , NET5_0 ,
NETCOREAPP ,
NETCOREAPP3_1 ,
NETCOREAPP3_0 ,
NETCOREAPP2_2 ,
NETCOREAPP2_1 ,
NETCOREAPP2_0 ,
NETCOREAPP1_1 ,
NETCOREAPP1_0

NET7_0_OR_GREATER ,
NET6_0_OR_GREATER ,
NET5_0_OR_GREATER ,
NETCOREAPP3_1_OR_GREATER ,
NETCOREAPP3_0_OR_GREATER ,
NETCOREAPP2_2_OR_GREATER ,
NETCOREAPP2_1_OR_GREATER ,
NETCOREAPP2_0_OR_GREATER ,
NETCOREAPP1_1_OR_GREATER ,
NETCOREAPP1_0_OR_GREATER

ANDROID , IOS ,
MACCATALYST , MACOS ,
TVOS , WINDOWS ,
[OS][version] (for
example IOS15_1),
[OS]

[version]_OR_GREATER

(for example
IOS15_1_OR_GREATER)

７ Note

Versionless symbols are defined regardless of the version you're targeting.

Version-specific symbols are only defined for the version you're targeting.

Other predefined symbols include the DEBUG and TRACE constants. You can override the
values set for the project using #define . The DEBUG symbol, for example, is
automatically set depending on your build configuration properties ("Debug" or
"Release" mode).

The following example shows you how to define a MYTEST symbol on a file and then test
the values of the MYTEST and DEBUG symbols. The output of this example depends on
whether you built the project on Debug or Release configuration mode.

C#

The following example shows you how to test for different target frameworks so you can
use newer APIs when possible:

The <framework>_OR_GREATER symbols are defined for the version you're

targeting and all earlier versions. For example, if you're targeting .NET

Framework 2.0, the following symbols are defined: NET20 , NET20_OR_GREATER ,
NET11_OR_GREATER , and NET10_OR_GREATER .

These are different from the target framework monikers (TFMs) used by the

MSBuild TargetFramework property and NuGet.

７ Note

For traditional, non-SDK-style projects, you have to manually configure the
conditional compilation symbols for the different target frameworks in Visual
Studio via the project's properties pages.

#define MYTEST
using System;
public class MyClass
{
 static void Main()
 {
#if (DEBUG && !MYTEST)
 Console.WriteLine("DEBUG is defined");
#elif (!DEBUG && MYTEST)
 Console.WriteLine("MYTEST is defined");
#elif (DEBUG && MYTEST)
 Console.WriteLine("DEBUG and MYTEST are defined");
#else
 Console.WriteLine("DEBUG and MYTEST are not defined");
#endif
 }
}

https://learn.microsoft.com/en-ca/dotnet/standard/frameworks#supported-target-frameworks
https://learn.microsoft.com/en-us/nuget/reference/target-frameworks

C#

You use the following two preprocessor directives to define or undefine symbols for
conditional compilation:

#define : Define a symbol.
#undef : Undefine a symbol.

You use #define to define a symbol. When you use the symbol as the expression that's
passed to the #if directive, the expression will evaluate to true , as the following
example shows:

C#

public class MyClass
{
 static void Main()
 {
#if NET40
 WebClient _client = new WebClient();
#else
 HttpClient _client = new HttpClient();
#endif
 }
 //...
}

Defining symbols

#define VERBOSE

#if VERBOSE
 Console.WriteLine("Verbose output version");
#endif

７ Note

The #define directive cannot be used to declare constant values as is typically
done in C and C++. Constants in C# are best defined as static members of a class
or struct. If you have several such constants, consider creating a separate
"Constants" class to hold them.

Symbols can be used to specify conditions for compilation. You can test for the symbol
with either #if or #elif . You can also use the ConditionalAttribute to perform
conditional compilation. You can define a symbol, but you can't assign a value to a
symbol. The #define directive must appear in the file before you use any instructions
that aren't also preprocessor directives. You can also define a symbol with the
DefineConstants compiler option. You can undefine a symbol with #undef .

You can define regions of code that can be collapsed in an outline using the following
two preprocessor directives:

#region : Start a region.
#endregion : End a region.

#region lets you specify a block of code that you can expand or collapse when using the
outlining feature of the code editor. In longer code files, it's convenient to collapse or
hide one or more regions so that you can focus on the part of the file that you're
currently working on. The following example shows how to define a region:

C#

A #region block must be terminated with an #endregion directive. A #region block can't
overlap with an #if block. However, a #region block can be nested in an #if block,
and an #if block can be nested in a #region block.

You instruct the compiler to generate user-defined compiler errors and warnings, and
control line information using the following directives:

#error : Generate a compiler error with a specified message.
#warning : Generate a compiler warning, with a specific message.

Defining regions

#region MyClass definition
public class MyClass
{
 static void Main()
 {
 }
}
#endregion

Error and warning information

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute
https://learn.microsoft.com/en-us/visualstudio/ide/outlining

#line : Change the line number printed with compiler messages.

#error lets you generate a CS1029 user-defined error from a specific location in your
code. For example:

C#

#warning lets you generate a CS1030 level one compiler warning from a specific
location in your code. For example:

C#

#line lets you modify the compiler's line numbering and (optionally) the file name
output for errors and warnings.

The following example shows how to report two warnings associated with line numbers.
The #line 200 directive forces the next line's number to be 200 (although the default is
#6), and until the next #line directive, the filename will be reported as "Special". The
#line default directive returns the line numbering to its default numbering, which
counts the lines that were renumbered by the previous directive.

C#

#error Deprecated code in this method.

７ Note

The compiler treats #error version in a special way and reports a compiler error,
CS8304, with a message containing the used compiler and language versions.

#warning Deprecated code in this method.

class MainClass
{
 static void Main()
 {
#line 200 "Special"
 int i;
 int j;
#line default
 char c;
 float f;
#line hidden // numbering not affected
 string s;
 double d;

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/cs1029
https://learn.microsoft.com/en-ca/dotnet/csharp/misc/cs1030

Compilation produces the following output:

Console

The #line directive might be used in an automated, intermediate step in the build
process. For example, if lines were removed from the original source code file, but you
still wanted the compiler to generate output based on the original line numbering in the
file, you could remove lines and then simulate the original line numbering with #line .

The #line hidden directive hides the successive lines from the debugger, such that
when the developer steps through the code, any lines between a #line hidden and the
next #line directive (assuming that it isn't another #line hidden directive) will be
stepped over. This option can also be used to allow ASP.NET to differentiate between
user-defined and machine-generated code. Although ASP.NET is the primary consumer
of this feature, it's likely that more source generators will make use of it.

A #line hidden directive doesn't affect file names or line numbers in error reporting.
That is, if the compiler finds an error in a hidden block, the compiler will report the
current file name and line number of the error.

The #line filename directive specifies the file name you want to appear in the compiler
output. By default, the actual name of the source code file is used. The file name must
be in double quotation marks ("") and must be preceded by a line number.

Beginning with C# 10, you can use a new form of the #line directive:

C#

 }
}

Special(200,13): warning CS0168: The variable 'i' is declared but never used
Special(201,13): warning CS0168: The variable 'j' is declared but never used
MainClass.cs(9,14): warning CS0168: The variable 'c' is declared but never
used
MainClass.cs(10,15): warning CS0168: The variable 'f' is declared but never
used
MainClass.cs(12,16): warning CS0168: The variable 's' is declared but never
used
MainClass.cs(13,16): warning CS0168: The variable 'd' is declared but never
used

#line (1, 1) - (5, 60) 10 "partial-class.g.cs"
/*34567*/int b = 0;

The components of this form are:

(1, 1) : The start line and column for the first character on the line that follows the
directive. In this example, the next line would be reported as line 1, column 1.
(5, 60) : The end line and column for the marked region.
10 : The column offset for the #line directive to take effect. In this example, the
10th column would be reported as column one. That's where the declaration int b
= 0; begins. This field is optional. If omitted, the directive takes effect on the first
column.
"partial-class.g.cs" : The name of the output file.

The preceding example would generate the following warning:

.NET CLI

After remapping, the variable, b , is on the first line, at character six.

Domain-specific languages (DSLs) typically use this format to provide a better mapping
from the source file to the generated C# output. To see more examples of this format,
see the feature specification in the section on examples.

#pragma gives the compiler special instructions for the compilation of the file in which it
appears. The instructions must be supported by the compiler. In other words, you can't
use #pragma to create custom preprocessing instructions.

#pragma warning: Enable or disable warnings.
#pragma checksum: Generate a checksum.

C#

Where pragma-name is the name of a recognized pragma and pragma-arguments is the
pragma-specific arguments.

partial-class.g.cs(1,5,1,6): warning CS0219: The variable 'b' is assigned
but its value is never used

Pragmas

#pragma pragma-name pragma-arguments

#pragma warning

#pragma warning can enable or disable certain warnings.

C#

Where warning-list is a comma-separated list of warning numbers. The "CS" prefix is
optional. When no warning numbers are specified, disable disables all warnings and
restore enables all warnings.

The disable takes effect beginning on the next line of the source file. The warning is
restored on the line following the restore . If there's no restore in the file, the warnings
are restored to their default state at the first line of any later files in the same
compilation.

C#

#pragma warning disable warning-list
#pragma warning restore warning-list

７ Note

To find warning numbers in Visual Studio, build your project and then look for the
warning numbers in the Output window.

// pragma_warning.cs
using System;

#pragma warning disable 414, CS3021
[CLSCompliant(false)]
public class C
{
 int i = 1;
 static void Main()
 {
 }
}
#pragma warning restore CS3021
[CLSCompliant(false)] // CS3021
public class D
{
 int i = 1;
 public static void F()
 {
 }
}

Generates checksums for source files to aid with debugging ASP.NET pages.

C#

Where "filename" is the name of the file that requires monitoring for changes or
updates, "{guid}" is the Globally Unique Identifier (GUID) for the hash algorithm, and
"checksum_bytes" is the string of hexadecimal digits representing the bytes of the
checksum. Must be an even number of hexadecimal digits. An odd number of digits
results in a compile-time warning, and the directive is ignored.

The Visual Studio debugger uses a checksum to make sure that it always finds the right
source. The compiler computes the checksum for a source file, and then emits the
output to the program database (PDB) file. The debugger then uses the PDB to compare
against the checksum that it computes for the source file.

This solution doesn't work for ASP.NET projects, because the computed checksum is for
the generated source file, rather than the .aspx file. To address this problem, #pragma
checksum provides checksum support for ASP.NET pages.

When you create an ASP.NET project in Visual C#, the generated source file contains a
checksum for the .aspx file, from which the source is generated. The compiler then
writes this information into the PDB file.

If the compiler doesn't find a #pragma checksum directive in the file, it computes the
checksum and writes the value to the PDB file.

C#

#pragma checksum

#pragma checksum "filename" "{guid}" "checksum bytes"

class TestClass
{
 static int Main()
 {
 #pragma checksum "file.cs" "{406EA660-64CF-4C82-B6F0-42D48172A799}"
"ab007f1d23d9" // New checksum
 }
}

C# compiler options
Article • 2021-09-15 • 2 minutes to read

This section describes the options interpreted by the C# compiler. Options are grouped
into separate articles based on what they control, for example, language features, code
generation, and output. Use the table of contents to navigate amongst them.

There are two different ways to set compiler options in .NET projects:

In your *.csproj file

You can add MSBuild properties for any compiler option in your *.csproj file in XML
format. The property name is the same as the compiler option. The value of the
property sets the value of the compiler option. For example, the following project
file snippet sets the LangVersion property.

XML

For more information on setting options in project files, see the article MSBuild
properties for .NET SDK Projects.

Using the Visual Studio Property pages

Visual Studio provides property pages to edit build properties. To learn more about
them, see Manage project and solution properties - Windows or Manage project
and solution properties - Mac.

In addition to the mechanisms described above, you can set compiler options using two
additional methods for .NET Framework projects:

How to set options

<PropertyGroup>
 <LangVersion>preview</LangVersion>
</PropertyGroup>

.NET Framework projects

） Important

This section applies to .NET Framework projects only.

https://learn.microsoft.com/en-ca/dotnet/core/project-sdk/msbuild-props
https://learn.microsoft.com/en-us/visualstudio/ide/managing-project-and-solution-properties#c-visual-basic-and-f-projects
https://learn.microsoft.com/en-us/visualstudio/mac/managing-solutions-and-project-properties

Command line arguments for .NET Framework projects: .NET Framework projects
use csc.exe instead of dotnet build to build projects. You can specify command
line arguments to csc.exe for .NET Framework projects.
Compiled ASP.NET pages: .NET Framework projects use a section of the web.config
file for compiling pages. For the new build system, and ASP.NET Core projects,
options are taken from the project file.

The word for some compiler options changed from csc.exe and .NET Framework projects
to the new MSBuild system. The new syntax is used throughout this section. Both
versions are listed at the top of each page. For csc.exe, any arguments are listed
following the option and a colon. For example, the -doc option would be:

Console

You can invoke the C# compiler by typing the name of its executable file (csc.exe) at a
command prompt.

For .NET Framework projects, you can also run csc.exe from the command line. Every
compiler option is available in two forms: -option and /option. In .NET Framework web
projects, you specify options for compiling code-behind in the web.config file. For more
information, see <compiler> Element.

If you use the Developer Command Prompt for Visual Studio window, all the necessary
environment variables are set for you. For information on how to access this tool, see
Developer Command Prompt for Visual Studio.

The csc.exe executable file is usually located in the Microsoft.NET\Framework\<Version>
folder under the Windows directory. Its location might vary depending on the exact
configuration of a particular computer. If more than one version of .NET Framework is
installed on your computer, you'll find multiple versions of this file. For more
information about such installations, see How to: determine which versions of the .NET
Framework are installed.

-doc:DocFile.xml

https://learn.microsoft.com/en-ca/dotnet/framework/configure-apps/file-schema/compiler/compiler-element
https://learn.microsoft.com/en-us/visualstudio/ide/reference/command-prompt-powershell
https://learn.microsoft.com/en-ca/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed

C# Compiler Options for language
feature rules
Article • 2022-12-14 • 7 minutes to read

The following options control how the compiler interprets language features. The new
MSBuild syntax is shown in Bold. The older csc.exe syntax is shown in code style .

CheckForOverflowUnderflow / -checked : Generate overflow checks.
AllowUnsafeBlocks / -unsafe : Allow 'unsafe' code.
DefineConstants / -define : Define conditional compilation symbol(s).
LangVersion / -langversion : Specify language version such as default (latest
major version), or latest (latest version, including minor versions).
Nullable / -nullable : Enable nullable context, or nullable warnings.

The CheckForOverflowUnderflow option controls the default overflow-checking context
that defines the program behavior if integer arithmetic overflows.

XML

When CheckForOverflowUnderflow is true , the default context is a checked context
and overflow checking is enabled; otherwise, the default context is an unchecked
context. The default value for this option is false , that is, overflow checking is disabled.

You can also explicitly control the overflow-checking context for the parts of your code
by using the checked and unchecked statements.

For information about how the overflow-checking context affects operations and what
operations are affected, see the article about checked and unchecked statements.

The AllowUnsafeBlocks compiler option allows code that uses the unsafe keyword to
compile. The default value for this option is false , meaning unsafe code isn't allowed.

XML

CheckForOverflowUnderflow

<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

AllowUnsafeBlocks

For more information about unsafe code, see Unsafe Code and Pointers.

The DefineConstants option defines symbols in all source code files of your program.

XML

This option specifies the names of one or more symbols that you want to define. The
DefineConstants option has the same effect as the #define preprocessor directive
except that the compiler option is in effect for all files in the project. A symbol remains
defined in a source file until an #undef directive in the source file removes the definition.
When you use the -define option, an #undef directive in one file has no effect on other
source code files in the project. You can use symbols created by this option with #if,
#else, #elif, and #endif to compile source files conditionally. The C# compiler itself
defines no symbols or macros that you can use in your source code; all symbol
definitions must be user-defined.

Causes the compiler to accept only syntax that is included in the chosen C# language
specification.

XML

<AllowUnsafeBlocks>true</AllowUnsafeBlocks>

DefineConstants

<DefineConstants>name;name2</DefineConstants>

７ Note

The C# #define directive does not allow a symbol to be given a value, as in
languages such as C++. For example, #define cannot be used to create a macro or
to define a constant. If you need to define a constant, use an enum variable. If you
want to create a C++ style macro, consider alternatives such as generics. Since
macros are notoriously error-prone, C# disallows their use but provides safer
alternatives.

LangVersion

<LangVersion>9.0</LangVersion>

The following values are valid:

Value Meaning

preview The compiler accepts all valid language syntax from the latest preview version.

latest The compiler accepts syntax from the latest released version of the compiler
(including minor version).

latestMajor
or default

The compiler accepts syntax from the latest released major version of the compiler.

11.0 The compiler accepts only syntax that is included in C# 11 or lower.

10.0 The compiler accepts only syntax that is included in C# 10 or lower.

9.0 The compiler accepts only syntax that is included in C# 9 or lower.

8.0 The compiler accepts only syntax that is included in C# 8.0 or lower.

7.3 The compiler accepts only syntax that is included in C# 7.3 or lower.

7.2 The compiler accepts only syntax that is included in C# 7.2 or lower.

7.1 The compiler accepts only syntax that is included in C# 7.1 or lower.

7 The compiler accepts only syntax that is included in C# 7.0 or lower.

6 The compiler accepts only syntax that is included in C# 6.0 or lower.

5 The compiler accepts only syntax that is included in C# 5.0 or lower.

4 The compiler accepts only syntax that is included in C# 4.0 or lower.

3 The compiler accepts only syntax that is included in C# 3.0 or lower.

ISO-2
or 2

The compiler accepts only syntax that is included in ISO/IEC 23270:2006 C# (2.0).

ISO-1
or 1

The compiler accepts only syntax that is included in ISO/IEC 23270:2003 C#
(1.0/1.2).

The default language version depends on the target framework for your application and
the version of the SDK or Visual Studio installed. Those rules are defined in C# language
versioning.

） Important

Metadata referenced by your C# application isn't subject to the LangVersion compiler
option.

Because each version of the C# compiler contains extensions to the language
specification, LangVersion doesn't give you the equivalent functionality of an earlier
version of the compiler.

Additionally, while C# version updates generally coincide with major .NET releases, the
new syntax and features aren't necessarily tied to that specific framework version. Each
specific feature has its own minimum .NET API or common language runtime
requirements that may allow it to run on downlevel frameworks by including NuGet
packages or other libraries.

Regardless of which LangVersion setting you use, use the current version of the
common language runtime to create your .exe or .dll. One exception is friend assemblies
and ModuleAssemblyName, which work under -langversion:ISO-1.

For other ways to specify the C# language version, see C# language versioning.

For information about how to set this compiler option programmatically, see
LanguageVersion.

Version Link Description

C# 7.0 and
later

link C# Language Specification Version 7 - Unofficial Draft: .NET
Foundation

C# 6.0 download
PDF

Standard ECMA-334 6th Edition

C# 5.0 Download
PDF

Standard ECMA-334 5th Edition

C# 3.0 Download
DOC

C# Language Specification Version 3.0: Microsoft Corporation

The latest value is generally not recommended. With it, the compiler enables the
latest features, even if those features depend on updates not included in the
configured target framework. Without this setting, your project uses the compiler
version recommended for your target framework. You can update the target
framework to access newer language features.

C# language specification

https://learn.microsoft.com/en-us/dotnet/api/vslangproj80.csharpprojectconfigurationproperties3.languageversion
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://www.ecma-international.org/wp-content/uploads/ECMA-334_6th_edition_june_2022.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-334.pdf
https://download.microsoft.com/download/3/8/8/388e7205-bc10-4226-b2a8-75351c669b09/CSharp%20Language%20Specification.doc

Version Link Description

C# 2.0 Download
PDF

Standard ECMA-334 4th Edition

C# 1.2 Download
DOC

C# Language Specification Version 1.2: Microsoft Corporation

C# 1.0 Download
DOC

C# Language Specification Version 1.0: Microsoft Corporation

The following table lists the minimum versions of the SDK with the C# compiler that
supports the corresponding language version:

C#
version

Minimum SDK version

C# 11 Microsoft Visual Studio/Build Tools 2022 version 17.4, or .NET 7 SDK

C# 10 Microsoft Visual Studio/Build Tools 2022, or .NET 6 SDK

C# 9.0 Microsoft Visual Studio/Build Tools 2019 version 16.8, or .NET 5 SDK

C# 8.0 Microsoft Visual Studio/Build Tools 2019, version 16.3, or .NET Core 3.0 SDK

C# 7.3 Microsoft Visual Studio/Build Tools 2017, version 15.7

C# 7.2 Microsoft Visual Studio/Build Tools 2017, version 15.5

C# 7.1 Microsoft Visual Studio/Build Tools 2017, version 15.3

C# 7.0 Microsoft Visual Studio/Build Tools 2017

C# 6 Microsoft Visual Studio/Build Tools 2015

C# 5 Microsoft Visual Studio/Build Tools 2012 or bundled .NET Framework 4.5 compiler

C# 4 Microsoft Visual Studio/Build Tools 2010 or bundled .NET Framework 4.0 compiler

C# 3 Microsoft Visual Studio/Build Tools 2008 or bundled .NET Framework 3.5 compiler

C# 2 Microsoft Visual Studio/Build Tools 2005 or bundled .NET Framework 2.0 compiler

C# 1.0/1.2 Microsoft Visual Studio/Build Tools .NET 2002 or bundled .NET Framework 1.0
compiler

Minimum SDK version needed to support all language
features

https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-334%204th%20edition%20June%202006.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-334%202nd%20edition%20December%202002.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-334%201st%20edition%20December%202001.pdf

The Nullable option lets you specify the nullable context. It can be set in the project's
configuration using the <Nullable> tag:

XML

The argument must be one of enable , disable , warnings , or annotations . The enable
argument enables the nullable context. Specifying disable will disable the nullable
context. When you specify the warnings argument, the nullable warning context is
enabled. When you specify the annotations argument, the nullable annotation context
is enabled. The values are described and explained in the article on Nullable contexts.
You can learn more about the tasks involved in enabling nullable reference types in an
existing codebase in our article on nullable migration strategies.

Flow analysis is used to infer the nullability of variables within executable code. The
inferred nullability of a variable is independent of the variable's declared nullability.
Method calls are analyzed even when they're conditionally omitted. For instance,
Debug.Assert in release mode.

Invocation of methods annotated with the following attributes will also affect flow
analysis:

Simple pre-conditions: AllowNullAttribute and DisallowNullAttribute
Simple post-conditions: MaybeNullAttribute and NotNullAttribute
Conditional post-conditions: MaybeNullWhenAttribute and NotNullWhenAttribute
DoesNotReturnIfAttribute (for example, DoesNotReturnIf(false) for Debug.Assert)
and DoesNotReturnAttribute
NotNullIfNotNullAttribute
Member post-conditions: MemberNotNullAttribute(String) and
MemberNotNullAttribute(String[])

Nullable

<Nullable>enable</Nullable>

７ Note

When there's no value set, the default value disable is applied, however the .NET 6
templates are by default provided with the Nullable value set to enable .

） Important

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debug.assert
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.allownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.disallownullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.maybenullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullwhenattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnifattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debug.assert
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.doesnotreturnattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.notnullifnotnullattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullattribute.-ctor#system-diagnostics-codeanalysis-membernotnullattribute-ctor(system-string)
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.membernotnullattribute.-ctor#system-diagnostics-codeanalysis-membernotnullattribute-ctor(system-string())

The global nullable context does not apply for generated code files. Regardless of
this setting, the nullable context is disabled for any source file marked as generated.
There are four ways a file is marked as generated:

1. In the .editorconfig, specify generated_code = true in a section that applies to

that file.
2. Put <auto-generated> or <auto-generated/> in a comment at the top of the

file. It can be on any line in that comment, but the comment block must be

the first element in the file.

3. Start the file name with TemporaryGeneratedFile_

4. End the file name with .designer.cs, .generated.cs, .g.cs, or .g.i.cs.

Generators can opt-in using the #nullable preprocessor directive.

C# Compiler Options that control
compiler output
Article • 2022-07-12 • 8 minutes to read

The following options control compiler output generation.

MSBuild csc.exe Description

DocumentationFile -doc: Generate XML doc file from /// comments.

OutputAssembly -out: Specify the output assembly file.

PlatformTarget -platform: Specify the target platform CPU.

ProduceReferenceAssembly -refout: Generate a reference assembly.

TargetType -target: Specify the type of the output assembly.

The DocumentationFile option allows you to place documentation comments in an XML
file. To learn more about documenting your code, see Recommended Tags for
Documentation Comments. The value specifies the path to the output XML file. The XML
file contains the comments in the source code files of the compilation.

XML

The source code file that contains Main or top-level statements is output first into the
XML. You'll often want to use the generated .xml file with IntelliSense. The .xml filename
must be the same as the assembly name. The .xml file must be in the same directory as
the assembly. When the assembly is referenced in a Visual Studio project, the .xml file is
found as well. For more information about generating code comments, see Supplying
Code Comments. Unless you compile with <TargetType:Module>, file will contain
<assembly> and </assembly> tags specifying the name of the file containing the
assembly manifest for the output file. For examples, see How to use the XML
documentation features.

DocumentationFile

<DocumentationFile>path/to/file.xml</DocumentationFile>

７ Note

https://learn.microsoft.com/en-us/visualstudio/ide/using-intellisense
https://learn.microsoft.com/en-us/visualstudio/ide/reference/generate-xml-documentation-comments

This option can be used in any .NET SDK-style project. For more information, see
DocumentationFile property.

The OutputAssembly option specifies the name of the output file. The output path
specifies the folder where compiler output is placed.

XML

Specify the full name and extension of the file you want to create. If you don't specify
the name of the output file, MSBuild uses the name of the project to specify the name
of the output assembly. Old style projects use the following rules:

An .exe will take its name from the source code file that contains the Main method
or top-level statements.
A .dll or .netmodule will take its name from the first source code file.

Any modules produced as part of a compilation become files associated with any
assembly also produced in the compilation. Use ildasm.exe to view the assembly
manifest to see the associated files.

The OutputAssembly compiler option is required in order for an exe to be the target of
a friend assembly.

Specifies which version of the CLR can run the assembly.

XML

anycpu (default) compiles your assembly to run on any platform. Your application
runs as a 64-bit process whenever possible and falls back to 32-bit when only that
mode is available.

The DocumentationFile option applies to all files in the project. To disable warnings
related to documentation comments for a specific file or section of code, use
#pragma warning.

OutputAssembly

<OutputAssembly>folder</OutputAssembly>

PlatformTarget

<PlatformTarget>anycpu</PlatformTarget>

https://learn.microsoft.com/en-ca/dotnet/core/project-sdk/msbuild-props#documentationfile
https://learn.microsoft.com/en-ca/dotnet/framework/tools/ildasm-exe-il-disassembler
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/friend

anycpu32bitpreferred compiles your assembly to run on any platform. Your
application runs in 32-bit mode on systems that support both 64-bit and 32-bit
applications. You can specify this option only for projects that target .NET
Framework 4.5 or later.
ARM compiles your assembly to run on a computer that has an Advanced RISC
Machine (ARM) processor.
ARM64 compiles your assembly to run by the 64-bit CLR on a computer that has
an Advanced RISC Machine (ARM) processor that supports the A64 instruction set.
x64 compiles your assembly to be run by the 64-bit CLR on a computer that
supports the AMD64 or EM64T instruction set.
x86 compiles your assembly to be run by the 32-bit, x86-compatible CLR.
Itanium compiles your assembly to be run by the 64-bit CLR on a computer with
an Itanium processor.

On a 64-bit Windows operating system:

Assemblies compiled with x86 execute on the 32-bit CLR running under WOW64.
A DLL compiled with the anycpu executes on the same CLR as the process into
which it's loaded.
Executables that are compiled with the anycpu execute on the 64-bit CLR.
Executables compiled with anycpu32bitpreferred execute on the 32-bit CLR.

The anycpu32bitpreferred setting is valid only for executable (.EXE) files, and it requires
.NET Framework 4.5 or later. For more information about developing an application to
run on a Windows 64-bit operating system, see 64-bit Applications.

You set the PlatformTarget option from Build properties page for your project in Visual
Studio.

The behavior of anycpu has some additional nuances on .NET Core and .NET 5 and later
releases. When you set anycpu, publish your app and execute it with either the x86
dotnet.exe or the x64 dotnet.exe . For self-contained apps, the dotnet publish step
packages the executable for the configure RID.

The ProduceReferenceAssembly option controls whether the compiler produces
reference assemblies.

XML

ProduceReferenceAssembly

<ProduceReferenceAssembly>true</ProduceReferenceAssembly>

https://learn.microsoft.com/en-ca/dotnet/framework/64-bit-apps

Reference assemblies are a special type of assembly that contain only the minimum
amount of metadata required to represent the library's public API surface. They include
declarations for all members that are significant when referencing an assembly in build
tools. Reference assemblies exclude all member implementations and declarations of
private members. Those members have no observable impact on their API contract. For
more information, see Reference assemblies in the .NET Guide.

The ProduceReferenceAssembly and ProduceOnlyReferenceAssembly options are
mutually exclusive.

You generally don't need to work directly with reference assembly files. By default,
reference assemblies are generated in a ref subfolder of the intermediate path (i.e.
obj/ref/). To generate them under the output directory instead (i.e. bin/ref/) set
ProduceReferenceAssemblyInOutDir to true in your project.

.NET SDK 6.0.200 made a change that moved reference assemblies from the output
directory to the intermediate directory by default.

The TargetType compiler option can be specified in one of the following forms:

library: to create a code library. library is the default value.
exe: to create an .exe file.
module to create a module.
winexe to create a Windows program.
winmdobj to create an intermediate .winmdobj file.
appcontainerexe to create an .exe file for Windows 8.x Store apps.

XML

The compiler creates only one assembly manifest per compilation. Information about all
files in a compilation is placed in the assembly manifest. When producing multiple

TargetType

７ Note

For .NET Framework targets, unless you specify module, this option causes a .NET
Framework assembly manifest to be placed in an output file. For more information,
see Assemblies in .NET and Common Attributes.

<TargetType>library</TargetType>

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/reference-assemblies
https://learn.microsoft.com/en-ca/dotnet/core/compatibility/sdk/6.0/write-reference-assemblies-to-obj
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/

output files at the command line, only one assembly manifest can be created and it
must go into the first output file specified on the command line.

If you create an assembly, you can indicate that all or part of your code is CLS-compliant
with the CLSCompliantAttribute attribute.

The library option causes the compiler to create a dynamic-link library (DLL) rather than
an executable file (EXE). The DLL will be created with the .dll extension. Unless otherwise
specified with the OutputAssembly option, the output file name takes the name of the
first input file. When building a .dll file, a Main method isn't required.

The exe option causes the compiler to create an executable (EXE), console application.
The executable file will be created with the .exe extension. Use winexe to create a
Windows program executable. Unless otherwise specified with the OutputAssembly
option, the output file name takes the name of the input file that contains the entry
point (Main method or top-level statements). One and only one entry point is required
in the source code files that are compiled into an .exe file. The StartupObject compiler
option lets you specify which class contains the Main method, in cases where your code
has more than one class with a Main method.

This option causes the compiler to not generate an assembly manifest. By default, the
output file created by compiling with this option will have an extension of .netmodule. A
file that doesn't have an assembly manifest cannot be loaded by the .NET runtime.
However, such a file can be incorporated into the assembly manifest of an assembly
with AddModules. If more than one module is created in a single compilation, internal
types in one module will be available to other modules in the compilation. When code
in one module references internal types in another module, then both modules must
be incorporated into an assembly manifest, with AddModules. Creating a module isn't
supported in the Visual Studio development environment.

The winexe option causes the compiler to create an executable (EXE), Windows
program. The executable file will be created with the .exe extension. A Windows

library

exe

module

winexe

https://learn.microsoft.com/en-us/dotnet/api/system.clscompliantattribute

program is one that provides a user interface from either the .NET library or with the
Windows APIs. Use exe to create a console application. Unless otherwise specified with
the OutputAssembly option, the output file name takes the name of the input file that
contains the Main method. One and only one Main method is required in the source
code files that are compiled into an .exe file. The StartupObject option lets you specify
which class contains the Main method, in cases where your code has more than one
class with a Main method.

If you use the winmdobj option, the compiler creates an intermediate .winmdobj file
that you can convert to a Windows Runtime binary (.winmd) file. The .winmd file can
then be consumed by JavaScript and C++ programs, in addition to managed language
programs.

The winmdobj setting signals to the compiler that an intermediate module is required.
The .winmdobj file can then be fed through the WinMDExp export tool to produce a
Windows metadata (.winmd) file. The .winmd file contains both the code from the
original library and the WinMD metadata that is used by JavaScript or C++ and by the
Windows Runtime. The output of a file that’s compiled by using the winmdobj compiler
option is used only as input for the WimMDExp export tool. The .winmdobj file itself isn’t
referenced directly. Unless you use the OutputAssembly option, the output file name
takes the name of the first input file. A Main method isn’t required.

If you use the appcontainerexe compiler option, the compiler creates a Windows
executable (.exe) file that must be run in an app container. This option is equivalent to -
target:winexe but is designed for Windows 8.x Store apps.

To require the app to run in an app container, this option sets a bit in the Portable
Executable (PE) file. When that bit is set, an error occurs if the CreateProcess method
tries to launch the executable file outside an app container. Unless you use the
OutputAssembly option, the output file name takes the name of the input file that
contains the Main method.

winmdobj

appcontainerexe

https://learn.microsoft.com/en-us/dotnet/api/microsoft.build.tasks.winmdexp
https://learn.microsoft.com/en-us/windows/desktop/Debug/pe-format

C# Compiler Options that specify inputs
Article • 2021-09-15 • 5 minutes to read

The following options control compiler inputs. The new MSBuild syntax is shown in Bold.
The older csc.exe syntax is shown in code style .

References / -reference or -references : Reference metadata from the specified
assembly file or files.
AddModules / -addmodule : Add a module (created with target:module to this
assembly.)
EmbedInteropTypes / -link : Embed metadata from the specified interop
assembly files.

The References option causes the compiler to import public type information in the
specified file into the current project, enabling you to reference metadata from the
specified assembly files.

XML

filename is the name of a file that contains an assembly manifest. To import more than
one file, include a separate Reference element for each file. You can define an alias as a
child element of the Reference element:

XML

In the previous example, LS is the valid C# identifier that represents a root namespace
that will contain all namespaces in the assembly filename.dll. The files you import must
contain a manifest. Use AdditionalLibPaths to specify the directory in which one or
more of your assembly references is located. The AdditionalLibPaths topic also
discusses the directories in which the compiler searches for assemblies. In order for the
compiler to recognize a type in an assembly, and not in a module, it needs to be forced
to resolve the type, which you can do by defining an instance of the type. There are
other ways to resolve type names in an assembly for the compiler: for example, if you

References

<Reference Include="filename" />

<Reference Include="filename.dll">
 <Aliases>LS</Aliases>
</Reference>

inherit from a type in an assembly, the type name will then be recognized by the
compiler. Sometimes it is necessary to reference two different versions of the same
component from within one assembly. To do this, use the Aliases element on the
References element for each file to distinguish between the two files. This alias will be
used as a qualifier for the component name, and will resolve to the component in one of
the files.

This option adds a module that was created with the <TargetType>module</TargetType>
switch to the current compilation:

XML

Where file , file2 are output files that contain metadata. The file can't contain an
assembly manifest. To import more than one file, separate file names with either a
comma or a semicolon. All modules added with AddModules must be in the same
directory as the output file at run time. That is, you can specify a module in any directory
at compile time but the module must be in the application directory at run time. If the
module isn't in the application directory at run time, you'll get a TypeLoadException.
file can't contain an assembly. For example, if the output file was created with
TargetType option of module, its metadata can be imported with AddModules.

If the output file was created with a TargetType option other than module, its metadata
cannot be imported with AddModules but can be imported with the References option.

Causes the compiler to make COM type information in the specified assemblies
available to the project that you are currently compiling.

XML

７ Note

In Visual Studio, use the Add Reference command. For more information, see How
to: Add or Remove References By Using the Reference Manager.

AddModules

<AddModule Include=file1 />
<AddModule Include=file2 />

EmbedInteropTypes

https://learn.microsoft.com/en-us/dotnet/api/system.typeloadexception
https://learn.microsoft.com/en-us/visualstudio/ide/how-to-add-or-remove-references-by-using-the-reference-manager

Where file1;file2;file3 is a semicolon-delimited list of assembly file names. If the file
name contains a space, enclose the name in quotation marks. The EmbedInteropTypes
option enables you to deploy an application that has embedded type information. The
application can then use types in a runtime assembly that implement the embedded
type information without requiring a reference to the runtime assembly. If various
versions of the runtime assembly are published, the application that contains the
embedded type information can work with the various versions without having to be
recompiled. For an example, see Walkthrough: Embedding Types from Managed
Assemblies.

Using the EmbedInteropTypes option is especially useful when you're working with
COM interop. You can embed COM types so that your application no longer requires a
primary interop assembly (PIA) on the target computer. The EmbedInteropTypes option
instructs the compiler to embed the COM type information from the referenced interop
assembly into the resulting compiled code. The COM type is identified by the CLSID
(GUID) value. As a result, your application can run on a target computer that has
installed the same COM types with the same CLSID values. Applications that automate
Microsoft Office are a good example. Because applications like Office usually keep the
same CLSID value across different versions, your application can use the referenced
COM types as long as .NET Framework 4 or later is installed on the target computer and
your application uses methods, properties, or events that are included in the referenced
COM types. The EmbedInteropTypes option embeds only interfaces, structures, and
delegates. Embedding COM classes isn't supported.

Like the References compiler option, the EmbedInteropTypes compiler option uses the
Csc.rsp response file, which references frequently used .NET assemblies. Use the
NoConfig compiler option if you don't want the compiler to use the Csc.rsp file.

C#

<References>
 <EmbedInteropTypes>file1;file2;file3</EmbedInteropTypes>
</References>

７ Note

When you create an instance of an embedded COM type in your code, you must
create the instance by using the appropriate interface. Attempting to create an
instance of an embedded COM type by using the CoClass causes an error.

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/embed-types-visual-studio

Types that have a generic parameter whose type is embedded from an interop assembly
cannot be used if that type is from an external assembly. This restriction doesn't apply to
interfaces. For example, consider the Range interface that is defined in the
Microsoft.Office.Interop.Excel assembly. If a library embeds interop types from the
Microsoft.Office.Interop.Excel assembly and exposes a method that returns a generic
type that has a parameter whose type is the Range interface, that method must return a
generic interface, as shown in the following code example.

C#

In the following example, client code can call the method that returns the IList generic
interface without error.

C#

// The following code causes an error if ISampleInterface is an embedded
interop type.
ISampleInterface<SampleType> sample;

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Office.Interop.Excel;

public class Utility
{
 // The following code causes an error when called by a client assembly.
 public List<Range> GetRange1()
 {
 return null;
 }

 // The following code is valid for calls from a client assembly.
 public IList<Range> GetRange2()
 {
 return null;
 }
}

public class Client
{
 public void Main()
 {
 Utility util = new Utility();

 // The following code causes an error.
 List<Range> rangeList1 = util.GetRange1();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel
https://learn.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel.range
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ilist

 // The following code is valid.
 List<Range> rangeList2 = (List<Range>)util.GetRange2();
 }
}

C# Compiler Options to report errors
and warnings
Article • 2022-05-13 • 5 minutes to read

The following options control how the compiler reports errors and warnings. The new
MSBuild syntax is shown in Bold. The older csc.exe syntax is shown in code style .

WarningLevel / -warn : Set warning level.
AnalysisLevel: Set optional warning level.
TreatWarningsAsErrors / -warnaserror : Treat all warnings as errors
WarningsAsErrors / -warnaserror : Treat one or more warnings as errors
WarningsNotAsErrors / -warnnotaserror : Treat one or more warnings not as errors
NoWarn / -nowarn : Set a list of disabled warnings.
CodeAnalysisRuleSet / -ruleset : Specify a ruleset file that disables specific
diagnostics.
ErrorLog / -errorlog : Specify a file to log all compiler and analyzer diagnostics.
ReportAnalyzer / -reportanalyzer : Report additional analyzer information, such as
execution time.

The WarningLevel option specifies the warning level for the compiler to display.

XML

The element value is the warning level you want displayed for the compilation: Lower
numbers show only high severity warnings. Higher numbers show more warnings. The
value must be zero or a positive integer:

Warning
level

Meaning

0 Turns off emission of all warning messages.

1 Displays severe warning messages.

2 Displays level 1 warnings plus certain, less-severe warnings, such as warnings about
hiding class members.

WarningLevel

<WarningLevel>3</WarningLevel>

Warning
level

Meaning

3 Displays level 2 warnings plus certain, less-severe warnings, such as warnings about
expressions that always evaluate to true or false .

4 (the
default)

Displays all level 3 warnings plus informational warnings.

To get information about an error or warning, you can look up the error code in the
Help Index. For other ways to get information about an error or warning, see C#
Compiler Errors. Use TreatWarningsAsErrors to treat all warnings as errors. Use
DisabledWarnings to disable certain warnings.

Analysis
level

Meaning

5 Displays all optional warning wave 5 warnings.

6 Displays all optional warning wave 6 warnings.

7 Displays all optional warning wave 7 warnings.

latest
(default)

Displays all informational warnings up to and including the current release.

preview Displays all informational warnings up to and including the latest preview release.

none Turns off all informational warnings.

For more information on optional warnings, see Warning waves.

To get information about an error or warning, you can look up the error code in the
Help Index. For other ways to get information about an error or warning, see C#
Compiler Errors. Use TreatWarningsAsErrors to treat all warnings as errors. Use NoWarn
to disable certain warnings.

２ Warning

The compiler command line accepts values greater than 4 to enable warning wave
warnings. However, the .NET SDK sets the WarningLevel to match the AnalysisLevel
in your project file.

Analysis level

https://learn.microsoft.com/en-us/visualstudio/help-viewer/install-manage-local-content
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs7023---a-static-type-is-used-in-an-is-or-as-expression
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs8826---partial-method-declarations-have-signature-differences
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves#cs8981---the-type-name-only-contains-lower-cased-ascii-characters
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves
https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/warning-waves

The TreatWarningsAsErrors option treats all warnings as errors. You can also use the
TreatWarningsAsErrors to set only some warnings as errors. If you turn on
TreatWarningsAsErrors, you can use WarningsNotAsErrors to list warnings that
shouldn't be treated as errors.

XML

All warning messages are instead reported as errors. The build process halts (no output
files are built). By default, TreatWarningsAsErrors isn't in effect, which means warnings
don't prevent the generation of an output file. Optionally, if you want only a few specific
warnings to be treated as errors, you may specify a comma-separated list of warning
numbers to treat as errors. The set of all nullability warnings can be specified with the
Nullable shorthand. Use WarningLevel to specify the level of warnings that you want
the compiler to display. Use NoWarn to disable certain warnings.

The WarningsAsErrors and WarningsNotAsErrors options override the
TreatWarningsAsErrors option for a list of warnings. This option can be used with all CS
warnings. The "CS" prefix is optional. You can use either the number, or "CS" followed by
the error or warning number. For other elements that affect warnings, see the Common
MSBuild properties.

Enable warnings 0219 and 0168 as errors:

XML

TreatWarningsAsErrors

<TreatWarningsAsErrors>true</TreatWarningsAsErrors>

） Important

There are two subtle differences between using the <TreatWarningsAsErrors>
element in your csproj file, and using the warnaserror MSBuild command line
switch. TreatWarningsAsErrors only impacts the C# compiler, not any other MSBuild
tasks in your csproj file. The warnaserror command line switch impacts all tasks.
Secondly, the compiler doesn't produce any output on any warnings when
TreatWarningsAsErrors is used. The compiler produces output when the
warnaserror command line switch is used.

WarningsAsErrors and WarningsNotAsErrors

https://learn.microsoft.com/en-us/visualstudio/msbuild/common-msbuild-project-properties

Disable the same warnings as errors:

XML

You use WarningsAsErrors to configure a set of warnings as errors. Use
WarningsNotAsErrors to configure a set of warnings that should not be errors when
you've set all warnings as errors.

The NoWarn option lets you suppress the compiler from displaying one or more
warnings. Separate multiple warning numbers with a comma.

XML

number1 , number2 Warning number(s) that you want the compiler to suppress. You
specify the numeric part of the warning identifier. For example, if you want to suppress
CS0028, you could specify <NoWarn>28</NoWarn> . The compiler silently ignores warning
numbers passed to NoWarn that were valid in previous releases, but that have been
removed. For example, CS0679 was valid in the compiler in Visual Studio .NET 2002 but
was removed later.

The following warnings cannot be suppressed by the NoWarn option:

Compiler Warning (level 1) CS2002
Compiler Warning (level 1) CS2023
Compiler Warning (level 1) CS2029

Specify a ruleset file that configures specific diagnostics.

XML

<WarningsAsErrors>0219,CS0168</WarningsAsErrors>

<WarningsNotAsErrors>0219,CS0168</WarningsNotAsErrors>

NoWarn

<NoWarn>number1, number2</NoWarn>

CodeAnalysisRuleSet

<CodeAnalysisRuleSet>MyConfiguration.ruleset</CodeAnalysisRuleSet>

Where MyConfiguration.ruleset is the path to the ruleset file. For more information on
using rule sets, see the article in the Visual Studio documentation on Rule sets.

Specify a file to log all compiler and analyzer diagnostics.

XML

The ErrorLog option causes the compiler to output a Static Analysis Results Interchange
Format (SARIF) log . SARIF logs are typically read by tools that analyze the results from
compiler and analyzer diagnostics.

You can specify the SARIF format using the version argument to the ErrorLog element:

XML

The separator can be either a comma (,) or a semicolon (;). Valid values for version
are: "1", "2", and "2.1". The default is "1". "2" and "2.1" both mean SARIF version 2.1.0.

Report additional analyzer information, such as execution time.

XML

The ReportAnalyzer option causes the compiler to emit extra MSBuild log information
that details the performance characteristics of analyzers in the build. It's typically used
by analyzer authors as part of validating the analyzer.

ErrorLog

<ErrorLog>compiler-diagnostics.sarif</ErrorLog>

<ErrorLog>logVersion21.json,version=2.1</ErrorLog>

ReportAnalyzer

<ReportAnalyzer>true</ReportAnalyzer>

） Important

The extra log information generated by this flag is only generated when the -
verbosity:detailed command line option is used. See the switches article in the
MSBuild documentation for more information.

https://learn.microsoft.com/en-us/visualstudio/code-quality/using-rule-sets-to-group-code-analysis-rules
https://github.com/microsoft/sarif-tutorials/blob/main/docs/1-Introduction.md#:%7E:text=What%20is%20SARIF%3F,for%20use%20by%20simpler%20tools
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild-command-line-reference#switches

C# Compiler Options that control code
generation
Article • 2023-01-10 • 4 minutes to read

The following options control code generation by the compiler. The new MSBuild syntax
is shown in Bold. The older csc.exe syntax is shown in code style .

DebugType / -debug : Emit (or don't emit) debugging information.
Optimize / -optimize : Enable optimizations.
Deterministic / -deterministic : Produce byte-for-byte equivalent output from the
same input source.
ProduceOnlyReferenceAssembly / -refonly : Produce a reference assembly,
instead of a full assembly, as the primary output.

The DebugType option causes the compiler to generate debugging information and
place it in the output file or files. Debugging information is added by default.

XML

For all compiler versions starting with C# 6.0, there is no difference between pdbonly
and full. Choose pdbonly. To change the location of the .pdb file, see PdbFile.

The following values are valid:

Value Meaning

full Emit debugging information to .pdb file using default format for the current platform:
Windows: A Windows pdb file.
Linux/macOS: A Portable PDB file.

pdbonly Same as full . See the note below for more information.

portable Emit debugging information to .pdb file using cross-platform Portable PDB format.

embedded Emit debugging information into the .dll/.exe itself (.pdb file is not produced) using
Portable PDB format.

DebugType

<DebugType>pdbonly</DebugType>

https://github.com/dotnet/core/blob/main/Documentation/diagnostics/portable_pdb.md
https://github.com/dotnet/core/blob/main/Documentation/diagnostics/portable_pdb.md
https://github.com/dotnet/core/blob/main/Documentation/diagnostics/portable_pdb.md

The Optimize option enables or disables optimizations performed by the compiler to
make your output file smaller, faster, and more efficient. The Optimize option is enabled
by default for a Release build configuration. It is off by default for a Debug build
configuration.

XML

You set the Optimize option from Build properties page for your project in Visual
Studio.

Optimize also tells the common language runtime to optimize code at run time. By
default, optimizations are disabled. Specify Optimize+ to enable optimizations. When
building a module to be used by an assembly, use the same Optimize settings as used
by the assembly. It's possible to combine the Optimize and Debug options.

Causes the compiler to produce an assembly whose byte-for-byte output is identical
across compilations for identical inputs.

） Important

The following information applies only to compilers older than C# 6.0. The value of
this element can be either full or pdbonly . The full argument, which is in effect if
you don't specify pdbonly, enables attaching a debugger to the running program.
Specifying pdbonly allows source code debugging when the program is started in
the debugger but will only display assembler when the running program is
attached to the debugger. Use this option to create debug builds. If you use Full,
be aware that there's some impact on the speed and size of JIT optimized code and
a small impact on code quality with full. We recommend pdbonly or no PDB for
generating release code. One difference between pdbonly and full is that with full
the compiler emits a DebuggableAttribute, which is used to tell the JIT compiler
that debug information is available. Therefore, you will get an error if your code
contains the DebuggableAttribute set to false if you use full. For more information
on how to configure the debug performance of an application, see Making an
Image Easier to Debug.

Optimize

<Optimize>true</Optimize>

Deterministic

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debuggableattribute
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.debuggableattribute
https://learn.microsoft.com/en-ca/dotnet/framework/debug-trace-profile/making-an-image-easier-to-debug

XML

By default, compiler output from a given set of inputs is unique, since the compiler adds
a timestamp and an MVID that is generated from random numbers. You use the
<Deterministic> option to produce a deterministic assembly, one whose binary content
is identical across compilations as long as the input remains the same. In such a build,
the timestamp and MVID fields will be replaced with values derived from a hash of all
the compilation inputs. The compiler considers the following inputs that affect
determinism:

The sequence of command-line parameters.
The contents of the compiler's .rsp response file.
The precise version of the compiler used, and its referenced assemblies.
The current directory path.
The binary contents of all files explicitly passed to the compiler either directly or
indirectly, including:

Source files
Referenced assemblies
Referenced modules
Resources
The strong name key file
@ response files
Analyzers
Rulesets
Other files that may be used by analyzers

The current culture (for the language in which diagnostics and exception messages
are produced).
The default encoding (or the current code page) if the encoding isn't specified.
The existence, non-existence, and contents of files on the compiler's search paths
(specified, for example, by -lib or -recurse).
The Common Language Runtime (CLR) platform on which the compiler is run.
The value of %LIBPATH% , which can affect analyzer dependency loading.

Deterministic compilation can be used for establishing whether a binary is compiled
from a trusted source. Deterministic output can be useful when the source is publicly
available. It can also determine whether build steps that are dependent on changes to
binary used in the build process.

<Deterministic>true</Deterministic>

The ProduceOnlyReferenceAssembly option indicates that a reference assembly should
be output instead of an implementation assembly, as the primary output. The
ProduceOnlyReferenceAssembly parameter silently disables outputting PDBs, as
reference assemblies cannot be executed.

XML

Reference assemblies are a special type of assembly. Reference assemblies contain only
the minimum amount of metadata required to represent the library's public API surface.
They include declarations for all members that are significant when referencing an
assembly in build tools, but exclude all member implementations and declarations of
private members that have no observable impact on their API contract. For more
information, see Reference assemblies.

The ProduceOnlyReferenceAssembly and ProduceReferenceAssembly options are
mutually exclusive.

ProduceOnlyReferenceAssembly

<ProduceOnlyReferenceAssembly>true</ProduceOnlyReferenceAssembly>

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/reference-assemblies

C# compiler options for security
Article • 2022-09-29 • 5 minutes to read

The following options control compiler security options. The new MSBuild syntax is
shown in Bold. The older csc.exe syntax is shown in code style .

PublicSign / -publicsign : Publicly sign the assembly.
DelaySign / -delaysign : Delay-sign the assembly using only the public portion of
the strong name key.
KeyFile / -keyfile : Specify a strong name key file.
KeyContainer / -keycontainer : Specify a strong name key container.
HighEntropyVA / -highentropyva : Enable high-entropy Address Space Layout
Randomization (ASLR)

This option causes the compiler to apply a public key but doesn't actually sign the
assembly. The PublicSign option also sets a bit in the assembly that tells the runtime
that the file is signed.

XML

The PublicSign option requires the use of the KeyFile or KeyContainer option. The
KeyFile and KeyContainer options specify the public key. The PublicSign and DelaySign
options are mutually exclusive. Sometimes called "fake sign" or "OSS sign", public
signing includes the public key in an output assembly and sets the "signed" flag. Public
signing doesn't actually sign the assembly with a private key. Developers use public sign
for open-source projects. People build assemblies that are compatible with the released
"fully signed" assemblies when they don't have access to the private key used to sign
the assemblies. Since few consumers actually need to check if the assembly is fully
signed, these publicly built assemblies are useable in almost every scenario where the
fully signed one would be used.

This option causes the compiler to reserve space in the output file so that a digital
signature can be added later.

PublicSign

<PublicSign>true</PublicSign>

DelaySign

XML

Use DelaySign- if you want a fully signed assembly. Use DelaySign if you only want to
place the public key in the assembly. The DelaySign option has no effect unless used
with KeyFile or KeyContainer. The KeyContainer and PublicSign options are mutually
exclusive. When you request a fully signed assembly, the compiler hashes the file that
contains the manifest (assembly metadata) and signs that hash with the private key.
That operation creates a digital signature that is stored in the file that contains the
manifest. When an assembly is delay signed, the compiler doesn't compute and store
the signature. Instead, the compiler but reserves space in the file so the signature can be
added later.

Using DelaySign allows a tester to put the assembly in the global cache. After testing,
you can fully sign the assembly by placing the private key in the assembly using the
Assembly Linker utility. For more information, see Creating and Using Strong-Named
Assemblies and Delay Signing an Assembly.

Specifies the filename containing the cryptographic key.

XML

file is the name of the file containing the strong name key. When this option is used,
the compiler inserts the public key from the specified file into the assembly manifest
and then signs the final assembly with the private key. To generate a key file, type sn -k
file at the command line. If you compile with -target:module, the name of the key file
is held in the module and incorporated into the assembly created when you compile an
assembly with AddModules. You can also pass your encryption information to the
compiler with KeyContainer. Use DelaySign if you want a partially signed assembly. In
case both KeyFile and KeyContainer are specified in the same compilation, the compiler
will first try the key container. If that succeeds, then the assembly is signed with the
information in the key container. If the compiler doesn't find the key container, it will try
the file specified with KeyFile. If that succeeds, the assembly is signed with the
information in the key file and the key information will be installed in the key container.
On the next compilation, the key container will be valid. A key file might contain only

<DelaySign>true</DelaySign>

KeyFile

<KeyFile>filename</KeyFile>

https://learn.microsoft.com/en-ca/dotnet/framework/tools/al-exe-assembly-linker
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/create-use-strong-named
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/delay-sign

the public key. For more information, see Creating and Using Strong-Named Assemblies
and Delay Signing an Assembly.

Specifies the name of the cryptographic key container.

XML

container is the name of the strong name key container. When the KeyContainer
option is used, the compiler creates a sharable component. The compiler inserts a public
key from the specified container into the assembly manifest and signs the final assembly
with the private key. To generate a key file, type sn -k file at the command line. sn -i
installs the key pair into a container. This option isn't supported when the compiler runs
on CoreCLR. To sign an assembly when building on CoreCLR, use the KeyFile option. If
you compile with TargetType, the name of the key file is held in the module and
incorporated into the assembly when you compile this module into an assembly with
AddModules. You can also specify this option as a custom attribute
(System.Reflection.AssemblyKeyNameAttribute) in the source code for any Microsoft
intermediate language (MSIL) module. You can also pass your encryption information to
the compiler with KeyFile. Use DelaySign to add the public key to the assembly manifest
but signing the assembly until it has been tested. For more information, see Creating
and Using Strong-Named Assemblies and Delay Signing an Assembly.

The HighEntropyVA compiler option tells the Windows kernel whether a particular
executable supports high entropy Address Space Layout Randomization (ASLR).

XML

This option specifies that a 64-bit executable or an executable that is marked by the
PlatformTarget compiler option supports a high entropy virtual address space. The
option is enabled by default for all .NET Standard and .NET Core versions, and .NET
Framework versions starting with .NET Framework 4.5.

KeyContainer

<KeyContainer>container</KeyContainer>

HighEntropyVA

<HighEntropyVA>true</HighEntropyVA>

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/create-use-strong-named
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/delay-sign
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assemblykeynameattribute
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/create-use-strong-named
https://learn.microsoft.com/en-ca/dotnet/standard/assembly/delay-sign

The HighEntropyVA option enables compatible versions of the Windows kernel to use
higher degrees of entropy when randomizing the address space layout of a process as
part of ASLR. Using higher degrees of entropy means a larger number of addresses can
be allocated to memory regions such as stacks and heaps. As a result, it's more difficult
to guess the location of a particular memory region. The HighEntropyVA compiler
option requires the target executable and any modules that it depends on can handle
pointer values larger than 4 gigabytes (GB) when they're running as a 64-bit process.

C# Compiler Options that specify
resources
Article • 2021-09-15 • 5 minutes to read

The following options control how the C# compiler creates or imports Win32 resources.
The new MSBuild syntax is shown in Bold. The older csc.exe syntax is shown in code
style .

Win32Resource / -win32res : Specify a Win32 resource file (.res).
Win32Icon / -win32icon : Reference metadata from the specified assembly file or
files.
Win32Manifest / -win32manifest : Specify a Win32 manifest file (.xml).
NoWin32Manifest / -nowin32manifest : Don't include the default Win32 manifest.
Resources / -resource : Embed the specified resource (Short form: /res).
LinkResources / -linkresources : Link the specified resource to this assembly.

The Win32Resource option inserts a Win32 resource in the output file.

XML

filename is the resource file that you want to add to your output file. A Win32 resource
can contain version or bitmap (icon) information that would help identify your
application in the File Explorer. If you don't specify this option, the compiler will
generate version information based on the assembly version.

The Win32Icon option inserts an .ico file in the output file, which gives the output file
the desired appearance in the File Explorer.

XML

Win32Resource

<Win32Resource>filename</Win32Resource>

Win32Icon

<Win32Icon>filename</Win32Icon>

filename is the .ico file that you want to add to your output file. An .ico file can be
created with the Resource Compiler. The Resource Compiler is invoked when you
compile a Visual C++ program; an .ico file is created from the .rc file.

Use the Win32Manifest option to specify a user-defined Win32 application manifest file
to be embedded into a project's portable executable (PE) file.

XML

filename is the name and location of the custom manifest file. By default, the C#
compiler embeds an application manifest that specifies a requested execution level of
"asInvoker". It creates the manifest in the same folder in which the executable is built. If
you want to supply a custom manifest, for example to specify a requested execution
level of "highestAvailable" or "requireAdministrator," use this option to specify the name
of the file.

An application that has no application manifest that specifies a requested execution
level will be subject to file and registry virtualization under the User Account Control
feature in Windows. For more information, see User Account Control.

Your application will be subject to virtualization if either of these conditions is true:

You use the NoWin32Manifest option and you don't provide a manifest in a later
build step or as part of a Windows Resource (.res) file by using the Win32Resource
option.
You provide a custom manifest that doesn't specify a requested execution level.

Visual Studio creates a default .manifest file and stores it in the debug and release
directories alongside the executable file. You can add a custom manifest by creating one
in any text editor and then adding the file to the project. Or, you can right-click the
Project icon in Solution Explorer, select Add New Item, and then select Application
Manifest File. After you've added your new or existing manifest file, it will appear in the

Win32Manifest

<Win32Manifest>filename</Win32Manifest>

７ Note

This option and the Win32Resources option are mutually exclusive. If you try to use
both options in the same command line you will get a build error.

https://learn.microsoft.com/en-us/windows/desktop/menurc/resource-compiler
https://learn.microsoft.com/en-us/windows/access-protection/user-account-control/user-account-control-overview

Manifest drop down list. For more information, see Application Page, Project Designer
(C#).

You can provide the application manifest as a custom post-build step or as part of a
Win32 resource file by using the NoWin32Manifest option. Use that same option if you
want your application to be subject to file or registry virtualization on Windows Vista.

Use the NoWin32Manifest option to instruct the compiler not to embed any application
manifest into the executable file.

XML

When this option is used, the application will be subject to virtualization on Windows
Vista unless you provide an application manifest in a Win32 Resource file or during a
later build step.

In Visual Studio, set this option in the Application Property page by selecting the Create
Application Without a Manifest option in the Manifest drop down list. For more
information, see Application Page, Project Designer (C#).

Embeds the specified resource into the output file.

XML

filename is the .NET resource file that you want to embed in the output file. identifier
(optional) is the logical name for the resource; the name that is used to load the
resource. The default is the name of the file. accessibility-modifier (optional) is the
accessibility of the resource: public or private. The default is public. By default, resources
are public in the assembly when they're created by using the C# compiler. To make the
resources private, specify private as the accessibility modifier. No other accessibility
other than public or private is allowed. If filename is a .NET resource file created, for

NoWin32Manifest

<NoWin32Manifest />

Resources

<Resources Include=filename>
 <LogicalName>identifier</LogicalName>
 <Access>accessibility-modifier</Access>
</Resources>

https://learn.microsoft.com/en-us/visualstudio/ide/reference/application-page-project-designer-csharp
https://learn.microsoft.com/en-us/visualstudio/ide/reference/application-page-project-designer-csharp

example, by Resgen.exe or in the development environment, it can be accessed with
members in the System.Resources namespace. For more information, see
System.Resources.ResourceManager. For all other resources, use the
GetManifestResource methods in the Assembly class to access the resource at run time.
The order of the resources in the output file is determined from the order specified in
the project file.

Creates a link to a .NET resource in the output file. The resource file isn't added to the
output file. LinkResources differs from the Resource option, which does embed a
resource file in the output file.

XML

filename is the .NET resource file to which you want to link from the assembly.
identifier (optional) is the logical name for the resource; the name that is used to load
the resource. The default is the name of the file. accessibility-modifier (optional) is
the accessibility of the resource: public or private. The default is public. By default, linked
resources are public in the assembly when they're created with the C# compiler. To
make the resources private, specify private as the accessibility modifier. No other
modifier other than public or private is allowed. If filename is a .NET resource file
created, for example, by Resgen.exe or in the development environment, it can be
accessed with members in the System.Resources namespace. For more information, see
System.Resources.ResourceManager. For all other resources, use the
GetManifestResource methods in the Assembly class to access the resource at run time.
The file specified in filename can be any format. For example, you may want to make a
native DLL part of the assembly, so that it can be installed into the global assembly
cache and accessed from managed code in the assembly. You can do the same thing in
the Assembly Linker. For more information, see Al.exe (Assembly Linker) and Working
with Assemblies and the Global Assembly Cache.

LinkResources

<LinkResources Include=filename>
 <LogicalName>identifier</LogicalName>
 <Access>accessibility-modifier</Access>
</LinkResources>

https://learn.microsoft.com/en-ca/dotnet/framework/tools/resgen-exe-resource-file-generator
https://learn.microsoft.com/en-us/dotnet/api/system.resources
https://learn.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly
https://learn.microsoft.com/en-ca/dotnet/framework/tools/resgen-exe-resource-file-generator
https://learn.microsoft.com/en-us/dotnet/api/system.resources
https://learn.microsoft.com/en-us/dotnet/api/system.resources.resourcemanager
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.assembly
https://learn.microsoft.com/en-ca/dotnet/framework/tools/al-exe-assembly-linker
https://learn.microsoft.com/en-ca/dotnet/framework/app-domains/working-with-assemblies-and-the-gac

Miscellaneous C# Compiler Options
Article • 2023-01-18 • 2 minutes to read

The following options control miscellaneous compiler behavior. The new MSBuild syntax
is shown in Bold. The older csc.exe command-line syntax is shown in code style .

ResponseFiles / @CustomOpts.RSP : Read the specified response file for more
options.
NoLogo / -nologo : Suppress compiler copyright message.
NoConfig / -noconfig : Don't auto include CSC.RSP file.

The ResponseFiles option lets you specify a file that contains compiler options and
source code files to compile.

XML

The response_file specifies the file that lists compiler options or source code files to
compile. The compiler options and source code files will be processed by the compiler
as if they had been specified on the command line. To specify more than one response
file in a compilation, specify multiple response file options. In a response file, multiple
compiler options and source code files can appear on one line. A single compiler option
specification must appear on one line (can't span multiple lines). Response files can have
comments that begin with the # symbol. Specifying compiler options from within a
response file is just like issuing those commands on the command line. The compiler
processes the command options as they're read. Command-line arguments can override
previously listed options in response files. Conversely, options in a response file will
override options listed previously on the command line or in other response files. C#
provides the csc.rsp file, which is located in the same directory as the csc.exe file. For
more information about the response file format, see NoConfig. This compiler option
cannot be set in the Visual Studio development environment, nor can it be changed
programmatically. The following are a few lines from a sample response file:

Console

ResponseFiles

<ResponseFiles>response_file</ResponseFiles>

build the first output file
-target:exe -out:MyExe.exe source1.cs source2.cs

The NoLogo option suppresses display of the sign-on banner when the compiler starts
up and display of informational messages during compiling.

XML

The NoConfig option tells the compiler not to compile with the csc.rsp file.

XML

The csc.rsp file references all the assemblies shipped with .NET Framework. The actual
references that the Visual Studio .NET development environment includes depend on
the project type. You can modify the csc.rsp file and specify additional compiler options
that should be included in every compilation. If you don't want the compiler to look for
and use the settings in the csc.rsp file, specify NoConfig. This compiler option is
unavailable in Visual Studio and cannot be changed programmatically.

NoLogo

<NoLogo>true</NoLogo>

NoConfig

<NoConfig>true</NoConfig>

Advanced C# compiler options
Article • 2022-10-13 • 10 minutes to read

The following options support advanced scenarios. The new MSBuild syntax is shown in
Bold. The older csc.exe syntax is shown in code style .

MainEntryPoint, StartupObject / -main : Specify the type that contains the entry
point.
PdbFile / -pdb : Specify debug information file name.
PathMap / -pathmap : Specify a mapping for source path names output by the
compiler.
ApplicationConfiguration / -appconfig : Specify an application configuration file
containing assembly binding settings.
AdditionalLibPaths / -lib : Specify additional directories to search in for
references.
GenerateFullPaths / -fullpath : Compiler generates fully qualified paths.
PreferredUILang / -preferreduilang : Specify the preferred output language name.
BaseAddress / -baseaddress : Specify the base address for the library to be built.
ChecksumAlgorithm / -checksumalgorithm : Specify algorithm for calculating
source file checksum stored in PDB.
CodePage / -codepage : Specify the codepage to use when opening source files.
Utf8Output / -utf8output : Output compiler messages in UTF-8 encoding.
FileAlignment / -filealign : Specify the alignment used for output file sections.
ErrorEndLocation / -errorendlocation : Output line and column of the end
location of each error.
NoStandardLib / -nostdlib : Don't reference standard library mscorlib.dll.
SubsystemVersion / -subsystemversion : Specify subsystem version of this
assembly.
ModuleAssemblyName / -moduleassemblyname : Name of the assembly that this
module will be a part of.

This option specifies the class that contains the entry point to the program, if more than
one class contains a Main method.

XML

MainEntryPoint or StartupObject

<StartupObject>MyNamespace.Program</StartupObject>

or

XML

Where Program is the type that contains the Main method. The provided class name
must be fully qualified; it must include the full namespace containing the class, followed
by the class name. For example, when the Main method is located inside the Program
class in the MyApplication.Core namespace, the compiler option has to be -
main:MyApplication.Core.Program . If your compilation includes more than one type with
a Main method, you can specify which type contains the Main method.

The PdbFile compiler option specifies the name and location of the debug symbols file.
The filename value specifies the name and location of the debug symbols file.

XML

When you specify DebugType, the compiler will create a .pdb file in the same directory
where the compiler will create the output file (.exe or .dll). The .pdb file has the same
base file name as the name of the output file. PdbFile allows you to specify a non-
default file name and location for the .pdb file. This compiler option cannot be set in the
Visual Studio development environment, nor can it be changed programmatically.

The PathMap compiler option specifies how to map physical paths to source path
names output by the compiler. This option maps each physical path on the machine
where the compiler runs to a corresponding path that should be written in the output
files. In the following example, path1 is the full path to the source files in the current

<MainEntryPoint>MyNamespace.Program</MainEntryPoint>

７ Note

This option can't be used for a project that includes top-level statements, even if
that project contains one or more Main methods.

PdbFile

<PdbFile>filename</PdbFile>

PathMap

environment, and sourcePath1 is the source path substituted for path1 in any output
files. To specify multiple mapped source paths, separate each with a comma.

XML

The compiler writes the source path into its output for the following reasons:

1. The source path is substituted for an argument when the CallerFilePathAttribute is
applied to an optional parameter.

2. The source path is embedded in a PDB file.
3. The path of the PDB file is embedded into a PE (portable executable) file.

The ApplicationConfiguration compiler option enables a C# application to specify the
location of an assembly's application configuration (app.config) file to the common
language runtime (CLR) at assembly binding time.

XML

Where file is the application configuration file that contains assembly binding settings.
One use of ApplicationConfiguration is advanced scenarios in which an assembly has to
reference both the .NET Framework version and the .NET Framework for Silverlight
version of a particular reference assembly at the same time. For example, a XAML
designer written in Windows Presentation Foundation (WPF) might have to reference
both the WPF Desktop, for the designer's user interface, and the subset of WPF that is
included with Silverlight. The same designer assembly has to access both assemblies. By
default, the separate references cause a compiler error, because assembly binding sees
the two assemblies as equivalent. The ApplicationConfiguration compiler option
enables you to specify the location of an app.config file that disables the default
behavior by using a <supportPortability> tag, as shown in the following example.

XML

The compiler passes the location of the file to the CLR's assembly-binding logic.

<PathMap>path1=sourcePath1,path2=sourcePath2</PathMap>

ApplicationConfiguration

<ApplicationConfiguration>file</ApplicationConfiguration>

<supportPortability PKT="7cec85d7bea7798e" enable="false"/>

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.callerfilepathattribute

The following example shows an app.config file that enables an application to have
references to both the .NET Framework implementation and the .NET Framework for
Silverlight implementation of any .NET Framework assembly that exists in both
implementations. The ApplicationConfiguration compiler option specifies the location
of this app.config file.

XML

The AdditionalLibPaths option specifies the location of assemblies referenced with the
References option.

XML

Where dir1 is a directory for the compiler to look in if a referenced assembly isn't
found in the current working directory (the directory from which you're invoking the
compiler) or in the common language runtime's system directory. dir2 is one or more
additional directories to search in for assembly references. Separate directory names
with a comma, and without white space between them. The compiler searches for
assembly references that aren't fully qualified in the following order:

1. Current working directory.
2. The common language runtime system directory.
3. Directories specified by AdditionalLibPaths.

７ Note

To use the app.config file that is already set in the project, add property tag
<UseAppConfigForCompiler> to the .csproj file and set its value to true . To specify a
different app.config file, add property tag <AppConfigForCompiler> and set its value
to the location of the file.

<configuration>
 <runtime>
 <assemblyBinding>
 <supportPortability PKT="7cec85d7bea7798e" enable="false"/>
 <supportPortability PKT="31bf3856ad364e35" enable="false"/>
 </assemblyBinding>
 </runtime>
</configuration>

AdditionalLibPaths

<AdditionalLibPaths>dir1[,dir2]</AdditionalLibPaths>

4. Directories specified by the LIB environment variable.

Use Reference to specify an assembly reference. AdditionalLibPaths is additive.
Specifying it more than once appends to any prior values. Since the path to the
dependent assembly isn't specified in the assembly manifest, the application will find
and use the assembly in the global assembly cache. The compiler referencing the
assembly doesn't imply the common language runtime can find and load the assembly
at run time. See How the Runtime Locates Assemblies for details on how the runtime
searches for referenced assemblies.

The GenerateFullPaths option causes the compiler to specify the full path to the file
when listing compilation errors and warnings.

Xml

By default, errors and warnings that result from compilation specify the name of the file
in which an error was found. The GenerateFullPaths option causes the compiler to
specify the full path to the file. This compiler option is unavailable in Visual Studio and
cannot be changed programmatically.

By using the PreferredUILang compiler option, you can specify the language in which
the C# compiler displays output, such as error messages.

XML

Where language is the language name of the language to use for compiler output. You
can use the PreferredUILang compiler option to specify the language that you want the
C# compiler to use for error messages and other command-line output. If the language
pack for the language isn't installed, the language setting of the operating system is
used instead.

GenerateFullPaths

<GenerateFullPaths>true</GenerateFullPaths>

PreferredUILang

<PreferredUILang>language</PreferredUILang>

BaseAddress

https://learn.microsoft.com/en-ca/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://learn.microsoft.com/en-us/windows/desktop/Intl/language-names

The BaseAddress option lets you specify the preferred base address at which to load a
DLL. For more information about when and why to use this option, see Larry Osterman's
WebLog.

XML

Where address is the base address for the DLL. This address can be specified as a
decimal, hexadecimal, or octal number. The default base address for a DLL is set by the
.NET common language runtime. The lower-order word in this address will be rounded.
For example, if you specify 0x11110001 , it will be rounded to 0x11110000 . To complete
the signing process for a DLL, use SN.EXE with the -R option.

This option controls the checksum algorithm we use to encode source files in the PDB.

XML

The algorithm must be either SHA1 (default) or SHA256 .

This option specifies which codepage to use during compilation if the required page
isn't the current default codepage for the system.

XML

Where id is the id of the code page to use for all source code files in the compilation.
The compiler will first attempt to interpret all source files as UTF-8. If your source code
files are in an encoding other than UTF-8 and use characters other than 7-bit ASCII
characters, use the CodePage option to specify which code page should be used.
CodePage applies to all source code files in your compilation. See GetCPInfo for
information on how to find which code pages are supported on your system.

<BaseAddress>address</BaseAddress>

ChecksumAlgorithm

<ChecksumAlgorithm>algorithm</ChecksumAlgorithm>

CodePage

<CodePage>id</CodePage>

https://learn.microsoft.com/en-us/archive/blogs/larryosterman/why-should-i-even-bother-to-use-dlls-in-my-system
https://learn.microsoft.com/en-us/windows/desktop/api/winnls/nf-winnls-getcpinfo

The Utf8Output option displays compiler output using UTF-8 encoding.

XML

In some international configurations, compiler output cannot correctly be displayed in
the console. Use Utf8Output and redirect compiler output to a file.

The FileAlignment option lets you specify the size of sections in your output file. Valid
values are 512, 1024, 2048, 4096, and 8192. These values are in bytes.

XML

You set the FileAlignment option from the Advanced page of the Build properties for
your project in Visual Studio. Each section will be aligned on a boundary that is a
multiple of the FileAlignment value. There's no fixed default. If FileAlignment isn't
specified, the common language runtime picks a default at compile time. By specifying
the section size, you affect the size of the output file. Modifying section size may be
useful for programs that will run on smaller devices. Use DUMPBIN to see information
about sections in your output file.

Instructs the compiler to output line and column of the end location of each error.

XML

By default, the compiler writes the starting location in source for all errors and warnings.
When this option is set to true, the compiler writes both the starting and end location
for each error and warning.

Utf8Output

<Utf8Output>true</Utf8Output>

FileAlignment

<FileAlignment>number</FileAlignment>

ErrorEndLocation

<ErrorEndLocation>true</ErrorEndLocation>

https://learn.microsoft.com/en-us/cpp/build/reference/dumpbin-options

NoStandardLib prevents the import of mscorlib.dll, which defines the entire System
namespace.

XML

Use this option if you want to define or create your own System namespace and objects.
If you don't specify NoStandardLib, mscorlib.dll is imported into your program (same as
specifying <NoStandardLib>false</NoStandardLib>).

Specifies the minimum version of the subsystem on which the executable file runs. Most
commonly, this option ensures that the executable file can use security features that
aren’t available with older versions of Windows.

XML

The major.minor specify the minimum required version of the subsystem, as expressed
in a dot notation for major and minor versions. For example, you can specify that an
application can't run on an operating system that's older than Windows 7. Set the value
of this option to 6.01, as the table later in this article describes. You specify the values for
major and minor as integers. Leading zeroes in the minor version don't change the
version, but trailing zeroes do. For example, 6.1 and 6.01 refer to the same version, but
6.10 refers to a different version. We recommend expressing the minor version as two
digits to avoid confusion.

The following table lists common subsystem versions of Windows.

Windows version Subsystem version

Windows Server 2003 5.02

NoStandardLib

<NoStandardLib>true</NoStandardLib>

SubsystemVersion

７ Note

To specify the subsystem itself, use the TargetType compiler option.

<SubsystemVersion>major.minor</SubsystemVersion>

Windows version Subsystem version

Windows Vista 6.00

Windows 7 6.01

Windows Server 2008 6.01

Windows 8 6.02

The default value of the SubsystemVersion compiler option depends on the conditions
in the following list:

The default value is 6.02 if any compiler option in the following list is set:
-target:appcontainerexe
-target:winmdobj
-platform:arm

The default value is 6.00 if you're using MSBuild, you're targeting .NET Framework
4.5, and you haven't set any of the compiler options that were specified earlier in
this list.
The default value is 4.00 if none of the previous conditions are true.

Specifies the name of an assembly whose non-public types a .netmodule can access.

XML

ModuleAssemblyName should be used when building a .netmodule, and where the
following conditions are true:

The .netmodule needs access to non-public types in an existing assembly.
You know the name of the assembly into which the .netmodule will be built.
The existing assembly has granted friend assembly access to the assembly into
which the .netmodule will be built.

For more information on building a .netmodule, see TargetType option of module. For
more information on friend assemblies, see Friend Assemblies.

ModuleAssemblyName

<ModuleAssemblyName>assembly_name</ModuleAssemblyName>

https://learn.microsoft.com/en-ca/dotnet/standard/assembly/friend

Documentation comments
Article • 2022-12-20 • 11 minutes to read

C# source files can have structured comments that produce API documentation for the
types defined in those files. The C# compiler produces an XML file that contains
structured data representing the comments and the API signatures. Other tools can
process that XML output to create human-readable documentation in the form of web
pages or PDF files, for example.

This process provides many advantages for you to add API documentation in your code:

The C# compiler combines the structure of the C# code with the text of the
comments into a single XML document.
The C# compiler verifies that the comments match the API signatures for relevant
tags.
Tools that process the XML documentation files can define XML elements and
attributes specific to those tools.

Tools like Visual Studio provide IntelliSense for many common XML elements used in
documentation comments.

This article covers these topics:

Documentation comments and XML file generation
Tags validated by the C# compiler and Visual Studio
Format of the generated XML file

You create documentation for your code by writing special comment fields indicated by
triple slashes. The comment fields include XML elements that describe the code block
that follows the comments. For example:

C#

You set either the GenerateDocumentationFile or DocumentationFile option, and the
compiler will find all comment fields with XML tags in the source code and create an

Create XML documentation output

/// <summary>
/// This class performs an important function.
/// </summary>
public class MyClass {}

https://learn.microsoft.com/en-ca/dotnet/core/project-sdk/msbuild-props#generatedocumentationfile

XML documentation file from those comments. When this option is enabled, the
compiler generates the CS1591 warning for any publicly visible member declared in your
project without XML documentation comments.

The use of XML doc comments requires delimiters that indicate where a documentation
comment begins and ends. You use the following delimiters with the XML
documentation tags:

/// Single-line delimiter: The documentation examples and C# project templates
use this form. If there's white space following the delimiter, it isn't included in the
XML output.

/** */ Multiline delimiters: The /** */ delimiters have the following formatting
rules:

On the line that contains the /** delimiter, if the rest of the line is white space,
the line isn't processed for comments. If the first character after the /**
delimiter is white space, that white-space character is ignored and the rest of
the line is processed. Otherwise, the entire text of the line after the /**
delimiter is processed as part of the comment.

On the line that contains the */ delimiter, if there's only white space up to the
*/ delimiter, that line is ignored. Otherwise, the text on the line up to the */
delimiter is processed as part of the comment.

For the lines after the one that begins with the /** delimiter, the compiler looks
for a common pattern at the beginning of each line. The pattern can consist of
optional white space and an asterisk (*), followed by more optional white
space. If the compiler finds a common pattern at the beginning of each line that
doesn't begin with the /** delimiter or end with the */ delimiter, it ignores
that pattern for each line.

XML comment formats

７ Note

Visual Studio automatically inserts the <summary> and </summary> tags and
positions your cursor within these tags after you type the /// delimiter in the
code editor. You can turn this feature on or off in the Options dialog box.

https://learn.microsoft.com/en-ca/dotnet/csharp/language-reference/compiler-messages/cs1591
https://learn.microsoft.com/en-us/visualstudio/ide/reference/options-text-editor-csharp-advanced

The only part of the following comment that's processed is the line that begins
with <summary> . The three tag formats produce the same comments.

C#

The compiler identifies a common pattern of " * " at the beginning of the
second and third lines. The pattern isn't included in the output.

C#

The compiler finds no common pattern in the following comment because the
second character on the third line isn't an asterisk. All text on the second and
third lines is processed as part of the comment.

C#

The compiler finds no pattern in the following comment for two reasons. First,
the number of spaces before the asterisk isn't consistent. Second, the fifth line
begins with a tab, which doesn't match spaces. All text from lines two through
five is processed as part of the comment.

C#

/** <summary>text</summary> */

/**
<summary>text</summary>
*/

/**
* <summary>text</summary>
*/

/**
* <summary>
* text </summary>*/

/**
* <summary>
 text </summary>
*/

/**
 * <summary>
 * text
* text2

To refer to XML elements (for example, your function processes specific XML elements
that you want to describe in an XML documentation comment), you can use the
standard quoting mechanism (< and >). To refer to generic identifiers in code
reference (cref) elements, you can use either the escape characters (for example,
cref="List<T>") or braces (cref="List{T}"). As a special case, the compiler
parses the braces as angle brackets to make the documentation comment less
cumbersome to author when referring to generic identifiers.

The following tools create output from XML comments:

DocFX : DocFX is an API documentation generator for .NET, which currently
supports C#, Visual Basic, and F#. It also allows you to customize the generated
reference documentation. DocFX builds a static HTML website from your source
code and Markdown files. Also, DocFX provides you the flexibility to customize the
layout and style of your website through templates. You can also create custom
templates.
Sandcastle : The Sandcastle tools create help files for managed class libraries
containing both conceptual and API reference pages. The Sandcastle tools are
command-line based and have no GUI front-end, project management features, or
automated build process. The Sandcastle Help File Builder provides standalone GUI
and command-line based tools to build a help file in an automated fashion. A
Visual Studio integration package is also available for it so that help projects can
be created and managed entirely from within Visual Studio.
Doxygen : Doxygen generates an on-line documentation browser (in HTML) or an
off-line reference manual (in LaTeX) from a set of documented source files. There's
also support for generating output in RTF (MS Word), PostScript, hyperlinked PDF,
compressed HTML, DocBook, and Unix man pages. You can configure Doxygen to
extract the code structure from undocumented source files.

 * </summary>
*/

７ Note

The XML documentation comments are not metadata; they are not included in the
compiled assembly and therefore they are not accessible through reflection.

Tools that accept XML documentation input

ID strings

https://dotnet.github.io/docfx/
https://github.com/EWSoftware/SHFB
https://github.com/doxygen/doxygen

Each type or member is stored in an element in the output XML file. Each of those
elements has a unique ID string that identifies the type or member. The ID string must
account for operators, parameters, return values, generic type parameters, ref , in , and
out parameters. To encode all those potential elements, the compiler follows clearly
defined rules for generating the ID strings. Programs that process the XML file use the
ID string to identify the corresponding .NET metadata or reflection item that the
documentation applies to.

The compiler observes the following rules when it generates the ID strings:

No white space is in the string.

The first part of the string identifies the kind of member using a single character
followed by a colon. The following member types are used:

Character Member
type

Notes

N namespace You can't add documentation comments to a namespace, but
you can make cref references to them, where supported.

T type A type is a class, interface, struct, enum, or delegate.

F field

P property Includes indexers or other indexed properties.

M method Includes special methods, such as constructors and operators.

E event

! error string The rest of the string provides information about the error. The
C# compiler generates error information for links that cannot be
resolved.

The second part of the string is the fully qualified name of the item, starting at the
root of the namespace. The name of the item, its enclosing type(s), and namespace
are separated by periods. If the name of the item itself has periods, they're
replaced by the hash-sign ('#'). It's assumed that no item has a hash-sign directly
in its name. For example, the fully qualified name of the String constructor is
"System.String.#ctor".

For properties and methods, the parameter list enclosed in parentheses follows. If
there are no parameters, no parentheses are present. The parameters are
separated by commas. The encoding of each parameter follows directly how it's
encoded in a .NET signature (See

Microsoft.VisualStudio.CorDebugInterop.CorElementType for definitions of the all
caps elements in the following list):

Base types. Regular types (ELEMENT_TYPE_CLASS or ELEMENT_TYPE_VALUETYPE) are
represented as the fully qualified name of the type.
Intrinsic types (for example, ELEMENT_TYPE_I4 , ELEMENT_TYPE_OBJECT ,
ELEMENT_TYPE_STRING , ELEMENT_TYPE_TYPEDBYREF , and ELEMENT_TYPE_VOID) are
represented as the fully qualified name of the corresponding full type. For
example, System.Int32 or System.TypedReference .
ELEMENT_TYPE_PTR is represented as a '*' following the modified type.
ELEMENT_TYPE_BYREF is represented as a '@' following the modified type.
ELEMENT_TYPE_CMOD_OPT is represented as a '!' and the fully qualified name of the
modifier class, following the modified type.
ELEMENT_TYPE_SZARRAY is represented as "[]" following the element type of the
array.
ELEMENT_TYPE_ARRAY is represented as [lowerbound:size ,lowerbound:size]
where the number of commas is the rank - 1, and the lower bounds and size of
each dimension, if known, are represented in decimal. If a lower bound or size
isn't specified, it's omitted. If the lower bound and size for a particular
dimension are omitted, the ':' is omitted as well. For example, a two-dimensional
array with 1 as the lower bounds and unspecified sizes is [1:,1:].

For conversion operators only (op_Implicit and op_Explicit), the return value of
the method is encoded as a ~ followed by the return type. For example: <member
name="M:System.Decimal.op_Explicit(System.Decimal arg)~System.Int32"> is the
tag for the cast operator public static explicit operator int (decimal value);
declared in the System.Decimal class.

For generic types, the name of the type is followed by a backtick and then a
number that indicates the number of generic type parameters. For example:
<member name="T:SampleClass`2"> is the tag for a type that is defined as public
class SampleClass<T, U> . For methods that take generic types as parameters, the
generic type parameters are specified as numbers prefaced with backticks (for
example `0,`1). Each number represents a zero-based array notation for the type's
generic parameters.

ELEMENT_TYPE_PINNED is represented as a '^' following the modified type. The C#
compiler never generates this encoding.
ELEMENT_TYPE_CMOD_REQ is represented as a '|' and the fully qualified name of the
modifier class, following the modified type. The C# compiler never generates
this encoding.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.cordebuginterop.corelementtype

ELEMENT_TYPE_GENERICARRAY is represented as "[?]" following the element type of
the array. The C# compiler never generates this encoding.
ELEMENT_TYPE_FNPTR is represented as "=FUNC:type (signature)", where type is
the return type, and signature is the arguments of the method. If there are no
arguments, the parentheses are omitted. The C# compiler never generates this
encoding.
The following signature components aren't represented because they aren't
used to differentiate overloaded methods:

calling convention
return type
ELEMENT_TYPE_SENTINEL

The following examples show how the ID strings for a class and its members are
generated:

C#

namespace MyNamespace
{
 /// <summary>
 /// Enter description here for class X.
 /// ID string generated is "T:MyNamespace.MyClass".
 /// </summary>
 public unsafe class MyClass
 {
 /// <summary>
 /// Enter description here for the first constructor.
 /// ID string generated is "M:MyNamespace.MyClass.#ctor".
 /// </summary>
 public MyClass() { }

 /// <summary>
 /// Enter description here for the second constructor.
 /// ID string generated is
"M:MyNamespace.MyClass.#ctor(System.Int32)".
 /// </summary>
 /// <param name="i">Describe parameter.</param>
 public MyClass(int i) { }

 /// <summary>
 /// Enter description here for field message.
 /// ID string generated is "F:MyNamespace.MyClass.message".
 /// </summary>
 public string? message;

 /// <summary>
 /// Enter description for constant PI.
 /// ID string generated is "F:MyNamespace.MyClass.PI".
 /// </summary>
 public const double PI = 3.14;

 /// <summary>
 /// Enter description for method func.
 /// ID string generated is "M:MyNamespace.MyClass.func".
 /// </summary>
 /// <returns>Describe return value.</returns>
 public int func() { return 1; }

 /// <summary>
 /// Enter description for method someMethod.
 /// ID string generated is
"M:MyNamespace.MyClass.someMethod(System.String,System.Int32@,System.Void*)"
.
 /// </summary>
 /// <param name="str">Describe parameter.</param>
 /// <param name="num">Describe parameter.</param>
 /// <param name="ptr">Describe parameter.</param>
 /// <returns>Describe return value.</returns>
 public int someMethod(string str, ref int nm, void* ptr) { return 1;
}

 /// <summary>
 /// Enter description for method anotherMethod.
 /// ID string generated is
"M:MyNamespace.MyClass.anotherMethod(System.Int16[],System.Int32[0:,0:])".
 /// </summary>
 /// <param name="array1">Describe parameter.</param>
 /// <param name="array">Describe parameter.</param>
 /// <returns>Describe return value.</returns>
 public int anotherMethod(short[] array1, int[,] array) { return 0; }

 /// <summary>
 /// Enter description for operator.
 /// ID string generated is
"M:MyNamespace.MyClass.op_Addition(MyNamespace.MyClass,MyNamespace.MyClass)"
.
 /// </summary>
 /// <param name="first">Describe parameter.</param>
 /// <param name="second">Describe parameter.</param>
 /// <returns>Describe return value.</returns>
 public static MyClass operator +(MyClass first, MyClass second) {
return first; }

 /// <summary>
 /// Enter description for property.
 /// ID string generated is "P:MyNamespace.MyClass.prop".
 /// </summary>
 public int prop { get { return 1; } set { } }

 /// <summary>
 /// Enter description for event.
 /// ID string generated is "E:MyNamespace.MyClass.OnHappened".
 /// </summary>
 public event Del? OnHappened;

For more information, see the C# Language Specification annex on documentation
comments.

 /// <summary>
 /// Enter description for index.
 /// ID string generated is
"P:MyNamespace.MyClass.Item(System.String)".
 /// </summary>
 /// <param name="str">Describe parameter.</param>
 /// <returns></returns>
 public int this[string s] { get { return 1; } }

 /// <summary>
 /// Enter description for class Nested.
 /// ID string generated is "T:MyNamespace.MyClass.Nested".
 /// </summary>
 public class Nested { }

 /// <summary>
 /// Enter description for delegate.
 /// ID string generated is "T:MyNamespace.MyClass.Del".
 /// </summary>
 /// <param name="i">Describe parameter.</param>
 public delegate void Del(int i);

 /// <summary>
 /// Enter description for operator.
 /// ID string generated is
"M:MyNamespace.MyClass.op_Explicit(MyNamespace.MyClass)~System.Int32".
 /// </summary>
 /// <param name="myParameter">Describe parameter.</param>
 /// <returns>Describe return value.</returns>
 public static explicit operator int(MyClass myParameter) { return 1;
}
 }
}

C# language specification

Recommended XML tags for C#
documentation comments
Article • 2022-08-18 • 12 minutes to read

C# documentation comments use XML elements to define the structure of the output
documentation. One consequence of this feature is that you can add any valid XML in
your documentation comments. The C# compiler copies these elements into the output
XML file. While you can use any valid XML in your comments (including any valid HTML
element), documenting code is recommended for many reasons.

What follows are some recommendations, general use case scenarios, and things that
you should know when using XML documentation tags in your C# code. While you can
put any tags into your documentation comments, this article describes the
recommended tags for the most common language constructs. In all cases, you should
adhere to these recommendations:

For the sake of consistency, all publicly visible types and their public members
should be documented.
Private members can also be documented using XML comments. However, it
exposes the inner (potentially confidential) workings of your library.
At a bare minimum, types and their members should have a <summary> tag
because its content is needed for IntelliSense.
Documentation text should be written using complete sentences ending with full
stops.
Partial classes are fully supported, and documentation information will be
concatenated into a single entry for each type.

XML documentation starts with /// . When you create a new project, the templates put
some starter /// lines in for you. The processing of these comments has some
restrictions:

The documentation must be well-formed XML. If the XML isn't well formed, the
compiler generates a warning. The documentation file will contain a comment that
says that an error was encountered.
Some of the recommended tags have special meanings:

The <param> tag is used to describe parameters. If used, the compiler verifies
that the parameter exists and that all parameters are described in the
documentation. If the verification fails, the compiler issues a warning.
The cref attribute can be attached to any tag to reference a code element. The
compiler verifies that this code element exists. If the verification fails, the

compiler issues a warning. The compiler respects any using statements when it
looks for a type described in the cref attribute.
The <summary> tag is used by IntelliSense inside Visual Studio to display
additional information about a type or member.

Developers are free to create their own set of tags. The compiler will copy these to
the output file.

Some of the recommended tags can be used on any language element. Others have
more specialized usage. Finally, some of the tags are used to format text in your
documentation. This article describes the recommended tags organized by their use.

The compiler verifies the syntax of the elements followed by a single * in the following
list. Visual Studio provides IntelliSense for the tags verified by the compiler and all tags
followed by ** in the following list. In addition to the tags listed here, the compiler and
Visual Studio validate the , <i> , <u> ,
 , and <a> tags. The compiler also
validates <tt> , which is deprecated HTML.

General Tags used for multiple elements - These tags are the minimum set for any
API.

<summary>: The value of this element is displayed in IntelliSense in Visual
Studio.
<remarks> **

Tags used for members - These tags are used when documenting methods and
properties.

<returns>: The value of this element is displayed in IntelliSense in Visual Studio.
<param> *: The value of this element is displayed in IntelliSense in Visual
Studio.
<paramref>
<exception> *
<value>: The value of this element is displayed in IntelliSense in Visual Studio.

Format documentation output - These tags provide formatting directions for tools
that generate documentation.

<para>
<list>

７ Note

The XML file does not provide full information about the type and
members (for example, it does not contain any type information). To get
full information about a type or member, use the documentation file
together with reflection on the actual type or member.

<c>
<code>
<example> **

Reuse documentation text - These tags provide tools that make it easier to reuse
XML comments.

<inheritdoc> **
<include> *

Generate links and references - These tags generate links to other documentation.
<see> *
<seealso> *
cref
href

Tags for generic types and methods - These tags are used only on generic types
and methods

<typeparam> *: The value of this element is displayed in IntelliSense in Visual
Studio.
<typeparamref>

If you want angle brackets to appear in the text of a documentation comment, use the
HTML encoding of < and > , which is < and > respectively. This encoding is
shown in the following example.

C#

XML

７ Note

Documentation comments cannot be applied to a namespace.

/// <summary>
/// This property always returns a value < 1.
/// </summary>

General tags

<summary>

<summary>description</summary>

The <summary> tag should be used to describe a type or a type member. Use <remarks>
to add supplemental information to a type description. Use the cref attribute to enable
documentation tools such as DocFX and Sandcastle to create internal hyperlinks to
documentation pages for code elements. The text for the <summary> tag is the only
source of information about the type in IntelliSense, and is also displayed in the Object
Browser window.

XML

The <remarks> tag is used to add information about a type or a type member,
supplementing the information specified with <summary>. This information is displayed
in the Object Browser window. This tag may include more lengthy explanations. You may
find that using CDATA sections for markdown make writing it more convenient. Tools
such as docfx process the markdown text in CDATA sections.

XML

The <returns> tag should be used in the comment for a method declaration to describe
the return value.

XML

name : The name of a method parameter. Enclose the name in double quotation
marks (" "). The names for parameters must match the API signature. If one or

<remarks>

<remarks>
description
</remarks>

Document members

<returns>

<returns>description</returns>

<param>

<param name="name">description</param>

https://dotnet.github.io/docfx/
https://github.com/EWSoftware/SHFB
https://dotnet.github.io/docfx/

more parameter aren't covered, the compiler issues a warning. The compiler also
issues a warning if the value of name doesn't match a formal parameter in the
method declaration.

The <param> tag should be used in the comment for a method declaration to describe
one of the parameters for the method. To document multiple parameters, use multiple
<param> tags. The text for the <param> tag is displayed in IntelliSense, the Object
Browser, and the Code Comment Web Report.

XML

name : The name of the parameter to refer to. Enclose the name in double
quotation marks (" ").

The <paramref> tag gives you a way to indicate that a word in the code comments, for
example in a <summary> or <remarks> block refers to a parameter. The XML file can be
processed to format this word in some distinct way, such as with a bold or italic font.

XML

cref = "member ": A reference to an exception that is available from the current
compilation environment. The compiler checks that the given exception exists and
translates member to the canonical element name in the output XML. member must
appear within double quotation marks (" ").

The <exception> tag lets you specify which exceptions can be thrown. This tag can be
applied to definitions for methods, properties, events, and indexers.

XML

<paramref>

<paramref name="name"/>

<exception>

<exception cref="member">description</exception>

<value>

<value>property-description</value>

The <value> tag lets you describe the value that a property represents. When you add a
property via code wizard in the Visual Studio .NET development environment, it adds a
<summary> tag for the new property. You manually add a <value> tag to describe the
value that the property represents.

XML

The <para> tag is for use inside a tag, such as <summary>, <remarks>, or <returns>,
and lets you add structure to the text. The <para> tag creates a double spaced
paragraph. Use the
 tag if you want a single spaced paragraph.

XML

The <listheader> block is used to define the heading row of either a table or definition
list. When defining a table, you only need to supply an entry for term in the heading.
Each item in the list is specified with an <item> block. When creating a definition list,

Format documentation output

<para>

<remarks>
 <para>
 This is an introductory paragraph.
 </para>
 <para>
 This paragraph contains more details.
 </para>
</remarks>

<list>

<list type="bullet|number|table">
 <listheader>
 <term>term</term>
 <description>description</description>
 </listheader>
 <item>
 <term>Assembly</term>
 <description>The library or executable built from a compilation.
</description>
 </item>
</list>

you'll need to specify both term and description . However, for a table, bulleted list, or
numbered list, you only need to supply an entry for description . A list or table can have
as many <item> blocks as needed.

XML

The <c> tag gives you a way to indicate that text within a description should be marked
as code. Use <code> to indicate multiple lines as code.

XML

The <code> tag is used to indicate multiple lines of code. Use <c> to indicate that
single-line text within a description should be marked as code.

XML

The <example> tag lets you specify an example of how to use a method or other library
member. An example commonly involves using the <code> tag.

<c>

<c>text</c>

<code>

<code>
 var index = 5;
 index++;
</code>

<example>

<example>
This shows how to increment an integer.
<code>
 var index = 5;
 index++;
</code>
</example>

Reuse documentation text

XML

Inherit XML comments from base classes, interfaces, and similar methods. Using
inheritdoc eliminates unwanted copying and pasting of duplicate XML comments and
automatically keeps XML comments synchronized. Note that when you add the
<inheritdoc> tag to a type, all members will inherit the comments as well.

cref : Specify the member to inherit documentation from. Already defined tags on
the current member are not overridden by the inherited ones.
path : The XPath expression query that will result in a node set to show. You can
use this attribute to filter the tags to include or exclude from the inherited
documentation.

Add your XML comments in base classes or interfaces and let inheritdoc copy the
comments to implementing classes. Add your XML comments to your synchronous
methods and let inheritdoc copy the comments to your asynchronous versions of the
same methods. If you want to copy the comments from a specific member, you use the
cref attribute to specify the member.

XML

filename : The name of the XML file containing the documentation. The file name
can be qualified with a path relative to the source code file. Enclose filename in
single quotation marks (' ').
tagpath : The path of the tags in filename that leads to the tag name . Enclose the
path in single quotation marks (' ').
name : The name specifier in the tag that precedes the comments; name will have an
id .
id : The ID for the tag that precedes the comments. Enclose the ID in double
quotation marks (" ").

The <include> tag lets you refer to comments in another file that describe the types and
members in your source code. Including an external file is an alternative to placing

<inheritdoc>

<inheritdoc [cref=""] [path=""]/>

<include>

<include file='filename' path='tagpath[@name="id"]' />

documentation comments directly in your source code file. By putting the
documentation in a separate file, you can apply source control to the documentation
separately from the source code. One person can have the source code file checked out
and someone else can have the documentation file checked out. The <include> tag uses
the XML XPath syntax. Refer to XPath documentation for ways to customize your
<include> use.

XML

cref="member" : A reference to a member or field that is available to be called from
the current compilation environment. The compiler checks that the given code
element exists and passes member to the element name in the output XML. Place
member within double quotation marks (" "). You can provide different link text for
a "cref", by using a separate closing tag.
href="link" : A clickable link to a given URL. For example, <see
href="https://github.com">GitHub</see> produces a clickable link with text GitHub
that links to https://github.com .
langword="keyword" : A language keyword, such as true or one of the other valid
keywords.

The <see> tag lets you specify a link from within text. Use <seealso> to indicate that
text should be placed in a See Also section. Use the cref attribute to create internal
hyperlinks to documentation pages for code elements. You include the type parameters
to specify a reference to a generic type or method, such as cref="IDictionary{T, U}" .
Also, href is a valid attribute that will function as a hyperlink.

XML

Generate links and references

<see>

<see cref="member"/>
<!-- or -->
<see cref="member">Link text</see>
<!-- or -->
<see href="link">Link Text</see>
<!-- or -->
<see langword="keyword"/>

<seealso>

cref="member" : A reference to a member or field that is available to be called from
the current compilation environment. The compiler checks that the given code
element exists and passes member to the element name in the output XML. member
must appear within double quotation marks (" ").
href="link" : A clickable link to a given URL. For example, <seealso
href="https://github.com">GitHub</seealso> produces a clickable link with text
GitHub that links to https://github.com .

The <seealso> tag lets you specify the text that you might want to appear in a See Also
section. Use <see> to specify a link from within text. You cannot nest the seealso tag
inside the summary tag.

The cref attribute in an XML documentation tag means "code reference." It specifies
that the inner text of the tag is a code element, such as a type, method, or property.
Documentation tools like DocFX and Sandcastle use the cref attributes to
automatically generate hyperlinks to the page where the type or member is
documented.

The href attribute means a reference to a web page. You can use it to directly reference
online documentation about your API or library.

XML

TResult : The name of the type parameter. Enclose the name in double quotation
marks (" ").

<seealso cref="member"/>
<!-- or -->
<seealso href="link">Link Text</seealso>

cref attribute

href attribute

Generic types and methods

<typeparam>

<typeparam name="TResult">The type returned from this method</typeparam>

https://dotnet.github.io/docfx/
https://github.com/EWSoftware/SHFB

The <typeparam> tag should be used in the comment for a generic type or method
declaration to describe a type parameter. Add a tag for each type parameter of the
generic type or method. The text for the <typeparam> tag will be displayed in
IntelliSense.

XML

TKey : The name of the type parameter. Enclose the name in double quotation
marks (" ").

Use this tag to enable consumers of the documentation file to format the word in some
distinct way, for example in italics.

All the tags outlined above represent those tags that are recognized by the C# compiler.
However, a user is free to define their own tags. Tools like Sandcastle bring support for
extra tags like <event> and <note> , and even support documenting
namespaces . Custom or in-house documentation generation tools can also be used
with the standard tags, and multiple output formats from HTML to PDF can be
supported.

<typeparamref>

<typeparamref name="TKey"/>

User-defined tags

https://ewsoftware.github.io/XMLCommentsGuide/html/81bf7ad3-45dc-452f-90d5-87ce2494a182.htm
https://ewsoftware.github.io/XMLCommentsGuide/html/4302a60f-e4f4-4b8d-a451-5f453c4ebd46.htm
https://ewsoftware.github.io/XMLCommentsGuide/html/BD91FAD4-188D-4697-A654-7C07FD47EF31.htm

Example XML documentation comments
Article • 2021-09-15 • 18 minutes to read

This article contains three examples for adding XML documentation comments to most
C# language elements. The first example shows how you document a class with different
members. The second shows how you would reuse explanations for a hierarchy of
classes or interfaces. The third shows tags to use for generic classes and members. The
second and third examples use concepts that are covered in the first example.

The following example shows common language elements, and the tags you'll likely use
to describe these elements. The documentation comments describe the use of the tags,
rather than the class itself.

C#

Document a class, struct, or interface

 /// <summary>
 /// Every class and member should have a one sentence
 /// summary describing its purpose.
 /// </summary>
 /// <remarks>
 /// You can expand on that one sentence summary to
 /// provide more information for readers. In this case,
 /// the <c>ExampleClass</c> provides different C#
 /// elements to show how you would add documentation
 ///comments for most elements in a typical class.
 /// <para>
 /// The remarks can add multiple paragraphs, so you can
 /// write detailed information for developers that use
 /// your work. You should add everything needed for
 /// readers to be successful. This class contains
 /// examples for the following:
 /// </para>
 /// <list type="table">
 /// <item>
 /// <term>Summary</term>
 /// <description>
 /// This should provide a one sentence summary of the class or member.
 /// </description>
 /// </item>
 /// <item>
 /// <term>Remarks</term>
 /// <description>
 /// This is typically a more detailed description of the class or member
 /// </description>
 /// </item>
 /// <item>

 /// <term>para</term>
 /// <description>
 /// The para tag separates a section into multiple paragraphs
 /// </description>
 /// </item>
 /// <item>
 /// <term>list</term>
 /// <description>
 /// Provides a list of terms or elements
 /// </description>
 /// </item>
 /// <item>
 /// <term>returns, param</term>
 /// <description>
 /// Used to describe parameters and return values
 /// </description>
 /// </item>
 /// <item>
 /// <term>value</term>
 /// <description>Used to describe properties</description>
 /// </item>
 /// <item>
 /// <term>exception</term>
 /// <description>
 /// Used to describe exceptions that may be thrown
 /// </description>
 /// </item>
 /// <item>
 /// <term>c, cref, see, seealso</term>
 /// <description>
 /// These provide code style and links to other
 /// documentation elements
 /// </description>
 /// </item>
 /// <item>
 /// <term>example, code</term>
 /// <description>
 /// These are used for code examples
 /// </description>
 /// </item>
 /// </list>
 /// <para>
 /// The list above uses the "table" style. You could
 /// also use the "bullet" or "number" style. Neither
 /// would typically use the "term" element.
 ///

 /// Note: paragraphs are double spaced. Use the *br*
 /// tag for single spaced lines.
 /// </para>
 /// </remarks>
 public class ExampleClass
 {
 /// <value>
 /// The <c>Label</c> property represents a label
 /// for this instance.

 /// </value>
 /// <remarks>
 /// The <see cref="Label"/> is a <see langword="string"/>
 /// that you use for a label.
 /// <para>
 /// Note that there isn't a way to provide a "cref" to
 /// each accessor, only to the property itself.
 /// </para>
 /// </remarks>
 public string? Label
 {
 get;
 set;
 }

 /// <summary>
 /// Adds two integers and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two integers.
 /// </returns>
 /// <param name="left">
 /// The left operand of the addition.
 /// </param>
 /// <param name="right">
 /// The right operand of the addition.
 /// </param>
 /// <example>
 /// <code>
 /// int c = Math.Add(4, 5);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">
 /// Thrown when one parameter is
 /// <see cref="Int32.MaxValue">MaxValue</see> and the other is
 /// greater than 0.
 /// Note that here you can also use
 /// <see
href="https://docs.microsoft.com/dotnet/api/system.int32.maxvalue"/>
 /// to point a web page instead.
 /// </exception>
 /// <see cref="ExampleClass"/> for a list of all
 /// the tags in these examples.
 /// <seealso cref="ExampleClass.Label"/>
 public static int Add(int left, int right)
 {
 if ((left == int.MaxValue && right > 0) || (right ==
int.MaxValue && left > 0))
 throw new System.OverflowException();

 return left + right;

Adding documentation can clutter your source code with large sets of comments
intended for users of your library. You use the <Include> tag to separate your XML
comments from your source. Your source code references an XML file with the
<Include> tag:

C#

The second file, xml_include_tag.xml, contains the documentation comments.

XML

 }
 }

 /// <summary>
 /// This is an example of a positional record.
 /// </summary>
 /// <remarks>
 /// There isn't a way to add XML comments for properties
 /// created for positional records, yet. The language
 /// design team is still considering what tags should
 /// be supported, and where. Currently, you can use
 /// the "param" tag to describe the parameters to the
 /// primary constructor.
 /// </remarks>
 /// <param name="FirstName">
 /// This tag will apply to the primary constructor parameter.
 /// </param>
 /// <param name="LastName">
 /// This tag will apply to the primary constructor parameter.
 /// </param>
 public record Person(string FirstName, string LastName);
}

/// <include file='xml_include_tag.xml'
path='MyDocs/MyMembers[@name="test"]/*' />
class Test
{
 static void Main()
 {
 }
}

/// <include file='xml_include_tag.xml'
path='MyDocs/MyMembers[@name="test2"]/*' />
class Test2
{
 public void Test()
 {
 }
}

The <inheritdoc> element means a type or member inherits documentation comments
from a base class or interface. You can also use the <inheritdoc> element with the cref
attribute to inherit comments from a member of the same type. The following example
shows ways to use this tag. Note that when you add the inheritdoc attribute to a type,
member comments are inherited. You can prevent the use of inherited comments by
writing comments on the members in the derived type. Those will be chosen over the
inherited comments.

C#

<MyDocs>
 <MyMembers name="test">
 <summary>
 The summary for this type.
 </summary>
 </MyMembers>
 <MyMembers name="test2">
 <summary>
 The summary for this other type.
 </summary>
 </MyMembers>
</MyDocs>

Document a hierarchy of classes and interfaces

/// <summary>
/// A summary about this class.
/// </summary>
/// <remarks>
/// These remarks would explain more about this class.
/// In this example, these comments also explain the
/// general information about the derived class.
/// </remarks>
public class MainClass
{
}

///<inheritdoc/>
public class DerivedClass : MainClass
{
}

/// <summary>
/// This interface would describe all the methods in
/// its contract.
/// </summary>
/// <remarks>
/// While elided for brevity, each method or property

/// in this interface would contain docs that you want
/// to duplicate in each implementing class.
/// </remarks>
public interface ITestInterface
{
 /// <summary>
 /// This method is part of the test interface.
 /// </summary>
 /// <remarks>
 /// This content would be inherited by classes
 /// that implement this interface when the
 /// implementing class uses "inheritdoc"
 /// </remarks>
 /// <returns>The value of <paramref name="arg" /> </returns>
 /// <param name="arg">The argument to the method</param>
 int Method(int arg);
}

///<inheritdoc cref="ITestInterface"/>
public class ImplementingClass : ITestInterface
{
 // doc comments are inherited here.
 public int Method(int arg) => arg;
}

/// <summary>
/// This class shows hows you can "inherit" the doc
/// comments from one method in another method.
/// </summary>
/// <remarks>
/// You can inherit all comments, or only a specific tag,
/// represented by an xpath expression.
/// </remarks>
public class InheritOnlyReturns
{
 /// <summary>
 /// In this example, this summary is only visible for this method.
 /// </summary>
 /// <returns>A boolean</returns>
 public static bool MyParentMethod(bool x) { return x; }

 /// <inheritdoc cref="MyParentMethod" path="/returns"/>
 public static bool MyChildMethod() { return false; }
}

/// <Summary>
/// This class shows an example ofsharing comments across methods.
/// </Summary>
public class InheritAllButRemarks
{
 /// <summary>
 /// In this example, this summary is visible on all the methods.
 /// </summary>
 /// <remarks>
 /// The remarks can be inherited by other methods

Use the <typeparam> tag to describe type parameters on generic types and methods.
The value for the cref attribute requires new syntax to reference a generic method or
class:

C#

 /// using the xpath expression.
 /// </remarks>
 /// <returns>A boolean</returns>
 public static bool MyParentMethod(bool x) { return x; }

 /// <inheritdoc cref="MyParentMethod" path="//*[not(self::remarks)]"/>
 public static bool MyChildMethod() { return false; }
}

Generic types

/// <summary>
/// This is a generic class.
/// </summary>
/// <remarks>
/// This example shows how to specify the <see cref="GenericClass{T}"/>
/// type as a cref attribute.
/// In generic classes and methods, you'll often want to reference the
/// generic type, or the type parameter.
/// </remarks>
class GenericClass<T>
{
 // Fields and members.
}

/// <Summary>
/// This shows examples of typeparamref and typeparam tags
/// </Summary>
public class ParamsAndParamRefs
{
 /// <summary>
 /// The GetGenericValue method.
 /// </summary>
 /// <remarks>
 /// This sample shows how to specify the <see cref="GetGenericValue"/>
 /// method as a cref attribute.
 /// The parameter and return value are both of an arbitrary type,
 /// <typeparamref name="T"/>
 /// </remarks>
 public static T GetGenericValue<T>(T para)
 {
 return para;
 }
}

The following code shows a realistic example of adding doc comments to a math library.

C#

Math class example

namespace TaggedLibrary
{
 /*
 The main Math class
 Contains all methods for performing basic math functions
 */
 /// <summary>
 /// The main <c>Math</c> class.
 /// Contains all methods for performing basic math functions.
 /// <list type="bullet">
 /// <item>
 /// <term>Add</term>
 /// <description>Addition Operation</description>
 /// </item>
 /// <item>
 /// <term>Subtract</term>
 /// <description>Subtraction Operation</description>
 /// </item>
 /// <item>
 /// <term>Multiply</term>
 /// <description>Multiplication Operation</description>
 /// </item>
 /// <item>
 /// <term>Divide</term>
 /// <description>Division Operation</description>
 /// </item>
 /// </list>
 /// </summary>
 /// <remarks>
 /// <para>
 /// This class can add, subtract, multiply and divide.
 /// </para>
 /// <para>
 /// These operations can be performed on both
 /// integers and doubles.
 /// </para>
 /// </remarks>
 public class Math
 {
 // Adds two integers and returns the result
 /// <summary>
 /// Adds two integers <paramref name="a"/> and <paramref name="b"/>
 /// and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two integers.
 /// </returns>

 /// <example>
 /// <code>
 /// int c = Math.Add(4, 5);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">
 /// Thrown when one parameter is <see cref="Int32.MaxValue"/> and
the other
 /// is greater than 0.
 /// </exception>
 /// See <see cref="Math.Add(double, double)"/> to add doubles.
 /// <seealso cref="Math.Subtract(int, int)"/>
 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 /// <param name="a">An integer.</param>
 /// <param name="b">An integer.</param>
 public static int Add(int a, int b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) ||
 (b == int.MaxValue && a > 0))
 {
 throw new System.OverflowException();
 }
 return a + b;
 }

 // Adds two doubles and returns the result
 /// <summary>
 /// Adds two doubles <paramref name="a"/> and <paramref name="b"/>
 /// and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two doubles.
 /// </returns>
 /// <example>
 /// <code>
 /// double c = Math.Add(4.5, 5.4);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">
 /// Thrown when one parameter is max and the other
 /// is greater than 0.</exception>
 /// See <see cref="Math.Add(int, int)"/> to add integers.
 /// <seealso cref="Math.Subtract(double, double)"/>
 /// <seealso cref="Math.Multiply(double, double)"/>

 /// <seealso cref="Math.Divide(double, double)"/>
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Add(double a, double b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == double.MaxValue && b > 0)
 || (b == double.MaxValue && a > 0))
 {
 throw new System.OverflowException();
 }

 return a + b;
 }

 // Subtracts an integer from another and returns the result
 /// <summary>
 /// Subtracts <paramref name="b"/> from <paramref name="a"/>
 /// and returns the result.
 /// </summary>
 /// <returns>
 /// The difference between two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Subtract(4, 5);
 /// if (c > 1)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Subtract(double, double)"/> to subtract
doubles.
 /// <seealso cref="Math.Add(int, int)"/>
 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 /// <param name="a">An integer.</param>
 /// <param name="b">An integer.</param>
 public static int Subtract(int a, int b)
 {
 return a - b;
 }

 // Subtracts a double from another and returns the result
 /// <summary>
 /// Subtracts a double <paramref name="b"/> from another
 /// double <paramref name="a"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The difference between two doubles.
 /// </returns>
 /// <example>
 /// <code>

 /// double c = Math.Subtract(4.5, 5.4);
 /// if (c > 1)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Subtract(int, int)"/> to subtract integers.
 /// <seealso cref="Math.Add(double, double)"/>
 /// <seealso cref="Math.Multiply(double, double)"/>
 /// <seealso cref="Math.Divide(double, double)"/>
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Subtract(double a, double b)
 {
 return a - b;
 }

 // Multiplies two integers and returns the result
 /// <summary>
 /// Multiplies two integers <paramref name="a"/>
 /// and <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The product of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Multiply(4, 5);
 /// if (c > 100)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Multiply(double, double)"/> to multiply
doubles.
 /// <seealso cref="Math.Add(int, int)"/>
 /// <seealso cref="Math.Subtract(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 /// <param name="a">An integer.</param>
 /// <param name="b">An integer.</param>
 public static int Multiply(int a, int b)
 {
 return a * b;
 }

 // Multiplies two doubles and returns the result
 /// <summary>
 /// Multiplies two doubles <paramref name="a"/> and
 /// <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The product of two doubles.
 /// </returns>

 /// <example>
 /// <code>
 /// double c = Math.Multiply(4.5, 5.4);
 /// if (c > 100.0)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Multiply(int, int)"/> to multiply integers.
 /// <seealso cref="Math.Add(double, double)"/>
 /// <seealso cref="Math.Subtract(double, double)"/>
 /// <seealso cref="Math.Divide(double, double)"/>
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Multiply(double a, double b)
 {
 return a * b;
 }

 // Divides an integer by another and returns the result
 /// <summary>
 /// Divides an integer <paramref name="a"/> by another
 /// integer <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The quotient of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Divide(4, 5);
 /// if (c > 1)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.DivideByZeroException">
 /// Thrown when <paramref name="b"/> is equal to 0.
 /// </exception>
 /// See <see cref="Math.Divide(double, double)"/> to divide doubles.
 /// <seealso cref="Math.Add(int, int)"/>
 /// <seealso cref="Math.Subtract(int, int)"/>
 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <param name="a">An integer dividend.</param>
 /// <param name="b">An integer divisor.</param>
 public static int Divide(int a, int b)
 {
 return a / b;
 }

 // Divides a double by another and returns the result
 /// <summary>
 /// Divides a double <paramref name="a"/> by another double
 /// <paramref name="b"/> and returns the result.

You may find that the code is obscured by all the comments. The final example shows
how you would adapt this library to use the include tag. You move all the
documentation to an XML file:

XML

 /// </summary>
 /// <returns>
 /// The quotient of two doubles.
 /// </returns>
 /// <example>
 /// <code>
 /// double c = Math.Divide(4.5, 5.4);
 /// if (c > 1.0)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.DivideByZeroException">
 /// Thrown when <paramref name="b"/> is equal to 0.
 /// </exception>
 /// See <see cref="Math.Divide(int, int)"/> to divide integers.
 /// <seealso cref="Math.Add(double, double)"/>
 /// <seealso cref="Math.Subtract(double, double)"/>
 /// <seealso cref="Math.Multiply(double, double)"/>
 /// <param name="a">A double precision dividend.</param>
 /// <param name="b">A double precision divisor.</param>
 public static double Divide(double a, double b)
 {
 return a / b;
 }
 }
}

<docs>
 <members name="math">
 <Math>
 <summary>
 The main <c>Math</c> class.
 Contains all methods for performing basic math functions.
 </summary>
 <remarks>
 <para>This class can add, subtract, multiply and divide.</para>
 <para>These operations can be performed on both integers and doubles.
</para>
 </remarks>
 </Math>
 <AddInt>
 <summary>
 Adds two integers <paramref name="a"/> and <paramref name="b"/>
 and returns the result.

 </summary>
 <returns>
 The sum of two integers.
 </returns>
 <example>
 <code>
 int c = Math.Add(4, 5);
 if (c > 10)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.OverflowException">Thrown when one
 parameter is max
 and the other is greater than 0.</exception>
 See <see cref="Math.Add(double, double)"/> to add doubles.
 <seealso cref="Math.Subtract(int, int)"/>
 <seealso cref="Math.Multiply(int, int)"/>
 <seealso cref="Math.Divide(int, int)"/>
 <param name="a">An integer.</param>
 <param name="b">An integer.</param>
 </AddInt>
 <AddDouble>
 <summary>
 Adds two doubles <paramref name="a"/> and <paramref name="b"/>
 and returns the result.
 </summary>
 <returns>
 The sum of two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Add(4.5, 5.4);
 if (c > 10)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.OverflowException">Thrown when one parameter
is max
 and the other is greater than 0.</exception>
 See <see cref="Math.Add(int, int)"/> to add integers.
 <seealso cref="Math.Subtract(double, double)"/>
 <seealso cref="Math.Multiply(double, double)"/>
 <seealso cref="Math.Divide(double, double)"/>
 <param name="a">A double precision number.</param>
 <param name="b">A double precision number.</param>
 </AddDouble>
 <SubtractInt>
 <summary>
 Subtracts <paramref name="b"/> from <paramref name="a"/> and
 returns the result.
 </summary>

 <returns>
 The difference between two integers.
 </returns>
 <example>
 <code>
 int c = Math.Subtract(4, 5);
 if (c > 1)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Subtract(double, double)"/> to subtract doubles.
 <seealso cref="Math.Add(int, int)"/>
 <seealso cref="Math.Multiply(int, int)"/>
 <seealso cref="Math.Divide(int, int)"/>
 <param name="a">An integer.</param>
 <param name="b">An integer.</param>
 </SubtractInt>
 <SubtractDouble>
 <summary>
 Subtracts a double <paramref name="b"/> from another
 double <paramref name="a"/> and returns the result.
 </summary>
 <returns>
 The difference between two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Subtract(4.5, 5.4);
 if (c > 1)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Subtract(int, int)"/> to subtract integers.
 <seealso cref="Math.Add(double, double)"/>
 <seealso cref="Math.Multiply(double, double)"/>
 <seealso cref="Math.Divide(double, double)"/>
 <param name="a">A double precision number.</param>
 <param name="b">A double precision number.</param>
 </SubtractDouble>
 <MultiplyInt>
 <summary>
 Multiplies two integers <paramref name="a"/> and
 <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The product of two integers.
 </returns>
 <example>
 <code>
 int c = Math.Multiply(4, 5);
 if (c > 100)

 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Multiply(double, double)"/> to multiply doubles.
 <seealso cref="Math.Add(int, int)"/>
 <seealso cref="Math.Subtract(int, int)"/>
 <seealso cref="Math.Divide(int, int)"/>
 <param name="a">An integer.</param>
 <param name="b">An integer.</param>
 </MultiplyInt>
 <MultiplyDouble>
 <summary>
 Multiplies two doubles <paramref name="a"/> and
 <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The product of two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Multiply(4.5, 5.4);
 if (c > 100.0)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Multiply(int, int)"/> to multiply integers.
 <seealso cref="Math.Add(double, double)"/>
 <seealso cref="Math.Subtract(double, double)"/>
 <seealso cref="Math.Divide(double, double)"/>
 <param name="a">A double precision number.</param>
 <param name="b">A double precision number.</param>
 </MultiplyDouble>
 <DivideInt>
 <summary>
 Divides an integer <paramref name="a"/> by another integer
 <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The quotient of two integers.
 </returns>
 <example>
 <code>
 int c = Math.Divide(4, 5);
 if (c > 1)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.DivideByZeroException">
 Thrown when <paramref name="b"/> is equal to 0.

In the above XML, each member's documentation comments appear directly inside a
tag named after what they do. You can choose your own strategy. The code uses the
<include> tag to reference the appropriate element in the XML file:

C#

 </exception>
 See <see cref="Math.Divide(double, double)"/> to divide doubles.
 <seealso cref="Math.Add(int, int)"/>
 <seealso cref="Math.Subtract(int, int)"/>
 <seealso cref="Math.Multiply(int, int)"/>
 <param name="a">An integer dividend.</param>
 <param name="b">An integer divisor.</param>
 </DivideInt>
 <DivideDouble>
 <summary>
 Divides a double <paramref name="a"/> by another
 double <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The quotient of two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Divide(4.5, 5.4);
 if (c > 1.0)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.DivideByZeroException">Thrown when <paramref
name="b"/> is equal to 0.</exception>
 See <see cref="Math.Divide(int, int)"/> to divide integers.
 <seealso cref="Math.Add(double, double)"/>
 <seealso cref="Math.Subtract(double, double)"/>
 <seealso cref="Math.Multiply(double, double)"/>
 <param name="a">A double precision dividend.</param>
 <param name="b">A double precision divisor.</param>
 </DivideDouble>
 </members>
</docs>

namespace IncludeTag
{

 /*
 The main Math class
 Contains all methods for performing basic math functions
 */
 /// <include file='include.xml'
path='docs/members[@name="math"]/Math/*'/>

 public class Math
 {
 // Adds two integers and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/AddInt/*'/>
 public static int Add(int a, int b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a >
0))
 throw new System.OverflowException();

 return a + b;
 }

 // Adds two doubles and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/AddDouble/*'/>
 public static double Add(double a, double b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue &&
a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Subtracts an integer from another and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/SubtractInt/*'/>
 public static int Subtract(int a, int b)
 {
 return a - b;
 }

 // Subtracts a double from another and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/SubtractDouble/*'/>
 public static double Subtract(double a, double b)
 {
 return a - b;
 }

 // Multiplies two integers and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/MultiplyInt/*'/>
 public static int Multiply(int a, int b)
 {
 return a * b;
 }

 // Multiplies two doubles and returns the result

The file attribute represents the name of the XML file containing the
documentation.
The path attribute represents an XPath query to the tag name present in the
specified file .
The name attribute represents the name specifier in the tag that precedes the
comments.
The id attribute, which can be used in place of name , represents the ID for the tag
that precedes the comments.

 /// <include file='include.xml'
path='docs/members[@name="math"]/MultiplyDouble/*'/>
 public static double Multiply(double a, double b)
 {
 return a * b;
 }

 // Divides an integer by another and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/DivideInt/*'/>
 public static int Divide(int a, int b)
 {
 return a / b;
 }

 // Divides a double by another and returns the result
 /// <include file='include.xml'
path='docs/members[@name="math"]/DivideDouble/*'/>
 public static double Divide(double a, double b)
 {
 return a / b;
 }
 }
}

https://learn.microsoft.com/en-ca/dotnet/standard/data/xml/xpath-queries-and-namespaces

C# Compiler Errors
Article • 2022-05-13 • 2 minutes to read

Some C# compiler errors have corresponding topics that explain why the error is
generated, and, in some cases, how to fix the error. Use one of the following steps to
see whether help is available for a particular error message.

If you're using Visual Studio, choose the error number (for example, CS0029) in the
Output Window, and then choose the F1 key.
Type the error number in the Filter by title box in the table of contents.

If none of these steps leads to information about your error, go to the end of this page,
and send feedback that includes the number or text of the error.

For information about how to configure error and warning options in C#, see C#
compiler options or the Visual Studio Build Page, Project Designer (C#).

C# Compiler Options
Build Page, Project Designer (C#)
WarningLevel (C# Compiler Options)
NoWarn (C# Compiler Options)

７ Note

Your computer might show different names or locations for some of the Visual
Studio user interface elements in the following instructions. The Visual Studio
edition that you have and the settings that you use determine these elements. For
more information, see Personalizing the IDE.

See also

https://learn.microsoft.com/en-us/visualstudio/ide/reference/output-window
https://learn.microsoft.com/en-us/visualstudio/ide/reference/build-page-project-designer-csharp
https://learn.microsoft.com/en-us/visualstudio/ide/reference/build-page-project-designer-csharp
https://learn.microsoft.com/en-us/visualstudio/ide/personalizing-the-visual-studio-ide

Detailed table of contents
Article • 2022-12-01 • 12 minutes to read

Foreword
Introduction
§1 Scope
§2 Normative references
§3 Terms and definitions
§4 General description
§5 Conformance
§6 Lexical structure

§6.1 Programs
§6.2 Grammars

§6.2.1 General
§6.2.2 Grammar notation
§6.2.3 Lexical grammar
§6.2.4 Syntactic grammar
§6.2.5 Grammar ambiguities

§6.3 Lexical analysis
§6.3.1 General
§6.3.2 Line terminators
§6.3.3 Comments
§6.3.4 White space

§6.4 Tokens
§6.4.1 General
§6.4.2 Unicode character escape sequences
§6.4.3 Identifiers
§6.4.4 Keywords
§6.4.5 Literals

§6.4.5.1 General
§6.4.5.2 Boolean literals
§6.4.5.3 Integer literals
§6.4.5.4 Real literals
§6.4.5.5 Character literals
§6.4.5.6 String literals
§6.4.5.7 The null literal

§6.4.6 Operators and punctuators
§6.5 Pre-processing directives

§6.5.1 General
§6.5.2 Conditional compilation symbols

§6.5.3 Pre-processing expressions
§6.5.4 Definition directives
§6.5.5 Conditional compilation directives
§6.5.6 Diagnostic directives
§6.5.7 Region directives
§6.5.8 Line directives
§6.5.9 Pragma directives

§7 Basic concepts
§7.1 Application startup
§7.2 Application termination
§7.3 Declarations
§7.4 Members

§7.4.1 General
§7.4.2 Namespace members
§7.4.3 Struct members
§7.4.4 Enumeration members
§7.4.5 Class members
§7.4.6 Interface members
§7.4.7 Array members
§7.4.8 Delegate members

§7.5 Member access
§7.5.1 General
§7.5.2 Declared accessibility
§7.5.3 Accessibility domains
§7.5.4 Protected access
§7.5.5 Accessibility constraints

§7.6 Signatures and overloading
§7.7 Scopes

§7.7.1 General
§7.7.2 Name hiding

§7.7.2.1 General
§7.7.2.2 Hiding through nesting
§7.7.2.3 Hiding through inheritance

§7.8 Namespace and type names
§7.8.1 General
§7.8.2 Unqualified names
§7.8.3 Fully qualified names

§7.9 Automatic memory management
§7.10 Execution order

§8 Types

§8.1 General
§8.2 Reference types

§8.2.1 General
§8.2.2 Class types
§8.2.3 The object type
§8.2.4 The dynamic type
§8.2.5 The string type
§8.2.6 Interface types
§8.2.7 Array types
§8.2.8 Delegate types

§8.3 Value types
§8.3.1 General
§8.3.2 The System.ValueType type
§8.3.3 Default constructors
§8.3.4 Struct types
§8.3.5 Simple types
§8.3.6 Integral types
§8.3.7 Floating-point types
§8.3.8 The Decimal type
§8.3.9 The Bool type
§8.3.10 Enumeration types
§8.3.11 Nullable value types
§8.3.12 Boxing and unboxing

§8.4 Constructed types
§8.4.1 General
§8.4.2 Type arguments
§8.4.3 Open and closed types
§8.4.4 Bound and unbound types
§8.4.5 Satisfying constraints

§8.5 Type parameters
§8.6 Expression tree types
§8.7 The dynamic type
§8.8 Unmanaged types

§9 Variables
§9.1 General
§9.2 Variable categories

§9.2.1 General
§9.2.2 Static variables
§9.2.3 Instance variables

§9.2.3.1 General

§9.2.3.2 Instance variables in classes
§9.2.3.3 Instance variables in structs

§9.2.4 Array elements
§9.2.5 Value parameters
§9.2.6 Reference parameters
§9.2.7 Output parameters
§9.2.8 Local variables

§9.3 Default values
§9.4 Definite assignment

§9.4.1 General
§9.4.2 Initially assigned variables
§9.4.3 Initially unassigned variables
§9.4.4 Precise rules for determining definite assignment

§9.4.4.1 General
§9.4.4.2 General rules for statements
§9.4.4.3 Block statements, checked, and unchecked statements
§9.4.4.4 Expression statements
§9.4.4.5 Declaration statements
§9.4.4.6 If statements
§9.4.4.7 Switch statements
§9.4.4.8 While statements
§9.4.4.9 Do statements
§9.4.4.10 For statements
§9.4.4.11 Break, continue, and goto statements
§9.4.4.12 Throw statements
§9.4.4.13 Return statements
§9.4.4.14 Try-catch statements
§9.4.4.15 Try-finally statements
§9.4.4.16 Try-catch-finally statements
§9.4.4.17 Foreach statements
§9.4.4.18 Using statements
§9.4.4.19 Lock statements
§9.4.4.20 Yield statements
§9.4.4.21 General rules for constant expressions
§9.4.4.22 General rules for simple expressions
§9.4.4.23 General rules for expressions with embedded expressions
§9.4.4.24 Invocation expressions and object creation expressions
§9.4.4.25 Simple assignment expressions
§9.4.4.26 && expressions
§9.4.4.27 || expressions

§9.4.4.28 ! expressions
§9.4.4.29 ?? expressions
§9.4.4.30 ?: expressions
§9.4.4.31 Anonymous functions
§9.4.4.32 Throw expressions
§9.4.4.33 Rules for variables in local functions

§9.5 Variable references
§9.6 Atomicity of variable references

§10 Conversions
§10.1 General
§10.2 Implicit conversions

§10.2.1 General
§10.2.2 Identity conversion
§10.2.3 Implicit numeric conversions
§10.2.4 Implicit enumeration conversions
§10.2.5 Implicit interpolated string conversions
§10.2.6 Implicit nullable conversions
§10.2.7 Null literal conversions
§10.2.8 Implicit reference conversions
§10.2.9 Boxing conversions
§10.2.10 Implicit dynamic conversions
§10.2.11 Implicit constant expression conversions
§10.2.12 Implicit conversions involving type parameters
§10.2.13 User-defined implicit conversions
§10.2.14 Anonymous function conversions and method group conversions
§10.2.15 Default literal conversions
§10.2.16 Implicit throw conversions

§10.3 Explicit conversions
§10.3.1 General
§10.3.2 Explicit numeric conversions
§10.3.3 Explicit enumeration conversions
§10.3.4 Explicit nullable conversions
§10.3.5 Explicit reference conversions
§10.3.6 Unboxing conversions
§10.3.7 Explicit dynamic conversions
§10.3.8 Explicit conversions involving type parameters
§10.3.9 User-defined explicit conversions

§10.4 Standard conversions
§10.4.1 General
§10.4.2 Standard implicit conversions

§10.4.3 Standard explicit conversions
§10.5 User-defined conversions

§10.5.1 General
§10.5.2 Permitted user-defined conversions
§10.5.3 Evaluation of user-defined conversions
§10.5.4 User-defined implicit conversions
§10.5.5 User-defined explicit conversions

§10.6 Conversions involving nullable types
§10.6.1 Nullable Conversions
§10.6.2 Lifted conversions

§10.7 Anonymous function conversions
§10.7.1 General
§10.7.2 Evaluation of anonymous function conversions to delegate types
§10.7.3 Evaluation of lambda expression conversions to expression tree types

§10.8 Method group conversions
§11 Expressions

§11.1 General
§11.2 Expression classifications

§11.2.1 General
§11.2.2 Values of expressions

§11.3 Static and Dynamic Binding
§11.3.1 General
§11.3.2 Binding-time
§11.3.3 Dynamic binding
§11.3.4 Types of subexpressions

§11.4 Operators
§11.4.1 General
§11.4.2 Operator precedence and associativity
§11.4.3 Operator overloading
§11.4.4 Unary operator overload resolution
§11.4.5 Binary operator overload resolution
§11.4.6 Candidate user-defined operators
§11.4.7 Numeric promotions

§11.4.7.1 General
§11.4.7.2 Unary numeric promotions
§11.4.7.3 Binary numeric promotions

§11.4.8 Lifted operators
§11.5 Member lookup

§11.5.1 General
§11.5.2 Base types

§11.6 Function members
§11.6.1 General
§11.6.2 Argument lists

§11.6.2.1 General
§11.6.2.2 Corresponding parameters
§11.6.2.3 Run-time evaluation of argument lists

§11.6.3 Type inference
§11.6.3.1 General
§11.6.3.2 The first phase
§11.6.3.3 The second phase
§11.6.3.4 Input types
§11.6.3.5 Output types
§11.6.3.6 Dependence
§11.6.3.7 Output type inferences
§11.6.3.8 Explicit parameter type inferences
§11.6.3.9 Exact inferences
§11.6.3.10 Lower-bound inferences
§11.6.3.11 Upper-bound inferences
§11.6.3.12 Fixing
§11.6.3.13 Inferred return type
§11.6.3.14 Type inference for conversion of method groups
§11.6.3.15 Finding the best common type of a set of expressions

§11.6.4 Overload resolution
§11.6.4.1 General
§11.6.4.2 Applicable function member
§11.6.4.3 Better function member
§11.6.4.4 Better conversion from expression
§11.6.4.5 Exactly matching expression
§11.6.4.6 Better conversion target
§11.6.4.7 Overloading in generic classes

§11.6.5 Compile-time checking of dynamic member invocation
§11.6.6 Function member invocation

§11.6.6.1 General
§11.6.6.2 Invocations on boxed instances

§11.7 Primary expressions
§11.7.1 General
§11.7.2 Literals
§11.7.3 Interpolated string expressions
§11.7.4 Simple names
§11.7.5 Parenthesized expressions

§11.7.6 Member access
§11.7.6.1 General
§11.7.6.2 Identical simple names and type names

§11.7.7 Null Conditional Member Access
§11.7.8 Invocation expressions

§11.7.8.1 General
§11.7.8.2 Method invocations
§11.7.8.3 Extension method invocations
§11.7.8.4 Delegate invocations

§11.7.9 Null Conditional Invocation Expression
§11.7.10 Element access

§11.7.10.1 General
§11.7.10.2 Array access
§11.7.10.3 Indexer access

§11.7.11 Null Conditional Element Access
§11.7.12 This access
§11.7.13 Base access
§11.7.14 Postfix increment and decrement operators
§11.7.15 The new operator

§11.7.15.1 General
§11.7.15.2 Object creation expressions
§11.7.15.3 Object initializers
§11.7.15.4 Collection initializers
§11.7.15.5 Array creation expressions
§11.7.15.6 Delegate creation expressions
§11.7.15.7 Anonymous object creation expressions

§11.7.16 The typeof operator
§11.7.17 The sizeof operator
§11.7.18 The checked and unchecked operators
§11.7.19 Default value expressions
§11.7.20 Nameof expressions
§11.7.21 Anonymous method expressions

§11.8 Unary operators
§11.8.1 General
§11.8.2 Unary plus operator
§11.8.3 Unary minus operator
§11.8.4 Logical negation operator
§11.8.5 Bitwise complement operator
§11.8.6 Prefix increment and decrement operators
§11.8.7 Cast expressions

§11.8.8 Await expressions
§11.8.8.1 General
§11.8.8.2 Awaitable expressions
§11.8.8.3 Classification of await expressions
§11.8.8.4 Run-time evaluation of await expressions

§11.9 Arithmetic operators
§11.9.1 General
§11.9.2 Multiplication operator
§11.9.3 Division operator
§11.9.4 Remainder operator
§11.9.5 Addition operator
§11.9.6 Subtraction operator

§11.10 Shift operators
§11.11 Relational and type-testing operators

§11.11.1 General
§11.11.2 Integer comparison operators
§11.11.3 Floating-point comparison operators
§11.11.4 Decimal comparison operators
§11.11.5 Boolean equality operators
§11.11.6 Enumeration comparison operators
§11.11.7 Reference type equality operators
§11.11.8 String equality operators
§11.11.9 Delegate equality operators
§11.11.10 Equality operators between nullable value types and the null literal
§11.11.11 The is operator
§11.11.12 The as operator

§11.12 Logical operators
§11.12.1 General
§11.12.2 Integer logical operators
§11.12.3 Enumeration logical operators
§11.12.4 Boolean logical operators
§11.12.5 Nullable Boolean & and | operators

§11.13 Conditional logical operators
§11.13.1 General
§11.13.2 Boolean conditional logical operators
§11.13.3 User-defined conditional logical operators

§11.14 The null coalescing operator
§11.15 The throw expression operator
§11.16 Conditional operator
§11.17 Anonymous function expressions

§11.17.1 General
§11.17.2 Anonymous function signatures
§11.17.3 Anonymous function bodies
§11.17.4 Overload resolution
§11.17.5 Anonymous functions and dynamic binding
§11.17.6 Outer variables

§11.17.6.1 General
§11.17.6.2 Captured outer variables
§11.17.6.3 Instantiation of local variables

§11.17.7 Evaluation of anonymous function expressions
§11.17.8 Implementation Example

§11.18 Query expressions
§11.18.1 General
§11.18.2 Ambiguities in query expressions
§11.18.3 Query expression translation

§11.18.3.1 General
§11.18.3.2 select and group … by clauses with continuations
§11.18.3.3 Explicit range variable types
§11.18.3.4 Degenerate query expressions
§11.18.3.5 From, let, where, join and orderby clauses
§11.18.3.6 Select clauses
§11.18.3.7 Group clauses
§11.18.3.8 Transparent identifiers

§11.18.4 The query-expression pattern
§11.19 Assignment operators

§11.19.1 General
§11.19.2 Simple assignment
§11.19.3 Compound assignment
§11.19.4 Event assignment

§11.20 Expression
§11.21 Constant expressions
§11.22 Boolean expressions

§12 Statements
§12.1 General
§12.2 End points and reachability
§12.3 Blocks

§12.3.1 General
§12.3.2 Statement lists

§12.4 The empty statement
§12.5 Labeled statements

§12.6 Declaration statements
§12.6.1 General
§12.6.2 Local variable declarations
§12.6.3 Local constant declarations
§12.6.4 Local function declarations

§12.7 Expression statements
§12.8 Selection statements

§12.8.1 General
§12.8.2 The if statement
§12.8.3 The switch statement

§12.9 Iteration statements
§12.9.1 General
§12.9.2 The while statement
§12.9.3 The do statement
§12.9.4 The for statement
§12.9.5 The foreach statement

§12.10 Jump statements
§12.10.1 General
§12.10.2 The break statement
§12.10.3 The continue statement
§12.10.4 The goto statement
§12.10.5 The return statement
§12.10.6 The throw statement

§12.11 The try statement
§12.12 The checked and unchecked statements
§12.13 The lock statement
§12.14 The using statement
§12.15 The yield statement

§13 Namespaces
§13.1 General
§13.2 Compilation units
§13.3 Namespace declarations
§13.4 Extern alias directives
§13.5 Using directives

§13.5.1 General
§13.5.2 Using alias directives
§13.5.3 Using namespace directives
§13.5.4 Using static directives

§13.6 Namespace member declarations
§13.7 Type declarations

§13.8 Qualified alias member
§13.8.1 General
§13.8.2 Uniqueness of aliases

§14 Classes
§14.1 General
§14.2 Class declarations

§14.2.1 General
§14.2.2 Class modifiers

§14.2.2.1 General
§14.2.2.2 Abstract classes
§14.2.2.3 Sealed classes
§14.2.2.4 Static classes

§14.2.2.4.1 General
§14.2.2.4.2 Referencing static class types

§14.2.3 Type parameters
§14.2.4 Class base specification

§14.2.4.1 General
§14.2.4.2 Base classes
§14.2.4.3 Interface implementations

§14.2.5 Type parameter constraints
§14.2.6 Class body
§14.2.7 Partial declarations

§14.3 Class members
§14.3.1 General
§14.3.2 The instance type
§14.3.3 Members of constructed types
§14.3.4 Inheritance
§14.3.5 The new modifier
§14.3.6 Access modifiers
§14.3.7 Constituent types
§14.3.8 Static and instance members
§14.3.9 Nested types

§14.3.9.1 General
§14.3.9.2 Fully qualified name
§14.3.9.3 Declared accessibility
§14.3.9.4 Hiding
§14.3.9.5 this access
§14.3.9.6 Access to private and protected members of the containing type
§14.3.9.7 Nested types in generic classes

§14.3.10 Reserved member names

§14.3.10.1 General
§14.3.10.2 Member names reserved for properties
§14.3.10.3 Member names reserved for events
§14.3.10.4 Member names reserved for indexers
§14.3.10.5 Member names reserved for finalizers

§14.4 Constants
§14.5 Fields

§14.5.1 General
§14.5.2 Static and instance fields
§14.5.3 Readonly fields

§14.5.3.1 General
§14.5.3.2 Using static readonly fields for constants
§14.5.3.3 Versioning of constants and static readonly fields

§14.5.4 Volatile fields
§14.5.5 Field initialization
§14.5.6 Variable initializers

§14.5.6.1 General
§14.5.6.2 Static field initialization
§14.5.6.3 Instance field initialization

§14.6 Methods
§14.6.1 General
§14.6.2 Method parameters

§14.6.2.1 General
§14.6.2.2 Value parameters
§14.6.2.3 Reference parameters
§14.6.2.4 Output parameters
§14.6.2.5 Parameter arrays

§14.6.3 Static and instance methods
§14.6.4 Virtual methods
§14.6.5 Override methods
§14.6.6 Sealed methods
§14.6.7 Abstract methods
§14.6.8 External methods
§14.6.9 Partial methods
§14.6.10 Extension methods
§14.6.11 Method body

§14.7 Properties
§14.7.1 General
§14.7.2 Static and instance properties
§14.7.3 Accessors

§14.7.4 Automatically implemented properties
§14.7.5 Accessibility
§14.7.6 Virtual, sealed, override, and abstract accessors

§14.8 Events
§14.8.1 General
§14.8.2 Field-like events
§14.8.3 Event accessors
§14.8.4 Static and instance events
§14.8.5 Virtual, sealed, override, and abstract accessors

§14.9 Indexers
§14.10 Operators

§14.10.1 General
§14.10.2 Unary operators
§14.10.3 Binary operators
§14.10.4 Conversion operators

§14.11 Instance constructors
§14.11.1 General
§14.11.2 Constructor initializers
§14.11.3 Instance variable initializers
§14.11.4 Constructor execution
§14.11.5 Default constructors

§14.12 Static constructors
§14.13 Finalizers
§14.14 Iterators

§14.14.1 General
§14.14.2 Enumerator interfaces
§14.14.3 Enumerable interfaces
§14.14.4 Yield type
§14.14.5 Enumerator objects

§14.14.5.1 General
§14.14.5.2 The MoveNext method
§14.14.5.3 The Current property
§14.14.5.4 The Dispose method

§14.14.6 Enumerable objects
§14.14.6.1 General
§14.14.6.2 The GetEnumerator method

§14.15 Async Functions
§14.15.1 General
§14.15.2 Evaluation of a task-returning async function
§14.15.3 Evaluation of a void-returning async function

§15 Structs
§15.1 General
§15.2 Struct declarations

§15.2.1 General
§15.2.2 Struct modifiers
§15.2.3 Partial modifier
§15.2.4 Struct interfaces
§15.2.5 Struct body

§15.3 Struct members
§15.4 Class and struct differences

§15.4.1 General
§15.4.2 Value semantics
§15.4.3 Inheritance
§15.4.4 Assignment
§15.4.5 Default values
§15.4.6 Boxing and unboxing
§15.4.7 Meaning of this
§15.4.8 Field initializers
§15.4.9 Constructors
§15.4.10 Static constructors
§15.4.11 Automatically implemented properties

§16 Arrays
§16.1 General
§16.2 Array types

§16.2.1 General
§16.2.2 The System.Array type
§16.2.3 Arrays and the generic collection interfaces

§16.3 Array creation
§16.4 Array element access
§16.5 Array members
§16.6 Array covariance
§16.7 Array initializers

§17 Interfaces
§17.1 General
§17.2 Interface declarations

§17.2.1 General
§17.2.2 Interface modifiers
§17.2.3 Variant type parameter lists

§17.2.3.1 General
§17.2.3.2 Variance safety

§17.2.3.3 Variance conversion
§17.2.4 Base interfaces

§17.3 Interface body
§17.4 Interface members

§17.4.1 General
§17.4.2 Interface methods
§17.4.3 Interface properties
§17.4.4 Interface events
§17.4.5 Interface indexers
§17.4.6 Interface member access

§17.5 Qualified interface member names
§17.6 Interface implementations

§17.6.1 General
§17.6.2 Explicit interface member implementations
§17.6.3 Uniqueness of implemented interfaces
§17.6.4 Implementation of generic methods
§17.6.5 Interface mapping
§17.6.6 Interface implementation inheritance
§17.6.7 Interface re-implementation
§17.6.8 Abstract classes and interfaces

§18 Enums
§18.1 General
§18.2 Enum declarations
§18.3 Enum modifiers
§18.4 Enum members
§18.5 The System.Enum type
§18.6 Enum values and operations

§19 Delegates
§19.1 General
§19.2 Delegate declarations
§19.3 Delegate members
§19.4 Delegate compatibility
§19.5 Delegate instantiation
§19.6 Delegate invocation

§20 Exceptions
§20.1 General
§20.2 Causes of exceptions
§20.3 The System.Exception class
§20.4 How exceptions are handled
§20.5 Common exception classes

§21 Attributes
§21.1 General
§21.2 Attribute classes

§21.2.1 General
§21.2.2 Attribute usage
§21.2.3 Positional and named parameters
§21.2.4 Attribute parameter types

§21.3 Attribute specification
§21.4 Attribute instances

§21.4.1 General
§21.4.2 Compilation of an attribute
§21.4.3 Run-time retrieval of an attribute instance

§21.5 Reserved attributes
§21.5.1 General
§21.5.2 The AttributeUsage attribute
§21.5.3 The Conditional attribute

§21.5.3.1 General
§21.5.3.2 Conditional methods
§21.5.3.3 Conditional attribute classes

§21.5.4 The Obsolete attribute
§21.5.5 Caller-info attributes

§21.5.5.1 General
§21.5.5.2 The CallerLineNumber attribute
§21.5.5.3 The CallerFilePath attribute
§21.5.5.4 The CallerMemberName attribute

§21.6 Attributes for interoperation
§22 Unsafe code

§22.1 General
§22.2 Unsafe contexts
§22.3 Pointer types
§22.4 Fixed and moveable variables
§22.5 Pointer conversions

§22.5.1 General
§22.5.2 Pointer arrays

§22.6 Pointers in expressions
§22.6.1 General
§22.6.2 Pointer indirection
§22.6.3 Pointer member access
§22.6.4 Pointer element access
§22.6.5 The address-of operator

§22.6.6 Pointer increment and decrement
§22.6.7 Pointer arithmetic
§22.6.8 Pointer comparison
§22.6.9 The sizeof operator

§22.7 The fixed statement
§22.8 Fixed-size buffers

§22.8.1 General
§22.8.2 Fixed-size buffer declarations
§22.8.3 Fixed-size buffers in expressions
§22.8.4 Definite assignment checking

§22.9 Stack allocation
§A Grammar

§A.1 General
§A.2 Lexical grammar
§A.3 Syntactic grammar
§A.4 Grammar extensions for unsafe code

§B Portability issues
§B.1 General
§B.2 Undefined behavior
§B.3 Implementation-defined behavior
§B.4 Unspecified behavior
§B.5 Other Issues

§C Standard library
§C.1 General
§C.2 Standard Library Types defined in ISO/IEC 23271
§C.3 Standard Library Types not defined in ISO/IEC 23271
§C.4 Format Specifications
§C.5 Library Type Abbreviations

§D Documentation comments
§D.1 General
§D.2 Introduction
§D.3 Recommended tags

§D.3.1 General
§D.3.2 <c>
§D.3.3 <code>
§D.3.4 <example>
§D.3.5 <exception>
§D.3.6 <include>
§D.3.7 <list>
§D.3.8 <para>

§D.3.9 <param>
§D.3.10 <paramref>
§D.3.11 <permission>
§D.3.12 <remarks>
§D.3.13 <returns>
§D.3.14 <see>
§D.3.15 <seealso>
§D.3.16 <summary>
§D.3.17 <typeparam>
§D.3.18 <typeparamref>
§D.3.19 <value>

§D.4 Processing the documentation file
§D.4.1 General
§D.4.2 ID string format
§D.4.3 ID string examples

§D.5 An example
§D.5.1 C# source code
§D.5.2 Resulting XML

§E Bibliography

Foreword
Article • 2022-03-24 • 2 minutes to read

This specification replaces ECMA-334:2017. Changes from the previous edition include
the addition of the following:

Automatically implemented property initializers
await in catch and finally blocks
Exception filters
Expression-bodied function members
Extension Add methods in collection initializers
Improved overload resolution
Initialization of an accessible indexer
Initialization of associative collections using indexers
Interpolated strings
nameof operator
Null-conditional access operators ?. and ?[]
Read-only auto-properties
Relaxed rules for auto-properties
using static

All grammar is now expressed using ANTLR notation.

Introduction
Article • 2022-03-18 • 2 minutes to read

This specification is based on a submission from Hewlett-Packard, Intel, and Microsoft,
that described a language called C#, which was developed within Microsoft. The
principal inventors of this language were Anders Hejlsberg, Scott Wiltamuth, and Peter
Golde. The first widely distributed implementation of C# was released by Microsoft in
July 2000, as part of its .NET Framework initiative.

Ecma Technical Committee 39 (TC39) [later renamed to TC49] Task Group 2 (TG2) was
formed in September 2000, to produce a standard for C#. Another Task Group, TG3, was
also formed at that time to produce a standard for a library and execution environment
called Common Language Infrastructure (CLI). (CLI is based on a subset of the .NET
Framework.) Although Microsoft’s implementation of C# relies on CLI for library and
run-time support, other implementations of C# need not, provided they support an
alternate way of getting at the minimum CLI features required by this C# standard (see
Annex C).

As the definition of C# evolved, the goals used in its design were as follows:

C# is intended to be a simple, modern, general-purpose, object-oriented
programming language.
The language, and implementations thereof, should provide support for software
engineering principles such as strong type checking, array bounds checking,
detection of attempts to use uninitialized variables, and automatic garbage
collection. Software robustness, durability, and programmer productivity are
important.
The language is intended for use in developing software components suitable for
deployment in distributed environments.
Source code portability is very important, as is programmer portability, especially
for those programmers already familiar with C and C++.
Support for internationalization is very important.
C# is intended to be suitable for writing applications for both hosted and
embedded systems, ranging from the very large that use sophisticated operating
systems, down to the very small having dedicated functions.
Although C# applications are intended to be economical with regard to memory
and processing power requirements, the language was not intended to compete
directly on performance and size with C or assembly language.

The name C# is pronounced “C Sharp”.

The name C# is written as the LATIN CAPITAL LETTER C (U+0043) followed by the
NUMBER SIGN # (U+0023).

1 Scope
Article • 2022-01-13 • 2 minutes to read

This specification describes the form and establishes the interpretation of programs
written in the C# programming language. It describes

The representation of C# programs;
The syntax and constraints of the C# language;
The semantic rules for interpreting C# programs;
The restrictions and limits imposed by a conforming implementation of C#.

This specification does not describe

The mechanism by which C# programs are transformed for use by a data-
processing system;
The mechanism by which C# applications are invoked for use by a data-processing
system;
The mechanism by which input data are transformed for use by a C# application;
The mechanism by which output data are transformed after being produced by a
C# application;
The size or complexity of a program and its data that will exceed the capacity of
any specific data-processing system or the capacity of a particular processor;
All minimal requirements of a data-processing system that is capable of
supporting a conforming implementation.

2 Normative references
Article • 2022-03-18 • 2 minutes to read

The following normative documents contain provisions, which, through reference in this
text, constitute provisions of this specification. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. However, parties
to agreements based on this specification are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid specifications.

ISO/IEC 23271:2012, Common Language Infrastructure (CLI), Partition IV: Base Class
Library (BCL), Extended Numerics Library, and Extended Array Library.

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used
in the natural sciences and technology.

ISO/IEC 2382, Information technology — Vocabulary.

ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-Point
arithmetic

The Unicode Consortium. The Unicode Standard,
https://www.unicode.org/standard/standard.html

https://www.unicode.org/standard/standard.html

3 Terms and definitions
Article • 2022-06-14 • 2 minutes to read

For the purposes of this specification, the following definitions apply. Other terms are
defined where they appear in italic type or on the left side of a syntax rule. Terms
explicitly defined in this specification are not to be presumed to refer implicitly to similar
terms defined elsewhere. Terms not defined in this specification are to be interpreted
according to ISO/IEC 2382.1. Mathematical symbols not defined in this specification are
to be interpreted according to ISO 80000-2.

application
assembly with an entry point

application domain
entity that enables application isolation by acting as a container for application
state

argument
expression in the comma-separated list bounded by the parentheses in a
method or instance constructor call expression or bounded by the square
brackets in an element access expression

assembly
one or more files output by the compiler as a result of program compilation

behavior
external appearance or action

behavior, implementation-defined
unspecified behavior where each implementation documents how the choice is
made

behavior, undefined
behavior, upon use of a non-portable or erroneous construct or of erroneous
data, for which this specification imposes no requirements

behavior, unspecified
behavior where this specification provides two or more possibilities and
imposes no further requirements on which is chosen in any instance

character (when used without a qualifier)
In the context of a non-Unicode encoding, the meaning of character in that
encoding; or
In the context of a character literal or a value of type char, a Unicode code point
in the range U+0000 to U+FFFF (including surrogate code points), that is a UTF-
16 code unit; or
Otherwise, a Unicode code point

class library

assembly that can be used by other assemblies
compilation unit

ordered sequence of Unicode characters that is input to a compiler
diagnostic message

message belonging to an implementation-defined subset of the
implementation’s output messages

error, compile-time
error reported during program translation

exception
exceptional condition reported during program execution

implementation
particular set of software (running in a particular translation environment under
particular control options) that performs translation of programs for, and
supports execution of methods in, a particular execution environment

module
the contents of an assembly produced by a compiler. Some implementations
may have facilities to produce assemblies that contain more than one module.
The behavior in such situations is outside the scope of this specification

namespace
logical organizational system grouping related program elements

parameter
variable declared as part of a method, instance constructor, operator, or indexer
definition, which acquires a value on entry to that function member

program
one or more compilation units that are presented to the compiler and are run or
executed by an execution environment

unsafe code
code that is permitted to perform such lower-level operations as declaring and
operating on pointers, performing conversions between pointers and integral
types, and taking the address of variables

warning, compile-time
informational message reported during program translation, which is intended
to identify a potentially questionable usage of a program element

4 General description
Article • 2022-04-08 • 2 minutes to read

This text is informative.

This specification is intended to be used by implementers, academics, and application
programmers. As such, it contains a considerable amount of explanatory material that,
strictly speaking, is not necessary in a formal language specification.

This standard is divided into the following subdivisions: front matter; language syntax,
constraints, and semantics; and annexes.

Examples are provided to illustrate possible forms of the constructions described.
References are used to refer to related clauses. Notes are provided to give advice or
guidance to implementers or programmers. Annexes provide additional information and
summarize the information contained in this specification.

End of informative text.

Informative text is indicated in the following ways:

1. Whole or partial clauses or annexes delimited by “This clause/text is informative”
and “End of informative text”.

2. Example: The following example … code fragment, possibly with some narrative …
end example The Example: and end example markers are in the same paragraph for
single paragraph examples. If an example spans multiple paragraphs, the end
example marker should be its own paragraph.

3. Note: narrative … end note The Note: and end note markers are in the same
paragraph for single paragraph notes. If a note spans multiple paragraphs, the end
note marker should be its own paragraph.

All text not marked as being informative is normative.

5 Conformance
Article • 2022-03-18 • 2 minutes to read

Conformance is of interest to the following audiences:

Those designing, implementing, or maintaining C# implementations.
Governmental or commercial entities wishing to procure C# implementations.
Testing organizations wishing to provide a C# conformance test suite.
Programmers wishing to port code from one C# implementation to another.
Educators wishing to teach Standard C#.
Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this specification is aimed at
specifying the characteristics that make C# implementations and C# programs
conforming ones.

The text in this specification that specifies requirements is considered normative. All
other text in this specification is informative; that is, for information purposes only.
Unless stated otherwise, all text is normative. Normative text is further broken into
required and conditional categories. Conditionally normative text specifies a feature
and its requirements where the feature is optional. However, if that feature is provided,
its syntax and semantics shall be exactly as specified.

Undefined behavior is indicated in this specification only by the words ‘undefined
behavior.’

A strictly conforming program shall use only those features of the language specified in
this specification as being required. (This means that a strictly conforming program
cannot use any conditionally normative feature.) It shall not produce output dependent
on any unspecified, undefined, or implementation-defined behavior.

A conforming implementation of C# shall accept any strictly conforming program.

A conforming implementation of C# shall provide and support all the types, values,
objects, properties, methods, and program syntax and semantics described in the
normative (but not the conditionally normative) parts in this specification.

A conforming implementation of C# shall interpret characters in conformance with the
Unicode Standard. Conforming implementations shall accept compilation units encoded
with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source containing a
#error preprocessing directive unless it is part of a group skipped by conditional

compilation.

A conforming implementation of C# shall produce at least one diagnostic message if
the source program violates any rule of syntax, or any negative requirement (defined as
a “shall” or “shall not” or “error” or “warning” requirement), unless that requirement is
marked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to provide additional types, values,
objects, properties, and methods beyond those described in this specification, provided
they do not alter the behavior of any strictly conforming program. Conforming
implementations are required to diagnose programs that use extensions that are ill
formed according to this specification. Having done so, however, they can compile and
execute such programs. (The ability to have extensions implies that a conforming
implementation reserves no identifiers other than those explicitly reserved in this
specification.)

A conforming implementation of C# shall be accompanied by a document that defines
all implementation-defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in Annex
C. This library is included by reference in this specification.

A conforming program is one that is acceptable to a conforming implementation. (Such
a program is permitted to contain extensions or conditionally normative features.)

6 Lexical structure
Article • 2023-01-12 • 42 minutes to read

A C# program consists of one or more source files, known formally as compilation units
(§13.2). Although a compilation unit might have a one-to-one correspondence with a file
in a file system, such correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and
encoding scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a
stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations shall accept Unicode compilation units encoded with the
UTF-8 encoding form (as defined by the Unicode standard), and transform them into a
sequence of Unicode characters. Implementations can choose to accept and transform
additional character encoding schemes (such as UTF-16, UTF-32, or non-Unicode
character mappings).

Note: The handling of the Unicode NULL character (U+0000) is implementation-
specific. It is strongly recommended that developers avoid using this character in
their source code, for the sake of both portability and readability. When the
character is required within a character or string literal, the escape sequences \0 or
\u0000 may be used instead. end note

Note: It is beyond the scope of this standard to define how a file using a character
representation other than Unicode might be transformed into a sequence of
Unicode characters. During such transformation, however, it is recommended that
the usual line-separating character (or sequence) in the other character set be
translated to the two-character sequence consisting of the Unicode carriage-return
character (U+000D) followed by Unicode line-feed character (U+000A). For the most
part this transformation will have no visible effects; however, it will affect the
interpretation of verbatim string literal tokens (§6.4.5.6). The purpose of this
recommendation is to allow a verbatim string literal to produce the same character
sequence when its compilation unit is moved between systems that support

6.1 Programs

differing non-Unicode character sets, in particular, those using differing character
sequences for line-separation. end note

This specification presents the syntax of the C# programming language using two
grammars. The lexical grammar (§6.2.3) defines how Unicode characters are combined
to form line terminators, white space, comments, tokens, and pre-processing directives.
The syntactic grammar (§6.2.4) defines how the tokens resulting from the lexical
grammar are combined to form C# programs.

All terminal characters are to be understood as the appropriate Unicode character from
the range U+0020 to U+007F, as opposed to any similar-looking characters from other
Unicode character ranges.

The lexical and syntactic grammars are presented in the ANTLR grammar tool’s
Extended Backus-Naur form.

While the ANTLR notation is used, this Standard does not present a complete ANTLR-
ready “reference grammar” for C#; writing a lexer and parser, either by hand or using a
tool such as ANTLR, is outside the scope of a language specification. With that
qualification, this Standard attempts to minimize the gap between the specified
grammar and that required to build a lexer and parser in ANTLR.

ANTLR distinguishes between lexical and syntactic, termed parser by ANTLR, grammars
in its notation by starting lexical rules with an uppercase letter and parser rules with a
lowercase letter.

Note: The C# lexical grammar (§6.2.3) and syntactic grammar (§6.2.4) are not in exact
correspondence with the ANTLR division into lexical and parser grammers. This
small mismatch means that some ANTLR parser rules are used when specifying the
C# lexical grammar. end note

The lexical grammar of C# is presented in §6.3, §6.4, and §6.5. The terminal symbols of
the lexical grammar are the characters of the Unicode character set, and the lexical

6.2 Grammars

6.2.1 General

6.2.2 Grammar notation

6.2.3 Lexical grammar

grammar specifies how characters are combined to form tokens (§6.4), white space
(§6.3.4), comments (§6.3.3), and pre-processing directives (§6.5).

Many of the terminal symbols of the syntactic grammar are not defined explicitly as
tokens in the lexical grammar. Rather, advantage is taken of the ANTLR behavior that
literal strings in the grammar are extracted as implicit lexical tokens; this allows
keywords, operators, etc. to be represented in the grammar by their literal
representation rather than a token name.

Every compilation unit in a C# program shall conform to the input production of the
lexical grammar (§6.3.1).

The syntactic grammar of C# is presented in the clauses, subclauses, and annexes that
follow this subclause. The terminal symbols of the syntactic grammar are the tokens
defined explicitly by the lexical grammar and implicitly by literal strings in the grammar
itself (§6.2.3). The syntactic grammar specifies how tokens are combined to form
C# programs.

Every compilation unit in a C# program shall conform to the compilation_unit
production (§13.2) of the syntactic grammar.

The productions for simple_name (§11.7.4) and member_access (§11.7.6) can give rise to
ambiguities in the grammar for expressions.

Example: The statement:

C#

could be interpreted as a call to F with two arguments, G < A and B > (7) .
Alternatively, it could be interpreted as a call to F with one argument, which is a call
to a generic method G with two type arguments and one regular argument.

end example

If a sequence of tokens can be parsed (in context) as a simple_name (§11.7.4),
member_access (§11.7.6), or pointer_member_access (§22.6.3) ending with a

6.2.4 Syntactic grammar

6.2.5 Grammar ambiguities

F(G<A, B>(7));

type_argument_list (§8.4.2), the token immediately following the closing > token is
examined. If it is one of

C#

then the type_argument_list is retained as part of the simple_name, member_access, or
pointer_member_access and any other possible parse of the sequence of tokens is
discarded. Otherwise, the type_argument_list is not considered part of the simple_name,
member_access, or pointer_member_access, even if there is no other possible parse of the
sequence of tokens.

Note: These rules are not applied when parsing a type_argument_list in a
namespace_or_type_name (§7.8). end note

Example: The statement:

C#

will, according to this rule, be interpreted as a call to F with one argument, which is
a call to a generic method G with two type arguments and one regular argument.
The statements

C#

will each be interpreted as a call to F with two arguments. The statement

C#

will be interpreted as a less-than operator, greater-than operator and unary-plus
operator, as if the statement had been written x = (F < A) > (+y) , instead of as a
simple_name with a type_argument_list followed by a binary-plus operator. In the
statement

()] : ; , . ? == !=

F(G<A, B>(7));

F(G<A, B>7);
F(G<A, B>>7);

x = F<A> + y;

C#

the tokens C<T> are interpreted as a namespace_or_type_name with a
type_argument_list due to being on the right-hand side of the is operator
(§11.11.1). Because C<T> parses as a namespace_or_type_name, not a simple_name,
member_access, or pointer_member_access, the above rule does not apply, and it is
considered to have a type_argument_list regardless of the token that follows.

end example

For convenience, the lexical grammar defines and references the following named lexer
tokens:

ANTLR

Although these are lexer rules, these names are spelled in all-uppercase letters to
distinguish them from ordinary lexer rule names.

Note: These convenience rules are exceptions to the usual practice of not providing
explicit token names for tokens defined by literal strings. end note

The input production defines the lexical structure of a C# compilation unit.

ANTLR

x = y is C<T> && z;

6.3 Lexical analysis

6.3.1 General

DEFAULT : 'default' ;
NULL : 'null' ;
TRUE : 'true' ;
FALSE : 'false' ;
ASTERISK : '*' ;
SLASH : '/' ;

input
 : input_section?
 ;

input_section
 : input_section_part+

Note: The above grammar is described by ANTLR parsing rules, it defines the lexical
structure of a C# compilation unit and not lexical tokens. end note

Five basic elements make up the lexical structure of a C# compilation unit: Line
terminators (§6.3.2), white space (§6.3.4), comments (§6.3.3), tokens (§6.4), and pre-
processing directives (§6.5). Of these basic elements, only tokens are significant in the
syntactic grammar of a C# program (§6.2.4).

The lexical processing of a C# compilation unit consists of reducing the file into a
sequence of tokens that becomes the input to the syntactic analysis. Line terminators,
white space, and comments can serve to separate tokens, and pre-processing directives
can cause sections of the compilation unit to be skipped, but otherwise these lexical
elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a
compilation unit, the lexical processing always forms the longest possible lexical
element.

Example: The character sequence // is processed as the beginning of a single-line
comment because that lexical element is longer than a single / token. end example

Some tokens are defined by a set of lexical rules; a main rule and one or more sub-rules.
The latter are marked in the grammar by fragment to indicate the rule defines part of
another token. Fragment rules are not considered in the top-to-bottom ordering of
lexical rules.

Note: In ANTLR fragment is a keyword which produces the same behavior defined
here. end note

 ;

input_section_part
 : input_element* New_Line
 | PP_Directive
 ;

input_element
 : Whitespace
 | Comment
 | token
 ;

6.3.2 Line terminators

Line terminators divide the characters of a C# compilation unit into lines.

ANTLR

For compatibility with source code editing tools that add end-of-file markers, and to
enable a compilation unit to be viewed as a sequence of properly terminated lines, the
following transformations are applied, in order, to every compilation unit in a
C# program:

If the last character of the compilation unit is a Control-Z character (U+001A), this
character is deleted.
A carriage-return character (U+000D) is added to the end of the compilation unit if
that compilation unit is non-empty and if the last character of the compilation unit
is not a carriage return (U+000D), a line feed (U+000A), a next line character
(U+0085), a line separator (U+2028), or a paragraph separator (U+2029).

Note: The additional carriage-return allows a program to end in a PP_Directive (§6.5)
that does not have a terminating New_Line. end note

Two forms of comments are supported: delimited comments and single-line comments.

A delimited comment begins with the characters /* and ends with the characters */ .
Delimited comments can occupy a portion of a line, a single line, or multiple lines.

Example: The example

C#

New_Line
 : New_Line_Character
 | '\u000D\u000A' // carriage return, line feed
 ;

6.3.3 Comments

/* Hello, world program
 This program writes "hello, world" to the console
*/
class Hello
{
 static void Main()
 {
 System.Console.WriteLine("hello, world");
 }
}

includes a delimited comment.

end example

A single-line comment begins with the characters // and extends to the end of the line.

Example: The example

C#

shows several single-line comments.

end example

ANTLR

// Hello, world program
// This program writes "hello, world" to the console
//
class Hello // any name will do for this class
{
 static void Main() // this method must be named "Main"
 {
 System.Console.WriteLine("hello, world");
 }
}

Comment
 : Single_Line_Comment
 | Delimited_Comment
 ;

fragment Single_Line_Comment
 : '//' Input_Character*
 ;

fragment Input_Character
 // anything but New_Line_Character
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029')
 ;

fragment New_Line_Character
 : '\u000D' // carriage return
 | '\u000A' // line feed
 | '\u0085' // next line
 | '\u2028' // line separator
 | '\u2029' // paragraph separator
 ;

fragment Delimited_Comment

Comments do not nest. The character sequences /* and */ have no special meaning
within a single-line comment, and the character sequences // and /* have no special
meaning within a delimited comment.

Comments are not processed within character and string literals.

Note: These rules must be interpreted carefully. For instance, in the example below,
the delimited comment that begins before A ends between B and C() . The reason
is that

C#

is not actually a single-line comment, since // has no special meaning within a
delimited comment, and so */ does have its usual special meaning in that line.

Likewise, the delimited comment starting before D ends before E . The reason is
that "D */ " is not actually a string literal, since the initial double quote character
appears inside a delimited comment.

A useful consequence of /* and */ having no special meaning within a single-line
comment is that a block of source code lines can be commented out by putting //
at the beginning of each line. In general, it does not work to put /* before those
lines and */ after them, as this does not properly encapsulate delimited comments
in the block, and in general may completely change the structure of such delimited
comments.

Example code:

C#

 : '/*' Delimited_Comment_Section* ASTERISK+ '/'
 ;

fragment Delimited_Comment_Section
 : SLASH
 | ASTERISK* Not_Slash_Or_Asterisk
 ;

fragment Not_Slash_Or_Asterisk
 : ~('/' | '*') // Any except SLASH or ASTERISK
 ;

// B */ C();

end note

Single_Line_Comments and Delimited_Comments having particular formats can be used
as documentation comments, as described in §D.

White space is defined as any character with Unicode class Zs (which includes the space
character) as well as the horizontal tab character, the vertical tab character, and the form
feed character.

ANTLR

There are several kinds of tokens: identifiers, keywords, literals, operators, and
punctuators. White space and comments are not tokens, though they act as separators
for tokens.

ANTLR

static void Main()
{
 /* A
 // B */ C();
 Console.WriteLine(/* "D */ "E");
}

6.3.4 White space

Whitespace
 : [\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
 ;

6.4 Tokens

6.4.1 General

token
 : identifier
 | keyword
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal

Note: This is an ANTLR parser rule, it does not define a lexical token but rather the
collection of token kinds. end note

A Unicode escape sequence represents a Unicode code point. Unicode escape
sequences are processed in identifiers (§6.4.3), character literals (§6.4.5.5), regular string
literals (§6.4.5.6), and interpolated regular string expressions (§11.7.3). A Unicode escape
sequence is not processed in any other location (for example, to form an operator,
punctuator, or keyword).

ANTLR

A Unicode character escape sequence represents the single Unicode code point formed
by the hexadecimal number following the “\u” or “\U” characters. Since C# uses a 16-bit
encoding of Unicode code points in character and string values, a Unicode code point in
the range U+10000 to U+10FFFF is represented using two Unicode surrogate code units.
Unicode code points above U+FFFF are not permitted in character literals. Unicode code
points above U+10FFFF are invalid and are not supported.

Multiple translations are not performed. For instance, the string literal "\u005Cu005C" is
equivalent to "\u005C" rather than "\" .

Note: The Unicode value \u005C is the character “\ ”. end note

Example: The example

C#

 | operator_or_punctuator
 ;

6.4.2 Unicode character escape sequences

fragment Unicode_Escape_Sequence
 : '\\u' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 | '\\U' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 ;

class Class1
{
 static void Test(bool \u0066)
 {
 char c = '\u0066';
 if (\u0066)

shows several uses of \u0066 , which is the escape sequence for the letter “f ”. The
program is equivalent to

C#

end example

The rules for identifiers given in this subclause correspond exactly to those
recommended by the Unicode Standard Annex 15 except that underscore is allowed as
an initial character (as is traditional in the C programming language), Unicode escape
sequences are permitted in identifiers, and the “@ ” character is allowed as a prefix to
enable keywords to be used as identifiers.

ANTLR

 {
 System.Console.WriteLine(c.ToString());
 }
 }
}

class Class1
{
 static void Test(bool f)
 {
 char c = 'f';
 if (f)
 {
 System.Console.WriteLine(c.ToString());
 }
 }
}

6.4.3 Identifiers

identifier
 : Simple_Identifier
 | contextual_keyword
 ;

Simple_Identifier
 : Available_Identifier
 | Escaped_Identifier
 ;

fragment Available_Identifier
 // excluding keywords or contextual keywords, see note below
 : Basic_Identifier

 ;

fragment Escaped_Identifier
 // Includes keywords and contextual keywords prefixed by '@'.
 // See note below.
 : '@' Basic_Identifier
 ;

fragment Basic_Identifier
 : Identifier_Start_Character Identifier_Part_Character*
 ;

fragment Identifier_Start_Character
 : Letter_Character
 | Underscore_Character
 ;

fragment Underscore_Character
 : '_' // underscore
 | '\\u005' [fF] // Unicode_Escape_Sequence for underscore
 ;

fragment Identifier_Part_Character
 : Letter_Character
 | Decimal_Digit_Character
 | Connecting_Character
 | Combining_Character
 | Formatting_Character
 ;

fragment Letter_Character
 // Category Letter, all subcategories; category Number, subcategory
letter.
 : [\p{L}\p{Nl}]
 // Only escapes for categories L & Nl allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Combining_Character
 // Category Mark, subcategories non-spacing and spacing combining.
 : [\p{Mn}\p{Mc}]
 // Only escapes for categories Mn & Mc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Decimal_Digit_Character
 // Category Number, subcategory decimal digit.
 : [\p{Nd}]
 // Only escapes for category Nd allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Connecting_Character
 // Category Punctuation, subcategory connector.
 : [\p{Pc}]

Note:

For information on the Unicode character classes mentioned above, see The
Unicode Standard.
The fragment Available_Identifier requires the exclusion of keywords and
contextual keywords. If the grammar in this Standard is processed with ANTLR
then this exclusion is handled automatically by the semantics of ANTLR:

Keywords and contextual keywords occur in the grammar as literal strings.
ANTLR creates implicit lexical token rules are created from these literal
strings.
ANTLR considers these implicit rules before the explicit lexical rules in the
grammar.
Therefore fragment Available_Identifier will not match keywords or
contextual keywords as the lexical rules for those precede it.

Fragment Escaped_Identifier includes escaped keywords and contextual
keywords as they are part of the longer token starting with an @ and lexical
processing always forms the longest possible lexical element (§6.3.1).
How an implementation enforces the restrictions on the allowable
Unicode_Escape_Sequence values is an implementation issue.

end note

Example: Examples of valid identifiers are identifier1 , _identifier2 , and @if . end
example

An identifier in a conforming program shall be in the canonical format defined by
Unicode Normalization Form C, as defined by Unicode Standard Annex 15. The behavior
when encountering an identifier not in Normalization Form C is implementation-
defined; however, a diagnostic is not required.

The prefix “@ ” enables the use of keywords as identifiers, which is useful when
interfacing with other programming languages. The character @ is not actually part of

 // Only escapes for category Pc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Formatting_Character
 // Category Other, subcategory format.
 : [\p{Cf}]
 // Only escapes for category Cf allowed, see note below.
 | Unicode_Escape_Sequence
 ;

the identifier, so the identifier might be seen in other languages as a normal identifier,
without the prefix. An identifier with an @ prefix is called a verbatim identifier.

Note: Use of the @ prefix for identifiers that are not keywords is permitted, but
strongly discouraged as a matter of style. end note

Example: The example:

C#

defines a class named “class ” with a static method named “static ” that takes a
parameter named “bool ”. Note that since Unicode escapes are not permitted in
keywords, the token “cl\u0061ss ” is an identifier, and is the same identifier as
“@class ”.

end example

Two identifiers are considered the same if they are identical after the following
transformations are applied, in order:

The prefix “@ ”, if used, is removed.
Each Unicode_Escape_Sequence is transformed into its corresponding Unicode
character.

class @class
{
 public static void @static(bool @bool)
 {
 if (@bool)
 {
 System.Console.WriteLine("true");
 }
 else
 {
 System.Console.WriteLine("false");
 }
 }
}

class Class1
{
 static void M()
 {
 cl\u0061ss.st\u0061tic(true);
 }
}

Any Formatting_Characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for
use by the implementation; however, no diagnostic is required if such an identifier is
defined.

Note: For example, an implementation might provide extended keywords that begin
with two underscores. end note

A keyword is an identifier-like sequence of characters that is reserved, and cannot be
used as an identifier except when prefaced by the @ character.

ANTLR

A contextual keyword is an identifier-like sequence of characters that has special
meaning in certain contexts, but is not reserved, and can be used as an identifier outside
of those contexts as well as when prefaced by the @ character.

ANTLR

6.4.4 Keywords

keyword
 : 'abstract' | 'as' | 'base' | 'bool' | 'break'
 | 'byte' | 'case' | 'catch' | 'char' | 'checked'
 | 'class' | 'const' | 'continue' | 'decimal' | DEFAULT
 | 'delegate' | 'do' | 'double' | 'else' | 'enum'
 | 'event' | 'explicit' | 'extern' | FALSE | 'finally'
 | 'fixed' | 'float' | 'for' | 'foreach' | 'goto'
 | 'if' | 'implicit' | 'in' | 'int' | 'interface'
 | 'internal' | 'is' | 'lock' | 'long' | 'namespace'
 | 'new' | NULL | 'object' | 'operator' | 'out'
 | 'override' | 'params' | 'private' | 'protected' | 'public'
 | 'readonly' | 'ref' | 'return' | 'sbyte' | 'sealed'
 | 'short' | 'sizeof' | 'stackalloc' | 'static' | 'string'
 | 'struct' | 'switch' | 'this' | 'throw' | TRUE
 | 'try' | 'typeof' | 'uint' | 'ulong' | 'unchecked'
 | 'unsafe' | 'ushort' | 'using' | 'virtual' | 'void'
 | 'volatile' | 'while'
 ;

contextual_keyword
 : 'add' | 'alias' | 'ascending' | 'async' | 'await'
 | 'by' | 'descending' | 'dynamic' | 'equals' | 'from'
 | 'get' | 'global' | 'group' | 'into' | 'join'
 | 'let' | 'nameof' | 'on' | 'orderby' | 'partial'
 | 'remove' | 'select' | 'set' | 'value' | 'var'

Note: The rules keyword and contextual_keyword are parser rules as they do not
introduce new token kinds. All keywords and contextual keywords are defined by
implicit lexical rules as they occur as literal strings in the grammar (§6.2.3). end note

In most cases, the syntactic location of contextual keywords is such that they can never
be confused with ordinary identifier usage. For example, within a property declaration,
the get and set identifiers have special meaning (§14.7.3). An identifier other than get
or set is never permitted in these locations, so this use does not conflict with a use of
these words as identifiers.

In certain cases the grammar is not enough to distinguish contextual keyword usage
from identifiers. In all such cases it will be specified how to disambiguate between the
two. For example, the contextual keyword var in implicitly typed local variable
declarations (§12.6.2) might conflict with a declared type called var , in which case the
declared name takes precedence over the use of the identifier as a contextual keyword.

Another example such disambiguation is the contextual keyword await (§11.8.8.1),
which is considered a keyword only when inside a method declared async , but can be
used as an identifier elsewhere.

Just as with keywords, contextual keywords can be used as ordinary identifiers by
prefixing them with the @ character.

Note: When used as contextual keywords, these identifiers cannot contain
Unicode_Escape_Sequences. end note

A literal (§11.7.2) is a source-code representation of a value.

ANTLR

 | 'when' | 'where' | 'yield'
 ;

6.4.5 Literals

6.4.5.1 General

literal
 : boolean_literal
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal

Note: literal is a parser rule as it groups other token kinds and does not introduce a
new token kind. end note

There are two Boolean literal values: true and false .

ANTLR

Note: boolean_literal is a parser rule as it groups other token kinds and does not
introduce a new token kind. end note

The type of a boolean_literal is bool .

Integer literals are used to write values of types int , uint , long , and ulong . Integer
literals have three possible forms: decimal, hexadecimal, and binary.

ANTLR

 | null_literal
 ;

6.4.5.2 Boolean literals

boolean_literal
 : TRUE
 | FALSE
 ;

6.4.5.3 Integer literals

Integer_Literal
 : Decimal_Integer_Literal
 | Hexadecimal_Integer_Literal
 | Binary_Integer_Literal
 ;

fragment Decimal_Integer_Literal
 : Decimal_Digit Decorated_Decimal_Digit* Integer_Type_Suffix?
 ;

fragment Decorated_Decimal_Digit
 : '_'* Decimal_Digit
 ;

fragment Decimal_Digit
 : '0'..'9'
 ;

The type of an integer literal is determined as follows:

If the literal has no suffix, it has the first of these types in which its value can be
represented: int , uint , long , ulong .
If the literal is suffixed by U or u , it has the first of these types in which its value
can be represented: uint , ulong .
If the literal is suffixed by L or l , it has the first of these types in which its value
can be represented: long , ulong .
If the literal is suffixed by UL , Ul , uL , ul , LU , Lu , lU , or lu , it is of type ulong .

If the value represented by an integer literal is outside the range of the ulong type, a
compile-time error occurs.

Note: As a matter of style, it is suggested that “L ” be used instead of “l ” when
writing literals of type long , since it is easy to confuse the letter “l ” with the
digit “1 ”. end note

fragment Integer_Type_Suffix
 : 'U' | 'u' | 'L' | 'l' |
 'UL' | 'Ul' | 'uL' | 'ul' | 'LU' | 'Lu' | 'lU' | 'lu'
 ;

fragment Hexadecimal_Integer_Literal
 : ('0x' | '0X') Decorated_Hex_Digit+ Integer_Type_Suffix?
 ;

fragment Decorated_Hex_Digit
 : '_'* Hex_Digit
 ;

fragment Hex_Digit
 : '0'..'9' | 'A'..'F' | 'a'..'f'
 ;

fragment Binary_Integer_Literal
 : ('0b' | '0B') Decorated_Binary_Digit+ Integer_Type_Suffix?
 ;

fragment Decorated_Binary_Digit
 : '_'* Binary_Digit
 ;

fragment Binary_Digit
 : '0' | '1'
 ;

To permit the smallest possible int and long values to be written as integer literals, the
following two rules exist:

When an Integer_Literal representing the value 2147483648 (2³¹) and no
Integer_Type_Suffix appears as the token immediately following a unary minus
operator token (§11.8.3), the result (of both tokens) is a constant of type int with
the value −2147483648 (−2³¹). In all other situations, such an Integer_Literal is of
type uint .
When an Integer_Literal representing the value 9223372036854775808 (2⁶³) and no
Integer_Type_Suffix or the Integer_Type_Suffix L or l appears as the token
immediately following a unary minus operator token (§11.8.3), the result (of both
tokens) is a constant of type long with the value −9223372036854775808 (−2⁶³). In
all other situations, such an Integer_Literal is of type ulong .

Example:

C#

end example

Real literals are used to write values of types float , double , and decimal .

123 // decimal, int
10_543_765Lu // decimal, ulong
1_2__3___4____5 // decimal, int
_123 // not a numeric literal; identifier due to leading
_
123_ // invalid; no trailing _allowed

0xFf // hex, int
0X1b_a0_44_fEL // hex, long
0x1ade_3FE1_29AaUL // hex, ulong
0x_abc // hex, int
_0x123 // not a numeric literal; identifier due to leading
_
0xabc_ // invalid; no trailing _ allowed

0b101 // binary, int
0B1001_1010u // binary, uint
0b1111_1111_0000UL // binary, ulong
0B__111 // binary, int
__0B111 // not a numeric literal; identifier due to leading
_
0B111__ // invalid; no trailing _ allowed

6.4.5.4 Real literals

ANTLR

If no Real_Type_Suffix is specified, the type of the Real_Literal is double . Otherwise, the
Real_Type_Suffix determines the type of the real literal, as follows:

A real literal suffixed by F or f is of type float .

Example: The literals 1f , 1.5f , 1e10f , and 123.456F are all of type float . end
example

A real literal suffixed by D or d is of type double .

Example: The literals 1d , 1.5d , 1e10d , and 123.456D are all of type double . end
example

A real literal suffixed by M or m is of type decimal .

Example: The literals 1m , 1.5m , 1e10m , and 123.456M are all of type decimal .
end example
This literal is converted to a decimal value by taking the exact value, and, if
necessary, rounding to the nearest representable value using banker’s
rounding (§8.3.8). Any scale apparent in the literal is preserved unless the value
is rounded. Note: Hence, the literal 2.900m will be parsed to form the decimal
with sign 0 , coefficient 2900 , and scale 3 . end note

Real_Literal
 : Decimal_Digit Decorated_Decimal_Digit* '.'
 Decimal_Digit Decorated_Decimal_Digit* Exponent_Part?
Real_Type_Suffix?
 | '.' Decimal_Digit Decorated_Decimal_Digit* Exponent_Part?
Real_Type_Suffix?
 | Decimal_Digit Decorated_Decimal_Digit* Exponent_Part Real_Type_Suffix?
 | Decimal_Digit Decorated_Decimal_Digit* Real_Type_Suffix
 ;

fragment Exponent_Part
 : ('e' | 'E') Sign? Decimal_Digit Decorated_Decimal_Digit*
 ;

fragment Sign
 : '+' | '-'
 ;

fragment Real_Type_Suffix
 : 'F' | 'f' | 'D' | 'd' | 'M' | 'm'
 ;

If the magnitude of the specified literal is too large to be represented in the indicated
type, a compile-time error occurs.

Note: In particular, a Real_Literal will never produce a floating-point infinity. A non-
zero Real_Literal may, however, be rounded to zero. end note

The value of a real literal of type float or double is determined by using the IEC 60559
“round to nearest” mode with ties broken to “even” (a value with the least-significant-bit
zero), and all digits considered significant.

Note: In a real literal, decimal digits are always required after the decimal point. For
example, 1.3F is a real literal but 1.F is not. end note

Example:

C#

end example

A character literal represents a single character, and consists of a character in quotes, as
in 'a' .

ANTLR

1.234_567 // double
.3e5f // float
2_345E-2_0 // double
15D // double
19.73M // decimal
1.F // parsed as a member access of F due to non-digit after
.
1_.2F // invalid; no trailing _ allowed in integer part
1._234 // parsed as a member access of _234 due to non-digit
after .
1.234_ // invalid; no trailing _ allowed in fraction
.3e_5F // invalid; no leading _ allowed in exponent
.3e5_F // invalid; no trailing _ allowed in exponent

6.4.5.5 Character literals

Character_Literal
 : '\'' Character '\''
 ;

fragment Character
 : Single_Character
 | Simple_Escape_Sequence

Note: A character that follows a backslash character (\) in a Character must be one
of the following characters: ' , " , \ , 0 , a , b , f , n , r , t , u , U , x , v . Otherwise, a
compile-time error occurs. end note

Note: The use of the \x Hexadecimal_Escape_Sequence production can be error-
prone and hard to read due to the variable number of hexadecimal digits following
the \x . For example, in the code:

C#

it might appear at first that the leading character is the same (U+0009 , a tab
character) in both strings. In fact the second string starts with U+9BAD as all three
letters in the word “Bad” are valid hexadecimal digits. As a matter of style, it is
recommended that \x is avoided in favour of either specific escape sequences (\t
in this example) or the fixed-length \u escape sequence.

end note

A hexadecimal escape sequence represents a single Unicode UTF-16 code unit, with the
value formed by the hexadecimal number following “\x ”.

If the value represented by a character literal is greater than U+FFFF , a compile-time
error occurs.

 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Character
 // anything but ', \, and New_Line_Character
 : ~['\\\u000D\u000A\u0085\u2028\u2029]
 ;

fragment Simple_Escape_Sequence
 : '\\\'' | '\\"' | '\\\\' | '\\0' | '\\a' | '\\b' |
 '\\f' | '\\n' | '\\r' | '\\t' | '\\v'
 ;

fragment Hexadecimal_Escape_Sequence
 : '\\x' Hex_Digit Hex_Digit? Hex_Digit? Hex_Digit?
 ;

string good = "x9Good text";
string bad = "x9Bad text";

A Unicode escape sequence (§6.4.2) in a character literal shall be in the range U+0000 to
U+FFFF .

A simple escape sequence represents a Unicode character, as described in the table
below.

Escape sequence Character name Unicode code point

\' Single quote U+0027

\" Double quote U+0022

\\ Backslash U+005C

\0 Null U+0000

\a Alert U+0007

\b Backspace U+0008

\f Form feed U+000C

\n New line U+000A

\r Carriage return U+000D

\t Horizontal tab U+0009

\v Vertical tab U+000B

The type of a Character_Literal is char .

C# supports two forms of string literals: regular string literals and verbatim string
literals. A regular string literal consists of zero or more characters enclosed in double
quotes, as in "hello" , and can include both simple escape sequences (such as \t for
the tab character), and hexadecimal and Unicode escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote
character, zero or more characters, and a closing double-quote character.

Example: A simple example is @"hello" . end example

In a verbatim string literal, the characters between the delimiters are interpreted
verbatim, with the only exception being a Quote_Escape_Sequence, which represents one

6.4.5.6 String literals

double-quote character. In particular, simple escape sequences, and hexadecimal and
Unicode escape sequences are not processed in verbatim string literals. A verbatim
string literal may span multiple lines.

ANTLR

Example: The example

C#

String_Literal
 : Regular_String_Literal
 | Verbatim_String_Literal
 ;

fragment Regular_String_Literal
 : '"' Regular_String_Literal_Character* '"'
 ;

fragment Regular_String_Literal_Character
 : Single_Regular_String_Literal_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Regular_String_Literal_Character
 // anything but ", \, and New_Line_Character
 : ~["\\\u000D\u000A\u0085\u2028\u2029]
 ;

fragment Verbatim_String_Literal
 : '@"' Verbatim_String_Literal_Character* '"'
 ;

fragment Verbatim_String_Literal_Character
 : Single_Verbatim_String_Literal_Character
 | Quote_Escape_Sequence
 ;

fragment Single_Verbatim_String_Literal_Character
 : ~["] // anything but quotation mark (U+0022)
 ;

fragment Quote_Escape_Sequence
 : '""'
 ;

string a = "Happy birthday, Joel"; // Happy birthday, Joel
string b = @"Happy birthday, Joel"; // Happy birthday, Joel
string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world

shows a variety of string literals. The last string literal, j , is a verbatim string literal
that spans multiple lines. The characters between the quotation marks, including
white space such as new line characters, are preserved verbatim, and each pair of
double-quote characters is replaced by one such character.

end example

Note: Any line breaks within verbatim string literals are part of the resulting string. If
the exact characters used to form line breaks are semantically relevant to an
application, any tools that translate line breaks in source code to different formats
(between “\n ” and “\r\n ”, for example) will change application behavior.
Developers should be careful in such situations. end note

Note: Since a hexadecimal escape sequence can have a variable number of hex
digits, the string literal "\x123" contains a single character with hex value 123 . To
create a string containing the character with hex value 12 followed by the
character 3 , one could write "\x00123" or "\x12" + "3" instead. end note

The type of a String_Literal is string .

Each string literal does not necessarily result in a new string instance. When two or more
string literals that are equivalent according to the string equality operator (§11.11.8),
appear in the same assembly, these string literals refer to the same string instance.

Example: For instance, the output produced by

C#

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\r\ntwo\r\nthree";
string j = @"one
two
three";

class Test
{
 static void Main()
 {
 object a = "hello";
 object b = "hello";
 System.Console.WriteLine(a == b);

is True because the two literals refer to the same string instance.

end example

ANTLR

Note: null_literal is a parser rule as it does not introduce a new token kind. end note

A null_literal represents a null value. It does not have a type, but can be converted to
any reference type or nullable value type through a null literal conversion (§10.2.7).

There are several kinds of operators and punctuators. Operators are used in expressions
to describe operations involving one or more operands.

Example: The expression a + b uses the + operator to add the two operands a
and b . end example

Punctuators are for grouping and separating.

ANTLR

 }
}

6.4.5.7 The null literal

null_literal
 : NULL
 ;

6.4.6 Operators and punctuators

operator_or_punctuator
 : '{' | '}' | '[' | ']' | '(' | ')' | '.' | ',' | ':' | ';'
 | '+' | '-' | ASTERISK | SLASH | '%' | '&' | '|' | '^' | '!' |
'~'
 | '=' | '<' | '>' | '?' | '??' | '::' | '++' | '--' | '&&' | '||'
 | '->' | '==' | '!=' | '<=' | '>=' | '+=' | '-=' | '*=' | '/=' | '%='
 | '&=' | '|=' | '^=' | '<<' | '<<=' | '=>'
 ;

right_shift
 : '>' '>'
 ;

Note: right_shift and right_shift_assignment are parser rules as they do not introduce
a new token kind but represent a sequence of two tokens. The
operator_or_punctuator rule exists for descriptive purposes only and is not used
elsewhere in the grammar. end note

right_shift is made up of the two tokens > and > . Similarly, right_shift_assignment is
made up of the two tokens > and >= . Unlike other productions in the syntactic
grammar, no characters of any kind (not even whitespace) are allowed between the two
tokens in each of these productions. These productions are treated specially in order to
enable the correct handling of type_parameter_lists (§14.2.3).

Note: Prior to the addition of generics to C#, >> and >>= were both single tokens.
However, the syntax for generics uses the < and > characters to delimit type
parameters and type arguments. It is often desirable to use nested constructed
types, such as List<Dictionary<string, int>> . Rather than requiring the
programmer to separate the > and > by a space, the definition of the two
operator_or_punctuators was changed. end note

The pre-processing directives provide the ability to skip conditionally sections of
compilation units, to report error and warning conditions, and to delineate distinct
regions of source code.

Note: The term “pre-processing directives” is used only for consistency with the C
and C++ programming languages. In C#, there is no separate pre-processing step;
pre-processing directives are processed as part of the lexical analysis phase. end
note

ANTLR

right_shift_assignment
 : '>' '>='
 ;

6.5 Pre-processing directives

6.5.1 General

PP_Directive
 : PP_Start PP_Kind PP_New_Line
 ;

Note:

The pre-processor grammar defines a single lexical token PP_Directive used
for all pre-processing directives. The semantics of each of the pre-processing
directives are defined in this language specification but not how to implement
them.
The PP_Start fragment must only be recognised at the start of a line, the
getCharPositionInLine() == 0 ANTLR lexical predicate above suggests one
way in which this may be achieved and is informative only, an implementation
may use a different strategy.

end note

The following pre-processing directives are available:

#define and #undef , which are used to define and undefine, respectively,
conditional compilation symbols (§6.5.4).
#if , #elif , #else , and #endif , which are used to skip conditionally sections of
source code (§6.5.5).

fragment PP_Kind
 : PP_Declaration
 | PP_Conditional
 | PP_Line
 | PP_Diagnostic
 | PP_Region
 | PP_Pragma
 ;

// Only recognised at the beginning of a line
fragment PP_Start
 // See note below.
 : { getCharPositionInLine() == 0 }? PP_Whitespace? '#' PP_Whitespace?
 ;

fragment PP_Whitespace
 : ([\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
)+
 ;

fragment PP_New_Line
 : PP_Whitespace? Single_Line_Comment? New_Line
 ;

#line , which is used to control line numbers emitted for errors and warnings
(§6.5.8).
#error , which is used to issue errors (§6.5.6).
#region and #endregion , which are used to explicitly mark sections of source code
(§6.5.7).
#pragma , which is used to specify optional contextual information to a compiler
(§6.5.9).

A pre-processing directive always occupies a separate line of source code and always
begins with a # character and a pre-processing directive name. White space may occur
before the # character and between the # character and the directive name.

A source line containing a #define , #undef , #if , #elif , #else , #endif , #line , or
#endregion directive can end with a single-line comment. Delimited comments (the /*
*/ style of comments) are not permitted on source lines containing pre-processing
directives.

Pre-processing directives are not part of the syntactic grammar of C#. However, pre-
processing directives can be used to include or exclude sequences of tokens and can in
that way affect the meaning of a C# program.

Example: When compiled, the program

C#

results in the exact same sequence of tokens as the program

C#

#define A
#undef B
class C
{
#if A
 void F() {}
#else
 void G() {}
#endif
#if B
 void H() {}
#else
 void I() {}
#endif
}

Thus, whereas lexically, the two programs are quite different, syntactically, they are
identical.

end example

The conditional compilation functionality provided by the #if , #elif , #else , and
#endif directives is controlled through pre-processing expressions (§6.5.3) and
conditional compilation symbols.

ANTLR

Note How an implementation enforces the restriction on the allowable
Basic_Identifier values is an implementation issue. end note

Two conditional compilation symbols are considered the same if they are identical after
the following transformations are applied, in order:

Each Unicode_Escape_Sequence is transformed into its corresponding Unicode
character.
Any Formatting_Characters are removed.

A conditional compilation symbol has two possible states: defined or undefined. At the
beginning of the lexical processing of a compilation unit, a conditional compilation
symbol is undefined unless it has been explicitly defined by an external mechanism
(such as a command-line compiler option). When a #define directive is processed, the
conditional compilation symbol named in that directive becomes defined in that
compilation unit. The symbol remains defined until a #undef directive for that same
symbol is processed, or until the end of the compilation unit is reached. An implication

class C
{
 void F() {}
 void I() {}
}

6.5.2 Conditional compilation symbols

fragment PP_Conditional_Symbol
 // Must not be equal to tokens TRUE or FALSE. See note below.
 : Basic_Identifier
 ;

of this is that #define and #undef directives in one compilation unit have no effect on
other compilation units in the same program.

When referenced in a pre-processing expression (§6.5.3), a defined conditional
compilation symbol has the Boolean value true , and an undefined conditional
compilation symbol has the Boolean value false . There is no requirement that
conditional compilation symbols be explicitly declared before they are referenced in
pre-processing expressions. Instead, undeclared symbols are simply undefined and thus
have the value false .

The namespace for conditional compilation symbols is distinct and separate from all
other named entities in a C# program. Conditional compilation symbols can only be
referenced in #define and #undef directives and in pre-processing expressions.

Pre-processing expressions can occur in #if and #elif directives. The operators ! , == ,
!= , && , and || are permitted in pre-processing expressions, and parentheses may be
used for grouping.

ANTLR

6.5.3 Pre-processing expressions

fragment PP_Expression
 : PP_Whitespace? PP_Or_Expression PP_Whitespace?
 ;

fragment PP_Or_Expression
 : PP_And_Expression (PP_Whitespace? '||' PP_Whitespace?
PP_And_Expression)*
 ;

fragment PP_And_Expression
 : PP_Equality_Expression (PP_Whitespace? '&&' PP_Whitespace?
 PP_Equality_Expression)*
 ;

fragment PP_Equality_Expression
 : PP_Unary_Expression (PP_Whitespace? ('==' | '!=') PP_Whitespace?
 PP_Unary_Expression)*
 ;

fragment PP_Unary_Expression
 : PP_Primary_Expression
 | '!' PP_Whitespace? PP_Unary_Expression
 ;

fragment PP_Primary_Expression
 : TRUE

When referenced in a pre-processing expression, a defined conditional compilation
symbol has the Boolean value true , and an undefined conditional compilation symbol
has the Boolean value false .

Evaluation of a pre-processing expression always yields a Boolean value. The rules of
evaluation for a pre-processing expression are the same as those for a constant
expression (§11.21), except that the only user-defined entities that can be referenced are
conditional compilation symbols.

The definition directives are used to define or undefine conditional compilation symbols.

ANTLR

The processing of a #define directive causes the given conditional compilation symbol
to become defined, starting with the source line that follows the directive. Likewise, the
processing of a #undef directive causes the given conditional compilation symbol to
become undefined, starting with the source line that follows the directive.

Any #define and #undef directives in a compilation unit shall occur before the first
token (§6.4) in the compilation unit; otherwise a compile-time error occurs. In intuitive
terms, #define and #undef directives shall precede any “real code” in the compilation
unit.

Example: The example:

C#

 | FALSE
 | PP_Conditional_Symbol
 | '(' PP_Whitespace? PP_Expression PP_Whitespace? ')'
 ;

6.5.4 Definition directives

fragment PP_Declaration
 : 'define' PP_Whitespace PP_Conditional_Symbol
 | 'undef' PP_Whitespace PP_Conditional_Symbol
 ;

#define Enterprise
#if Professional || Enterprise
#define Advanced
#endif
namespace Megacorp.Data
{

is valid because the #define directives precede the first token (the namespace
keyword) in the compilation unit.

end example

Example: The following example results in a compile-time error because a #define
follows real code:

C#

end example

A #define may define a conditional compilation symbol that is already defined, without
there being any intervening #undef for that symbol.

Example: The example below defines a conditional compilation symbol A and then
defines it again.

C#

For compilers that allow conditional compilation symbols to be defined as
compilation options, an alternative way for such redefinition to occur is to define the
symbol as a compiler option as well as in the source.

end example

A #undef may “undefine” a conditional compilation symbol that is not defined.

#if Advanced
 class PivotTable {...}
#endif
}

#define A
namespace N
{
#define B
#if B
 class Class1 {}
#endif
}

#define A
#define A

Example: The example below defines a conditional compilation symbol A and then
undefines it twice; although the second #undef has no effect, it is still valid.

C#

end example

The conditional compilation directives are used to conditionally include or exclude
portions of a compilation unit.

ANTLR

Conditional compilation directives shall be written in groups consisting of, in order, a
#if directive, zero or more #elif directives, zero or one #else directive, and a #endif
directive. Between the directives are conditional sections of source code. Each section is
controlled by the immediately preceding directive. A conditional section may itself
contain nested conditional compilation directives provided these directives form
complete groups.

#define A
#undef A
#undef A

6.5.5 Conditional compilation directives

fragment PP_Conditional
 : PP_If_Section
 | PP_Elif_Section
 | PP_Else_Section
 | PP_Endif
 ;

fragment PP_If_Section
 : 'if' PP_Whitespace PP_Expression
 ;

fragment PP_Elif_Section
 : 'elif' PP_Whitespace PP_Expression
 ;

fragment PP_Else_Section
 : 'else'
 ;

fragment PP_Endif
 : 'endif'
 ;

At most one of the contained conditional sections is selected for normal lexical
processing:

The PP_Expressions of the #if and #elif directives are evaluated in order until
one yields true . If an expression yields true , the conditional section following the
corresponding directive is selected.
If all PP_Expressions yield false , and if a #else directive is present, the conditional
section following the #else directive is selected.
Otherwise, no conditional section is selected.

The selected conditional section, if any, is processed as a normal input_section: the
source code contained in the section shall adhere to the lexical grammar; tokens are
generated from the source code in the section; and pre-processing directives in the
section have the prescribed effects.

Any remaining conditional sections are skipped and no tokens, except those for pre-
processing directives, are generated from the source code. Therefore skipped source
code, except pre-processing directives, may be lexically incorrect. Skipped pre-
processing directives shall be lexically correct but are not otherwise processed. Within a
conditional section that is being skipped any nested conditional sections (contained in
nested #if...#endif constructs) are also skipped.

Note: The above grammar does not capture the allowance that the conditional
sections between the pre-processing directives may be malformed lexically.
Therefore the grammar is not ANTLR-ready as it only supports lexically correct
input. end note

Example: The following example illustrates how conditional compilation directives
can nest:

C#

#define Debug // Debugging on
#undef Trace // Tracing off
class PurchaseTransaction
{
 void Commit()
 {
#if Debug
 CheckConsistency();
 #if Trace
 WriteToLog(this.ToString());
 #endif
#endif
 CommitHelper();

Except for pre-processing directives, skipped source code is not subject to lexical
analysis. For example, the following is valid despite the unterminated comment in
the #else section:

C#

Note, however, that pre-processing directives are required to be lexically correct
even in skipped sections of source code.

Pre-processing directives are not processed when they appear inside multi-line
input elements. For example, the program:

C#

results in the output:

Console

 }
 ...
}

#define Debug // Debugging on
class PurchaseTransaction
{
 void Commit()
 {
#if Debug
 CheckConsistency();
#else
 /* Do something else
#endif
 }
 ...
}

class Hello
{
 static void Main()
 {
 System.Console.WriteLine(@"hello,
#if Debug
 world
#else
 Nebraska
#endif
 ");
 }
}

In peculiar cases, the set of pre-processing directives that is processed might
depend on the evaluation of the pp_expression. The example:

C#

always produces the same token stream (class Q { }), regardless of whether or
not X is defined. If X is defined, the only processed directives are #if and #endif ,
due to the multi-line comment. If X is undefined, then three directives (#if , #else ,
#endif) are part of the directive set.

end example

The diagnostic directives are used to generate explicitly error and warning messages
that are reported in the same way as other compile-time errors and warnings.

ANTLR

Example: The example

C#

hello,
#if Debug
 world
#else
 Nebraska
#endif

#if X
 /*
#else
 /* */ class Q { }
#endif

6.5.6 Diagnostic directives

fragment PP_Diagnostic
 : 'error' PP_Message?
 | 'warning' PP_Message?
 ;

fragment PP_Message
 : PP_Whitespace Input_Character*
 ;

produces a compile-time error (“A build can’t be both debug and retail”) if the
conditional compilation symbols Debug and Retail are both defined. Note that a
PP_Message can contain arbitrary text; specifically, it need not contain well-formed
tokens, as shown by the single quote in the word can't .

end example

The region directives are used to mark explicitly regions of source code.

ANTLR

No semantic meaning is attached to a region; regions are intended for use by the
programmer or by automated tools to mark a section of source code. There must be
one #endregion directive matching every #region directive. The message specified in a
#region or #endregion directive likewise has no semantic meaning; it merely serves to
identify the region. Matching #region and #endregion directives may have different
PP_Messages.

The lexical processing of a region:

C#

#if Debug && Retail
 #error A build can't be both debug and retail
#endif
class Test {...}

6.5.7 Region directives

fragment PP_Region
 : PP_Start_Region
 | PP_End_Region
 ;

fragment PP_Start_Region
 : 'region' PP_Message?
 ;

fragment PP_End_Region
 : 'endregion' PP_Message?
 ;

#region
...
#endregion

corresponds exactly to the lexical processing of a conditional compilation directive of
the form:

C#

Note: This means that a region can include one or more #if /.../#endif , or be
contained with a conditional section within a #if /.../#endif ; but a region cannot
overlap with an just part of an #if /.../#endif , or start & end in different conditional
sections. end note

Line directives may be used to alter the line numbers and compilation unit names that
are reported by the compiler in output such as warnings and errors. These values are
also used by caller-info attributes (§21.5.5).

Note: Line directives are most commonly used in meta-programming tools that
generate C# source code from some other text input. end note

ANTLR

#if true
...
#endif

6.5.8 Line directives

fragment PP_Line
 : 'line' PP_Whitespace PP_Line_Indicator
 ;

fragment PP_Line_Indicator
 : Decimal_Digit+ PP_Whitespace PP_Compilation_Unit_Name
 | Decimal_Digit+
 | DEFAULT
 | 'hidden'
 ;

fragment PP_Compilation_Unit_Name
 : '"' PP_Compilation_Unit_Name_Character+ '"'
 ;

fragment PP_Compilation_Unit_Name_Character
 // Any Input_Character except "
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029' | '#')
 ;

When no #line directives are present, the compiler reports true line numbers and
compilation unit names in its output. When processing a #line directive that includes a
Line_Indicator that is not default , the compiler treats the line after the directive as
having the given line number (and compilation unit name, if specified).

A #line default directive undoes the effect of all preceding #line directives. The
compiler reports true line information for subsequent lines, precisely as if no #line
directives had been processed.

A #line hidden directive has no effect on the compilation unit and line numbers
reported in error messages, or produced by use of CallerLineNumberAttribute
(§21.5.5.2). It is intended to affect source-level debugging tools so that, when
debugging, all lines between a #line hidden directive and the subsequent #line
directive (that is not #line hidden) have no line number information, and are skipped
entirely when stepping through code.

Note: Although a Compilation_Unit_Name might contain text that looks like an
escape sequence, such text is not an escape sequence; in this context a ‘\ ’ character
simply designates an ordinary backslash character. end note

The #pragma preprocessing directive is used to specify contextual information to a
compiler.

Note: For example, a compiler might provide #pragma directives that

Enable or disable particular warning messages when compiling subsequent
code.
Specify which optimizations to apply to subsequent code.
Specify information to be used by a debugger.

end note

ANTLR

6.5.9 Pragma directives

fragment PP_Pragma
 : 'pragma' PP_Pragma_Text?
 ;

fragment PP_Pragma_Text
 : PP_Whitespace Input_Character*
 ;

The Input_Characters in the PP_Pragma_Text are interpreted by the compiler in an
implementation-defined manner. The information supplied in a #pragma directive shall
not change program semantics. A #pragma directive shall only change compiler behavior
that is outside the scope of this language specification. If the compiler cannot interpret
the Input_Characters, the compiler can produce a warning; however, it shall not produce
a compile-time error.

Note: PP_Pragma_Text can contain arbitrary text; specifically, it need not contain
well-formed tokens. end note

7 Basic concepts
Article • 2023-01-17 • 54 minutes to read

A program may be compiled either as a class library to be used as part of other
applications, or as an application that may be started directly. The mechanism for
determining this mode of compilation is implementation-specific and external to this
specification.

A program compiled as an application shall contain at least one method qualifying as an
entry point by satisfying the following requirements:

It shall have the name Main .
It shall be static .
It shall not be generic.
It shall be declared in a non-generic type. If the type declaring the method is a
nested type, none of its enclosing types may be generic.
It may have the async modifier provided the method’s return type is
System.Threading.Tasks.Task or System.Threading.Tasks.Task<int> .
The return type shall be void , int , System.Threading.Tasks.Task , or
System.Threading.Tasks.Task<int> .
It shall not be a partial method (§14.6.9) without an implementation.
The formal parameter list shall either be empty, or have a single value parameter of
type string[] .

Note: Methods with the async modifier must have exactly one of the two return
types specified above in order to qualify as an entry point. An async void method,
or an async method returning a different awaitable type such as ValueTask or
ValueTask<int> does not qualify as an entry point. end note

If more than one method qualifying as an entry point is declared within a program, an
external mechanism may be used to specify which method is deemed to be the actual
entry point for the application. If a qualifying method having a return type of int or
void is found, any qualifying method having a return type of
System.Threading.Tasks.Task or System.Threading.Tasks.Task<int> is not considered an
entry point method. It is a compile-time error for a program to be compiled as an
application without exactly one entry point. A program compiled as a class library may

7.1 Application startup

contain methods that would qualify as application entry points, but the resulting library
has no entry point.

Ordinarily, the declared accessibility (§7.5.2) of a method is determined by the access
modifiers (§14.3.6) specified in its declaration, and similarly the declared accessibility of a
type is determined by the access modifiers specified in its declaration. In order for a
given method of a given type to be callable, both the type and the member shall be
accessible. However, the application entry point is a special case. Specifically, the
execution environment can access the application’s entry point regardless of its declared
accessibility and regardless of the declared accessibility of its enclosing type
declarations.

When the entry point method has a return type of System.Threading.Tasks.Task or
System.Threading.Tasks.Task<int> , the compiler synthesizes a synchronous entry-point
method that calls the corresponding Main method. The synthesized method has
parameters and return types based on the Main method:

The formal parameter list of the synthesized method is the same as the formal
parameter list of the Main method
If the return type of the Main method is System.Threading.Tasks.Task , the return
type of the synthesized method is void
If the return type of the Main method is System.Threading.Tasks.Task<int> , the
return type of the synthesized method is int

Execution of the synthesized method proceeds as follows:

The synthesized method calls the Main method, passing its string[] parameter
value as an argument if the Main method has such a parameter.
If the Main method throws an exception, the exception is propagated by the
synthesized method.
Otherwise, the synthesized entry point waits for the returned task to complete,
calling GetAwaiter().GetResult() on the task, using either the parameterless
instance method or the extension method described by §C.3. If the task fails,
GetResult() will throw an exception, and this exception is propagated by the
synthesized method.
For a Main method with a return type of System.Threading.Tasks.Task<int> , if the
task completes successfully, the int value returned by GetResult() is returned
from the synthesized method.

The effective entry point of an application is the entry point declared within the
program, or the synthesized method if one is required as described above. The return

type of the effective entry point is therefore always void or int .

When an application is run, a new application domain is created. Several different
instantiations of an application may exist on the same machine at the same time, and
each has its own application domain. An application domain enables application
isolation by acting as a container for application state. An application domain acts as a
container and boundary for the types defined in the application and the class libraries it
uses. Types loaded into one application domain are distinct from the same types loaded
into another application domain, and instances of objects are not directly shared
between application domains. For instance, each application domain has its own copy of
static variables for these types, and a static constructor for a type is run at most once
per application domain. Implementations are free to provide implementation-specific
policy or mechanisms for the creation and destruction of application domains.

Application startup occurs when the execution environment calls the application’s
effective entry point. If the effective entry point declares a parameter, then during
application startup, the implementation shall ensure that the initial value of that
parameter is a non-null reference to a string array. This array shall consist of non-null
references to strings, called application parameters, which are given implementation-
defined values by the host environment prior to application startup. The intent is to
supply to the application information determined prior to application startup from
elsewhere in the hosted environment.

Note: On systems supporting a command line, application parameters correspond to
what are generally known as command-line arguments. end note

If the effective entry point’s return type is int , the return value from the method
invocation by the execution environment is used in application termination (§7.2).

Other than the situations listed above, entry point methods behave like those that are
not entry points in every respect. In particular, if the entry point is invoked at any other
point during the application’s lifetime, such as by regular method invocation, there is no
special handling of the method: if there is a parameter, it may have an initial value of
null , or a non-null value referring to an array that contains null references. Likewise,
the return value of the entry point has no special significance other than in the
invocation from the execution environment.

Application termination returns control to the execution environment.

7.2 Application termination

If the return type of the application’s effective entry point method is int and execution
completes without resulting in an exception, the value of the int returned serves as the
application’s termination status code. The purpose of this code is to allow
communication of success or failure to the execution environment. If the return type of
the effective entry point method is void and execution completes without resulting in
an exception, the termination status code is 0 .

If the effective entry point method terminates due to an exception (§20.4), the exit code
is implementation-specific. Additionally, the implementation may provide alternative
APIs for specifying the exit code.

Whether or not finalizers (§14.13) are run as part of application termination is
implementation-specific.

Note: The .NET Framework implementation makes every reasonable effort to call
finalizers (§14.13) for all of its objects that have not yet been garbage collected,
unless such cleanup has been suppressed (by a call to the library method
GC.SuppressFinalize , for example). end note

Declarations in a C# program define the constituent elements of the program.
C# programs are organized using namespaces. These are introduced using namespace
declarations (§13), which can contain type declarations and nested namespace
declarations. Type declarations (§13.7) are used to define classes (§14), structs (§15),
interfaces (§17), enums (§18), and delegates (§19). The kinds of members permitted in a
type declaration depend on the form of the type declaration. For instance, class
declarations can contain declarations for constants (§14.4), fields (§14.5), methods
(§14.6), properties (§14.7), events (§14.8), indexers (§14.9), operators (§14.10), instance
constructors (§14.11), static constructors (§14.12), finalizers (§14.13), and nested types
(§14.3.9).

A declaration defines a name in the declaration space to which the declaration belongs.
It is a compile-time error to have two or more declarations that introduce members with
the same name in a declaration space, except in the following cases:

Two or more namespace declarations with the same name are allowed in the same
declaration space. Such namespace declarations are aggregated to form a single
logical namespace and share a single declaration space.
Declarations in separate programs but in the same namespace declaration space
are allowed to share the same name.

7.3 Declarations

Note: However, these declarations could introduce ambiguities if included in
the same application. end note

Two or more methods with the same name but distinct signatures are allowed in
the same declaration space (§7.6).
Two or more type declarations with the same name but distinct numbers of type
parameters are allowed in the same declaration space (§7.8.2).
Two or more type declarations with the partial modifier in the same declaration
space may share the same name, same number of type parameters and same
classification (class, struct or interface). In this case, the type declarations
contribute to a single type and are themselves aggregated to form a single
declaration space (§14.2.7).
A namespace declaration and a type declaration in the same declaration space can
share the same name as long as the type declaration has at least one type
parameter (§7.8.2).

There are several different types of declaration spaces, as described in the following.

Within all compilation units of a program, namespace_member_declarations with
no enclosing namespace_declaration are members of a single combined
declaration space called the global declaration space.

Within all compilation units of a program, namespace_member_declarations within
namespace_declarations that have the same fully qualified namespace name are
members of a single combined declaration space.

Each compilation_unit and namespace_body has an alias declaration space. Each
extern_alias_directive and using_alias_directive of the compilation_unit or
namespace_body contributes a member to the alias declaration space (§13.5.2).

Each non-partial class, struct, or interface declaration creates a new declaration
space. Each partial class, struct, or interface declaration contributes to a declaration
space shared by all matching parts in the same program (§15.2.3).Names are
introduced into this declaration space through class_member_declarations,
struct_member_declarations, interface_member_declarations, or type_parameters.
Except for overloaded instance constructor declarations and static constructor
declarations, a class or struct cannot contain a member declaration with the same
name as the class or struct. A class, struct, or interface permits the declaration of
overloaded methods and indexers. Furthermore, a class or struct permits the
declaration of overloaded instance constructors and operators. For example, a
class, struct, or interface may contain multiple method declarations with the same
name, provided these method declarations differ in their signature (§7.6). Note that

base classes do not contribute to the declaration space of a class, and base
interfaces do not contribute to the declaration space of an interface. Thus, a
derived class or interface is allowed to declare a member with the same name as
an inherited member. Such a member is said to hide the inherited member.

Each delegate declaration creates a new declaration space. Names are introduced
into this declaration space through formal parameters (fixed_parameters and
parameter_arrays) and type_parameters.

Each enumeration declaration creates a new declaration space. Names are
introduced into this declaration space through enum_member_declarations.

Each method declaration, property declaration, property accessor declaration,
indexer declaration, indexer accessor declaration, operator declaration, instance
constructor declaration, anonymous function, and local function creates a new
declaration space called a local variable declaration space. Names are introduced
into this declaration space through formal parameters (fixed_parameters and
parameter_arrays) and type_parameters. The set accessor for a property or an
indexer introduces the name value as a formal parameter. The body of the
function member, anonymous function, or local function, if any, is considered to be
nested within the local variable declaration space. It is an error for a local variable
declaration space and a nested local variable declaration space to contain
elements with the same name. Thus, within a nested declaration space it is not
possible to declare a local variable or constant with the same name as a local
variable or constant in an enclosing declaration space. It is possible for two
declaration spaces to contain elements with the same name as long as neither
declaration space contains the other.

Each block or switch_block, as well as a for , foreach , and using statement, creates
a local variable declaration space for local variables and local constants. Names are
introduced into this declaration space through local_variable_declarations and
local_constant_declarations. Note that blocks that occur as or within the body of a
function member, anonymous function, or local function are nested within the
local variable declaration space declared by those functions for their parameters.
Thus, it is an error to have, for example, a method with a local variable and a
parameter of the same name.

Each block or switch_block creates a separate declaration space for labels. Names
are introduced into this declaration space through labeled_statements, and the
names are referenced through goto_statements. The label declaration space of a
block includes any nested blocks. Thus, within a nested block it is not possible to
declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In
particular, textual order is not significant for the declaration and use of namespaces,
constants, methods, properties, events, indexers, operators, instance constructors,
finalizers, static constructors, and types. Declaration order is significant in the following
ways:

Declaration order for field declarations determines the order in which their
initializers (if any) are executed (§14.5.6.2, §14.5.6.3).
Local variables shall be defined before they are used (§7.7).
Declaration order for enum member declarations (§18.4) is significant when
constant_expression values are omitted.

Example: The declaration space of a namespace is “open ended”, and two
namespace declarations with the same fully qualified name contribute to the same
declaration space. For example

C#

The two namespace declarations above contribute to the same declaration space, in
this case declaring two classes with the fully qualified names
Megacorp.Data.Customer and Megacorp.Data.Order . Because the two declarations
contribute to the same declaration space, it would have caused a compile-time error
if each contained a declaration of a class with the same name.

end example

Note: As specified above, the declaration space of a block includes any nested
blocks. Thus, in the following example, the F and G methods result in a compile-
time error because the name i is declared in the outer block and cannot be

namespace Megacorp.Data
{
 class Customer
 {
 ...
 }
}

namespace Megacorp.Data
{
 class Order
 {
 ...
 }
}

redeclared in the inner block. However, the H and I methods are valid since the
two i ’s are declared in separate non-nested blocks.

C#

end note

class A
{
 void F()
 {
 int i = 0;
 if (true)
 {
 int i = 1;
 }
 }

 void G()
 {
 if (true)
 {
 int i = 0;
 }
 int i = 1;
 }

 void H()
 {
 if (true)
 {
 int i = 0;
 }
 if (true)
 {
 int i = 1;
 }
 }

 void I()
 {
 for (int i = 0; i < 10; i++)
 {
 H();
 }
 for (int i = 0; i < 10; i++)
 {
 H();
 }
 }
}

Namespaces and types have members.

Note: The members of an entity are generally available through the use of a
qualified name that starts with a reference to the entity, followed by a “. ” token,
followed by the name of the member. end note

Members of a type are either declared in the type declaration or inherited from the base
class of the type. When a type inherits from a base class, all members of the base class,
except instance constructors, finalizers, and static constructors become members of the
derived type. The declared accessibility of a base class member does not control
whether the member is inherited—inheritance extends to any member that isn’t an
instance constructor, static constructor, or finalizer.

Note: However, an inherited member might not be accessible in a derived type, for
example because of its declared accessibility (§7.5.2). end note

Namespaces and types that have no enclosing namespace are members of the global
namespace. This corresponds directly to the names declared in the global declaration
space.

Namespaces and types declared within a namespace are members of that namespace.
This corresponds directly to the names declared in the declaration space of the
namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected,
or internal namespaces, and namespace names are always publicly accessible.

The members of a struct are the members declared in the struct and the members
inherited from the struct’s direct base class System.ValueType and the indirect base class
object .

The members of a simple type correspond directly to the members of the struct type
aliased by the simple type (§8.3.5).

7.4 Members

7.4.1 General

7.4.2 Namespace members

7.4.3 Struct members

The members of an enumeration are the constants declared in the enumeration and the
members inherited from the enumeration’s direct base class System.Enum and the
indirect base classes System.ValueType and object .

The members of a class are the members declared in the class and the members
inherited from the base class (except for class object which has no base class). The
members inherited from the base class include the constants, fields, methods,
properties, events, indexers, operators, and types of the base class, but not the instance
constructors, finalizers, and static constructors of the base class. Base class members are
inherited without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties,
events, indexers, operators, instance constructors, finalizers, static constructors, and
types.

The members of object (§8.2.3) and string (§8.2.5) correspond directly to the members
of the class types they alias.

The members of an interface are the members declared in the interface and in all base
interfaces of the interface.

Note: The members in class object are not, strictly speaking, members of any
interface (§17.4). However, the members in class object are available via member
lookup in any interface type (§11.5). end note

The members of an array are the members inherited from class System.Array .

A delegate inherits members from class System.Delegate . Additionally, it contains a
method named Invoke with the same return type and formal parameter list specified in

7.4.4 Enumeration members

7.4.5 Class members

7.4.6 Interface members

7.4.7 Array members

7.4.8 Delegate members

its declaration (§19.2). An invocation of this method shall behave identically to a
delegate invocation (§19.6) on the same delegate instance.

An implementation may provide additional members, either through inheritance or
directly in the delegate itself.

Declarations of members allow control over member access. The accessibility of a
member is established by the declared accessibility (§7.5.2) of the member combined
with the accessibility of the immediately containing type, if any.

When access to a particular member is allowed, the member is said to be accessible.
Conversely, when access to a particular member is disallowed, the member is said to be
inaccessible. Access to a member is permitted when the textual location in which the
access takes place is included in the accessibility domain (§7.5.3) of the member.

The declared accessibility of a member can be one of the following:

Public, which is selected by including a public modifier in the member declaration.
The intuitive meaning of public is “access not limited”.
Protected, which is selected by including a protected modifier in the member
declaration. The intuitive meaning of protected is “access limited to the containing
class or types derived from the containing class”.
Internal, which is selected by including an internal modifier in the member
declaration. The intuitive meaning of internal is “access limited to this assembly”.
Protected internal, which is selected by including both a protected and an
internal modifier in the member declaration. The intuitive meaning of protected
internal is “accessible within this assembly as well as types derived from the
containing class”.
Private protected, which is selected by including both a private and a protected
modifier in the member declaration. The intuitive meaning of private protected is
“accessible within this assembly by the containing class and types derived from the
containing class.”
Private, which is selected by including a private modifier in the member
declaration. The intuitive meaning of private is “access limited to the containing

7.5 Member access

7.5.1 General

7.5.2 Declared accessibility

type”.

Depending on the context in which a member declaration takes place, only certain types
of declared accessibility are permitted. Furthermore, when a member declaration does
not include any access modifiers, the context in which the declaration takes place
determines the default declared accessibility.

Namespaces implicitly have public declared accessibility. No access modifiers are
allowed on namespace declarations.
Types declared directly in compilation units or namespaces (as opposed to within
other types) can have public or internal declared accessibility and default to
internal declared accessibility.
Class members can have any of the permitted kinds of declared accessibility and
default to private declared accessibility.

Note: A type declared as a member of a class can have any of the permitted
kinds of declared accessibility, whereas a type declared as a member of a
namespace can have only public or internal declared accessibility. end note

Struct members can have public , internal , or private declared accessibility and
default to private declared accessibility because structs are implicitly sealed.
Struct members introduced in a struct (that is, not inherited by that struct) cannot
have protected , protected internal , or private protected declared accessibility.

Note: A type declared as a member of a struct can have public , internal , or
private declared accessibility, whereas a type declared as a member of a
namespace can have only public or internal declared accessibility. end note

Interface members implicitly have public declared accessibility. No access
modifiers are allowed on interface member declarations.
Enumeration members implicitly have public declared accessibility. No access
modifiers are allowed on enumeration member declarations.

The accessibility domain of a member consists of the (possibly disjoint) sections of
program text in which access to the member is permitted. For purposes of defining the
accessibility domain of a member, a member is said to be top-level if it is not declared
within a type, and a member is said to be nested if it is declared within another type.
Furthermore, the program text of a program is defined as all text contained in all

7.5.3 Accessibility domains

compilation units of the program, and the program text of a type is defined as all text
contained in the type_declarations of that type (including, possibly, types that are nested
within the type).

The accessibility domain of a predefined type (such as object , int , or double) is
unlimited.

The accessibility domain of a top-level unbound type T (§8.4.4) that is declared in a
program P is defined as follows:

If the declared accessibility of T is public, the accessibility domain of T is the
program text of P and any program that references P .
If the declared accessibility of T is internal, the accessibility domain of T is the
program text of P .

Note: From these definitions, it follows that the accessibility domain of a top-level
unbound type is always at least the program text of the program in which that type
is declared. end note

The accessibility domain for a constructed type T<A₁, ..., Aₑ> is the intersection of the
accessibility domain of the unbound generic type T and the accessibility domains of the
type arguments A₁, ..., Aₑ .

The accessibility domain of a nested member M declared in a type T within a
program P , is defined as follows (noting that M itself might possibly be a type):

If the declared accessibility of M is public , the accessibility domain of M is the
accessibility domain of T .
If the declared accessibility of M is protected internal , let D be the union of the
program text of P and the program text of any type derived from T , which is
declared outside P . The accessibility domain of M is the intersection of the
accessibility domain of T with D .
If the declared accessibility of M is private protected , let D be the intersection of
the program text of P and the program text of T and any type derived from T .
The accessibility domain of M is the intersection of the accessibility domain of T
with D .
If the declared accessibility of M is protected , let D be the union of the program
text of Tand the program text of any type derived from T . The accessibility
domain of M is the intersection of the accessibility domain of T with D .

If the declared accessibility of M is internal , the accessibility domain of M is the
intersection of the accessibility domain of T with the program text of P .
If the declared accessibility of M is private , the accessibility domain of M is the
program text of T .

Note: From these definitions it follows that the accessibility domain of a nested
member is always at least the program text of the type in which the member is
declared. Furthermore, it follows that the accessibility domain of a member is never
more inclusive than the accessibility domain of the type in which the member is
declared. end note

Note: In intuitive terms, when a type or member M is accessed, the following steps
are evaluated to ensure that the access is permitted:

First, if M is declared within a type (as opposed to a compilation unit or a
namespace), a compile-time error occurs if that type is not accessible.
Then, if M is public , the access is permitted.
Otherwise, if M is protected internal , the access is permitted if it occurs
within the program in which M is declared, or if it occurs within a class derived
from the class in which M is declared and takes place through the derived class
type (§7.5.4).
Otherwise, if M is protected , the access is permitted if it occurs within the class
in which M is declared, or if it occurs within a class derived from the class in
which M is declared and takes place through the derived class type (§7.5.4).
Otherwise, if M is internal , the access is permitted if it occurs within the
program in which M is declared.
Otherwise, if M is private , the access is permitted if it occurs within the type in
which M is declared.
Otherwise, the type or member is inaccessible, and a compile-time error
occurs. end note

Example: In the following code

C#

public class A
{
 public static int X;
 internal static int Y;
 private static int Z;
}

the classes and members have the following accessibility domains:

The accessibility domain of A and A.X is unlimited.
The accessibility domain of A.Y , B , B.X , B.Y , B.C , B.C.X , and B.C.Y is the
program text of the containing program.
The accessibility domain of A.Z is the program text of A .
The accessibility domain of B.Z and B.D is the program text of B , including
the program text of B.C and B.D .
The accessibility domain of B.C.Z is the program text of B.C .
The accessibility domain of B.D.X and B.D.Y is the program text of B ,
including the program text of B.C and B.D .
The accessibility domain of B.D.Z is the program text of B.D . As the example
illustrates, the accessibility domain of a member is never larger than that of a
containing type. For example, even though all X members have public
declared accessibility, all but A.X have accessibility domains that are
constrained by a containing type.

end example

As described in §7.4, all members of a base class, except for instance constructors,
finalizers, and static constructors, are inherited by derived types. This includes even
private members of a base class. However, the accessibility domain of a private member
includes only the program text of the type in which the member is declared.

internal class B
{
 public static int X;
 internal static int Y;
 private static int Z;

 public class C
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }

 private class D
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }
}

Example: In the following code

C#

the B class inherits the private member x from the A class. Because the member is
private, it is only accessible within the class_body of A . Thus, the access to b.x
succeeds in the A.F method, but fails in the B.F method.

end example

When a protected or private protected instance member is accessed outside the
program text of the class in which it is declared, and when a protected internal
instance member is accessed outside the program text of the program in which it is
declared, the access shall take place within a class declaration that derives from the class
in which it is declared. Furthermore, the access is required to take place through an
instance of that derived class type or a class type constructed from it. This restriction
prevents one derived class from accessing protected members of other derived classes,
even when the members are inherited from the same base class.

Let B be a base class that declares a protected instance member M , and let D be a class
that derives from B . Within the class_body of D , access to M can take one of the
following forms:

An unqualified type_name or primary_expression of the form M .

class A
{
 int x;

 static void F(B b)
 {
 b.x = 1; // Ok
 }
}

class B : A
{
 static void F(B b)
 {
 b.x = 1; // Error, x not accessible
 }
}

7.5.4 Protected access

A primary_expression of the form E.M , provided the type of E is T or a class
derived from T , where T is the class D , or a class type constructed from D .
A primary_expression of the form base.M .
A primary_expression of the form base[argument_list] .

In addition to these forms of access, a derived class can access a protected instance
constructor of a base class in a constructor_initializer (§14.11.2).

Example: In the following code

C#

within A , it is possible to access x through instances of both A and B , since in
either case the access takes place through an instance of A or a class derived
from A . However, within B , it is not possible to access x through an instance of A ,
since A does not derive from B .

end example

Example:

C#

public class A
{
 protected int x;

 static void F(A a, B b)
 {
 a.x = 1; // Ok
 b.x = 1; // Ok
 }
}

public class B : A
{
 static void F(A a, B b)
 {
 a.x = 1; // Error, must access through instance of B
 b.x = 1; // Ok
 }
}

class C<T>
{
 protected T x;
}

Here, the three assignments to x are permitted because they all take place through
instances of class types constructed from the generic type.

end example

Note: The accessibility domain (§7.5.3) of a protected member declared in a generic
class includes the program text of all class declarations derived from any type
constructed from that generic class. In the example:

C#

the reference to protected member C<int>.x in D is valid even though the class D
derives from C<string> . end note

Several constructs in the C# language require a type to be at least as accessible as a
member or another type. A type T is said to be at least as accessible as a member or
type M if the accessibility domain of T is a superset of the accessibility domain of M . In

class D<T> : C<T>
{
 static void F()
 {
 D<T> dt = new D<T>();
 D<int> di = new D<int>();
 D<string> ds = new D<string>();
 dt.x = default(T);
 di.x = 123;
 ds.x = "test";
 }
}

class C<T>
{
 protected static T x;
}

class D : C<string>
{
 static void Main()
 {
 C<int>.x = 5;
 }
}

7.5.5 Accessibility constraints

other words, T is at least as accessible as M if T is accessible in all contexts in which M is
accessible.

The following accessibility constraints exist:

The direct base class of a class type shall be at least as accessible as the class type
itself.
The explicit base interfaces of an interface type shall be at least as accessible as the
interface type itself.
The return type and parameter types of a delegate type shall be at least as
accessible as the delegate type itself.
The type of a constant shall be at least as accessible as the constant itself.
The type of a field shall be at least as accessible as the field itself.
The return type and parameter types of a method shall be at least as accessible as
the method itself.
The type of a property shall be at least as accessible as the property itself.
The type of an event shall be at least as accessible as the event itself.
The type and parameter types of an indexer shall be at least as accessible as the
indexer itself.
The return type and parameter types of an operator shall be at least as accessible
as the operator itself.
The parameter types of an instance constructor shall be at least as accessible as
the instance constructor itself.
An interface or class type constraint on a type parameter shall be at least as
accessible as the member which declares the constraint.

Example: In the following code

C#

the B class results in a compile-time error because A is not at least as accessible as
B .

end example

Example: Likewise, in the following code

C#

class A {...}
public class B: A {...}

the H method in B results in a compile-time error because the return type A is not
at least as accessible as the method.

end example

Methods, instance constructors, indexers, and operators are characterized by their
signatures:

The signature of a method consists of the name of the method, the number of
type parameters, and the type and parameter-passing mode (value, reference, or
output) of each of its formal parameters, considered in the order left to right. For
these purposes, any type parameter of the method that occurs in the type of a
formal parameter is identified not by its name, but by its ordinal position in the
type parameter list of the method. The signature of a method specifically does not
include the return type, parameter names, type parameter names, type parameter
constraints, the params or this parameter modifiers, nor whether parameters are
required or optional.

The signature of an instance constructor consists of the type and parameter-
passing mode (value, reference, or output) of each of its formal parameters,
considered in the order left to right. The signature of an instance constructor
specifically does not include the params modifier that may be specified for the
right-most parameter.

The signature of an indexer consists of the type of each of its formal parameters,
considered in the order left to right. The signature of an indexer specifically does
not include the element type, nor does it include the params modifier that may be
specified for the right-most parameter.

The signature of an operator consists of the name of the operator and the type of
each of its formal parameters, considered in the order left to right. The signature of
an operator specifically does not include the result type.

class A {...}

public class B
{
 A F() {...}
 internal A G() {...}
 public A H() {...}
}

7.6 Signatures and overloading

The signature of a conversion operator consists of the source type and the target
type. The implicit or explicit classification of a conversion operator is not part of
the signature.

Two signatures of the same member kind (method, instance constructor, indexer or
operator) are considered to be the same signatures if they have the same name,
number of type parameters, number of parameters, and parameter-passing
modes, and an identity conversion exists between the types of their corresponding
parameters (§10.2.2).

Signatures are the enabling mechanism for overloading of members in classes, structs,
and interfaces:

Overloading of methods permits a class, struct, or interface to declare multiple
methods with the same name, provided their signatures are unique within that
class, struct, or interface.
Overloading of instance constructors permits a class or struct to declare multiple
instance constructors, provided their signatures are unique within that class or
struct.
Overloading of indexers permits a class, struct, or interface to declare multiple
indexers, provided their signatures are unique within that class, struct, or interface.
Overloading of operators permits a class or struct to declare multiple operators
with the same name, provided their signatures are unique within that class or
struct.

Although out and ref parameter modifiers are considered part of a signature,
members declared in a single type cannot differ in signature solely by ref and out . A
compile-time error occurs if two members are declared in the same type with signatures
that would be the same if all parameters in both methods with out modifiers were
changed to ref modifiers. For other purposes of signature matching (e.g., hiding or
overriding), ref and out are considered part of the signature and do not match each
other.

Note: This restriction is to allow C# programs to be easily translated to run on the
Common Language Infrastructure (CLI), which does not provide a way to define
methods that differ solely in ref and out . end note

The types object and dynamic are not distinguished when comparing signatures.
Therefore members declared in a single type whose signatures differ only by replacing
object with dynamic are not allowed.

Example: The following example shows a set of overloaded method declarations
along with their signatures.

C#

Note that any ref and out parameter modifiers (§14.6.2) are part of a signature.
Thus, F(int) , F(ref int) , and F(out int) are all unique signatures. However, F(ref
int) and F(out int) cannot be declared within the same interface because their
signatures differ solely by ref and out . Also, note that the return type and the
params modifier are not part of a signature, so it is not possible to overload solely
based on return type or on the inclusion or exclusion of the params modifier. As
such, the declarations of the methods F(int) and F(params string[]) identified
above, result in a compile-time error.

end example

The scope of a name is the region of program text within which it is possible to refer to
the entity declared by the name without qualification of the name. Scopes can be
nested, and an inner scope may redeclare the meaning of a name from an outer scope.
(This does not, however, remove the restriction imposed by §7.3 that within a nested
block it is not possible to declare a local variable or local constant with the same name

interface ITest
{
 void F(); // F()
 void F(int x); // F(int)
 void F(ref int x); // F(ref int)
 void F(out int x); // F(out int) error
 void F(object o); // F(object)
 void F(dynamic d); // error.
 void F(int x, int y); // F(int, int)
 int F(string s); // F(string)
 int F(int x); // F(int) error
 void F(string[] a); // F(string[])
 void F(params string[] a); // F(string[]) error
 void F<S>(S s); // F<0>(0)
 void F<T>(T t); // F<0>(0) error
 void F<S,T>(S s); // F<0,1>(0)
 void F<T,S>(S s); // F<0,1>(1) ok
}

7.7 Scopes

7.7.1 General

as a local variable or local constant in an enclosing block.) The name from the outer
scope is then said to be hidden in the region of program text covered by the inner
scope, and access to the outer name is only possible by qualifying the name.

The scope of a namespace member declared by a namespace_member_declaration
(§13.6) with no enclosing namespace_declaration is the entire program text.

The scope of a namespace member declared by a namespace_member_declaration
within a namespace_declaration whose fully qualified name is N , is the
namespace_body of every namespace_declaration whose fully qualified name is N
or starts with N , followed by a period.

The scope of a name defined by an extern_alias_directive (§13.4) extends over the
using_directives, global_attributes and namespace_member_declarations of its
immediately containing compilation_unit or namespace_body. An
extern_alias_directive does not contribute any new members to the underlying
declaration space. In other words, an extern_alias_directive is not transitive, but,
rather, affects only the compilation_unit or namespace_body in which it occurs.

The scope of a name defined or imported by a using_directive (§13.5) extends over
the global_attributes and namespace_member_declarations of the compilation_unit
or namespace_body in which the using_directive occurs. A using_directive may make
zero or more namespace or type names available within a particular
compilation_unit or namespace_body, but does not contribute any new members to
the underlying declaration space. In other words, a using_directive is not transitive
but rather affects only the compilation_unit or namespace_body in which it occurs.

The scope of a type parameter declared by a type_parameter_list on a
class_declaration (§14.2) is the class_base, type_parameter_constraints_clauses, and
class_body of that class_declaration.

Note: Unlike members of a class, this scope does not extend to derived classes.
end note

The scope of a type parameter declared by a type_parameter_list on a
struct_declaration (§15.2) is the struct_interfaces,
type_parameter_constraints_clauses, and struct_body of that struct_declaration.

The scope of a type parameter declared by a type_parameter_list on an
interface_declaration (§17.2) is the interface_base,
type_parameter_constraints_clauses, and interface_body of that
interface_declaration.

The scope of a type parameter declared by a type_parameter_list on a
delegate_declaration (§19.2) is the return_type, formal_parameter_list, and
type_parameter_constraints_clauses of that delegate_declaration.

The scope of a type parameter declared by a type_parameter_list on a
method_declaration (§14.6.1) is the method_declaration.

The scope of a member declared by a class_member_declaration (§14.3.1) is the
class_body in which the declaration occurs. In addition, the scope of a class
member extends to the class_body of those derived classes that are included in the
accessibility domain (§7.5.3) of the member.

The scope of a member declared by a struct_member_declaration (§15.3) is the
struct_body in which the declaration occurs.

The scope of a member declared by an enum_member_declaration (§18.4) is the
enum_body in which the declaration occurs.

The scope of a parameter declared in a method_declaration (§14.6) is the
method_body of that method_declaration.

The scope of a parameter declared in an indexer_declaration (§14.9) is the
indexer_body of that indexer_declaration.

The scope of a parameter declared in an operator_declaration (§14.10) is the
operator_body of that operator_declaration.

The scope of a parameter declared in a constructor_declaration (§14.11) is the
constructor_initializer and block of that constructor_declaration.

The scope of a parameter declared in a lambda_expression (§11.17) is the
lambda_expression_body of that lambda_expression.

The scope of a parameter declared in an anonymous_method_expression (§11.17) is
the block of that anonymous_method_expression.

The scope of a label declared in a labeled_statement (§12.5) is the block in which
the declaration occurs.

The scope of a local variable declared in a local_variable_declaration (§12.6.2) is the
block in which the declaration occurs.

The scope of a local variable declared in a switch_block of a switch statement
(§12.8.3) is the switch_block.

The scope of a local variable declared in a for_initializer of a for statement
(§12.9.4) is the for_initializer, the for_condition, the for_iterator, and the contained
statement of the for statement.

The scope of a local constant declared in a local_constant_declaration (§12.6.3) is
the block in which the declaration occurs. It is a compile-time error to refer to a
local constant in a textual position that precedes its constant_declarator.

The scope of a variable declared as part of a foreach_statement, using_statement,
lock_statement or query_expression is determined by the expansion of the given
construct.

Within the scope of a namespace, class, struct, or enumeration member it is possible to
refer to the member in a textual position that precedes the declaration of the member.

Example:

C#

Here, it is valid for F to refer to i before it is declared.

end example

Within the scope of a local variable, it is a compile-time error to refer to the local
variable in a textual position that precedes the local_variable_declarator of the local
variable.

Example:

C#

class A
{
 void F()
 {
 i = 1;
 }

 int i = 0;
}

class A
{
 int i = 0;

 void F()
 {

In the F method above, the first assignment to i specifically does not refer to the
field declared in the outer scope. Rather, it refers to the local variable and it results
in a compile-time error because it textually precedes the declaration of the variable.
In the G method, the use of j in the initializer for the declaration of j is valid
because the use does not precede the local_variable_declarator. In the H method, a
subsequent local_variable_declarator correctly refers to a local variable declared in
an earlier local_variable_declarator within the same local_variable_declaration.

end example

Note: The scoping rules for local variables and local constants are designed to
guarantee that the meaning of a name used in an expression context is always the
same within a block. If the scope of a local variable were to extend only from its
declaration to the end of the block, then in the example above, the first assignment
would assign to the instance variable and the second assignment would assign to
the local variable, possibly leading to compile-time errors if the statements of the
block were later to be rearranged.)

The meaning of a name within a block may differ based on the context in which the
name is used. In the example

C#

 i = 1; // Error, use precedes declaration
 int i;
 i = 2;
 }

 void G()
 {
 int j = (j = 1); // Valid
 }

 void H()
 {
 int a = 1, b = ++a; // Valid
 }
}

class A {}

class Test
{
 static void Main()
 {
 string A = "hello, world";
 string s = A; // expression context

the name A is used in an expression context to refer to the local variable A and in a
type context to refer to the class A .

end note

The scope of an entity typically encompasses more program text than the declaration
space of the entity. In particular, the scope of an entity may include declarations that
introduce new declaration spaces containing entities of the same name. Such
declarations cause the original entity to become hidden. Conversely, an entity is said to
be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap
through inheritance. The characteristics of the two types of hiding are described in the
following subclauses.

Name hiding through nesting can occur as a result of nesting namespaces or types
within namespaces, as a result of nesting types within classes or structs, and as a result
of parameter, local variable, and local constant declarations.

Example: In the following code

C#

 Type t = typeof(A); // type context
 Console.WriteLine(s); // writes "hello, world"
 Console.WriteLine(t); // writes "A"
 }
}

7.7.2 Name hiding

7.7.2.1 General

7.7.2.2 Hiding through nesting

class A
{
 int i = 0;
 void F()
 {
 int i = 1;
 }

 void G()
 {

within the F method, the instance variable i is hidden by the local variable i , but
within the G method, i still refers to the instance variable.

end example

When a name in an inner scope hides a name in an outer scope, it hides all overloaded
occurrences of that name.

Example: In the following code

C#

the call F(1) invokes the F declared in Inner because all outer occurrences of F
are hidden by the inner declaration. For the same reason, the call F("Hello") results
in a compile-time error.

end example

Name hiding through inheritance occurs when classes or structs redeclare names that
were inherited from base classes. This type of name hiding takes one of the following
forms:

 i = 1;
 }
}

class Outer
{
 static void F(int i) {}
 static void F(string s) {}

 class Inner
 {
 static void F(long l) {}

 void G()
 {
 F(1); // Invokes Outer.Inner.F
 F("Hello"); // Error
 }
 }
}

7.7.2.3 Hiding through inheritance

A constant, field, property, event, or type introduced in a class or struct hides all
base class members with the same name.
A method introduced in a class or struct hides all non-method base class members
with the same name, and all base class methods with the same signature (§7.6).
An indexer introduced in a class or struct hides all base class indexers with the
same signature (§7.6) .

The rules governing operator declarations (§14.10) make it impossible for a derived class
to declare an operator with the same signature as an operator in a base class. Thus,
operators never hide one another.

Contrary to hiding a name from an outer scope, hiding a visible name from an inherited
scope causes a warning to be reported.

Example: In the following code

C#

the declaration of F in Derived causes a warning to be reported. Hiding an
inherited name is specifically not an error, since that would preclude separate
evolution of base classes. For example, the above situation might have come about
because a later version of Base introduced an F method that wasn’t present in an
earlier version of the class.

end example

The warning caused by hiding an inherited name can be eliminated through use of the
new modifier:

Example:

C#

class Base
{
 public void F() {}
}

class Derived : Base
{
 public void F() {} // Warning, hiding an inherited name
}

class Base
{

The new modifier indicates that the F in Derived is “new”, and that it is indeed
intended to hide the inherited member.

end example

A declaration of a new member hides an inherited member only within the scope of the
new member.

Example:

C#

In the example above, the declaration of F in Derived hides the F that was
inherited from Base , but since the new F in Derived has private access, its scope
does not extend to MoreDerived . Thus, the call F() in MoreDerived.G is valid and will
invoke Base.F .

end example

 public void F() {}
}

class Derived : Base
{
 public new void F() {}
}

class Base
{
 public static void F() {}
}

class Derived : Base
{
 private new static void F() {} // Hides Base.F in Derived only
}

class MoreDerived : Derived
{
 static void G()
 {
 F(); // Invokes Base.F
 }
}

7.8 Namespace and type names

Several contexts in a C# program require a namespace_name or a type_name to be
specified.

ANTLR

A namespace_name is a namespace_or_type_name that refers to a namespace.

Following resolution as described below, the namespace_or_type_name of a
namespace_name shall refer to a namespace, or otherwise a compile-time error occurs.
No type arguments (§8.4.2) can be present in a namespace_name (only types can have
type arguments).

A type_name is a namespace_or_type_name that refers to a type. Following resolution as
described below, the namespace_or_type_name of a type_name shall refer to a type, or
otherwise a compile-time error occurs.

If the namespace_or_type_name is a qualified_alias_member its meaning is as described
in §13.8.1. Otherwise, a namespace_or_type_name has one of four forms:

I

I<A₁, ..., Aₓ>

N.I

N.I<A₁, ..., Aₓ>

where I is a single identifier, N is a namespace_or_type_name and <A₁, ..., Aₓ> is an
optional type_argument_list. When no type_argument_list is specified, consider x to be
zero.

The meaning of a namespace_or_type_name is determined as follows:

7.8.1 General

namespace_name
 : namespace_or_type_name
 ;

type_name
 : namespace_or_type_name
 ;

namespace_or_type_name
 : identifier type_argument_list?
 | namespace_or_type_name '.' identifier type_argument_list?
 | qualified_alias_member
 ;

If the namespace_or_type_name is a qualified_alias_member, the meaning is as
specified in §13.8.1.
Otherwise, if the namespace_or_type_name is of the form I or of the form I<A₁,
..., Aₓ> :

If x is zero and the namespace_or_type_name appears within a generic method
declaration (§14.6) but outside the attributes of its method-header, and if that
declaration includes a type parameter (§14.2.3) with name I , then the
namespace_or_type_name refers to that type parameter.
Otherwise, if the namespace_or_type_name appears within a type declaration,
then for each instance type T (§14.3.2), starting with the instance type of that
type declaration and continuing with the instance type of each enclosing class
or struct declaration (if any):

If x is zero and the declaration of T includes a type parameter with name I ,
then the namespace_or_type_name refers to that type parameter.
Otherwise, if the namespace_or_type_name appears within the body of the
type declaration, and T or any of its base types contain a nested accessible
type having name I and x type parameters, then the
namespace_or_type_name refers to that type constructed with the given type
arguments. If there is more than one such type, the type declared within the
more derived type is selected.

Note: Non-type members (constants, fields, methods, properties, indexers,
operators, instance constructors, finalizers, and static constructors) and type
members with a different number of type parameters are ignored when
determining the meaning of the namespace_or_type_name. end note

Otherwise, for each namespace N , starting with the namespace in which the
namespace_or_type_name occurs, continuing with each enclosing namespace (if
any), and ending with the global namespace, the following steps are evaluated
until an entity is located:

If x is zero and I is the name of a namespace in N , then:
If the location where the namespace_or_type_name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I
with a namespace or type, then the namespace_or_type_name is
ambiguous and a compile-time error occurs.
Otherwise, the namespace_or_type_name refers to the namespace
named I in N .

Otherwise, if N contains an accessible type having name I and x type
parameters, then:

If x is zero and the location where the namespace_or_type_name occurs is
enclosed by a namespace declaration for N and the namespace
declaration contains an extern_alias_directive or using_alias_directive that
associates the name I with a namespace or type, then the
namespace_or_type_name is ambiguous and a compile-time error occurs.
Otherwise, the namespace_or_type_name refers to the type constructed
with the given type arguments.

Otherwise, if the location where the namespace_or_type_name occurs is
enclosed by a namespace declaration for N :

If x is zero and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I
with an imported namespace or type, then the namespace_or_type_name
refers to that namespace or type.
Otherwise, if the namespaces imported by the using_namespace_directives
of the namespace declaration contain exactly one type having name I
and x type parameters, then the namespace_or_type_name refers to that
type constructed with the given type arguments.
Otherwise, if the namespaces imported by the using_namespace_directives
of the namespace declaration contain more than one type having name I
and x type parameters, then the namespace_or_type_name is ambiguous
and an error occurs.

Otherwise, the namespace_or_type_name is undefined and a compile-time error
occurs.

Otherwise, the namespace_or_type_name is of the form N.I or of the form N.I<A₁,
..., Aₓ> . N is first resolved as a namespace_or_type_name. If the resolution of N is
not successful, a compile-time error occurs. Otherwise, N.I or N.I<A₁, ..., Aₓ> is
resolved as follows:

If x is zero and N refers to a namespace and N contains a nested namespace
with name I , then the namespace_or_type_name refers to that nested
namespace.
Otherwise, if N refers to a namespace and N contains an accessible type having
name I and x type parameters, then the namespace_or_type_name refers to
that type constructed with the given type arguments.
Otherwise, if N refers to a (possibly constructed) class or struct type and N or
any of its base classes contain a nested accessible type having name I and
x type parameters, then the namespace_or_type_name refers to that type

constructed with the given type arguments. If there is more than one such type,
the type declared within the more derived type is selected.

Note: If the meaning of N.I is being determined as part of resolving the
base class specification of N then the direct base class of N is considered to
be object (§14.2.4.2). end note

Otherwise, N.I is an invalid namespace_or_type_name, and a compile-time error
occurs.

A namespace_or_type_name is permitted to reference a static class (§14.2.2.4) only if

The namespace_or_type_name is the T in a namespace_or_type_name of the form
T.I , or
The namespace_or_type_name is the T in a typeof_expression (§11.7.16) of the form
typeof(T)

Every namespace declaration and type declaration has an unqualified name determined
as follows:

For a namespace declaration, the unqualified name is the qualified_identifier
specified in the declaration.
For a type declaration with no type_parameter_list, the unqualified name is the
identifier specified in the declaration.
For a type declaration with K type parameters, the unqualified name is the
identifier specified in the declaration, followed by the generic_dimension_specifier
(§11.7.16) for K type parameters.

Every namespace and type declaration has a fully qualified name, which uniquely
identifies the namespace or type declaration amongst all others within the program. The
fully qualified name of a namespace or type declaration with unqualified name N is
determined as follows:

If N is a member of the global namespace, its fully qualified name is N .
Otherwise, its fully qualified name is S.N , where S is the fully qualified name of the
namespace or type declaration in which N is declared.

7.8.2 Unqualified names

7.8.3 Fully qualified names

In other words, the fully qualified name of N is the complete hierarchical path of
identifiers and generic_dimension_specifiers that lead to N , starting from the global
namespace. Because every member of a namespace or type shall have a unique name, it
follows that the fully qualified name of a namespace or type declaration is always
unique. It is a compile-time error for the same fully qualified name to refer to two
distinct entities. In particular:

It is an error for both a namespace declaration and a type declaration to have the
same fully qualified name.
It is an error for two different kinds of type declarations to have the same fully
qualified name (for example, if both a struct and class declaration have the same
fully qualified name).
It is an error for a type declaration without the partial modifier to have the same
fully qualified name as another type declaration (§14.2.7).

Example: The example below shows several namespace and type declarations along
with their associated fully qualified names.

C#

end example

class A {} // A
namespace X // X
{
 class B // X.B
 {
 class C {} // X.B.C
 }
 namespace Y // X.Y
 {
 class D {} // X.Y.D
 }
}
namespace X.Y // X.Y
{
 class E {} // X.Y.E
 class G<T> // X.Y.G<>
 {
 class H {} // X.Y.G<>.H
 }
 class G<S,T> // X.Y.G<,>
 {
 class H<U> {} // X.Y.G<,>.H<>
 }
}

C# employs automatic memory management, which frees developers from manually
allocating and freeing the memory occupied by objects. Automatic memory
management policies are implemented by a garbage collector. The memory
management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and
the object is considered live.

2. If neither the object nor any of its instance fields can be accessed by any possible
continuation of execution, other than the running of finalizers, the object is
considered no longer in use and it becomes eligible for finalization.

Note: The C# compiler and the garbage collector might choose to analyze
code to determine which references to an object might be used in the future.
For instance, if a local variable that is in scope is the only existing reference to
an object, but that local variable is never referred to in any possible
continuation of execution from the current execution point in the procedure,
the garbage collector might (but is not required to) treat the object as no
longer in use. end note

3. Once the object is eligible for finalization, at some unspecified later time the
finalizer (§14.13) (if any) for the object is run. Under normal circumstances the
finalizer for the object is run once only, though implementation-specific APIs may
allow this behavior to be overridden.

4. Once the finalizer for an object is run, if neither the object nor any of its instance
fields can be accessed by any possible continuation of execution, including the
running of finalizers, the object is considered inaccessible and the object becomes
eligible for collection.

Note: An object which could previously not be accessed may become
accessible again due to its finalizer. An example of this is provided below. end
note

5. Finally, at some time after the object becomes eligible for collection, the garbage
collector frees the memory associated with that object.

The garbage collector maintains information about object usage, and uses this
information to make memory management decisions, such as where in memory to
locate a newly created object, when to relocate an object, and when an object is no
longer in use or inaccessible.

7.9 Automatic memory management

Like other languages that assume the existence of a garbage collector, C# is designed so
that the garbage collector might implement a wide range of memory management
policies. C# specifies neither a time constraint within that span, nor an order in which
finalizers are run. Whether or not finalizers are run as part of application termination is
implementation-specific (§7.2).

The behavior of the garbage collector can be controlled, to some degree, via static
methods on the class System.GC . This class can be used to request a collection to occur,
finalizers to be run (or not run), and so forth.

Example: Since the garbage collector is allowed wide latitude in deciding when to
collect objects and run finalizers, a conforming implementation might produce
output that differs from that shown by the following code. The program

C#

class A
{
 ~A()
 {
 Console.WriteLine("Finalize instance of A");
 }
}

class B
{
 object Ref;
 public B(object o)
 {
 Ref = o;
 }

 ~B()
 {
 Console.WriteLine("Finalize instance of B");
 }
}

class Test
{
 static void Main()
 {
 B b = new B(new A());
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

creates an instance of class A and an instance of class B . These objects become
eligible for garbage collection when the variable b is assigned the value null , since
after this time it is impossible for any user-written code to access them. The output
could be either

Console

or

Console

because the language imposes no constraints on the order in which objects are
garbage collected.

In subtle cases, the distinction between “eligible for finalization” and “eligible for
collection” can be important. For example,

C#

Finalize instance of A
Finalize instance of B

Finalize instance of B
Finalize instance of A

class A
{
 ~A()
 {
 Console.WriteLine("Finalize instance of A");
 }

 public void F()
 {
 Console.WriteLine("A.F");
 Test.RefA = this;
 }
}

class B
{
 public A Ref;

 ~B()
 {
 Console.WriteLine("Finalize instance of B");
 Ref.F();
 }
}

In the above program, if the garbage collector chooses to run the finalizer of A
before the finalizer of B , then the output of this program might be:

Console

Note that although the instance of A was not in use and A ’s finalizer was run, it is
still possible for methods of A (in this case, F) to be called from another finalizer.
Also, note that running of a finalizer might cause an object to become usable from
the mainline program again. In this case, the running of B ’s finalizer caused an
instance of A that was previously not in use, to become accessible from the live
reference Test.RefA . After the call to WaitForPendingFinalizers , the instance of B is
eligible for collection, but the instance of A is not, because of the reference
Test.RefA .

end example

class Test
{
 public static A RefA;
 public static B RefB;

 static void Main()
 {
 RefB = new B();
 RefA = new A();
 RefB.Ref = RefA;
 RefB = null;
 RefA = null;
 // A and B now eligible for finalization
 GC.Collect();
 GC.WaitForPendingFinalizers();
 // B now eligible for collection, but A is not
 if (RefA != null)
 {
 Console.WriteLine("RefA is not null");
 }
 }
}

Finalize instance of A
Finalize instance of B
A.F
RefA is not null

7.10 Execution order

Execution of a C# program proceeds such that the side effects of each executing thread
are preserved at critical execution points. A side effect is defined as a read or write of a
volatile field, a write to a non-volatile variable, a write to an external resource, and the
throwing of an exception. The critical execution points at which the order of these side
effects shall be preserved are references to volatile fields (§14.5.4), lock statements
(§12.13), and thread creation and termination. The execution environment is free to
change the order of execution of a C# program, subject to the following constraints:

Data dependence is preserved within a thread of execution. That is, the value of
each variable is computed as if all statements in the thread were executed in
original program order.
Initialization ordering rules are preserved (§14.5.5, §14.5.6).
The ordering of side effects is preserved with respect to volatile reads and writes
(§14.5.4). Additionally, the execution environment need not evaluate part of an
expression if it can deduce that that expression’s value is not used and that no
needed side effects are produced (including any caused by calling a method or
accessing a volatile field). When program execution is interrupted by an
asynchronous event (such as an exception thrown by another thread), it is not
guaranteed that the observable side effects are visible in the original program
order.

8 Types
Article • 2023-01-13 • 29 minutes to read

The types of the C# language are divided into two main categories: reference types and
value types. Both value types and reference types may be generic types, which take one
or more type parameters. Type parameters can designate both value types and
reference types.

ANTLR

pointer_type (§22.3) is available only in unsafe code (§22).

Value types differ from reference types in that variables of the value types directly
contain their data, whereas variables of the reference types store references to their
data, the latter being known as objects. With reference types, it is possible for two
variables to reference the same object, and thus possible for operations on one variable
to affect the object referenced by the other variable. With value types, the variables each
have their own copy of the data, and it is not possible for operations on one to affect
the other.

Note: When a variable is a ref or out parameter, it does not have its own storage but
references the storage of another variable. In this case, the ref or out variable is
effectively an alias for another variable and not a distinct variable. end note

C#’s type system is unified such that a value of any type can be treated as an object.
Every type in C# directly or indirectly derives from the object class type, and object is
the ultimate base class of all types. Values of reference types are treated as objects
simply by viewing the values as type object . Values of value types are treated as objects
by performing boxing and unboxing operations (§8.3.12).

For convenience, throughout this specification, some library type names are written
without using their full name qualification. Refer to §C.5 for more information.

8.1 General

type
 : reference_type
 | value_type
 | type_parameter
 | pointer_type // unsafe code support
 ;

A reference type is a class type, an interface type, an array type, a delegate type, or the
dynamic type.

ANTLR

pointer_type is available only in unsafe code (§22.3).

8.2 Reference types

8.2.1 General

reference_type
 : class_type
 | interface_type
 | array_type
 | delegate_type
 | 'dynamic'
 ;

class_type
 : type_name
 | 'object'
 | 'string'
 ;

interface_type
 : type_name
 ;

array_type
 : non_array_type rank_specifier+
 ;

non_array_type
 : value_type
 | class_type
 | interface_type
 | delegate_type
 | 'dynamic'
 | type_parameter
 | pointer_type // unsafe code support
 ;

rank_specifier
 : '[' ','* ']'
 ;

delegate_type
 : type_name
 ;

A reference type value is a reference to an instance of the type, the latter known as an
object. The special value null is compatible with all reference types and indicates the
absence of an instance.

A class type defines a data structure that contains data members (constants and fields),
function members (methods, properties, events, indexers, operators, instance
constructors, finalizers, and static constructors), and nested types. Class types support
inheritance, a mechanism whereby derived classes can extend and specialize base
classes. Instances of class types are created using object_creation_expressions
(§11.7.15.2).

Class types are described in §14.

Certain predefined class types have special meaning in the C# language, as described in
the table below.

Class type Description

System.Object The ultimate base class of all other types. See §8.2.3.

System.String The string type of the C# language. See §8.2.5.

System.ValueType The base class of all value types. See §8.3.2.

System.Enum The base class of all enum types. See §18.5.

System.Array The base class of all array types. See §16.2.2.

System.Delegate The base class of all delegate types. See §19.1.

System.Exception The base class of all exception types. See §20.3.

The object class type is the ultimate base class of all other types. Every type in C#
directly or indirectly derives from the object class type.

The keyword object is simply an alias for the predefined class System.Object .

8.2.2 Class types

8.2.3 The object type

8.2.4 The dynamic type

The dynamic type, like object , can reference any object. When operations are applied to
expressions of type dynamic , their resolution is deferred until the program is run. Thus, if
the operation cannot legitimately be applied to the referenced object, no error is given
during compilation. Instead, an exception will be thrown when resolution of the
operation fails at run-time.

The dynamic type is further described in §8.7, and dynamic binding in §11.3.1.

The string type is a sealed class type that inherits directly from object . Instances of the
string class represent Unicode character strings.

Values of the string type can be written as string literals (§6.4.5.6).

The keyword string is simply an alias for the predefined class System.String .

An interface defines a contract. A class or struct that implements an interface shall
adhere to its contract. An interface may inherit from multiple base interfaces, and a class
or struct may implement multiple interfaces.

Interface types are described in §17.

An array is a data structure that contains zero or more variables, which are accessed
through computed indices. The variables contained in an array, also called the elements
of the array, are all of the same type, and this type is called the element type of the
array.

Array types are described in §16.

A delegate is a data structure that refers to one or more methods. For instance methods,
it also refers to their corresponding object instances.

Note: The closest equivalent of a delegate in C or C++ is a function pointer, but
whereas a function pointer can only reference static functions, a delegate can
reference both static and instance methods. In the latter case, the delegate stores

8.2.5 The string type

8.2.6 Interface types

8.2.7 Array types

8.2.8 Delegate types

not only a reference to the method’s entry point, but also a reference to the object
instance on which to invoke the method. end note

Delegate types are described in §19.

A value type is either a struct type or an enumeration type. C# provides a set of
predefined struct types called the simple types. The simple types are identified through
keywords.

ANTLR

8.3 Value types

8.3.1 General

value_type
 : non_nullable_value_type
 | nullable_value_type
 ;

non_nullable_value_type
 : struct_type
 | enum_type
 ;

struct_type
 : type_name
 | simple_type
 ;

simple_type
 : numeric_type
 | 'bool'
 ;

numeric_type
 : integral_type
 | floating_point_type
 | 'decimal'
 ;

integral_type
 : 'sbyte'
 | 'byte'
 | 'short'
 | 'ushort'
 | 'int'
 | 'uint'
 | 'long'

Unlike a variable of a reference type, a variable of a value type can contain the value
null only if the value type is a nullable value type (§8.3.11). For every non-nullable value
type there is a corresponding nullable value type denoting the same set of values plus
the value null .

Assignment to a variable of a value type creates a copy of the value being assigned. This
differs from assignment to a variable of a reference type, which copies the reference but
not the object identified by the reference.

All value types implicitly inherit from the class System.ValueType , which, in turn, inherits
from class object . It is not possible for any type to derive from a value type, and value
types are thus implicitly sealed (§14.2.2.3).

Note that System.ValueType is not itself a value_type. Rather, it is a class_type from which
all value_types are automatically derived.

All value types implicitly declare a public parameterless instance constructor called the
default constructor. The default constructor returns a zero-initialized instance known as
the default value for the value type:

For all simple_types, the default value is the value produced by a bit pattern of all
zeros:

For sbyte , byte , short , ushort , int , uint , long , and ulong , the default value
is 0 .

 | 'ulong'
 | 'char'
 ;

floating_point_type
 : 'float'
 | 'double'
 ;

enum_type
 : type_name
 ;

nullable_value_type
 : non_nullable_value_type '?'
 ;

8.3.2 The System.ValueType type

8.3.3 Default constructors

For char , the default value is '\x0000' .
For float , the default value is 0.0f .
For double , the default value is 0.0d .
For decimal , the default value is 0m (that is, value zero with scale 0).
For bool , the default value is false .
For an enum_type E , the default value is 0 , converted to the type E .

For a struct_type, the default value is the value produced by setting all value type
fields to their default value and all reference type fields to null .
For a nullable_value_type the default value is an instance for which the HasValue
property is false. The default value is also known as the null value of the nullable
value type. Attempting to read the Value property of such a value causes an
exception of type System.InvalidOperationException to be thrown (§8.3.11).

Like any other instance constructor, the default constructor of a value type is invoked
using the new operator.

Note: For efficiency reasons, this requirement is not intended to actually have the
implementation generate a constructor call. For value types, the default value
expression (§11.7.19) produces the same result as using the default constructor. end
note

Example: In the code below, variables i , j and k are all initialized to zero.

C#

end example

Because every value type implicitly has a public parameterless instance constructor, it is
not possible for a struct type to contain an explicit declaration of a parameterless
constructor. A struct type is however permitted to declare parameterized instance
constructors (§15.4.9).

class A
{
 void F()
 {
 int i = 0;
 int j = new int();
 int k = default(int);
 }
}

A struct type is a value type that can declare constants, fields, methods, properties,
events, indexers, operators, instance constructors, static constructors, and nested types.
The declaration of struct types is described in §15.

C# provides a set of predefined struct types called the simple types. The simple types
are identified through keywords, but these keywords are simply aliases for predefined
struct types in the System namespace, as described in the table below.

Keyword Aliased type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

Because a simple type aliases a struct type, every simple type has members.

Example: int has the members declared in System.Int32 and the members
inherited from System.Object , and the following statements are permitted:

C#

8.3.4 Struct types

8.3.5 Simple types

end example

Note: The simple types differ from other struct types in that they permit certain
additional operations:

Most simple types permit values to be created by writing literals (§6.4.5),
although C# makes no provision for literals of struct types in general. Example:
123 is a literal of type int and 'a' is a literal of type char . end example
When the operands of an expression are all simple type constants, it is
possible for the compiler to evaluate the expression at compile-time. Such an
expression is known as a constant_expression (§11.21). Expressions involving
operators defined by other struct types are not considered to be constant
expressions
Through const declarations, it is possible to declare constants of the simple
types (§14.4). It is not possible to have constants of other struct types, but a
similar effect is provided by static readonly fields.
Conversions involving simple types can participate in evaluation of conversion
operators defined by other struct types, but a user-defined conversion
operator can never participate in evaluation of another user-defined
conversion operator (§10.5.3).

end note.

C# supports nine integral types: sbyte , byte , short , ushort , int , uint , long , ulong ,
and char . The integral types have the following sizes and ranges of values:

The sbyte type represents signed 8-bit integers with values from -128 to 127 ,
inclusive.
The byte type represents unsigned 8-bit integers with values from 0 to 255 ,
inclusive.
The short type represents signed 16-bit integers with values from -32768 to
32767 , inclusive.
The ushort type represents unsigned 16-bit integers with values from 0 to 65535 ,
inclusive.

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

8.3.6 Integral types

The int type represents signed 32-bit integers with values from -2147483648 to
2147483647 , inclusive.
The uint type represents unsigned 32-bit integers with values from 0 to
4294967295 , inclusive.
The long type represents signed 64-bit integers with values from
-9223372036854775808 to 9223372036854775807 , inclusive.
The ulong type represents unsigned 64-bit integers with values from 0 to
18446744073709551615 , inclusive.
The char type represents unsigned 16-bit integers with values from 0 to 65535 ,
inclusive. The set of possible values for the char type corresponds to the Unicode
character set.

Note: Although char has the same representation as ushort , not all operations
permitted on one type are permitted on the other. end note

All signed integral types are represented using two’s complement format.

The integral_type unary and binary operators always operate with signed 32-bit
precision, unsigned 32-bit precision, signed 64-bit precision, or unsigned 64-bit
precision, as detailed in §11.4.7.

The char type is classified as an integral type, but it differs from the other integral types
in two ways:

There are no predefined implicit conversions from other types to the char type. In
particular, even though the byte and ushort types have ranges of values that are
fully representable using the char type, implicit conversions from sbyte, byte, or
ushort to char do not exist.
Constants of the char type shall be written as character_literals or as
integer_literals in combination with a cast to type char.

Example: (char)10 is the same as '\x000A' . end example

The checked and unchecked operators and statements are used to control overflow
checking for integral-type arithmetic operations and conversions (§11.7.18). In a checked
context, an overflow produces a compile-time error or causes a
System.OverflowException to be thrown. In an unchecked context, overflows are ignored
and any high-order bits that do not fit in the destination type are discarded.

8.3.7 Floating-point types

C# supports two floating-point types: float and double . The float and double types
are represented using the 32-bit single-precision and 64-bit double-precision IEC 60559
formats, which provide the following sets of values:

Positive zero and negative zero. In most situations, positive zero and negative zero
behave identically as the simple value zero, but certain operations distinguish
between the two (§11.9.3).
Positive infinity and negative infinity. Infinities are produced by such operations as
dividing a non-zero number by zero.

Example: 1.0 / 0.0 yields positive infinity, and –1.0 / 0.0 yields negative
infinity. end example

The Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid
floating-point operations, such as dividing zero by zero.
The finite set of non-zero values of the form s × m × 2ᵉ, where s is 1 or −1, and m
and e are determined by the particular floating-point type: For float , 0 < m < 2²⁴
and −149 ≤ e ≤ 104, and for double , 0 < m < 2⁵³ and −1075 ≤ e ≤ 970.
Denormalized floating-point numbers are considered valid non-zero values. C#
neither requires nor forbids that a conforming implementation support
denormalized floating-point numbers.

The float type can represent values ranging from approximately 1.5 × 10⁻⁴⁵ to 3.4 ×
10³⁸ with a precision of 7 digits.

The double type can represent values ranging from approximately 5.0 × 10⁻³²⁴ to 1.7 ×
10³⁰⁸ with a precision of 15-16 digits.

If either operand of a binary operator is a floating-point type then standard numeric
promotions are applied, as detailed in §11.4.7, and the operation is performed with
float or double precision.

The floating-point operators, including the assignment operators, never produce
exceptions. Instead, in exceptional situations, floating-point operations produce zero,
infinity, or NaN, as described below:

The result of a floating-point operation is rounded to the nearest representable
value in the destination format.
If the magnitude of the result of a floating-point operation is too small for the
destination format, the result of the operation becomes positive zero or negative
zero.

If the magnitude of the result of a floating-point operation is too large for the
destination format, the result of the operation becomes positive infinity or
negative infinity.
If a floating-point operation is invalid, the result of the operation becomes NaN.
If one or both operands of a floating-point operation is NaN, the result of the
operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type
of the operation. To force a value of a floating-point type to the exact precision of its
type, an explicit cast (§11.8.7) can be used.

Example: Some hardware architectures support an “extended” or “long double”
floating-point type with greater range and precision than the double type, and
implicitly perform all floating-point operations using this higher precision type. Only
at excessive cost in performance can such hardware architectures be made to
perform floating-point operations with less precision, and rather than require an
implementation to forfeit both performance and precision, C# allows a higher
precision type to be used for all floating-point operations. Other than delivering
more precise results, this rarely has any measurable effects. However, in expressions
of the form x * y / z , where the multiplication produces a result that is outside the
double range, but the subsequent division brings the temporary result back into the
double range, the fact that the expression is evaluated in a higher range format can
cause a finite result to be produced instead of an infinity. end example

The decimal type is a 128-bit data type suitable for financial and monetary calculations.
The decimal type can represent values including those in the range at least -7.9 × 10⁻²⁸
to 7.9 × 10²⁸, with at least 28-digit precision.

The finite set of values of type decimal are of the form (–1)ᵛ × c × 10⁻ᵉ, where the sign v
is 0 or 1, the coefficient c is given by 0 ≤ c < Cmax, and the scale e is such that Emin ≤ e
≤ Emax, where Cmax is at least 1 × 10²⁸, Emin ≤ 0, and Emax ≥ 28. The decimal type
does not necessarily support signed zeros, infinities, or NaN’s.

A decimal is represented as an integer scaled by a power of ten. For decimals with an
absolute value less than 1.0m , the value is exact to at least the 28th decimal place. For
decimals with an absolute value greater than or equal to 1.0m , the value is exact to at
least 28 digits. Contrary to the float and double data types, decimal fractional numbers
such as 0.1 can be represented exactly in the decimal representation. In the float and

8.3.8 The Decimal type

double representations, such numbers often have non-terminating binary expansions,
making those representations more prone to round-off errors.

If either operand of a binary operator is of decimal type then standard numeric
promotions are applied, as detailed in §11.4.7, and the operation is performed with
double precision.

The result of an operation on values of type decimal is that which would result from
calculating an exact result (preserving scale, as defined for each operator) and then
rounding to fit the representation. Results are rounded to the nearest representable
value, and, when a result is equally close to two representable values, to the value that
has an even number in the least significant digit position (this is known as “banker’s
rounding”). That is, results are exact to at least the 28th decimal place. Note that
rounding may produce a zero value from a non-zero value.

If a decimal arithmetic operation produces a result whose magnitude is too large for the
decimal format, a System.OverflowException is thrown.

The decimal type has greater precision but may have a smaller range than the floating-
point types. Thus, conversions from the floating-point types to decimal might produce
overflow exceptions, and conversions from decimal to the floating-point types might
cause loss of precision or overflow exceptions. For these reasons, no implicit conversions
exist between the floating-point types and decimal , and without explicit casts, a
compile-time error occurs when floating-point and decimal operands are directly mixed
in the same expression.

The bool type represents Boolean logical quantities. The possible values of type bool
are true and false .

No standard conversions exist between bool and other value types. In particular, the
bool type is distinct and separate from the integral types, a bool value cannot be used
in place of an integral value, and vice versa.

Note: In the C and C++ languages, a zero integral or floating-point value, or a null
pointer can be converted to the Boolean value false , and a non-zero integral or
floating-point value, or a non-null pointer can be converted to the Boolean value
true . In C#, such conversions are accomplished by explicitly comparing an integral
or floating-point value to zero, or by explicitly comparing an object reference to
null . end note

8.3.9 The Bool type

An enumeration type is a distinct type with named constants. Every enumeration type
has an underlying type, which shall be byte , sbyte , short , ushort , int , uint , long or
ulong . The set of values of the enumeration type is the same as the set of values of the
underlying type. Values of the enumeration type are not restricted to the values of the
named constants. Enumeration types are defined through enumeration declarations
(§18.2).

A nullable value type can represent all values of its underlying type plus an additional
null value. A nullable value type is written T? , where T is the underlying type. This
syntax is shorthand for System.Nullable<T> , and the two forms can be used
interchangeably.

Conversely, a non-nullable value type is any value type other than System.Nullable<T>
and its shorthand T? (for any T), plus any type parameter that is constrained to be a
non-nullable value type (that is, any type parameter with a value type constraint
(§14.2.5)). The System.Nullable<T> type specifies the value type constraint for T , which
means that the underlying type of a nullable value type can be any non-nullable value
type. The underlying type of a nullable value type cannot be a nullable value type or a
reference type. For example, int?? and string? are invalid types.

An instance of a nullable value type T? has two public read-only properties:

A HasValue property of type bool
A Value property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance
contains a known value and Value returns that value.

An instance for which HasValue is false is said to be null. A null instance has an
undefined value. Attempting to read the Value of a null instance causes a
System.InvalidOperationException to be thrown. The process of accessing the Value
property of a nullable instance is referred to as unwrapping.

In addition to the default constructor, every nullable value type T? has a public
constructor with a single parameter of type T . Given a value x of type T , a constructor
invocation of the form

C#

8.3.10 Enumeration types

8.3.11 Nullable value types

creates a non-null instance of T? for which the Value property is x . The process of
creating a non-null instance of a nullable value type for a given value is referred to as
wrapping.

Implicit conversions are available from the null literal to T? (§10.2.7) and from T to T?
(§10.2.6).

The nullable type T? implements no interfaces (§17). In particular, this means it does not
implement any interface that the underlying type T does.

The concept of boxing and unboxing provide a bridge between value_types and
reference_types by permitting any value of a value_type to be converted to and from
type object . Boxing and unboxing enables a unified view of the type system wherein a
value of any type can ultimately be treated as an object .

Boxing is described in more detail in §10.2.9 and unboxing is described in §10.3.6.

A generic type declaration, by itself, denotes an unbound generic type that is used as a
“blueprint” to form many different types, by way of applying type arguments. The type
arguments are written within angle brackets (< and >) immediately following the name
of the generic type. A type that includes at least one type argument is called a
constructed type. A constructed type can be used in most places in the language in
which a type name can appear. An unbound generic type can only be used within a
typeof_expression (§11.7.16).

Constructed types can also be used in expressions as simple names (§11.7.4) or when
accessing a member (§11.7.6).

When a namespace_or_type_name is evaluated, only generic types with the correct
number of type parameters are considered. Thus, it is possible to use the same identifier
to identify different types, as long as the types have different numbers of type

new T?(x)

8.3.12 Boxing and unboxing

8.4 Constructed types

8.4.1 General

parameters. This is useful when mixing generic and non-generic classes in the same
program.

Example:

C#

end example

The detailed rules for name lookup in the namespace_or_type_name productions is
described in §7.8. The resolution of ambiguities in these productions is described in
§6.2.5. A type_name might identify a constructed type even though it doesn’t specify
type parameters directly. This can occur where a type is nested within a generic class
declaration, and the instance type of the containing declaration is implicitly used for
name lookup (§14.3.9.7).

Example:

C#

end example

A non-enum constructed type shall not be used as an unmanaged_type (§8.8).

namespace Widgets
{
 class Queue {...}
 class Queue<TElement> {...}
}

namespace MyApplication
{
 using Widgets;

 class X
 {
 Queue q1; // Non-generic Widgets.Queue
 Queue<int> q2; // Generic Widgets.Queue
 }
}

class Outer<T>
{
 public class Inner {...}

 public Inner i; // Type of i is Outer<T>.Inner
}

Each argument in a type argument list is simply a type.

ANTLR

A type_argument shall not be a pointer type (§22). Each type argument shall satisfy any
constraints on the corresponding type parameter (§14.2.5).

All types can be classified as either open types or closed types. An open type is a type
that involves type parameters. More specifically:

A type parameter defines an open type.
An array type is an open type if and only if its element type is an open type.
A constructed type is an open type if and only if one or more of its type arguments
is an open type. A constructed nested type is an open type if and only if one or
more of its type arguments or the type arguments of its containing type(s) is an
open type.

A closed type is a type that is not an open type.

At run-time, all of the code within a generic type declaration is executed in the context
of a closed constructed type that was created by applying type arguments to the
generic declaration. Each type parameter within the generic type is bound to a particular
run-time type. The run-time processing of all statements and expressions always occurs
with closed types, and open types occur only during compile-time processing.

Each closed constructed type has its own set of static variables, which are not shared
with any other closed constructed types. Since an open type does not exist at run-time,
there are no static variables associated with an open type. Two closed constructed types

8.4.2 Type arguments

type_argument_list
 : '<' type_arguments '>'
 ;

type_arguments
 : type_argument (',' type_argument)*
 ;

type_argument
 : type
 ;

8.4.3 Open and closed types

are the same type if they are constructed from the same unbound generic type, and
their corresponding type arguments are the same type.

The term unbound type refers to a non-generic type or an unbound generic type. The
term bound type refers to a non-generic type or a constructed type.

An unbound type refers to the entity declared by a type declaration. An unbound
generic type is not itself a type, and cannot be used as the type of a variable, argument
or return value, or as a base type. The only construct in which an unbound generic type
can be referenced is the typeof expression (§11.7.16).

Whenever a constructed type or generic method is referenced, the supplied type
arguments are checked against the type parameter constraints declared on the generic
type or method (§14.2.5). For each where clause, the type argument A that corresponds
to the named type parameter is checked against each constraint as follows:

If the constraint is a class type, an interface type, or a type parameter, let C
represent that constraint with the supplied type arguments substituted for any
type parameters that appear in the constraint. To satisfy the constraint, it shall be
the case that type A is convertible to type C by one of the following:

An identity conversion (§10.2.2)
An implicit reference conversion (§10.2.8)
A boxing conversion (§10.2.9), provided that type A is a non-nullable value type.
An implicit reference, boxing or type parameter conversion from a type
parameter A to C .

If the constraint is the reference type constraint (class), the type A shall satisfy
one of the following:

A is an interface type, class type, delegate type, array type or the dynamic type.

Note: System.ValueType and System.Enum are reference types that satisfy this
constraint. end note

A is a type parameter that is known to be a reference type (§8.2).
If the constraint is the value type constraint (struct), the type A shall satisfy one
of the following:

A is a struct type or enum type, but not a nullable value type.

8.4.4 Bound and unbound types

8.4.5 Satisfying constraints

Note: System.ValueType and System.Enum are reference types that do not
satisfy this constraint. end note

A is a type parameter having the value type constraint (§14.2.5).
If the constraint is the constructor constraint new() , the type A shall not be
abstract and shall have a public parameterless constructor. This is satisfied if one
of the following is true:

A is a value type, since all value types have a public default constructor (§8.3.3).
A is a type parameter having the constructor constraint (§14.2.5).
A is a type parameter having the value type constraint (§14.2.5).
A is a class that is not abstract and contains an explicitly declared public
constructor with no parameters.
A is not abstract and has a default constructor (§14.11.5).

A compile-time error occurs if one or more of a type parameter’s constraints are not
satisfied by the given type arguments.

Since type parameters are not inherited, constraints are never inherited either.

Example: In the following, D needs to specify the constraint on its type parameter T
so that T satisfies the constraint imposed by the base class B<T> . In contrast,
class E need not specify a constraint, because List<T> implements IEnumerable
for any T .

C#

end example

A type parameter is an identifier designating a value type or reference type that the
parameter is bound to at run-time.

ANTLR

class B<T> where T: IEnumerable {...}
class D<T> : B<T> where T: IEnumerable {...}
class E<T> : B<List<T>> {...}

8.5 Type parameters

type_parameter
 : identifier
 ;

Since a type parameter can be instantiated with many different type arguments, type
parameters have slightly different operations and restrictions than other types.

Note: These include:

A type parameter cannot be used directly to declare a base class (§14.2.4.2) or
interface (§17.2.4).
The rules for member lookup on type parameters depend on the constraints, if
any, applied to the type parameter. They are detailed in §11.5.
The available conversions for a type parameter depend on the constraints, if
any, applied to the type parameter. They are detailed in §10.2.12 and §10.3.8.
The literal null cannot be converted to a type given by a type parameter,
except if the type parameter is known to be a reference type (§10.2.12).
However, a default expression (§11.7.19) can be used instead. In addition, a
value with a type given by a type parameter can be compared with null using
== and != (§11.11.7) unless the type parameter has the value type constraint.
A new expression (§11.7.15.2) can only be used with a type parameter if the
type parameter is constrained by a constructor_constraint or the value type
constraint (§14.2.5).
A type parameter cannot be used anywhere within an attribute.
A type parameter cannot be used in a member access (§11.7.6) or type name
(§7.8) to identify a static member or a nested type.
A type parameter cannot be used as an unmanaged_type (§8.8).

end note

As a type, type parameters are purely a compile-time construct. At run-time, each type
parameter is bound to a run-time type that was specified by supplying a type argument
to the generic type declaration. Thus, the type of a variable declared with a type
parameter will, at run-time, be a closed constructed type §8.4.3. The run-time execution
of all statements and expressions involving type parameters uses the type that was
supplied as the type argument for that parameter.

Expression trees permit lambda expressions to be represented as data structures instead
of executable code. Expression trees are values of expression tree types of the form
System.Linq.Expressions.Expression<TDelegate> , where TDelegate is any delegate type.
For the remainder of this specification we will refer to these types using the shorthand
Expression<TDelegate> .

8.6 Expression tree types

If a conversion exists from a lambda expression to a delegate type D , a conversion also
exists to the expression tree type Expression<TDelegate> . Whereas the conversion of a
lambda expression to a delegate type generates a delegate that references executable
code for the lambda expression, conversion to an expression tree type creates an
expression tree representation of the lambda expression. More details of this conversion
are provided in §10.7.3.

Example: The following program represents a lambda expression both as executable
code and as an expression tree. Because a conversion exists to Func<int,int> , a
conversion also exists to Expression<Func<int,int>> :

C#

Following these assignments, the delegate del references a method that returns x
+ 1 , and the expression tree exp references a data structure that describes the
expression x => x + 1 .

end example

Expression<TDelegate> provides an instance method Compile which produces a
delegate of type TDelegate :

C#

Invoking this delegate causes the code represented by the expression tree to be
executed. Thus, given the definitions above, del and del2 are equivalent, and the
following two statements will have the same effect:

C#

After executing this code, i1 and i2 will both have the value 2 .

The API surface provided by Expression<TDelegate> is implementation-specific beyond
the requirement for a Compile method described above.

Func<int,int> del = x => x + 1; // Code
Expression<Func<int,int>> exp = x => x + 1; // Data

Func<int,int> del2 = exp.Compile();

int i1 = del(1);
int i2 = del2(1);

Note: While the details of the API provided for expression trees are implementation-
specific, it is expected that an implementation will:

Enable code to inspect and respond to the structure of an expression tree
created as the result of a conversion from a lambda expression
Enable expression trees to be created programatically within user code

end note

The type dynamic uses dynamic binding, as described in detail in §11.3.2, as opposed to
static binding which is used by all other types.

dynamic is considered identical to object except in the following respects:

Operations on expressions of type dynamic can be dynamically bound (§11.3.3).
Type inference (§11.6.3) will prefer dynamic over object if both are candidates.
dynamic cannot be used as

the type in an object_creation_expression (§11.7.15.2)
a predefined_type in a member_access (§11.7.6.1)
the operand of the typeof operator
an attribute argument
a constraint
an extension method type
any part of a type argument within struct_interfaces (§15.2.4) or
interface_type_list (§14.2.4.1).

Because of this equivalence, the following holds:

There is an implicit identity conversion between object and dynamic , and between
constructed types that are the same when replacing dynamic with object .
Implicit and explicit conversions to and from object also apply to and from
dynamic .
Signatures that are the same when replacing dynamic with object are considered
the same signature.
The type dynamic is indistinguishable from object at run-time.
An expression of the type dynamic is referred to as a dynamic expression.

8.7 The dynamic type

8.8 Unmanaged types

ANTLR

An unmanaged_type is any type that isn’t a reference_type, a type_parameter, or a
constructed type, and contains no fields whose type is not an unmanaged_type. In other
words, an unmanaged_type is one of the following:

sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double ,
decimal , or bool .
Any enum_type.
Any user-defined struct_type that is not a constructed type and contains fields of
unmanaged_types only.
In unsafe code (§22.2), any pointer_type (§22.3).

unmanaged_type
 : value_type
 | pointer_type // unsafe code support
 ;

9 Variables
Article • 2023-01-13 • 35 minutes to read

Variables represent storage locations. Every variable has a type that determines what
values can be stored in the variable. C# is a type-safe language, and the C# compiler
guarantees that values stored in variables are always of the appropriate type. The value
of a variable can be changed through assignment or through use of the ++ and --
operators.

A variable shall be definitely assigned (§9.4) before its value can be obtained.

As described in the following subclauses, variables are either initially assigned or
initially unassigned. An initially assigned variable has a well-defined initial value and is
always considered definitely assigned. An initially unassigned variable has no initial
value. For an initially unassigned variable to be considered definitely assigned at a
certain location, an assignment to the variable shall occur in every possible execution
path leading to that location.

C# defines seven categories of variables: static variables, instance variables, array
elements, value parameters, reference parameters, output parameters, and local
variables. The subclauses that follow describe each of these categories.

Example: In the following code

C#

9.1 General

9.2 Variable categories

9.2.1 General

class A
{
 public static int x;
 int y;

 void F(int[] v, int a, ref int b, out int c)
 {
 int i = 1;
 c = a + b++;

x is a static variable, y is an instance variable, v[0] is an array element, a is a value
parameter, b is a reference parameter, c is an output parameter, and i is a local
variable.

end example

A field declared with the static modifier is a static variable. A static variable comes into
existence before execution of the static constructor (§14.12) for its containing type,
and ceases to exist when the associated application domain ceases to exist.

The initial value of a static variable is the default value (§9.3) of the variable’s type.

For the purposes of definite-assignment checking, a static variable is considered initially
assigned.

A field declared without the static modifier is an instance variable.

An instance variable of a class comes into existence when a new instance of that class is
created, and ceases to exist when there are no references to that instance and the
instance’s finalizer (if any) has executed.

The initial value of an instance variable of a class is the default value (§9.3) of the
variable’s type.

For the purpose of definite-assignment checking, an instance variable of a class is
considered initially assigned.

 }
}

9.2.2 Static variables

9.2.3 Instance variables

9.2.3.1 General

9.2.3.2 Instance variables in classes

9.2.3.3 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to
which it belongs. In other words, when a variable of a struct type comes into existence
or ceases to exist, so too do the instance variables of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the
containing struct variable. In other words, when a struct variable is considered initially
assigned, so too are its instance variables, and when a struct variable is considered
initially unassigned, its instance variables are likewise unassigned.

The elements of an array come into existence when an array instance is created, and
cease to exist when there are no references to that array instance.

The initial value of each of the elements of an array is the default value (§9.3) of the type
of the array elements.

For the purpose of definite-assignment checking, an array element is considered initially
assigned.

A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member
(method, instance constructor, accessor, or operator) or anonymous function to which
the parameter belongs, and is initialized with the value of the argument given in the
invocation. A value parameter normally ceases to exist when execution of the function
body completes. However, if the value parameter is captured by an anonymous function
(§11.17.6.2), its lifetime extends at least until the delegate or expression tree created
from that anonymous function is eligible for garbage collection.

For the purpose of definite-assignment checking, a value parameter is considered
initially assigned.

A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference
parameter represents the same storage location as the variable given as the argument in

9.2.4 Array elements

9.2.5 Value parameters

9.2.6 Reference parameters

the function member, anonymous function, or local function invocation. Thus, the value
of a reference parameter is always the same as the underlying variable.

The following definite-assignment rules apply to reference parameters.

Note: The rules for output parameters are different, and are described in (§9.2.7). end
note

A variable shall be definitely assigned (§9.4) before it can be passed as a reference
parameter in a function member or delegate invocation.
Within a function member or anonymous function, a reference parameter is
considered initially assigned.

For a struct type, within an instance method or instance accessor (§11.2.1) or instance
constructor with a constructor initializer, the this keyword behaves exactly as a
reference parameter of the struct type (§11.7.12).

A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output
parameter represents the same storage location as the variable given as the argument in
the function member or delegate invocation. Thus, the value of an output parameter is
always the same as the underlying variable.

The following definite-assignment rules apply to output parameters.

Note: The rules for reference parameters are different, and are described in (§9.2.6).
end note

A variable need not be definitely assigned before it can be passed as an output
parameter in a function member or delegate invocation.
Following the normal completion of a function member or delegate invocation,
each variable that was passed as an output parameter is considered assigned in
that execution path.
Within a function member or anonymous function, an output parameter is
considered initially unassigned.
Every output parameter of a function member, anonymous function, or local
function shall be definitely assigned (§9.4) before the function member,
anonymous function, or local function returns normally.

9.2.7 Output parameters

Within an instance constructor of a struct type, the this keyword behaves exactly as an
output or reference parameter of the struct type, depending on whether the constructor
declaration includes a constructor initializer (§11.7.12).

A local variable is declared by a local_variable_declaration, foreach_statement, or
specific_catch_clause of a try_statement. For a foreach_statement, the local variable is an
iteration variable (§12.9.5). For a specific_catch_clause, the local variable is an exception
variable (§12.11). A local variable declared by a foreach_statement or
specific_catch_clause is considered initially assigned.

A local_variable_declaration can occur in a block, a for_statement, a switch_block, or a
using_statement.

The lifetime of a local variable is the portion of program execution during which storage
is guaranteed to be reserved for it. This lifetime extends from entry into the scope with
which it is associated, at least until execution of that scope ends in some way. (Entering
an enclosed block, calling a method, or yielding a value from an iterator block suspends,
but does not end, execution of the current scope.) If the local variable is captured by an
anonymous function (§11.17.6.2), its lifetime extends at least until the delegate or
expression tree created from the anonymous function, along with any other objects that
come to reference the captured variable, are eligible for garbage collection. If the parent
scope is entered recursively or iteratively, a new instance of the local variable is created
each time, and its local_variable_initializer, if any, is evaluated each time.

Note: A local variable is instantiated each time its scope is entered. This behavior is
visible to user code containing anonymous methods. end note

Note: The lifetime of an iteration variable (§12.9.5) declared by a foreach_statement is
a single iteration of that statement. Each iteration creates a new variable. end note

Note: The actual lifetime of a local variable is implementation-dependent. For
example, a compiler might statically determine that a local variable in a block is only
used for a small portion of that block. Using this analysis, the compiler could
generate code that results in the variable’s storage having a shorter lifetime than its
containing block.

The storage referred to by a local reference variable is reclaimed independently of
the lifetime of that local reference variable (§7.9).

end note

9.2.8 Local variables

A local variable introduced by a local_variable_declaration is not automatically initialized
and thus has no default value. Such a local variable is considered initially unassigned.

Note: A local_variable_declaration that includes a local_variable_initializer is still
initially unassigned. Execution of the declaration behaves exactly like an assignment
to the variable (§9.4.4.5). It is possible to use a variable without executing its
local_variable_initializer; e.g., within the initializer expression itself or by using a
goto_statement to bypass the initialization:

C#

Within the scope of a local variable, it is a compile-time error to refer to that local
variable in a textual position that precedes its local_variable_declarator.

end note

The following categories of variables are automatically initialized to their default values:

Static variables.
Instance variables of class instances.
Array elements.

The default value of a variable depends on the type of the variable and is determined as
follows:

For a variable of a value_type, the default value is the same as the value computed
by the value_type’s default constructor (§8.3.3).
For a variable of a reference_type, the default value is null .
In an unsafe context, for a variable of a pointer_type, the default value is null .

Note: Initialization to default values is typically done by having the memory
manager or garbage collector initialize memory to all-bits-zero before it is allocated
for use. For this reason, it is convenient to use all-bits-zero to represent the null
reference. end note

goto L;

int x = 1; // never executed

L: x += 1; // error: x not definitely assigned

9.3 Default values

At a given location in the executable code of a function member or an anonymous
function, a variable is said to be definitely assigned if the compiler can prove, by a
particular static flow analysis (§9.4.4), that the variable has been automatically initialized
or has been the target of at least one assignment.

Note: Informally stated, the rules of definite assignment are:

An initially assigned variable (§9.4.2) is always considered definitely assigned.
An initially unassigned variable (§9.4.3) is considered definitely assigned at a
given location if all possible execution paths leading to that location contain at
least one of the following:

A simple assignment (§11.19.2) in which the variable is the left operand.
An invocation expression (§11.7.8) or object creation expression (§11.7.15.2
that passes the variable as an output parameter.
For a local variable, a local variable declaration for the variable (§12.6.2) that
includes a variable initializer.

The formal specification underlying the above informal rules is described in §9.4.2,
§9.4.3, and §9.4.4.

end note

The definite-assignment states of instance variables of a struct_type variable are tracked
individually as well as collectively. In additional to the rules above, the following rules
apply to struct_type variables and their instance variables:

An instance variable is considered definitely assigned if its containing struct_type
variable is considered definitely assigned.
A struct_type variable is considered definitely assigned if each of its instance
variables is considered definitely assigned.

Definite assignment is a requirement in the following contexts:

A variable shall be definitely assigned at each location where its value is obtained.

Note: This ensures that undefined values never occur. end note
The occurrence of a variable in an expression is considered to obtain the value
of the variable, except when

9.4 Definite assignment

9.4.1 General

the variable is the left operand of a simple assignment,
the variable is passed as an output parameter, or
the variable is a struct_type variable and occurs as the left operand of a member
access.

A variable shall be definitely assigned at each location where it is passed as a
reference parameter.

Note: This ensures that the function member being invoked can consider the
reference parameter initially assigned. end note

All output parameters of a function member shall be definitely assigned at each
location where the function member returns (through a return statement or
through execution reaching the end of the function member body).

Note: This ensures that function members do not return undefined values in
output parameters, thus enabling the compiler to consider a function member
invocation that takes a variable as an output parameter equivalent to an
assignment to the variable. end note

The this variable of a struct_type instance constructor shall be definitely assigned
at each location where that instance constructor returns.

The following categories of variables are classified as initially assigned:

Static variables.
Instance variables of class instances.
Instance variables of initially assigned struct variables.
Array elements.
Value parameters.
Reference parameters.
Variables declared in a catch clause or a foreach statement.

The following categories of variables are classified as initially unassigned:

Instance variables of initially unassigned struct variables.
Output parameters, including the this variable of struct instance constructors
without a constructor initializer.

9.4.2 Initially assigned variables

9.4.3 Initially unassigned variables

Local variables, except those declared in a catch clause or a foreach statement.

In order to determine that each used variable is definitely assigned, the compiler shall
use a process that is equivalent to the one described in this subclause.

The compiler processes the body of each function member that has one or more initially
unassigned variables. For each initially unassigned variable v, the compiler determines a
definite-assignment state for v at each of the following points in the function member:

At the beginning of each statement
At the end point (§12.2) of each statement
On each arc which transfers control to another statement or to the end point of a
statement
At the beginning of each expression
At the end of each expression

The definite-assignment state of v can be either:

Definitely assigned. This indicates that on all possible control flows to this point, v
has been assigned a value.
Not definitely assigned. For the state of a variable at the end of an expression of
type bool , the state of a variable that isn’t definitely assigned might (but doesn’t
necessarily) fall into one of the following sub-states:

Definitely assigned after true expression. This state indicates that v is definitely
assigned if the Boolean expression evaluated as true, but is not necessarily
assigned if the Boolean expression evaluated as false.
Definitely assigned after false expression. This state indicates that v is definitely
assigned if the Boolean expression evaluated as false, but is not necessarily
assigned if the Boolean expression evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

v is not definitely assigned at the beginning of a function member body.
The definite-assignment state of v at the beginning of any other statement is
determined by checking the definite-assignment state of v on all control flow
transfers that target the beginning of that statement. If (and only if) v is definitely

9.4.4 Precise rules for determining definite assignment

9.4.4.1 General

9.4.4.2 General rules for statements

assigned on all such control flow transfers, then v is definitely assigned at the
beginning of the statement. The set of possible control flow transfers is
determined in the same way as for checking statement reachability (§12.2).
The definite-assignment state of v at the end point of a block , checked ,
unchecked , if , while , do , for , foreach , lock , using , or switch statement is
determined by checking the definite-assignment state of v on all control flow
transfers that target the end point of that statement. If v is definitely assigned on
all such control flow transfers, then v is definitely assigned at the end point of the
statement. Otherwise, v is not definitely assigned at the end point of the
statement. The set of possible control flow transfers is determined in the same way
as for checking statement reachability (§12.2).

Note: Because there are no control paths to an unreachable statement, v is definitely
assigned at the beginning of any unreachable statement. end note

The definite-assignment state of v on the control transfer to the first statement of the
statement list in the block (or to the end point of the block, if the statement list is
empty) is the same as the definite-assignment statement of v before the block, checked ,
or unchecked statement.

For an expression statement stmt that consists of the expression expr:

v has the same definite-assignment state at the beginning of expr as at the
beginning of stmt.
If v if definitely assigned at the end of expr, it is definitely assigned at the end point
of stmt; otherwise, it is not definitely assigned at the end point of stmt.

If stmt is a declaration statement without initializers, then v has the same definite-
assignment state at the end point of stmt as at the beginning of stmt.
If stmt is a declaration statement with initializers, then the definite-assignment
state for v is determined as if stmt were a statement list, with one assignment
statement for each declaration with an initializer (in the order of declaration).

9.4.4.3 Block statements, checked, and unchecked statements

9.4.4.4 Expression statements

9.4.4.5 Declaration statements

9.4.4.6 If statements

For a statement stmt of the form:

C#

v has the same definite-assignment state at the beginning of expr as at the
beginning of stmt.
If v is definitely assigned at the end of expr, then it is definitely assigned on the
control flow transfer to then_stmt and to either else_stmt or to the end-point of
stmt if there is no else clause.
If v has the state “definitely assigned after true expression” at the end of expr, then
it is definitely assigned on the control flow transfer to then_stmt, and not definitely
assigned on the control flow transfer to either else_stmt or to the end-point of stmt
if there is no else clause.
If v has the state “definitely assigned after false expression” at the end of expr, then
it is definitely assigned on the control flow transfer to else_stmt, and not definitely
assigned on the control flow transfer to then_stmt. It is definitely assigned at the
end-point of stmt if and only if it is definitely assigned at the end-point of
then_stmt.
Otherwise, v is considered not definitely assigned on the control flow transfer to
either the then_stmt or else_stmt, or to the end-point of stmt if there is no else
clause.

For a switch statement stmt with a controlling expression expr:

The definite-assignment state of v at the beginning of expr is the same as the state
of v at the beginning of stmt.
The definite-assignment state of v on the control flow transfer to a reachable
switch block statement list is the same as the definite-assignment state of v at the
end of expr.

For a statement stmt of the form:

C#

if («expr») «then_stmt» else «else_stmt»

9.4.4.7 Switch statements

9.4.4.8 While statements

while («expr») «while_body»

v has the same definite-assignment state at the beginning of expr as at the
beginning of stmt.
If v is definitely assigned at the end of expr, then it is definitely assigned on the
control flow transfer to while_body and to the end point of stmt.
If v has the state “definitely assigned after true expression” at the end of expr, then
it is definitely assigned on the control flow transfer to while_body, but not
definitely assigned at the end-point of stmt.
If v has the state “definitely assigned after false expression” at the end of expr, then
it is definitely assigned on the control flow transfer to the end point of stmt, but
not definitely assigned on the control flow transfer to while_body.

For a statement stmt of the form:

C#

v has the same definite-assignment state on the control flow transfer from the
beginning of stmt to do_body as at the beginning of stmt.
v has the same definite-assignment state at the beginning of expr as at the end
point of do_body.
If v is definitely assigned at the end of expr, then it is definitely assigned on the
control flow transfer to the end point of stmt.
If v has the state “definitely assigned after false expression” at the end of expr, then
it is definitely assigned on the control flow transfer to the end point of stmt, but
not definitely assigned on the control flow transfer to do_body.

For a statement of the form:

C#

definite-assignment checking is done as if the statement were written:

C#

9.4.4.9 Do statements

do «do_body» while («expr») ;

9.4.4.10 For statements

for («for_initializer» ; «for_condition» ; «for_iterator»)
«embedded_statement»

with continue statements that target the for statement being translated to goto
statements targeting the label LLoop . If the for_condition is omitted from the for
statement, then evaluation of definite-assignment proceeds as if for_condition were
replaced with true in the above expansion.

The definite-assignment state of v on the control flow transfer caused by a break ,
continue , or goto statement is the same as the definite-assignment state of v at the
beginning of the statement.

For a statement stmt of the form:

C#

the definite-assignment state of v at the beginning of expr is the same as the definite-
assignment state of v at the beginning of stmt.

For a statement stmt of the form:

C#

The definite-assignment state of v at the beginning of expr is the same as the
definite-assignment state of v at the beginning of stmt.
If v is an output parameter, then it shall be definitely assigned either:

{
 «for_initializer» ;
 while («for_condition»)
 {
 «embedded_statement» ;
 LLoop: «for_iterator» ;
 }
}

9.4.4.11 Break, continue, and goto statements

9.4.4.12 Throw statements

throw «expr» ;

9.4.4.13 Return statements

return «expr» ;

after expr
or at the end of the finally block of a try -finally or try -catch -finally
that encloses the return statement.

For a statement stmt of the form:

C#

If v is an output parameter, then it shall be definitely assigned either:
before stmt
or at the end of the finally block of a try -finally or try -catch -finally
that encloses the return statement.

For a statement stmt of the form:

C#

The definite-assignment state of v at the beginning of try_block is the same as the
definite-assignment state of v at the beginning of stmt.
The definite-assignment state of v at the beginning of catch_block_i (for any i) is
the same as the definite-assignment state of v at the beginning of stmt.
The definite-assignment state of v at the end-point of stmt is definitely assigned if
(and only if) v is definitely assigned at the end-point of try_block and every
catch_block_i (for every i from 1 to n).

For a statement stmt of the form:

C#

return ;

9.4.4.14 Try-catch statements

try «try_block»
catch (...) «catch_block_1»
...
catch (...) «catch_block_n»

9.4.4.15 Try-finally statements

try «try_block» finally «finally_block»

The definite-assignment state of v at the beginning of try_block is the same as the
definite-assignment state of v at the beginning of stmt.
The definite-assignment state of v at the beginning of finally_block is the same as
the definite-assignment state of v at the beginning of stmt.
The definite-assignment state of v at the end-point of stmt is definitely assigned if
(and only if) at least one of the following is true:

v is definitely assigned at the end-point of try_block
v is definitely assigned at the end-point of finally_block

If a control flow transfer (such as a goto statement) is made that begins within try_block,
and ends outside of try_block, then v is also considered definitely assigned on that
control flow transfer if v is definitely assigned at the end-point of finally_block. (This is
not an only if—if v is definitely assigned for another reason on this control flow transfer,
then it is still considered definitely assigned.)

For a statement of the form:

C#

definite-assignment analysis is done as if the statement were a try -finally statement
enclosing a try -catch statement:

C#

Example: The following example demonstrates how the different blocks of a try
statement (§12.11) affect definite assignment.

9.4.4.16 Try-catch-finally statements

try «try_block»
catch (...) «catch_block_1»
...
catch (...) «catch_block_n»
finally «finally_block»

try
{
 try «try_block»
 catch (...) «catch_block_1»
 ...
 catch (...) «catch_block_n»
}
finally «finally_block»

C#

end example

For a statement stmt of the form:

C#

The definite-assignment state of v at the beginning of expr is the same as the state
of v at the beginning of stmt.
The definite-assignment state of v on the control flow transfer to
embedded_statement or to the end point of stmt is the same as the state of v at the
end of expr.

class A
{
 static void F()
 {
 int i, j;
 try
 {
 goto LABEL;
 // neither i nor j definitely assigned
 i = 1;
 // i definitely assigned
 }
 catch
 {
 // neither i nor j definitely assigned
 i = 3;
 // i definitely assigned
 }
 finally
 {
 // neither i nor j definitely assigned
 j = 5;
 // j definitely assigned
 }
 // i and j definitely assigned
 LABEL: ;
 // j definitely assigned
 }
}

9.4.4.17 Foreach statements

foreach («type» «identifier» in «expr») «embedded_statement»

For a statement stmt of the form:

C#

The definite-assignment state of v at the beginning of resource_acquisition is the
same as the state of v at the beginning of stmt.
The definite-assignment state of v on the control flow transfer to
embedded_statement is the same as the state of v at the end of
resource_acquisition.

For a statement stmt of the form:

C#

The definite-assignment state of v at the beginning of expr is the same as the state
of v at the beginning of stmt.
The definite-assignment state of v on the control flow transfer to
embedded_statement is the same as the state of v at the end of expr.

For a statement stmt of the form:

C#

The definite-assignment state of v at the beginning of expr is the same as the state
of v at the beginning of stmt.
The definite-assignment state of v at the end of stmt is the same as the state of v
at the end of expr.

A yield break statement has no effect on the definite-assignment state.

9.4.4.18 Using statements

using («resource_acquisition») «embedded_statement»

9.4.4.19 Lock statements

lock («expr») «embedded_statement»

9.4.4.20 Yield statements

yield return «expr» ;

The following applies to any constant expression, and takes priority over any rules from
the following sections that might apply:

For a constant expression with value true :

If v is definitely assigned before the expression, then v is definitely assigned after
the expression.
Otherwise v is “definitely assigned after false expression” after the expression.

Example:

C#

end example

For a constant expression with value false :

If v is definitely assigned before the expression, then v is definitely assigned after
the expression.
Otherwise v is “definitely assigned after true expression” after the expression.

Example:

C#

end example

For all other constant expressions, the definite-assignment state of v after the
expression is the same as the definite-assignment state of v before the expression.

9.4.4.21 General rules for constant expressions

int x;
if (true) {}
else
{
 Console.WriteLine(x);
}

int x;
if (false)
{
 Console.WriteLine(x);
}

The following rule applies to these kinds of expressions: literals (§11.7.2), simple names
(§11.7.4), member access expressions (§11.7.6), non-indexed base access expressions
(§11.7.13), typeof expressions (§11.7.16), default value expressions (§11.7.19), and
nameof expressions (§11.7.20).

The definite-assignment state of v at the end of such an expression is the same as
the definite-assignment state of v at the beginning of the expression.

The following rules apply to these kinds of expressions: parenthesized expressions
(§11.7.5), element access expressions (§11.7.10), base access expressions with indexing
(§11.7.13), increment and decrement expressions (§11.7.14, §11.8.6), cast expressions
(§11.8.7), unary + , - , ~ , * expressions, binary + , - , * , / , % , << , >> , < , <= , > , >= , == ,
!= , is , as , & , | , ^ expressions (§11.9, §11.10, §11.11, §11.12), compound assignment
expressions (§11.19.3), checked and unchecked expressions (§11.7.18), array and delegate
creation expressions (§11.7.15) , and await expressions (§11.8.8).

Each of these expressions has one or more subexpressions that are unconditionally
evaluated in a fixed order.

Example: The binary % operator evaluates the left hand side of the operator, then
the right hand side. An indexing operation evaluates the indexed expression, and
then evaluates each of the index expressions, in order from left to right. end example

For an expression expr, which has subexpressions expr₁, expr₂, …, exprₓ, evaluated in that
order:

The definite-assignment state of v at the beginning of expr₁ is the same as the
definite-assignment state at the beginning of expr.
The definite-assignment state of v at the beginning of exprᵢ (i greater than one) is
the same as the definite-assignment state at the end of exprᵢ₋₁.
The definite-assignment state of v at the end of expr is the same as the definite-
assignment state at the end of exprₓ.

If the method to be invoked is a partial method that has no implementing partial
method declaration, or is a conditional method for which the call is omitted (§21.5.3.2),

9.4.4.22 General rules for simple expressions

9.4.4.23 General rules for expressions with embedded expressions

9.4.4.24 Invocation expressions and object creation expressions

then the definite-assignment state of v after the invocation is the same as the definite-
assignment state of v before the invocation. Otherwise the following rules apply:

For an invocation expression expr of the form:

C#

or an object-creation expression expr of the form:

C#

For an invocation expression, the definite-assignment state of v before
primary_expression is the same as the state of v before expr.
For an invocation expression, the definite-assignment state of v before arg₁ is the
same as the state of v after primary_expression.
For an object-creation expression, the definite-assignment state of v before arg₁ is
the same as the state of v before expr.
For each argument argᵢ, the definite-assignment state of v after argᵢ is determined
by the normal expression rules, ignoring any ref or out modifiers.
For each argument argᵢ for any i greater than one, the definite-assignment state of
v before argᵢ is the same as the state of v after argᵢ₋₁.
If the variable v is passed as an out argument (i.e., an argument of the form “out
v”) in any of the arguments, then the state of v after expr is definitely assigned.
Otherwise, the state of v after expr is the same as the state of v after argₓ.
For array initializers (§11.7.15.5), object initializers (§11.7.15.3), collection initializers
(§11.7.15.4) and anonymous object initializers (§11.7.15.7), the definite-assignment
state is determined by the expansion that these constructs are defined in terms of.

For an expression expr of the form:

C#

The definite-assignment state of v before w is the same as the definite-assignment
state of v before expr.

«primary_expression» («arg₁», «arg₂», … , «argₓ»)

new «type» («arg₁», «arg₂», … , «argₓ»)

9.4.4.25 Simple assignment expressions

«w» = «expr_rhs»

The definite-assignment state of v before expr_rhs is the same as the definite-
assignment state of v after w.
If w is the same variable as v, then the definite-assignment state of v after expr is
definitely assigned. Otherwise, if the assignment occurs within the instance
constructor of a struct type, and w is a property access designating an
automatically implemented property P on the instance being constructed and v is
the hidden backing field of P, then the definite-assignment state of v after expr is
definitely assigned. Otherwise, the definite-assignment state of v after expr is the
same as the definite-assignment state of v after expr_rhs.

Example: In the following code

C#

the variable x is considered definitely assigned after arr[x = 1] is evaluated as the
left hand side of the second simple assignment.

end example

For an expression expr of the form:

C#

The definite-assignment state of v before expr_first is the same as the definite-
assignment state of v before expr.
The definite-assignment state of v before expr_second is definitely assigned if and
only if the state of v after expr_first is either definitely assigned or “definitely
assigned after true expression”. Otherwise, it is not definitely assigned.
The definite-assignment state of v after expr is determined by:

If the state of v after expr_first is definitely assigned, then the state of v after
expr is definitely assigned.

class A
{
 static void F(int[] arr)
 {
 int x;
 arr[x = 1] = x; // ok
 }
}

9.4.4.26 && expressions

«expr_first» && «expr_second»

Otherwise, if the state of v after expr_second is definitely assigned, and the state
of v after expr_first is “definitely assigned after false expression”, then the state
of v after expr is definitely assigned.
Otherwise, if the state of v after expr_second is definitely assigned or “definitely
assigned after true expression”, then the state of v after expr is “definitely
assigned after true expression”.
Otherwise, if the state of v after expr_first is “definitely assigned after false
expression”, and the state of v after expr_second is “definitely assigned after
false expression”, then the state of v after expr is “definitely assigned after false
expression”.
Otherwise, the state of v after expr is not definitely assigned.

Example: In the following code

C#

the variable i is considered definitely assigned in one of the embedded statements
of an if statement but not in the other. In the if statement in method F , the
variable i is definitely assigned in the first embedded statement because execution
of the expression (i = y) always precedes execution of this embedded statement.
In contrast, the variable i is not definitely assigned in the second embedded
statement, since x >= 0 might have tested false, resulting in the variable i ’s being
unassigned.

end example

class A
{
 static void F(int x, int y)
 {
 int i;
 if (x >= 0 && (i = y) >= 0)
 {
 // i definitely assigned
 }
 else
 {
 // i not definitely assigned
 }
 // i not definitely assigned
 }
}

9.4.4.27 || expressions

For an expression expr of the form:

C#

The definite-assignment state of v before expr_first is the same as the definite-
assignment state of v before expr.
The definite-assignment state of v before expr_second is definitely assigned if and
only if the state of v after expr_first is either definitely assigned or “definitely
assigned after true expression”. Otherwise, it is not definitely assigned.
The definite-assignment statement of v after expr is determined by:

If the state of v after expr_first is definitely assigned, then the state of v after
expr is definitely assigned.
Otherwise, if the state of v after expr_second is definitely assigned, and the state
of v after expr_first is “definitely assigned after true expression”, then the state of
v after expr is definitely assigned.
Otherwise, if the state of v after expr_second is definitely assigned or “definitely
assigned after false expression”, then the state of v after expr is “definitely
assigned after false expression”.
Otherwise, if the state of v after expr_first is “definitely assigned after true
expression”, and the state of v after expr_ second is “definitely assigned after
true expression”, then the state of v after expr is “definitely assigned after true
expression”.
Otherwise, the state of v after expr is not definitely assigned.

Example: In the following code

C#

«expr_first» || «expr_second»

class A
{
 static void G(int x, int y)
 {
 int i;
 if (x >= 0 || (i = y) >= 0)
 {
 // i not definitely assigned
 }
 else
 {
 // i definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements
of an if statement but not in the other. In the if statement in method G , the
variable i is definitely assigned in the second embedded statement because
execution of the expression (i = y) always precedes execution of this embedded
statement. In contrast, the variable i is not definitely assigned in the first
embedded statement, since x >= 0 might have tested true, resulting in the variable
i ’s being unassigned.

end example

For an expression expr of the form:

C#

The definite-assignment state of v before expr_operand is the same as the definite-
assignment state of v before expr.
The definite-assignment state of v after expr is determined by:

If the state of v after expr_operand is definitely assigned, then the state of v
after expr is definitely assigned.
Otherwise, if the state of v after expr_operand is “definitely assigned after false
expression”, then the state of v after expr is “definitely assigned after true
expression”.
Otherwise, if the state of v after expr_operand is “definitely assigned after true
expression”, then the state of v after expr is “definitely assigned after false
expression”.
Otherwise, the state of v after expr is not definitely assigned.

For an expression expr of the form:

C#

9.4.4.28 ! expressions

! «expr_operand»

9.4.4.29 ?? expressions

«expr_first» ?? «expr_second»

The definite-assignment state of v before expr_first is the same as the definite-
assignment state of v before expr.
The definite-assignment state of v before expr_second is the same as the definite-
assignment state of v after expr_first.
The definite-assignment statement of v after expr is determined by:

If expr_first is a constant expression (§11.21) with value null , then the state of v
after expr is the same as the state of v after expr_second.
Otherwise, the state of v after expr is the same as the definite-assignment state
of v after expr_first.

For an expression expr of the form:

C#

The definite-assignment state of v before expr_cond is the same as the state of v
before expr.
The definite-assignment state of v before expr_true is definitely assigned if the
state of v after expr_cond is definitely assigned or “definitely assigned after true
expression”.
The definite-assignment state of v before expr_false is definitely assigned if the
state of v after expr_cond is definitely assigned or “definitely assigned after false
expression”.
The definite-assignment state of v after expr is determined by:

If expr_cond is a constant expression (§11.21) with value true then the state of v
after expr is the same as the state of v after expr_true.
Otherwise, if expr_cond is a constant expression (§11.21) with value false then
the state of v after expr is the same as the state of v after expr_false.
Otherwise, if the state of v after expr_true is definitely assigned and the state of
v after expr_false is definitely assigned, then the state of v after expr is definitely
assigned.
Otherwise, the state of v after expr is not definitely assigned.

For a lambda_expression or anonymous_method_expression expr with a body (either block
or expression) body:

9.4.4.30 ?: expressions

«expr_cond» ? «expr_true» : «expr_false»

9.4.4.31 Anonymous functions

The definite-assignment state of a parameter is the same as for a parameter of a
named method (§9.2.6, §9.2.7).
The definite-assignment state of an outer variable v before body is the same as the
state of v before expr. That is, definite-assignment state of outer variables is
inherited from the context of the anonymous function.
The definite-assignment state of an outer variable v after expr is the same as the
state of v before expr.

Example: The example

C#

generates a compile-time error since max is not definitely assigned where the
anonymous function is declared.

end example

Example: The example

C#

class A
{
 delegate bool Filter(int i);
 void F()
 {
 int max;
 // Error, max is not definitely assigned
 Filter f = (int n) => n < max;
 max = 5;
 DoWork(f);
 }
 void DoWork(Filter f) { ... }
}

class A
{
 delegate void D();
 void F()
 {
 int n;
 D d = () => { n = 1; };
 d();
 // Error, n is not definitely assigned
 Console.WriteLine(n);
 }
}

also generates a compile-time error since the assignment to n in the anonymous
function has no affect on the definite-assignment state of n outside the anonymous
function.

end example

For an expression expr of the form:

throw thrown_expr

The definite assignment state of v before thrown_expr is the same as the state of v
before expr.
The definite assignment state of v after expr is “definitely assigned”.

Local functions are analyzed in the context of their parent method. There are two
control flow paths that matter for local functions: function calls and delegate
conversions.

Definite assignment for the body of each local function is defined separately for each
call site. At each invocation, variables captured by the local function are considered
definitely assigned if they were definitely assigned at the point of call. A control flow
path also exists to the local function body at this point and is considered reachable.
After a call to the local function, captured variables that were definitely assigned at
every control point leaving the function (return statements, yield statements, await
expressions) are considered definitely assigned after the call location.

Delegate conversions have a control flow path to the local function body. Captured
variables are definitely assigned for the body if they are definitely assigned before the
conversion. Variables assigned by the local function are not considered assigned after
the conversion.

Note: the above implies that bodies are re-analyzed for definite assignment at every
local function invocation or delegate conversion. Compilers are not required to re-
analyze the body of a local function at each invocation or delegate conversion. The
implementation must produce results equivalent to that description.

Example: The following example demonstrates definite assignment for captured
variables in local functions. If a local function reads a captured variable before

9.4.4.32 Throw expressions

9.4.4.33 Rules for variables in local functions

writing it, the captured variable must be definitely assigned before calling the local
function. The local function F1 reads s without assigning it. It is an error if F1 is
called before s is definitely assigned. F2 assigns i before reading it. It may be
called before i is definitely assigned. Furthermore, F3 may be called after F2
because s2 is definitely assigned in F2 .

C#

end example

void M()
{
 string s;
 int i;
 string s2;

 // Error: Use of unassigned local variable s:
 F1();
 // OK, F2 assigns i before reading it.
 F2();

 // OK, i is definitely assigned in the body of F2:
 s = i.ToString();

 // OK. s is now definitely assigned.
 F1();

 // OK, F3 reads s2, which is definitely assigned in F2.
 F3();

 void F1()
 {
 Console.WriteLine(s);
 }

 void F2()
 {
 i = 5;
 // OK. i is definitely assigned.
 Console.WriteLine(i);
 s2 = i.ToString();
 }

 void F3()
 {
 Console.WriteLine(s2);
 }
}

A variable_reference is an expression that is classified as a variable. A variable_reference
denotes a storage location that can be accessed both to fetch the current value and to
store a new value.

ANTLR

Note: In C and C++, a variable_reference is known as an lvalue. end note

Reads and writes of the following data types shall be atomic: bool , char , byte , sbyte ,
short , ushort , uint , int , float , and reference types. In addition, reads and writes of
enum types with an underlying type in the previous list shall also be atomic. Reads and
writes of other types, including long , ulong , double , and decimal , as well as user-
defined types, need not be atomic. Aside from the library functions designed for that
purpose, there is no guarantee of atomic read-modify-write, such as in the case of
increment or decrement.

9.5 Variable references

variable_reference
 : expression
 ;

9.6 Atomicity of variable references

10 Conversions
Article • 2023-01-12 • 52 minutes to read

A conversion causes an expression to be converted to, or treated as being of, a
particular type; in the former case a conversion may involve a change in representation.
Conversions can be implicit or explicit, and this determines whether an explicit cast is
required.

Example: For instance, the conversion from type int to type long is implicit, so
expressions of type int can implicitly be treated as type long . The opposite
conversion, from type long to type int , is explicit and so an explicit cast is required.

C#

end example

Some conversions are defined by the language. Programs may also define their own
conversions (§10.5).

Some conversions in the language are defined from expressions to types, others from
types to types. A conversion from a type applies to all expressions that have that type.

Example:

C#

10.1 General

int a = 123;
long b = a; // implicit conversion from int to long
int c = (int) b; // explicit conversion from long to int

enum Color { Red, Blue, Green }

// The expression 0 converts implicitly to enum types
Color c0 = 0;

// Other int expressions need explicit conversion
Color c1 = (Color)1;

// Conversion from null expression (no type) to string
string x = null;

end example

The following conversions are classified as implicit conversions:

Identity conversions
Implicit numeric conversions
Implicit enumeration conversions
Implicit interpolated string conversions
Implicit reference conversions
Boxing conversions
Implicit dynamic conversions
Implicit type parameter conversions
Implicit constant expression conversions
User-defined implicit conversions
Anonymous function conversions
Method group conversions
Null literal conversions
Implicit nullable conversions
Lifted user-defined implicit conversions
Default literal conversions
Implicit throw conversion

Implicit conversions can occur in a variety of situations, including function member
invocations (§11.6.6), cast expressions (§11.8.7), and assignments (§11.19).

The pre-defined implicit conversions always succeed and never cause exceptions to be
thrown.

Note: Properly designed user-defined implicit conversions should exhibit these
characteristics as well. end note

For the purposes of conversion, the types object and dynamic are considered
equivalent.

// Conversion from lambda expression to delegate type
Func<int, int> square = x => x * x;

10.2 Implicit conversions

10.2.1 General

However, dynamic conversions (§10.2.10 and §10.3.7) apply only to expressions of type
dynamic (§8.2.4).

An identity conversion converts from any type to the same type. One reason this
conversion exists is so that a type T or an expression of type T can be said to be
convertible to T itself.

Because object and dynamic are considered equivalent there is an identity conversion
between object and dynamic , and between constructed types that are the same when
replacing all occurrences of dynamic with object .

In most cases, an identity conversion has no effect at runtime. However, since floating
point operations may be performed at higher precision than prescribed by their type
(§8.3.7), assignment of their results may result in a loss of precision, and explicit casts are
guaranteed to reduce precision to what is prescribed by the type (§11.8.7).

The implicit numeric conversions are:

From sbyte to short , int , long , float , double , or decimal .
From byte to short , ushort , int , uint , long , ulong , float , double , or decimal .
From short to int , long , float , double , or decimal .
From ushort to int , uint , long , ulong , float , double , or decimal .
From int to long , float , double , or decimal .
From uint to long , ulong , float , double , or decimal .
From long to float , double , or decimal .
From ulong to float , double , or decimal .
From char to ushort , int , uint , long , ulong , float , double , or decimal .
From float to double .

Conversions from int , uint , long or ulong to float and from long or ulong to
double may cause a loss of precision, but will never cause a loss of magnitude. The
other implicit numeric conversions never lose any information.

There are no predefined implicit conversions to the char type, so values of the other
integral types do not automatically convert to the char type.

10.2.2 Identity conversion

10.2.3 Implicit numeric conversions

An implicit enumeration conversion permits a constant_expression (§11.21) with any
integer type and the value zero to be converted to any enum_type and to any
nullable_value_type whose underlying type is an enum_type. In the latter case the
conversion is evaluated by converting to the underlying enum_type and wrapping the
result (§8.3.11).

An implicit interpolated string conversion permits an interpolated_string_expression
(§11.7.3) to be converted to System.IFormattable or System.FormattableString (which
implements System.IFormattable). When this conversion is applied, a string value is not
composed from the interpolated string. Instead an instance of
System.FormattableString is created, as further described in §11.7.3.

The implicit nullable conversions are those nullable conversions (§10.6.1) derived from
implicit predefined conversions.

An implicit conversion exists from the null literal to any reference type or nullable value
type. This conversion produces a null reference if the target type is a reference type, or
the null value (§8.3.11) of the given nullable value type.

The implicit reference conversions are:

From any reference_type to object and dynamic .
From any class_type S to any class_type T , provided S is derived from T .
From any class_type S to any interface_type T , provided S implements T .
From any interface_type S to any interface_type T , provided S is derived from T .
From an array_type S with an element type Sᵢ to an array_type T with an element
type Tᵢ , provided all of the following are true:

S and T differ only in element type. In other words, S and T have the same
number of dimensions.
An implicit reference conversion exists from Sᵢ to Tᵢ .

10.2.4 Implicit enumeration conversions

10.2.5 Implicit interpolated string conversions

10.2.6 Implicit nullable conversions

10.2.7 Null literal conversions

10.2.8 Implicit reference conversions

From a single-dimensional array type S[] to
System.Collections.Generic.IList<T> ,
System.Collections.Generic.IReadOnlyList<T> , and their base interfaces, provided
that there is an implicit identity or reference conversion from S to T .
From any array_type to System.Array and the interfaces it implements.
From any delegate_type to System.Delegate and the interfaces it implements.
From the null literal (§6.4.5.7) to any reference-type.
From any reference_type to a reference_type T if it has an implicit identity or
reference conversion to a reference_type T₀ and T₀ has an identity conversion
to T .
From any reference_type to an interface or delegate type T if it has an implicit
identity or reference conversion to an interface or delegate type T₀ and T₀ is
variance-convertible (§17.2.3.3) to T .
Implicit conversions involving type parameters that are known to be reference
types. See §10.2.12 for more details on implicit conversions involving type
parameters.

The implicit reference conversions are those conversions between reference_types that
can be proven to always succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the
object being converted.

Note: In other words, while a reference conversion can change the type of the
reference, it never changes the type or value of the object being referred to. end
note

A boxing conversion permits a value_type to be implicitly converted to a reference_type.
The following boxing conversions exist:

From any value_type to the type object .
From any value_type to the type System.ValueType .
From any enum_type to the type System.Enum .
From any non_nullable_value_type to any interface_type implemented by the
non_nullable_value_type.
From any non_nullable_value_type to any interface_type I such that there is a
boxing conversion from the non_nullable_value_type to another interface_type I₀ ,
and I₀ has an identity conversion to I .

10.2.9 Boxing conversions

From any non_nullable_value_type to any interface_type I such that there is a
boxing conversion from the non_nullable_value_type to another interface_type I₀ ,
and I₀ is variance-convertible (§17.2.3.3) to I .
From any nullable_value_type to any reference_type where there is a boxing
conversion from the underlying type of the nullable_value_type to the
reference_type.
From a type parameter that is not known to be a reference type to any type such
that the conversion is permitted by §10.2.12.

Boxing a value of a non-nullable-value-type consists of allocating an object instance and
copying the value into that instance.

Boxing a value of a nullable_value_type produces a null reference if it is the null value
(HasValue is false), or the result of unwrapping and boxing the underlying value
otherwise.

Note: The process of boxing may be imagined in terms of the existence of a boxing
class for every value type. For example, consider a struct S implementing an
interface I , with a boxing class called S_Boxing .

C#

interface I
{
 void M();
}

struct S : I
{
 public void M() { ... }
}

sealed class S_Boxing : I
{
 S value;

 public S_Boxing(S value)
 {
 this.value = value;
 }

 public void M()
 {
 value.M();
 }
}

Boxing a value v of type S now consists of executing the expression new
S_Boxing(v) and returning the resulting instance as a value of the target type of the
conversion. Thus, the statements

C#

can be thought of as similar to:

C#

The imagined boxing type described above does not actually exist. Instead, a boxed
value of type S has the runtime type S , and a runtime type check using the is
operator with a value type as the right operand tests whether the left operand is a
boxed version of the right operand. For example,

C#

will output the following:

Console

A boxing conversion implies making a copy of the value being boxed. This is
different from a conversion of a reference_type to type object , in which the value
continues to reference the same instance and simply is regarded as the less derived
type object . For example, the following

C#

S s = new S();
object box = s;

S s = new S();
object box = new S_Boxing(s);

int i = 123;
object box = i;
if (box is int)
{
 Console.Write("Box contains an int");
}

Box contains an int

struct Point
{

will output the value 10 on the console because the implicit boxing operation that
occurs in the assignment of p to box causes the value of p to be copied. Had
Point been declared a class instead, the value 20 would be output because p and
box would reference the same instance.

The analogy of a boxing class should not be used as more than a helpful tool for
picturing how boxing works conceptually. There are numerous subtle differences
between the behavior described by this specification and the behavior that would
result from boxing being implemented in precisely this manner.

end note

An implicit dynamic conversion exists from an expression of type dynamic to any
type T . The conversion is dynamically bound §11.3.3, which means that an implicit
conversion will be sought at run-time from the run-time type of the expression to T . If
no conversion is found, a run-time exception is thrown.

This implicit conversion seemingly violates the advice in the beginning of §10.2 that an
implicit conversion should never cause an exception. However, it is not the conversion
itself, but the finding of the conversion that causes the exception. The risk of run-time
exceptions is inherent in the use of dynamic binding. If dynamic binding of the
conversion is not desired, the expression can be first converted to object , and then to
the desired type.

 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

class A
{
 void M()
 {
 Point p = new Point(10, 10);
 object box = p;
 p.x = 20;
 Console.Write(((Point)box).x);
 }
}

10.2.10 Implicit dynamic conversions

Example: The following illustrates implicit dynamic conversions:

C#

The assignments to s2 and i both employ implicit dynamic conversions, where the
binding of the operations is suspended until run-time. At run-time, implicit
conversions are sought from the run-time type of d (string) to the target type. A
conversion is found to string but not to int .

end example

An implicit constant expression conversion permits the following conversions:

A constant_expression (§11.21) of type int can be converted to type sbyte , byte ,
short , ushort , uint , or ulong , provided the value of the constant_expression is
within the range of the destination type.
A constant_expression of type long can be converted to type ulong , provided the
value of the constant_expression is not negative.

For a type_parameter T that is known to be a reference type (§14.2.5), the following
implicit reference conversions (§10.2.8) exist:

From T to its effective base class C , from T to any base class of C , and from T to
any interface implemented by C .
From T to an interface_type I in T ’s effective interface set and from T to any base
interface of I .
From T to a type parameter U provided that T depends on U (§14.2.5).

Note: Since T is known to be a reference type, within the scope of T , the run-
time type of U will always be a reference type, even if U is not known to be a
reference type at compile-time. end note

object o = "object";
dynamic d = "dynamic";
string s1 = o; // Fails at compile-time – no conversion exists
string s2 = d; // Compiles and succeeds at run-time
int i = d; // Compiles but fails at run-time – no conversion
exists

10.2.11 Implicit constant expression conversions

10.2.12 Implicit conversions involving type parameters

From the null literal (§6.4.5.7) to T.

For a type_parameter T that is not known to be a reference type §14.2.5, the following
conversions involving T are considered to be boxing conversions (§10.2.9) at compile-
time. At run-time, if T is a value type, the conversion is executed as a boxing conversion.
At run-time, if T is a reference type, the conversion is executed as an implicit reference
conversion or identity conversion.

From T to its effective base class C , from T to any base class of C , and from T to
any interface implemented by C .

Note: C will be one of the types System.Object , System.ValueType , or
System.Enum (otherwise T would be known to be a reference type). end note

From T to an interface_type I in T ’s effective interface set and from T to any base
interface of I .

For a type_parameter T that is not known to be a reference type, there is an implicit
conversion from T to a type parameter U provided T depends on U . At run-time, if T is
a value type and U is a reference type, the conversion is executed as a boxing
conversion. At run-time, if both T and U are value types, then T and U are necessarily
the same type and no conversion is performed. At run-time, if T is a reference type,
then U is necessarily also a reference type and the conversion is executed as an implicit
reference conversion or identity conversion (§14.2.5).

The following further implicit conversions exist for a given type parameter T :

From T to a reference type S if it has an implicit conversion to a reference type S₀
and S₀ has an identity conversion to S . At run-time, the conversion is executed
the same way as the conversion to S₀ .
From T to an interface type I if it has an implicit conversion to an interface
type I₀ , and I₀ is variance-convertible to I (§17.2.3.3). At run-time, if T is a value
type, the conversion is executed as a boxing conversion. Otherwise, the conversion
is executed as an implicit reference conversion or identity conversion.

In all cases, the rules ensure that a conversion is executed as a boxing conversion if and
only if at run-time the conversion is from a value type to a reference type.

10.2.13 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion,
followed by execution of a user-defined implicit conversion operator, followed by
another optional standard implicit conversion. The exact rules for evaluating user-
defined implicit conversions are described in §10.5.4.

Anonymous functions and method groups do not have types in and of themselves, but
they may be implicitly converted to delegate types. Additionally, some lambda
expressions may be implicitly converted to expression tree types. Anonymous function
conversions are described in more detail in §10.7 and method group conversions
in §10.8.

An implicit conversion exists from a default_literal (§11.7.19) to any type. This conversion
produces the default value (§9.3) of the inferred type.

While throw expressions do not have a type, they may be implicitly converted to any
type.

The following conversions are classified as explicit conversions:

All implicit conversions
Explicit numeric conversions
Explicit enumeration conversions
Explicit nullable conversions
Explicit reference conversions
Explicit interface conversions
Unboxing conversions
Explicit type parameter conversions
Explicit dynamic conversions
User-defined explicit conversions

10.2.14 Anonymous function conversions and method
group conversions

10.2.15 Default literal conversions

10.2.16 Implicit throw conversions

10.3 Explicit conversions

10.3.1 General

Explicit conversions can occur in cast expressions (§11.8.7).

The set of explicit conversions includes all implicit conversions.

Note: This, for example, allows an explicit cast to be used when an implicit
conversion to the same type exists, in order to force the selection of a particular
method overload. end note

The explicit conversions that are not implicit conversions are conversions that cannot be
proven always to succeed, conversions that are known possibly to lose information, and
conversions across domains of types sufficiently different to merit explicit notation.

The explicit numeric conversions are the conversions from a numeric_type to another
numeric_type for which an implicit numeric conversion (§10.2.3) does not already exist:

From sbyte to byte , ushort , uint , ulong , or char .
From byte to sbyte or char .
From short to sbyte , byte , ushort , uint , ulong , or char .
From ushort to sbyte , byte , short , or char .
From int to sbyte , byte , short , ushort , uint , ulong , or char .
From uint to sbyte , byte , short , ushort , int , or char .
From long to sbyte , byte , short , ushort , int , uint , ulong , or char .
From ulong to sbyte , byte , short , ushort , int , uint , long , or char .
From char to sbyte , byte , or short .
From float to sbyte , byte , short , ushort , int , uint , long , ulong , char , or
decimal .
From double to sbyte , byte , short , ushort , int , uint , long , ulong , char , float ,
or decimal .
From decimal to sbyte , byte , short , ushort , int , uint , long , ulong , char ,
float , or double .

Because the explicit conversions include all implicit and explicit numeric conversions, it is
always possible to convert from any numeric_type to any other numeric_type using a cast
expression (§11.8.7).

The explicit numeric conversions possibly lose information or possibly cause exceptions
to be thrown. An explicit numeric conversion is processed as follows:

10.3.2 Explicit numeric conversions

For a conversion from an integral type to another integral type, the processing
depends on the overflow checking context (§11.7.18) in which the conversion takes
place:

In a checked context, the conversion succeeds if the value of the source
operand is within the range of the destination type, but throws a
System.OverflowException if the value of the source operand is outside the
range of the destination type.
In an unchecked context, the conversion always succeeds, and proceeds as
follows.

If the source type is larger than the destination type, then the source value is
truncated by discarding its “extra” most significant bits. The result is then
treated as a value of the destination type.
If the source type is the same size as the destination type, then the source
value is treated as a value of the destination type

For a conversion from decimal to an integral type, the source value is rounded
towards zero to the nearest integral value, and this integral value becomes the
result of the conversion. If the resulting integral value is outside the range of the
destination type, a System.OverflowException is thrown.
For a conversion from float or double to an integral type, the processing depends
on the overflow-checking context (§11.7.18) in which the conversion takes place:

In a checked context, the conversion proceeds as follows:
If the value of the operand is NaN or infinite, a System.OverflowException is
thrown.
Otherwise, the source operand is rounded towards zero to the nearest
integral value. If this integral value is within the range of the destination type
then this value is the result of the conversion.
Otherwise, a System.OverflowException is thrown.

In an unchecked context, the conversion always succeeds, and proceeds as
follows.

If the value of the operand is NaN or infinite, the result of the conversion is
an unspecified value of the destination type.
Otherwise, the source operand is rounded towards zero to the nearest
integral value. If this integral value is within the range of the destination type
then this value is the result of the conversion.
Otherwise, the result of the conversion is an unspecified value of the
destination type.

For a conversion from double to float , the double value is rounded to the nearest
float value. If the double value is too small to represent as a float , the result
becomes zero with the same sign as the value. If the magnitude of the double

value is too large to represent as a float , the result becomes infinity with the
same sign as the value. If the double value is NaN, the result is also NaN.
For a conversion from float or double to decimal , the source value is converted
to decimal representation and rounded to the nearest number if required (§8.3.8).

If the source value is too small to represent as a decimal , the result becomes
zero, preserving the sign of the original value if decimal supports signed zero
values.
If the source value’s magnitude is too large to represent as a decimal , or that
value is infinity, the result is infinity preserving the sign of the original value, if
the decimal representation supports infinities; otherwise a
System.OverflowException is thrown.
If the source value is NaN, the result is NaN if the decimal representation
supports NaNs; otherwise a System.OverflowException is thrown.

For a conversion from decimal to float or double , the decimal value is rounded
to the nearest double or float value. If the source value’s magnitude is too large
to represent in the target type, or that value is infinity, the result is infinity
preserving the sign of the original value. If the source value is NaN, the result is
NaN. While this conversion may lose precision, it never causes an exception to be
thrown.

Note: The decimal type is not required to support infinities or NaN values but may
do so; its range may be smaller than the range of float and double , but is not
guaranteed to be. For decimal representations without infinities or NaN values, and
with a range smaller than float , the result of a conversion from decimal to either
float or double will never be infinity or NaN. end note

The explicit enumeration conversions are:

From sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double , or
decimal to any enum_type.
From any enum_type to sbyte , byte , short , ushort , int , uint , long , ulong , char ,
float , double , or decimal .
From any enum_type to any other enum_type.

An explicit enumeration conversion between two types is processed by treating any
participating enum_type as the underlying type of that enum_type, and then performing
an implicit or explicit numeric conversion between the resulting types.

10.3.3 Explicit enumeration conversions

Example: Given an enum_type E with and underlying type of int , a conversion from
E to byte is processed as an explicit numeric conversion (§10.3.2) from int to byte ,
and a conversion from byte to E is processed as an implicit numeric conversion
(§10.2.3) from byte to int . end example

The explicit nullable conversions are those nullable conversions (§10.6.1) derived from
explicit and implicit predefined conversions.

The explicit reference conversions are:

From object and dynamic to any other reference_type.
From any class_type S to any class_type T , provided S is a base class of T .
From any class_type S to any interface_type T , provided S is not sealed and
provided S does not implement T .
From any interface_type S to any class_type T , provided T is not sealed or
provided T implements S .
From any interface_type S to any interface_type T , provided S is not derived
from T .
From an array_type S with an element type Sᵢ to an array_type T with an element
type Tᵢ , provided all of the following are true:

S and T differ only in element type. In other words, S and T have the same
number of dimensions.
An explicit reference conversion exists from Sᵢ to Tᵢ .

From System.Array and the interfaces it implements, to any array_type.
From a single-dimensional array_type S[] to
System.Collections.Generic.IList<T> ,
System.Collections.Generic.IReadOnlyList<T> , and its base interfaces, provided
that there is an identity conversion or explicit reference conversion from S to T .
From System.Collections.Generic.IList<S> ,
System.Collections.Generic.IReadOnlyList<S> , and their base interfaces to a
single-dimensional array type T[] , provided that there is an identity conversion or
explicit reference conversion from S to T.
From System.Delegate and the interfaces it implements to any delegate_type.
From a reference type S to a reference type T if it has an explicit reference
conversion from S to a reference type T₀ and T₀ and there is an identity

10.3.4 Explicit nullable conversions

10.3.5 Explicit reference conversions

conversion from T₀ to T .
From a reference type S to an interface or delegate type T if it there is an explicit
reference conversion from S to an interface or delegate type T₀ and either T₀ is
variance-convertible to T or T is variance-convertible to T₀ §17.2.3.3.
From D<S₁...Sᵥ> to D<T₁...Tᵥ> where D<X₁...Xᵥ> is a generic delegate type,
D<S₁...Sᵥ> is not compatible with or identical to D<T₁...Tᵥ> , and for each type
parameter Xᵢ of D the following holds:

If Xᵢ is invariant, then Sᵢ is identical to Tᵢ .
If Xᵢ is covariant, then there is an identity conversion, implicit reference
conversion or explicit reference conversion from Sᵢ to Tᵢ .
If Xᵢ is contravariant, then Sᵢ and Tᵢ are either identical or both reference
types.

Explicit conversions involving type parameters that are known to be reference
types. For more details on explicit conversions involving type parameters, see
§10.3.8.

The explicit reference conversions are those conversions between reference_types that
require run-time checks to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source
operand shall be null , or the type of the object referenced by the source operand shall
be a type that can be converted to the destination type by an implicit reference
conversion (§10.2.8). If an explicit reference conversion fails, a
System.InvalidCastException is thrown.

Note: Reference conversions, implicit or explicit, never change the value of the
reference itself (§8.2.1), only its type; neither does it change the type or value of the
object being referenced. end note

An unboxing conversion permits a reference_type to be explicitly converted to a
value_type. The following unboxing conversions exist:

From the type object to any value_type.
From the type System.ValueType to any value_type.
From the type System.Enum to any enum_type.
From any interface_type to any non-nullable_value_type that implements the
interface_type.

10.3.6 Unboxing conversions

From any interface_type I to any non_nullable_value_type where there is an
unboxing conversion from an interface_type I₀ to the non_nullable_value-type and
an identity conversion from I to I₀ .
From any interface_type I to any non_nullable_value_type where there is an
unboxing conversion from an interface_type I₀ to the non_nullable_value_type and
either either I₀ is variance_convertible to I or I is variance-convertible to I₀
(§17.2.3.3).
From any reference_type to any nullable_value_type where there is an unboxing
conversion from reference_type to the underlying non_nullable_value_type of the
nullable_value_type.
From a type parameter which is not known to be a value type to any type such that
the conversion is permitted by §10.3.8.

An unboxing operation to a non_nullable_value_type consists of first checking that the
object instance is a boxed value of the given non_nullable_value_type, and then copying
the value out of the instance.

Unboxing to a nullable_value_type produces the null value of the nullable_value_type if
the source operand is null , or the wrapped result of unboxing the object instance to
the underlying type of the nullable_value_type otherwise.

Note: Referring to the imaginary boxing class described in §10.2.9, an unboxing
conversion of an object box to a value_type S consists of executing the expression
((S_Boxing)box).value . Thus, the statements

C#

conceptually correspond to

C#

end note

For an unboxing conversion to a given non_nullable_value_type to succeed at run-time,
the value of the source operand shall be a reference to a boxed value of that
non_nullable_value_type. If the source operand is null a System.NullReferenceException

object box = new S();
S s = (S)box;

object box = new S_Boxing(new S());
S s = ((S_Boxing)box).value;

is thrown. If the source operand is a reference to an incompatible object, a
System.InvalidCastException is thrown.

For an unboxing conversion to a given nullable_value_type to succeed at run-time, the
value of the source operand shall be either null or a reference to a boxed value of the
underlying non_nullable_value_type of the nullable_value_type. If the source operand is a
reference to an incompatible object, a System.InvalidCastException is thrown.

An explicit dynamic conversion exists from an expression of type dynamic to any type T .
The conversion is dynamically bound (§11.3.3), which means that an explicit conversion
will be sought at run-time from the run-time type of the expression to T . If no
conversion is found, a run-time exception is thrown.

If dynamic binding of the conversion is not desired, the expression can be first
converted to object , and then to the desired type.

Example: Assume the following class is defined:

C#

The following illustrates explicit dynamic conversions:

C#

10.3.7 Explicit dynamic conversions

class C
{
 int i;

 public C(int i)
 {
 this.i = i;
 }

 public static explicit operator C(string s)
 {
 return new C(int.Parse(s));
 }
}

object o = "1";
dynamic d = "2";
var c1 = (C)o; // Compiles, but explicit reference conversion fails
var c2 = (C)d; // Compiles and user defined conversion succeeds

The best conversion of o to C is found at compile-time to be an explicit reference
conversion. This fails at run-time, because "1" is not in fact a C . The conversion
of d to C however, as an explicit dynamic conversion, is suspended to run-time,
where a user defined conversion from the run-time type of d (string) to C is
found, and succeeds.

end example

For a type_parameter T that is known to be a reference type (§14.2.5), the following
explicit reference conversions (§10.3.5) exist:

From the effective base class C of T to T and from any base class of C to T .
From any interface_type to T .
From T to any interface_type I provided there isn’t already an implicit reference
conversion from T to I .
From a type_parameter U to T provided that T depends on U (§14.2.5).

Note: Since T is known to be a reference type, within the scope of T , the run-
time type of U will always be a reference type, even if U is not known to be a
reference type at compile-time. end note

For a type_parameter T that is not known to be a reference type (§14.2.5), the following
conversions involving T are considered to be unboxing conversions (§10.3.6) at
compile-time. At run-time, if T is a value type, the conversion is executed as an
unboxing conversion. At run-time, if T is a reference type, the conversion is executed as
an explicit reference conversion or identity conversion.

From the effective base class C of T to T and from any base class of C to T .

Note: C will be one of the types System.Object , System.ValueType , or
System.Enum (otherwise T would be known to be a reference type). end note

From any interface_type to T .

For a type_parameter T that is not known to be a reference type (§14.2.5), the following
explicit conversions exist:

10.3.8 Explicit conversions involving type parameters

From T to any interface_type I provided there is not already an implicit
conversion from T to I . This conversion consists of an implicit boxing conversion
(§10.2.9) from T to object followed by an explicit reference conversion from
object to I . At run-time, if T is a value type, the conversion is executed as a
boxing conversion followed by an explicit reference conversion. At run-time, if T is
a reference type, the conversion is executed as an explicit reference conversion.
From a type parameter U to T provided that T depends on U (§14.2.5). At run-
time, if T is a value type and U is a reference type, the conversion is executed as
an unboxing conversion. At run-time, if both T and U are value types, then T and
U are necessarily the same type and no conversion is performed. At run-time, if T
is a reference type, then U is necessarily also a reference type and the conversion
is executed as an explicit reference conversion or identity conversion.

In all cases, the rules ensure that a conversion is executed as an unboxing conversion if
and only if at run-time the conversion is from a reference type to a value type.

The above rules do not permit a direct explicit conversion from an unconstrained type
parameter to a non-interface type, which might be surprising. The reason for this rule is
to prevent confusion and make the semantics of such conversions clear.

Example: Consider the following declaration:

C#

If the direct explicit conversion of t to long were permitted, one might easily
expect that X<int>.F(7) would return 7L . However, it would not, because the
standard numeric conversions are only considered when the types are known to be
numeric at binding-time. In order to make the semantics clear, the above example
must instead be written:

C#

class X<T>
{
 public static long F(T t)
 {
 return (long)t; // Error
 }
}

class X<T>
{
 public static long F(T t)
 {

This code will now compile but executing X<int>.F(7) would then throw an
exception at run-time, since a boxed int cannot be converted directly to a long .

end example

A user-defined explicit conversion consists of an optional standard explicit conversion,
followed by execution of a user-defined implicit or explicit conversion operator,
followed by another optional standard explicit conversion. The exact rules for evaluating
user-defined explicit conversions are described in §10.5.5.

The standard conversions are those pre-defined conversions that can occur as part of a
user-defined conversion.

The following implicit conversions are classified as standard implicit conversions:

Identity conversions (§10.2.2)
Implicit numeric conversions (§10.2.3)
Implicit nullable conversions (§10.2.6)
Null literal conversions (§10.2.7)
Implicit reference conversions (§10.2.8)
Boxing conversions (§10.2.9)
Implicit constant expression conversions (§10.2.11)
Implicit conversions involving type parameters (§10.2.12)

The standard implicit conversions specifically exclude user-defined implicit conversions.

 return (long)(object)t; // Ok, but will only work when T
is long
 }
}

10.3.9 User-defined explicit conversions

10.4 Standard conversions

10.4.1 General

10.4.2 Standard implicit conversions

10.4.3 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of
the explicit conversions for which an opposite standard implicit conversion exists.

Note: In other words, if a standard implicit conversion exists from a type A to a
type B , then a standard explicit conversion exists from type A to type B and from
type B to type A . end note

C# allows the pre-defined implicit and explicit conversions to be augmented by user-
defined conversions. User-defined conversions are introduced by declaring conversion
operators (§14.10.4) in class and struct types.

C# permits only certain user-defined conversions to be declared. In particular, it is not
possible to redefine an already existing implicit or explicit conversion.

For a given source type S and target type T , if S or T are nullable value types, let S₀
and T₀ refer to their underlying types, otherwise S₀ and T₀ are equal to S and T
respectively. A class or struct is permitted to declare a conversion from a source type S
to a target type T only if all of the following are true:

S₀ and T₀ are different types.
Either S₀ or T₀ is the class or struct type in which the operator declaration takes
place.
Neither S₀ nor T₀ is an interface_type.
Excluding user-defined conversions, a conversion does not exist from S to T or
from T to S .

The restrictions that apply to user-defined conversions are specified in §14.10.4.

A user-defined conversion converts a source expression, which may have a source type,
to another type, called the target type. Evaluation of a user-defined conversion centers
on finding the most-specific user-defined conversion operator for the source expression
and target type. This determination is broken into several steps:

10.5 User-defined conversions

10.5.1 General

10.5.2 Permitted user-defined conversions

10.5.3 Evaluation of user-defined conversions

Finding the set of classes and structs from which user-defined conversion
operators will be considered. This set consists of the source type and its base
classes, if the source type exists, along with the target type and its base classes. For
this purpose it is assumed that only classes and structs can declare user-defined
operators, and that non-class types have no base classes. Also, if either the source
or target type is a nullable-value-type, their underlying type is used instead.
From that set of types, determining which user-defined and lifted conversion
operators are applicable. For a conversion operator to be applicable, it shall be
possible to perform a standard conversion (§10.4) from the source expression to
the operand type of the operator, and it shall be possible to perform a standard
conversion from the result type of the operator to the target type.
From the set of applicable user-defined operators, determining which operator is
unambiguously the most-specific. In general terms, the most-specific operator is
the operator whose operand type is “closest” to the source expression and whose
result type is “closest” to the target type. User-defined conversion operators are
preferred over lifted conversion operators. The exact rules for establishing the
most-specific user-defined conversion operator are defined in the following
subclauses.

Once a most-specific user-defined conversion operator has been identified, the actual
execution of the user-defined conversion involves up to three steps:

First, if required, performing a standard conversion from the source expression to
the operand type of the user-defined or lifted conversion operator.
Next, invoking the user-defined or lifted conversion operator to perform the
conversion.
Finally, if required, performing a standard conversion from the result type of the
user-defined conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined or
lifted conversion operator. In other words, a conversion from type S to type T will never
first execute a user-defined conversion from S to X and then execute a user-defined
conversion from X to T .

Exact definitions of evaluation of user-defined implicit or explicit conversions are
given in the following subclauses. The definitions make use of the following terms:
If a standard implicit conversion (§10.4.2) exists from a type A to a type B , and if
neither A nor B are interface_type s , then A is said to be encompassed by B , and
B is said to encompass A .
If a standard implicit conversion (§10.4.2) exists from an expression E to a type B ,
and if neither B nor the type of E (if it has one) are interface_type s , then E is said

to be encompassed by B , and B is said to encompass E .
The most-encompassing type in a set of types is the one type that encompasses all
other types in the set. If no single type encompasses all other types, then the set
has no most-encompassing type. In more intuitive terms, the most-encompassing
type is the “largest” type in the set—the one type to which each of the other types
can be implicitly converted.
The most-encompassed type in a set of types is the one type that is encompassed
by all other types in the set. If no single type is encompassed by all other types,
then the set has no most-encompassed type. In more intuitive terms, the most-
encompassed type is the “smallest” type in the set—the one type that can be
implicitly converted to each of the other types.

A user-defined implicit conversion from an expression E to a type T is processed as
follows:

Determine the types S , S₀ and T₀ .
If E has a type, let S be that type.
If S or T are nullable value types, let Sᵢ and Tᵢ be their underlying types,
otherwise let Sᵢ and Tᵢ be S and T , respectively.
If Sᵢ or Tᵢ are type parameters, let S₀ and T₀ be their effective base classes,
otherwise let S₀ and T₀ be Sₓ and Tᵢ , respectively.

Find the set of types, D , from which user-defined conversion operators will be
considered. This set consists of S₀ (if S₀ exists and is a class or struct), the base
classes of S₀ (if S₀ exists and is a class), and T₀ (if T₀ is a class or struct). A type is
added to the set D only if an identity conversion to another type already included
in the set doesn’t exist.

Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of the user-defined and lifted implicit conversion operators declared by
the classes or structs in D that convert from a type encompassing E to a type
encompassed by T . If U is empty, the conversion is undefined and a compile-time
error occurs.

If S exists and any of the operators in U convert from S , then Sₓ is S .
Otherwise, Sₓ is the most-encompassed type in the combined set of source
types of the operators in U . If exactly one most-encompassed type cannot be
found, then the conversion is ambiguous and a compile-time error occurs.

10.5.4 User-defined implicit conversions

Find the most-specific target type, Tₓ , of the operators in U :
If any of the operators in U convert to T , then Tₓ is T .
Otherwise, Tₓ is the most-encompassing type in the combined set of target
types of the operators in U . If exactly one most-encompassing type cannot be
found, then the conversion is ambiguous and a compile-time error occurs.

Find the most-specific conversion operator:
If U contains exactly one user-defined conversion operator that converts from
Sₓ to Tₓ , then this is the most-specific conversion operator.
Otherwise, if U contains exactly one lifted conversion operator that converts
from Sₓ to Tₓ , then this is the most-specific conversion operator.
Otherwise, the conversion is ambiguous and a compile-time error occurs.

Finally, apply the conversion:
If E does not already have the type Sₓ , then a standard implicit conversion
from E to Sₓ is performed.
The most-specific conversion operator is invoked to convert from Sₓ to Tₓ .
If Tₓ is not T , then a standard implicit conversion from Tₓ to T is performed.

A user-defined implicit conversion from a type S to a type T exists if a user-defined
implicit conversion exists from a variable of type S to T .

A user-defined explicit conversion from an expression E to a type T is processed as
follows:

Determine the types S , S₀ and T₀ .
If E has a type, let S be that type.
If S or T are nullable value types, let Sᵢ and Tᵢ be their underlying types,
otherwise let Sᵢ and Tᵢ be S and T , respectively.
If Sᵢ or Tᵢ are type parameters, let S₀ and T₀ be their effective base classes,
otherwise let S₀ and T₀ be Sᵢ and Tᵢ , respectively.

Find the set of types, D , from which user-defined conversion operators will be
considered. This set consists of S₀ (if S₀ exists and is a class or struct), the base
classes of S₀ (if S₀ exists and is a class), T₀ (if T₀ is a class or struct), and the base
classes of T₀ (if T₀ is a class). A type is added to the set D only if an identity
conversion to another type already included in the set doesn’t exist.
Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of the user-defined and lifted implicit or explicit conversion operators

10.5.5 User-defined explicit conversions

declared by the classes or structs in D that convert from a type encompassing E or
encompassed by S (if it exists) to a type encompassing or encompassed by T . If U
is empty, the conversion is undefined and a compile-time error occurs.
Find the most-specific source type, Sₓ , of the operators in U :

If S exists and any of the operators in U convert from S , then Sₓ is S .
Otherwise, if any of the operators in U convert from types that encompass E ,
then Sₓ is the most-encompassed type in the combined set of source types of
those operators. If no most-encompassed type can be found, then the
conversion is ambiguous and a compile-time error occurs.
Otherwise, Sₓ is the most-encompassing type in the combined set of source
types of the operators in U . If exactly one most-encompassing type cannot be
found, then the conversion is ambiguous and a compile-time error occurs.

Find the most-specific target type, Tₓ , of the operators in U :
If any of the operators in U convert to T , then Tₓ is T .
Otherwise, if any of the operators in U convert to types that are encompassed
by T , then Tₓ is the most-encompassing type in the combined set of target
types of those operators. If exactly one most-encompassing type cannot be
found, then the conversion is ambiguous and a compile-time error occurs.
Otherwise, Tₓ is the most-encompassed type in the combined set of target
types of the operators in U . If no most-encompassed type can be found, then
the conversion is ambiguous and a compile-time error occurs.

Find the most-specific conversion operator:
If U contains exactly one user-defined conversion operator that converts
from Sₓ to Tₓ , then this is the most-specific conversion operator.
Otherwise, if U contains exactly one lifted conversion operator that converts
from Sₓ to Tₓ , then this is the most-specific conversion operator.
Otherwise, the conversion is ambiguous and a compile-time error occurs.

Finally, apply the conversion:
If E does not already have the type Sₓ , then a standard explicit conversion
from E to Sₓ is performed.
The most-specific user-defined conversion operator is invoked to convert
from Sₓ to Tₓ .
If Tₓ is not T , then a standard explicit conversion from Tₓ to T is performed.

A user-defined explicit conversion from a type S to a type T exists if a user-defined
explicit conversion exists from a variable of type S to T .

10.6 Conversions involving nullable types

Nullable conversions permit predefined conversions that operate on non-nullable value
types to also be used with nullable forms of those types. For each of the predefined
implicit or explicit conversions that convert from a non-nullable value type S to a non-
nullable value type T (§10.2.2, §10.2.3, §10.2.4, §10.2.11, §10.3.2 and §10.3.3), the
following nullable conversions exist:

An implicit or explicit conversion from S? to T?
An implicit or explicit conversion from S to T?
An explicit conversion from S? to T .

A nullable conversion is itself classified as an implicit or explicit conversion.

Certain nullable conversions are classified as standard conversions and can occur as part
of a user-defined conversion. Specifically, all implicit nullable conversions are classified
as standard implicit conversions (§10.4.2), and those explicit nullable conversions that
satisfy the requirements of §10.4.3 are classified as standard explicit conversions.

Evaluation of a nullable conversion based on an underlying conversion from S to T
proceeds as follows:

If the nullable conversion is from S? to T? :
If the source value is null (HasValue property is false), the result is the null
value of type T? .
Otherwise, the conversion is evaluated as an unwrapping from S? to S ,
followed by the underlying conversion from S to T , followed by a wrapping
from T to T? .

If the nullable conversion is from S to T? , the conversion is evaluated as the
underlying conversion from S to T followed by a wrapping from T to T? .
If the nullable conversion is from S? to T , the conversion is evaluated as an
unwrapping from S? to S followed by the underlying conversion from S to T .

Given a user-defined conversion operator that converts from a non-nullable value
type S to a non-nullable value type T , a lifted conversion operator exists that converts
from S? to T? . This lifted conversion operator performs an unwrapping from S? to S
followed by the user-defined conversion from S to T followed by a wrapping from T
to T? , except that a null valued S? converts directly to a null valued T? . A lifted

10.6.1 Nullable Conversions

10.6.2 Lifted conversions

conversion operator has the same implicit or explicit classification as its underlying user-
defined conversion operator.

An anonymous_method_expression or lambda_expression is classified as an anonymous
function (§11.17). The expression does not have a type, but can be implicitly converted
to a compatible delegate type. Some lambda expressions may also be implicitly
converted to a compatible expression tree type.

For the purpose of brevity, this subclause uses the short form for the task types Task
and Task<T> (§14.15.1).

Specifically, an anonymous function F is compatible with a delegate type D provided:

If F contains an anonymous_function_signature, then D and F have the same
number of parameters.
If F does not contain an anonymous_function_signature, then D may have zero or
more parameters of any type, as long as no parameter of D has the out parameter
modifier.
If F has an explicitly typed parameter list, each parameter in D has the same type
and modifiers as the corresponding parameter in F .
If F has an implicitly typed parameter list, D has no ref or out parameters.
If the body of F is an expression, and either D has a void return type or F is async
and D has the return type Task , then when each parameter of F is given the type
of the corresponding parameter in D , the body of F is a valid expression (w.r.t §11)
that would be permitted as a statement_expression (§12.7).
If the body of F is a block, and either D has a void return type or F is async and D
has the return type Task , then when each parameter of F is given the type of the
corresponding parameter in D , the body of F is a valid block (w.r.t §12.3) in which
no return statement specifies an expression.
If the body of F is an expression, and either F is non-async and D has a non-void
return type T , or F is async and D has a return type Task<T> , then when each
parameter of F is given the type of the corresponding parameter in D , the body
of F is a valid expression (w.r.t §11) that is implicitly convertible to T .
If the body of F is a block, and either F is non-async and D has a non-void return
type T , or F is async and D has a return type Task<T> , then when each parameter

10.7 Anonymous function conversions

10.7.1 General

of F is given the type of the corresponding parameter in D , the body of F is a
valid block (w.r.t §12.3) with a non-reachable end point in which each return
statement specifies an expression that is implicitly convertible to T .

Example: The following examples illustrate these rules:

C#

delegate void D(int x);
D d1 = delegate { }; // Ok
D d2 = delegate() { }; // Error, signature
mismatch
D d3 = delegate(long x) { }; // Error, signature
mismatch
D d4 = delegate(int x) { }; // Ok
D d5 = delegate(int x) { return; }; // Ok
D d6 = delegate(int x) { return x; }; // Error, return type
mismatch

delegate void E(out int x);
E e1 = delegate { }; // Error, E has an out
parameter
E e2 = delegate(out int x) { x = 1; }; // Ok
E e3 = delegate(ref int x) { x = 1; }; // Error, signature
mismatch

delegate int P(params int[] a);
P p1 = delegate { }; // Error, end of block
reachable
P p2 = delegate { return; }; // Error, return type
mismatch
P p3 = delegate { return 1; }; // Ok
P p4 = delegate { return "Hello"; }; // Error, return type
mismatch
P p5 = delegate(int[] a) // Ok
{
 return a[0];
};
P p6 = delegate(params int[] a) // Error, params modifier
{
 return a[0];
};
P p7 = delegate(int[] a) // Error, return type
mismatch
{
 if (a.Length > 0) return a[0];
 return "Hello";
};

delegate object Q(params int[] a);
Q q1 = delegate(int[] a) // Ok
{
 if (a.Length > 0) return a[0];

end example

Example: The examples that follow use a generic delegate type Func<A,R> that
represents a function that takes an argument of type A and returns a value of
type R :

C#

In the assignments

C#

the parameter and return types of each anonymous function are determined from
the type of the variable to which the anonymous function is assigned.

The first assignment successfully converts the anonymous function to the delegate
type Func<int,int> because, when x is given type int , x + 1 is a valid expression
that is implicitly convertible to type int .

Likewise, the second assignment successfully converts the anonymous function to
the delegate type Func<int,double> because the result of x + 1 (of type int) is
implicitly convertible to type double .

However, the third assignment is a compile-time error because, when x is given
type double , the result of x + 1 (of type double) is not implicitly convertible to type
int .

The fourth assignment successfully converts the anonymous async function to the
delegate type Func<int, Task<int>> because the result of x + 1 (of type int) is
implicitly convertible to the effective return type int of the async lambda, which has
a return type Task<int> .

end example

 return "Hello";
};

delegate R Func<A,R>(A arg);

Func<int,int> f1 = x => x + 1; // Ok
Func<int,double> f2 = x => x + 1; // Ok
Func<double,int> f3 = x => x + 1; // Error
Func<int, Task<int>> f4 = async x => x + 1; // Ok

A lambda expression F is compatible with an expression tree type Expression<D> if F is
compatible with the delegate type D . This does not apply to anonymous methods, only
lambda expressions.

Anonymous functions may influence overload resolution, and participate in type
inference. See §11.6 for further details.

Conversion of an anonymous function to a delegate type produces a delegate instance
that references the anonymous function and the (possibly empty) set of captured outer
variables that are active at the time of the evaluation. When the delegate is invoked, the
body of the anonymous function is executed. The code in the body is executed using
the set of captured outer variables referenced by the delegate. A
delegate_creation_expression (§11.7.15.6) can be used as an alternate syntax for
converting an anonymous method to a delegate type.

The invocation list of a delegate produced from an anonymous function contains a
single entry. The exact target object and target method of the delegate are unspecified.
In particular, it is unspecified whether the target object of the delegate is null , the this
value of the enclosing function member, or some other object.

Conversions of semantically identical anonymous functions with the same (possibly
empty) set of captured outer variable instances to the same delegate types are
permitted (but not required) to return the same delegate instance. The term
semantically identical is used here to mean that execution of the anonymous functions
will, in all cases, produce the same effects given the same arguments. This rule permits
code such as the following to be optimized.

C#

10.7.2 Evaluation of anonymous function conversions to
delegate types

delegate double Function(double x);

class Test
{
 static double[] Apply(double[] a, Function f)
 {
 double[] result = new double[a.Length];
 for (int i = 0; i < a.Length; i++)
 {
 result[i] = f(a[i]);
 }
 return result;
 }

Since the two anonymous function delegates have the same (empty) set of captured
outer variables, and since the anonymous functions are semantically identical, the
compiler is permitted to have the delegates refer to the same target method. Indeed,
the compiler is permitted to return the very same delegate instance from both
anonymous function expressions.

Conversion of a lambda expression to an expression tree type produces an expression
tree (§8.6). More precisely, evaluation of the lambda expression conversion produces an
object structure that represents the structure of the lambda expression itself.

Not every lambda expression can be converted to expression tree types. The conversion
to a compatible delegate type always exists, but it may fail at compile-time for
implementation-specific reasons.

Note: Common reasons for a lambda expression to fail to convert to an expression
tree type include:

It has a block body
It has the async modifier
It contains an assignment operator
It contains an out or ref parameter
It contains a dynamically bound expression

end note

An implicit conversion exists from a method group (§11.2) to a compatible delegate type
(§19.4). If D is a delegate type, and E is an expression that is classified as a method
group, then D is compatible with E if and only if E contains at least one method that is
applicable in its normal form (§11.6.4.2) to any argument list (§11.6.2) having types and

 static void F(double[] a, double[] b)
 {
 a = Apply(a, (double x) => Math.Sin(x));
 b = Apply(b, (double y) => Math.Sin(y));
 ...
 }
}

10.7.3 Evaluation of lambda expression conversions to
expression tree types

10.8 Method group conversions

modifiers matching the parameter types and modifiers of D , as described in the
following.

The compile-time application of the conversion from a method group E to a delegate
type D is described in the following. Note that the existence of an implicit conversion
from E to D does not guarantee that the compile-time application of the conversion
will succeed without error.

A single method M is selected corresponding to a method invocation (§11.7.8.2) of
the form E(A) , with the following modifications:

The argument list A is a list of expressions, each classified as a variable and with
the type and modifier (ref or out) of the corresponding parameter in the
formal_parameter_list of D — excepting parameters of type dynamic , where the
corresponding expression has the type object instead of dynamic .
The candidate methods considered are only those methods that are applicable
in their normal form and do not omit any optional parameters (§11.6.4.2). Thus,
candidate methods are ignored if they are applicable only in their expanded
form, or if one or more of their optional parameters do not have a
corresponding parameter in D .

A conversion is considered to exist if the algorithm of §11.7.8.2 produces a single
best method M having the same number of parameters as D .
Even if the conversion exists, a compile-time error occurs if the selected method M
is not compatible (§19.4) with the delegate type D .
If the selected method M is an instance method, the instance expression associated
with E determines the target object of the delegate.
If the selected method M is an extension method which is denoted by means of a
member access on an instance expression, that instance expression determines the
target object of the delegate.
The result of the conversion is a value of type D , namely a delegate that refers to
the selected method and target object.

Example: The following demonstrates method group conversions:

C#

delegate string D1(object o);
delegate object D2(string s);
delegate object D3();
delegate string D4(object o, params object[] a);
delegate string D5(int i);
class Test
{
 static string F(object o) {...}

The assignment to d1 implicitly converts the method group F to a value of type D1 .

The assignment to d2 shows how it is possible to create a delegate to a method
that has less derived (contravariant) parameter types and a more derived (covariant)
return type.

The assignment to d3 shows how no conversion exists if the method is not
applicable.

The assignment to d4 shows how the method must be applicable in its normal
form.

The assignment to d5 shows how parameter and return types of the delegate and
method are allowed to differ only for reference types.

end example

As with all other implicit and explicit conversions, the cast operator can be used to
explicitly perform a particular conversion.

Example: Thus, the example

C#

could instead be written

C#

end example

 static void G()
 {
 D1 d1 = F; // Ok
 D2 d2 = F; // Ok
 D3 d3 = F; // Error – not applicable
 D4 d4 = F; // Error – not applicable in normal form
 D5 d5 = F; // Error – applicable but not compatible
 }
}

object obj = new EventHandler(myDialog.OkClick);

object obj = (EventHandler)myDialog.OkClick;

A method group conversion can refer to a generic method, either by explicitly specifying
type arguments within E , or via type inference (§11.6.3). If type inference is used, the
parameter types of the delegate are used as argument types in the inference process.
The return type of the delegate is not used for inference. Whether the type arguments
are specified or inferred, they are part of the method group conversion process; these
are the type arguments used to invoke the target method when the resulting delegate is
invoked.

Example:

C#

end example

Method groups may influence overload resolution, and participate in type inference. See
§11.6 for further details.

The run-time evaluation of a method group conversion proceeds as follows:

If the method selected at compile-time is an instance method, or it is an extension
method which is accessed as an instance method, the target object of the delegate
is determined from the instance expression associated with E :

The instance expression is evaluated. If this evaluation causes an exception, no
further steps are executed.
If the instance expression is of a reference_type, the value computed by the
instance expression becomes the target object. If the selected method is an
instance method and the target object is null , a
System.NullReferenceException is thrown and no further steps are executed.

delegate int D(string s, int i);
delegate int E();

class X
{
 public static T F<T>(string s, T t) {...}
 public static T G<T>() {...}

 static void Main()
 {
 D d1 = F<int>; // Ok, type argument given explicitly
 D d2 = F; // Ok, int inferred as type argument
 E e1 = G<int>; // Ok, type argument given explicitly
 E e2 = G; // Error, cannot infer from return type
 }
}

If the instance expression is of a value_type, a boxing operation (§10.2.9) is
performed to convert the value to an object, and this object becomes the target
object.

Otherwise, the selected method is part of a static method call, and the target
object of the delegate is null .
A delegate instance of delegate type D is obtained with a reference to the method
that was determined at compile-time and a reference to the target object
computed above, as follows:
The conversion is permitted (but not required) to use an existing delegate instance
that already contains these references.
If an existing instance was not reused, a new one is created (§19.5). If there is not
enough memory available to allocate the new instance, a
System.OutOfMemoryException is thrown. Otherwise the instance is initialized with
the given references.

11 Expressions
Article • 2023-01-13 • 246 minutes to read

An expression is a sequence of operators and operands. This clause defines the syntax,
order of evaluation of operands and operators, and meaning of expressions.

The result of an expression is classified as one of the following:

A value. Every value has an associated type.
A variable. Every variable has an associated type, namely the declared type of the
variable.
A null literal. An expression with this classification can be implicitly converted to a
reference type or nullable value type.
An anonymous function. An expression with this classification can be implicitly
converted to a compatible delegate type or expression tree type.
A property access. Every property access has an associated type, namely the type
of the property. Furthermore, a property access may have an associated instance
expression. When an accessor of an instance property access is invoked, the result
of evaluating the instance expression becomes the instance represented by this
(§11.7.12).
An indexer access. Every indexer access has an associated type, namely the
element type of the indexer. Furthermore, an indexer access has an associated
instance expression and an associated argument list. When an accessor of an
indexer access is invoked, the result of evaluating the instance expression becomes
the instance represented by this (§11.7.12), and the result of evaluating the
argument list becomes the parameter list of the invocation.
Nothing. This occurs when the expression is an invocation of a method with a
return type of void . An expression classified as nothing is only valid in the context
of a statement_expression (§12.7) or as the body of a lambda_expression (§11.17).

For expressions which occur as subexpressions of larger expressions, with the noted
restrictions, the result can also be classified as one of the following:

11.1 General

11.2 Expression classifications

11.2.1 General

A namespace. An expression with this classification can only appear as the left-
hand side of a member_access (§11.7.6). In any other context, an expression
classified as a namespace causes a compile-time error.
A type. An expression with this classification can only appear as the left-hand side
of a member_access (§11.7.6). In any other context, an expression classified as a
type causes a compile-time error.
A method group, which is a set of overloaded methods resulting from a member
lookup (§11.5). A method group may have an associated instance expression and
an associated type argument list. When an instance method is invoked, the result
of evaluating the instance expression becomes the instance represented by this
(§11.7.12). A method group is permitted in an invocation_expression (§11.7.8) or a
delegate_creation_expression (§11.7.15.6), and can be implicitly converted to a
compatible delegate type (§10.8). In any other context, an expression classified as a
method group causes a compile-time error.
An event access. Every event access has an associated type, namely the type of the
event. Furthermore, an event access may have an associated instance expression.
An event access may appear as the left-hand operand of the += and -= operators
(§11.19.4). In any other context, an expression classified as an event access causes a
compile-time error. When an accessor of an instance event access is invoked, the
result of evaluating the instance expression becomes the instance represented by
this (§11.7.12).
A throw expression, which may be used is several contexts to throw an exception
in an expression. A throw expression may be converted by an implicit conversion
to any type.

A property access or indexer access is always reclassified as a value by performing an
invocation of the get_accessor or the set_accessor. The particular accessor is determined
by the context of the property or indexer access: If the access is the target of an
assignment, the set_accessor is invoked to assign a new value (§11.19.2). Otherwise, the
get_accessor is invoked to obtain the current value (§11.2.2).

An instance accessor is a property access on an instance, an event access on an instance,
or an indexer access.

Most of the constructs that involve an expression ultimately require the expression to
denote a value. In such cases, if the actual expression denotes a namespace, a type, a
method group, or nothing, a compile-time error occurs. However, if the expression
denotes a property access, an indexer access, or a variable, the value of the property,
indexer, or variable is implicitly substituted:

11.2.2 Values of expressions

The value of a variable is simply the value currently stored in the storage location
identified by the variable. A variable shall be considered definitely assigned (§9.4)
before its value can be obtained, or otherwise a compile-time error occurs.
The value of a property access expression is obtained by invoking the get_accessor
of the property. If the property has no get_accessor, a compile-time error occurs.
Otherwise, a function member invocation (§11.6.6) is performed, and the result of
the invocation becomes the value of the property access expression.
The value of an indexer access expression is obtained by invoking the get_accessor
of the indexer. If the indexer has no get_accessor, a compile-time error occurs.
Otherwise, a function member invocation (§11.6.6) is performed with the argument
list associated with the indexer access expression, and the result of the invocation
becomes the value of the indexer access expression.

Binding is the process of determining what an operation refers to, based on the type or
value of expressions (arguments, operands, receivers). For instance, the binding of a
method call is determined based on the type of the receiver and arguments. The
binding of an operator is determined based on the type of its operands.

In C# the binding of an operation is usually determined at compile-time, based on the
compile-time type of its subexpressions. Likewise, if an expression contains an error, the
error is detected and reported by the compiler. This approach is known as static
binding.

However, if an expression is a dynamic expression (i.e., has the type dynamic) this
indicates that any binding that it participates in should be based on its run-time type
rather than the type it has at compile-time. The binding of such an operation is
therefore deferred until the time where the operation is to be executed during the
running of the program. This is referred to as dynamic binding.

When an operation is dynamically bound, little or no checking is performed by the
compiler. Instead if the run-time binding fails, errors are reported as exceptions at run-
time.

The following operations in C# are subject to binding:

Member access: e.M
Method invocation: e.M(e₁,...,eᵥ)

11.3 Static and Dynamic Binding

11.3.1 General

Delegate invocation: e(e₁,...,eᵥ)
Element access: e[e₁,...,eᵥ]
Object creation: new C(e₁,...,eᵥ)
Overloaded unary operators: + , - , ! , ~ , ++ , -- , true , false
Overloaded binary operators: + , - , * , / , % , & , && , | , || , ?? , ^ , << , >> , == , != ,
> , < , >= , <=
Assignment operators: = , += , -= , *= , /= , %= , &= , |= , ^= , <<= , >>=
Implicit and explicit conversions

When no dynamic expressions are involved, C# defaults to static binding, which means
that the compile-time types of subexpressions are used in the selection process.
However, when one of the subexpressions in the operations listed above is a dynamic
expression, the operation is instead dynamically bound.

Static binding takes place at compile-time, whereas dynamic binding takes place at run-
time. In the following subclauses, the term binding-time refers to either compile-time or
run-time, depending on when the binding takes place.

Example: The following illustrates the notions of static and dynamic binding and of
binding-time:

C#

The first two calls are statically bound: the overload of Console.WriteLine is picked
based on the compile-time type of their argument. Thus, the binding-time is
compile-time.

The third call is dynamically bound: the overload of Console.WriteLine is picked
based on the run-time type of its argument. This happens because the argument is
a dynamic expression – its compile-time type is dynamic. Thus, the binding-time for
the third call is run-time.

end example

11.3.2 Binding-time

object o = 5;
dynamic d = 5;
Console.WriteLine(5); // static binding to Console.WriteLine(int)
Console.WriteLine(o); // static binding to Console.WriteLine(object)
Console.WriteLine(d); // dynamic binding to Console.WriteLine(int)

This subclause is informative.

Dynamic binding allows C# programs to interact with dynamic objects, i.e., objects that
do not follow the normal rules of the C# type system. Dynamic objects may be objects
from other programming languages with different types systems, or they may be
objects that are programmatically setup to implement their own binding semantics for
different operations.

The mechanism by which a dynamic object implements its own semantics is
implementation-defined. A given interface – again implementation-defined – is
implemented by dynamic objects to signal to the C# run-time that they have special
semantics. Thus, whenever operations on a dynamic object are dynamically bound, their
own binding semantics, rather than those of C# as specified in this specification, take
over.

While the purpose of dynamic binding is to allow interoperation with dynamic objects,
C# allows dynamic binding on all objects, whether they are dynamic or not. This allows
for a smoother integration of dynamic objects, as the results of operations on them may
not themselves be dynamic objects, but are still of a type unknown to the programmer
at compile-time. Also, dynamic binding can help eliminate error-prone reflection-based
code even when no objects involved are dynamic objects.

When an operation is statically bound, the type of a subexpression (e.g., a receiver, and
argument, an index or an operand) is always considered to be the compile-time type of
that expression.

When an operation is dynamically bound, the type of a subexpression is determined in
different ways depending on the compile-time type of the subexpression:

A subexpression of compile-time type dynamic is considered to have the type of
the actual value that the expression evaluates to at run-time
A subexpression whose compile-time type is a type parameter is considered to
have the type which the type parameter is bound to at run-time
Otherwise, the subexpression is considered to have its compile-time type.

11.3.3 Dynamic binding

11.3.4 Types of subexpressions

11.4 Operators

Expressions are constructed from operands and operators. The operators of an
expression indicate which operations to apply to the operands.

Example: Examples of operators include + , - , * , / , and new . Examples of operands
include literals, fields, local variables, and expressions. end example

There are three kinds of operators:

Unary operators. The unary operators take one operand and use either prefix
notation (such as –x) or postfix notation (such as x++).
Binary operators. The binary operators take two operands and all use infix notation
(such as x + y).
Ternary operator. Only one ternary operator, ?: , exists; it takes three operands and
uses infix notation (c ? x : y).

The order of evaluation of operators in an expression is determined by the precedence
and associativity of the operators (§11.4.2).

Operands in an expression are evaluated from left to right.

Example: In F(i) + G(i++) * H(i) , method F is called using the old value of i , then
method G is called with the old value of i , and, finally, method H is called with the
new value of i. This is separate from and unrelated to operator precedence. end
example

Certain operators can be overloaded. Operator overloading (§11.4.3) permits user-
defined operator implementations to be specified for operations where one or both of
the operands are of a user-defined class or struct type.

When an expression contains multiple operators, the precedence of the operators
controls the order in which the individual operators are evaluated.

Note: For example, the expression x + y * z is evaluated as x + (y * z) because
the * operator has higher precedence than the binary + operator. end note

The precedence of an operator is established by the definition of its associated grammar
production.

11.4.1 General

11.4.2 Operator precedence and associativity

Note: For example, an additive_expression consists of a sequence of
multiplicative_expressions separated by + or - operators, thus giving the + and
- operators lower precedence than the * , / , and % operators. end note

Note: The following table summarizes all operators in order of precedence from
highest to lowest:

Subclause Category Operators

§11.7 Primary x.y x?.y f(x) a[x] a?[x] x++ x-- new typeof
default checked unchecked delegate

§11.8 Unary + - ! ~ ++x --x (T)x await x

§11.9 Multiplicative * / %

§11.9 Additive + -

§11.10 Shift << >>

§11.11 Relational and type-
testing

< > <= >= is as

§11.11 Equality == !=

§11.12 Logical AND &

§11.12 Logical XOR ^

§11.12 Logical OR \|

§11.13 Conditional AND &&

§11.13 Conditional OR \|\|

§11.14
and
§11.15

Null coalescing and
throw expression

?? throw x

§11.16 Conditional ?:

§11.19
and
§11.17

Assignment and
lambda expression

= *= /= %= += -= <<= >>= &= ^= \|= =>

end note

When an operand occurs between two operators with the same precedence, the
associativity of the operators controls the order in which the operations are performed:

Except for the assignment operators and the null coalescing operator, all binary
operators are left-associative, meaning that operations are performed from left to
right.

Example: x + y + z is evaluated as (x + y) + z . end example

The assignment operators, the null coalescing operator and the conditional
operator (?:) are right-associative, meaning that operations are performed from
right to left.

Example: x = y = z is evaluated as x = (y = z) . end example

Precedence and associativity can be controlled using parentheses.

Example: x + y * z first multiplies y by z and then adds the result to x , but
(x + y) * z first adds x and y and then multiplies the result by z . end example

All unary and binary operators have predefined implementations. In addition, user-
defined implementations can be introduced by including operator declarations (§14.10)
in classes and structs. User-defined operator implementations always take precedence
over predefined operator implementations: Only when no applicable user-defined
operator implementations exist will the predefined operator implementations be
considered, as described in §11.4.4 and §11.4.5.

The overloadable unary operators are:

C#

Note: Although true and false are not used explicitly in expressions (and therefore
are not included in the precedence table in §11.4.2), they are considered operators
because they are invoked in several expression contexts: Boolean expressions
(§11.22) and expressions involving the conditional (§11.16) and conditional logical
operators (§11.13). end note

11.4.3 Operator overloading

+ - ! ~ ++ -- true false

The overloadable binary operators are:

C#

Only the operators listed above can be overloaded. In particular, it is not possible to
overload member access, method invocation, or the = , && , || , ?? , ?: , => , checked ,
unchecked , new , typeof , default , as , and is operators.

When a binary operator is overloaded, the corresponding compound assignment
operator, if any, is also implicitly overloaded.

Example: An overload of operator * is also an overload of operator *= . This is
described further in §11.19. end example

The assignment operator itself (=) cannot be overloaded. An assignment always
performs a simple store of a value into a variable (§11.19.2).

Cast operations, such as (T)x , are overloaded by providing user-defined conversions
(§10.5).

Note: User-defined conversions do not affect the behavior of the is or as
operators. end note

Element access, such as a[x] , is not considered an overloadable operator. Instead, user-
defined indexing is supported through indexers (§14.9).

In expressions, operators are referenced using operator notation, and in declarations,
operators are referenced using functional notation. The following table shows the
relationship between operator and functional notations for unary and binary operators.
In the first entry, «op» denotes any overloadable unary prefix operator. In the second
entry, «op» denotes the unary postfix ++ and -- operators. In the third entry, «op»
denotes any overloadable binary operator.

Note: For an example of overloading the ++ and -- operators see §14.10.2. end note

Operator notation Functional notation

«op» x operator «op»(x)

x «op» operator «op»(x)

+ - * / % & | ^ << >> == != > < <= >=

Operator notation Functional notation

x «op» y operator «op»(x, y)

User-defined operator declarations always require at least one of the parameters to be
of the class or struct type that contains the operator declaration.

Note: Thus, it is not possible for a user-defined operator to have the same signature
as a predefined operator. end note

User-defined operator declarations cannot modify the syntax, precedence, or
associativity of an operator.

Example: The / operator is always a binary operator, always has the precedence
level specified in §11.4.2, and is always left-associative. end example

Note: While it is possible for a user-defined operator to perform any computation it
pleases, implementations that produce results other than those that are intuitively
expected are strongly discouraged. For example, an implementation of operator ==
should compare the two operands for equality and return an appropriate bool
result. end note

The descriptions of individual operators in §11.8 through §11.19 specify the predefined
implementations of the operators and any additional rules that apply to each operator.
The descriptions make use of the terms unary operator overload resolution, binary
operator overload resolution, numeric promotion, and lifted operator definitions of
which are found in the following subclauses.

An operation of the form «op» x or x «op» , where «op» is an overloadable unary
operator, and x is an expression of type X , is processed as follows:

The set of candidate user-defined operators provided by X for the operation
operator «op»(x) is determined using the rules of §11.4.6.
If the set of candidate user-defined operators is not empty, then this becomes the
set of candidate operators for the operation. Otherwise, the predefined binary
operator «op» implementations, including their lifted forms, become the set of
candidate operators for the operation. The predefined implementations of a given
operator are specified in the description of the operator. The predefined operators

11.4.4 Unary operator overload resolution

provided by an enum or delegate type are only included in this set when the
binding-time type—or the underlying type if it is a nullable type—of either
operand is the enum or delegate type.
The overload resolution rules of §11.6.4 are applied to the set of candidate
operators to select the best operator with respect to the argument list (x) , and
this operator becomes the result of the overload resolution process. If overload
resolution fails to select a single best operator, a binding-time error occurs.

An operation of the form x «op» y , where «op» is an overloadable binary operator, x is
an expression of type X , and y is an expression of type Y , is processed as follows:

The set of candidate user-defined operators provided by X and Y for the
operation operator «op»(x, y) is determined. The set consists of the union of the
candidate operators provided by X and the candidate operators provided by Y ,
each determined using the rules of §11.4.6. For the combined set, candidates are
merged as follows:

If X and Y are the same type, or if X and Y are derived from a common base
type, then shared candidate operators only occur in the combined set once.
If there is an identity conversion between X and Y , an operator «op»Y provided
by Y has the same return type as an «op»X provided by X and the operand
types of «op»Y have an identity conversion to the corresponding operand types
of «op»X then only «op»X occurs in the set.

If the set of candidate user-defined operators is not empty, then this becomes the
set of candidate operators for the operation. Otherwise, the predefined binary
operator «op» implementations, including their lifted forms, become the set of
candidate operators for the operation. The predefined implementations of a given
operator are specified in the description of the operator. For predefined enum and
delegate operators, the only operators considered are those provided by an enum
or delegate type that is the binding-time type of one of the operands.
The overload resolution rules of §11.6.4 are applied to the set of candidate
operators to select the best operator with respect to the argument list (x, y) , and
this operator becomes the result of the overload resolution process. If overload
resolution fails to select a single best operator, a binding-time error occurs.

Given a type T and an operation operator «op»(A) , where «op» is an overloadable
operator and A is an argument list, the set of candidate user-defined operators

11.4.5 Binary operator overload resolution

11.4.6 Candidate user-defined operators

provided by T for operator «op»(A) is determined as follows:

Determine the type T₀ . If T is a nullable value type, T₀ is its underlying type;
otherwise, T₀ is equal to T .
For all operator «op» declarations in T₀ and all lifted forms of such operators, if at
least one operator is applicable (§11.6.4.2) with respect to the argument list A ,
then the set of candidate operators consists of all such applicable operators in T₀ .
Otherwise, if T₀ is object , the set of candidate operators is empty.
Otherwise, the set of candidate operators provided by T₀ is the set of candidate
operators provided by the direct base class of T₀ , or the effective base class of T₀
if T₀ is a type parameter.

This subclause is informative.

§11.4.7 and its subclauses are a summary of the combined effect of:

the rules for implicit numeric conversions (§10.2.3);
the rules for better conversion (§11.6.4.6); and
the available arithmetic (§11.9), relational (§11.11), and integral logical (§11.12.2)
operators.

Numeric promotion consists of automatically performing certain implicit conversions of
the operands of the predefined unary and binary numeric operators. Numeric
promotion is not a distinct mechanism, but rather an effect of applying overload
resolution to the predefined operators. Numeric promotion specifically does not affect
evaluation of user-defined operators, although user-defined operators can be
implemented to exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the
binary * operator:

C#

11.4.7 Numeric promotions

11.4.7.1 General

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);

When overload resolution rules (§11.6.4) are applied to this set of operators, the effect is
to select the first of the operators for which implicit conversions exist from the operand
types.

Example: For the operation b * s , where b is a byte and s is a short , overload
resolution selects operator *(int, int) as the best operator. Thus, the effect is that
b and s are converted to int , and the type of the result is int . Likewise, for the
operation i * d , where i is an int and d is a double , overload resolution selects
operator *(double, double) as the best operator. end example

End of informative text.

This subclause is informative.

Unary numeric promotion occurs for the operands of the predefined + , – , and ~ unary
operators. Unary numeric promotion simply consists of converting operands of type
sbyte , byte , short , ushort , or char to type int . Additionally, for the unary – operator,
unary numeric promotion converts operands of type uint to type long .

End of informative text.

This subclause is informative.

Binary numeric promotion occurs for the operands of the predefined + , – , * , / , % , & ,
| , ^ , == , != , > , < , >= , and <= binary operators. Binary numeric promotion implicitly
converts both operands to a common type which, in case of the non-relational
operators, also becomes the result type of the operation. Binary numeric promotion
consists of applying the following rules, in the order they appear here:

If either operand is of type decimal , the other operand is converted to type
decimal , or a binding-time error occurs if the other operand is of type float or
double .
Otherwise, if either operand is of type double , the other operand is converted to
type double .

double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

11.4.7.2 Unary numeric promotions

11.4.7.3 Binary numeric promotions

Otherwise, if either operand is of type float , the other operand is converted to
type float .
Otherwise, if either operand is of type ulong , the other operand is converted to
type ulong , or a binding-time error occurs if the other operand is of type sbyte ,
short , int , or long .
Otherwise, if either operand is of type long , the other operand is converted to
type long .
Otherwise, if either operand is of type uint and the other operand is of type
sbyte , short , or int , both operands are converted to type long .
Otherwise, if either operand is of type uint , the other operand is converted to
type uint .
Otherwise, both operands are converted to type int .

Note: The first rule disallows any operations that mix the decimal type with the
double and float types. The rule follows from the fact that there are no implicit
conversions between the decimal type and the double and float types. end note

Note: Also note that it is not possible for an operand to be of type ulong when the
other operand is of a signed integral type. The reason is that no integral type exists
that can represent the full range of ulong as well as the signed integral types. end
note

In both of the above cases, a cast expression can be used to explicitly convert one
operand to a type that is compatible with the other operand.

Example: In the following code

C#

a binding-time error occurs because a decimal cannot be multiplied by a double .
The error is resolved by explicitly converting the second operand to decimal , as
follows:

C#

decimal AddPercent(decimal x, double percent) =>
 x * (1.0 + percent / 100.0);

decimal AddPercent(decimal x, double percent) =>
 x * (decimal)(1.0 + percent / 100.0);

end example

End of informative text.

Lifted operators permit predefined and user-defined operators that operate on non-
nullable value types to also be used with nullable forms of those types. Lifted operators
are constructed from predefined and user-defined operators that meet certain
requirements, as described in the following:

For the unary operators + , ++ , - , -- , ! , and ~ , a lifted form of an operator exists
if the operand and result types are both non-nullable value types. The lifted form is
constructed by adding a single ? modifier to the operand and result types. The
lifted operator produces a null value if the operand is null . Otherwise, the lifted
operator unwraps the operand, applies the underlying operator, and wraps the
result.
For the binary operators + , - , * , / , % , & , | , ^ , << , and >> , a lifted form of an
operator exists if the operand and result types are all non-nullable value types. The
lifted form is constructed by adding a single ? modifier to each operand and result
type. The lifted operator produces a null value if one or both operands are null
(an exception being the & and | operators of the bool? type, as described in
§11.12.5). Otherwise, the lifted operator unwraps the operands, applies the
underlying operator, and wraps the result.
For the equality operators == and != , a lifted form of an operator exists if the
operand types are both non-nullable value types and if the result type is bool . The
lifted form is constructed by adding a single ? modifier to each operand type. The
lifted operator considers two null values equal, and a null value unequal to any
non-null value. If both operands are non-null , the lifted operator unwraps the
operands and applies the underlying operator to produce the bool result.
For the relational operators < , > , <= , and >= , a lifted form of an operator exists if
the operand types are both non-nullable value types and if the result type is bool .
The lifted form is constructed by adding a single ? modifier to each operand type.
The lifted operator produces the value false if one or both operands are null .
Otherwise, the lifted operator unwraps the operands and applies the underlying
operator to produce the bool result.

11.4.8 Lifted operators

11.5 Member lookup

A member lookup is the process whereby the meaning of a name in the context of a
type is determined. A member lookup can occur as part of evaluating a simple_name
(§11.7.4) or a member_access (§11.7.6) in an expression. If the simple_name or
member_access occurs as the primary_expression of an invocation_expression (§11.7.8.2),
the member is said to be invoked.

If a member is a method or event, or if it is a constant, field or property of either a
delegate type (§19) or the type dynamic (§8.2.4), then the member is said to be
invocable.

Member lookup considers not only the name of a member but also the number of type
parameters the member has and whether the member is accessible. For the purposes of
member lookup, generic methods and nested generic types have the number of type
parameters indicated in their respective declarations and all other members have zero
type parameters.

A member lookup of a name N with K type arguments in a type T is processed as
follows:

First, a set of accessible members named N is determined:
If T is a type parameter, then the set is the union of the sets of accessible
members named N in each of the types specified as a primary constraint or
secondary constraint (§14.2.5) for T , along with the set of accessible members
named N in object .
Otherwise, the set consists of all accessible (§7.5) members named N in T ,
including inherited members and the accessible members named N in object . If
T is a constructed type, the set of members is obtained by substituting type
arguments as described in §14.3.3. Members that include an override modifier
are excluded from the set.

Next, if K is zero, all nested types whose declarations include type parameters are
removed. If K is not zero, all members with a different number of type parameters
are removed. When K is zero, methods having type parameters are not removed,
since the type inference process (§11.6.3) might be able to infer the type
arguments.
Next, if the member is invoked, all non-invocable members are removed from the
set.
Next, members that are hidden by other members are removed from the set. For
every member S.M in the set, where S is the type in which the member M is
declared, the following rules are applied:

11.5.1 General

If M is a constant, field, property, event, or enumeration member, then all
members declared in a base type of S are removed from the set.
If M is a type declaration, then all non-types declared in a base type of S are
removed from the set, and all type declarations with the same number of type
parameters as M declared in a base type of S are removed from the set.
If M is a method, then all non-method members declared in a base type of S
are removed from the set.

Next, interface members that are hidden by class members are removed from the
set. This step only has an effect if T is a type parameter and T has both an
effective base class other than object and a non-empty effective interface set
(§14.2.5). For every member S.M in the set, where S is the type in which the
member M is declared, the following rules are applied if S is a class declaration
other than object :

If M is a constant, field, property, event, enumeration member, or type
declaration, then all members declared in an interface declaration are removed
from the set.
If M is a method, then all non-method members declared in an interface
declaration are removed from the set, and all methods with the same signature
as M declared in an interface declaration are removed from the set.

Finally, having removed hidden members, the result of the lookup is determined:
If the set consists of a single member that is not a method, then this member is
the result of the lookup.
Otherwise, if the set contains only methods, then this group of methods is the
result of the lookup.
Otherwise, the lookup is ambiguous, and a binding-time error occurs.

For member lookups in types other than type parameters and interfaces, and member
lookups in interfaces that are strictly single-inheritance (each interface in the inheritance
chain has exactly zero or one direct base interface), the effect of the lookup rules is
simply that derived members hide base members with the same name or signature.
Such single-inheritance lookups are never ambiguous. The ambiguities that can possibly
arise from member lookups in multiple-inheritance interfaces are described in §17.4.6.

Note: This phase only accounts for one kind of ambiguity. If the member lookup
results in a method group, further uses of method group may fail due to ambiguity,
for example as described in §11.6.4.1 and §11.6.6.2. end note

11.5.2 Base types

For purposes of member lookup, a type T is considered to have the following base
types:

If T is object or dynamic , then T has no base type.
If T is an enum_type, the base types of T are the class types System.Enum ,
System.ValueType , and object .
If T is a struct_type, the base types of T are the class types System.ValueType and
object .

Note: A nullable_value_type is a struct_type (§8.3.1). end note

If T is a class_type, the base types of T are the base classes of T , including the
class type object .
If T is an interface_type, the base types of T are the base interfaces of T and the
class type object .
If T is an array_type, the base types of T are the class types System.Array and
object .
If T is a delegate_type, the base types of T are the class types System.Delegate and
object .

Function members are members that contain executable statements. Function members
are always members of types and cannot be members of namespaces. C# defines the
following categories of function members:

Methods
Properties
Events
Indexers
User-defined operators
Instance constructors
Static constructors
Finalizers

Except for finalizers and static constructors (which cannot be invoked explicitly), the
statements contained in function members are executed through function member

11.6 Function members

11.6.1 General

invocations. The actual syntax for writing a function member invocation depends on the
particular function member category.

The argument list (§11.6.2) of a function member invocation provides actual values or
variable references for the parameters of the function member.

Invocations of generic methods may employ type inference to determine the set of type
arguments to pass to the method. This process is described in §11.6.3.

Invocations of methods, indexers, operators, and instance constructors employ overload
resolution to determine which of a candidate set of function members to invoke. This
process is described in §11.6.4.

Once a particular function member has been identified at binding-time, possibly
through overload resolution, the actual run-time process of invoking the function
member is described in §11.6.6.

Note: The following table summarizes the processing that takes place in constructs
involving the six categories of function members that can be explicitly invoked. In
the table, e , x , y , and value indicate expressions classified as variables or values, T
indicates an expression classified as a type, F is the simple name of a method, and
P is the simple name of a property.

Construct Example Description

Method
invocation

F(x, y) Overload resolution is applied to select the best method F in the
containing class or struct. The method is invoked with the argument list
(x, y) . If the method is not static , the instance expression is this .

T.F(x,

y)

Overload resolution is applied to select the best method F in the class
or struct T . A binding-time error occurs if the method is not static .
The method is invoked with the argument list (x, y) .

e.F(x,

y)

Overload resolution is applied to select the best method F in the class,
struct, or interface given by the type of e . A binding-time error occurs if
the method is static . The method is invoked with the instance
expression e and the argument list (x, y) .

Property
access

P The get accessor of the property P in the containing class or struct is
invoked. A compile-time error occurs if P is write-only. If P is not
static , the instance expression is this .

P =

value

The set accessor of the property P in the containing class or struct is
invoked with the argument list (value) . A compile-time error occurs if
P is read-only. If P is not static , the instance expression is this .

T.P The get accessor of the property P in the class or struct T is invoked. A
compile-time error occurs if P is not static or if P is write-only.

T.P =

value

The set accessor of the property P in the class or struct T is invoked
with the argument list (value) . A compile-time error occurs if P is not
static or if P is read-only.

e.P The get accessor of the property P in the class, struct, or interface given
by the type of E is invoked with the instance expression e . A binding-
time error occurs if P is static or if P is write-only.

e.P =

value

The set accessor of the property P in the class, struct, or interface given
by the type of E is invoked with the instance expression e and the
argument list (value) . A binding-time error occurs if P is static or if P
is read-only.

Event
access

E +=

value

The add accessor of the event E in the containing class or struct is
invoked. If E is not static , the instance expression is this .

E -=

value

The remove accessor of the event E in the containing class or struct is
invoked. If E is not static , the instance expression is this .

T.E +=

value

The add accessor of the event E in the class or struct T is invoked. A
binding-time error occurs if E is not static .

T.E -=

value

The remove accessor of the event E in the class or struct T is invoked. A
binding-time error occurs if E is not static .

e.E +=

value

The add accessor of the event E in the class, struct, or interface given by
the type of E is invoked with the instance expression e . A binding-time
error occurs if E is static .

e.E -=

value

The remove accessor of the event E in the class, struct, or interface
given by the type of E is invoked with the instance expression e . A
binding-time error occurs if E is static .

Indexer
access

e[x, y] Overload resolution is applied to select the best indexer in the class,
struct, or interface given by the type of e . The get accessor of the
indexer is invoked with the instance expression e and the argument list
(x, y) . A binding-time error occurs if the indexer is write-only.

e[x, y]

= value

Overload resolution is applied to select the best indexer in the class,
struct, or interface given by the type of e . The set accessor of the
indexer is invoked with the instance expression e and the argument list
(x, y, value) . A binding-time error occurs if the indexer is read-only.

Operator
invocation

-x Overload resolution is applied to select the best unary operator in the
class or struct given by the type of x . The selected operator is invoked
with the argument list (x) .

x + y Overload resolution is applied to select the best binary operator in the

classes or structs given by the types of x and y . The selected operator
is invoked with the argument list (x, y) .

Instance
constructor
invocation

new T(x,

y)

Overload resolution is applied to select the best instance constructor in
the class or struct T . The instance constructor is invoked with the
argument list (x, y) .

Every function member and delegate invocation includes an argument list, which
provides actual values or variable references for the parameters of the function member.
The syntax for specifying the argument list of a function member invocation depends on
the function member category:

For instance constructors, methods, indexers and delegates, the arguments are
specified as an argument_list, as described below. For indexers, when invoking the
set accessor, the argument list additionally includes the expression specified as the
right operand of the assignment operator.

Note: This additional argument is not used for overload resolution, just during
invocation of the set accessor. end note

For properties, the argument list is empty when invoking the get accessor, and
consists of the expression specified as the right operand of the assignment
operator when invoking the set accessor.
For events, the argument list consists of the expression specified as the right
operand of the += or -= operator.
For user-defined operators, the argument list consists of the single operand of the
unary operator or the two operands of the binary operator.

The arguments of properties (§14.7), events (§14.8), and user-defined operators (§14.10)
are always passed as value parameters (§14.6.2.2). The arguments of indexers (§14.9) are
always passed as value parameters (§14.6.2.2) or parameter arrays (§14.6.2.5). Reference
and output parameters are not supported for these categories of function members.

The arguments of an instance constructor, method, indexer, or delegate invocation are
specified as an argument_list:

ANTLR

11.6.2 Argument lists

11.6.2.1 General

An argument_list consists of one or more arguments, separated by commas. Each
argument consists of an optional argument_name followed by an argument_value. An
argument with an argument_name is referred to as a named argument, whereas an
argument without an argument_name is a positional argument.

The argument_value can take one of the following forms:

An expression, indicating that the argument is passed as a value parameter
(§14.6.2.2).
The keyword ref followed by a variable_reference (§9.5), indicating that the
argument is passed as a reference parameter (§14.6.2.3). A variable shall be
definitely assigned (§9.4) before it can be passed as a reference parameter.
The keyword out followed by a variable_reference (§9.5), indicating that the
argument is passed as an output parameter (§14.6.2.4). A variable is considered
definitely assigned (§9.4) following a function member invocation in which the
variable is passed as an output parameter.

The form determines the parameter-passing mode of the argument: value, reference, or
output, respectively.

Passing a volatile field (§14.5.4) as a reference parameter or output parameter causes a
warning, since the field may not be treated as volatile by the invoked method.

For each argument in an argument list there has to be a corresponding parameter in the
function member or delegate being invoked.

argument_list
 : argument (',' argument)*
 ;

argument
 : argument_name? argument_value
 ;

argument_name
 : identifier ':'
 ;

argument_value
 : expression
 | 'ref' variable_reference
 | 'out' variable_reference
 ;

11.6.2.2 Corresponding parameters

The parameter list used in the following is determined as follows:

For virtual methods and indexers defined in classes, the parameter list is picked
from the first declaration or override of the function member found when starting
with the static type of the receiver, and searching through its base classes.
For partial methods, the parameter list of the defining partial method declaration is
used.
For all other function members and delegates there is only a single parameter list,
which is the one used.

The position of an argument or parameter is defined as the number of arguments or
parameters preceding it in the argument list or parameter list.

The corresponding parameters for function member arguments are established as
follows:

Arguments in the argument_list of instance constructors, methods, indexers and
delegates:

A positional argument where a parameter occurs at the same position in the
parameter list corresponds to that parameter, unless the parameter is a
parameter array and the function member is invoked in its expanded form.
A positional argument of a function member with a parameter array invoked in
its expanded form, which occurs at or after the position of the parameter array
in the parameter list, corresponds to an element in the parameter array.
A named argument corresponds to the parameter of the same name in the
parameter list.
For indexers, when invoking the set accessor, the expression specified as the
right operand of the assignment operator corresponds to the implicit value
parameter of the set accessor declaration.

For properties, when invoking the get accessor there are no arguments. When
invoking the set accessor, the expression specified as the right operand of the
assignment operator corresponds to the implicit value parameter of the set
accessor declaration.
For user-defined unary operators (including conversions), the single operand
corresponds to the single parameter of the operator declaration.
For user-defined binary operators, the left operand corresponds to the first
parameter, and the right operand corresponds to the second parameter of the
operator declaration.
An unnamed argument corresponds to no parameter when it is after an out-of-
position named argument or a named argument that corresponds to a parameter
array.

Note: This prevents void M(bool a = true, bool b = true, bool c = true);
being invoked by M(c: false, valueB); . The first argument is used out-of-
position (the argument is used in first position, but the parameter named c is
in third position), so the following arguments should be named. In other
words, non-trailing named arguments are only allowed when the name and
the position result in finding the same corresponding parameter. end note

During the run-time processing of a function member invocation (§11.6.6), the
expressions or variable references of an argument list are evaluated in order, from left to
right, as follows:

For a value parameter, the argument expression is evaluated and an implicit
conversion (§10.2) to the corresponding parameter type is performed. The
resulting value becomes the initial value of the value parameter in the function
member invocation.
For a reference or output parameter, the variable reference is evaluated and the
resulting storage location becomes the storage location represented by the
parameter in the function member invocation. If the variable reference given as a
reference or output parameter is an array element of a reference_type, a run-time
check is performed to ensure that the element type of the array is identical to the
type of the parameter. If this check fails, a System.ArrayTypeMismatchException is
thrown.

Methods, indexers, and instance constructors may declare their right-most parameter to
be a parameter array (§14.6.2.5). Such function members are invoked either in their
normal form or in their expanded form depending on which is applicable (§11.6.4.2):

When a function member with a parameter array is invoked in its normal form, the
argument given for the parameter array shall be a single expression that is
implicitly convertible (§10.2) to the parameter array type. In this case, the
parameter array acts precisely like a value parameter.
When a function member with a parameter array is invoked in its expanded form,
the invocation shall specify zero or more positional arguments for the parameter
array, where each argument is an expression that is implicitly convertible (§10.2) to
the element type of the parameter array. In this case, the invocation creates an
instance of the parameter array type with a length corresponding to the number of
arguments, initializes the elements of the array instance with the given argument
values, and uses the newly created array instance as the actual argument.

The expressions of an argument list are always evaluated in textual order.

11.6.2.3 Run-time evaluation of argument lists

Example: Thus, the example

C#

produces the output

Console

end example

The array co-variance rules (§16.6) permit a value of an array type A[] to be a reference
to an instance of an array type B[] , provided an implicit reference conversion exists
from B to A . Because of these rules, when an array element of a reference_type is passed
as a reference or output parameter, a run-time check is required to ensure that the
actual element type of the array is identical to that of the parameter.

Example: In the following code

C#

class Test
{
 static void F(int x, int y = -1, int z = -2) =>
 Console.WriteLine($"x = {x}, y = {y}, z = {z}");

 static void Main()
 {
 int i = 0;
 F(i++, i++, i++);
 F(z: i++, x: i++);
 }
}

x = 0, y = 1, z = 2
x = 4, y = -1, z = 3

class Test
{
 static void F(ref object x) {...}

 static void Main()
 {
 object[] a = new object[10];
 object[] b = new string[10];
 F(ref a[0]); // Ok
 F(ref b[1]); // ArrayTypeMismatchException
 }
}

the second invocation of F causes a System.ArrayTypeMismatchException to be
thrown because the actual element type of b is string and not object .

end example

When a function member with a parameter array is invoked in its expanded form with at
least one expanded argument, the invocation is processed as if an array creation
expression with an array initializer (§11.7.15.5) was inserted around the expanded
arguments. An empty array is passed when there are no arguments for the parameter
array; it is unspecified whether the reference passed is to a newly allocated or existing
empty array.

Example: Given the declaration

C#

the following invocations of the expanded form of the method

C#

correspond exactly to

C#

end example

When arguments are omitted from a function member with corresponding optional
parameters, the default arguments of the function member declaration are implicitly
passed.

Note: Because these are always constant, their evaluation will not impact the
evaluation of the remaining arguments. end note

void F(int x, int y, params object[] args);

F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

F(10, 20, new object[] { 30, 40 });
F(10, 20, new object[] { 1, "hello", 3.0 });

When a generic method is called without specifying type arguments, a type inference
process attempts to infer type arguments for the call. The presence of type inference
allows a more convenient syntax to be used for calling a generic method, and allows the
programmer to avoid specifying redundant type information.

Example:

C#

Through type inference, the type arguments int and string are determined from
the arguments to the method.

end example

Type inference occurs as part of the binding-time processing of a method invocation
(§11.7.8.2) and takes place before the overload resolution step of the invocation. When a
particular method group is specified in a method invocation, and no type arguments are
specified as part of the method invocation, type inference is applied to each generic
method in the method group. If type inference succeeds, then the inferred type
arguments are used to determine the types of arguments for subsequent overload
resolution. If overload resolution chooses a generic method as the one to invoke, then
the inferred type arguments are used as the type arguments for the invocation. If type
inference for a particular method fails, that method does not participate in overload

11.6.3 Type inference

11.6.3.1 General

class Chooser
{
 static Random rand = new Random();

 public static T Choose<T>(T first, T second) =>
 rand.Next(2) == 0 ? first : second;
}

class A
{
 static void M()
 {
 int i = Chooser.Choose(5, 213); // Calls Choose<int>
 string s = Chooser.Choose("apple", "banana"); // Calls
Choose<string>
 }
}

resolution. The failure of type inference, in and of itself, does not cause a binding-time
error. However, it often leads to a binding-time error when overload resolution then fails
to find any applicable methods.

If each supplied argument does not correspond to exactly one parameter in the method
(§11.6.2.2), or there is a non-optional parameter with no corresponding argument, then
inference immediately fails. Otherwise, assume that the generic method has the
following signature:

Tₑ M<X₁...Xᵥ>(T₁ p₁ ... Tₓ pₓ)

With a method call of the form M(E₁ ...Eₓ) the task of type inference is to find unique
type arguments S₁...Sᵥ for each of the type parameters X₁...Xᵥ so that the call
M<S₁...Sᵥ>(E₁...Eₓ) becomes valid.

The process of type inference is described below as an algorithm. A conformant
compiler may be implemented using an alternative approach, provided it reaches the
same result in all cases.

During the process of inference each type parameter Xᵢ is either fixed to a particular
type Sᵢ or unfixed with an associated set of bounds. Each of the bounds is some type T .
Initially each type variable Xᵢ is unfixed with an empty set of bounds.

Type inference takes place in phases. Each phase will try to infer type arguments for
more type variables based on the findings of the previous phase. The first phase makes
some initial inferences of bounds, whereas the second phase fixes type variables to
specific types and infers further bounds. The second phase may have to be repeated a
number of times.

Note: Type inference is also used in other contexts including for conversion of
method groups (§11.6.3.14) and finding the best common type of a set of
expressions (§11.6.3.15). end note

For each of the method arguments Eᵢ :

If Eᵢ is an anonymous function, an explicit parameter type inference (§11.6.3.8) is
made from Eᵢ to Tᵢ
Otherwise, if Eᵢ has a type U and xᵢ is a value parameter (§14.6.2.2) then a lower-
bound inference (§11.6.3.10) is made from U to Tᵢ .

11.6.3.2 The first phase

Otherwise, if Eᵢ has a type U and xᵢ is a reference (§14.6.2.3) or output (§14.6.2.4)
parameter then an exact inference (§11.6.3.9) is made from U to Tᵢ .
Otherwise, no inference is made for this argument.

The second phase proceeds as follows:

All unfixed type variables Xᵢ which do not depend on (§11.6.3.6) any Xₑ are fixed
(§11.6.3.12).
If no such type variables exist, all unfixed type variables Xᵢ are fixed for which all of
the following hold:

There is at least one type variable Xₑ that depends on Xᵢ
Xᵢ has a non-empty set of bounds

If no such type variables exist and there are still unfixed type variables, type
inference fails.
Otherwise, if no further unfixed type variables exist, type inference succeeds.
Otherwise, for all arguments Eᵢ with corresponding parameter type Tᵢ where the
output types (§11.6.3.5) contain unfixed type variables Xₑ but the input types
(§11.6.3.4) do not, an output type inference (§11.6.3.7) is made from Eᵢ to Tᵢ . Then
the second phase is repeated.

If E is a method group or implicitly typed anonymous function and T is a delegate type
or expression tree type then all the parameter types of T are input types of E with
type T .

If E is a method group or an anonymous function and T is a delegate type or
expression tree type then the return type of T is an output type of E with type T .

An unfixed type variable Xᵢ depends directly on an unfixed type variable Xₑ if for some
argument Eᵥ with type Tᵥ Xₑ occurs in an input type of Eᵥ with type Tᵥ and Xᵢ occurs
in an output type of Eᵥ with type Tᵥ .

11.6.3.3 The second phase

11.6.3.4 Input types

11.6.3.5 Output types

11.6.3.6 Dependence

Xₑ depends on Xᵢ if Xₑ depends directly on Xᵢ or if Xᵢ depends directly on Xᵥ and Xᵥ
depends on Xₑ . Thus “depends on” is the transitive but not reflexive closure of “depends
directly on”.

An output type inference is made from an expression E to a type T in the following way:

If E is an anonymous function with inferred return type U (§11.6.3.13) and T is a
delegate type or expression tree type with return type Tₓ , then a lower-bound
inference (§11.6.3.10) is made from U to Tₓ .
Otherwise, if E is a method group and T is a delegate type or expression tree type
with parameter types T₁...Tᵥ and return type Tₓ , and overload resolution of E
with the types T₁...Tᵥ yields a single method with return type U , then a lower-
bound inference is made from U to Tₓ .
Otherwise, if E is an expression with type U , then a lower-bound inference is made
from U to T .
Otherwise, no inferences are made.

An explicit parameter type inference is made from an expression E to a type T in the
following way:

If E is an explicitly typed anonymous function with parameter types U₁...Uᵥ and
T is a delegate type or expression tree type with parameter types V₁...Vᵥ then for
each Uᵢ an exact inference (§11.6.3.9) is made from Uᵢ to the corresponding Vᵢ .

An exact inference from a type U to a type V is made as follows:

If V is one of the unfixed Xᵢ then U is added to the set of exact bounds for Xᵢ .
Otherwise, sets V₁...Vₑ and U₁...Uₑ are determined by checking if any of the
following cases apply:

V is an array type V₁[...] and U is an array type U₁[...] of the same rank
V is the type V₁? and U is the type U₁
V is a constructed type C<V₁...Vₑ> and U is a constructed type C<U₁...Uₑ>
If any of these cases apply then an exact inference is made from each Uᵢ to the
corresponding Vᵢ .

11.6.3.7 Output type inferences

11.6.3.8 Explicit parameter type inferences

11.6.3.9 Exact inferences

Otherwise, no inferences are made.

A lower-bound inference from a type U to a type V is made as follows:

If V is one of the unfixed Xᵢ then U is added to the set of lower bounds for Xᵢ .
Otherwise, if V is the type V₁? and U is the type U₁? then a lower bound inference
is made from U₁ to V₁ .
Otherwise, sets U₁...Uₑ and V₁...Vₑ are determined by checking if any of the
following cases apply:

V is an array type V₁[...]and U is an array type U₁[...]of the same rank
V is one of IEnumerable<V₁> , ICollection<V₁> , IReadOnlyList<V₁>> ,
IReadOnlyCollection<V₁> or IList<V₁> and U is a single-dimensional array type
U₁[]

V is a constructed class , struct , interface or delegate type C<V₁...Vₑ> and
there is a unique type C<U₁...Uₑ> such that U (or, if U is a type parameter , its
effective base class or any member of its effective interface set) is identical to,
inherits from (directly or indirectly), or implements (directly or indirectly)
C<U₁...Uₑ> .
(The “uniqueness” restriction means that in the case interface C<T>{} class U:
C<X>, C<Y>{} , then no inference is made when inferring from U to C<T>
because U₁ could be X or Y .)
If any of these cases apply then an inference is made from each Uᵢ to the
corresponding Vᵢ as follows:
If Uᵢ is not known to be a reference type then an exact inference is made
Otherwise, if U is an array type then a lower-bound inference is made
Otherwise, if V is C<V₁...Vₑ> then inference depends on the i-th type
parameter of C :

If it is covariant then a lower-bound inference is made.
If it is contravariant then an upper-bound inference is made.
If it is invariant then an exact inference is made.

Otherwise, no inferences are made.

An upper-bound inference from a type U to a type V is made as follows:

If V is one of the unfixed Xᵢ then U is added to the set of upper bounds for Xᵢ .

11.6.3.10 Lower-bound inferences

11.6.3.11 Upper-bound inferences

Otherwise, sets V₁...Vₑ and U₁...Uₑ are determined by checking if any of the
following cases apply:

U is an array type U₁[...]and V is an array type V₁[...]of the same rank
U is one of IEnumerable<Uₑ> , ICollection<Uₑ> , IReadOnlyList<Uₑ> ,
IReadOnlyCollection<Uₑ> or IList<Uₑ> and V is a single-dimensional array type
Vₑ[]

U is the type U1? and V is the type V1?
U is constructed class, struct, interface or delegate type C<U₁...Uₑ> and V is a
class, struct, interface or delegate type which is identical to, inherits
from (directly or indirectly), or implements (directly or indirectly) a unique type
C<V₁...Vₑ>

(The “uniqueness” restriction means that if we have interface C<T>{} class
V<Z>: C<X<Z>>, C<Y<Z>>{} , then no inference is made when inferring from C<U₁>
to V<Q> . Inferences are not made from U₁ to either X<Q> or Y<Q> .)
If any of these cases apply then an inference is made from each Uᵢ to the
corresponding Vᵢ as follows:
If Uᵢ is not known to be a reference type then an exact inference is made
Otherwise, if V is an array type then an upper-bound inference is made
Otherwise, if U is C<U₁...Uₑ> then inference depends on the i-th type
parameter of C :

If it is covariant then an upper-bound inference is made.
If it is contravariant then a lower-bound inference is made.
If it is invariant then an exact inference is made.

Otherwise, no inferences are made.

An unfixed type variable Xᵢ with a set of bounds is fixed as follows:

The set of candidate types Uₑ starts out as the set of all types in the set of bounds
for Xᵢ .
We then examine each bound for Xᵢ in turn: For each exact bound U of Xᵢ all
types Uₑ that are not identical to U are removed from the candidate set. For each
lower bound U of Xᵢ all types Uₑ to which there is not an implicit conversion
from U are removed from the candidate set. For each upper-bound U of Xᵢ all
types Uₑ from which there is not an implicit conversion to U are removed from the
candidate set.
If among the remaining candidate types Uₑ there is a unique type V to which
there is an implicit conversion from all the other candidate types, then Xᵢ is fixed

11.6.3.12 Fixing

to V .
Otherwise, type inference fails.

The inferred return type of an anonymous function F is used during type inference and
overload resolution. The inferred return type can only be determined for an anonymous
function where all parameter types are known, either because they are explicitly given,
provided through an anonymous function conversion or inferred during type inference
on an enclosing generic method invocation.

The inferred effective return type is determined as follows:

If the body of F is an expression that has a type, then the inferred effective return
type of F is the type of that expression.
If the body of F is a block and the set of expressions in the block’s return
statements has a best common type T (§11.6.3.15), then the inferred effective
return type of F is T .
Otherwise, an effective return type cannot be inferred for F .

The inferred return type is determined as follows:

If F is async and the body of F is either an expression classified as nothing (§11.2),
or a block where no return statements have expressions, the inferred return type
is System.Threading.Tasks.Task .
If F is async and has an inferred effective return type T , the inferred return type is
System.Threading.Tasks.Task<T> .
If F is non-async and has an inferred effective return type T , the inferred return
type is T .
Otherwise, a return type cannot be inferred for F .

Example: As an example of type inference involving anonymous functions, consider
the Select extension method declared in the System.Linq.Enumerable class:

C#

11.6.3.13 Inferred return type

namespace System.Linq
{
 public static class Enumerable
 {
 public static IEnumerable<TResult> Select<TSource,TResult>(
 this IEnumerable<TSource> source,
 Func<TSource,TResult> selector)

Assuming the System.Linq namespace was imported with a using namespace
directive, and given a class Customer with a Name property of type string , the
Select method can be used to select the names of a list of customers:

C#

The extension method invocation (§11.7.8.3) of Select is processed by rewriting the
invocation to a static method invocation:

C#

Since type arguments were not explicitly specified, type inference is used to infer the
type arguments. First, the customers argument is related to the source parameter,
inferring TSource to be Customer . Then, using the anonymous function type
inference process described above, c is given type Customer , and the
expression c.Name is related to the return type of the selector parameter, inferring
TResult to be string . Thus, the invocation is equivalent to

C#

and the result is of type IEnumerable<string> .

The following example demonstrates how anonymous function type inference
allows type information to “flow” between arguments in a generic method
invocation. Given the following method and invocation:

C#

 {
 foreach (TSource element in source)
 {
 yield return selector(element);
 }
 }
 }
}

List<Customer> customers = GetCustomerList();
IEnumerable<string> names = customers.Select(c => c.Name);

IEnumerable<string> names = Enumerable.Select(customers, c => c.Name);

Sequence.Select<Customer,string>(customers, (Customer c) => c.Name)

type inference for the invocation proceeds as follows: First, the argument “1:15:30” is
related to the value parameter, inferring X to be string. Then, the parameter of the
first anonymous function, s , is given the inferred type string , and the expression
TimeSpan.Parse(s) is related to the return type of f1 , inferring Y to be
System.TimeSpan . Finally, the parameter of the second anonymous function, t , is
given the inferred type System.TimeSpan , and the expression t.TotalSeconds is
related to the return type of f2 , inferring Z to be double . Thus, the result of the
invocation is of type double .

end example

Similar to calls of generic methods, type inference shall also be applied when a method
group M containing a generic method is converted to a given delegate type D (§10.8).
Given a method

Tₑ M<X₁...Xᵥ>(T₁ x₁ ... Tₑ xₑ)

and the method group M being assigned to the delegate type D the task of type
inference is to find type arguments S₁...Sᵥ so that the expression:

M<S₁...Sᵥ>

becomes compatible (§19.2) with D .

Unlike the type inference algorithm for generic method calls, in this case, there are only
argument types, no argument expressions. In particular, there are no anonymous
functions and hence no need for multiple phases of inference.

class A
{
 static Z F<X,Y,Z>(X value, Func<X,Y> f1, Func<Y,Z> f2)
 {
 return f2(f1(value));
 }

 static void M()
 {
 double seconds = F("1:15:30", s => TimeSpan.Parse(s), t =>
t.TotalSeconds);
 }
}

11.6.3.14 Type inference for conversion of method groups

Instead, all Xᵢ are considered unfixed, and a lower-bound inference is made from each
argument type Uₑ of D to the corresponding parameter type Tₑ of M . If for any of
the Xᵢ no bounds were found, type inference fails. Otherwise, all Xᵢ are fixed to
corresponding Sᵢ , which are the result of type inference.

In some cases, a common type needs to be inferred for a set of expressions. In
particular, the element types of implicitly typed arrays and the return types of
anonymous functions with block bodies are found in this way.

The best common type for a set of expressions E₁...Eᵥ is determined as follows:

A new unfixed type variable X is introduced.
For each expression Ei an output type inference (§11.6.3.7) is performed from it to
X .
X is fixed (§11.6.3.12), if possible, and the resulting type is the best common type.
Otherwise inference fails.

Note: Intuitively this inference is equivalent to calling a method void M<X>(X x₁ ...
X xᵥ) with the Eᵢ as arguments and inferring X . end note

Overload resolution is a binding-time mechanism for selecting the best function
member to invoke given an argument list and a set of candidate function members.
Overload resolution selects the function member to invoke in the following distinct
contexts within C#:

Invocation of a method named in an invocation_expression (§11.7.8).
Invocation of an instance constructor named in an object_creation_expression
(§11.7.15.2).
Invocation of an indexer accessor through an element_access (§11.7.10).
Invocation of a predefined or user-defined operator referenced in an expression
(§11.4.4 and §11.4.5).

Each of these contexts defines the set of candidate function members and the list of
arguments in its own unique way. For instance, the set of candidates for a method

11.6.3.15 Finding the best common type of a set of expressions

11.6.4 Overload resolution

11.6.4.1 General

invocation does not include methods marked override (§11.5), and methods in a base
class are not candidates if any method in a derived class is applicable (§11.7.8.2).

Once the candidate function members and the argument list have been identified, the
selection of the best function member is the same in all cases:

First, the set of candidate function members is reduced to those function members
that are applicable with respect to the given argument list (§11.6.4.2). If this
reduced set is empty, a compile-time error occurs.
Then, the best function member from the set of applicable candidate function
members is located. If the set contains only one function member, then that
function member is the best function member. Otherwise, the best function
member is the one function member that is better than all other function members
with respect to the given argument list, provided that each function member is
compared to all other function members using the rules in §11.6.4.3. If there is not
exactly one function member that is better than all other function members, then
the function member invocation is ambiguous and a binding-time error occurs.

The following subclauses define the exact meanings of the terms applicable function
member and better function member.

A function member is said to be an applicable function member with respect to an
argument list A when all of the following are true:

Each argument in A corresponds to a parameter in the function member
declaration as described in §11.6.2.2, at most one argument corresponds to each
parameter, and any parameter to which no argument corresponds is an optional
parameter.
For each argument in A , the parameter-passing mode of the argument is identical
to the parameter-passing mode of the corresponding parameter, and

for a value parameter or a parameter array, an implicit conversion (§10.2) exists
from the argument expression to the type of the corresponding parameter, or
for a ref or out parameter, there is an identity conversion between the type of
the argument expression and the type of the corresponding parameter

For a function member that includes a parameter array, if the function member is
applicable by the above rules, it is said to be applicable in its normal form. If a function
member that includes a parameter array is not applicable in its normal form, the
function member might instead be applicable in its expanded form:

11.6.4.2 Applicable function member

The expanded form is constructed by replacing the parameter array in the function
member declaration with zero or more value parameters of the element type of
the parameter array such that the number of arguments in the argument list A
matches the total number of parameters. If A has fewer arguments than the
number of fixed parameters in the function member declaration, the expanded
form of the function member cannot be constructed and is thus not applicable.
Otherwise, the expanded form is applicable if for each argument in A the
parameter-passing mode of the argument is identical to the parameter-passing
mode of the corresponding parameter, and

for a fixed value parameter or a value parameter created by the expansion, an
implicit conversion (§10.2) exists from the argument expression to the type of
the corresponding parameter, or
for a ref or out parameter, the type of the argument expression is identical to
the type of the corresponding parameter.

Additional rules determine whether a method is applicable or not based on the context
of the expression:

A static method is only applicable if the method group results from a simple_name
or a member_access through a type.
An instance method is only applicable if the method group results from a
simple_name, a member_access through a variable or value, or a base_access.

If the method group results from a simple_name, an instance method is only
applicable if this access is permitted §11.7.12.

When the method group results from a member_access which could be via either
an instance or a type as described in §11.7.6.2, both instance and static methods
are applicable.
A generic method whose type arguments (explicitly specified or inferred) do not all
satisfy their constraints is not applicable.
In the context of a method group conversion, there must exist an identity
conversion (§10.2.2) between the method return type and the delegate’s return
type. Otherwise, the candidate method is not applicable.

For the purposes of determining the better function member, a stripped-down
argument list A is constructed containing just the argument expressions themselves in
the order they appear in the original argument list.

Parameter lists for each of the candidate function members are constructed in the
following way:

11.6.4.3 Better function member

The expanded form is used if the function member was applicable only in the
expanded form.
Optional parameters with no corresponding arguments are removed from the
parameter list
The parameters are reordered so that they occur at the same position as the
corresponding argument in the argument list.

Given an argument list A with a set of argument expressions {E₁, E₂, ..., Eᵥ} and
two applicable function members Mᵥ and Mₓ with parameter types {P₁, P₂, ..., Pᵥ}
and {Q₁, Q₂, ..., Qᵥ} , Mᵥ is defined to be a better function member than Mₓ if

for each argument, the implicit conversion from Eᵥ to Qᵥ is not better than the
implicit conversion from Eᵥ to Pᵥ , and
for at least one argument, the conversion from Eᵥ to Pᵥ is better than the
conversion from Eᵥ to Qᵥ .

In case the parameter type sequences {P₁, P₂, ..., Pᵥ} and {Q₁, Q₂, ..., Qᵥ} are
equivalent (i.e., each Pᵢ has an identity conversion to the corresponding Qᵢ), the
following tie-breaking rules are applied, in order, to determine the better function
member.

If Mᵢ is a non-generic method and Mₑ is a generic method, then Mᵢ is better
than Mₑ .
Otherwise, if Mᵢ is applicable in its normal form and Mₑ has a params array and is
applicable only in its expanded form, then Mᵢ is better than Mₑ .
Otherwise, if both methods have params arrays and are applicable only in their
expanded forms, and if the params array of Mᵢ has fewer elements than the
params array of Mₑ , then Mᵢ is better than Mₑ .
Otherwise, if Mᵥ has more specific parameter types than Mₓ , then Mᵥ is better
than Mₓ . Let {R1, R2, ..., Rn} and {S1, S2, ..., Sn} represent the
uninstantiated and unexpanded parameter types of Mᵥ and Mₓ . Mᵥ ’s parameter
types are more specific than Mₓs if, for each parameter, Rx is not less specific
than Sx , and, for at least one parameter, Rx is more specific than Sx :

A type parameter is less specific than a non-type parameter.
Recursively, a constructed type is more specific than another constructed
type (with the same number of type arguments) if at least one type argument is
more specific and no type argument is less specific than the corresponding type
argument in the other.
An array type is more specific than another array type (with the same number of
dimensions) if the element type of the first is more specific than the element

type of the second.
Otherwise if one member is a non-lifted operator and the other is a lifted operator,
the non-lifted one is better.
If neither function member was found to be better, and all parameters of Mᵥ have
a corresponding argument whereas default arguments need to be substituted for
at least one optional parameter in Mₓ , then Mᵥ is better than Mₓ . Otherwise, no
function member is better.

Given an implicit conversion C₁ that converts from an expression E to a type T₁ , and an
implicit conversion C₂ that converts from an expression E to a type T₂ , C₁ is a better
conversion than C₂ if one of the following holds:

E exactly matches T₁ and E does not exactly match T₂ (§11.6.4.5)
E exactly matches both or neither of T₁ and T₂ , and T₁ is a better conversion
target than T₂ (§11.6.4.6)
E is a method group (§11.2), T₁ is compatible (§19.4) with the single best method
from the method group for conversion C₁ , and T₂ is not compatible with the
single best method from the method group for conversion C₂

Given an expression E and a type T , E exactly matches T if one of the following holds:

E has a type S , and an identity conversion exists from S to T
E is an anonymous function, T is either a delegate type D or an expression tree
type Expression<D> and one of the following holds:

An inferred return type X exists for E in the context of the parameter list of D
(§11.6.3.12), and an identity conversion exists from X to the return type of D
Either E is non-async and D has a return type Y or E is async and D has a
return type Task<Y> , and one of the following holds:

The body of E is an expression that exactly matches Y
The body of E is a block where every return statement returns an expression
that exactly matches Y

11.6.4.4 Better conversion from expression

11.6.4.5 Exactly matching expression

11.6.4.6 Better conversion target

Given two types T₁ and T₂ , T₁ is a better conversion target than T₂ if one of the
following holds:

An implicit conversion from T₁ to T₂ exists and no implicit conversion from T₂ to
T₁ exists
T₁ is Task<S₁> , T₂ is Task<S₂> , and S₁ is a better conversion target than S₂
T₁ is S₁ or S₁? where S₁ is a signed integral type, and T₂ is S₂ or S₂? where S₂
is an unsigned integral type. Specifically:

S₁ is sbyte and S₂ is byte , ushort , uint , or ulong
S₁ is short and S₂ is ushort , uint , or ulong
S₁ is int and S₂ is uint , or ulong
S₁ is long and S₂ is ulong

Note: While signatures as declared shall be unique (§8.6), it is possible that
substitution of type arguments results in identical signatures. In such a situation,
overload resolution will pick the most specific (§11.6.4.3) of the original signatures
(before substitution of type arguments), if it exists, and otherwise report an error.
end note

Example: The following examples show overloads that are valid and invalid
according to this rule:

C#

11.6.4.7 Overloading in generic classes

public interface I1<T> { ... }
public interface I2<T> { ... }

public abstract class G1<U>
{
 public abstract int F1(U u); // Overload resolution
for G<int>.F1
 public abstract int F1(int i); // will pick non-generic

 public abstract void F2(I1<U> a); // Valid overload
 public abstract void F2(I2<U> a);
}

abstract class G2<U,V>
{
 public abstract void F3(U u, V v); // Valid, but overload
resolution for
 public abstract void F3(V v, U u); // G2<int,int>.F3 will
fail

end example

Even though overload resolution of a dynamically bound operation takes place at run-
time, it is sometimes possible at compile-time to know the list of function members
from which an overload will be chosen:

For a delegate invocation (§11.7.8.4), the list is a single function member with the
same parameter list as the delegate_type of the invocation
For a method invocation (§11.7.8.2) on a type, or on a value whose static type is
not dynamic, the set of accessible methods in the method group is known at
compile-time.
For an object creation expression (§11.7.15.2) the set of accessible constructors in
the type is known at compile-time.
For an indexer access (§11.7.10.3) the set of accessible indexers in the receiver is
known at compile-time.

In these cases a limited compile-time check is performed on each member in the known
set of function members, to see if it can be known for certain never to be invoked at
run-time. For each function member F a modified parameter and argument list are
constructed:

First, if F is a generic method and type arguments were provided, then those are
substituted for the type parameters in the parameter list. However, if type
arguments were not provided, no such substitution happens.
Then, any parameter whose type is open (i.e., contains a type parameter; see
§8.4.3) is elided, along with its corresponding parameter(s).

For F to pass the check, all of the following shall hold:

 public abstract void F4(U u, I1<V> v); // Valid, but overload
resolution for
 public abstract void F4(I1<V> v, U u); // G2<I1<int>,int>.F4
will fail

 public abstract void F5(U u1, I1<V> v2); // Valid overload
 public abstract void F5(V v1, U u2);

 public abstract void F6(ref U u); // Valid overload
 public abstract void F6(out V v);
}

11.6.5 Compile-time checking of dynamic member
invocation

The modified parameter list for F is applicable to the modified argument list in
terms of §11.6.4.2.
All constructed types in the modified parameter list satisfy their constraints (§8.4.5).
If the type parameters of F were substituted in the step above, their constraints
are satisfied.
If F is a static method, the method group shall not have resulted from a
member_access whose receiver is known at compile-time to be a variable or value.
If F is an instance method, the method group shall not have resulted from a
member_access whose receiver is known at compile-time to be a type.

If no candidate passes this test, a compile-time error occurs.

This subclause describes the process that takes place at run-time to invoke a particular
function member. It is assumed that a binding-time process has already determined the
particular member to invoke, possibly by applying overload resolution to a set of
candidate function members.

For purposes of describing the invocation process, function members are divided into
two categories:

Static function members. These are static methods, static property accessors, and
user-defined operators. Static function members are always non-virtual.
Instance function members. These are instance methods, instance constructors,
instance property accessors, and indexer accessors. Instance function members are
either non-virtual or virtual, and are always invoked on a particular instance. The
instance is computed by an instance expression, and it becomes accessible within
the function member as this (§11.7.12). For an instance constructor, the instance
expression is taken to be the newly allocated object.

The run-time processing of a function member invocation consists of the following
steps, where M is the function member and, if M is an instance member, E is the
instance expression:

If M is a static function member:
The argument list is evaluated as described in §11.6.2.
M is invoked.

Otherwise, if the type of E is a value-type V , and M is declared or overridden in V :

11.6.6 Function member invocation

11.6.6.1 General

E is evaluated. If this evaluation causes an exception, then no further steps are
executed. For an instance constructor, this evaluation consists of allocating
storage (typically from an execution stack) for the new object. In this case E is
classified as a variable.
If E is not classified as a variable, then a temporary local variable of E ’s type is
created and the value of E is assigned to that variable. E is then reclassified as
a reference to that temporary local variable. The temporary variable is accessible
as this within M , but not in any other way. Thus, only when E is a true variable
is it possible for the caller to observe the changes that M makes to this .
The argument list is evaluated as described in §11.6.2.
M is invoked. The variable referenced by E becomes the variable referenced by
this .

Otherwise:
E is evaluated. If this evaluation causes an exception, then no further steps are
executed.
The argument list is evaluated as described in §11.6.2.
If the type of E is a value_type, a boxing conversion (§10.2.9) is performed to
convert E to a class_type, and E is considered to be of that class_type in the
following steps. If the value_type is an enum_type, the class_type is System.Enum;
otherwise, it is System.ValueType .
The value of E is checked to be valid. If the value of E is null, a
System.NullReferenceException is thrown and no further steps are executed.
The function member implementation to invoke is determined:

If the binding-time type of E is an interface, the function member to invoke
is the implementation of M provided by the run-time type of the instance
referenced by E . This function member is determined by applying the
interface mapping rules (§17.6.5) to determine the implementation of M
provided by the run-time type of the instance referenced by E .
Otherwise, if M is a virtual function member, the function member to invoke
is the implementation of M provided by the run-time type of the instance
referenced by E . This function member is determined by applying the rules
for determining the most derived implementation (§14.6.4) of M with respect
to the run-time type of the instance referenced by E .
Otherwise, M is a non-virtual function member, and the function member to
invoke is M itself.

The function member implementation determined in the step above is invoked.
The object referenced by E becomes the object referenced by this.

The result of the invocation of an instance constructor (§11.7.15.2) is the value created.
The result of the invocation of any other function member is the value, if any, returned
(§12.10.5) from its body.

A function member implemented in a value_type can be invoked through a boxed
instance of that value_type in the following situations:

When the function member is an override of a method inherited from type
class_type and is invoked through an instance expression of that class_type.

Note: The class_type will always be one
of System.Object , System.ValueType or System.Enum . end note

When the function member is an implementation of an interface function member
and is invoked through an instance expression of an interface_type.
When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the
value_type, and this variable becomes the variable referenced by this within the function
member invocation.

Note: In particular, this means that when a function member is invoked on a boxed
instance, it is possible for the function member to modify the value contained in the
boxed instance. end note

Primary expressions include the simplest forms of expressions.

ANTLR

11.6.6.2 Invocations on boxed instances

11.7 Primary expressions

11.7.1 General

primary_expression
 : primary_no_array_creation_expression
 | array_creation_expression
 ;

primary_no_array_creation_expression
 : literal
 | interpolated_string_expression

Note: These grammar rules are not ANTLR-ready as they are part of a set of
mutually left-recursive rules (primary_expression ,
primary_no_array_creation_expression , member_access , invocation_expression ,
element_access , post_increment_expression , post_decrement_expression ,
pointer_member_access and pointer_element_access) which ANTLR does not handle.
Standard techniques can be used to transform the grammar to remove the mutual
left-recursion. This has not been done as not all parsing strategies require it (e.g. an
LALR parser would not) and doing so would obfuscate the structure and description.

pointer_member_access (§22.6.3) and pointer_element_access (§22.6.4) are only available
in unsafe code (§22).

Primary expressions are divided between array_creation_expressions and
primary_no_array_creation_expressions. Treating array_creation_expression in this way,
rather than listing it along with the other simple expression forms, enables the grammar
to disallow potentially confusing code such as

C#

which would otherwise be interpreted as

 | simple_name
 | parenthesized_expression
 | member_access
 | null_conditional_member_access
 | invocation_expression
 | element_access
 | null_conditional_element_access
 | this_access
 | base_access
 | post_increment_expression
 | post_decrement_expression
 | object_creation_expression
 | delegate_creation_expression
 | anonymous_object_creation_expression
 | typeof_expression
 | sizeof_expression
 | checked_expression
 | unchecked_expression
 | default_value_expression
 | nameof_expression
 | anonymous_method_expression
 | pointer_member_access // unsafe code support
 | pointer_element_access // unsafe code support
 ;

object o = new int[3][1];

C#

A primary_expression that consists of a literal (§6.4.5) is classified as a value.

An interpolated_string_expression consists of $ or $@ immediately followed by text
within " characters. Within the quoted text there are zero or more interpolations
delimited by { and } characters, each of which encloses an expression and optional
formatting specifications.

Interpolated string expressions have two forms; regular
(interpolated_regular_string_expression) and verbatim
(interpolated_verbatim_string_expression); which are lexically similar to, but differ
semantically from, the two forms of string literals (§6.4.5.6).

ANTLR

object o = (new int[3])[1];

11.7.2 Literals

11.7.3 Interpolated string expressions

interpolated_string_expression
 : interpolated_regular_string_expression
 | interpolated_verbatim_string_expression
 ;

// interpolated regular string expressions

interpolated_regular_string_expression
 : Interpolated_Regular_String_Start Interpolated_Regular_String_Mid?
 ('{' regular_interpolation '}' Interpolated_Regular_String_Mid?)*
 Interpolated_Regular_String_End
 ;

regular_interpolation
 : expression (',' interpolation_minimum_width)?
 Regular_Interpolation_Format?
 ;

interpolation_minimum_width
 : constant_expression
 ;

Interpolated_Regular_String_Start
 : '$"'
 ;

// the following three lexical rules are context sensitive, see details
below

Interpolated_Regular_String_Mid
 : Interpolated_Regular_String_Element+
 ;

Regular_Interpolation_Format
 : ':' Interpolated_Regular_String_Element+
 ;

Interpolated_Regular_String_End
 : '"'
 ;

fragment Interpolated_Regular_String_Element
 : Interpolated_Regular_String_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Regular_String_Character
 // Any character except " (U+0022), \\ (U+005C),
 // { (U+007B), } (U+007D), and New_Line_Character.
 : ~["\\{}\u000D\u000A\u0085\u2028\u2029]
 ;

// interpolated verbatim string expressions

interpolated_verbatim_string_expression
 : Interpolated_Verbatim_String_Start Interpolated_Verbatim_String_Mid?
 ('{' verbatim_interpolation '}' Interpolated_Verbatim_String_Mid?)*
 Interpolated_Verbatim_String_End
 ;

verbatim_interpolation
 : expression (',' interpolation_minimum_width)?
 Verbatim_Interpolation_Format?
 ;

Interpolated_Verbatim_String_Start
 : '$@"'
 ;

// the following three lexical rules are context sensitive, see details
below

Interpolated_Verbatim_String_Mid
 : Interpolated_Verbatim_String_Element+
 ;

Six of the lexical rules defined above are context sensitive as follows:

Rule Contextual Requirements

Interpolated_Regular_String_Mid Only recognised after an Interpolated_Regular_String_Start,
between any following interpolations, and before the
corresponding Interpolated_Regular_String_End.

Regular_Interpolation_Format Only recognised within a regular_interpolation and when the
starting colon (:) is not nested within any kind of bracket
(parentheses/braces/square).

Interpolated_Regular_String_End Only recognised after an Interpolated_Regular_String_Start and
only if any intervening tokens are either
Interpolated_Regular_String_Mids or tokens that can be part of
regular_interpolations, including tokens for any
interpolated_regular_string_expressions contained within such
interpolations.

Interpolated_Verbatim_String_Mid
Verbatim_Interpolation_Format
Interpolated_Verbatim_String_End

Recognition of these three rules follows that of the
corresponding rules above with each mentioned regular
grammar rule replaced by the corresponding verbatim one.

Verbatim_Interpolation_Format
 : ':' Interpolated_Verbatim_String_Element+
 ;

Interpolated_Verbatim_String_End
 : '"'
 ;

fragment Interpolated_Verbatim_String_Element
 : Interpolated_Verbatim_String_Character
 | Quote_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Verbatim_String_Character
 : ~["{}] // Any character except " (U+0022), { (U+007B) and }
(U+007D)
 ;

// lexical fragments used by both regular and verbatim interpolated strings

fragment Open_Brace_Escape_Sequence
 : '{{'
 ;

fragment Close_Brace_Escape_Sequence
 : '}}'
 ;

Note: The above rules are context sensitive as their definitions overlap with those of
other tokens in the language. end note

Note: The above grammar is not ANTLR-ready due to the context sensitive lexical
rules. As with other lexer generators ANTLR supports context sensitive lexical rules,
for example using its lexical modes, but this is an implementation detail and
therefore not part of this Standard. end note

An interpolated_string_expression is classified as a value. If it is immediately converted to
System.IFormattable or System.FormattableString with an implicit interpolated string
conversion (§10.2.5), the interpolated string expression has that type. Otherwise, it has
the type string .

Note: The differences between the possible types an interpolated_string_expression
may be determined from the documentation for System.String (§C.2) and
System.FormattableString (§C.3). end note

The meaning of an interpolation, both regular_interpolation and verbatim_interpolation,
is to format the value of the expression as a string either according to the format
specified by the Regular_Interpolation_Format or Verbatim_Interpolation_Format, or
according to a default format for the type of expression. The formatted string is then
modified by the interpolation_minimum_width, if any, to produce the final string to be
interpolated into the interpolated_string_expression.

Note: How the default format for a type is determined is detailed in the
documentation for System.String (§C.2) and System.FormattableString (§C.3).
Descriptions of standard formats, which are identical for
Regular_Interpolation_Format and Verbatim_Interpolation_Format, may be found in
the documentation for System.IFormattable (§C.4) and in other types in the
standard library (§C). end note

In an interpolation_minimum_width the constant_expression shall have an implicit
conversion to int . Let the field width be the absolute value of this constant_expression
and the alignment be the sign (positive or negative) of the value of this
constant_expression:

If the value of field width is less than or equal to the length of the formatted string
the formatted string is not modified.
Otherwise the formatted string is padded with white space characters so that its
length is equal to field width:

If the alignment is positive the formatted string is right-aligned by prepending
the padding,
Otherwise it is left-aligned by appending the padding.

The overall meaning of an interpolated_string_expression, including the above formatting
and padding of interpolations, is defined by a conversion of the expression to a method
invocation: if the type of the expression is System.IFormattable or
System.FormattableString that method is
System.Runtime.CompilerServices.FormattableStringFactory.Create (§C.3) which returns
a value of type System.FormattableString ; otherwise the type must be string and the
method is string.Format (§C.2) which returns a value of type string .

In both cases, the argument list of the call consists of a format string literal with format
specifications for each interpolation, and an argument for each expression
corresponding to the format specifications.

The format string literal is constructed as follows, where N is the number of
interpolations in the interpolated_string_expression. The format string literal consists of,
in order:

The characters of the Interpolated_Regular_String_Start or
Interpolated_Verbatim_String_Start
The characters of the Interpolated_Regular_String_Mid or
Interpolated_Verbatim_String_Mid, if any
Then if N ≥ 1 for each number I from 0 to N-1 :

A placeholder specification:
A left brace ({) character
The decimal representation of I
Then, if the corresponding regular_interpolation or verbatim_interpolation has
a interpolation_minimum_width, a comma (,) followed by the decimal
representation of the value of the constant_expression
The characters of the Regular_Interpolation_Format or
Verbatim_Interpolation_Format, if any, of the corresponding
regular_interpolation or verbatim_interpolation
A right brace (}) character

The characters of the Interpolated_Regular_String_Mid or
Interpolated_Verbatim_String_Mid immediately following the corresponding
interpolation, if any

Finally the characters of the Interpolated_Regular_String_End or
Interpolated_Verbatim_String_End.

The subsequent arguments are the expressions from the interpolations, if any, in order.

When an interpolated_string_expression contains multiple interpolations, the expressions
in those interpolations are evaluated in textual order from the left to right.

Example:

This example uses the following format specification features:

the X format specification which formats integers as uppercase hexadecimal,
the default format for a string value is the value itself,
positive alignment values that right-justify within the specified minimum field
width,
negative alignment values that left-justify within the specified minimum field
width,
defined constants for the interpolation_minimum_width, and
that {{ and }} are formatted as { and } respectively.

Given:

C#

Then:

Interpolated String
Expression

Equivalent Meaning As string Value

$"{text}" string.Format("{0}", text) "red"

$"{{text}}" string.Format("{{text}}) "{text}"

$"{ text , 4 }" string.Format("{0,4}", text) " red"

$"{ text , width }" string.Format("{0,-4}", text) "red "

$"{number:X}" string.Format("{0:X}", number) "E"

$"{text + '?'} {number % 3}" string.Format("{0} {1}", text + '?', number % 3) "red? 2"

$"{text + $"[{number}]"}" string.Format("{0}", text + string.Format("

[{0}]", number))

"red[14]"

$"{(number==0?"Zero":"Non-

zero")}"

string.Format("{0}", (number==0?"Zero":"Non-

zero"))

"Non-

zero"

string text = "red";
int number = 14;
const int width = -4;

end example

A simple_name consists of an identifier, optionally followed by a type argument list:

ANTLR

A simple_name is either of the form I or of the form I<A₁, ..., Aₑ> , where I is a
single identifier and I<A₁, ..., Aₑ> is an optional type_argument_list. When no
type_argument_list is specified, consider e to be zero. The simple_name is evaluated and
classified as follows:

If e is zero and the simple_name appears within a block and if the block’s (or an
enclosing block’s) local variable declaration space (§7.3) contains a local variable,
parameter or constant with name I , then the simple_name refers to that local
variable, parameter or constant and is classified as a variable or value.
If e is zero and the simple_name appears within a generic method declaration but
outside the attributes of its method_header, and if that declaration includes a type
parameter with name I , then the simple_name refers to that type parameter.
Otherwise, for each instance type T (§14.3.2), starting with the instance type of the
immediately enclosing type declaration and continuing with the instance type of
each enclosing class or struct declaration (if any):

If e is zero and the declaration of T includes a type parameter with name I ,
then the simple_name refers to that type parameter.
Otherwise, if a member lookup (§11.5) of I in T with e type arguments
produces a match:

If T is the instance type of the immediately enclosing class or struct type and
the lookup identifies one or more methods, the result is a method group
with an associated instance expression of this . If a type argument list was
specified, it is used in calling a generic method (§11.7.8.2).
Otherwise, if T is the instance type of the immediately enclosing class or
struct type, if the lookup identifies an instance member, and if the reference
occurs within the block of an instance constructor, an instance method, or an
instance accessor (§11.2.1), the result is the same as a member access
(§11.7.6) of the form this.I . This can only happen when e is zero.

11.7.4 Simple names

simple_name
 : identifier type_argument_list?
 ;

Otherwise, the result is the same as a member access (§11.7.6) of the form
T.I or T.I<A₁, ..., Aₑ> .

Otherwise, for each namespace N , starting with the namespace in which the
simple_name occurs, continuing with each enclosing namespace (if any), and
ending with the global namespace, the following steps are evaluated until an entity
is located:

If e is zero and I is the name of a namespace in N , then:
If the location where the simple_name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I with
a namespace or type, then the simple_name is ambiguous and a compile-
time error occurs.
Otherwise, the simple_name refers to the namespace named I in N .

Otherwise, if N contains an accessible type having name I and e type
parameters, then:

If e is zero and the location where the simple_name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I with
a namespace or type, then the simple_name is ambiguous and a compile-
time error occurs.
Otherwise, the namespace_or_type_name refers to the type constructed with
the given type arguments.

Otherwise, if the location where the simple_name occurs is enclosed by a
namespace declaration for N :

If e is zero and the namespace declaration contains an extern_alias_directive
or using_alias_directive that associates the name I with an imported
namespace or type, then the simple_name refers to that namespace or type.
Otherwise, if the namespaces imported by the using_namespace_directives of
the namespace declaration contain exactly one type having name I and
e type parameters, then the simple_name refers to that type constructed
with the given type arguments.
Otherwise, if the namespaces imported by the using_namespace_directives of
the namespace declaration contain more than one type having name I and
e type parameters, then the simple_name is ambiguous and a compile-time
error occurs.

Note: This entire step is exactly parallel to the corresponding step in the
processing of a namespace_or_type_name (§7.8). end note

Otherwise, the simple_name is undefined and a compile-time error occurs.

A parenthesized_expression consists of an expression enclosed in parentheses.

ANTLR

A parenthesized_expression is evaluated by evaluating the expression within the
parentheses. If the expression within the parentheses denotes a namespace or type, a
compile-time error occurs. Otherwise, the result of the parenthesized_expression is the
result of the evaluation of the contained expression.

A member_access consists of a primary_expression, a predefined_type, or a
qualified_alias_member, followed by a “. ” token, followed by an identifier, optionally
followed by a type_argument_list.

ANTLR

The qualified_alias_member production is defined in §13.8.

A member_access is either of the form E.I or of the form E.I<A₁, ..., Aₑ> , where E is
a primary_expression, predefined_type or qualified_alias_member, I is a single identifier,

11.7.5 Parenthesized expressions

parenthesized_expression
 : '(' expression ')'
 ;

11.7.6 Member access

11.7.6.1 General

member_access
 : primary_expression '.' identifier type_argument_list?
 | predefined_type '.' identifier type_argument_list?
 | qualified_alias_member '.' identifier type_argument_list?
 ;

predefined_type
 : 'bool' | 'byte' | 'char' | 'decimal' | 'double' | 'float' | 'int'
 | 'long' | 'object' | 'sbyte' | 'short' | 'string' | 'uint' | 'ulong'
 | 'ushort'
 ;

and <A₁, ..., Aₑ> is an optional type_argument_list. When no type_argument_list is
specified, consider e to be zero.

A member_access with a primary_expression of type dynamic is dynamically bound
(§11.3.3). In this case, the compiler classifies the member access as a property access of
type dynamic . The rules below to determine the meaning of the member_access are then
applied at run-time, using the run-time type instead of the compile-time type of the
primary_expression. If this run-time classification leads to a method group, then the
member access shall be the primary_expression of an invocation_expression.

The member_access is evaluated and classified as follows:

If e is zero and E is a namespace and E contains a nested namespace with
name I , then the result is that namespace.
Otherwise, if E is a namespace and E contains an accessible type having name I
and K type parameters, then the result is that type constructed with the given type
arguments.
If E is classified as a type, if E is not a type parameter, and if a member lookup
(§11.5) of I in E with K type parameters produces a match, then E.I is evaluated
and classified as follows:

Note: When the result of such a member lookup is a method group and K is
zero, the method group can contain methods having type parameters. This
allows such methods to be considered for type argument inferencing. end note

If I identifies a type, then the result is that type constructed with any given type
arguments.
If I identifies one or more methods, then the result is a method group with no
associated instance expression.
If I identifies a static property, then the result is a property access with no
associated instance expression.
If I identifies a static field:

If the field is readonly and the reference occurs outside the static constructor
of the class or struct in which the field is declared, then the result is a value,
namely the value of the static field I in E .
Otherwise, the result is a variable, namely the static field I in E .

If I identifies a static event:
If the reference occurs within the class or struct in which the event is
declared, and the event was declared without event_accessor_declarations
(§14.8.1), then E.I is processed exactly as if I were a static field.

Otherwise, the result is an event access with no associated instance
expression.

If I identifies a constant, then the result is a value, namely the value of that
constant.
If I identifies an enumeration member, then the result is a value, namely the
value of that enumeration member.
Otherwise, E.I is an invalid member reference, and a compile-time error occurs.

If E is a property access, indexer access, variable, or value, the type of which is T ,
and a member lookup (§11.5) of I in T with K type arguments produces a match,
then E.I is evaluated and classified as follows:

First, if E is a property or indexer access, then the value of the property or
indexer access is obtained (§11.2.2) and E is reclassified as a value.
If I identifies one or more methods, then the result is a method group with an
associated instance expression of E .
If I identifies an instance property, then the result is a property access with an
associated instance expression of E and an associated type that is the type of
the property. If T is a class type, the associated type is picked from the first
declaration or override of the property found when starting with T , and
searching through its base classes.
If T is a class_type and I identifies an instance field of that class_type:

If the value of E is null , then a System.NullReferenceException is thrown.
Otherwise, if the field is readonly and the reference occurs outside an
instance constructor of the class in which the field is declared, then the result
is a value, namely the value of the field I in the object referenced by E .
Otherwise, the result is a variable, namely the field I in the object referenced
by E .

If T is a struct_type and I identifies an instance field of that struct_type:
If E is a value, or if the field is readonly and the reference occurs outside an
instance constructor of the struct in which the field is declared, then the
result is a value, namely the value of the field I in the struct instance given
by E .
Otherwise, the result is a variable, namely the field I in the struct instance
given by E .

If I identifies an instance event:
If the reference occurs within the class or struct in which the event is
declared, and the event was declared without event_accessor_declarations
(§14.8.1), and the reference does not occur as the left-hand side of a += or -
= operator, then E.I is processed exactly as if I was an instance field.

Otherwise, the result is an event access with an associated instance
expression of E .

Otherwise, an attempt is made to process E.I as an extension method invocation
(§11.7.8.3). If this fails, E.I is an invalid member reference, and a binding-time
error occurs.

In a member access of the form E.I , if E is a single identifier, and if the meaning of E
as a simple_name (§11.7.4) is a constant, field, property, local variable, or parameter with
the same type as the meaning of E as a type_name (§7.8.1), then both possible
meanings of E are permitted. The member lookup of E.I is never ambiguous, since I
shall necessarily be a member of the type E in both cases. In other words, the rule
simply permits access to the static members and nested types of E where a compile-
time error would otherwise have occurred.

Example:

C#

11.7.6.2 Identical simple names and type names

struct Color
{
 public static readonly Color White = new Color(...);
 public static readonly Color Black = new Color(...);
 public Color Complement() => new Color(...);
}

class A
{
 public «Color» Color; // Field Color of type Color

 void F()
 {
 Color = «Color».Black; // Refers to Color.Black static
member
 Color = Color.Complement(); // Invokes Complement() on Color
field
 }

 static void G()
 {
 «Color» c = «Color».White; // Refers to Color.White static
member
 }
}

For expository purposes only, within the A class, those occurrences of the Color
identifier that reference the Color type are delimited by «...» , and those that
reference the Color field are not.

end example

A null_conditional_member_access is a conditional version of member_access (§11.7.6)
and it is a binding time error if the result type is void . For a null conditional expression
where the result type may be void see (§11.7.9).

A null_conditional_member_access consists of a primary_expression followed by the two
tokens “? ” and “. ”, followed by an identifier with an optional type_argument_list,
followed by zero or more dependent_accesses.

ANTLR

A null_conditional_member_access expression E is of the form P?.A . Let T be the type of
the expression P.A . The meaning of E is determined as follows:

If T is a type parameter that is not known to be a reference type or a non-nullable
value type, a compile-time error occurs.

If T is a non-nullable value type, then the type of E is T? , and the meaning of E is
the same as the meaning of:

C#

11.7.7 Null Conditional Member Access

null_conditional_member_access
 : primary_expression '?' '.' identifier type_argument_list?
 dependent_access*
 ;

dependent_access
 : '.' identifier type_argument_list? // member access
 | '[' argument_list ']' // element access
 | '(' argument_list? ')' // invocation
 ;

null_conditional_projection_initializer
 : primary_expression '?' '.' identifier type_argument_list?
 ;

((object)P == null) ? (T?)null : P.A

Except that P is evaluated only once.

Otherwise the type of E is T , and the meaning of E is the same as the meaning of:

C#

Except that P is evaluated only once.

Note: In an expression of the form:

C#

then if P evaluates to null neither A₀ or A₁ are evaluated. The same is true if an
expression is a sequence of null_conditional_member_access or
null_conditional_element_access §11.7.11 operations.

end note

A null_conditional_projection_initializer is a restriction of null_conditional_member_access
and has the same semantics. It only occurs as a projection initializer in an anonymous
object creation expression (§11.7.15.7).

An invocation_expression is used to invoke a method.

ANTLR

An invocation_expression is dynamically bound (§11.3.3) if at least one of the following
holds:

The primary_expression has compile-time type dynamic .

((object)P == null) ? null : P.A

P?.A₀?.A₁

11.7.8 Invocation expressions

11.7.8.1 General

invocation_expression
 : primary_expression '(' argument_list? ')'
 ;

At least one argument of the optional argument_list has compile-time type
dynamic .

In this case, the compiler classifies the invocation_expression as a value of type dynamic .
The rules below to determine the meaning of the invocation_expression are then applied
at run-time, using the run-time type instead of the compile-time type of those of the
primary_expression and arguments that have the compile-time type dynamic . If the
primary_expression does not have compile-time type dynamic , then the method
invocation undergoes a limited compile-time check as described in §11.6.5.

The primary_expression of an invocation_expression shall be a method group or a value
of a delegate_type. If the primary_expression is a method group, the
invocation_expression is a method invocation (§11.7.8.2). If the primary_expression is a
value of a delegate_type, the invocation_expression is a delegate invocation (§11.7.8.4). If
the primary_expression is neither a method group nor a value of a delegate_type, a
binding-time error occurs.

The optional argument_list (§11.6.2) provides values or variable references for the
parameters of the method.

The result of evaluating an invocation_expression is classified as follows:

If the invocation_expression invokes a method or delegate that returns void, the
result is nothing. An expression that is classified as nothing is permitted only in the
context of a statement_expression (§12.7) or as the body of a lambda_expression
(§11.17). Otherwise a binding-time error occurs.
Otherwise, the result is a value, with an associated type of the return type of the
method or delegate after any type argument substitutions (§11.7.8.2) have been
performed. If the invocation is of an instance method, and the receiver is of a class
type T , the associated type is picked from the first declaration or override of the
method found when starting with T and searching through its base classes.

For a method invocation, the primary_expression of the invocation_expression shall be a
method group. The method group identifies the one method to invoke or the set of
overloaded methods from which to choose a specific method to invoke. In the latter
case, determination of the specific method to invoke is based on the context provided
by the types of the arguments in the argument_list.

The binding-time processing of a method invocation of the form M(A) , where M is a
method group (possibly including a type_argument_list), and A is an optional

11.7.8.2 Method invocations

argument_list, consists of the following steps:

The set of candidate methods for the method invocation is constructed. For each
method F associated with the method group M :

If F is non-generic, F is a candidate when:
M has no type argument list, and
F is applicable with respect to A (§11.6.4.2).

If F is generic and M has no type argument list, F is a candidate when:
Type inference (§11.6.3) succeeds, inferring a list of type arguments for the
call, and
Once the inferred type arguments are substituted for the corresponding
method type parameters, all constructed types in the parameter list of F
satisfy their constraints (§8.4.5), and the parameter list of F is applicable with
respect to A (§11.6.4.2)

If F is generic and M includes a type argument list, F is a candidate when:
F has the same number of method type parameters as were supplied in the
type argument list, and
Once the type arguments are substituted for the corresponding method type
parameters, all constructed types in the parameter list of F satisfy their
constraints (§8.4.5), and the parameter list of F is applicable with respect
to A (§11.6.4.2).

The set of candidate methods is reduced to contain only methods from the most
derived types: For each method C.F in the set, where C is the type in which the
method F is declared, all methods declared in a base type of C are removed from
the set. Furthermore, if C is a class type other than object , all methods declared in
an interface type are removed from the set.

Note: This latter rule only has an effect when the method group was the result
of a member lookup on a type parameter having an effective base class other
than object and a non-empty effective interface set. end note

If the resulting set of candidate methods is empty, then further processing along
the following steps are abandoned, and instead an attempt is made to process the
invocation as an extension method invocation (§11.7.8.3). If this fails, then no
applicable methods exist, and a binding-time error occurs.
The best method of the set of candidate methods is identified using the overload
resolution rules of §11.6.4. If a single best method cannot be identified, the
method invocation is ambiguous, and a binding-time error occurs. When
performing overload resolution, the parameters of a generic method are

considered after substituting the type arguments (supplied or inferred) for the
corresponding method type parameters.

Once a method has been selected and validated at binding-time by the above steps, the
actual run-time invocation is processed according to the rules of function member
invocation described in §11.6.6.

Note: The intuitive effect of the resolution rules described above is as follows: To
locate the particular method invoked by a method invocation, start with the type
indicated by the method invocation and proceed up the inheritance chain until at
least one applicable, accessible, non-override method declaration is found. Then
perform type inference and overload resolution on the set of applicable, accessible,
non-override methods declared in that type and invoke the method thus selected. If
no method was found, try instead to process the invocation as an extension-method
invocation. end note

In a method invocation (§11.6.6.2) of one of the forms

C#

if the normal processing of the invocation finds no applicable methods, an attempt is
made to process the construct as an extension method invocation. If «expr» or any of
the «args» has compile-time type dynamic , extension methods will not apply.

The objective is to find the best type_name C , so that the corresponding static method
invocation can take place:

C#

An extension method Cᵢ.Mₑ is eligible if:

Cᵢ is a non-generic, non-nested class

11.7.8.3 Extension method invocations

«expr» . «identifier» ()
«expr» . «identifier» («args»)
«expr» . «identifier» < «typeargs» > ()
«expr» . «identifier» < «typeargs» > («args»)

C . «identifier» («expr»)
C . «identifier» («expr» , «args»)
C . «identifier» < «typeargs» > («expr»)
C . «identifier» < «typeargs» > («expr» , «args»)

The name of Mₑ is identifier
Mₑ is accessible and applicable when applied to the arguments as a static method
as shown above
An implicit identity, reference or boxing conversion exists from expr to the type of
the first parameter of Mₑ .

The search for C proceeds as follows:

Starting with the closest enclosing namespace declaration, continuing with each
enclosing namespace declaration, and ending with the containing compilation unit,
successive attempts are made to find a candidate set of extension methods:

If the given namespace or compilation unit directly contains non-generic type
declarations Cᵢ with eligible extension methods Mₑ , then the set of those
extension methods is the candidate set.
If namespaces imported by using namespace directives in the given namespace
or compilation unit directly contain non-generic type declarations Cᵢ with
eligible extension methods Mₑ , then the set of those extension methods is the
candidate set.

If no candidate set is found in any enclosing namespace declaration or compilation
unit, a compile-time error occurs.
Otherwise, overload resolution is applied to the candidate set as described in
§11.6.4. If no single best method is found, a compile-time error occurs.
C is the type within which the best method is declared as an extension method.

Using C as a target, the method call is then processed as a static method invocation
(§11.6.6).

Note: Unlike an instance method invocation, no exception is thrown when expr
evaluates to a null reference. Instead, this null value is passed to the extension
method as it would be via a regular static method invocation. It is up to the
extension method implementation to decide how to respond to such a call. end note

The preceding rules mean that instance methods take precedence over extension
methods, that extension methods available in inner namespace declarations take
precedence over extension methods available in outer namespace declarations, and that
extension methods declared directly in a namespace take precedence over extension
methods imported into that same namespace with a using namespace directive.

Example:

C#

In the example, B ’s method takes precedence over the first extension method, and
C ’s method takes precedence over both extension methods.

C#

public static class E
{
 public static void F(this object obj, int i) { }
 public static void F(this object obj, string s) { }
}

class A { }

class B
{
 public void F(int i) { }
}

class C
{
 public void F(object obj) { }
}

class X
{
 static void Test(A a, B b, C c)
 {
 a.F(1); // E.F(object, int)
 a.F("hello"); // E.F(object, string)
 b.F(1); // B.F(int)
 b.F("hello"); // E.F(object, string)
 c.F(1); // C.F(object)
 c.F("hello"); // C.F(object)
 }
}

public static class C
{
 public static void F(this int i) => Console.WriteLine($"C.F({i})");
 public static void G(this int i) => Console.WriteLine($"C.G({i})");
 public static void H(this int i) => Console.WriteLine($"C.H({i})");
}

namespace N1
{
 public static class D
 {
 public static void F(this int i) =>
Console.WriteLine($"D.F({i})");
 public static void G(this int i) =>
Console.WriteLine($"D.G({i})");
 }

The output of this example is:

Console

D.G takes precendece over C.G , and E.F takes precedence over both D.F and C.F .

end example

For a delegate invocation, the primary_expression of the invocation_expression shall be a
value of a delegate_type. Furthermore, considering the delegate_type to be a function
member with the same parameter list as the delegate_type, the delegate_type shall be
applicable (§11.6.4.2) with respect to the argument_list of the invocation_expression.

The run-time processing of a delegate invocation of the form D(A) , where D is a
primary_expression of a delegate_type and A is an optional argument_list, consists of the
following steps:

D is evaluated. If this evaluation causes an exception, no further steps are
executed.

}

namespace N2
{
 using N1;

 public static class E
 {
 public static void F(this int i) =>
Console.WriteLine($"E.F({i})");
 }

 class Test
 {
 static void Main(string[] args)
 {
 1.F();
 2.G();
 3.H();
 }
 }
}

E.F(1)
D.G(2)
C.H(3)

11.7.8.4 Delegate invocations

The argument list A is evaluated. If this evaluation causes an exception, no further
steps are executed.
The value of D is checked to be valid. If the value of D is null , a
System.NullReferenceException is thrown and no further steps are executed.
Otherwise, D is a reference to a delegate instance. Function member invocations
(§11.6.6) are performed on each of the callable entities in the invocation list of the
delegate. For callable entities consisting of an instance and instance method, the
instance for the invocation is the instance contained in the callable entity.

See §19.6 for details of multiple invocation lists without parameters.

A null_conditional_invocation_expression is syntactically either a
null_conditional_member_access (§11.7.7) or null_conditional_element_access (§11.7.11)
where the final dependent_access is an invocation expression (§11.7.8).

A null_conditional_invocation_expression occurs within the context of a
statement_expression (§12.7), anonymous_function_body (§11.17.1), or method_body
(§14.6.1).

Unlike the syntactically equivalent null_conditional_member_access or
null_conditional_element_access, a null_conditional_invocation_expression may be
classified as nothing.

ANTLR

A null_conditional_invocation_expression expression E is of the form P?A ; where A is the
remainder of the syntactically equivalent null_conditional_member_access or
null_conditional_element_access, A will therefore start with . or [. Let PA signify the
concatention of P and A .

When E occurs as a statement_expression the meaning of E is the same as the meaning
of the statement:

C#

11.7.9 Null Conditional Invocation Expression

null_conditional_invocation_expression
 : null_conditional_member_access '(' argument_list? ')'
 | null_conditional_element_access '(' argument_list? ')'
 ;

if ((object)P != null) PA

except that P is evaluated only once.

When E occurs as a anonymous_function_body or method_body the meaning of E
depends on its classification:

If E is classified as nothing then its meaning is the same as the meaning of the
block:

C#

except that P is evaluated only once.

Otherwise the meaning of E is the same as the meaning of the block:

C#

and in turn the meaning of this block depends on whether E is syntactically
equivalent to a null_conditional_member_access (§11.7.7) or
null_conditional_element_access (§11.7.11).

An element_access consists of a primary_no_array_creation_expression, followed by a
“[” token, followed by an argument_list, followed by a “] ” token. The argument_list
consists of one or more arguments, separated by commas.

ANTLR

The argument_list of an element_access is not allowed to contain ref or out arguments.

An element_access is dynamically bound (§11.3.3) if at least one of the following holds:

The primary_no_array_creation_expression has compile-time type dynamic .

{ if ((object)P != null) PA; }

{ return E; }

11.7.10 Element access

11.7.10.1 General

element_access
 : primary_no_array_creation_expression '[' argument_list ']'
 ;

At least one expression of the argument_list has compile-time type dynamic and
the primary_no_array_creation_expression does not have an array type.

In this case, the compiler classifies the element_access as a value of type dynamic . The
rules below to determine the meaning of the element_access are then applied at run-
time, using the run-time type instead of the compile-time type of those of the
primary_no_array_creation_expression and argument_list expressions which have the
compile-time type dynamic . If the primary_no_array_creation_expression does not have
compile-time type dynamic , then the element access undergoes a limited compile-time
check as described in §11.6.5.

If the primary_no_array_creation_expression of an element_access is a value of an
array_type, the element_access is an array access (§11.7.10.2). Otherwise, the
primary_no_array_creation_expression shall be a variable or value of a class, struct, or
interface type that has one or more indexer members, in which case the element_access
is an indexer access (§11.7.10.3).

For an array access, the primary_no_array_creation_expression of the element_access shall
be a value of an array_type. Furthermore, the argument_list of an array access is not
allowed to contain named arguments. The number of expressions in the argument_list
shall be the same as the rank of the array_type, and each expression shall be of type
int , uint , long , or ulong, or shall be implicitly convertible to one or more of these
types.

The result of evaluating an array access is a variable of the element type of the array,
namely the array element selected by the value(s) of the expression(s) in the
argument_list.

The run-time processing of an array access of the form P[A] , where P is a
primary_no_array_creation_expression of an array_type and A is an argument_list,
consists of the following steps:

P is evaluated. If this evaluation causes an exception, no further steps are
executed.
The index expressions of the argument_list are evaluated in order, from left to
right. Following evaluation of each index expression, an implicit conversion (§10.2)
to one of the following types is performed: int , uint , long , ulong . The first type
in this list for which an implicit conversion exists is chosen. For instance, if the
index expression is of type short then an implicit conversion to int is performed,

11.7.10.2 Array access

since implicit conversions from short to int and from short to long are possible.
If evaluation of an index expression or the subsequent implicit conversion causes
an exception, then no further index expressions are evaluated and no further steps
are executed.
The value of P is checked to be valid. If the value of P is null , a
System.NullReferenceException is thrown and no further steps are executed.
The value of each expression in the argument_list is checked against the actual
bounds of each dimension of the array instance referenced by P . If one or more
values are out of range, a System.IndexOutOfRangeException is thrown and no
further steps are executed.
The location of the array element given by the index expression(s) is computed,
and this location becomes the result of the array access.

For an indexer access, the primary_no_array_creation_expression of the element_access
shall be a variable or value of a class, struct, or interface type, and this type shall
implement one or more indexers that are applicable with respect to the argument_list of
the element_access.

The binding-time processing of an indexer access of the form P[A] , where P is a
primary_no_array_creation_expression of a class, struct, or interface type T , and A is an
argument_list, consists of the following steps:

The set of indexers provided by T is constructed. The set consists of all indexers
declared in T or a base type of T that are not override declarations and are
accessible in the current context (§7.5).
The set is reduced to those indexers that are applicable and not hidden by other
indexers. The following rules are applied to each indexer S.I in the set, where S is
the type in which the indexer I is declared:

If I is not applicable with respect to A (§11.6.4.2), then I is removed from the
set.
If I is applicable with respect to A (§11.6.4.2), then all indexers declared in a
base type of S are removed from the set.
If I is applicable with respect to A (§11.6.4.2) and S is a class type other than
object , all indexers declared in an interface are removed from the set.

If the resulting set of candidate indexers is empty, then no applicable indexers
exist, and a binding-time error occurs.
The best indexer of the set of candidate indexers is identified using the overload
resolution rules of §11.6.4. If a single best indexer cannot be identified, the indexer

11.7.10.3 Indexer access

access is ambiguous, and a binding-time error occurs.
The index expressions of the argument_list are evaluated in order, from left to
right. The result of processing the indexer access is an expression classified as an
indexer access. The indexer access expression references the indexer determined in
the step above, and has an associated instance expression of P and an associated
argument list of A , and an associated type that is the type of the indexer. If T is a
class type, the associated type is picked from the first declaration or override of the
indexer found when starting with T and searching through its base classes.

Depending on the context in which it is used, an indexer access causes invocation of
either the get_accessor or the set_accessor of the indexer. If the indexer access is the
target of an assignment, the set_accessor is invoked to assign a new value (§11.19.2). In
all other cases, the get_accessor is invoked to obtain the current value (§11.2.2).

A null_conditional_element_access consists of a primary_no_array_creation_expression
followed by the two tokens “? ” and “[”, followed by an argument_list, followed by a “] ”
token, followed by zero or more dependent_accesses.

ANTLR

A null_conditional_element_access is a conditional version of element_access (§11.7.10)
and it is a binding time error if the result type is void . For a null conditional expression
where the result type may be void see (§11.7.9).

A null_conditional_element_access expression E is of the form P?[A]B ; where B are the
dependent_accesses, if any. Let T be the type of the expression P[A]B . The meaning of E
is determined as follows:

If T is a type parameter that is not known to be a reference type or a non-nullable
value type, a compile-time error occurs.

If T is a non-nullable value type, then the type of E is T? , and the meaning of E is
the same as the meaning of:

C#

11.7.11 Null Conditional Element Access

null_conditional_element_access
 : primary_no_array_creation_expression '?' '[' argument_list ']'
 dependent_access*
 ;

Except that P is evaluated only once.

Otherwise the type of E is T , and the meaning of E is the same as the meaning of:

C#

Except that P is evaluated only once.

Note: In an expression of the form:

C#

if P evaluates to null neither A₀ or A₁ are evaluated. The same is true if an
expression is a sequence of null_conditional_element_access or
null_conditional_member_access §11.7.7 operations.

end note

A this_access consists of the keyword this .

ANTLR

A this_access is permitted only in the block of an instance constructor, an instance
method, an instance accessor (§11.2.1), or a finalizer. It has one of the following
meanings:

When this is used in a primary_expression within an instance constructor of a
class, it is classified as a value. The type of the value is the instance type (§14.3.2) of
the class within which the usage occurs, and the value is a reference to the object
being constructed.

((object)P == null) ? (T?)null : P[A]B

((object)P == null) ? null : P[A]B

P?[A₀]?[A₁]

11.7.12 This access

this_access
 : 'this'
 ;

When this is used in a primary_expression within an instance method or instance
accessor of a class, it is classified as a value. The type of the value is the instance
type (§14.3.2) of the class within which the usage occurs, and the value is a
reference to the object for which the method or accessor was invoked.
When this is used in a primary_expression within an instance constructor of a
struct, it is classified as a variable. The type of the variable is the instance type
(§14.3.2) of the struct within which the usage occurs, and the variable represents
the struct being constructed.

If the constructor declaration has no constructor initializer, the this variable
behaves exactly the same as an out parameter of the struct type. In particular,
this means that the variable shall be definitely assigned in every execution path
of the instance constructor.
Otherwise, the this variable behaves exactly the same as a ref parameter of
the struct type. In particular, this means that the variable is considered initially
assigned.

When this is used in a primary_expression within an instance method or instance
accessor of a struct, it is classified as a variable. The type of the variable is the
instance type (§14.3.2) of the struct within which the usage occurs.

If the method or accessor is not an iterator (§14.14) or async function (§14.15),
the this variable represents the struct for which the method or accessor was
invoked, and behaves exactly the same as a ref parameter of the struct type.
If the method or accessor is an iterator or async function, the this variable
represents a copy of the struct for which the method or accessor was invoked,
and behaves exactly the same as a value parameter of the struct type.

Use of this in a primary_expression in a context other than the ones listed above is a
compile-time error. In particular, it is not possible to refer to this in a static method, a
static property accessor, or in a variable_initializer of a field declaration.

A base_access consists of the keyword base followed by either a “. ” token and an
identifier and optional type_argument_list or an argument_list enclosed in square
brackets:

ANTLR

11.7.13 Base access

base_access
 : 'base' '.' identifier type_argument_list?
 | 'base' '[' argument_list ']'
 ;

A base_access is used to access base class members that are hidden by similarly named
members in the current class or struct. A base_access is permitted only in the block of an
instance constructor, an instance method, an instance accessor (§11.2.1), or a finalizer.
When base.I occurs in a class or struct, I shall denote a member of the base class of
that class or struct. Likewise, when base[E] occurs in a class, an applicable indexer shall
exist in the base class.

At binding-time, base_access expressions of the form base.I and base[E] are evaluated
exactly as if they were written ((B)this).I and ((B)this)[E] , where B is the base class
of the class or struct in which the construct occurs. Thus, base.I and base[E]
correspond to this.I and this[E] , except this is viewed as an instance of the base
class.

When a base_access references a virtual function member (a method, property, or
indexer), the determination of which function member to invoke at run-time (§11.6.6) is
changed. The function member that is invoked is determined by finding the most
derived implementation (§14.6.4) of the function member with respect to B (instead of
with respect to the run-time type of this , as would be usual in a non-base access).
Thus, within an override of a virtual function member, a base_access can be used to
invoke the inherited implementation of the function member. If the function member
referenced by a base_access is abstract, a binding-time error occurs.

Note: Unlike this , base is not an expression in itself. It is a keyword only used in the
context of a base_access or a constructor_initializer (§14.11.2). end note

ANTLR

The operand of a postfix increment or decrement operation shall be an expression
classified as a variable, a property access, or an indexer access. The result of the
operation is a value of the same type as the operand.

If the primary_expression has the compile-time type dynamic then the operator is
dynamically bound (§11.3.3), the post_increment_expression or

11.7.14 Postfix increment and decrement operators

post_increment_expression
 : primary_expression '++'
 ;

post_decrement_expression
 : primary_expression '--'
 ;

post_decrement_expression has the compile-time type dynamic and the following rules
are applied at run-time using the run-time type of the primary_expression.

If the operand of a postfix increment or decrement operation is a property or indexer
access, the property or indexer shall have both a get and a set accessor. If this is not the
case, a binding-time error occurs.

Unary operator overload resolution (§11.4.4) is applied to select a specific operator
implementation. Predefined ++ and -- operators exist for the following types: sbyte ,
byte , short , ushort , int , uint , long , ulong , char , float , double , decimal , and any
enum type. The predefined ++ operators return the value produced by adding 1 to the
operand, and the predefined -- operators return the value produced by subtracting 1
from the operand. In a checked context, if the result of this addition or subtraction is
outside the range of the result type and the result type is an integral type or enum type,
a System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator
to the type of the primary_expression, otherwise a compile-time error occurs.

The run-time processing of a postfix increment or decrement operation of the form x++
or x-- consists of the following steps:

If x is classified as a variable:
x is evaluated to produce the variable.
The value of x is saved.
The saved value of x is converted to the operand type of the selected operator
and the operator is invoked with this value as its argument.
The value returned by the operator is converted to the type of X and stored in
the location given by the earlier evaluation of x .
The saved value of x becomes the result of the operation.

If x is classified as a property or indexer access:
The instance expression (if x is not static) and the argument list (if x is an
indexer access) associated with x are evaluated, and the results are used in the
subsequent get and set accessor invocations.
The get accessor of x is invoked and the returned value is saved.
The saved value of x is converted to the operand type of the selected operator
and the operator is invoked with this value as its argument.
The value returned by the operator is converted to the type of x and the set
accessor of x is invoked with this value as its value argument.
The saved value of x becomes the result of the operation.

The ++ and -- operators also support prefix notation (§11.8.6). Typically, the result of
x++ or x-- is the value of X before the operation, whereas the result of ++x or --x is
the value of X after the operation. In either case, x itself has the same value after the
operation.

An operator ++ or operator -- implementation can be invoked using either postfix or
prefix notation. It is not possible to have separate operator implementations for the two
notations.

The new operator is used to create new instances of types.

There are three forms of new expressions:

Object creation expressions and anonymous object creation expressions are used
to create new instances of class types and value types.
Array creation expressions are used to create new instances of array types.
Delegate creation expressions are used to obtain instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily
imply allocation of memory. In particular, instances of value types require no additional
memory beyond the variables in which they reside, and no allocations occur when new is
used to create instances of value types.

Note: Delegate creation expressions do not always create new instances. When the
expression is processed in the same way as a method group conversion (§10.8) or an
anonymous function conversion (§10.7) this may result in an existing delegate
instance being reused. end note

An object_creation_expression is used to create a new instance of a class_type or a
value_type.

ANTLR

11.7.15 The new operator

11.7.15.1 General

11.7.15.2 Object creation expressions

object_creation_expression
 : 'new' type '(' argument_list? ')' object_or_collection_initializer?
 | 'new' type object_or_collection_initializer
 ;

The type of an object_creation_expression shall be a class_type, a value_type, or a
type_parameter. The type cannot be an abstract or static class_type.

The optional argument_list (§11.6.2) is permitted only if the type is a class_type or a
struct_type.

An object creation expression can omit the constructor argument list and enclosing
parentheses provided it includes an object initializer or collection initializer. Omitting the
constructor argument list and enclosing parentheses is equivalent to specifying an
empty argument list.

Processing of an object creation expression that includes an object initializer or
collection initializer consists of first processing the instance constructor and then
processing the member or element initializations specified by the object initializer
(§11.7.15.3) or collection initializer (§11.7.15.4).

If any of the arguments in the optional argument_list has the compile-time type dynamic
then the object_creation_expression is dynamically bound (§11.3.3) and the following
rules are applied at run-time using the run-time type of those arguments of the
argument_list that have the compile-time type dynamic . However, the object creation
undergoes a limited compile-time check as described in §11.6.5.

The binding-time processing of an object_creation_expression of the form new T(A) ,
where T is a class_type, or a value_type, and A is an optional argument_list, consists of
the following steps:

If T is a value_type and A is not present:
The object_creation_expression is a default constructor invocation. The result of
the object_creation_expression is a value of type T , namely the default value for
T as defined in §8.3.3.

Otherwise, if T is a type_parameter and A is not present:
If no value type constraint or constructor constraint (§14.2.5) has been specified
for T , a binding-time error occurs.
The result of the object_creation_expression is a value of the run-time type that
the type parameter has been bound to, namely the result of invoking the
default constructor of that type. The run-time type may be a reference type or a
value type.

object_or_collection_initializer
 : object_initializer
 | collection_initializer
 ;

Otherwise, if T is a class_type or a struct_type:
If T is an abstract or static class_type, a compile-time error occurs.
The instance constructor to invoke is determined using the overload resolution
rules of §11.6.4. The set of candidate instance constructors consists of all
accessible instance constructors declared in T , which are applicable with respect
to A (§11.6.4.2). If the set of candidate instance constructors is empty, or if a
single best instance constructor cannot be identified, a binding-time error
occurs.
The result of the object_creation_expression is a value of type T , namely the
value produced by invoking the instance constructor determined in the step
above.
Otherwise, the object_creation_expression is invalid, and a binding-time error
occurs.

Even if the object_creation_expression is dynamically bound, the compile-time type is still
T .

The run-time processing of an object_creation_expression of the form new T(A) , where T
is class_type or a struct_type and A is an optional argument_list, consists of the following
steps:

If T is a class_type:
A new instance of class T is allocated. If there is not enough memory available
to allocate the new instance, a System.OutOfMemoryException is thrown and no
further steps are executed.
All fields of the new instance are initialized to their default values (§9.3).
The instance constructor is invoked according to the rules of function member
invocation (§11.6.6). A reference to the newly allocated instance is automatically
passed to the instance constructor and the instance can be accessed from
within that constructor as this.

If T is a struct_type:
An instance of type T is created by allocating a temporary local variable. Since
an instance constructor of a struct_type is required to definitely assign a value to
each field of the instance being created, no initialization of the temporary
variable is necessary.
The instance constructor is invoked according to the rules of function member
invocation (§11.6.6). A reference to the newly allocated instance is automatically
passed to the instance constructor and the instance can be accessed from
within that constructor as this.

An object initializer specifies values for zero or more fields, properties, or indexed
elements of an object.

ANTLR

An object initializer consists of a sequence of member initializers, enclosed by { and }
tokens and separated by commas. Each member_initializer shall designate a target for
the initialization. An identifier shall name an accessible field or property of the object
being initialized, whereas an argument_list enclosed in square brackets shall specify
arguments for an accessible indexer on the object being initialized. It is an error for an
object initializer to include more than one member initializer for the same field or
property.

Note: While an object initializer is not permitted to set the same field or property
more than once, there are no such restrictions for indexers. An object initializer may
contain multiple initializer targets referring to indexers, and may even use the same
indexer arguments multiple times. end note

Each initializer_target is followed by an equals sign and either an expression, an object
initializer or a collection initializer. It is not possible for expressions within the object
initializer to refer to the newly created object it is initializing.

11.7.15.3 Object initializers

object_initializer
 : '{' member_initializer_list? '}'
 | '{' member_initializer_list ',' '}'
 ;

member_initializer_list
 : member_initializer (',' member_initializer)*
 ;

member_initializer
 : initializer_target '=' initializer_value
 ;

initializer_target
 : identifier
 | '[' argument_list ']'
 ;

initializer_value
 : expression
 | object_or_collection_initializer
 ;

A member initializer that specifies an expression after the equals sign is processed in the
same way as an assignment (§11.19.2) to the target.

A member initializer that specifies an object initializer after the equals sign is a nested
object initializer, i.e., an initialization of an embedded object. Instead of assigning a new
value to the field or property, the assignments in the nested object initializer are treated
as assignments to members of the field or property. Nested object initializers cannot be
applied to properties with a value type, or to read-only fields with a value type.

A member initializer that specifies a collection initializer after the equals sign is an
initialization of an embedded collection. Instead of assigning a new collection to the
target field, property, or indexer, the elements given in the initializer are added to the
collection referenced by the target. The target shall be of a collection type that satisfies
the requirements specified in §11.7.15.4.

When an initializer target refers to an indexer, the arguments to the indexer shall always
be evaluated exactly once. Thus, even if the arguments end up never getting used (e.g.,
because of an empty nested initializer), they are evaluated for their side effects.

Example: The following class represents a point with two coordinates:

C#

An instance of Point can be created and initialized as follows:

C#

This has the same effect as

C#

where __a is an otherwise invisible and inaccessible temporary variable.

public class Point
{
 public int X { get; set; }
 public int Y { get; set; }
}

Point a = new Point { X = 0, Y = 1 };

Point __a = new Point();
__a.X = 0;
__a.Y = 1;
Point a = __a;

The following class shows a rectangle created from two points, and the creation and
initialization of a Rectangle instance:

C#

An instance of Rectangle can be created and initialized as follows:

C#

This has the same effect as

C#

where __r , __p1 and __p2 are temporary variables that are otherwise invisible and
inaccessible.

If Rectangle ’s constructor allocates the two embedded Point instances, they can be
used to initialize the embedded Point instances instead of assigning new instances:

C#

public class Rectangle
{
 public Point P1 { get; set; }
 public Point P2 { get; set; }
}

Rectangle r = new Rectangle
{
 P1 = new Point { X = 0, Y = 1 },
 P2 = new Point { X = 2, Y = 3 }
};

Rectangle __r = new Rectangle();
Point __p1 = new Point();
__p1.X = 0;
__p1.Y = 1;
__r.P1 = __p1;
Point __p2 = new Point();
__p2.X = 2;
__p2.Y = 3;
__r.P2 = __p2;
Rectangle r = __r;

public class Rectangle
{
 public Point P1 { get; } = new Point();

the following construct can be used to initialize the embedded Point instances
instead of assigning new instances:

C#

This has the same effect as

C#

end example

A collection initializer specifies the elements of a collection.

ANTLR

 public Point P2 { get; } = new Point();
}

Rectangle r = new Rectangle
{
 P1 = { X = 0, Y = 1 },
 P2 = { X = 2, Y = 3 }
};

Rectangle __r = new Rectangle();
__r.P1.X = 0;
__r.P1.Y = 1;
__r.P2.X = 2;
__r.P2.Y = 3;
Rectangle r = __r;

11.7.15.4 Collection initializers

collection_initializer
 : '{' element_initializer_list '}'
 | '{' element_initializer_list ',' '}'
 ;

element_initializer_list
 : element_initializer (',' element_initializer)*
 ;

element_initializer
 : non_assignment_expression
 | '{' expression_list '}'
 ;

expression_list

A collection initializer consists of a sequence of element initializers, enclosed by {
and } tokens and separated by commas. Each element initializer specifies an element to
be added to the collection object being initialized, and consists of a list of expressions
enclosed by { and } tokens and separated by commas. A single-expression element
initializer can be written without braces, but cannot then be an assignment expression,
to avoid ambiguity with member initializers. The non_assignment_expression production
is defined in §11.20.

Example: The following is an example of an object creation expression that includes
a collection initializer:

C#

end example

The collection object to which a collection initializer is applied shall be of a type that
implements System.Collections.IEnumerable or a compile-time error occurs. For each
specified element in order, normal member lookup is applied to find a member named
Add . If the result of the member lookup is not a method group, a compile-time error
occurs. Otherwise, overload resolution is applied with the expression list of the element
initializer as the argument list, and the collection initializer invokes the resulting method.
Thus, the collection object shall contain an applicable instance or extension method with
the name Add for each element initializer.

Example:The following shows a class that represents a contact with a name and a list
of phone numbers, and the creation and initialization of a List<Contact> :

C#

 : expression
 | expression_list ',' expression
 ;

List<int> digits = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

public class Contact
{
 public string Name { get; set; }
 public List<string> PhoneNumbers { get; } = new List<string>();
}

class A
{
 static void M()

which has the same effect as

C#

where __clist , __c1 and __c2 are temporary variables that are otherwise invisible
and inaccessible.

end example

An array_creation_expression is used to create a new instance of an array_type.

ANTLR

 {
 var contacts = new List<Contact>
 {
 new Contact
 {
 Name = "Chris Smith",
 PhoneNumbers = { "206-555-0101", "425-882-8080" }
 },
 new Contact
 {
 Name = "Bob Harris",
 PhoneNumbers = { "650-555-0199" }
 }
 };
 }
}

var __clist = new List<Contact>();
Contact __c1 = new Contact();
__c1.Name = "Chris Smith";
__c1.PhoneNumbers.Add("206-555-0101");
__c1.PhoneNumbers.Add("425-882-8080");
__clist.Add(__c1);
Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
__c2.PhoneNumbers.Add("650-555-0199");
__clist.Add(__c2);
var contacts = __clist;

11.7.15.5 Array creation expressions

array_creation_expression
 : 'new' non_array_type '[' expression_list ']' rank_specifier*
 array_initializer?
 | 'new' array_type array_initializer
 | 'new' rank_specifier array_initializer
 ;

An array creation expression of the first form allocates an array instance of the type that
results from deleting each of the individual expressions from the expression list.

Example: The array creation expression new int[10,20] produces an array instance
of type int[,] , and the array creation expression new int[10][,] produces an array
instance of type int[][,] . end example

Each expression in the expression list shall be of type int , uint , long , or ulong , or
implicitly convertible to one or more of these types. The value of each expression
determines the length of the corresponding dimension in the newly allocated array
instance. Since the length of an array dimension shall be nonnegative, it is a compile-
time error to have a constant expression with a negative value, in the expression list.

Except in an unsafe context (§22.2), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each
expression in the expression list shall be a constant and the rank and dimension lengths
specified by the expression list shall match those of the array initializer.

In an array creation expression of the second or third form, the rank of the specified
array type or rank specifier shall match that of the array initializer. The individual
dimension lengths are inferred from the number of elements in each of the
corresponding nesting levels of the array initializer. Thus, the initializer expression in the
following declaration

C#

exactly corresponds to

C#

An array creation expression of the third form is referred to as an implicitly typed array-
creation expression. It is similar to the second form, except that the element type of the
array is not explicitly given, but determined as the best common type (§11.6.3.15) of the
set of expressions in the array initializer. For a multidimensional array, i.e., one where the
rank_specifier contains at least one comma, this set comprises all expressions found in
nested array_initializers.

var a = new int[,] {{0, 1}, {2, 3}, {4, 5}};

var a = new int[3, 2] {{0, 1}, {2, 3}, {4, 5}};

Array initializers are described further in §16.7.

The result of evaluating an array creation expression is classified as a value, namely a
reference to the newly allocated array instance. The run-time processing of an array
creation expression consists of the following steps:

The dimension length expressions of the expression_list are evaluated in order,
from left to right. Following evaluation of each expression, an implicit conversion
(§10.2) to one of the following types is performed: int , uint , long , ulong . The
first type in this list for which an implicit conversion exists is chosen. If evaluation
of an expression or the subsequent implicit conversion causes an exception, then
no further expressions are evaluated and no further steps are executed.
The computed values for the dimension lengths are validated, as follows: If one or
more of the values are less than zero, a System.OverflowException is thrown and
no further steps are executed.
An array instance with the given dimension lengths is allocated. If there is not
enough memory available to allocate the new instance, a
System.OutOfMemoryException is thrown and no further steps are executed.
All elements of the new array instance are initialized to their default values (§9.3).
If the array creation expression contains an array initializer, then each expression in
the array initializer is evaluated and assigned to its corresponding array element.
The evaluations and assignments are performed in the order the expressions are
written in the array initializer—in other words, elements are initialized in increasing
index order, with the rightmost dimension increasing first. If evaluation of a given
expression or the subsequent assignment to the corresponding array element
causes an exception, then no further elements are initialized (and the remaining
elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array
type, but the elements of such an array shall be manually initialized.

Example: The statement

C#

creates a single-dimensional array with 100 elements of type int[] . The initial value
of each element is null . It is not possible for the same array creation expression to
also instantiate the sub-arrays, and the statement

C#

int[][] a = new int[100][];

results in a compile-time error. Instantiation of the sub-arrays can instead be
performed manually, as in

C#

end example

Note: When an array of arrays has a “rectangular” shape, that is when the sub-arrays
are all of the same length, it is more efficient to use a multi-dimensional array. In the
example above, instantiation of the array of arrays creates 101 objects—one outer
array and 100 sub-arrays. In contrast,

C#

creates only a single object, a two-dimensional array, and accomplishes the
allocation in a single statement.

end note

Example: The following are examples of implicitly typed array creation expressions:

C#

The last expression causes a compile-time error because neither int nor string is
implicitly convertible to the other, and so there is no best common type. An
explicitly typed array creation expression must be used in this case, for example
specifying the type to be object[] . Alternatively, one of the elements can be cast to
a common base type, which would then become the inferred element type.

int[][] a = new int[100][5]; // Error

int[][] a = new int[100][];
for (int i = 0; i < 100; i++)
{
 a[i] = new int[5];
}

int[,] a = new int[100, 5];

var a = new[] { 1, 10, 100, 1000 }; // int[]
var b = new[] { 1, 1.5, 2, 2.5 }; // double[]
var c = new[,] { { "hello", null }, { "world", "!" } }; // string[,]
var d = new[] { 1, "one", 2, "two" }; // Error

end example

Implicitly typed array creation expressions can be combined with anonymous object
initializers (§11.7.15.7) to create anonymously typed data structures.

Example:

C#

end example

A delegate_creation_expression is used to obtain an instance of a delegate_type.

ANTLR

The argument of a delegate creation expression shall be a method group, an
anonymous function, or a value of either the compile-time type dynamic or a
delegate_type. If the argument is a method group, it identifies the method and, for an
instance method, the object for which to create a delegate. If the argument is an
anonymous function it directly defines the parameters and method body of the delegate
target. If the argument is a value it identifies a delegate instance of which to create a
copy.

If the expression has the compile-time type dynamic , the delegate_creation_expression is
dynamically bound (§11.7.15.6), and the rules below are applied at run-time using the

var contacts = new[]
{
 new
 {
 Name = "Chris Smith",
 PhoneNumbers = new[] { "206-555-0101", "425-882-8080" }
 },
 new
 {
 Name = "Bob Harris",
 PhoneNumbers = new[] { "650-555-0199" }
 }
};

11.7.15.6 Delegate creation expressions

delegate_creation_expression
 : 'new' delegate_type '(' expression ')'
 ;

run-time type of the expression. Otherwise, the rules are applied at compile-time.

The binding-time processing of a delegate_creation_expression of the form new D(E) ,
where D is a delegate_type and E is an expression, consists of the following steps:

If E is a method group, the delegate creation expression is processed in the same
way as a method group conversion (§10.8) from E to D .

If E is an anonymous function, the delegate creation expression is processed in the
same way as an anonymous function conversion (§10.7) from E to D .

If E is a value, E shall be compatible (§19.2) with D , and the result is a reference to
a newly created delegate with a single-entry invocation list that invokes E .

The run-time processing of a delegate_creation_expression of the form new D(E) ,
where D is a delegate_type and E is an expression, consists of the following steps:

If E is a method group, the delegate creation expression is evaluated as a method
group conversion (§10.8) from E to D .
If E is an anonymous function, the delegate creation is evaluated as an
anonymous function conversion from E to D (§10.7).
If E is a value of a delegate_type:

E is evaluated. If this evaluation causes an exception, no further steps are
executed.
If the value of E is null , a System.NullReferenceException is thrown and no
further steps are executed.
A new instance of the delegate type D is allocated. If there is not enough
memory available to allocate the new instance, a System.OutOfMemoryException
is thrown and no further steps are executed.
The new delegate instance is initialized with a single-entry invocation list that
invokes E .

The invocation list of a delegate is determined when the delegate is instantiated and
then remains constant for the entire lifetime of the delegate. In other words, it is not
possible to change the target callable entities of a delegate once it has been created.

Note: Remember, when two delegates are combined or one is removed from
another, a new delegate results; no existing delegate has its content changed. end
note

It is not possible to create a delegate that refers to a property, indexer, user-defined
operator, instance constructor, finalizer, or static constructor.

Example: As described above, when a delegate is created from a method group, the
formal parameter list and return type of the delegate determine which of the
overloaded methods to select. In the example

C#

the A.f field is initialized with a delegate that refers to the second Square method
because that method exactly matches the formal parameter list and return type of
DoubleFunc . Had the second Square method not been present, a compile-time error
would have occurred.

end example

An anonymous_object_creation_expression is used to create an object of an anonymous
type.

ANTLR

delegate double DoubleFunc(double x);

class A
{
 DoubleFunc f = new DoubleFunc(Square);

 static float Square(float x) => x * x;
 static double Square(double x) => x * x;
}

11.7.15.7 Anonymous object creation expressions

anonymous_object_creation_expression
 : 'new' anonymous_object_initializer
 ;

anonymous_object_initializer
 : '{' member_declarator_list? '}'
 | '{' member_declarator_list ',' '}'
 ;

member_declarator_list
 : member_declarator (',' member_declarator)*
 ;

member_declarator
 : simple_name
 | member_access
 | null_conditional_projection_initializer
 | base_access

An anonymous object initializer declares an anonymous type and returns an instance of
that type. An anonymous type is a nameless class type that inherits directly from object .
The members of an anonymous type are a sequence of read-only properties inferred
from the anonymous object initializer used to create an instance of the type. Specifically,
an anonymous object initializer of the form

new { p₁ = e₁ , p₂ = e₂ , … pᵥ = eᵥ }

declares an anonymous type of the form

C#

where each «Tx» is the type of the corresponding expression «ex». The expression used
in a member_declarator shall have a type. Thus, it is a compile-time error for an
expression in a member_declarator to be null or an anonymous function. It is also a
compile-time error for the expression to have a pointer type (§22.3).

The names of an anonymous type and of the parameter to its Equals method are
automatically generated by the compiler and cannot be referenced in program text.

Within the same program, two anonymous object initializers that specify a sequence of
properties of the same names and compile-time types in the same order will produce

 | identifier '=' expression
 ;

class __Anonymous1
{
 private readonly «T1» «f1»;
 private readonly «T2» «f2»;
 ...
 private readonly «Tn» «fn»;

 public __Anonymous1(«T1» «a1», «T2» «a2»,..., «Tn» «an»)
 {
 «f1» = «a1»;
 «f2» = «a2»;
 ...
 «fn» = «an»;
 }

 public «T1» «p1» { get { return «f1»; } }
 public «T2» «p2» { get { return «f2»; } }
 ...
 public «Tn» «pn» { get { return «fn»; } }
 public override bool Equals(object __o) { ... }
 public override int GetHashCode() { ... }
}

instances of the same anonymous type.

Example: In the example

C#

the assignment on the last line is permitted because p1 and p2 are of the same
anonymous type.

end example

The Equals and GetHashcode methods on anonymous types override the methods
inherited from object , and are defined in terms of the Equals and GetHashcode of the
properties, so that two instances of the same anonymous type are equal if and only if all
their properties are equal.

A member declarator can be abbreviated to a simple name (§11.7.4), a member access
(§11.7.6), a null conditional projection initializer §11.7.7 or a base access (§11.7.13). This
is called a projection initializer and is shorthand for a declaration of and assignment to
a property with the same name. Specifically, member declarators of the forms

«identifier» , «expr» . «identifier» and «expr» ? . «identifier»

are precisely equivalent to the following, respectively:

«identifer» = «identifier» , «identifier» = «expr» . «identifier» and «identifier»
= «expr» ? . «identifier»

Thus, in a projection initializer the identifier selects both the value and the field or
property to which the value is assigned. Intuitively, a projection initializer projects not
just a value, but also the name of the value.

The typeof operator is used to obtain the System.Type object for a type.

ANTLR

var p1 = new { Name = "Lawnmower", Price = 495.00 };
var p2 = new { Name = "Shovel", Price = 26.95 };
p1 = p2;

11.7.16 The typeof operator

typeof_expression
 : 'typeof' '(' type ')'

The first form of typeof_expression consists of a typeof keyword followed by a
parenthesized type. The result of an expression of this form is the System.Type object
for the indicated type. There is only one System.Type object for any given type. This
means that for a type T , typeof(T) == typeof(T) is always true. The type cannot be
dynamic .

The second form of typeof_expression consists of a typeof keyword followed by a
parenthesized unbound_type_name.

Note: An unbound_type_name is very similar to a type_name (§7.8) except that an
unbound_type_name contains generic_dimension_specifiers where a type_name
contains type_argument_lists. end note

When the operand of a typeof_expression is a sequence of tokens that satisfies the
grammars of both unbound_type_name and type_name, namely when it contains neither
a generic_dimension_specifier nor a type_argument_list, the sequence of tokens is
considered to be a type_name. The meaning of an unbound_type_name is determined as
follows:

Convert the sequence of tokens to a type_name by replacing each
generic_dimension_specifier with a type_argument_list having the same number of
commas and the keyword object as each type_argument.
Evaluate the resulting type_name, while ignoring all type parameter constraints.
The unbound_type_name resolves to the unbound generic type associated with the
resulting constructed type (§8.4).

 | 'typeof' '(' unbound_type_name ')'
 | 'typeof' '(' 'void' ')'
 ;

unbound_type_name
 : identifier generic_dimension_specifier?
 | identifier '::' identifier generic_dimension_specifier?
 | unbound_type_name '.' identifier generic_dimension_specifier?
 ;

generic_dimension_specifier
 : '<' comma* '>'
 ;

comma
 : ','
 ;

The result of the typeof_expression is the System.Type object for the resulting unbound
generic type.

The third form of typeof_expression consists of a typeof keyword followed by a
parenthesized void keyword. The result of an expression of this form is the System.Type
object that represents the absence of a type. The type object returned by typeof(void)
is distinct from the type object returned for any type.

Note: This special type object is useful in class libraries that allow reflection
onto methods in the language, where those methods wish to have a way to
represent the return type of any method, including void methods, with an instance
of System.Type . end note

The typeof operator can be used on a type parameter. The result is the System.Type
object for the run-time type that was bound to the type parameter. The typeof operator
can also be used on a constructed type or an unbound generic type (§8.4.4). The
System.Type object for an unbound generic type is not the same as the System.Type
object of the instance type (§14.3.2). The instance type is always a closed constructed
type at run-time so its System.Type object depends on the run-time type arguments in
use. The unbound generic type, on the other hand, has no type arguments, and yields
the same System.Type object regardless of runtime type arguments.

Example: The example

C#

class X<T>
{
 public static void PrintTypes()
 {
 Type[] t =
 {
 typeof(int),
 typeof(System.Int32),
 typeof(string),
 typeof(double[]),
 typeof(void),
 typeof(T),
 typeof(X<T>),
 typeof(X<X<T>>),
 typeof(X<>)
 };
 for (int i = 0; i < t.Length; i++)
 {
 Console.WriteLine(t[i]);
 }

produces the following output:

Console

Note that int and System.Int32 are the same type. The result of typeof(X<>) does
not depend on the type argument but the result of typeof(X<T>) does.

end example

The sizeof operator returns the number of 8-bit bytes occupied by a variable of a given
type. The type specified as an operand to sizeof shall be an unmanaged_type (§8.8).

ANTLR

For certain predefined types the sizeof operator yields a constant int value as shown
in the table below:

Expression Result

sizeof(sbyte) 1

 }
}

class Test
{
 static void Main()
 {
 X<int>.PrintTypes();
 }
}

System.Int32
System.Int32
System.String
System.Double[]
System.Void
System.Int32
X`1[System.Int32]
X`1[X`1[System.Int32]]
X`1[T]

11.7.17 The sizeof operator

sizeof_expression
 : 'sizeof' '(' unmanaged_type ')'
 ;

Expression Result

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(bool) 1

sizeof(decimal) 16

For an enum type T , the result of the expression sizeof(T) is a constant value equal to
the size of its underlying type, as given above. For all other operand types, the sizeof
operator is specified in §22.6.9.

The checked and unchecked operators are used to control the overflow-checking
context for integral-type arithmetic operations and conversions.

ANTLR

The checked operator evaluates the contained expression in a checked context, and the
unchecked operator evaluates the contained expression in an unchecked context. A
checked_expression or unchecked_expression corresponds exactly to a

11.7.18 The checked and unchecked operators

checked_expression
 : 'checked' '(' expression ')'
 ;

unchecked_expression
 : 'unchecked' '(' expression ')'
 ;

parenthesized_expression (§11.7.5), except that the contained expression is evaluated in
the given overflow checking context.

The overflow checking context can also be controlled through the checked and
unchecked statements (§12.12).

The following operations are affected by the overflow checking context established by
the checked and unchecked operators and statements:

The predefined ++ and -- operators (§11.7.14 and §11.8.6), when the operand is of
an integral or enum type.
The predefined - unary operator (§11.8.3), when the operand is of an integral type.
The predefined + , - , * , and / binary operators (§11.9), when both operands are
of integral or enum types.
Explicit numeric conversions (§10.3.2) from one integral or enum type to another
integral or enum type, or from float or double to an integral or enum type.

When one of the above operations produces a result that is too large to represent in the
destination type, the context in which the operation is performed controls the resulting
behavior:

In a checked context, if the operation is a constant expression (§11.21), a compile-
time error occurs. Otherwise, when the operation is performed at run-time, a
System.OverflowException is thrown.
In an unchecked context, the result is truncated by discarding any high-order bits
that do not fit in the destination type.

For non-constant expressions (§11.21) (expressions that are evaluated at run-time) that
are not enclosed by any checked or unchecked operators or statements, the default
overflow checking context is unchecked, unless external factors (such as compiler
switches and execution environment configuration) call for checked evaluation.

For constant expressions (§11.21) (expressions that can be fully evaluated at compile-
time), the default overflow checking context is always checked. Unless a constant
expression is explicitly placed in an unchecked context, overflows that occur during the
compile-time evaluation of the expression always cause compile-time errors.

The body of an anonymous function is not affected by checked or unchecked contexts in
which the anonymous function occurs.

Example: In the following code

C#

no compile-time errors are reported since neither of the expressions can be
evaluated at compile-time. At run-time, the F method throws a
System.OverflowException , and the G method returns –727379968 (the lower 32 bits
of the out-of-range result). The behavior of the H method depends on the default
overflow-checking context for the compilation, but it is either the same as F or the
same as G .

end example

Example: In the following code

C#

the overflows that occur when evaluating the constant expressions in F and H
cause compile-time errors to be reported because the expressions are evaluated in a
checked context. An overflow also occurs when evaluating the constant expression
in G , but since the evaluation takes place in an unchecked context, the overflow is
not reported.

end example

The checked and unchecked operators only affect the overflow checking context for
those operations that are textually contained within the “(” and “) ” tokens. The

class Test
{
 static readonly int x = 1000000;
 static readonly int y = 1000000;

 static int F() => checked(x * y); // Throws OverflowException
 static int G() => unchecked(x * y); // Returns -727379968
 static int H() => x * y; // Depends on default
}

class Test
{
 const int x = 1000000;
 const int y = 1000000;

 static int F() => checked(x * y); // Compile-time error, overflow
 static int G() => unchecked(x * y); // Returns -727379968
 static int H() => x * y; // Compile-time error, overflow
}

operators have no effect on function members that are invoked as a result of evaluating
the contained expression.

Example: In the following code

C#

the use of checked in F does not affect the evaluation of x * y in Multiply , so
x * y is evaluated in the default overflow checking context.

end example

The unchecked operator is convenient when writing constants of the signed integral
types in hexadecimal notation.

Example:

C#

Both of the hexadecimal constants above are of type uint . Because the constants
are outside the int range, without the unchecked operator, the casts to int would
produce compile-time errors.

end example

Note: The checked and unchecked operators and statements allow programmers to
control certain aspects of some numeric calculations. However, the behavior of
some numeric operators depends on their operands’ data types. For example,
multiplying two decimals always results in an exception on overflow even within an
explicitly unchecked construct. Similarly, multiplying two floats never results in an
exception on overflow even within an explicitly checked construct. In addition, other

class Test
{
 static int Multiply(int x, int y) => x * y;

 static int F() => checked(Multiply(1000000, 1000000));
}

class Test
{
 public const int AllBits = unchecked((int)0xFFFFFFFF);
 public const int HighBit = unchecked((int)0x80000000);
}

operators are never affected by the mode of checking, whether default or explicit.
end note

A default value expression is used to obtain the default value (§9.3) of a type.

ANTLR

A default_literal represents a default value (§9.3). It does not have a type, but can be
converted to any type through a default literal conversion (§10.2.15).

The result of a default_value_expression is the default (§9.3) of the explicit type in an
explictly_typed_default, or the target type of the conversion for a
default_value_expression.

A default_value_expression is a constant expression (§11.21) if the type is one of:

a reference type
a type parameter that is known to be a reference type (§8.2);
one of the following value types: sbyte , byte , short , ushort , int , uint , long ,
ulong , char , float , double , decimal , bool, ; or
any enumeration type.

A nameof_expression is used to obtain the name of a program entity as a constant string.

ANTLR

11.7.19 Default value expressions

default_value_expression
 : explictly_typed_default
 | default_literal
 ;

explictly_typed_default
 : 'default' '(' type ')'
 ;

default_literal
 : 'default'
 ;

11.7.20 Nameof expressions

nameof_expression
 : 'nameof' '(' named_entity ')'
 ;

Because nameof is not a keyword, a nameof_expression is always syntactically ambiguous
with an invocation of the simple name nameof . For compatibility reasons, if a name
lookup (§11.7.4) of the name nameof succeeds, the expression is treated as an
invocation_expression — regardless of whether the invocation is valid. Otherwise it is a
nameof_expression.

Simple name and member access lookups are performed on the named_entity at
compile time, following the rules described in §11.7.4 and §11.7.6. However, where the
lookup described in §11.7.4 and §11.7.6 results in an error because an instance member
was found in a static context, a nameof_expression produces no such error.

It is a compile-time error for a named_entity designating a method group to have a
type_argument_list. It is a compile time error for a named_entity_target to have the type
dynamic .

A nameof_expression is a constant expression of type string , and has no effect at
runtime. Specifically, its named_entity is not evaluated, and is ignored for the purposes
of definite assignment analysis (§9.4.4.22). Its value is the last identifier of the
named_entity before the optional final type_argument_list, transformed in the following
way:

The prefix “@ ”, if used, is removed.
Each unicode_escape_sequence is transformed into its corresponding Unicode
character.
Any formatting_characters are removed.

These are the same transformations applied in §6.4.3 when testing equality between
identifiers.

Example: The following illustrates the results of various nameof expressions,
assuming a generic type List<T> declared within the System.Collections.Generic
namespace:

named_entity
 : named_entity_target ('.' identifier type_argument_list?)*
 ;

named_entity_target
 : simple_name
 | 'this'
 | 'base'
 | predefined_type
 | qualified_alias_member
 ;

C#

Potentially surprising parts of this example are the resolution of
nameof(System.Collections.Generic) to just “Generic” instead of the full namespace,
and of nameof(TestAlias) to “TestAlias” rather than “String”. end example

using TestAlias = System.String;

class Program
{
 static void Main()
 {
 var point = (x: 3, y: 4);

 string n1 = nameof(System); // "System"
 string n2 = nameof(System.Collections.Generic); // "Generic"
 string n3 = nameof(point); // "point"
 string n4 = nameof(point.x); // "x"
 string n5 = nameof(Program); // "Program"
 string n6 = nameof(System.Int32); // "Int32"
 string n7 = nameof(TestAlias); // "TestAlias"
 string n8 = nameof(List<int>); // "List"
 string n9 = nameof(Program.InstanceMethod); //
"InstanceMethod"
 string n10 = nameof(Program.GenericMethod); //
"GenericMethod"
 string n11 = nameof(Program.NestedClass); //
"NestedClass"

 // Invalid
 // string x1 = nameof(List<>); // Empty type argument
list
 // string x2 = nameof(List<T>); // T is not in scope
 // string x3 = nameof(GenericMethod<>); // Empty type argument
list
 // string x4 = nameof(GenericMethod<T>); // T is not in scope
 // string x5 = nameof(int); // Keywords not
permitted
 // Type arguments not permitted for method group
 // string x6 = nameof(GenericMethod<Program>);
 }

 void InstanceMethod() { }

 void GenericMethod<T>()
 {
 string n1 = nameof(List<T>); // "List"
 string n2 = nameof(T); // "T"
 }

 class NestedClass { }
}

An anonymous_method_expression is one of two ways of defining an anonymous
function. These are further described in §11.17.

The + , - , ! , ~ , ++ , -- , cast, and await operators are called the unary operators.

ANTLR

pointer_indirection_expression (§22.6.2) and addressof_expression (§22.6.5) are available
only in unsafe code (§22).

If the operand of a unary_expression has the compile-time type dynamic , it is
dynamically bound (§11.3.3). In this case, the compile-time type of the unary_expression
is dynamic , and the resolution described below will take place at run-time using the run-
time type of the operand.

For an operation of the form +x , unary operator overload resolution (§11.4.4) is applied
to select a specific operator implementation. The operand is converted to the parameter
type of the selected operator, and the type of the result is the return type of the
operator. The predefined unary plus operators are:

C#

11.7.21 Anonymous method expressions

11.8 Unary operators

11.8.1 General

unary_expression
 : primary_expression
 | '+' unary_expression
 | '-' unary_expression
 | '!' unary_expression
 | '~' unary_expression
 | pre_increment_expression
 | pre_decrement_expression
 | cast_expression
 | await_expression
 | pointer_indirection_expression // unsafe code support
 | addressof_expression // unsafe code support
 ;

11.8.2 Unary plus operator

For each of these operators, the result is simply the value of the operand.

Lifted (§11.4.8) forms of the unlifted predefined unary plus operators defined above are
also predefined.

For an operation of the form –x , unary operator overload resolution (§11.4.4) is applied
to select a specific operator implementation. The operand is converted to the parameter
type of the selected operator, and the type of the result is the return type of the
operator. The predefined unary minus operators are:

Integer negation:

C#

The result is computed by subtracting X from zero. If the value of X is the smallest
representable value of the operand type (−2³¹ for int or −2⁶³ for long), then the
mathematical negation of X is not representable within the operand type. If this
occurs within a checked context, a System.OverflowException is thrown; if it occurs
within an unchecked context, the result is the value of the operand and the
overflow is not reported.

If the operand of the negation operator is of type uint , it is converted to type
long , and the type of the result is long . An exception is the rule that permits the
int value −2147483648 (−2³¹) to be written as a decimal integer literal (§6.4.5.3).

If the operand of the negation operator is of type ulong , a compile-time error
occurs. An exception is the rule that permits the long value −9223372036854775808
(−2⁶³) to be written as a decimal integer literal (§6.4.5.3)

Floating-point negation:

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

11.8.3 Unary minus operator

int operator –(int x);
long operator –(long x);

C#

The result is the value of X with its sign inverted. If x is NaN , the result is also NaN .

Decimal negation:

C#

The result is computed by subtracting X from zero. Decimal negation is equivalent
to using the unary minus operator of type System.Decimal .

Lifted (§11.4.8) forms of the unlifted predefined unary minus operators defined above
are also predefined.

For an operation of the form !x , unary operator overload resolution (§11.4.4) is applied
to select a specific operator implementation. The operand is converted to the parameter
type of the selected operator, and the type of the result is the return type of the
operator. Only one predefined logical negation operator exists:

C#

This operator computes the logical negation of the operand: If the operand is true , the
result is false . If the operand is false , the result is true .

Lifted (§11.4.8) forms of the unlifted predefined logical negation operator defined above
are also predefined.

For an operation of the form ~x , unary operator overload resolution (§11.4.4) is applied
to select a specific operator implementation. The operand is converted to the parameter
type of the selected operator, and the type of the result is the return type of the
operator. The predefined bitwise complement operators are:

float operator –(float x);
double operator –(double x);

decimal operator –(decimal x);

11.8.4 Logical negation operator

bool operator !(bool x);

11.8.5 Bitwise complement operator

C#

For each of these operators, the result of the operation is the bitwise complement of x .

Every enumeration type E implicitly provides the following bitwise complement
operator:

C#

The result of evaluating ~x , where X is an expression of an enumeration type E with an
underlying type U , is exactly the same as evaluating (E)(~(U)x) , except that the
conversion to E is always performed as if in an unchecked context (§11.7.18).

Lifted (§11.4.8) forms of the unlifted predefined bitwise complement operators defined
above are also predefined.

ANTLR

The operand of a prefix increment or decrement operation shall be an expression
classified as a variable, a property access, or an indexer access. The result of the
operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer
access, the property or indexer shall have both a get and a set accessor. If this is not the
case, a binding-time error occurs.

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

E operator ~(E x);

11.8.6 Prefix increment and decrement operators

pre_increment_expression
 : '++' unary_expression
 ;

pre_decrement_expression
 : '--' unary_expression
 ;

Unary operator overload resolution (§11.4.4) is applied to select a specific operator
implementation. Predefined ++ and -- operators exist for the following types: sbyte ,
byte , short , ushort , int , uint , long , ulong , char , float , double , decimal , and any
enum type. The predefined ++ operators return the value produced by adding 1 to the
operand, and the predefined -- operators return the value produced by subtracting 1
from the operand. In a checked context, if the result of this addition or subtraction is
outside the range of the result type and the result type is an integral type or enum type,
a System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator
to the type of the unary_expression, otherwise a compile-time error occurs.

The run-time processing of a prefix increment or decrement operation of the form ++x
or --x consists of the following steps:

If x is classified as a variable:
x is evaluated to produce the variable.
The value of x is converted to the operand type of the selected operator and
the operator is invoked with this value as its argument.
The value returned by the operator is converted to the type of x . The resulting
value is stored in the location given by the evaluation of x .
and becomes the result of the operation.

If x is classified as a property or indexer access:
The instance expression (if x is not static) and the argument list (if x is an
indexer access) associated with x are evaluated, and the results are used in the
subsequent get and set accessor invocations.
The get accessor of X is invoked.
The value returned by the get accessor is converted to the operand type of the
selected operator and operator is invoked with this value as its argument.
The value returned by the operator is converted to the type of x . The set
accessor of X is invoked with this value as its value argument.
This value also becomes the result of the operation.

The ++ and -- operators also support postfix notation (§11.7.14). Typically, the result of
x++ or x-- is the value of X before the operation, whereas the result of ++x or --x is
the value of X after the operation. In either case, x itself has the same value after the
operation.

An operator ++ or operator -- implementation can be invoked using either postfix or
prefix notation. It is not possible to have separate operator implementations for the two
notations.

Lifted (§11.4.8) forms of the unlifted predefined prefix increment and decrement
operators defined above are also predefined.

A cast_expression is used to convert explicitly an expression to a given type.

ANTLR

A cast_expression of the form (T)E , where T is a type and E is a unary_expression,
performs an explicit conversion (§10.3) of the value of E to type T . If no explicit
conversion exists from E to T , a binding-time error occurs. Otherwise, the result is the
value produced by the explicit conversion. The result is always classified as a value, even
if E denotes a variable.

The grammar for a cast_expression leads to certain syntactic ambiguities.

Example: The expression (x)–y could either be interpreted as a cast_expression (a
cast of –y to type x) or as an additive_expression combined with a
parenthesized_expression (which computes the value x – y). end example

To resolve cast_expression ambiguities, the following rule exists: A sequence of one or
more tokens (§6.4) enclosed in parentheses is considered the start of a cast_expression
only if at least one of the following are true:

The sequence of tokens is correct grammar for a type, but not for an expression.
The sequence of tokens is correct grammar for a type, and the token immediately
following the closing parentheses is the token “~ ”, the token “! ”, the token “(”,
an identifier (§6.4.3), a literal (§6.4.5), or any keyword (§6.4.4) except as and is .

The term “correct grammar” above means only that the sequence of tokens shall
conform to the particular grammatical production. It specifically does not consider the
actual meaning of any constituent identifiers.

Example: If x and y are identifiers, then x.y is correct grammar for a type, even if
x.y doesn’t actually denote a type. end example

11.8.7 Cast expressions

cast_expression
 : '(' type ')' unary_expression
 ;

Note: From the disambiguation rule, it follows that, if x and y are identifiers, (x)y ,
(x)(y) , and (x)(-y) are cast_expressions, but (x)-y is not, even if x identifies a
type. However, if x is a keyword that identifies a predefined type (such as int), then
all four forms are cast_expressions (because such a keyword could not possibly be an
expression by itself). end note

The await operator is used to suspend evaluation of the enclosing async function until
the asynchronous operation represented by the operand has completed.

ANTLR

An await_expression is only allowed in the body of an async function (§14.15). Within the
nearest enclosing async function, an await_expression shall not occur in these places:

Inside a nested (non-async) anonymous function
Inside the block of a lock_statement
In an anonymous function conversion to an expression tree type (§10.7.3)
In an unsafe context

Note: An await_expression cannot occur in most places within a query_expression,
because those are syntactically transformed to use non-async lambda expressions.
end note

Inside an async function, await shall not be used as an available_identifier although the
verbatim identifier @await may be used. There is therefore no syntactic ambiguity
between await_expressions and various expressions involving identifiers. Outside of
async functions, await acts as a normal identifier.

The operand of an await_expression is called the task. It represents an asynchronous
operation that may or may not be complete at the time the await_expression is
evaluated. The purpose of the await operator is to suspend execution of the enclosing
async function until the awaited task is complete, and then obtain its outcome.

11.8.8 Await expressions

11.8.8.1 General

await_expression
 : 'await' unary_expression
 ;

The task of an await_expression is required to be awaitable. An expression t is
awaitable if one of the following holds:

t is of compile-time type dynamic
t has an accessible instance or extension method called GetAwaiter with no
parameters and no type parameters, and a return type A for which all of the
following hold:

A implements the interface
System.Runtime.CompilerServices.INotifyCompletion (hereafter known as
INotifyCompletion for brevity)
A has an accessible, readable instance property IsCompleted of type bool
A has an accessible instance method GetResult with no parameters and no
type parameters

The purpose of the GetAwaiter method is to obtain an awaiter for the task. The type A
is called the awaiter type for the await expression.

The purpose of the IsCompleted property is to determine if the task is already complete.
If so, there is no need to suspend evaluation.

The purpose of the INotifyCompletion.OnCompleted method is to sign up a
“continuation” to the task; i.e., a delegate (of type System.Action) that will be invoked
once the task is complete.

The purpose of the GetResult method is to obtain the outcome of the task once it is
complete. This outcome may be successful completion, possibly with a result value, or it
may be an exception which is thrown by the GetResult method.

The expression await t is classified the same way as the expression
(t).GetAwaiter().GetResult() . Thus, if the return type of GetResult is void , the
await_expression is classified as nothing. If it has a non-void return type T , the
await_expression is classified as a value of type T .

At run-time, the expression await t is evaluated as follows:

11.8.8.2 Awaitable expressions

11.8.8.3 Classification of await expressions

11.8.8.4 Run-time evaluation of await expressions

An awaiter a is obtained by evaluating the expression (t).GetAwaiter() .
A bool b is obtained by evaluating the expression (a).IsCompleted .
If b is false then evaluation depends on whether a implements the interface
System.Runtime.CompilerServices.ICriticalNotifyCompletion (hereafter known as
ICriticalNotifyCompletion for brevity). This check is done at binding time; i.e., at
run-time if a has the compile-time type dynamic , and at compile-time otherwise.
Let r denote the resumption delegate (§14.15):

If a does not implement ICriticalNotifyCompletion , then the expression ((a)
as INotifyCompletion).OnCompleted(r) is evaluated.
If a does implement ICriticalNotifyCompletion , then the expression ((a) as
ICriticalNotifyCompletion).UnsafeOnCompleted(r) is evaluated.
Evaluation is then suspended, and control is returned to the current caller of the
async function.

Either immediately after (if b was true), or upon later invocation of the
resumption delegate (if b was false), the expression (a).GetResult() is
evaluated. If it returns a value, that value is the result of the await_expression.
Otherwise, the result is nothing.

An awaiter’s implementation of the interface methods INotifyCompletion.OnCompleted
and ICriticalNotifyCompletion.UnsafeOnCompleted should cause the delegate r to be
invoked at most once. Otherwise, the behavior of the enclosing async function is
undefined.

The * , / , % , + , and – operators are called the arithmetic operators.

ANTLR

11.9 Arithmetic operators

11.9.1 General

multiplicative_expression
 : unary_expression
 | multiplicative_expression '*' unary_expression
 | multiplicative_expression '/' unary_expression
 | multiplicative_expression '%' unary_expression
 ;

additive_expression
 : multiplicative_expression
 | additive_expression '+' multiplicative_expression

If an operand of an arithmetic operator has the compile-time type dynamic , then the
expression is dynamically bound (§11.3.3). In this case, the compile-time type of the
expression is dynamic , and the resolution described below will take place at run-time
using the run-time type of those operands that have the compile-time type dynamic .

For an operation of the form x * y , binary operator overload resolution (§11.4.5) is
applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of
the operator.

The predefined multiplication operators are listed below. The operators all compute the
product of x and y .

Integer multiplication:

C#

In a checked context, if the product is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not
reported and any significant high-order bits outside the range of the result type
are discarded.

Floating-point multiplication:

C#

The product is computed according to the rules of IEC 60559 arithmetic. The
following table lists the results of all possible combinations of nonzero finite
values, zeros, infinities, and NaNs. In the table, x and y are positive finite values. z
is the result of x * y , rounded to the nearest representable value. If the magnitude

 | additive_expression '-' multiplicative_expression
 ;

11.9.2 Multiplication operator

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

float operator *(float x, float y);
double operator *(double x, double y);

of the result is too large for the destination type, z is infinity. Because of rounding,
z may be zero even though neither x nor y is zero.

+y -y +0 -0 +∞ -∞ NaN

+x +z -z +0 -0 +∞ -∞ NaN

-x -z +z -0 +0 -∞ +∞ NaN

+0 +0 -0 +0 -0 NaN NaN NaN

-0 -0 +0 -0 +0 NaN NaN NaN

+∞ +∞ -∞ NaN NaN +∞ -∞ NaN

-∞ -∞ +∞ NaN NaN -∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

(Except were otherwise noted, in the floating-point tables in §11.9.2–§11.9.6 the
use of “+ ” means the value is positive; the use of “- ” means the value is negative;
and the lack of a sign means the value may be positive or negative or has no sign
(NaN).)

Decimal multiplication:

C#

If the magnitude of the resulting value is too large to represent in the decimal
format, a System.OverflowException is thrown. Because of rounding, the result may
be zero even though neither operand is zero. The scale of the result, before any
rounding, is the sum of the scales of the two operands. Decimal multiplication is
equivalent to using the multiplication operator of type System.Decimal .

Lifted (§11.4.8) forms of the unlifted predefined multiplication operators defined above
are also predefined.

For an operation of the form x / y , binary operator overload resolution (§11.4.5) is
applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of
the operator.

decimal operator *(decimal x, decimal y);

11.9.3 Division operator

The predefined division operators are listed below. The operators all compute the
quotient of x and y .

Integer division:

C#

If the value of the right operand is zero, a System.DivideByZeroException is thrown.

The division rounds the result towards zero. Thus the absolute value of the result is
the largest possible integer that is less than or equal to the absolute value of the
quotient of the two operands. The result is zero or positive when the two operands
have the same sign and zero or negative when the two operands have opposite
signs.

If the left operand is the smallest representable int or long value and the right
operand is –1 , an overflow occurs. In a checked context, this causes a
System.ArithmeticException (or a subclass thereof) to be thrown. In an unchecked
context, it is implementation-defined as to whether a System.ArithmeticException
(or a subclass thereof) is thrown or the overflow goes unreported with the
resulting value being that of the left operand.

Floating-point division:

C#

The quotient is computed according to the rules of IEC 60559 arithmetic. The
following table lists the results of all possible combinations of nonzero finite
values, zeros, infinities, and NaNs. In the table, x and y are positive finite values. z
is the result of x / y , rounded to the nearest representable value.

+y -y +0 -0 +∞ -∞ NaN

+x +z -z +∞ -∞ +0 -0 NaN

-x -z +z -∞ +∞ -0 +0 NaN

int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

float operator /(float x, float y);
double operator /(double x, double y);

+y -y +0 -0 +∞ -∞ NaN

+0 +0 -0 NaN NaN +0 -0 NaN

-0 -0 +0 NaN NaN -0 +0 NaN

+∞ +∞ -∞ +∞ -∞ NaN NaN NaN

-∞ -∞ +∞ -∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Decimal division:

C#

If the value of the right operand is zero, a System.DivideByZeroException is thrown.
If the magnitude of the resulting value is too large to represent in the decimal
format, a System.OverflowException is thrown. Because of rounding, the result may
be zero even though the first operand is not zero. The scale of the result, before
any rounding, is the closest scale to the preferred scale that will preserve a result
equal to the exact result. The preferred scale is the scale of x less the scale of y .

Decimal division is equivalent to using the division operator of type
System.Decimal .

Lifted (§11.4.8) forms of the unlifted predefined division operators defined above are
also predefined.

For an operation of the form x % y , binary operator overload resolution (§11.4.5) is
applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of
the operator.

The predefined remainder operators are listed below. The operators all compute the
remainder of the division between x and y .

Integer remainder:

C#

decimal operator /(decimal x, decimal y);

11.9.4 Remainder operator

The result of x % y is the value produced by x – (x / y) * y . If y is zero, a
System.DivideByZeroException is thrown.

If the left operand is the smallest int or long value and the right operand is –1 , a
System.OverflowException is thrown if and only if x / y would throw an exception.

Floating-point remainder:

C#

The following table lists the results of all possible combinations of nonzero finite
values, zeros, infinities, and NaNs. In the table, x and y are positive finite values. z
is the result of x % y and is computed as x – n * y , where n is the largest
possible integer that is less than or equal to x / y . This method of computing the
remainder is analogous to that used for integer operands, but differs from the IEC
60559 definition (in which n is the integer closest to x / y).

+y -y +0 -0 +∞ -∞ NaN

+x +z +z NaN NaN +x +x NaN

-x -z -z NaN NaN -x -x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

-0 -0 -0 NaN NaN -0 -0 NaN

+∞ NaN NaN NaN NaN NaN NaN NaN

-∞ NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Decimal remainder:

C#

int operator %(int x, int y);
uint operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

float operator %(float x, float y);
double operator %(double x, double y);

decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown.
It is implementation-defined when a System.ArithmeticException (or a subclass
thereof) is thrown. A conforming implementation shall not throw an exception for
x % y in any case where x / y does not throw an exception. The scale of the
result, before any rounding, is the larger of the scales of the two operands, and the
sign of the result, if non-zero, is the same as that of x .

Decimal remainder is equivalent to using the remainder operator of type
System.Decimal .

Note: These rules ensure that for all types, the result never has the opposite
sign of the left operand. end note

Lifted (§11.4.8) forms of the unlifted predefined remainder operators defined above are
also predefined.

For an operation of the form x + y , binary operator overload resolution (§11.4.5) is
applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of
the operator.

The predefined addition operators are listed below. For numeric and enumeration types,
the predefined addition operators compute the sum of the two operands. When one or
both operands are of type string , the predefined addition operators concatenate the
string representation of the operands.

Integer addition:

C#

In a checked context, if the sum is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not
reported and any significant high-order bits outside the range of the result type
are discarded.

11.9.5 Addition operator

int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y

Floating-point addition:

C#

The sum is computed according to the rules of IEC 60559 arithmetic. The following
table lists the results of all possible combinations of nonzero finite values, zeros,
infinities, and NaNs. In the table, x and y are nonzero finite values, and z is the
result of x + y . If x and y have the same magnitude but opposite signs, z is
positive zero. If x + y is too large to represent in the destination type, z is an
infinity with the same sign as x + y .

y +0 -0 +∞ -∞ NaN

x z x x +∞ -∞ NaN

+0 y +0 +0 +∞ –∞ NaN

-0 y +0 -0 +∞ -∞ NaN

+∞ +∞ +∞ +∞ +∞ NaN NaN

-∞ -∞ -∞ -∞ NaN -∞ NaN

NaN NaN NaN NaN NaN NaN NaN

Decimal addition:

C#

If the magnitude of the resulting value is too large to represent in the decimal
format, a System.OverflowException is thrown. The scale of the result, before any
rounding, is the larger of the scales of the two operands.

Decimal addition is equivalent to using the addition operator of type
System.Decimal .

Enumeration addition. Every enumeration type implicitly provides the following
predefined operators, where E is the enum type, and U is the underlying type
of E :

float operator +(float x, float y);
double operator +(double x, double y);

decimal operator +(decimal x, decimal y);

C#

At run-time these operators are evaluated exactly as (E)((U)x + (U)y).

String concatenation:

C#

These overloads of the binary + operator perform string concatenation. If an
operand of string concatenation is null , an empty string is substituted. Otherwise,
any non-string operand is converted to its string representation by invoking the
virtual ToString method inherited from type object . If ToString returns null , an
empty string is substituted.

Example:

C#

The output shown in the comments is the typical result on a US-English
system. The precise output might depend on the regional settings of the

E operator +(E x, U y);
E operator +(U x, E y);

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

class Test
{
 static void Main()
 {
 string s = null;
 Console.WriteLine("s = >" + s + "<"); // Displays s = ><

 int i = 1;
 Console.WriteLine("i = " + i); // Displays i = 1

 float f = 1.2300E+15F;
 Console.WriteLine("f = " + f); // Displays f =
1.23E+15

 decimal d = 2.900m;
 Console.WriteLine("d = " + d); // Displays d =
2.900
 }
}

execution environment. The string-concatenation operator itself behaves the
same way in each case, but the ToString methods implicitly called during
execution might be affected by regional settings.

end example

The result of the string concatenation operator is a string that consists of the
characters of the left operand followed by the characters of the right operand. The
string concatenation operator never returns a null value. A
System.OutOfMemoryException may be thrown if there is not enough memory
available to allocate the resulting string.

Delegate combination. Every delegate type implicitly provides the following
predefined operator, where D is the delegate type:

C#

If the first operand is null , the result of the operation is the value of the second
operand (even if that is also null). Otherwise, if the second operand is null , then
the result of the operation is the value of the first operand. Otherwise, the result of
the operation is a new delegate instance whose invocation list consists of the
elements in the invocation list of the first operand, followed by the elements in the
invocation list of the second operand. That is, the invocation list of the resulting
delegate is the concatenation of the invocation lists of the two operands.

Note: For examples of delegate combination, see §11.9.6 and §19.6. Since
System.Delegate is not a delegate type, operator + is not defined for it. end
note

Lifted (§11.4.8) forms of the unlifted predefined addition operators defined above are
also predefined.

For an operation of the form x – y , binary operator overload resolution (§11.4.5) is
applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of
the operator.

D operator +(D x, D y);

11.9.6 Subtraction operator

The predefined subtraction operators are listed below. The operators all subtract y
from x .

Integer subtraction:

C#

In a checked context, if the difference is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not
reported and any significant high-order bits outside the range of the result type
are discarded.

Floating-point subtraction:

C#

The difference is computed according to the rules of IEC 60559 arithmetic. The
following table lists the results of all possible combinations of nonzero finite
values, zeros, infinities, and NaNs. In the table, x and y are nonzero finite values,
and z is the result of x – y . If x and y are equal, z is positive zero. If x – y is too
large to represent in the destination type, z is an infinity with the same sign as x –
 y .

y +0 -0 +∞ -∞ NaN

x z x x -∞ +∞ NaN

+0 -y +0 +0 -∞ +∞ NaN

-0 -y -0 +0 -∞ +∞ NaN

+∞ +∞ +∞ +∞ NaN +∞ NaN

-∞ -∞ -∞ -∞ -∞ NaN NaN

NaN NaN NaN NaN NaN NaN NaN

int operator –(int x, int y);
uint operator –(uint x, uint y);
long operator –(long x, long y);
ulong operator –(ulong x, ulong y

float operator –(float x, float y);
double operator –(double x, double y);

(In the above table, the -y entries denote the negation of y , not that the value is
negative.)

Decimal subtraction:

C#

If the magnitude of the resulting value is too large to represent in the decimal
format, a System.OverflowException is thrown. The scale of the result, before any
rounding, is the larger of the scales of the two operands.

Decimal subtraction is equivalent to using the subtraction operator of type
System.Decimal .

Enumeration subtraction. Every enumeration type implicitly provides the following
predefined operator, where E is the enum type, and U is the underlying type of E :

C#

This operator is evaluated exactly as (U)((U)x – (U)y) . In other words, the
operator computes the difference between the ordinal values of x and y , and the
type of the result is the underlying type of the enumeration.

C#

This operator is evaluated exactly as (E)((U)x – y) . In other words, the operator
subtracts a value from the underlying type of the enumeration, yielding a value of
the enumeration.

Delegate removal. Every delegate type implicitly provides the following predefined
operator, where D is the delegate type:

C#

The semantics are as follows:

decimal operator –(decimal x, decimal y);

U operator –(E x, E y);

E operator –(E x, U y);

D operator –(D x, D y);

If the first operand is null , the result of the operation is null .
Otherwise, if the second operand is null , then the result of the operation is the
value of the first operand.
Otherwise, both operands represent non-empty invocation lists (§19.2).

If the lists compare equal, as determined by the delegate equality operator
(§11.11.9), the result of the operation is null .
Otherwise, the result of the operation is a new invocation list consisting of
the first operand’s list with the second operand’s entries removed from it,
provided the second operand’s list is a sublist of the first’s. (To determine
sublist equality, corresponding entries are compared as for the delegate
equality operator.) If the second operand’s list matches multiple sublists of
contiguous entries in the first operand’s list, the last matching sublist of
contiguous entries is removed.
Otherwise, the result of the operation is the value of the left operand.

Neither of the operands’ lists (if any) is changed in the process.

Example:

C#

delegate void D(int x);

class C
{
 public static void M1(int i) { ... }
 public static void M2(int i) { ... }
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1);
 D cd2 = new D(C.M2);
 D list = null;

 list = null - cd1; // null
 list = (cd1 + cd2 + cd2 + cd1) - null; // M1 + M2 +
M2 + M1
 list = (cd1 + cd2 + cd2 + cd1) - cd1; // M1 + M2 +
M2
 list = (cd1 + cd2 + cd2 + cd1) - (cd1 + cd2); // M2 + M1
 list = (cd1 + cd2 + cd2 + cd1) - (cd2 + cd2); // M1 + M1
 list = (cd1 + cd2 + cd2 + cd1) - (cd2 + cd1); // M1 + M2
 list = (cd1 + cd2 + cd2 + cd1) - (cd1 + cd1); // M1 + M2 +
M2 + M1
 list = (cd1 + cd2 + cd2 + cd1) - (cd1 + cd2 + cd2 + cd1);
// null

end example

Lifted (§11.4.8) forms of the unlifted predefined subtraction operators defined above are
also predefined.

The << and >> operators are used to perform bit-shifting operations.

ANTLR

If an operand of a shift_expression has the compile-time type dynamic , then the
expression is dynamically bound (§11.3.3). In this case, the compile-time type of the
expression is dynamic , and the resolution described below will take place at run-time
using the run-time type of those operands that have the compile-time type dynamic .

For an operation of the form x << count or x >> count , binary operator overload
resolution (§11.4.5) is applied to select a specific operator implementation. The
operands are converted to the parameter types of the selected operator, and the type of
the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand shall always
be the class or struct containing the operator declaration, and the type of the second
operand shall always be int .

The predefined shift operators are listed below.

Shift left:

C#

 }
}

11.10 Shift operators

shift_expression
 : additive_expression
 | shift_expression '<<' additive_expression
 | shift_expression right_shift additive_expression
 ;

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x are discarded, the
remaining bits are shifted left, and the low-order empty bit positions are set to
zero.

Shift right:

C#

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int or long , the low-order bits of x are discarded, the
remaining bits are shifted right, and the high-order empty bit positions are set to
zero if x is non-negative and set to one if x is negative.

When x is of type uint or ulong , the low-order bits of x are discarded, the
remaining bits are shifted right, and the high-order empty bit positions are set to
zero.

For the predefined operators, the number of bits to shift is computed as follows:

When the type of x is int or uint , the shift count is given by the low-order five
bits of count . In other words, the shift count is computed from count & 0x1F .
When the type of x is long or ulong , the shift count is given by the low-order six
bits of count . In other words, the shift count is computed from count & 0x3F .

If the resulting shift count is zero, the shift operators simply return the value of x .

Shift operations never cause overflows and produce the same results in checked and
unchecked contexts.

When the left operand of the >> operator is of a signed integral type, the operator
performs an arithmetic shift right wherein the value of the most significant bit (the sign
bit) of the operand is propagated to the high-order empty bit positions. When the left
operand of the >> operator is of an unsigned integral type, the operator performs a
logical shift right wherein high-order empty bit positions are always set to zero. To
perform the opposite operation of that inferred from the operand type, explicit casts
can be used.

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

Example: If x is a variable of type int , the operation unchecked ((int)((uint)x >>
y)) performs a logical shift right of x . end example

Lifted (§11.4.8) forms of the unlifted predefined shift operators defined above are also
predefined.

The == , != , < , > , <= , >= , is , and as operators are called the relational and type-
testing operators.

ANTLR

The is operator is described in §11.11.11 and the as operator is described in §11.11.12.

The == , != , < , > , <= and >= operators are comparison operators.

If a default_literal (§11.7.19) is used as an operand of a < , > , <= , or >= operator, a
compile-time error occurs. If a default_literal is used as both operands of a == or !=
operator, a compile-time error occurs. If a default_literal is used as the left operand of
the is or as operator, a compile-time error occurs.

If an operand of a comparison operator has the compile-time type dynamic , then the
expression is dynamically bound (§11.3.3). In this case the compile-time type of the
expression is dynamic , and the resolution described below will take place at run-time
using the run-time type of those operands that have the compile-time type dynamic .

11.11 Relational and type-testing operators

11.11.1 General

relational_expression
 : shift_expression
 | relational_expression '<' shift_expression
 | relational_expression '>' shift_expression
 | relational_expression '<=' shift_expression
 | relational_expression '>=' shift_expression
 | relational_expression 'is' type
 | relational_expression 'as' type
 ;

equality_expression
 : relational_expression
 | equality_expression '==' relational_expression
 | equality_expression '!=' relational_expression
 ;

For an operation of the form x «op» y , where «op» is a comparison operator, overload
resolution (§11.4.5) is applied to select a specific operator implementation. The
operands are converted to the parameter types of the selected operator, and the type of
the result is the return type of the operator. If both operands of an equality_expression
are the null literal, then overload resolution is not performed and the expression
evaluates to a constant value of true or false according to whether the operator is ==
or != .

The predefined comparison operators are described in the following subclauses. All
predefined comparison operators return a result of type bool, as described in the
following table.

Operation Result

x == y true if x is equal to y , false otherwise

x != y true if x is not equal to y , false otherwise

x < y true if x is less than y , false otherwise

x > y true if x is greater than y , false otherwise

x <= y true if x is less than or equal to y , false otherwise

x >= y true if x is greater than or equal to y , false otherwise

The predefined integer comparison operators are:

C#

11.11.2 Integer comparison operators

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);

Each of these operators compares the numeric values of the two integer operands and
returns a bool value that indicates whether the particular relation is true or false .

Lifted (§11.4.8) forms of the unlifted predefined integer comparison operators defined
above are also predefined.

The predefined floating-point comparison operators are:

C#

The operators compare the operands according to the rules of the IEC 60559 standard:

If either operand is NaN, the result is false for all operators except != , for which the
result is true . For any two operands, x != y always produces the same result as !
(x == y) . However, when one or both operands are NaN, the < , > , <= , and >=

bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

11.11.3 Floating-point comparison operators

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

operators do not produce the same results as the logical negation of the opposite
operator.

Example: If either of x and y is NaN, then x < y is false , but !(x >= y) is true .
end example

When neither operand is NaN, the operators compare the values of the two floating-
point operands with respect to the ordering

C#

where min and max are the smallest and largest positive finite values that can be
represented in the given floating-point format. Notable effects of this ordering are:

Negative and positive zeros are considered equal.
A negative infinity is considered less than all other values, but equal to another
negative infinity.
A positive infinity is considered greater than all other values, but equal to another
positive infinity.

Lifted (§11.4.8) forms of the unlifted predefined floating-point comparison operators
defined above are also predefined.

The predefined decimal comparison operators are:

C#

Each of these operators compares the numeric values of the two decimal operands and
returns a bool value that indicates whether the particular relation is true or false . Each
decimal comparison is equivalent to using the corresponding relational or equality
operator of type System.Decimal .

–∞ < –max < ... < –min < –0.0 == +0.0 < +min < ... < +max < +∞

11.11.4 Decimal comparison operators

bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Lifted (§11.4.8) forms of the unlifted predefined decimal comparison operators defined
above are also predefined.

The predefined Boolean equality operators are:

C#

The result of == is true if both x and y are true or if both x and y are false .
Otherwise, the result is false .

The result of != is false if both x and y are true or if both x and y are false .
Otherwise, the result is true . When the operands are of type bool , the != operator
produces the same result as the ^ operator.

Lifted (§11.4.8) forms of the unlifted predefined Boolean equality operators defined
above are also predefined.

Every enumeration type implicitly provides the following predefined comparison
operators

C#

The result of evaluating x «op» y , where x and y are expressions of an enumeration
type E with an underlying type U , and «op» is one of the comparison operators, is
exactly the same as evaluating ((U)x) «op» ((U)y) . In other words, the enumeration
type comparison operators simply compare the underlying integral values of the two
operands.

11.11.5 Boolean equality operators

bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);

11.11.6 Enumeration comparison operators

bool operator ==(E x, E y);
bool operator !=(E x, E y);

bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

Lifted (§11.4.8) forms of the unlifted predefined enumeration comparison operators
defined above are also predefined.

Every class type C implicitly provides the following predefined reference type equality
operators:

C#

unless predefined equality operators otherwise exist for C (for example, when C is
string or System.Delegate).

The operators return the result of comparing the two references for equality or non-
equality. operator == returns true if and only if x and y refer to the same instance or
are both null , while operator != returns true if and only if operator == with the same
operands would return false .

In addition to normal applicability rules (§11.6.4.2), the predefined reference type
equality operators require one of the following in order to be applicable:

Both operands are a value of a type known to be a reference_type or the literal
null . Furthermore, an identity or explicit reference conversion (§10.3.5) exists from
either operand to the type of the other operand.
One operand is the literal null , and the other operand is a value of type T
where T is a type_parameter that is not known to be a value type, and does not
have the value type constraint.

If at runtime T is a non-nullable value type, the result of == is false and the
result of != is true .
If at runtime T is a nullable value type, the result is computed from the
HasValue property of the operand, as described in (§11.11.10).
If at runtime T is a reference type, the result is true if the operand is null , and
false otherwise.

Unless one of these conditions is true, a binding-time error occurs.

Note: Notable implications of these rules are:

11.11.7 Reference type equality operators

bool operator ==(C x, C y);
bool operator !=(C x, C y);

It is a binding-time error to use the predefined reference type equality
operators to compare two references that are known to be different at
binding-time. For example, if the binding-time types of the operands are two
class types, and if neither derives from the other, then it would be impossible
for the two operands to reference the same object. Thus, the operation is
considered a binding-time error.
The predefined reference type equality operators do not permit value type
operands to be compared (except when type parameters are compared to
null , which is handled specially).
Operands of predefined reference type equality operators are never boxed. It
would be meaningless to perform such boxing operations, since references to
the newly allocated boxed instances would necessarily differ from all other
references.

For an operation of the form x == y or x != y , if any applicable user-defined
operator == or operator != exists, the operator overload resolution rules (§11.4.5)
will select that operator instead of the predefined reference type equality operator.
It is always possible to select the predefined reference type equality operator by
explicitly casting one or both of the operands to type object .

end note

Example: The following example checks whether an argument of an unconstrained
type parameter type is null .

C#

The x == null construct is permitted even though T could represent a non-nullable
value type, and the result is simply defined to be false when T is a non-nullable
value type.

end example

class C<T>
{
 void F(T x)
 {
 if (x == null)
 {
 throw new ArgumentNullException();
 }
 ...
 }
}

For an operation of the form x == y or x != y , if any applicable operator == or
operator != exists, the operator overload resolution (§11.4.5) rules will select that
operator instead of the predefined reference type equality operator.

Note: It is always possible to select the predefined reference type equality operator
by explicitly casting both of the operands to type object . end note

Example: The example

C#

produces the output

Console

The s and t variables refer to two distinct string instances containing the same
characters. The first comparison outputs True because the predefined string
equality operator (§11.11.8) is selected when both operands are of type string . The
remaining comparisons all output False because the overload of operator == in the
string type is not applicable when either operand has a binding-time type of
object .

Note that the above technique is not meaningful for value types. The example

C#

class Test
{
 static void Main()
 {
 string s = "Test";
 string t = string.Copy(s);
 Console.WriteLine(s == t);
 Console.WriteLine((object)s == t);
 Console.WriteLine(s == (object)t);
 Console.WriteLine((object)s == (object)t);
 }
}

True
False
False
False

class Test
{

outputs False because the casts create references to two separate instances of
boxed int values.

end example

The predefined string equality operators are:

C#

Two string values are considered equal when one of the following is true:

Both values are null .
Both values are non-null references to string instances that have identical lengths
and identical characters in each character position.

The string equality operators compare string values rather than string references. When
two separate string instances contain the exact same sequence of characters, the values
of the strings are equal, but the references are different.

Note: As described in §11.11.7, the reference type equality operators can be used to
compare string references instead of string values. end note

The predefined delegate equality operators are:

C#

 static void Main()
 {
 int i = 123;
 int j = 123;
 Console.WriteLine((object)i == (object)j);
 }
}

11.11.8 String equality operators

bool operator ==(string x, string y);
bool operator !=(string x, string y);

11.11.9 Delegate equality operators

bool operator ==(System.Delegate x, System.Delegate y);
bool operator !=(System.Delegate x, System.Delegate y);

Two delegate instances are considered equal as follows:

If either of the delegate instances is null , they are equal if and only if both are
null .
If the delegates have different run-time type, they are never equal.
If both of the delegate instances have an invocation list (§19.2), those instances are
equal if and only if their invocation lists are the same length, and each entry in
one’s invocation list is equal (as defined below) to the corresponding entry, in
order, in the other’s invocation list.

The following rules govern the equality of invocation list entries:

If two invocation list entries both refer to the same static method then the entries
are equal.
If two invocation list entries both refer to the same non-static method on the same
target object (as defined by the reference equality operators) then the entries are
equal.
Invocation list entries produced from evaluation of semantically identical
anonymous functions (§11.17) with the same (possibly empty) set of captured
outer variable instances are permitted (but not required) to be equal.

If operator overload resolution resolves to either delegate equality operator, and the
binding-time types of both operands are delegate types as described in §19 rather than
System.Delegate , and there is no identity conversion between the binding-type operand
types, a binding-time error occurs.

Note: This rule prevents comparisons which can never consider non-null values as
equal due to being references to instances of different types of delegates. end note

The == and != operators permit one operand to be a value of a nullable value type and
the other to be the null literal, even if no predefined or user-defined operator (in
unlifted or lifted form) exists for the operation.

For an operation of one of the forms

C#

11.11.10 Equality operators between nullable value types
and the null literal

x == null null == x x != null null != x

where x is an expression of a nullable value type, if operator overload resolution
(§11.4.5) fails to find an applicable operator, the result is instead computed from the
HasValue property of x . Specifically, the first two forms are translated into !x.HasValue ,
and the last two forms are translated into x.HasValue .

The is operator is used to check if the run-time type of an object is compatible with a
given type. The check is performed at runtime. The result of the operation E is T ,
where E is an expression and T is a type other than dynamic , is a Boolean value
indicating whether E is non-null and can successfully be converted to type T by a
reference conversion, a boxing conversion, an unboxing conversion, a wrapping
conversion, or an unwrapping conversion.

The operation is evaluated as follows:

1. If E is an anonymous function, a compile-time error occurs
2. If E is a method group or the null literal, of if the value of E is null , the result is

false .
3. Otherwise:
4. Let R be the runtime type of E .
5. Let D be derived from R as follows:
6. If R is a nullable value type, D is the underlying type of R .
7. Otherwise, D is R .
8. The result depends on D and T as follows:
9. If T is a reference type, the result is true if:

D and T are the same type,
D is a reference type and an implicit reference conversion from D to T exists,
or
Either: D is a value type and a boxing conversion from D to T exists.
Or: D is a value type and T is an interface type implemented by D .

10. If T is a nullable value type, the result is true if D is the underlying type of T .
11. If T is a non-nullable value type, the result is true if D and T are the same type.
12. Otherwise, the result is false .

User defined conversions are not considered by the is operator.

Note: As the is operator is evaluated at runtime, all type arguments have been
substituted and there are no open types (§8.4.3) to consider. end note

11.11.11 The is operator

Note: The is operator can be understood in terms of compile-time types and
conversions as follows, where C is the compile-time type of E :

If the compile-time type of e is the same as T , or if an implicit reference
conversion (§10.2.8), boxing conversion (§10.2.9), wrapping conversion (§10.6),
or an explicit unwrapping conversion (§10.6) exists from the compile-time type
of E to T :

If C is of a non-nullable value type, the result of the operation is true .
Otherwise, the result of the operation is equivalent to evaluating E != null .

Otherwise, if an explicit reference conversion (§10.3.5) or unboxing conversion
(§10.3.6) exists from C to T , or if C or T is an open type (§8.4.3), then runtime
checks as above must be peformed.
Otherwise, no reference, boxing, wrapping, or unwrapping conversion of E to
type T is possible, and the result of the operation is false . A compiler may
implement optimisations based on the compile-time type.

end note

The as operator is used to explicitly convert a value to a given reference type or
nullable value type. Unlike a cast expression (§11.8.7), the as operator never throws an
exception. Instead, if the indicated conversion is not possible, the resulting value is null .

In an operation of the form E as T , E shall be an expression and T shall be a reference
type, a type parameter known to be a reference type, or a nullable value type.
Furthermore, at least one of the following shall be true, or otherwise a compile-time
error occurs:

An identity (§10.2.2), implicit nullable (§10.2.6), implicit reference (§10.2.8), boxing
(§10.2.9), explicit nullable (§10.3.4), explicit reference (§10.3.5), or wrapping (§8.3.11)
conversion exists from E to T .
The type of E or T is an open type.
E is the null literal.

If the compile-time type of E is not dynamic , the operation E as T produces the same
result as

C#

11.11.12 The as operator

E is T ? (T)(E) : (T)null

except that E is only evaluated once. The compiler can be expected to optimize E as T
to perform at most one runtime type check as opposed to the two runtime type checks
implied by the expansion above.

If the compile-time type of E is dynamic , unlike the cast operator the a operator is not
dynamically bound (§11.3.3). Therefore the expansion in this case is:

C#

Note that some conversions, such as user defined conversions, are not possible with the
as operator and should instead be performed using cast expressions.

Example: In the example

C#

the type parameter T of G is known to be a reference type, because it has the class
constraint. The type parameter U of H is not however; hence the use of the as
operator in H is disallowed.

end example

E is T ? (T)(object)(E) : (T)null

class X
{
 public string F(object o)
 {
 return o as string; // OK, string is a reference type
 }

 public T G<T>(object o)
 where T : Attribute
 {
 return o as T; // Ok, T has a class constraint
 }

 public U H<U>(object o)
 {
 return o as U; // Error, U is unconstrained
 }
}

11.12 Logical operators

The &, ^ , and | operators are called the logical operators.

ANTLR

If an operand of a logical operator has the compile-time type dynamic , then the
expression is dynamically bound (§11.3.3). In this case the compile-time type of the
expression is dynamic , and the resolution described below will take place at run-time
using the run-time type of those operands that have the compile-time type dynamic .

For an operation of the form x «op» y , where «op» is one of the logical operators,
overload resolution (§11.4.5) is applied to select a specific operator implementation. The
operands are converted to the parameter types of the selected operator, and the type of
the result is the return type of the operator.

The predefined logical operators are described in the following subclauses.

The predefined integer logical operators are:

C#

11.12.1 General

and_expression
 : equality_expression
 | and_expression '&' equality_expression
 ;

exclusive_or_expression
 : and_expression
 | exclusive_or_expression '^' and_expression
 ;

inclusive_or_expression
 : exclusive_or_expression
 | inclusive_or_expression '|' exclusive_or_expression
 ;

11.12.2 Integer logical operators

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator
computes the bitwise logical OR of the two operands, and the ^ operator computes the
bitwise logical exclusive OR of the two operands. No overflows are possible from these
operations.

Lifted (§11.4.8) forms of the unlifted predefined integer logical operators defined above
are also predefined.

Every enumeration type E implicitly provides the following predefined logical operators:

C#

The result of evaluating x «op» y , where x and y are expressions of an enumeration
type E with an underlying type U , and «op» is one of the logical operators, is exactly the
same as evaluating (E)((U)x «op» (U)y) . In other words, the enumeration type logical
operators simply perform the logical operation on the underlying type of the two
operands.

Lifted (§11.4.8) forms of the unlifted predefined enumeration logical operators defined
above are also predefined.

The predefined Boolean logical operators are:

C#

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

11.12.3 Enumeration logical operators

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

11.12.4 Boolean logical operators

bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator ^(bool x, bool y);

The result of x & y is true if both x and y are true . Otherwise, the result is false .

The result of x | y is true if either x or y is true . Otherwise, the result is false .

The result of x ^ y is true if x is true and y is false , or x is false and y is true .
Otherwise, the result is false . When the operands are of type bool , the ^ operator
computes the same result as the != operator.

The nullable Boolean type bool? can represent three values, true , false , and null .

As with the other binary operators, lifted forms of the logical operators & and |
(§11.12.4) are also pre-defined:

C#

The semantics of the lifted & and | operators are defined by the following table:

x y x & y x \| y

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

null null null null

Note: The bool? type is conceptually similar to the three-valued type used for
Boolean expressions in SQL. The table above follows the same semantics as SQL,
whereas applying the rules of §11.4.8 to the & and | operators would not. The rules
of §11.4.8 already provide SQL-like semantics for the lifted ^ operator. end note

11.12.5 Nullable Boolean & and | operators

bool? operator &(bool? x, bool? y);
bool? operator |(bool? x, bool? y);

The && and || operators are called the conditional logical operators. They are also
called the “short-circuiting” logical operators.

ANTLR

The && and || operators are conditional versions of the & and | operators:

The operation x && y corresponds to the operation x & y , except that y is
evaluated only if x is not false .
The operation x || y corresponds to the operation x | y , except that y is
evaluated only if x is not true .

Note: The reason that short circuiting uses the ‘not true’ and ‘not false’ conditions is
to enable user-defined conditional operators to define when short circuiting applies.
User-defined types could be in a state where operator true returns false and
operator false returns false . In those cases, neither && nor || would short circuit.
end note

If an operand of a conditional logical operator has the compile-time type dynamic , then
the expression is dynamically bound (§11.3.3). In this case the compile-time type of the
expression is dynamic , and the resolution described below will take place at run-time
using the run-time type of those operands that have the compile-time type dynamic .

An operation of the form x && y or x || y is processed by applying overload
resolution (§11.4.5) as if the operation was written x & y or x | y . Then,

If overload resolution fails to find a single best operator, or if overload resolution
selects one of the predefined integer logical operators or nullable Boolean logical
operators (§11.12.5), a binding-time error occurs.

11.13 Conditional logical operators

11.13.1 General

conditional_and_expression
 : inclusive_or_expression
 | conditional_and_expression '&&' inclusive_or_expression
 ;

conditional_or_expression
 : conditional_and_expression
 | conditional_or_expression '||' conditional_and_expression
 ;

Otherwise, if the selected operator is one of the predefined Boolean logical
operators (§11.12.4), the operation is processed as described in §11.13.2.
Otherwise, the selected operator is a user-defined operator, and the operation is
processed as described in §11.13.3.

It is not possible to directly overload the conditional logical operators. However,
because the conditional logical operators are evaluated in terms of the regular logical
operators, overloads of the regular logical operators are, with certain restrictions, also
considered overloads of the conditional logical operators. This is described further in
§11.13.3.

When the operands of && or || are of type bool , or when the operands are of types
that do not define an applicable operator & or operator | , but do define implicit
conversions to bool , the operation is processed as follows:

The operation x && y is evaluated as x ? y : false . In other words, x is first
evaluated and converted to type bool . Then, if x is true , y is evaluated and
converted to type bool , and this becomes the result of the operation. Otherwise,
the result of the operation is false .
The operation x || y is evaluated as x ? true : y . In other words, x is first
evaluated and converted to type bool . Then, if x is true , the result of the
operation is true . Otherwise, y is evaluated and converted to type bool , and this
becomes the result of the operation.

When the operands of && or || are of types that declare an applicable user-defined
operator & or operator | , both of the following shall be true, where T is the type in
which the selected operator is declared:

The return type and the type of each parameter of the selected operator shall
be T . In other words, the operator shall compute the logical AND or the logical OR
of two operands of type T , and shall return a result of type T .
T shall contain declarations of operator true and operator false .

A binding-time error occurs if either of these requirements is not satisfied. Otherwise,
the && or || operation is evaluated by combining the user-defined operator true or
operator false with the selected user-defined operator:

11.13.2 Boolean conditional logical operators

11.13.3 User-defined conditional logical operators

The operation x && y is evaluated as T.false(x) ? x : T.&(x, y) , where
T.false(x) is an invocation of the operator false declared in T , and T.&(x, y) is
an invocation of the selected operator & . In other words, x is first evaluated and
operator false is invoked on the result to determine if x is definitely false. Then, if
x is definitely false, the result of the operation is the value previously computed
for x . Otherwise, y is evaluated, and the selected operator & is invoked on the
value previously computed for x and the value computed for y to produce the
result of the operation.
The operation x || y is evaluated as T.true(x) ? x : T.|(x, y) , where T.true(x)
is an invocation of the operator true declared in T , and T.|(x, y) is an
invocation of the selected operator | . In other words, x is first evaluated and
operator true is invoked on the result to determine if x is definitely true. Then, if
x is definitely true, the result of the operation is the value previously computed
for x . Otherwise, y is evaluated, and the selected operator | is invoked on the
value previously computed for x and the value computed for y to produce the
result of the operation.

In either of these operations, the expression given by x is only evaluated once, and the
expression given by y is either not evaluated or evaluated exactly once.

The ?? operator is called the null coalescing operator.

ANTLR

In a null coalescing expression of the form a ?? b , if a is non-null , the result is a ;
otherwise, the result is b . The operation evaluates b only if a is null .

The null coalescing operator is right-associative, meaning that operations are grouped
from right to left.

Example: An expression of the form a ?? b ?? c is evaluated as a ?? (b ?? c) . In
general terms, an expression of the form E1 ?? E2 ?? ... ?? EN returns the first of
the operands that is non-null , or null if all operands are null . end example

11.14 The null coalescing operator

null_coalescing_expression
 : conditional_or_expression
 | conditional_or_expression '??' null_coalescing_expression
 | throw_expression
 ;

The type of the expression a ?? b depends on which implicit conversions are available
on the operands. In order of preference, the type of a ?? b is A₀ , A , or B , where A is
the type of a (provided that a has a type), B is the type of b (provided that b has a
type), and A₀ is the underlying type of A if A is a nullable value type, or A otherwise.
Specifically, a ?? b is processed as follows:

If A exists and is not a nullable value type or a reference type, a compile-time error
occurs.
Otherwise, if A exists and b is a dynamic expression, the result type is dynamic . At
run-time, a is first evaluated. If a is not null , a is converted to dynamic , and this
becomes the result. Otherwise, b is evaluated, and this becomes the result.
Otherwise, if A exists and is a nullable value type and an implicit conversion exists
from b to A₀ , the result type is A₀ . At run-time, a is first evaluated. If a is not
null , a is unwrapped to type A₀ , and this becomes the result. Otherwise, b is
evaluated and converted to type A₀ , and this becomes the result.
Otherwise, if A exists and an implicit conversion exists from b to A , the result type
is A . At run-time, a is first evaluated. If a is not null, a becomes the result.
Otherwise, b is evaluated and converted to type A , and this becomes the result.
Otherwise, if A exists and is a nullable value type, b has a type B and an implicit
conversion exists from A₀ to B , the result type is B . At run-time, a is first
evaluated. If a is not null , a is unwrapped to type A₀ and converted to type B ,
and this becomes the result. Otherwise, b is evaluated and becomes the result.
Otherwise, if b has a type B and an implicit conversion exists from a to B , the
result type is B . At run-time, a is first evaluated. If a is not null , a is converted to
type B , and this becomes the result. Otherwise, b is evaluated and becomes the
result.

Otherwise, a and b are incompatible, and a compile-time error occurs.

ANTLR

A throw_expression throws the value produced by evaluating the
null_coalescing_expression. The expression shall be implicitly convertible to
System.Exception , and the result of evaluating the expression is converted to

11.15 The throw expression operator

throw_expression
 : 'throw' null_coalescing_expression
 ;

System.Exception before being thrown. The behavior at runtime of the evaluation of a
throw expression is the same as specified for a throw statement (§12.10.6).

A throw_expression has no type. A throw_expression is convertible to every type by an
implicit throw conversion.

A throw expression shall only occur in the following syntactic contexts:

As the second or third operand of a ternary conditional operator (?:).
As the second operand of a null coalescing operator (??).
As the body of an expression-bodied lambda or member.

The ?: operator is called the conditional operator. It is at times also called the ternary
operator.

ANTLR

A conditional expression of the form b ? x : y first evaluates the condition b . Then, if
b is true , x is evaluated and becomes the result of the operation. Otherwise, y is
evaluated and becomes the result of the operation. A conditional expression never
evaluates both x and y .

The conditional operator is right-associative, meaning that operations are grouped from
right to left.

Example: An expression of the form a ? b : c ? d : e is evaluated as
a ? b : (c ? d : e) . end example

The first operand of the ?: operator shall be an expression that can be implicitly
converted to bool , or an expression of a type that implements operator true . If neither
of these requirements is satisfied, a compile-time error occurs.

The second and third operands, x and y , of the ?: operator control the type of the
conditional expression. If both x and y are default_literals (§11.7.19), a compile-time
error occurs.

11.16 Conditional operator

conditional_expression
 : null_coalescing_expression
 | null_coalescing_expression '?' expression ':' expression
 ;

If x has type X and y has type Y then,
If X and Y are the same type, then this is the type of the conditional expression.
Otherwise, if an implicit conversion (§10.2) exists from X to Y , but not from Y
to X , then Y is the type of the conditional expression.
Otherwise, if an implicit enumeration conversion (§10.2.4) exists from X to Y ,
then Y is the type of the conditional expression.
Otherwise, if an implicit enumeration conversion (§10.2.4) exists from Y to X ,
then X is the type of the conditional expression.
Otherwise, if an implicit conversion (§10.2) exists from Y to X , but not from X
to Y , then X is the type of the conditional expression.
Otherwise, no expression type can be determined, and a compile-time error
occurs.

If only one of x and y has a type, and both x and y are implicitly convertible to
that type, then that is the type of the conditional expression.
Otherwise, no expression type can be determined, and a compile-time error
occurs.

The run-time processing of a conditional expression of the form b ? x : y consists of
the following steps:

First, b is evaluated, and the bool value of b is determined:
If an implicit conversion from the type of b to bool exists, then this implicit
conversion is performed to produce a bool value.
Otherwise, the operator true defined by the type of b is invoked to produce a
bool value.

If the bool value produced by the step above is true , then x is evaluated and
converted to the type of the conditional expression, and this becomes the result of
the conditional expression.
Otherwise, y is evaluated and converted to the type of the conditional expression,
and this becomes the result of the conditional expression.

An anonymous function is an expression that represents an “in-line” method definition.
An anonymous function does not have a value or type in and of itself, but is convertible
to a compatible delegate or expression-tree type. The evaluation of an anonymous-
function conversion depends on the target type of the conversion: If it is a delegate

11.17 Anonymous function expressions

11.17.1 General

type, the conversion evaluates to a delegate value referencing the method that the
anonymous function defines. If it is an expression-tree type, the conversion evaluates to
an expression tree that represents the structure of the method as an object structure.

Note: For historical reasons, there are two syntactic flavors of anonymous functions,
namely lambda_expressions and anonymous_method_expressions. For almost all
purposes, lambda_expressions are more concise and expressive than
anonymous_method_expressions, which remain in the language for backwards
compatibility.

ANTLR

lambda_expression
 : 'async'? anonymous_function_signature '=>' anonymous_function_body
 ;

anonymous_method_expression
 : 'async'? 'delegate' explicit_anonymous_function_signature? block
 ;

anonymous_function_signature
 : explicit_anonymous_function_signature
 | implicit_anonymous_function_signature
 ;

explicit_anonymous_function_signature
 : '(' explicit_anonymous_function_parameter_list? ')'
 ;

explicit_anonymous_function_parameter_list
 : explicit_anonymous_function_parameter
 (',' explicit_anonymous_function_parameter)*
 ;

explicit_anonymous_function_parameter
 : anonymous_function_parameter_modifier? type identifier
 ;

anonymous_function_parameter_modifier
 : 'ref'
 | 'out'
 ;

implicit_anonymous_function_signature
 : '(' implicit_anonymous_function_parameter_list? ')'
 | implicit_anonymous_function_parameter
 ;

implicit_anonymous_function_parameter_list
 : implicit_anonymous_function_parameter
 (',' implicit_anonymous_function_parameter)*

When recognising an anonymous_function_body if both the
null_conditional_invocation_expression and expression alternatives are applicable then
the former shall be chosen.

Note: The overlapping of, and priority between, alternatives here is solely for
descriptive convenience; the grammar rules could be elaborated to remove the
overlap. ANTLR, and other grammar systems, adopt the same convenience and so
anonymous_function_body has the specified semantics automatically.

The => operator has the same precedence as assignment (=) and is right-associative.

An anonymous function with the async modifier is an async function and follows the
rules described in §14.15.

The parameters of an anonymous function in the form of a lambda_expression can be
explicitly or implicitly typed. In an explicitly typed parameter list, the type of each
parameter is explicitly stated. In an implicitly typed parameter list, the types of the
parameters are inferred from the context in which the anonymous function occurs—
specifically, when the anonymous function is converted to a compatible delegate type or
expression tree type, that type provides the parameter types (§10.7).

In a lambda_expression with a single, implicitly typed parameter, the parentheses may be
omitted from the parameter list. In other words, an anonymous function of the form

C#

can be abbreviated to

C#

 ;

implicit_anonymous_function_parameter
 : identifier
 ;

anonymous_function_body
 : null_conditional_invocation_expression
 | expression
 | block
 ;

(«param») => «expr»

«param» => «expr»

The parameter list of an anonymous function in the form of an
anonymous_method_expression is optional. If given, the parameters shall be explicitly
typed. If not, the anonymous function is convertible to a delegate with any parameter
list not containing out parameters.

A block body of an anonymous function is always reachable (§12.2).

Example: Some examples of anonymous functions follow below:

C#

end example

The behavior of lambda_expressions and anonymous_method_expressions is the same
except for the following points:

anonymous_method_expressions permit the parameter list to be omitted entirely,
yielding convertibility to delegate types of any list of value parameters.
lambda_expressions permit parameter types to be omitted and inferred whereas
anonymous_method_expressions require parameter types to be explicitly stated.
The body of a lambda_expression can be an expression or a block whereas the
body of an anonymous_method_expression shall be a block.
Only lambda_expressions have conversions to compatible expression tree types
(§8.6).

The anonymous_function_signature of an anonymous function defines the names and
optionally the types of the formal parameters for the anonymous function. The scope of
the parameters of the anonymous function is the anonymous_function_body (§7.7).
Together with the parameter list (if given) the anonymous-method-body constitutes a
declaration space (§7.3). It is thus a compile-time error for the name of a parameter of

x => x + 1 // Implicitly typed, expression
body
x => { return x + 1; } // Implicitly typed, block body
(int x) => x + 1 // Explicitly typed, expression
body
(int x) => { return x + 1; } // Explicitly typed, block body
(x, y) => x * y // Multiple parameters
() => Console.WriteLine() // No parameters
async (t1,t2) => await t1 + await t2 // Async
delegate (int x) { return x + 1; } // Anonymous method expression
delegate { return 1 + 1; } // Parameter list omitted

11.17.2 Anonymous function signatures

the anonymous function to match the name of a local variable, local constant or
parameter whose scope includes the anonymous_method_expression or
lambda_expression.

If an anonymous function has an explicit_anonymous_function_signature, then the set of
compatible delegate types and expression tree types is restricted to those that have the
same parameter types and modifiers in the same order (§10.7). In contrast to method
group conversions (§10.8), contra-variance of anonymous function parameter types is
not supported. If an anonymous function does not have an
anonymous_function_signature, then the set of compatible delegate types and
expression tree types is restricted to those that have no out parameters.

Note that an anonymous_function_signature cannot include attributes or a parameter
array. Nevertheless, an anonymous_function_signature may be compatible with a
delegate type whose parameter list contains a parameter array.

Note also that conversion to an expression tree type, even if compatible, may still fail at
compile-time (§8.6).

The body (expression or block) of an anonymous function is subject to the following
rules:

If the anonymous function includes a signature, the parameters specified in the
signature are available in the body. If the anonymous function has no signature it
can be converted to a delegate type or expression type having parameters (§10.7),
but the parameters cannot be accessed in the body.
Except for ref or out parameters specified in the signature (if any) of the nearest
enclosing anonymous function, it is a compile-time error for the body to access a
ref or out parameter.
When the type of this is a struct type, it is a compile-time error for the body to
access this . This is true whether the access is explicit (as in this.x) or implicit (as
in x where x is an instance member of the struct). This rule simply prohibits such
access and does not affect whether member lookup results in a member of the
struct.
The body has access to the outer variables (§11.17.6) of the anonymous function.
Access of an outer variable will reference the instance of the variable that is active
at the time the lambda_expression or anonymous_method_expression is evaluated
(§11.17.7).

11.17.3 Anonymous function bodies

It is a compile-time error for the body to contain a goto statement, a break
statement, or a continue statement whose target is outside the body or within the
body of a contained anonymous function.
A return statement in the body returns control from an invocation of the nearest
enclosing anonymous function, not from the enclosing function member.

It is explicitly unspecified whether there is any way to execute the block of an
anonymous function other than through evaluation and invocation of the
lambda_expression or anonymous_method_expression. In particular, the compiler may
choose to implement an anonymous function by synthesizing one or more named
methods or types. The names of any such synthesized elements shall be of a form
reserved for compiler use (§6.4.3).

Anonymous functions in an argument list participate in type inference and overload
resolution. Refer to §11.6.3 and §11.6.4 for the exact rules.

Example: The following example illustrates the effect of anonymous functions on
overload resolution.

C#

11.17.4 Overload resolution

class ItemList<T> : List<T>
{
 public int Sum(Func<T, int> selector)
 {
 int sum = 0;
 foreach (T item in this)
 {
 sum += selector(item);
 }
 return sum;
 }

 public double Sum(Func<T, double> selector)
 {
 double sum = 0;
 foreach (T item in this)
 {
 sum += selector(item);
 }
 return sum;
 }
}

The ItemList<T> class has two Sum methods. Each takes a selector argument,
which extracts the value to sum over from a list item. The extracted value can be
either an int or a double and the resulting sum is likewise either an int or a
double .

The Sum methods could for example be used to compute sums from a list of detail
lines in an order.

C#

In the first invocation of orderDetails.Sum , both Sum methods are applicable
because the anonymous function d => d.UnitCount is compatible with both
Func<Detail,int> and Func<Detail,double> . However, overload resolution picks the
first Sum method because the conversion to Func<Detail,int> is better than the
conversion to Func<Detail,double> .

In the second invocation of orderDetails.Sum , only the second Sum method is
applicable because the anonymous function d => d.UnitPrice * d.UnitCount
produces a value of type double . Thus, overload resolution picks the second Sum
method for that invocation.

end example

class Detail
{
 public int UnitCount;
 public double UnitPrice;
 ...
}

class A
{
 void ComputeSums()
 {
 ItemList<Detail> orderDetails = GetOrderDetails(...);
 int totalUnits = orderDetails.Sum(d => d.UnitCount);
 double orderTotal = orderDetails.Sum(d => d.UnitPrice *
d.UnitCount);
 ...
 }

 ItemList<Detail> GetOrderDetails(...)
 {
 ...
 }
}

An anonymous function cannot be a receiver, argument, or operand of a dynamically
bound operation.

Any local variable, value parameter, or parameter array whose scope includes the
lambda_expression or anonymous_method_expression is called an outer variable of the
anonymous function. In an instance function member of a class, the this value is
considered a value parameter and is an outer variable of any anonymous function
contained within the function member.

When an outer variable is referenced by an anonymous function, the outer variable is
said to have been captured by the anonymous function. Ordinarily, the lifetime of a local
variable is limited to execution of the block or statement with which it is associated
(§9.2.8). However, the lifetime of a captured outer variable is extended at least until the
delegate or expression tree created from the anonymous function becomes eligible for
garbage collection.

Example: In the example

C#

11.17.5 Anonymous functions and dynamic binding

11.17.6 Outer variables

11.17.6.1 General

11.17.6.2 Captured outer variables

delegate int D();

class Test
{
 static D F()
 {
 int x = 0;
 D result = () => ++x;
 return result;
 }

 static void Main()
 {
 D d = F();
 Console.WriteLine(d());
 Console.WriteLine(d());
 Console.WriteLine(d());

the local variable x is captured by the anonymous function, and the lifetime of x is
extended at least until the delegate returned from F becomes eligible for garbage
collection. Since each invocation of the anonymous function operates on the same
instance of x , the output of the example is:

Console

end example

When a local variable or a value parameter is captured by an anonymous function, the
local variable or parameter is no longer considered to be a fixed variable (§22.4), but is
instead considered to be a moveable variable. However, captured outer variables cannot
be used in a fixed statement (§22.7), so the address of a captured outer variable cannot
be taken.

Note: Unlike an uncaptured variable, a captured local variable can be simultaneously
exposed to multiple threads of execution. end note

A local variable is considered to be instantiated when execution enters the scope of the
variable.

Example: For example, when the following method is invoked, the local variable x is
instantiated and initialized three times—once for each iteration of the loop.

C#

 }
}

1
2
3

11.17.6.3 Instantiation of local variables

static void F()
{
 for (int i = 0; i < 3; i++)
 {
 int x = i * 2 + 1;
 ...
 }
}

However, moving the declaration of x outside the loop results in a single
instantiation of x :

C#

end example

When not captured, there is no way to observe exactly how often a local variable is
instantiated—because the lifetimes of the instantiations are disjoint, it is possible for
each instantation to simply use the same storage location. However, when an
anonymous function captures a local variable, the effects of instantiation become
apparent.

Example: The example

C#

static void F()
{
 int x;
 for (int i = 0; i < 3; i++)
 {
 x = i * 2 + 1;
 ...
 }
}

delegate void D();
class Test
{
 static D[] F()
 {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++)
 {
 int x = i * 2 + 1;
 result[i] = () => Console.WriteLine(x);
 }
 return result;
 }

 static void Main()
 {
 foreach (D d in F())
 {
 d();
 }
 }
}

produces the output:

Console

However, when the declaration of x is moved outside the loop:

C#

the output is:

Console

Note that the compiler is permitted (but not required) to optimize the three
instantiations into a single delegate instance (§10.7.2).

1
3
5

delegate void D();

class Test
{
 static D[] F()
 {
 D[] result = new D[3];
 int x;
 for (int i = 0; i < 3; i++)
 {
 x = i * 2 + 1;
 result[i] = () => Console.WriteLine(x);
 }
 return result;
 }

 static void Main()
 {
 foreach (D d in F())
 {
 d();
 }
 }
}

5
5
5

end example

If a for-loop declares an iteration variable, that variable itself is considered to be
declared outside of the loop.

Example: Thus, if the example is changed to capture the iteration variable itself:

C#

only one instance of the iteration variable is captured, which produces the output:

Console

end example

It is possible for anonymous function delegates to share some captured variables yet
have separate instances of others.

Example: For example, if F is changed to

C#

delegate void D();

class Test
{
 static D[] F()
 {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++)
 {
 result[i] = () => Console.WriteLine(i);
 }
 return result;
 }

 static void Main()
 {
 foreach (D d in F())
 {
 d();
 }
 }
}

3
3
3

the three delegates capture the same instance of x but separate instances of y . end
example

Separate anonymous functions can capture the same instance of an outer variable.

Example: In the example:

C#

the two anonymous functions capture the same instance of the local variable x , and
they can thus “communicate” through that variable. The output of the example is:

Console

end example

static D[] F()
{
 D[] result = new D[3];
 int x = 0;
 for (int i = 0; i < 3; i++)
 {
 int y = 0;
 result[i] = () => Console.WriteLine($"{++x} {++y}");
 }
 return result;
}

delegate void Setter(int value);
delegate int Getter();

class Test
{
 static void Main()
 {
 int x = 0;
 Setter s = (int value) => x = value;
 Getter g = () => x;
 s(5);
 Console.WriteLine(g());
 s(10);
 Console.WriteLine(g());
 }
}

5
10

An anonymous function F shall always be converted to a delegate type D or an
expression-tree type E , either directly or through the execution of a delegate creation
expression new D(F) . This conversion determines the result of the anonymous function,
as described in §10.7.

This subclause is informative.

This subclause describes a possible implementation of anonymous function conversions
in terms of other C# constructs. The implementation described here is based on the
same principles used by a commercial C# compiler, but it is by no means a mandated
implementation, nor is it the only one possible. It only briefly mentions conversions to
expression trees, as their exact semantics are outside the scope of this specification.

The remainder of this subclause gives several examples of code that contains
anonymous functions with different characteristics. For each example, a corresponding
translation to code that uses only other C# constructs is provided. In the examples, the
identifier D is assumed by represent the following delegate type:

C#

The simplest form of an anonymous function is one that captures no outer variables:

C#

This can be translated to a delegate instantiation that references a compiler generated
static method in which the code of the anonymous function is placed:

C#

11.17.7 Evaluation of anonymous function expressions

11.17.8 Implementation Example

public delegate void D();

delegate void D();

class Test
{
 static void F()
 {
 D d = () => Console.WriteLine("test");
 }
}

In the following example, the anonymous function references instance members of
this :

C#

This can be translated to a compiler generated instance method containing the code of
the anonymous function:

C#

delegate void D();

class Test
{
 static void F()
 {
 D d = new D(__Method1);
 }

 static void __Method1()
 {
 Console.WriteLine("test");
 }
}

delegate void D();

class Test
{
 int x;

 void F()
 {
 D d = () => Console.WriteLine(x);
 }
}

delegate void D();

class Test
{
 int x;

 void F()
 {
 D d = new D(__Method1);
 }

 void __Method1()
 {
 Console.WriteLine(x);

In this example, the anonymous function captures a local variable:

C#

The lifetime of the local variable must now be extended to at least the lifetime of the
anonymous function delegate. This can be achieved by “hoisting” the local variable into
a field of a compiler-generated class. Instantiation of the local variable (§11.17.6.3) then
corresponds to creating an instance of the compiler generated class, and accessing the
local variable corresponds to accessing a field in the instance of the compiler generated
class. Furthermore, the anonymous function becomes an instance method of the
compiler-generated class:

C#

 }
}

delegate void D();

class Test
{
 void F()
 {
 int y = 123;
 D d = () => Console.WriteLine(y);
 }
}

delegate void D();

class Test
{
 void F()
 {
 __Locals1 __locals1 = new __Locals1();
 __locals1.y = 123;
 D d = new D(__locals1.__Method1);
 }

 class __Locals1
 {
 public int y;

 public void __Method1()
 {
 Console.WriteLine(y);
 }
 }
}

Finally, the following anonymous function captures this as well as two local variables
with different lifetimes:

C#

Here, a compiler-generated class is created for each block in which locals are captured
such that the locals in the different blocks can have independent lifetimes. An instance
of __Locals2 , the compiler generated class for the inner block, contains the local
variable z and a field that references an instance of __Locals1 . An instance of
__Locals1 , the compiler generated class for the outer block, contains the local variable
y and a field that references this of the enclosing function member. With these data
structures, it is possible to reach all captured outer variables through an instance of
__Local2 , and the code of the anonymous function can thus be implemented as an
instance method of that class.

C#

delegate void D();

class Test
{
 int x;

 void F()
 {
 int y = 123;
 for (int i = 0; i < 10; i++)
 {
 int z = i * 2;
 D d = () => Console.WriteLine(x + y + z);
 }
 }
}

delegate void D();

class Test
{
 int x;

 void F()
 {
 __Locals1 __locals1 = new __Locals1();
 __locals1.__this = this;
 __locals1.y = 123;
 for (int i = 0; i < 10; i++)
 {
 __Locals2 __locals2 = new __Locals2();
 __locals2.__locals1 = __locals1;

The same technique applied here to capture local variables can also be used when
converting anonymous functions to expression trees: references to the compiler-
generated objects can be stored in the expression tree, and access to the local variables
can be represented as field accesses on these objects. The advantage of this approach is
that it allows the “lifted” local variables to be shared between delegates and expression
trees.

End of informative text.

Query expressions provide a language-integrated syntax for queries that is similar to
relational and hierarchical query languages such as SQL and XQuery.

ANTLR

 __locals2.z = i * 2;
 D d = new D(__locals2.__Method1);
 }
 }

 class __Locals1
 {
 public Test __this;
 public int y;
 }

 class __Locals2
 {
 public __Locals1 __locals1;
 public int z;

 public void __Method1()
 {
 Console.WriteLine(__locals1.__this.x + __locals1.y + z);
 }
 }
}

11.18 Query expressions

11.18.1 General

query_expression
 : from_clause query_body
 ;

from_clause
 : 'from' type? identifier 'in' expression
 ;

query_body
 : query_body_clauses? select_or_group_clause query_continuation?
 ;

query_body_clauses
 : query_body_clause
 | query_body_clauses query_body_clause
 ;

query_body_clause
 : from_clause
 | let_clause
 | where_clause
 | join_clause
 | join_into_clause
 | orderby_clause
 ;

let_clause
 : 'let' identifier '=' expression
 ;

where_clause
 : 'where' boolean_expression
 ;

join_clause
 : 'join' type? identifier 'in' expression 'on' expression
 'equals' expression
 ;

join_into_clause
 : 'join' type? identifier 'in' expression 'on' expression
 'equals' expression 'into' identifier
 ;

orderby_clause
 : 'orderby' orderings
 ;

orderings
 : ordering (',' ordering)*
 ;

ordering
 : expression ordering_direction?
 ;

ordering_direction
 : 'ascending'
 | 'descending'
 ;

select_or_group_clause

A query expression begins with a from clause and ends with either a select or group
clause. The initial from clause may be followed by zero or more from , let , where , join
or orderby clauses. Each from clause is a generator introducing a range variable that
ranges over the elements of a sequence. Each let clause introduces a range variable
representing a value computed by means of previous range variables. Each where clause
is a filter that excludes items from the result. Each join clause compares specified keys
of the source sequence with keys of another sequence, yielding matching pairs. Each
orderby clause reorders items according to specified criteria.The final select or group
clause specifies the shape of the result in terms of the range variables. Finally, an into
clause can be used to “splice” queries by treating the results of one query as a generator
in a subsequent query.

Query expressions use a number of contextual keywords (§6.4.4): ascending , by ,
descending , equals , from , group , into , join , let , on , orderby , select and where .

To avoid ambiguities that could arise from the use of these identifiers both as keywords
and simple names these identifiers are considered keywords anywhere within a query
expression, unless they are prefixed with “@ ” (§6.4.4) in which case they are considered
identifiers. For this purpose, a query expression is any expression that starts with “from
identifier” followed by any token except “; ”, “= ” or “, ”.

 : select_clause
 | group_clause
 ;

select_clause
 : 'select' expression
 ;

group_clause
 : 'group' expression 'by' expression
 ;

query_continuation
 : 'into' identifier query_body
 ;

11.18.2 Ambiguities in query expressions

11.18.3 Query expression translation

11.18.3.1 General

The C# language does not specify the execution semantics of query expressions. Rather,
query expressions are translated into invocations of methods that adhere to the query-
expression pattern (§11.18.4). Specifically, query expressions are translated into
invocations of methods named Where , Select , SelectMany , Join , GroupJoin , OrderBy ,
OrderByDescending , ThenBy , ThenByDescending , GroupBy , and Cast . These methods are
expected to have particular signatures and return types, as described in §11.18.4. These
methods may be instance methods of the object being queried or extension methods
that are external to the object. These methods implement the actual execution of the
query.

The translation from query expressions to method invocations is a syntactic mapping
that occurs before any type binding or overload resolution has been performed.
Following translation of query expressions, the resulting method invocations are
processed as regular method invocations, and this may in turn uncover compile time
errors. These error conditions include, but are not limited to, methods that do not exist,
arguments of the wrong types, and generic methods where type inference fails.

A query expression is processed by repeatedly applying the following translations until
no further reductions are possible. The translations are listed in order of application:
each section assumes that the translations in the preceding sections have been
performed exhaustively, and once exhausted, a section will not later be revisited in the
processing of the same query expression.

It is a compile time error for a query expression to include an assignment to a range
variable, or the use of a range variable as an argument for a ref or out parameter.

Certain translations inject range variables with transparent identifiers denoted by *.
These are described further in §11.18.3.8.

A query expression with a group clause using a property Prop of y and a query body Q
containing a continuation in the form:

C#

is translated into:

C#

11.18.3.2 select and group … by clauses with continuations

from «y» in S group «y» by «y».Prop into «x» Q

from «x» in (from «y» in S group «y» by «y».Prop) Q

The translations in the following sections assume that queries have no into
continuations.

Example: The example:

C#

is translated into:

C#

the final translation of which is:

C#

end example

A from clause that explicitly specifies a range variable type

C#

is translated into

C#

from c in customers
group c by c.Country into g
select new { Country = g.Key, CustCount = g.Count() }

from g in
 (from c in customers
 group c by c.Country)
select new { Country = g.Key, CustCount = g.Count() }

customers.
GroupBy(c => c.Country).
Select(g => new { Country = g.Key, CustCount = g.Count() })

11.18.3.3 Explicit range variable types

from «T» «x» in «e»

from «x» in («e») . Cast < «T» > ()

A join clause that explicitly specifies a range variable type

C#

is translated into

C#

The translations in the following sections assume that queries have no explicit range
variable types.

Example: The example

C#

is translated into

C#

the final translation of which is

C#

end example

Note: Explicit range variable types are useful for querying collections that implement
the non-generic IEnumerable interface, but not the generic IEnumerable<T>

join «T» «x» in «e» on «k1» equals «k2»

join «x» in («e») . Cast < «T» > () on «k1» equals «k2»

from Customer c in customers
where c.City == "London"
select c

from c in (customers).Cast<Customer>()
where c.City == "London"
select c

customers.
Cast<Customer>().
Where(c => c.City == "London")

interface. In the example above, this would be the case if customers were of type
ArrayList . end note

A query expression of the form

C#

is translated into

C#

Example: The example

C#

is translated into

C#

end example

A degenerate query expression is one that trivially selects the elements of the source.

Note: Later phases of the translation (§11.18.3.6 and §11.18.3.7) remove degenerate
queries introduced by other translation steps by replacing them with their source. It
is important, however, to ensure that the result of a query expression is never the
source object itself. Otherwise, returning the result of such a query might
inadvertently expose private data (e.g., an element array) to a caller. Therefore this
step protects degenerate queries written directly in source code by explicitly calling
Select on the source. It is then up to the implementers of Select and other query

11.18.3.4 Degenerate query expressions

from «x» in «e» select «x»

(«e») . Select («x» => «x»)

from c in customers
select c

(customers).Select(c => c)

operators to ensure that these methods never return the source object itself. end
note

A query expression with a second from clause followed by a select clause

C#

is translated into

C#

Example: The example

C#

is translated into

C#

end example

A query expression with a second from clause followed by a query body Q containing a
non-empty set of query body clauses:

C#

11.18.3.5 From, let, where, join and orderby clauses

from «x1» in «e1»
from «x2» in «e2»
select «v»

(«e1») . SelectMany(«x1» => «e2» , («x1» , «x2») => «v»)

from c in customers
from o in c.Orders
select new { c.Name, o.OrderID, o.Total }

(customers).
SelectMany(c => c.Orders,
(c,o) => new { c.Name, o.OrderID, o.Total }
)

from «x1» in «e1»
from «x2» in «e2»

is translated into

C#

Example: The example

C#

is translated into

C#

the final translation of which is

C#

where x is a compiler generated identifier that is otherwise invisible and
inaccessible.

end example

A let expression along with its preceding from clause:

C#

Q

from * in («e1») . SelectMany(«x1» => «e2» ,
 («x1» , «x2») => new { «x1» , «x2» })
Q

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

from * in (customers).
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.OrderID, x.o.Total })

is translated into

C#

Example: The example

C#

is translated into

C#

the final translation of which is

C#

where x is a compiler generated identifier that is otherwise invisible and
inaccessible.

end example

A where expression along with its preceding from clause:

from «x» in «e»
let «y» = «f»
...

from * in («e») . Select («x» => new { «x» , «y» = «f» })
...

from o in orders
let t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
where t >= 1000
select new { o.OrderID, Total = t }

from * in (orders).Select(
 o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) })
where t >= 1000
select new { o.OrderID, Total = t }

orders
 .Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice *
d.Quantity) })
 .Where(x => x.t >= 1000)
 .Select(x => new { x.o.OrderID, Total = x.t })

C#

is translated into

C#

A join clause immediately followed by a select clause

C#

is translated into

C#

Example: The example

C#

is translated into

C#

end example

from «x» in «e»
where «f»
...

from «x» in («e») . Where («x» => «f»)
...

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2»
select «v»

(«e1») . Join(«e2» , «x1» => «k1» , «x2» => «k2» , («x1» , «x2») => «v»
)

from c in customersh
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total }

(customers).Join(
 orders,
 c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c.Name, o.OrderDate, o.Total })

A join clause followed by a query body clause:

C#

is translated into

C#

A join -into clause immediately followed by a select clause

C#

is translated into

C#

A join into clause followed by a query body clause

C#

is translated into

C#

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2»
...

from * in («e1») . Join(
«e2» , «x1» => «k1» , «x2» => «k2» ,
(«x1» , «x2») => new { «x1» , «x2» })
...

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2» into «g»
select «v»

(«e1») . GroupJoin(«e2» , «x1» => «k1» , «x2» => «k2» ,
 («x1» , «g») => «v»)

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2» into *g»
...

from * in («e1») . GroupJoin(
 «e2» , «x1» => «k1» , «x2» => «k2» , («x1» , «g») => new { «x1» , «g»

Example: The example

C#

is translated into

C#

the final translation of which is

C#

where x and y are compiler generated identifiers that are otherwise invisible and
inaccessible.

end example

An orderby clause and its preceding from clause:

})
...

from c in customers
join o in orders on c.CustomerID equals o.CustomerID into co
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

from * in (customers).GroupJoin(
 orders,
 c => c.CustomerID,
 o => o.CustomerID,
 (c, co) => new { c, co })
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

customers
 .GroupJoin(
 orders,
 c => c.CustomerID,
 o => o.CustomerID,
 (c, co) => new { c, co })
 .Select(x => new { x, n = x.co.Count() })
 .Where(y => y.n >= 10)
 .Select(y => new { y.x.c.Name, OrderCount = y.n })

C#

is translated into

C#

If an ordering clause specifies a descending direction indicator, an invocation of
OrderByDescending or ThenByDescending is produced instead.

Example: The example

C#

has the final translation

C#

end example

The following translations assume that there are no let , where , join or orderby
clauses, and no more than the one initial from clause in each query expression.

A query expression of the form

from «x» in «e»
orderby «k1» , «k2» , ... , «kn»
...

from «x» in («e») .
OrderBy («x» => «k1») .
ThenBy («x» => «k2») .
... .
ThenBy («x» => «kn»)
...

from o in orders
orderby o.Customer.Name, o.Total descending
select o

(orders)
 .OrderBy(o => o.Customer.Name)
 .ThenByDescending(o => o.Total)

11.18.3.6 Select clauses

C#

is translated into

C#

except when «v» is the identifier «x» , the translation is simply

C#

Example: The example

C#

is simply translated into

C#

end example

A group clause

C#

is translated into

C#

from «x» in «e» select «v»

(«e») . Select («x» => «v»)

(«e»)

from c in customers.Where(c => c.City == "London")
select c

(customers).Where(c => c.City == "London")

11.18.3.7 Group clauses

from «x» in «e» group «v» by «k»

(«e») . GroupBy («x» => «k» , «x» => «v»)

except when «v» is the identifier «x» , the translation is

C#

Example: The example

C#

is translated into

C#

end example

Certain translations inject range variables with transparent identifiers denoted by * .
Transparent identifiers exist only as an intermediate step in the query-expression
translation process.

When a query translation injects a transparent identifier, further translation steps
propagate the transparent identifier into anonymous functions and anonymous object
initializers. In those contexts, transparent identifiers have the following behavior:

When a transparent identifier occurs as a parameter in an anonymous function, the
members of the associated anonymous type are automatically in scope in the body
of the anonymous function.
When a member with a transparent identifier is in scope, the members of that
member are in scope as well.
When a transparent identifier occurs as a member declarator in an anonymous
object initializer, it introduces a member with a transparent identifier.

In the translation steps described above, transparent identifiers are always introduced
together with anonymous types, with the intent of capturing multiple range variables as
members of a single object. An implementation of C# is permitted to use a different

(«e») . GroupBy («x» => «k»)

from c in customers
group c.Name by c.Country

(customers).GroupBy(c => c.Country, c => c.Name)

11.18.3.8 Transparent identifiers

mechanism than anonymous types to group together multiple range variables. The
following translation examples assume that anonymous types are used, and shows one
possible translation of transparent identifiers.

Example: The example

C#

is translated into

C#

which is further translated into

C#

which, when transparent identifiers are erased, is equivalent to

C#

where x is a compiler generated identifier that is otherwise invisible and
inaccessible.

The example

C#

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.Total }

from * in (customers).SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.Total }

customers
 .SelectMany(c => c.Orders, (c,o) => new { c, o })
 .OrderByDescending(* => o.Total)
 .Select(* => new { c.Name, o.Total })

customers
 .SelectMany(c => c.Orders, (c,o) => new { c, o })
 .OrderByDescending(x => x.o.Total)
 .Select(x => new { x.c.Name, x.o.Total })

is translated into

C#

which is further reduced to

C#

the final translation of which is

C#

where x and y are compiler-generated identifiers that are otherwise invisible and
inaccessible. end example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

from * in (customers).Join(
 orders,
 c => c.CustomerID,
 o => o.CustomerID,
 (c, o) => new { c, o })
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

customers
 .Join(orders, c => c.CustomerID,
 o => o.CustomerID, (c, o) => new { c, o })
 .Join(details, * => o.OrderID, d => d.OrderID, (*, d) => new { *, d
})
 .Join(products, * => d.ProductID, p => p.ProductID,
 (*, p) => new { c.Name, o.OrderDate, p.ProductName })

customers
 .Join(orders, c => c.CustomerID,
 o => o.CustomerID, (c, o) => new { c, o })
 .Join(details, x => x.o.OrderID, d => d.OrderID, (x, d) => new { x,
d })
 .Join(products, y => y.d.ProductID, p => p.ProductID,
 (y, p) => new { y.x.c.Name, y.x.o.OrderDate, p.ProductName })

11.18.4 The query-expression pattern

The Query-expression pattern establishes a pattern of methods that types can
implement to support query expressions.

A generic type C<T> supports the query-expression-pattern if its public member
methods and the publicly accessible extension methods could be replaced by the
following class definition. The members and accessible extenson methods is referred to
as the “shape” of a generic type C<T> . A generic type is used in order to illustrate the
proper relationships between parameter and return types, but it is possible to
implement the pattern for non-generic types as well.

C#

The methods above use the generic delegate types Func<T1, R> and Func<T1, T2, R> ,
but they could equally well have used other delegate or expression-tree types with the

delegate R Func<T1,R>(T1 arg1);
delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C
{
 public C<T> Cast<T>() { ... }
}

class C<T> : C
{
 public C<T> Where(Func<T,bool> predicate) { ... }
 public C<U> Select<U>(Func<T,U> selector) { ... }
 public C<V> SelectMany<U,V>(Func<T,C<U>> selector,
 Func<T,U,V> resultSelector) { ... }
 public C<V> Join<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,U,V> resultSelector) { ... }
 public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,C<U>,V> resultSelector) { ... }
 public O<T> OrderBy<K>(Func<T,K> keySelector) { ... }
 public O<T> OrderByDescending<K>(Func<T,K> keySelector) { ... }
 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector) { ... }
 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
 Func<T,E> elementSelector) { ... }
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector) { ... }
 public O<T> ThenByDescending<K>(Func<T,K> keySelector) { ... }
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

same relationships in parameter and return types.

Note: The recommended relationship between C<T> and O<T> that ensures that the
ThenBy and ThenByDescending methods are available only on the result of an
OrderBy or OrderByDescending . end note

Note: The recommended shape of the result of GroupBy—a sequence of sequences,
where each inner sequence has an additional Key property. end note

Note: Because query expressions are translated to method invocations by means of
a syntactic mapping, types have considerable flexibility in how they implement any
or all of the query-expression pattern. For example, the methods of the pattern can
be implemented as instance methods or as extension methods because the two
have the same invocation syntax, and the methods can request delegates or
expression trees because anonymous functions are convertible to both. Types
implementing only some of the query expression pattern support only query
expression translations that map to the methods that type supports. end note

Note: The System.Linq namespace provides an implementation of the query-
expression pattern for any type that implements the
System.Collections.Generic.IEnumerable<T> interface. end note

The assignment operators assign a new value to a variable, a property, an event, or an
indexer element.

ANTLR

11.19 Assignment operators

11.19.1 General

assignment
 : unary_expression assignment_operator expression
 ;

assignment_operator
 : '=' | '+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' | '<<='
 | right_shift_assignment
 ;

The left operand of an assignment shall be an expression classified as a variable, a
property access, an indexer access, or an event access.

The = operator is called the simple assignment operator. It assigns the value of the
right operand to the variable, property, or indexer element given by the left operand.
The left operand of the simple assignment operator shall not be an event access (except
as described in §14.8.2). The simple assignment operator is described in §11.19.2.

The assignment operators other than the = operator are called the compound
assignment operators. These operators perform the indicated operation on the two
operands, and then assign the resulting value to the variable, property, or indexer
element given by the left operand. The compound assignment operators are described
in §11.19.3.

The += and -= operators with an event access expression as the left operand are called
the event assignment operators. No other assignment operator is valid with an event
access as the left operand. The event assignment operators are described in §11.19.4.

The assignment operators are right-associative, meaning that operations are grouped
from right to left.

Example: An expression of the form a = b = c is evaluated as a = (b = c) . end
example

The = operator is called the simple assignment operator.

If the left operand of a simple assignment is of the form E.P or E[Ei] where E has the
compile-time type dynamic , then the assignment is dynamically bound (§11.3.3). In this
case, the compile-time type of the assignment expression is dynamic , and the resolution
described below will take place at run-time based on the run-time type of E . If the left
operand is of the form E[Ei] where at least one element of Ei has the compile-time
type dynamic , and the compile-time type of E is not an array, the resulting indexer
access is dynamically bound, but with limited compile-time checking (§11.6.5).

In a simple assignment, the right operand shall be an expression that is implicitly
convertible to the type of the left operand. The operation assigns the value of the right
operand to the variable, property, or indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand.
The result has the same type as the left operand, and is always classified as a value.

11.19.2 Simple assignment

If the left operand is a property or indexer access, the property or indexer shall have an
accessible set accessor. If this is not the case, a binding-time error occurs.

The run-time processing of a simple assignment of the form x = y consists of the
following steps:

If x is classified as a variable:
x is evaluated to produce the variable.
y is evaluated and, if required, converted to the type of x through an implicit
conversion (§10.2).
If the variable given by x is an array element of a reference_type, a run-time
check is performed to ensure that the value computed for y is compatible with
the array instance of which x is an element. The check succeeds if y is null , or
if an implicit reference conversion (§10.2.8) exists from the type of the instance
referenced by y to the actual element type of the array instance containing x .
Otherwise, a System.ArrayTypeMismatchException is thrown.
The value resulting from the evaluation and conversion of y is stored into the
location given by the evaluation of x .

If x is classified as a property or indexer access:
The instance expression (if x is not static) and the argument list (if x is an
indexer access) associated with x are evaluated, and the results are used in the
subsequent set accessor invocation.
y is evaluated and, if required, converted to the type of x through an implicit
conversion (§10.2).
The set accessor of x is invoked with the value computed for y as its value
argument.

Note: if the compile time type of x is dynamic and there is an implicit conversion
from the compile time type of y to dynamic , no runtime resolution is required. end
note

Note: The array co-variance rules (§16.6) permit a value of an array type A[] to be a
reference to an instance of an array type B[] , provided an implicit reference
conversion exists from B to A . Because of these rules, assignment to an array
element of a reference_type requires a run-time check to ensure that the value being
assigned is compatible with the array instance. In the example

C#

string[] sa = new string[10];
object[] oa = sa;

the last assignment causes a System.ArrayTypeMismatchException to be thrown
because a reference to an ArrayList cannot be stored in an element of a string[] .

end note

When a property or indexer declared in a struct_type is the target of an assignment, the
instance expression associated with the property or indexer access shall be classified as
a variable. If the instance expression is classified as a value, a binding-time error occurs.

Note: Because of §11.7.6, the same rule also applies to fields. end note

Example: Given the declarations:

C#

oa[0] = null; // OK
oa[1] = "Hello"; // OK
oa[2] = new ArrayList(); // ArrayTypeMismatchException

struct Point
{
 int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public int X
 {
 get { return x; }
 set { x = value; }
 }

 public int Y {
 get { return y; }
 set { y = value; }
 }
}

struct Rectangle
{
 Point a, b;

 public Rectangle(Point a, Point b)
 {
 this.a = a;
 this.b = b;

in the example

C#

the assignments to p.X , p.Y , r.A , and r.B are permitted because p and r are
variables. However, in the example

C#

the assignments are all invalid, since r.A and r.B are not variables.

end example

If the left operand of a compound assignment is of the form E.P or E[Ei] where E has
the compile-time type dynamic , then the assignment is dynamically bound (§11.3.3). In
this case, the compile-time type of the assignment expression is dynamic , and the
resolution described below will take place at run-time based on the run-time type of E .

 }

 public Point A
 {
 get { return a; }
 set { a = value; }
 }

 public Point B
 {
 get { return b; }
 set { b = value; }
 }
}

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

11.19.3 Compound assignment

If the left operand is of the form E[Ei] where at least one element of Ei has the
compile-time type dynamic , and the compile-time type of E is not an array, the resulting
indexer access is dynamically bound, but with limited compile-time checking (§11.6.5).

An operation of the form x «op»= y is processed by applying binary operator overload
resolution (§11.4.5) as if the operation was written x «op» y . Then,

If the return type of the selected operator is implicitly convertible to the type of x ,
the operation is evaluated as x = x «op» y , except that x is evaluated only once.
Otherwise, if the selected operator is a predefined operator, if the return type of
the selected operator is explicitly convertible to the type of x , and if y is implicitly
convertible to the type of x or the operator is a shift operator, then the operation
is evaluated as x = (T)(x «op» y) , where T is the type of x , except that x is
evaluated only once.
Otherwise, the compound assignment is invalid, and a binding-time error occurs.

The term “evaluated only once” means that in the evaluation of x «op» y , the results of
any constituent expressions of x are temporarily saved and then reused when
performing the assignment to x .

Example: In the assignment A()[B()] += C() , where A is a method returning int[] ,
and B and C are methods returning int , the methods are invoked only once, in the
order A , B , C . end example

When the left operand of a compound assignment is a property access or indexer
access, the property or indexer shall have both a get accessor and a set accessor. If this
is not the case, a binding-time error occurs.

The second rule above permits x «op»= y to be evaluated as x = (T)(x «op» y) in
certain contexts. The rule exists such that the predefined operators can be used as
compound operators when the left operand is of type sbyte , byte , short , ushort , or
char . Even when both arguments are of one of those types, the predefined operators
produce a result of type int , as described in §11.4.7.3. Thus, without a cast it would not
be possible to assign the result to the left operand.

The intuitive effect of the rule for predefined operators is simply that x «op»= y is
permitted if both of x «op» y and x = y are permitted.

Example: In the following code

C#

the intuitive reason for each error is that a corresponding simple assignment would
also have been an error.

end example

Note: This also means that compound assignment operations support lifted
operators. Since a compound assignment x «op»= y is evaluated as either
x = x «op» y or x = (T)(x «op» y) , the rules of evaluation implicitly cover lifted
operators. end note

If the left operand of a += or -= operator is classified as an event access, then the
expression is evaluated as follows:

The instance expression, if any, of the event access is evaluated.
The right operand of the += or -= operator is evaluated, and, if required,
converted to the type of the left operand through an implicit conversion (§10.2).
An event accessor of the event is invoked, with an argument list consisting of the
value computed in the previous step. If the operator was += , the add accessor is
invoked; if the operator was -= , the remove accessor is invoked.

An event assignment expression does not yield a value. Thus, an event assignment
expression is valid only in the context of a statement_expression (§12.7).

An expression is either a non_assignment_expression or an assignment.

ANTLR

byte b = 0;
char ch = '\0';
int i = 0;
b += 1; // OK
b += 1000; // Error, b = 1000 not permitted
b += i; // Error, b = i not permitted
b += (byte)i; // OK
ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // OK

11.19.4 Event assignment

11.20 Expression

expression
 : non_assignment_expression
 | assignment

A constant expression is an expression that shall be fully evaluated at compile-time.

ANTLR

A constant expression may be either a value type or a reference type. If a constant
expression is a value type, it must be one of the following types: sbyte , byte , short ,
ushort , int , uint , long , ulong , char , float , double , decimal , bool, or any
enumeration type. If a constant expression is a reference type, it must be the string
type, a default value expression (§11.7.19) for some reference type, or the value of the
expression must be null .

Only the following constructs are permitted in constant expressions:

Literals (including the null literal).
References to const members of class and struct types.
References to members of enumeration types.
References to const parameters or local variables
Parenthesized subexpressions, which are themselves constant expressions.
Cast expressions.
checked and unchecked expressions.
nameof expressions
The predefined + , – , ! , and ~ unary operators.
The predefined + , – , * , / , % , << , >> , & , | , ^ , && , || , == , != , < , > , <= , and >=
binary operators.
The ?: conditional operator.
sizeof expressions, provided the unmanaged-type is one of the types specified in
§22.6.9 for which sizeof returns a constant value.
Default value expressions, provided the type is one of the types listed above.

 ;

non_assignment_expression
 : conditional_expression
 | lambda_expression
 | query_expression
 ;

11.21 Constant expressions

constant_expression
 : expression
 ;

The following conversions are permitted in constant expressions:

Identity conversions
Numeric conversions
Enumeration conversions
Constant expression conversions
Implicit and explicit reference conversions, provided the source of the conversions
is a constant expression that evaluates to the null value.

Note: Other conversions including boxing, unboxing, and implicit reference
conversions of non-null values are not permitted in constant expressions. end note

Example: In the following code

C#

the initialization of i is an error because a boxing conversion is required. The
initialization of str is an error because an implicit reference conversion from a non-
null value is required.

end example

Whenever an expression fulfills the requirements listed above, the expression is
evaluated at compile-time. This is true even if the expression is a subexpression of a
larger expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time
evaluation of non-constant expressions, except that where run-time evaluation would
have thrown an exception, compile-time evaluation causes a compile-time error to
occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that
occur in integral-type arithmetic operations and conversions during the compile-time
evaluation of the expression always cause compile-time errors (§11.7.18).

class C
{
 const object i = 5; // error: boxing conversion not
permitted
 const object str = "hello"; // error: implicit reference conversion
}

Constant expressions are required in the contexts listed below and this is indicated in
the grammar by using constant_expression. In these contexts, a compile-time error
occurs if an expression cannot be fully evaluated at compile-time.

Constant declarations (§14.4)
Enumeration member declarations (§18.4)
Default arguments of formal parameter lists (§14.6.2)
case labels of a switch statement (§12.8.3).
goto case statements (§12.10.4)
Dimension lengths in an array creation expression (§11.7.15.5) that includes an
initializer.
Attributes (§21)

An implicit constant expression conversion (§10.2.11) permits a constant expression of
type int to be converted to sbyte , byte , short , ushort , uint , or ulong , provided the
value of the constant expression is within the range of the destination type.

A boolean_expression is an expression that yields a result of type bool ; either directly or
through application of operator true in certain contexts as specified in the following:

ANTLR

The controlling conditional expression of an if_statement (§12.8.2), while_statement
(§12.9.2), do_statement (§12.9.3), or for_statement (§12.9.4) is a boolean_expression. The
controlling conditional expression of the ?: operator (§11.16) follows the same rules as
a boolean_expression, but for reasons of operator precedence is classified as a
null_coalescing_expression.

A boolean_expression E is required to be able to produce a value of type bool , as
follows:

If E is implicitly convertible to bool then at run-time that implicit conversion is
applied.
Otherwise, unary operator overload resolution (§11.4.4) is used to find a unique
best implementation of operator true on E , and that implementation is applied at
run-time.

11.22 Boolean expressions

boolean_expression
 : expression
 ;

If no such operator is found, a binding-time error occurs.

12 Statements
Article • 2023-01-13 • 58 minutes to read

C# provides a variety of statements.

Note: Most of these statements will be familiar to developers who have
programmed in C and C++. end note

ANTLR

unsafe_statement (§22.2) and fixed_statement (§22.7) are only available in unsafe code
(§22).

The embedded_statement nonterminal is used for statements that appear within other
statements. The use of embedded_statement rather than statement excludes the use of
declaration statements and labeled statements in these contexts.

Example: The code

C#

12.1 General

statement
 : labeled_statement
 | declaration_statement
 | embedded_statement
 ;

embedded_statement
 : block
 | empty_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement
 | try_statement
 | checked_statement
 | unchecked_statement
 | lock_statement
 | using_statement
 | yield_statement
 | unsafe_statement // unsafe code support
 | fixed_statement // unsafe code support
 ;

results in a compile-time error because an if statement requires an
embedded_statement rather than a statement for its if branch. If this code were
permitted, then the variable i would be declared, but it could never be used. Note,
however, that by placing i ’s declaration in a block, the example is valid.

end example

Every statement has an end point. In intuitive terms, the end point of a statement is the
location that immediately follows the statement. The execution rules for composite
statements (statements that contain embedded statements) specify the action that is
taken when control reaches the end point of an embedded statement.

Example: When control reaches the end point of a statement in a block, control is
transferred to the next statement in the block. end example

If a statement can possibly be reached by execution, the statement is said to be
reachable. Conversely, if there is no possibility that a statement will be executed, the
statement is said to be unreachable.

Example: In the following code

C#

the second invocation of Console.WriteLine is unreachable because there is no
possibility that the statement will be executed.

end example

void F(bool b)
{
 if (b)
 int i = 44;
}

12.2 End points and reachability

void F()
{
 Console.WriteLine("reachable");
 goto Label;
 Console.WriteLine("unreachable");
 Label:
 Console.WriteLine("reachable");
}

A warning is reported if a statement other than throw_statement, block, or
empty_statement is unreachable. It is specifically not an error for a statement to be
unreachable.

Note: To determine whether a particular statement or end point is reachable, the
compiler performs flow analysis according to the reachability rules defined for each
statement. The flow analysis takes into account the values of constant expressions
(§11.21) that control the behavior of statements, but the possible values of non-
constant expressions are not considered. In other words, for purposes of control
flow analysis, a non-constant expression of a given type is considered to have any
possible value of that type.

In the example

C#

the Boolean expression of the if statement is a constant expression because both
operands of the == operator are constants. As the constant expression is evaluated
at compile-time, producing the value false , the Console.WriteLine invocation is
considered unreachable. However, if i is changed to be a local variable

C#

the Console.WriteLine invocation is considered reachable, even though, in reality, it
will never be executed.

end note

The block of a function member or an anonymous function is always considered
reachable. By successively evaluating the reachability rules of each statement in a block,

void F()
{
 const int i = 1;
 if (i == 2)
 Console.WriteLine("unreachable");
}

void F()
{
 int i = 1;
 if (i == 2)
 Console.WriteLine("reachable");
}

the reachability of any given statement can be determined.

Example: In the following code

C#

the reachability of the second Console.WriteLine is determined as follows:

The first Console.WriteLine expression statement is reachable because the
block of the F method is reachable (§12.3).
The end point of the first Console.WriteLine expression statement is reachable
because that statement is reachable (§12.7 and §12.3).
The if statement is reachable because the end point of the first
Console.WriteLine expression statement is reachable (§12.7 and §12.3).
The second Console.WriteLine expression statement is reachable because the
Boolean expression of the if statement does not have the constant value
false .

end example

There are two situations in which it is a compile-time error for the end point of a
statement to be reachable:

Because the switch statement does not permit a switch section to “fall through” to
the next switch section, it is a compile-time error for the end point of the
statement list of a switch section to be reachable. If this error occurs, it is typically
an indication that a break statement is missing.

It is a compile-time error for the end point of the block of a function member or an
anonymous function that computes a value to be reachable. If this error occurs, it
typically is an indication that a return statement is missing (§12.10.5).

void F(int x)
{
 Console.WriteLine("start");
 if (x < 0)
 Console.WriteLine("negative");
}

12.3 Blocks

12.3.1 General

A block permits multiple statements to be written in contexts where a single statement
is allowed.

ANTLR

A block consists of an optional statement_list (§12.3.2), enclosed in braces. If the
statement list is omitted, the block is said to be empty.

A block may contain declaration statements (§12.6). The scope of a local variable or
constant declared in a block is the block.

A block is executed as follows:

If the block is empty, control is transferred to the end point of the block.
If the block is not empty, control is transferred to the statement list. When and if
control reaches the end point of the statement list, control is transferred to the end
point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the
statement list is reachable.

A block that contains one or more yield statements (§12.15) is called an iterator block.
Iterator blocks are used to implement function members as iterators (§14.14). Some
additional restrictions apply to iterator blocks:

It is a compile-time error for a return statement to appear in an iterator block (but
yield return statements are permitted).
It is a compile-time error for an iterator block to contain an unsafe context (§22.2).
An iterator block always defines a safe context, even when its declaration is nested
in an unsafe context.

A statement list consists of one or more statements written in sequence. Statement lists
occur in blocks (§12.3) and in switch_blocks (§12.8.3).

ANTLR

block
 : '{' statement_list? '}'
 ;

12.3.2 Statement lists

A statement list is executed by transferring control to the first statement. When and if
control reaches the end point of a statement, control is transferred to the next
statement. When and if control reaches the end point of the last statement, control is
transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

The statement is the first statement and the statement list itself is reachable.
The end point of the preceding statement is reachable.
The statement is a labeled statement and the label is referenced by a reachable
goto statement.

The end point of a statement list is reachable if the end point of the last statement in
the list is reachable.

An empty_statement does nothing.

ANTLR

An empty statement is used when there are no operations to perform in a context where
a statement is required.

Execution of an empty statement simply transfers control to the end point of the
statement. Thus, the end point of an empty statement is reachable if the empty
statement is reachable.

Example: An empty statement can be used when writing a while statement with a
null body:

C#

statement_list
 : statement+
 ;

12.4 The empty statement

empty_statement
 : ';'
 ;

bool ProcessMessage() {...}
void ProcessMessages()
{

Also, an empty statement can be used to declare a label just before the closing “} ”
of a block:

C#

end example

A labeled_statement permits a statement to be prefixed by a label. Labeled statements
are permitted in blocks, but are not permitted as embedded statements.

ANTLR

A labeled statement declares a label with the name given by the identifier. The scope of
a label is the whole block in which the label is declared, including any nested blocks. It is
a compile-time error for two labels with the same name to have overlapping scopes.

A label can be referenced from goto statements (§12.10.4) within the scope of the label.

Note: This means that goto statements can transfer control within blocks and out of
blocks, but never into blocks. end note

Labels have their own declaration space and do not interfere with other identifiers.

 while (ProcessMessage())
 ;
}

void F(bool done)
{
 ...
 if (done)
 {
 goto exit;
 }
 ...
 exit:
 ;
}

12.5 Labeled statements

labeled_statement
 : identifier ':' statement
 ;

Example: The example

C#

is valid and uses the name x as both a parameter and a label.

end example

Execution of a labeled statement corresponds exactly to execution of the statement
following the label.

In addition to the reachability provided by normal flow of control, a labeled statement is
reachable if the label is referenced by a reachable goto statement, unless the goto
statement is inside the try block or a catch block of a try_statement that includes a
finally block whose end point is unreachable, and the labeled statement is outside the
try_statement.

A declaration_statement declares a local variable, local constant, or local function.
Declaration statements are permitted in blocks, but are not permitted as embedded
statements.

ANTLR

int F(int x)
{
 if (x >= 0)
 {
 goto x;
 }
 x = -x;
 x:
 return x;
}

12.6 Declaration statements

12.6.1 General

declaration_statement
 : local_variable_declaration ';'
 | local_constant_declaration ';'
 | local_function_declaration
 ;

A local variable is declared using a local_variable_declaration (§12.6.2). A local constant is
declared using a local_constant_declaration (§12.6.3). A local function is declared using a
local_function_declaration (§12.6.4).

A local_variable_declaration declares one or more local variables.

ANTLR

stackalloc_initializer (§22.9) is only available in unsafe code (§22).

The local_variable_type of a local_variable_declaration either directly specifies the type of
the variables introduced by the declaration, or indicates with the identifier var that the
type should be inferred based on an initializer. The type is followed by a list of
local_variable_declarators, each of which introduces a new variable. A
local_variable_declarator consists of an identifier that names the variable, optionally
followed by an “= ” token and a local_variable_initializer that gives the initial value of the
variable.

In the context of a local variable declaration, the identifier var acts as a contextual
keyword (§6.4.4).When the local_variable_type is specified as var and no type named

12.6.2 Local variable declarations

local_variable_declaration
 : local_variable_type local_variable_declarators
 ;

local_variable_type
 : type
 | 'var'
 ;

local_variable_declarators
 : local_variable_declarator
 | local_variable_declarators ',' local_variable_declarator
 ;

local_variable_declarator
 : identifier
 | identifier '=' local_variable_initializer
 ;

local_variable_initializer
 : expression
 | array_initializer
 | stackalloc_initializer // unsafe code support
 ;

var is in scope, the declaration is an implicitly typed local variable declaration, whose
type is inferred from the type of the associated initializer expression. Implicitly typed
local variable declarations are subject to the following restrictions:

The local_variable_declaration cannot include multiple local_variable_declarators.
The local_variable_declarator shall include a local_variable_initializer.
The local_variable_initializer shall be an expression.
The initializer expression shall have a compile-time type.
The initializer expression cannot refer to the declared variable itself

Example: The following are incorrect implicitly typed local variable declarations:

C#

end example

The value of a local variable is obtained in an expression using a simple_name (§11.7.4).
A local variable shall be definitely assigned (§9.4) at each location where its value is
obtained.

The scope of a local variable declared in a local_variable_declaration is the block in
which the declaration occurs. It is an error to refer to a local variable in a textual position
that precedes the local_variable_declarator of the local variable. Within the scope of a
local variable, it is a compile-time error to declare another local variable or constant with
the same name.

A local variable declaration that declares multiple variables is equivalent to multiple
declarations of single variables with the same type. Furthermore, a variable initializer in a
local variable declaration corresponds exactly to an assignment statement that is
inserted immediately after the declaration.

Example: The example

C#

var x; // Error, no initializer to infer type from
var y = {1, 2, 3}; // Error, array initializer not permitted
var z = null; // Error, null does not have a type
var u = x => x + 1; // Error, anonymous functions do not have a type
var v = v++; // Error, initializer cannot refer to v itself

void F()
{
 int x = 1, y, z = x * 2;
}

corresponds exactly to

C#

end example

In an implicitly typed local variable declaration, the type of the local variable being
declared is taken to be the same as the type of the expression used to initialize the
variable.

Example:

C#

The implicitly typed local variable declarations above are precisely equivalent to the
following explicitly typed declarations:

C#

end example

A local_constant_declaration declares one or more local constants.

void F()
{
 int x; x = 1;
 int y;
 int z; z = x * 2;
}

var i = 5;
var s = "Hello";
var d = 1.0;
var numbers = new int[] {1, 2, 3};
var orders = new Dictionary<int,Order>();

int i = 5;
string s = "Hello";
double d = 1.0;
int[] numbers = new int[] {1, 2, 3};
Dictionary<int,Order> orders = new Dictionary<int,Order>();

12.6.3 Local constant declarations

ANTLR

The type of a local_constant_declaration specifies the type of the constants introduced
by the declaration. The type is followed by a list of constant_declarators, each of which
introduces a new constant. A constant_declarator consists of an identifier that names the
constant, followed by an “= ” token, followed by a constant_expression (§11.21) that gives
the value of the constant.

The type and constant_expression of a local constant declaration shall follow the same
rules as those of a constant member declaration (§14.4).

The value of a local constant is obtained in an expression using a simple_name (§11.7.4).

The scope of a local constant is the block in which the declaration occurs. It is an error
to refer to a local constant in a textual position that precedes the end of its
constant_declarator. Within the scope of a local constant, it is a compile-time error to
declare another local variable or constant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple
declarations of single constants with the same type.

A local_function_declaration declares a local function.

ANTLR

local_constant_declaration
 : 'const' type constant_declarators
 ;

constant_declarators
 : constant_declarator (',' constant_declarator)*
 ;

constant_declarator
 : identifier '=' constant_expression
 ;

12.6.4 Local function declarations

local_function_declaration
 : local_function_header local_function_body
 ;

local_function_header
 : local_function_modifier* return_type identifier type_parameter_list?
 (formal_parameter_list?) type_parameter_constraints_clause*
 ;

Grammar note: When recognising a local_function_body if both the
null_conditional_invocation_expression and expression alternatives are applicable then
the former shall be chosen. (§14.6.1)

Example: There are two common use cases for local functions: iterator methods and
async methods. In iterator methods, any exceptions are observed only when calling
code that enumerates the returned sequence. In async methods, any exceptions are
only observed when the returned Task is awaited. The following example
demonstrates separating parameter validation from the iterator implementation
using a local function:

C#

local_function_modifier
 : 'async'
 | 'unsafe'
 ;

local_function_body
 : block
 | '=>' null_conditional_invocation_expression ';'
 | '=>' expression ';'
 ;

public static IEnumerable<char> AlphabetSubset(char start, char end)
{
 if (start < 'a' || start > 'z')
 {
 throw new ArgumentOutOfRangeException(paramName: nameof(start),
message: "start must be a letter");
 }
 if (end < 'a' || end > 'z')
 {
 throw new ArgumentOutOfRangeException(paramName: nameof(end),
message: "end must be a letter");
 }
 if (end <= start)
 {
 throw new ArgumentException($"{nameof(end)} must be greater than
{nameof(start)}");
 }
 return AlphabetSubsetImplementation();

 IEnumerable<char> AlphabetSubsetImplementation()
 {
 for (var c = start; c < end; c++)
 {
 yield return c;
 }
 }
}

end example

Unless specified otherwise below, the semantics of all grammar elements is the same as
for method_declaration (§14.6.1), read in the context of a local function instead of a
method.

The identifier of a local_function_declaration must be unique in its declared block scope.
One consequence of this is that overloaded local_function_declarations are not allowed.

A local_function_declaration may include one async (§14.15) modifier and one unsafe
(§22.1) modifier. If the declaration includes the async modifier then the return type shall
be void or a task type (§14.15.1). The unsafe modifier uses the containing lexical scope.
The async modifier does not use the containing lexical scope. It is a compile-time error
for type_parameter_list or formal_parameter_list to contain attributes.

A local function is declared at block scope, and that function may capture variables from
the enclosing scope. It is a compile-time error if a captured variable is read by the body
of the local function but is not definitely assigned before each call to the function. The
compiler shall determine which variables are definitely assigned on return (§9.4.4.33).

A local function may be called from a lexical point prior to its declaration. However, it is
a compile-time error for the function to be declared lexically prior to the declaration of a
variable used in the local function (§7.7).

It is a compile-time error for a local function to declare a parameter or local variable
with the same name as one declared in the enclosing scope.

Local function bodies are always reachable. The endpoint of a local function declaration
is reachable if the beginning point of the local function declaration is reachable.

Example: In the following example, the body of L is reachable even though the
beginning point of L is not reachable. Because the beginning point of L isn’t
reachable, the statement following the endpoint of L is not reachable:

C#

class C
{
 int M()
 {
 L();
 return 1; // Beginning of L is not reachable
 int L()

In other words, the location of a local function declaration doesn’t affect the
reachability of any statements in the containing function. end example

If the argument to a local function is dynamic, the function to be called must be
resolved at compile time, not runtime.

An expression_statement evaluates a given expression. The value computed by the
expression, if any, is discarded.

ANTLR

Not all expressions are permitted as statements.

Note: In particular, expressions such as x + y and x == 1 , that merely compute a
value (which will be discarded), are not permitted as statements. end note

Execution of an expression_statement evaluates the contained expression and then
transfers control to the end point of the expression_statement. The end point of an
expression_statement is reachable if that expression_statement is reachable.

 {
 return 2; // The body of L is reachable
 }
 return 3; // Not reachable, because beginning point of L is not
reachable
 }
}

12.7 Expression statements

expression_statement
 : statement_expression ';'
 ;

statement_expression
 : null_conditional_invocation_expression
 | invocation_expression
 | object_creation_expression
 | assignment
 | post_increment_expression
 | post_decrement_expression
 | pre_increment_expression
 | pre_decrement_expression
 | await_expression
 ;

Selection statements select one of a number of possible statements for execution based
on the value of some expression.

ANTLR

The if statement selects a statement for execution based on the value of a Boolean
expression.

ANTLR

An else part is associated with the lexically nearest preceding if that is allowed by the
syntax.

Example: Thus, an if statement of the form

C#

is equivalent to

C#

12.8 Selection statements

12.8.1 General

selection_statement
 : if_statement
 | switch_statement
 ;

12.8.2 The if statement

if_statement
 : 'if' '(' boolean_expression ')' embedded_statement
 | 'if' '(' boolean_expression ')' embedded_statement
 'else' embedded_statement
 ;

if (x) if (y) F(); else G();

if (x)
{
 if (y)
 {
 F();

end example

An if statement is executed as follows:

The boolean_expression (§11.22) is evaluated.
If the Boolean expression yields true , control is transferred to the first embedded
statement. When and if control reaches the end point of that statement, control is
transferred to the end point of the if statement.
If the Boolean expression yields false and if an else part is present, control is
transferred to the second embedded statement. When and if control reaches the
end point of that statement, control is transferred to the end point of the if
statement.
If the Boolean expression yields false and if an else part is not present, control is
transferred to the end point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is
reachable and the Boolean expression does not have the constant value false .

The second embedded statement of an if statement, if present, is reachable if the if
statement is reachable and the Boolean expression does not have the constant value
true .

The end point of an if statement is reachable if the end point of at least one of its
embedded statements is reachable. In addition, the end point of an if statement with
no else part is reachable if the if statement is reachable and the Boolean expression
does not have the constant value true .

The switch statement selects for execution a statement list having an associated switch
label that corresponds to the value of the switch expression.

ANTLR

 }
 else
 {
 G();
 }
}

12.8.3 The switch statement

switch_statement
 : 'switch' '(' expression ')' switch_block

A switch_statement consists of the keyword switch , followed by a parenthesized
expression (called the switch expression), followed by a switch_block. The switch_block
consists of zero or more switch_sections, enclosed in braces. Each switch_section consists
of one or more switch_labels followed by a statement_list (§12.3.2).

The governing type of a switch statement is established by the switch expression.

If the type of the switch expression is sbyte , byte , short , ushort , int , uint , long ,
ulong , char , bool , string , or an enum_type, or if it is the nullable value type
corresponding to one of these types, then that is the governing type of the switch
statement.
Otherwise, exactly one user-defined implicit conversion shall exist from the type of
the switch expression to one of the following possible governing types: sbyte ,
byte , short , ushort , int , uint , long , ulong , char , string , or, a nullable value
type corresponding to one of those types.
Otherwise, a compile-time error occurs.

The constant expression of each case label shall denote a value of a type that is
implicitly convertible (§10.2) to the governing type of the switch statement. A compile-
time error occurs if two or more case labels in the same switch statement specify the
same constant value.

There can be at most one default label in a switch statement.

A switch statement is executed as follows:

The switch expression is evaluated and converted to the governing type.
If one of the constants specified in a case label in the same switch statement is
equal to the value of the switch expression, control is transferred to the statement
list following the matched case label.

 ;

switch_block
 : '{' switch_section* '}'
 ;

switch_section
 : switch_label+ statement_list
 ;

switch_label
 : 'case' constant_expression ':'
 | 'default' ':'
 ;

If none of the constants specified in case labels in the same switch statement is
equal to the value of the switch expression, and if a default label is present,
control is transferred to the statement list following the default label.
If none of the constants specified in case labels in the same switch statement is
equal to the value of the switch expression, and if no default label is present,
control is transferred to the end point of the switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time
error occurs. This is known as the “no fall through” rule.

Example: The example

C#

is valid because no switch section has a reachable end point. Unlike C and C++,
execution of a switch section is not permitted to “fall through” to the next switch
section, and the example

C#

results in a compile-time error. When execution of a switch section is to be followed
by execution of another switch section, an explicit goto case or goto default
statement shall be used:

switch (i)
{
 case 0:
 CaseZero();
 break;
 case 1:
 CaseOne();
 break;
 default:
 CaseOthers();
 break;
}

switch (i)
{
 case 0:
 CaseZero();
 case 1:
 CaseZeroOrOne();
 default:
 CaseAny();
}

C#

end example

Multiple labels are permitted in a switch_section.

Example: The example

C#

is valid. The example does not violate the “no fall through” rule because the labels
case 2: and default: are part of the same switch_section.

end example

Note: The “no fall through” rule prevents a common class of bugs that occur in C
and C++ when break statements are accidentally omitted. For example, the sections
of the switch statement above can be reversed without affecting the behavior of
the statement:

switch (i)
{
 case 0:
 CaseZero();
 goto case 1;
 case 1:
 CaseZeroOrOne();
 goto default;
 default:
 CaseAny();
 break;
}

switch (i)
{
 case 0:
 CaseZero();
 break;
 case 1:
 CaseOne();
 break;
 case 2:
 default:
 CaseTwo();
 break;
}

C#

end note

Note: The statement list of a switch section typically ends in a break , goto case , or
goto default statement, but any construct that renders the end point of the
statement list unreachable is permitted. For example, a while statement controlled
by the Boolean expression true is known to never reach its end point. Likewise, a
throw or return statement always transfers control elsewhere and never reaches its
end point. Thus, the following example is valid:

C#

end note

Example: The governing type of a switch statement can be the type string . For
example:

C#

switch (i)
{
 default:
 CaseAny();
 break;
 case 1:
 CaseZeroOrOne();
 goto default;
 case 0:
 CaseZero();
 goto case 1;
}

switch (i)
{
 case 0:
 while (true)
 {
 F();
 }
 case 1:
 throw new ArgumentException();
 case 2:
 return;
}

end example

Note: Like the string equality operators (§11.11.8), the switch statement is case
sensitive and will execute a given switch section only if the switch expression string
exactly matches a case label constant. end note When the governing type of a
switch statement is string or a nullable value type, the value null is permitted as
a case label constant.

The statement_lists of a switch_block may contain declaration statements (§12.6). The
scope of a local variable or constant declared in a switch block is the switch block.

The statement list of a given switch section is reachable if the switch statement is
reachable and at least one of the following is true:

The switch expression is a non-constant value.
The switch expression is a constant value that matches a case label in the switch
section.
The switch expression is a constant value that doesn’t match any case label, and
the switch section contains the default label.
A switch label of the switch section is referenced by a reachable goto case or goto
default statement.

The end point of a switch statement is reachable if at least one of the following is true:

void DoCommand(string command)
{
 switch (command.ToLower())
 {
 case "run":
 DoRun();
 break;
 case "save":
 DoSave();
 break;
 case "quit":
 DoQuit();
 break;
 default:
 InvalidCommand(command);
 break;
 }
}

The switch statement contains a reachable break statement that exits the switch
statement.
The switch statement is reachable, the switch expression is a non-constant value,
and no default label is present.
The switch statement is reachable, the switch expression is a constant value that
doesn’t match any case label, and no default label is present.

Iteration statements repeatedly execute an embedded statement.

ANTLR

The while statement conditionally executes an embedded statement zero or more
times.

ANTLR

A while statement is executed as follows:

The boolean_expression (§11.22) is evaluated.
If the Boolean expression yields true , control is transferred to the embedded
statement. When and if control reaches the end point of the embedded statement
(possibly from execution of a continue statement), control is transferred to the
beginning of the while statement.

12.9 Iteration statements

12.9.1 General

iteration_statement
 : while_statement
 | do_statement
 | for_statement
 | foreach_statement
 ;

12.9.2 The while statement

while_statement
 : 'while' '(' boolean_expression ')' embedded_statement
 ;

If the Boolean expression yields false , control is transferred to the end point of
the while statement.

Within the embedded statement of a while statement, a break statement (§12.10.2)
may be used to transfer control to the end point of the while statement (thus ending
iteration of the embedded statement), and a continue statement (§12.10.3) may be used
to transfer control to the end point of the embedded statement (thus performing
another iteration of the while statement).

The embedded statement of a while statement is reachable if the while statement is
reachable and the Boolean expression does not have the constant value false .

The end point of a while statement is reachable if at least one of the following is true:

The while statement contains a reachable break statement that exits the while
statement.
The while statement is reachable and the Boolean expression does not have the
constant value true .

The do statement conditionally executes an embedded statement one or more times.

ANTLR

A do statement is executed as follows:

Control is transferred to the embedded statement.
When and if control reaches the end point of the embedded statement (possibly
from execution of a continue statement), the boolean_expression (§11.22) is
evaluated. If the Boolean expression yields true , control is transferred to the
beginning of the do statement. Otherwise, control is transferred to the end point
of the do statement.

Within the embedded statement of a do statement, a break statement (§12.10.2) may
be used to transfer control to the end point of the do statement (thus ending iteration
of the embedded statement), and a continue statement (§12.10.3) may be used to

12.9.3 The do statement

do_statement
 : 'do' embedded_statement 'while' '(' boolean_expression ')' ';'
 ;

transfer control to the end point of the embedded statement (thus performing another
iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is
reachable.

The end point of a do statement is reachable if at least one of the following is true:

The do statement contains a reachable break statement that exits the do
statement.
The end point of the embedded statement is reachable and the Boolean
expression does not have the constant value true .

The for statement evaluates a sequence of initialization expressions and then, while a
condition is true, repeatedly executes an embedded statement and evaluates a
sequence of iteration expressions.

ANTLR

The for_initializer, if present, consists of either a local_variable_declaration (§12.6.2) or a
list of statement_expressions (§12.7) separated by commas. The scope of a local variable
declared by a for_initializer starts at the local_variable_declarator for the variable and

12.9.4 The for statement

for_statement
 : 'for' '(' for_initializer? ';' for_condition? ';' for_iterator? ')'
 embedded_statement
 ;

for_initializer
 : local_variable_declaration
 | statement_expression_list
 ;

for_condition
 : boolean_expression
 ;

for_iterator
 : statement_expression_list
 ;

statement_expression_list
 : statement_expression (',' statement_expression)*
 ;

extends to the end of the embedded statement. The scope includes the for_condition
and the for_iterator.

The for_condition, if present, shall be a boolean_expression (§11.22).

The for_iterator, if present, consists of a list of statement_expressions (§12.7) separated by
commas.

A for statement is executed as follows:

If a for_initializer is present, the variable initializers or statement expressions are
executed in the order they are written. This step is only performed once.
If a for_condition is present, it is evaluated.
If the for_condition is not present or if the evaluation yields true , control is
transferred to the embedded statement. When and if control reaches the end point
of the embedded statement (possibly from execution of a continue statement),
the expressions of the for_iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation of the for_condition in the
step above.
If the for_condition is present and the evaluation yields false , control is transferred
to the end point of the for statement.

Within the embedded statement of a for statement, a break statement (§12.10.2) may
be used to transfer control to the end point of the for statement (thus ending iteration
of the embedded statement), and a continue statement (§12.10.3) may be used to
transfer control to the end point of the embedded statement (thus executing the
for_iterator and performing another iteration of the for statement, starting with the
for_condition).

The embedded statement of a for statement is reachable if one of the following is true:

The for statement is reachable and no for_condition is present.
The for statement is reachable and a for_condition is present and does not have
the constant value false .

The end point of a for statement is reachable if at least one of the following is true:

The for statement contains a reachable break statement that exits the for
statement.
The for statement is reachable and a for_condition is present and does not have
the constant value true .

The foreach statement enumerates the elements of a collection, executing an
embedded statement for each element of the collection.

ANTLR

The local_variable_type and identifier of a foreach statement declare the iteration
variable of the statement. If the var identifier is given as the local_variable_type, and no
type named var is in scope, the iteration variable is said to be an implicitly typed
iteration variable, and its type is taken to be the iteration type of the foreach
statement, as specified below. The iteration variable corresponds to a read-only local
variable with a scope that extends over the embedded statement. During execution of a
foreach statement, the iteration variable represents the collection element for which an
iteration is currently being performed. A compile-time error occurs if the embedded
statement attempts to modify the iteration variable (via assignment or the ++ and -
- operators) or pass the iteration variable as a ref or out parameter.

In the following, for brevity, IEnumerable , IEnumerator , IEnumerable<T> and
IEnumerator<T> refer to the corresponding types in the namespaces System.Collections
and System.Collections.Generic .

The compile-time processing of a foreach statement first determines the collection
type, enumerator type and iteration type of the expression. This determination
proceeds as follows:

If the type X of expression is an array type then there is an implicit reference
conversion from X to the IEnumerable interface (since System.Array implements
this interface). The collection type is the IEnumerable interface, the enumerator
type is the IEnumerator interface and the iteration type is the element type of the
array type X .
If the type X of expression is dynamic then there is an implicit conversion from
expression to the IEnumerable interface (§10.2.10). The collection type is the
IEnumerable interface and the enumerator type is the IEnumerator interface. If the
var identifier is given as the local_variable_type then the iteration type is dynamic ,
otherwise it is object .

12.9.5 The foreach statement

foreach_statement
 : 'foreach' '(' local_variable_type identifier 'in' expression ')'
 embedded_statement
 ;

Otherwise, determine whether the type X has an appropriate GetEnumerator
method:

Perform member lookup on the type X with identifier GetEnumerator and no
type arguments. If the member lookup does not produce a match, or it
produces an ambiguity, or produces a match that is not a method group, check
for an enumerable interface as described below. It is recommended that a
warning be issued if member lookup produces anything except a method group
or no match.
Perform overload resolution using the resulting method group and an empty
argument list. If overload resolution results in no applicable methods, results in
an ambiguity, or results in a single best method but that method is either static
or not public, check for an enumerable interface as described below. It is
recommended that a warning be issued if overload resolution produces
anything except an unambiguous public instance method or no applicable
methods.
If the return type E of the GetEnumerator method is not a class, struct or
interface type, an error is produced and no further steps are taken.
Member lookup is performed on E with the identifier Current and no type
arguments. If the member lookup produces no match, the result is an error, or
the result is anything except a public instance property that permits reading, an
error is produced and no further steps are taken.
Member lookup is performed on E with the identifier MoveNext and no type
arguments. If the member lookup produces no match, the result is an error, or
the result is anything except a method group, an error is produced and no
further steps are taken.
Overload resolution is performed on the method group with an empty
argument list. If overload resolution results in no applicable methods, results in
an ambiguity, or results in a single best method but that method is either static
or not public, or its return type is not bool , an error is produced and no further
steps are taken.
The collection type is X , the enumerator type is E , and the iteration type is the
type of the Current property.

Otherwise, check for an enumerable interface:
If among all the types Tᵢ for which there is an implicit conversion from X to
IEnumerable<Tᵢ> , there is a unique type T such that T is not dynamic and for all
the other Tᵢ there is an implicit conversion from IEnumerable<T> to
IEnumerable<Tᵢ> , then the collection type is the interface IEnumerable<T> , the
enumerator type is the interface IEnumerator<T> , and the iteration type is T .

Otherwise, if there is more than one such type T , then an error is produced and
no further steps are taken.
Otherwise, if there is an implicit conversion from X to the
System.Collections.IEnumerable interface, then the collection type is this
interface, the enumerator type is the interface System.Collections.IEnumerator ,
and the iteration type is object .
Otherwise, an error is produced and no further steps are taken.

The above steps, if successful, unambiguously produce a collection type C , enumerator
type E and iteration type T . A foreach statement of the form

C#

is then expanded to:

C#

The variable e is not visible to or accessible to the expression x or the embedded
statement or any other source code of the program. The variable v is read-only in the
embedded statement. If there is not an explicit conversion (§10.3) from T (the iteration
type) to V (the local_variable_type in the foreach statement), an error is produced and
no further steps are taken.

Note: If x has the value null , a System.NullReferenceException is thrown at run-
time. end note

foreach (V v in x) «embedded_statement»

{
 E e = ((C)(x)).GetEnumerator();
 try
 {
 while (e.MoveNext())
 {
 V v = (V)(T)e.Current;
 «embedded_statement»
 }
 }
 finally
 {
 ... // Dispose e
 }
}

An implementation is permitted to implement a given foreach_statement differently; e.g.,
for performance reasons, as long as the behavior is consistent with the above expansion.

The placement of v inside the while loop is important for how it is captured
(§11.17.6.2) by any anonymous function occurring in the embedded_statement.

Example:

C#

If v in the expanded form were declared outside of the while loop, it would be
shared among all iterations, and its value after the for loop would be the final
value, 13 , which is what the invocation of f would print. Instead, because each
iteration has its own variable v , the one captured by f in the first iteration will
continue to hold the value 7 , which is what will be printed. (Note that earlier
versions of C# declared v outside of the while loop.)

end example

The body of the finally block is constructed according to the following steps:

If there is an implicit conversion from E to the System.IDisposable interface, then

If E is a non-nullable value type then the finally clause is expanded to the
semantic equivalent of:

C#

Otherwise the finally clause is expanded to the semantic equivalent of:

int[] values = { 7, 9, 13 };
Action f = null;
foreach (var value in values)
{
 if (f == null)
 {
 f = () => Console.WriteLine("First value: " + value);
 }
}
f();

finally
{
 ((System.IDisposable)e).Dispose();
}

C#

except that if E is a value type, or a type parameter instantiated to a value type,
then the conversion of e to System.IDisposable shall not cause boxing to
occur.

Otherwise, if E is a sealed type, the finally clause is expanded to an empty block:

C#

Otherwise, the finally clause is expanded to:

C#

The local variable d is not visible to or accessible to any user code. In particular, it does
not conflict with any other variable whose scope includes the finally block.

The order in which foreach traverses the elements of an array, is as follows: For single-
dimensional arrays elements are traversed in increasing index order, starting with
index 0 and ending with index Length – 1 . For multi-dimensional arrays, elements are
traversed such that the indices of the rightmost dimension are increased first, then the
next left dimension, and so on to the left.

Example: The following example prints out each value in a two-dimensional array, in
element order:

finally
{
 System.IDisposable d = e as System.IDisposable;
 if (d != null)
 {
 d.Dispose();
 }
}

finally {}

finally
{
 System.IDisposable d = e as System.IDisposable;
 if (d != null)
 {
 d.Dispose();
 }
}

C#

The output produced is as follows:

Console

end example

Example: In the following example

C#

the type of n is inferred to be int , the iteration type of numbers .

end example

Jump statements unconditionally transfer control.

class Test
{
 static void Main()
 {
 double[,] values =
 {
 {1.2, 2.3, 3.4, 4.5},
 {5.6, 6.7, 7.8, 8.9}
 };
 foreach (double elementValue in values)
 {
 Console.Write($"{elementValue} ");
 }
 Console.WriteLine();
 }
}

1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9

int[] numbers = { 1, 3, 5, 7, 9 };
foreach (var n in numbers)
{
 Console.WriteLine(n);
}

12.10 Jump statements

12.10.1 General

ANTLR

The location to which a jump statement transfers control is called the target of the jump
statement.

When a jump statement occurs within a block, and the target of that jump statement is
outside that block, the jump statement is said to exit the block. While a jump statement
can transfer control out of a block, it can never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try
statements. In the absence of such try statements, a jump statement unconditionally
transfers control from the jump statement to its target. In the presence of such
intervening try statements, execution is more complex. If the jump statement exits one
or more try blocks with associated finally blocks, control is initially transferred to the
finally block of the innermost try statement. When and if control reaches the end
point of a finally block, control is transferred to the finally block of the next
enclosing try statement. This process is repeated until the finally blocks of all
intervening try statements have been executed.

Example: In the following code

C#

jump_statement
 : break_statement
 | continue_statement
 | goto_statement
 | return_statement
 | throw_statement
 ;

class Test
{
 static void Main()
 {
 while (true)
 {
 try
 {
 try
 {
 Console.WriteLine("Before break");
 break;
 }
 finally
 {
 Console.WriteLine("Innermost finally block");

the finally blocks associated with two try statements are executed before control
is transferred to the target of the jump statement. The output produced is as
follows:

Console

end example

The break statement exits the nearest enclosing switch , while , do , for , or foreach
statement.

ANTLR

The target of a break statement is the end point of the nearest enclosing switch , while ,
do , for , or foreach statement. If a break statement is not enclosed by a switch , while ,
do , for , or foreach statement, a compile-time error occurs.

When multiple switch , while , do , for , or foreach statements are nested within each
other, a break statement applies only to the innermost statement. To transfer control
across multiple nesting levels, a goto statement (§12.10.4) shall be used.

A break statement cannot exit a finally block (§12.11). When a break statement
occurs within a finally block, the target of the break statement shall be within the

 }
 }
 finally
 {
 Console.WriteLine("Outermost finally block");
 }
 }
 Console.WriteLine("After break");
 }
}

Before break
Innermost finally block
Outermost finally block
After break

12.10.2 The break statement

break_statement
 : 'break' ';'
 ;

same finally block; otherwise a compile-time error occurs.

A break statement is executed as follows:

If the break statement exits one or more try blocks with associated finally
blocks, control is initially transferred to the finally block of the innermost try
statement. When and if control reaches the end point of a finally block, control is
transferred to the finally block of the next enclosing try statement. This process
is repeated until the finally blocks of all intervening try statements have been
executed.
Control is transferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of
a break statement is never reachable.

The continue statement starts a new iteration of the nearest enclosing while , do , for ,
or foreach statement.

ANTLR

The target of a continue statement is the end point of the embedded statement of the
nearest enclosing while , do , for , or foreach statement. If a continue statement is not
enclosed by a while , do , for , or foreach statement, a compile-time error occurs.

When multiple while , do , for , or foreach statements are nested within each other, a
continue statement applies only to the innermost statement. To transfer control across
multiple nesting levels, a goto statement (§12.10.4) shall be used.

A continue statement cannot exit a finally block (§12.11). When a continue statement
occurs within a finally block, the target of the continue statement shall be within the
same finally block; otherwise a compile-time error occurs.

A continue statement is executed as follows:

If the continue statement exits one or more try blocks with associated finally
blocks, control is initially transferred to the finally block of the innermost try

12.10.3 The continue statement

continue_statement
 : 'continue' ';'
 ;

statement. When and if control reaches the end point of a finally block, control is
transferred to the finally block of the next enclosing try statement. This process
is repeated until the finally blocks of all intervening try statements have been
executed.
Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end
point of a continue statement is never reachable.

The goto statement transfers control to a statement that is marked by a label.

ANTLR

The target of a goto identifier statement is the labeled statement with the given label. If
a label with the given name does not exist in the current function member, or if the
goto statement is not within the scope of the label, a compile-time error occurs.

Note: This rule permits the use of a goto statement to transfer control out of a
nested scope, but not into a nested scope. In the example

C#

12.10.4 The goto statement

goto_statement
 : 'goto' identifier ';'
 | 'goto' 'case' constant_expression ';'
 | 'goto' 'default' ';'
 ;

class Test
{
 static void Main(string[] args)
 {
 string[,] table =
 {
 {"Red", "Blue", "Green"},
 {"Monday", "Wednesday", "Friday"}
 };
 foreach (string str in args)
 {
 int row, colm;
 for (row = 0; row <= 1; ++row)
 {
 for (colm = 0; colm <= 2; ++colm)
 {
 if (str == table[row,colm])

a goto statement is used to transfer control out of a nested scope.

end note

The target of a goto case statement is the statement list in the immediately enclosing
switch statement (§12.8.3) which contains acase label with the given constant value. If
the goto case statement is not enclosed by a switch statement, if the
constant_expression is not implicitly convertible (§10.2) to the governing type of the
nearest enclosing switch statement, or if the nearest enclosing switch statement does
not contain a case label with the given constant value, a compile-time error occurs.

The target of a goto default statement is the statement list in the immediately
enclosing switch statement (§12.8.3), which contains a default label. If the goto
default statement is not enclosed by a switch statement, or if the nearest enclosing
switch statement does not contain a default label, a compile-time error occurs.

A goto statement cannot exit a finally block (§12.11). When a goto statement occurs
within a finally block, the target of the goto statement shall be within the same
finally block, or otherwise a compile-time error occurs.

A goto statement is executed as follows:

If the goto statement exits one or more try blocks with associated finally
blocks, control is initially transferred to the finally block of the innermost try
statement. When and if control reaches the end point of a finally block, control is
transferred to the finally block of the next enclosing try statement. This process
is repeated until the finally blocks of all intervening try statements have been
executed.
Control is transferred to the target of the goto statement.

 {
 goto done;
 }
 }
 }
 Console.WriteLine($"{str} not found");
 continue;
 done:
 Console.WriteLine($"Found {str} at [{row}][{colm}]");
 }
 }
}

Because a goto statement unconditionally transfers control elsewhere, the end point of
a goto statement is never reachable.

The return statement returns control to the current caller of the function member in
which the return statement appears.

ANTLR

A function member is said to compute a value if it is a method with a non-void result
type (§14.6.11), the get accessor of a property or indexer, or a user-defined operator.
Function members that do not compute a value are methods with the effective return
type void , set accessors of properties and indexers, add and remove accessors of event,
instance constructors, static constructors and finalizers.

Within a function member, a return statement with no expression can only be used if
the function member does not compute a value. Within a function member, a return
statement with an expression can only be used if the function member computes a
value. Where the return statement includes an expression, an implicit conversion (§10.2)
shall exist from the type of the expression to the effective return type of the containing
function member.

return statements can also be used in the body of anonymous function expressions
(§11.17), and participate in determining which conversions exist for those functions
(§10.7.1).

It is a compile-time error for a return statement to appear in a finally block (§12.11).

A return statement is executed as follows:

If the return statement specifies an expression, the expression is evaluated and its
value is converted to the effective return type of the containing function by an
implicit conversion. The result of the conversion becomes the result value
produced by the function.
If the return statement is enclosed by one or more try or catch blocks with
associated finally blocks, control is initially transferred to the finally block of
the innermost try statement. When and if control reaches the end point of a

12.10.5 The return statement

return_statement
 : 'return' expression? ';'
 ;

finally block, control is transferred to the finally block of the next enclosing
try statement. This process is repeated until the finally blocks of all enclosing
try statements have been executed.
If the containing function is not an async function, control is returned to the caller
of the containing function along with the result value, if any.
If the containing function is an async function, control is returned to the current
caller, and the result value, if any, is recorded in the return task as described in
(§14.15.2).

Because a return statement unconditionally transfers control elsewhere, the end point
of a return statement is never reachable.

The throw statement throws an exception.

ANTLR

A throw statement with an expression throws an exception produced by evaluating the
expression. The expression shall be implicitly convertible to System.Exception , and the
result of evaluating the expression is converted to System.Exception before being
thrown. If the result of the conversion is null , a System.NullReferenceException is
thrown instead.

A throw statement with no expression can be used only in a catch block, in which case,
that statement re-throws the exception that is currently being handled by that catch
block.

Because a throw statement unconditionally transfers control elsewhere, the end point of
a throw statement is never reachable.

When an exception is thrown, control is transferred to the first catch clause in an
enclosing try statement that can handle the exception. The process that takes place
from the point of the exception being thrown to the point of transferring control to a
suitable exception handler is known as exception propagation. Propagation of an
exception consists of repeatedly evaluating the following steps until a catch clause that
matches the exception is found. In this description, the throw point is initially the
location at which the exception is thrown.

12.10.6 The throw statement

throw_statement
 : 'throw' expression? ';'
 ;

In the current function member, each try statement that encloses the throw point
is examined. For each statement S , starting with the innermost try statement and
ending with the outermost try statement, the following steps are evaluated:

If the try block of S encloses the throw point and if S has one or more catch
clauses, the catch clauses are examined in order of appearance to locate a
suitable handler for the exception. The first catch clause that specifies an
exception type T (or a type parameter that at run-time denotes an exception
type T) such that the run-time type of E derives from T is considered a match.
If the clause contains an exception filter, the exception object is assigned to the
exception variable, and the exception filter is evaluated. When a catch clause
contains an exception filter, that catch clause is considered a match if the
exception filter evaluates to true . A general catch (§12.11) clause is considered
a match for any exception type. If a matching catch clause is located, the
exception propagation is completed by transferring control to the block of that
catch clause.
Otherwise, if the try block or a catch block of S encloses the throw point and
if S has a finally block, control is transferred to the finally block. If the
finally block throws another exception, processing of the current exception is
terminated. Otherwise, when control reaches the end point of the finally
block, processing of the current exception is continued.

If an exception handler was not located in the current function invocation, the
function invocation is terminated, and one of the following occurs:

If the current function is non-async, the steps above are repeated for the caller
of the function with a throw point corresponding to the statement from which
the function member was invoked.

If the current function is async and task-returning, the exception is recorded in
the return task, which is put into a faulted or cancelled state as described in
§14.15.2.

If the current function is async and void -returning, the synchronization context
of the current thread is notified as described in §14.15.3.

If the exception processing terminates all function member invocations in the
current thread, indicating that the thread has no handler for the exception, then
the thread is itself terminated. The impact of such termination is implementation-
defined.

The try statement provides a mechanism for catching exceptions that occur during
execution of a block. Furthermore, the try statement provides the ability to specify a
block of code that is always executed when control leaves the try statement.

ANTLR

A try_statement consists of the keyword try followed by a block, then zero or more
catch_clauses, then an optional finally_clause. There must be at least one catch_clause or
a finally_clause.

In an exception_specifier the type, or its effective base class if it is a type_parameter, shall
be System.Exception or a type that derives from it.

When a catch clause specifies both a class_type and an identifier, an exception variable
of the given name and type is declared. The exception variable corresponds to a local
variable with a scope that extends over the catch block. During execution of the

12.11 The try statement

try_statement
 : 'try' block catch_clauses
 | 'try' block catch_clauses? finally_clause
 ;

catch_clauses
 : specific_catch_clause+
 | specific_catch_clause* general_catch_clause
 ;

specific_catch_clause
 : 'catch' exception_specifier exception_filter? block
 | 'catch' exception_filter block
 ;

exception_specifier
 : '(' type identifier? ')'
 ;

exception_filter
 : 'when' '(' boolean_expression ')'
 ;

general_catch_clause
 : 'catch' block
 ;

finally_clause
 : 'finally' block
 ;

exception_filter and catch block, the exception variable represents the exception
currently being handled. For purposes of definite assignment checking, the exception
variable is considered definitely assigned in its entire scope.

Unless a catch clause includes an exception variable name, it is impossible to access the
exception object in the filter and catch block.

A catch clause that specifies neither an exception type nor an exception variable name
is called a general catch clause. A try statement can only have one general catch
clause, and, if one is present, it shall be the last catch clause.

Note: Some programming languages might support exceptions that are not
representable as an object derived from System.Exception , although such
exceptions could never be generated by C# code. A general catch clause might be
used to catch such exceptions. Thus, a general catch clause is semantically different
from one that specifies the type System.Exception , in that the former might also
catch exceptions from other languages. end note

In order to locate a handler for an exception, catch clauses are examined in lexical
order. If a catch clause specifies a type but no exception filter, it is a compile-time error
for a later catch clause of the same try statement to specify a type that is the same as,
or is derived from, that type.

Note: Without this restriction, it would be possible to write unreachable catch
clauses. end note

Within a catch block, a throw statement (§12.10.6) with no expression can be used to
re-throw the exception that was caught by the catch block. Assignments to an
exception variable do not alter the exception that is re-thrown.

Example: In the following code

C#

class Test
{
 static void F()
 {
 try
 {
 G();
 }
 catch (Exception e)

the method F catches an exception, writes some diagnostic information to the
console, alters the exception variable, and re-throws the exception. The exception
that is re-thrown is the original exception, so the output produced is:

Console

If the first catch block had thrown e instead of rethrowing the current exception,
the output produced would be as follows:

Console

end example

It is a compile-time error for a break , continue , or goto statement to transfer control
out of a finally block. When a break , continue , or goto statement occurs in a finally
block, the target of the statement shall be within the same finally block, or otherwise a
compile-time error occurs.

It is a compile-time error for a return statement to occur in a finally block.

 {
 Console.WriteLine("Exception in F: " + e.Message);
 e = new Exception("F");
 throw; // re-throw
 }
 }

 static void G() => throw new Exception("G");

 static void Main()
 {
 try
 {
 F();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception in Main: " + e.Message);
 }
 }
}

Exception in F: G
Exception in Main: G

Exception in F: G
Exception in Main: F

When execution reaches atry statement, control is transferred to the try block. If
control reaches the end point of the try block without an exception being propagated,
control is transferred to the finally block if one exists. If no finally block exists,
control is transferred to the end point of the try statement.

If an exception has been propagated, the catch clauses, if any, are examined in lexical
order seeking the first match for the exception. The search for a matching catch clause
continues with all enclosing blocks as described in §12.10.6. A catch clause is a match if
the exception type matches any exception_specifier and any exception_filter is true. A
catch clause without an exception_specifier matches any exception type. The exception
type matches the exception_specifier when the exception_specifier specifies the exception
type or a base type of the exception type. If the clause contains an exception filter, the
exception object is assigned to the exception variable, and the exception filter is
evaluated.

If an exception has been propagated and a matching catch clause is found, control is
transferred to the first matching catch block. If control reaches the end point of the
catch block without an exception being propagated, control is transferred to the
finally block if one exists. If no finally block exists, control is transferred to the end
point of the try statement. If an exception has been propagated from the catch block,
control transfers to the finally block if one exists. The exception is propagated to the
next enclosing try statement.

If an exception has been propagated, and no matching catch clause is found, control
transfers to the finally block, if it exists. The exception is propagated to the next
enclosing try statement.

The statements of a finally block are always executed when control leaves a try
statement. This is true whether the control transfer occurs as a result of normal
execution, as a result of executing a break , continue , goto , or return statement, or as a
result of propagating an exception out of the try statement. If control reaches the end
point of the finally block without an exception being propagated, control is
transferred to the end point of the try statement.

If an exception is thrown during execution of a finally block, and is not caught within
the same finally block,the exception is propagated to the next enclosing try
statement. If another exception was in the process of being propagated, that exception
is lost. The process of propagating an exception is discussed further in the description of
the throw statement (§12.10.6).

Example: In the following code

C#

the method Method throws an exception. The first action is to examine the enclosing
catch clauses, executing any exception filters. Then, the finally clause in Method
executes before control transfers to the enclosing matching catch clause. The
resulting output is:

Console

end example

The try block of a try statement is reachable if the try statement is reachable.

public class Test
{
 static void Main()
 {
 try
 {
 Method();
 }
 catch (Exception ex) when (ExceptionFilter(ex))
 {
 Console.WriteLine("Catch");
 }

 bool ExceptionFilter(Exception ex)
 {
 Console.WriteLine("Filter");
 return true;
 }
 }

 static void Method()
 {
 try
 {
 throw new ArgumentException();
 }
 finally
 {
 Console.WriteLine("Finally");
 }
 }
}

Filter
Finally
Catch

A catch block of a try statement is reachable if the try statement is reachable.

The finally block of a try statement is reachable if the try statement is reachable.

The end point of a try statement is reachable if both of the following are true:

The end point of the try block is reachable or the end point of at least one catch
block is reachable.
If a finally block is present, the end point of the finally block is reachable.

The checked and unchecked statements are used to control the overflow-checking
context for integral-type arithmetic operations and conversions.

ANTLR

The checked statement causes all expressions in the block to be evaluated in a checked
context, and the unchecked statement causes all expressions in the block to be evaluated
in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and
unchecked operators (§11.7.18), except that they operate on blocks instead of
expressions.

The lock statement obtains the mutual-exclusion lock for a given object, executes a
statement, and then releases the lock.

ANTLR

12.12 The checked and unchecked statements

checked_statement
 : 'checked' block
 ;

unchecked_statement
 : 'unchecked' block
 ;

12.13 The lock statement

lock_statement
 : 'lock' '(' expression ')' embedded_statement
 ;

The expression of a lock statement shall denote a value of a type known to be a
reference. No implicit boxing conversion (§10.2.9) is ever performed for the expression of
a lock statement, and thus it is a compile-time error for the expression to denote a
value of a value_type.

A lock statement of the form

lock (x) …

where x is an expression of a reference_type, is precisely equivalent to:

C#

except that x is only evaluated once.

While a mutual-exclusion lock is held, code executing in the same execution thread can
also obtain and release the lock. However, code executing in other threads is blocked
from obtaining the lock until the lock is released.

The using statement obtains one or more resources, executes a statement, and then
disposes of the resource.

ANTLR

bool __lockWasTaken = false;
try
{
 System.Threading.Monitor.Enter(x, ref __lockWasTaken);
 ...
}
finally
{
 if (__lockWasTaken)
 {
 System.Threading.Monitor.Exit(x);
 }
}

12.14 The using statement

using_statement
 : 'using' '(' resource_acquisition ')' embedded_statement
 ;

resource_acquisition
 : local_variable_declaration

A resource is a class or struct that implements the System.IDisposable interface, which
includes a single parameterless method named Dispose . Code that is using a resource
can call Dispose to indicate that the resource is no longer needed.

If the form of resource_acquisition is local_variable_declaration then the type of the
local_variable_declaration shall be either dynamic or a type that can be implicitly
converted to System.IDisposable . If the form of resource_acquisition is expression then
this expression shall be implicitly convertible to System.IDisposable .

Local variables declared in a resource_acquisition are read-only, and shall include an
initializer. A compile-time error occurs if the embedded statement attempts to modify
these local variables (via assignment or the ++ and -- operators), take the address of
them, or pass them as ref or out parameters.

A using statement is translated into three parts: acquisition, usage, and disposal. Usage
of the resource is implicitly enclosed in a try statement that includes a finally clause.
This finally clause disposes of the resource. If a null resource is acquired, then no call
to Dispose is made, and no exception is thrown. If the resource is of type dynamic it is
dynamically converted through an implicit dynamic conversion (§10.2.10) to
IDisposable during acquisition in order to ensure that the conversion is successful
before the usage and disposal.

A using statement of the form

C#

corresponds to one of three possible expansions. When ResourceType is a non-nullable
value type or a type parameter with the value type constraint (§14.2.5), the expansion is
semantically equivalent to

C#

 | expression
 ;

using (ResourceType resource = «expression») «statement»

{
 ResourceType resource = «expression»;
 try
 {
 «statement»;
 }
 finally

except that the cast of resource to System.IDisposable shall not cause boxing to occur.

Otherwise, when ResourceType is dynamic , the expansion is

C#

Otherwise, the expansion is

C#

In any expansion, the resource variable is read-only in the embedded statement, and
the d variable is inaccessible in, and invisible to, the embedded statement.

 {
 ((IDisposable)resource).Dispose();
 }
}

{
 ResourceType resource = «expression»;
 IDisposable d = resource;
 try
 {
 «statement»;
 }
 finally
 {
 if (d != null)
 {
 d.Dispose();
 }
 }
}

{
 ResourceType resource = «expression»;
 try
 {
 «statement»;
 }
 finally
 {
 IDisposable d = (IDisposable)resource;
 if (d != null)
 {
 d.Dispose();
 }
 }
}

An implementation is permitted to implement a given using_statement differently, e.g.,
for performance reasons, as long as the behavior is consistent with the above expansion.

A using statement of the form:

C#

has the same three possible expansions. In this case ResourceType is implicitly the
compile-time type of the expression, if it has one. Otherwise the interface IDisposable
itself is used as the ResourceType . The resource variable is inaccessible in, and invisible
to, the embedded statement.

When a resource_acquisition takes the form of a local_variable_declaration, it is possible
to acquire multiple resources of a given type. A using statement of the form

C#

is precisely equivalent to a sequence of nested using statements:

C#

Example: The example below creates a file named log.txt and writes two lines of text
to the file. The example then opens that same file for reading and copies the
contained lines of text to the console.

C#

using («expression») «statement»

using (ResourceType r1 = e1, r2 = e2, ..., rN = eN) «statement»

using (ResourceType r1 = e1)
using (ResourceType r2 = e2)
...
using (ResourceType rN = eN)
«statement»

class Test
{
 static void Main()
 {
 using (TextWriter w = File.CreateText("log.txt"))
 {
 w.WriteLine("This is line one");
 w.WriteLine("This is line two");
 }

Since the TextWriter and TextReader classes implement the IDisposable interface,
the example can use using statements to ensure that the underlying file is properly
closed following the write or read operations.

end example

The yield statement is used in an iterator block (§12.3) to yield a value to the
enumerator object (§14.14.5) or enumerable object (§14.14.6) of an iterator or to signal
the end of the iteration.

ANTLR

yield is a contextual keyword (§6.4.4) and has special meaning only when used
immediately before a return or break keyword.

There are several restrictions on where a yield statement can appear, as described in
the following.

It is a compile-time error for a yield statement (of either form) to appear outside
a method_body, operator_body, or accessor_body.
It is a compile-time error for a yield statement (of either form) to appear inside an
anonymous function.
It is a compile-time error for a yield statement (of either form) to appear in the
finally clause of a try statement.
It is a compile-time error for a yield return statement to appear anywhere in a
try statement that contains any catch_clauses.

 using (TextReader r = File.OpenText("log.txt"))
 {
 string s;
 while ((s = r.ReadLine()) != null)
 {
 Console.WriteLine(s);
 }
 }
 }
}

12.15 The yield statement

yield_statement
 : 'yield' 'return' expression ';'
 | 'yield' 'break' ';'
 ;

Example: The following example shows some valid and invalid uses of yield
statements.

C#

end example

An implicit conversion (§10.2) shall exist from the type of the expression in the yield
return statement to the yield type (§14.14.4) of the iterator.

A yield return statement is executed as follows:

The expression given in the statement is evaluated, implicitly converted to the yield
type, and assigned to the Current property of the enumerator object.

delegate IEnumerable<int> D();

IEnumerator<int> GetEnumerator()
{
 try
 {
 yield return 1; // Ok
 yield break; // Ok
 }
 finally
 {
 yield return 2; // Error, yield in finally
 yield break; // Error, yield in finally
 }
 try
 {
 yield return 3; // Error, yield return in try/catch
 yield break; // Ok
 }
 catch
 {
 yield return 4; // Error, yield return in try/catch
 yield break; // Ok
 }
 D d = delegate
 {
 yield return 5; // Error, yield in an anonymous function
 };
}

int MyMethod()
{
 yield return 1; // Error, wrong return type for an iterator
block
}

Execution of the iterator block is suspended. If the yield return statement is
within one or more try blocks, the associated finally blocks are not executed at
this time.
The MoveNext method of the enumerator object returns true to its caller,
indicating that the enumerator object successfully advanced to the next item.

The next call to the enumerator object’s MoveNext method resumes execution of the
iterator block from where it was last suspended.

A yield break statement is executed as follows:

If the yield break statement is enclosed by one or more try blocks with
associated finally blocks, control is initially transferred to the finally block of
the innermost try statement. When and if control reaches the end point of a
finally block, control is transferred to the finally block of the next enclosing
try statement. This process is repeated until the finally blocks of all enclosing
try statements have been executed.
Control is returned to the caller of the iterator block. This is either the MoveNext
method or Dispose method of the enumerator object.

Because a yield break statement unconditionally transfers control elsewhere, the end
point of a yield break statement is never reachable.

13 Namespaces
Article • 2023-01-13 • 23 minutes to read

C# programs are organized using namespaces. Namespaces are used both as an
“internal” organization system for a program, and as an “external” organization system
—a way of presenting program elements that are exposed to other programs.

Using directives (§13.5) are provided to facilitate the use of namespaces.

A compilation_unit consists of zero or more extern_alias_directives followed by zero or
more using_directives followed by zero or one global_attributes followed by zero or
more namespace_member_declarations. The compilation_unit defines the overall
structure of the input.

ANTLR

A C# program consists of one or more compilation units. When a C# program is
compiled, all of the compilation units are processed together. Thus, compilation units
can depend on each other, possibly in a circular fashion.

The extern_alias_directives of a compilation unit affect the using_directives,
global_attributes and namespace_member_declarations of that compilation unit, but have
no effect on other compilation units.

The using_directives of a compilation unit affect the global_attributes and
namespace_member_declarations of that compilation unit, but have no effect on other
compilation units.

The global_attributes (§21.3) of a compilation unit permit the specification of attributes
for the target assembly and module. Assemblies and modules act as physical containers
for types. An assembly may consist of several physically separate modules.

13.1 General

13.2 Compilation units

compilation_unit
 : extern_alias_directive* using_directive* global_attributes?
 namespace_member_declaration*
 ;

The namespace_member_declarations of each compilation unit of a program contribute
members to a single declaration space called the global namespace.

Example:

C#

The two compilation units contribute to the single global namespace, in this case
declaring two classes with the fully qualified names A and B . Because the two
compilation units contribute to the same declaration space, it would have been an
error if each contained a declaration of a member with the same name.

end example

A namespace_declaration consists of the keyword namespace, followed by a namespace
name and body, optionally followed by a semicolon.

ANTLR

A namespace_declaration may occur as a top-level declaration in a compilation_unit or as
a member declaration within another namespace_declaration. When a
namespace_declaration occurs as a top-level declaration in a compilation_unit, the
namespace becomes a member of the global namespace. When a
namespace_declaration occurs within another namespace_declaration, the inner

// File A.cs:
 class A {}
// File B.cs:
 class B {}

13.3 Namespace declarations

namespace_declaration
 : 'namespace' qualified_identifier namespace_body ';'?
 ;

qualified_identifier
 : identifier ('.' identifier)*
 ;

namespace_body
 : '{' extern_alias_directive* using_directive*
 namespace_member_declaration* '}'
 ;

namespace becomes a member of the outer namespace. In either case, the name of a
namespace shall be unique within the containing namespace.

Namespaces are implicitly public and the declaration of a namespace cannot include
any access modifiers.

Within a namespace_body, the optional using_directives import the names of other
namespaces, types and members, allowing them to be referenced directly instead of
through qualified names. The optional namespace_member_declarations contribute
members to the declaration space of the namespace. Note that all using_directives must
appear before any member declarations.

The qualified_identifier of a namespace_declaration may be a single identifier or a
sequence of identifiers separated by “. ” tokens. The latter form permits a program to
define a nested namespace without lexically nesting several namespace declarations.

Example:

C#

is semantically equivalent to

C#

end example

Namespaces are open-ended, and two namespace declarations with the same fully
qualified name (§7.8.2) contribute to the same declaration space (§7.3).

Example: In the following code

namespace N1.N2
{
 class A {}
 class B {}
}

namespace N1
{
 namespace N2
 {
 class A {}
 class B {}
 }
}

C#

the two namespace declarations above contribute to the same declaration space, in
this case declaring two classes with the fully qualified names N1.N2.A and N1.N2.B .
Because the two declarations contribute to the same declaration space, it would
have been an error if each contained a declaration of a member with the same
name.

end example

An extern_alias_directive introduces an identifier that serves as an alias for a namespace.
The specification of the aliased namespace is external to the source code of the
program and applies also to nested namespaces of the aliased namespace.

ANTLR

The scope of an extern_alias_directive extends over the using_directives, global_attributes
and namespace_member_declarations of its immediately containing compilation_unit or
namespace_body.

Within a compilation unit or namespace body that contains an extern_alias_directive, the
identifier introduced by the extern_alias_directive can be used to reference the aliased
namespace. It is a compile-time error for the identifier to be the word global .

The alias introduced by an extern_alias_directive is very similar to the alias introduced by
a using_alias_directive. See §13.5.2 for more detailed discussion of extern_alias_directives
and using_alias_directives.

namespace N1.N2
{
 class A {}
}

namespace N1.N2
{
 class B {}
}

13.4 Extern alias directives

extern_alias_directive
 : 'extern' 'alias' identifier ';'
 ;

alias is a contextual keyword (§6.4.4) and only has special meaning when it
immediately follows the extern keyword in an extern_alias_directive.

An error occurs if a program declares an extern alias for which no external definition is
provided.

Example: The following program declares and uses two extern aliases, X and Y ,
each of which represent the root of a distinct namespace hierarchy:

C#

The program declares the existence of the extern aliases X and Y , but the actual
definitions of the aliases are external to the program. The identically named N.B
classes can now be referenced as X.N.B and Y.N.B , or, using the namespace alias
qualifier, X::N.B and Y::N.B . end example

Using directives facilitate the use of namespaces and types defined in other
namespaces. Using directives impact the name resolution process of
namespace_or_type_names (§7.8) and simple_names (§11.7.4), but unlike declarations,
using_directives do not contribute new members to the underlying declaration spaces of
the compilation units or namespaces within which they are used.

ANTLR

extern alias X;
extern alias Y;

class Test
{
 X::N.A a;
 X::N.B b1;
 Y::N.B b2;
 Y::N.C c;
}

13.5 Using directives

13.5.1 General

using_directive
 : using_alias_directive
 | using_namespace_directive
 | using_static_directive
 ;

A using_alias_directive (§13.5.2) introduces an alias for a namespace or type.

A using_namespace_directive (§13.5.3) imports the type members of a namespace.

A using_static_directive (§13.5.4) imports the nested types and static members of a type.

The scope of a using_directive extends over the namespace_member_declarations of its
immediately containing compilation unit or namespace body. The scope of a
using_directive specifically does not include its peer using_directives. Thus, peer
using_directives do not affect each other, and the order in which they are written is
insignificant. In contrast, the scope of an extern_alias_directive includes the
using_directives defined in the same compilation unit or namespace body.

A using_alias_directive introduces an identifier that serves as an alias for a namespace or
type within the immediately enclosing compilation unit or namespace body.

ANTLR

Within global attributes and member declarations in a compilation unit or namespace
body that contains a using_alias_directive, the identifier introduced by the
using_alias_directive can be used to reference the given namespace or type.

Example:

C#

Above, within member declarations in the N3 namespace, A is an alias for N1.N2.A ,
and thus class N3.B derives from class N1.N2.A . The same effect can be obtained by

13.5.2 Using alias directives

using_alias_directive
 : 'using' identifier '=' namespace_or_type_name ';'
 ;

namespace N1.N2
{
 class A {}
}
namespace N3
{
 using A = N1.N2.A;

 class B: A {}
}

creating an alias R for N1.N2 and then referencing R.A :

C#

end example

Within using directives, global attributes and member declarations in a compilation unit
or namespace body that contains an extern_alias_directive, the identifier introduced by
the extern_alias_directive can be used to reference the associated namespace.

Example: For example:

C#

Above, within member declarations in the N1 namespace, N2 is an alias for some
namespace whose definition is external to the source code of the program. Class
N1.B derives from class N2.A . The same effect can be obtained by creating an
alias A for N2.A and then referencing A :

C#

end example

namespace N3
{
 using R = N1.N2;

 class B : R.A {}
}

namespace N1
{
 extern alias N2;

 class B : N2::A {}
}

namespace N1
{
 extern alias N2;

 using A = N2::A;

 class B : A {}
}

An extern_alias_directive or using_alias_directive makes an alias available within a
particular compilation unit or namespace body, but it does not contribute any new
members to the underlying declaration space. In other words, an alias directive is not
transitive, but, rather, affects only the compilation unit or namespace body in which it
occurs.

Example: In the following code

C#

the scopes of the alias directives that introduce R1 and R2 only extend to member
declarations in the namespace body in which they are contained, so R1 and R2 are
unknown in the second namespace declaration. However, placing the alias directives
in the containing compilation unit causes the alias to become available within both
namespace declarations:

C#

end example

namespace N3
{
 extern alias R1;

 using R2 = N1.N2;
}

namespace N3
{
 class B : R1::A, R2.I {} // Error, R1 and R2 unknown
}

extern alias R1;

using R2 = N1.N2;

namespace N3
{
 class B : R1::A, R2.I {}
}

namespace N3
{
 class C : R1::A, R2.I {}
}

Each extern_alias_directive or using_alias_directive in a compilation_unit or
namespace_body contributes a name to the alias declaration space (§7.3) of the
immediately enclosing compilation_unit or namespace_body. The identifier of the alias
directive shall be unique within the corresponding alias declaration space. The alias
identifier need not be unique within the global declaration space or the declaration
space of the corresponding namespace.

Example:

C#

The using alias named A causes an error since there is already an alias named A in
the same compilation unit. The class named B does not conflict with the extern alias
named B since these names are added to distinct declaration spaces. The former is
added to the global declaration space and the latter is added to the alias declaration
space for this compilation unit.

When an alias name matches the name of a member of a namespace, usage of
either must be appropriately qualified:

C#

extern alias A;
extern alias B;

using A = N1.N2; // Error: alias A already exists

class B {} // Ok

namespace N1.N2
{
 class B {}
}

namespace N3
{
 class A {}
 class B : A {}
}

namespace N3
{
 using A = N1.N2;
 using B = N1.N2.B;

 class W : B {} // Error: B is ambiguous
 class X : A.B {} // Error: A is ambiguous
 class Y : A::B {} // Ok: uses N1.N2.B

In the second namespace body for N3 , unqualified use of B results in an error, since
N3 contains a member named B and the namespace body that also declares an
alias with name B ; likewise for A . The class N3.B can be referenced as N3.B or
global::N3.B . The alias A can be used in a qualified-alias-member (§13.8), such as
A::B . The alias B is essentially useless. It cannot be used in a qualified_alias_member
since only namespace aliases can be used in a qualified_alias_member and B aliases
a type.

end example

Just like regular members, names introduced by alias_directives are hidden by similarly
named members in nested scopes.

Example: In the following code

C#

the reference to R.A in the declaration of B causes a compile-time error because R
refers to N3.R , not N1.N2 .

end example

The order in which extern_alias_directives are written has no significance. Likewise, the
order in which using_alias_directives are written has no significance, but all
using_alias_directives must come after all extern_alias_directives in the same compilation
unit or namespace body. Resolution of the namespace_or_type_name referenced by a
using_alias_directive is not affected by the using_alias_directive itself or by other
using_directives in the immediately containing compilation unit or namespace body, but
may be affected by extern_alias_directives in the immediately containing compilation
unit or namespace body. In other words, the namespace_or_type_name of a
using_alias_directive is resolved as if the immediately containing compilation unit or

 class Z : N3.B {} // Ok: uses N3.B
}

using R = N1.N2;

namespace N3
{
 class R {}
 class B: R.A {} // Error, R has no member A
}

namespace body had no using_directives but has the correct set of
extern_alias_directives.

Example: In the following code

C#

the last using_alias_directive results in a compile-time error because it is not affected
by the previous using_alias_directive. The first using_alias_directive does not result in
an error since the scope of the extern alias E includes the using_alias_directive.

end example

A using_alias_directive can create an alias for any namespace or type, including the
namespace within which it appears and any namespace or type nested within that
namespace.

Accessing a namespace or type through an alias yields exactly the same result as
accessing that namespace or type through its declared name.

Example: Given

C#

namespace N1.N2 {}

namespace N3
{
 extern alias E;

 using R1 = E::N; // OK
 using R2 = N1; // OK
 using R3 = N1.N2; // OK
 using R4 = R2.N2; // Error, R2 unknown
}

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using R1 = N1;
 using R2 = N1.N2;

 class B
 {

the names N1.N2.A , R1.N2.A , and R2.A are equivalent and all refer to the class
declaration whose fully qualified name is N1.N2.A .

end example

Although each part of a partial type (§14.2.7) is declared within the same namespace,
the parts are typically written within different namespace declarations. Thus, different
extern_alias_directives and using_directives can be present for each part. When
interpreting simple names (§11.7.4) within one part, only the extern_alias_directives and
using_directives of the namespace bodies and compilation unit enclosing that part are
considered. This may result in the same identifier having different meanings in different
parts.

Example:

C#

end example

Using aliases can name a closed constructed type, but cannot name an unbound generic
type declaration without supplying type arguments.

 N1.N2.A a; // refers to N1.N2.A
 R1.N2.A b; // refers to N1.N2.A
 R2.A c; // refers to N1.N2.A
 }
}

namespace N
{
 using List = System.Collections.ArrayList;

 partial class A
 {
 List x; // x has type System.Collections.ArrayList
 }
}

namespace N
{
 using List = Widgets.LinkedList;

 partial class A
 {
 List y; // y has type Widgets.LinkedList
 }
}

Example:

C#

end example

A using_namespace_directive imports the types contained in a namespace into the
immediately enclosing compilation unit or namespace body, enabling the identifier of
each type to be used without qualification.

ANTLR

Within member declarations in a compilation unit or namespace body that contains a
using_namespace_directive, the types contained in the given namespace can be
referenced directly.

Example:

C#

namespace N1
{
 class A<T>
 {
 class B {}
 }
}

namespace N2
{
 using W = N1.A; // Error, cannot name unbound generic type
 using X = N1.A.B; // Error, cannot name unbound generic type
 using Y = N1.A<int>; // Ok, can name closed constructed type
 using Z<T> = N1.A<T>; // Error, using alias cannot have type
parameters
}

13.5.3 Using namespace directives

using_namespace_directive
 : 'using' namespace_name ';'
 ;

namespace N1.N2
{
 class A {}
}

Above, within member declarations in the N3 namespace, the type members of
N1.N2 are directly available, and thus class N3.B derives from class N1.N2.A .

end example

A using_namespace_directive imports the types contained in the given namespace, but
specifically does not import nested namespaces.

Example: In the following code

C#

the using_namespace_directive imports the types contained in N1 , but not the
namespaces nested in N1 . Thus, the reference to N2.A in the declaration of B results
in a compile-time error because no members named N2 are in scope.

end example

Unlike a using_alias_directive, a using_namespace_directive may import types whose
identifiers are already defined within the enclosing compilation unit or namespace body.
In effect, names imported by a using_namespace_directive are hidden by similarly named
members in the enclosing compilation unit or namespace body.

Example:

C#

namespace N3
{
 using N1.N2;

 class B : A {}
}

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using N1;
 class B : N2.A {} // Error, N2 unknown
}

Here, within member declarations in the N3 namespace, A refers to N3.A rather
than N1.N2.A .

end example

Because names may be ambiguous when more than one imported namespace
introduces the same type name, a using_alias_directive is useful to disambiguate the
reference.

Example: In the following code

C#

both N1 and N2 contain a member A , and because N3 imports both, referencing A
in N3 is a compile-time error. In this situation, the conflict can be resolved either
through qualification of references to A , or by introducing a using_alias_directive
that picks a particular A . For example:

namespace N1.N2
{
 class A {}
 class B {}
}

namespace N3
{
 using N1.N2;
 class A {}
}

namespace N1
{
 class A {}
}

namespace N2
{
 class A {}
}

namespace N3
{
 using N1;
 using N2;

 class B : A {} // Error, A is ambiguous
}

C#

end example

Furthermore, when more than one namespace or type imported by
using_namespace_directives or using_static_directives in the same compilation unit or
namespace body contain types or members by the same name, references to that name
as a simple_name are considered ambiguous.

Example:

C#

N1 contains a type member A , and C contains a static field A , and because N2
imports both, referencing A as a simple_name is ambiguous and a compile-time

namespace N3
{
 using N1;
 using N2;
 using A = N1.A;

 class B : A {} // A means N1.A
}

namespace N1
{
 class A {}
}

class C
{
 public static int A;
}

namespace N2
{
 using N1;
 using static C;

 class B
 {
 void M()
 {
 A a = new A(); // Ok, A is unambiguous as a type-name
 A.Equals(2); // Error, A is ambiguous as a simple-name
 }
 }
}

error.

end example

Like a using_alias_directive, a using_namespace_directive does not contribute any new
members to the underlying declaration space of the compilation unit or namespace, but,
rather, affects only the compilation unit or namespace body in which it appears.

The namespace_name referenced by a using_namespace_directive is resolved in the same
way as the namespace_or_type_name referenced by a using_alias_directive. Thus,
using_namespace_directives in the same compilation unit or namespace body do not
affect each other and can be written in any order.

A using_static_directive imports the nested types and static members contained directly
in a type declaration into the immediately enclosing compilation unit or namespace
body, enabling the identifier of each member and type to be used without qualification.

ANTLR

Within member declarations in a compilation unit or namespace body that contains a
using_static_directive, the accessible nested types and static members (except extension
methods) contained directly in the declaration of the given type can be referenced
directly.

Example:

C#

13.5.4 Using static directives

using_static_directive
 : 'using' 'static' type_name ';'
 ;

namespace N1
{
 class A
 {
 public class B {}
 public static B M() => new B();
 }
}

namespace N2
{
 using static N1.A;

In the preceding code, within member declarations in the N2 namespace, the static
members and nested types of N1.A are directly available, and thus the method N is
able to reference both the B and M members of N1.A .

end example

A using_static_directive specifically does not import extension methods directly as static
methods, but makes them available for extension method invocation (§11.7.8.3).

Example:

C#

the using_static_directive imports the extension method M contained in N1.A , but
only as an extension method. Thus, the first reference to M in the body of B.N

 class C
 {
 void N()
 {
 B b = M();
 }
 }
}

namespace N1
{
 static class A
 {
 public static void M(this string s){}
 }
}

namespace N2
{
 using static N1.A;

 class B
 {
 void N()
 {
 M("A"); // Error, M unknown
 "B".M(); // Ok, M known as extension method
 N1.A.M("C"); // Ok, fully qualified
 }
 }
}

results in a compile-time error because no members named M are in scope.

end example

A using_static_directive only imports members and types declared directly in the given
type, not members and types declared in base classes.

Example:

C#

the using_static_directive imports the method M2 contained in N1.B , but does not
import the method M contained in N1.A . Thus, the reference to M in the body of
C.N results in a compile-time error because no members named M are in scope.
Developers must add a second using static directive to specify that the methods
in N1.A should also be imported.

end example

namespace N1
{
 class A
 {
 public static void M(string s){}
 }

 class B : A
 {
 public static void M2(string s){}
 }
}

namespace N2
{
 using static N1.B;

 class C
 {
 void N()
 {
 M2("B"); // OK, calls B.M2
 M("C"); // Error. M unknown
 }
 }
}

Ambiguities between multiple using_namespace_directives and using_static_directives are
discussed in §13.5.3.

A namespace_member_declaration is either a namespace_declaration (§13.3) or a
type_declaration (§13.7).

ANTLR

A compilation unit or a namespace body can contain namespace_member_declarations,
and such declarations contribute new members to the underlying declaration space of
the containing compilation unit or namespace body.

A type_declaration is a class_declaration (§14.2), a struct_declaration (§15.2), an
interface_declaration (§17.2), an enum_declaration (§18.2), or a delegate_declaration
(§19.2).

ANTLR

A type_declaration can occur as a top-level declaration in a compilation unit or as a
member declaration within a namespace, class, or struct.

When a type declaration for a type T occurs as a top-level declaration in a compilation
unit, the fully qualified name (§7.8.2) of the type declaration is the same as the
unqualified name of the declaration (§7.8.2). When a type declaration for a type T
occurs within a namespace, class, or struct declaration, the fully qualified name (§7.8.3)

13.6 Namespace member declarations

namespace_member_declaration
 : namespace_declaration
 | type_declaration
 ;

13.7 Type declarations

type_declaration
 : class_declaration
 | struct_declaration
 | interface_declaration
 | enum_declaration
 | delegate_declaration
 ;

of the type declarationis S.N , where S is the fully qualified name of the containing
namespace, class, or struct declaration, and N is the unqualified name of the declaration.

A type declared within a class or struct is called a nested type (§14.3.9).

The permitted access modifiers and the default access for a type declaration depend on
the context in which the declaration takes place (§7.5.2):

Types declared in compilation units or namespaces can have public or internal
access. The default is internal access.
Types declared in classes can have public , protected internal , protected ,
private protected , internal , or private access. The default is private access.
Types declared in structs can have public , internal , or private access. The
default is private access.

The namespace alias qualifier :: makes it possible to guarantee that type name
lookups are unaffected by the introduction of new types and members. The namespace
alias qualifier always appears between two identifiers referred to as the left-hand and
right-hand identifiers. Unlike the regular . qualifier, the left-hand identifier of the
:: qualifier is looked up only as an extern or using alias.

A qualified_alias_member provides explicit access to the global namespace and to extern
or using aliases that are potentially hidden by other entities.

ANTLR

A qualified_alias_member can be used as a namespace_or_type_name (§7.8) or as the left
operand in a member_access (§11.7.6).

A qualified_alias_member consists of two identifiers, referred to as the left-hand and
right-hand identifiers, seperated by the :: token and optionally followed by a
type_argument_list. When the left-hand identifier is global then the global namespace is
searched for the right-hand identifier. For any other left-hand identifier, that identifier is
looked up as an extern or using alias (§13.4 and §13.5.2). A compile-time error occurs if

13.8 Qualified alias member

13.8.1 General

qualified_alias_member
 : identifier '::' identifier type_argument_list?
 ;

there is no such alias or the alias references a type. If the alias references a namespace
then that namespace is searched for the right-hand identifier.

A qualified_alias_member has one of two forms:

N::I<A₁, ..., Aₑ> , where N and I represent identifiers, and <A₁, ..., Aₑ> is a
type argument list. (e is always at least one.)
N::I , where N and I represent identifiers. (In this case, e is considered to be
zero.)

Using this notation, the meaning of a qualified_alias_member is determined as follows:

If N is the identifier global , then the global namespace is searched for I :
If the global namespace contains a namespace named I and e is zero, then the
qualified_alias_member refers to that namespace.
Otherwise, if the global namespace contains a non-generic type named I and
e is zero, then the qualified_alias_member refers to that type.
Otherwise, if the global namespace contains a type named I that has e type
parameters, then the qualified_alias_member refers to that type constructed
with the given type arguments.
Otherwise, the qualified_alias_member is undefined and a compile-time error
occurs.

Otherwise, starting with the namespace declaration (§13.3) immediately containing
the qualified_alias_member (if any), continuing with each enclosing namespace
declaration (if any), and ending with the compilation unit containing the
qualified_alias_member, the following steps are evaluated until an entity is located:

If the namespace declaration or compilation unit contains a using_alias_directive
that associates N with a type, then the qualified_alias_member is undefined and
a compile-time error occurs.
Otherwise, if the namespace declaration or compilation unit contains an
extern_alias_directive or using_alias_directive that associates N with a
namespace, then:

If the namespace associated with N contains a namespace named I and e is
zero, then the qualified_alias_member refers to that namespace.
Otherwise, if the namespace associated with N contains a non-generic type
named I and e is zero, then the qualified_alias_member refers to that type.
Otherwise, if the namespace associated with N contains a type named I that
has e type parameters, then the qualified_alias_member refers to that type
constructed with the given type arguments.
Otherwise, the qualified_alias_member is undefined and a compile-time error
occurs.

Otherwise, the qualified_alias_member is undefined and a compile-time error
occurs.

Example: In the code:

C#

the class A is referenced with global::A and the type System.Net.Sockets.Socket is
referenced with S::Socket . Using A.x and S.Socket instead would have caused
compile-time errors because A and S would have resolved to the parameters.

end example

Note: The identifier global has special meaning only when used as the left-hand
identifier of a qualified_alias_name. It is not a keyword and it is not itself an alias; it is
a contextual keyword (§6.4.4). In the code:

C#

using global.A causes a compile-time error since there is no entity named global
in scope. If some entity named global were in scope, then global in global.A would

using S = System.Net.Sockets;

class A
{
 public static int x;
}

class C
{
 public void F(int A, object S)
 {
 // Use global::A.x instead of A.x
 global::A.x += A;
 // Use S::Socket instead of S.Socket
 S::Socket s = S as S::Socket;
 }
}

class A { }

class C
{
 global.A x; // Error: global is not defined
 global::A y; // Valid: References A in the global namespace
}

have resolved to that entity.

Using global as the left-hand identifier of a qualified_alias_member always causes a
lookup in the global namespace, even if there is a using alias named global . In the
code:

C#

global.A resolves to MyGlobalTypes.A and global::A resolves to class A in the
global namespace.

end note

Each compilation unit and namespace body has a separate declaration space for extern
aliases and using aliases. Thus, while the name of an extern alias or using alias shall be
unique within the set of extern aliases and using aliases declared in the immediately
containing compilation unit or namespace body, an alias is permitted to have the same
name as a type or namespace as long as it is used only with the :: qualifier.

Example: In the following:

C#

using global = MyGlobalTypes;

class A { }

class C
{
 global.A x; // Valid: References MyGlobalTypes.A
 global::A y; // Valid: References A in the global namespace
}

13.8.2 Uniqueness of aliases

namespace N
{
 public class A {}
 public class B {}
}

namespace N
{
 using A = System.IO;

 class X
 {

the name A has two possible meanings in the second namespace body because
both the class A and the using alias A are in scope. For this reason, use of A in the
qualified name A.Stream is ambiguous and causes a compile-time error to occur.
However, use of A with the :: qualifier is not an error because A is looked up only
as a namespace alias.

end example

 A.Stream s1; // Error, A is ambiguous
 A::Stream s2; // Ok
 }
}

14 Classes
Article • 2023-01-17 • 166 minutes to read

A class is a data structure that may contain data members (constants and fields),
function members (methods, properties, events, indexers, operators, instance
constructors, finalizers, and static constructors), and nested types. Class types support
inheritance, a mechanism whereby a derived class can extend and specialize a base
class.

A class_declaration is a type_declaration (§13.7) that declares a new class.

ANTLR

A class_declaration consists of an optional set of attributes (§21), followed by an optional
set of class_modifiers (§14.2.2), followed by an optional partial modifier (§14.2.7),
followed by the keyword class and an identifier that names the class, followed by an
optional type_parameter_list (§14.2.3), followed by an optional class_base specification
(§14.2.4), followed by an optional set of type_parameter_constraints_clauses (§14.2.5),
followed by a class_body (§14.2.6), optionally followed by a semicolon.

A class declaration shall not supply a type_parameter_constraints_clauses unless it also
supplies a type_parameter_list.

A class declaration that supplies a type_parameter_list is a generic class declaration.
Additionally, any class nested inside a generic class declaration or a generic struct
declaration is itself a generic class declaration, since type arguments for the containing
type shall be supplied to create a constructed type (§8.4).

14.1 General

14.2 Class declarations

14.2.1 General

class_declaration
 : attributes? class_modifier* 'partial'? 'class' identifier
 type_parameter_list? class_base? type_parameter_constraints_clause*
 class_body ';'?
 ;

A class_declaration may optionally include a sequence of class modifiers:

ANTLR

unsafe_modifier (§22.2) is only available in unsafe code (§22).

It is a compile-time error for the same modifier to appear multiple times in a class
declaration.

The new modifier is permitted on nested classes. It specifies that the class hides an
inherited member by the same name, as described in §14.3.5. It is a compile-time error
for the new modifier to appear on a class declaration that is not a nested class
declaration.

The public , protected , internal , and private modifiers control the accessibility of the
class. Depending on the context in which the class declaration occurs, some of these
modifiers might not be permitted (§7.5.2).

When a partial type declaration (§14.2.7) includes an accessibility specification (via the
public , protected , internal , and private modifiers), that specification shall agree with
all other parts that include an accessibility specification. If no part of a partial type
includes an accessibility specification, the type is given the appropriate default
accessibility (§7.5.2).

The abstract , sealed , and static modifiers are discussed in the following subclauses.

14.2.2 Class modifiers

14.2.2.1 General

class_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'abstract'
 | 'sealed'
 | 'static'
 | unsafe_modifier // unsafe code support
 ;

14.2.2.2 Abstract classes

The abstract modifier is used to indicate that a class is incomplete and that it is
intended to be used only as a base class. An abstract class differs from a non-abstract
class in the following ways:

An abstract class cannot be instantiated directly, and it is a compile-time error to
use the new operator on an abstract class. While it is possible to have variables and
values whose compile-time types are abstract, such variables and values will
necessarily either be null or contain references to instances of non-abstract
classes derived from the abstract types.
An abstract class is permitted (but not required) to contain abstract members.
An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class shall
include actual implementations of all inherited abstract members, thereby overriding
those abstract members.

Example: In the following code

C#

the abstract class A introduces an abstract method F . Class B introduces an
additional method G , but since it doesn’t provide an implementation of F , B shall
also be declared abstract. Class C overrides F and provides an actual
implementation. Since there are no abstract members in C , C is permitted (but not
required) to be non-abstract.

end example

abstract class A
{
 public abstract void F();
}

abstract class B : A
{
 public void G() {}
}

class C : B
{
 public override void F()
 {
 // Actual implementation of F
 }
}

If one or more parts of a partial type declaration (§14.2.7) of a class include the abstract
modifier, the class is abstract. Otherwise, the class is non-abstract.

The sealed modifier is used to prevent derivation from a class. A compile-time error
occurs if a sealed class is specified as the base class of another class.

A sealed class cannot also be an abstract class.

Note: The sealed modifier is primarily used to prevent unintended derivation, but it
also enables certain run-time optimizations. In particular, because a sealed class is
known to never have any derived classes, it is possible to transform virtual function
member invocations on sealed class instances into non-virtual invocations. end note

If one or more parts of a partial type declaration (§14.2.7) of a class include the sealed
modifier, the class is sealed. Otherwise, the class is unsealed.

The static modifier is used to mark the class being declared as a static class. A static
class shall not be instantiated, shall not be used as a type and shall contain only static
members. Only a static class can contain declarations of extension methods (§14.6.10).

A static class declaration is subject to the following restrictions:

A static class shall not include a sealed or abstract modifier. (However, since a
static class cannot be instantiated or derived from, it behaves as if it was both
sealed and abstract.)
A static class shall not include a class_base specification (§14.2.4) and cannot
explicitly specify a base class or a list of implemented interfaces. A static class
implicitly inherits from type object .
A static class shall only contain static members (§14.3.8).

Note: All constants and nested types are classified as static members. end note

A static class shall not have members with protected , private protected , or
protected internal declared accessibility.

14.2.2.3 Sealed classes

14.2.2.4 Static classes

14.2.2.4.1 General

It is a compile-time error to violate any of these restrictions.

A static class has no instance constructors. It is not possible to declare an instance
constructor in a static class, and no default instance constructor (§14.11.5) is provided
for a static class.

The members of a static class are not automatically static, and the member declarations
shall explicitly include a static modifier (except for constants and nested types). When
a class is nested within a static outer class, the nested class is not a static class unless it
explicitly includes a static modifier.

If one or more parts of a partial type declaration (§14.2.7) of a class include the static
modifier, the class is static. Otherwise, the class is not static.

A namespace_or_type_name (§7.8) is permitted to reference a static class if

The namespace_or_type_name is the T in a namespace_or_type_name of the form
T.I , or
The namespace_or_type-name is the T in a typeof_expression (§11.7.16) of the form
typeof(T) .

A primary_expression (§11.7) is permitted to reference a static class if

The primary_expression is the E in a member_access (§11.7.6) of the form E.I .

In any other context, it is a compile-time error to reference a static class.

Note: For example, it is an error for a static class to be used as a base class, a
constituent type (§14.3.7) of a member, a generic type argument, or a type
parameter constraint. Likewise, a static class cannot be used in an array type, a
pointer type, a new expression, a cast expression, an is expression, an as expression,
a sizeof expression, or a default value expression. end note

A type parameter is a simple identifier that denotes a placeholder for a type argument
supplied to create a constructed type. By constrast, a type argument (§8.4.2) is the type
that is substituted for the type parameter when a constructed type is created.

ANTLR

14.2.2.4.2 Referencing static class types

14.2.3 Type parameters

type_parameter is defined in §8.5.

Each type parameter in a class declaration defines a name in the declaration space (§7.3)
of that class. Thus, it cannot have the same name as another type parameter of that
class or a member declared in that class. A type parameter cannot have the same name
as the type itself.

Two partial generic type declarations (in the same program) contribute to the same
unbound generic type if they have the same fully qualified name (which includes a
generic_dimension_specifier (§11.7.16) for the number of type parameters) (§7.8.3). Two
such partial type declarations shall specify the same name for each type parameter, in
order.

A class declaration may include a class_base specification, which defines the direct base
class of the class and the interfaces (§17) directly implemented by the class.

ANTLR

type_parameter_list
 : '<' type_parameters '>'
 ;

type_parameters
 : attributes? type_parameter
 | type_parameters ',' attributes? type_parameter
 ;

14.2.4 Class base specification

14.2.4.1 General

class_base
 : ':' class_type
 | ':' interface_type_list
 | ':' class_type ',' interface_type_list
 ;

interface_type_list
 : interface_type (',' interface_type)*
 ;

14.2.4.2 Base classes

When a class_type is included in the class_base, it specifies the direct base class of the
class being declared. If a non-partial class declaration has no class_base, or if the
class_base lists only interface types, the direct base class is assumed to be object . When
a partial class declaration includes a base class specification, that base class specification
shall reference the same type as all other parts of that partial type that include a base
class specification. If no part of a partial class includes a base class specification, the
base class is object . A class inherits members from its direct base class, as described in
§14.3.4.

Example: In the following code

C#

Class A is said to be the direct base class of B , and B is said to be derived from A .
Since A does not explicitly specify a direct base class, its direct base class is
implicitly object .

end example

For a constructed class type, including a nested type declared within a generic type
declaration (§14.3.9.7), if a base class is specified in the generic class declaration, the
base class of the constructed type is obtained by substituting, for each type_parameter
in the base class declaration, the corresponding type_argument of the constructed type.

Example: Given the generic class declarations

C#

the base class of the constructed type G<int> would be B<string,int[]> .

end example

The base class specified in a class declaration can be a constructed class type (§8.4). A
base class cannot be a type parameter on its own (§8.5), though it can involve the type
parameters that are in scope.

class A {}
class B : A {}

class B<U,V> {...}
class G<T> : B<string,T[]> {...}

Example:

C#

end example

The direct base class of a class type shall be at least as accessible as the class type itself
(§7.5.5). For example, it is a compile-time error for a public class to derive from a private
or internal class.

The direct base class of a class type shall not be any of the following types:
System.Array , System.Delegate , System.Enum , or System.ValueType . Furthermore, a
generic class declaration shall not use System.Attribute as a direct or indirect base class
(§21.2.1).

In determining the meaning of the direct base class specification A of a class B , the
direct base class of B is temporarily assumed to be object , which ensures that the
meaning of a base class specification cannot recursively depend on itself.

Example: The following

C#

is in error since in the base class specification X<Z.Y> the direct base class of Z is
considered to be object , and hence (by the rules of §7.8) Z is not considered to
have a member Y .

end example

class Base<T> {}

// Valid, non-constructed class with constructed base class
class Extend1 : Base<int> {}

// Error, type parameter used as base class
class Extend2<V> : V {}

// Valid, type parameter used as type argument for base class
class Extend3<V> : Base<V> {}

class X<T>
{
 public class Y{}
}

class Z : X<Z.Y> {}

The base classes of a class are the direct base class and its base classes. In other words,
the set of base classes is the transitive closure of the direct base class relationship.

Example: In the following:

C#

the base classes of D<int> are C<int[]> , B<IComparable<int[]>> , A , and object .

end example

Except for class object , every class has exactly one direct base class. The object class
has no direct base class and is the ultimate base class of all other classes.

It is a compile-time error for a class to depend on itself. For the purpose of this rule, a
class directly depends on its direct base class (if any) and directly depends on the nearest
enclosing class within which it is nested (if any). Given this definition, the complete set of
classes upon which a class depends is the transitive closure of the directly depends on
relationship.

Example: The example

C#

is erroneous because the class depends on itself. Likewise, the example

C#

is in error because the classes circularly depend on themselves. Finally, the example

C#

class A {...}
class B<T> : A {...}
class C<T> : B<IComparable<T>> {...}
class D<T> : C<T[]> {...}

class A : A {}

class A : B {}
class B : C {}
class C : A {}

class A : B.C {}
class B : A

results in a compile-time error because A depends on B.C (its direct base class),
which depends on B (its immediately enclosing class), which circularly depends
on A .

end example

A class does not depend on the classes that are nested within it.

Example: In the following code

C#

B depends on A (because A is both its direct base class and its immediately
enclosing class), but A does not depend on B (since B is neither a base class nor an
enclosing class of A). Thus, the example is valid.

end example

It is not possible to derive from a sealed class.

Example: In the following code

C#

Class B is in error because it attempts to derive from the sealed class A .

end example

{
 public class C {}
}

class A
{
 class B : A {}
}

sealed class A {}
class B : A {} // Error, cannot derive from a sealed class

14.2.4.3 Interface implementations

A class_base specification may include a list of interface types, in which case the class is
said to implement the given interface types. For a constructed class type, including a
nested type declared within a generic type declaration (§14.3.9.7), each implemented
interface type is obtained by substituting, for each type_parameter in the given interface,
the corresponding type_argument of the constructed type.

The set of interfaces for a type declared in multiple parts (§14.2.7) is the union of the
interfaces specified on each part. A particular interface can only be named once on each
part, but multiple parts can name the same base interface(s). There shall only be one
implementation of each member of any given interface.

Example: In the following:

C#

the set of base interfaces for class C is IA , IB , and IC .

end example

Typically, each part provides an implementation of the interface(s) declared on that part;
however, this is not a requirement. A part can provide the implementation for an
interface declared on a different part.

Example:

C#

end example

The base interfaces specified in a class declaration can be constructed interface types
(§8.4, §17.2). A base interface cannot be a type parameter on its own, though it can

partial class C : IA, IB {...}
partial class C : IC {...}
partial class C : IA, IB {...}

partial class X
{
 int IComparable.CompareTo(object o) {...}
}

partial class X : IComparable
{
 ...
}

involve the type parameters that are in scope.

Example: The following code illustrates how a class can implement and extend
constructed types:

C#

end example

Interface implementations are discussed further in §17.6.

Generic type and method declarations can optionally specify type parameter constraints
by including type_parameter_constraints_clauses.

ANTLR

class C<U, V> {}
interface I1<V> {}
class D : C<string, int>, I1<string> {}
class E<T> : C<int, T>, I1<T> {}

14.2.5 Type parameter constraints

type_parameter_constraints_clauses
 : type_parameter_constraints_clause
 | type_parameter_constraints_clauses type_parameter_constraints_clause
 ;

type_parameter_constraints_clause
 : 'where' type_parameter ':' type_parameter_constraints
 ;

type_parameter_constraints
 : primary_constraint
 | secondary_constraints
 | constructor_constraint
 | primary_constraint ',' secondary_constraints
 | primary_constraint ',' constructor_constraint
 | secondary_constraints ',' constructor_constraint
 | primary_constraint ',' secondary_constraints ','
constructor_constraint
 ;

primary_constraint
 : class_type
 | 'class'
 | 'struct'
 ;

Each type_parameter_constraints_clause consists of the token where , followed by the
name of a type parameter, followed by a colon and the list of constraints for that type
parameter. There can be at most one where clause for each type parameter, and the
where clauses can be listed in any order. Like the get and set tokens in a property
accessor, the where token is not a keyword.

The list of constraints given in a where clause can include any of the following
components, in this order: a single primary constraint, one or more secondary
constraints, and the constructor constraint, new() .

A primary constraint can be a class type or the reference type constraint class or the
value type constraint struct . A secondary constraint can be a type_parameter or
interface_type.

The reference type constraint specifies that a type argument used for the type
parameter shall be a reference type. All class types, interface types, delegate types, array
types, and type parameters known to be a reference type (as defined below) satisfy this
constraint.

The value type constraint specifies that a type argument used for the type parameter
shall be a non-nullable value type. All non-nullable struct types, enum types, and type
parameters having the value type constraint satisfy this constraint. Note that although
classified as a value type, a nullable value type (§8.3.11) does not satisfy the value type
constraint. A type parameter having the value type constraint shall not also have the
constructor_constraint, although it may be used as a type argument for another type
parameter with a constructor_constraint.

Note: The System.Nullable<T> type specifies the non-nullable value type constraint
for T . Thus, recursively constructed types of the forms T?? and
Nullable<Nullable<T>> are prohibited. end note

secondary_constraints
 : interface_type
 | type_parameter
 | secondary_constraints ',' interface_type
 | secondary_constraints ',' type_parameter
 ;

constructor_constraint
 : 'new' '(' ')'
 ;

Pointer types are never allowed to be type arguments and are not considered to satisfy
either the reference type or value type constraints.

If a constraint is a class type, an interface type, or a type parameter, that type specifies a
minimal “base type” that every type argument used for that type parameter shall
support. Whenever a constructed type or generic method is used, the type argument is
checked against the constraints on the type parameter at compile-time. The type
argument supplied shall satisfy the conditions described in §8.4.5.

A class_type constraint shall satisfy the following rules:

The type shall be a class type.
The type shall not be sealed .
The type shall not be one of the following types: System.Array , System.Delegate ,
System.Enum , or System.ValueType .
The type shall not be object .
At most one constraint for a given type parameter may be a class type.

A type specified as an interface_type constraint shall satisfy the following rules:

The type shall be an interface type.
A type shall not be specified more than once in a given where clause.

In either case, the constraint may involve any of the type parameters of the associated
type or method declaration as part of a constructed type, and may involve the type
being declared.

Any class or interface type specified as a type parameter constraint shall be at least as
accessible (§7.5.5) as the generic type or method being declared.

A type specified as a type_parameter constraint shall satisfy the following rules:

The type shall be a type parameter.
A type shall not be specified more than once in a given where clause.

In addition there shall be no cycles in the dependency graph of type parameters, where
dependency is a transitive relation defined by:

If a type parameter T is used as a constraint for type parameter S then S depends
on T .
If a type parameter S depends on a type parameter T and T depends on a type
parameter U then S depends on U .

Given this relation, it is a compile-time error for a type parameter to depend on itself
(directly or indirectly).

Any constraints shall be consistent among dependent type parameters. If type
parameter S depends on type parameter T then:

T shall not have the value type constraint. Otherwise, T is effectively sealed so S
would be forced to be the same type as T , eliminating the need for two type
parameters.
If S has the value type constraint then T shall not have a class_type constraint.
If S has a class_type constraint A and T has a class_type constraint B then there
shall be an identity conversion or implicit reference conversion from A to B or an
implicit reference conversion from B to A .
If S also depends on type parameter U and U has a class_type constraint A and T
has a class_type constraint B then there shall be an identity conversion or implicit
reference conversion from A to B or an implicit reference conversion from B to A .

It is valid for S to have the value type constraint and T to have the reference type
constraint. Effectively this limits T to the types System.Object , System.ValueType ,
System.Enum , and any interface type.

If the where clause for a type parameter includes a constructor constraint (which has the
form new()), it is possible to use the new operator to create instances of the type
(§11.7.15.2). Any type argument used for a type parameter with a constructor constraint
shall be a value type, a non-abstract class having a public parameterless constructor, or
a type parameter having the value type constraint or constructor constraint.

It is a compile-time error for type_parameter_constraints having a primary_constraint of
struct to also have a constructor_constraint.

Example: The following are examples of constraints:

C#

interface IPrintable
{
 void Print();
}

interface IComparable<T>
{
 int CompareTo(T value);
}

interface IKeyProvider<T>

The following example is in error because it causes a circularity in the dependency
graph of the type parameters:

C#

The following examples illustrate additional invalid situations:

C#

{
 T GetKey();
}

class Printer<T> where T : IPrintable {...}
class SortedList<T> where T : IComparable<T> {...}

class Dictionary<K,V>
 where K : IComparable<K>
 where V : IPrintable, IKeyProvider<K>, new()
{
 ...
}

class Circular<S,T>
 where S: T
 where T: S // Error, circularity in dependency graph
{
 ...
}

class Sealed<S,T>
 where S : T
 where T : struct // Error, `T` is sealed
{
 ...
}

class A {...}
class B {...}

class Incompat<S,T>
 where S : A, T
 where T : B // Error, incompatible class-type constraints
{
 ...
}

class StructWithClass<S,T,U>
 where S : struct, T
 where T : U
 where U : A // Error, A incompatible with struct

end example

The dynamic erasure of a type C is type Cₓ constructed as follows:

If C is a nested type Outer.Inner then Cₓ is a nested type Outerₓ.Innerₓ .
If C Cₓ is a constructed type G<A¹, ..., Aⁿ> with type arguments A¹, ..., Aⁿ
then Cₓ is the constructed type G<A¹ₓ, ..., Aⁿₓ> .
If C is an array type E[] then Cₓ is the array type Eₓ[] .
If C is a pointer type E* then Cₓ is the pointer type Eₓ* .
If C is dynamic then Cₓ is object .
Otherwise, Cₓ is C .

The effective base class of a type parameter T is defined as follows:

Let R be a set of types such that:

For each constraint of T that is a type parameter, R contains its effective base
class.
For each constraint of T that is a struct type, R contains System.ValueType .
For each constraint of T that is an enumeration type, R contains System.Enum .
For each constraint of T that is a delegate type, R contains its dynamic erasure.
For each constraint of T that is an array type, R contains System.Array .
For each constraint of T that is a class type, R contains its dynamic erasure.

Then

If T has the value type constraint, its effective base class is System.ValueType .
Otherwise, if R is empty then the effective base class is object .
Otherwise, the effective base class of T is the most-encompassed type (§10.5.3) of
set R . If the set has no encompassed type, the effective base class of T is object .
The consistency rules ensure that the most-encompassed type exists.

If the type parameter is a method type parameter whose constraints are inherited from
the base method the effective base class is calculated after type substitution.

These rules ensure that the effective base class is always a class_type.

The effective interface set of a type parameter T is defined as follows:

{
 ...
}

If T has no secondary_constraints, its effective interface set is empty.
If T has interface_type constraints but no type_parameter constraints, its effective
interface set is the set of dynamic erasures of its interface_type constraints.
If T has no interface_type constraints but has type_parameter constraints, its
effective interface set is the union of the effective interface sets of its
type_parameter constraints.
If T has both interface_type constraints and type_parameter constraints, its
effective interface set is the union of the set of dynamic erasures of its
interface_type constraints and the effective interface sets of its type_parameter
constraints.

A type parameter is known to be a reference type if it has the reference type constraint or
its effective base class is not object or System.ValueType .

Values of a constrained type parameter type can be used to access the instance
members implied by the constraints.

Example: In the following:

C#

the methods of IPrintable can be invoked directly on x because T is constrained
to always implement IPrintable .

end example

When a partial generic type declaration includes constraints, the constraints shall agree
with all other parts that include constraints. Specifically, each part that includes
constraints shall have constraints for the same set of type parameters, and for each type
parameter, the sets of primary, secondary, and constructor constraints shall be
equivalent. Two sets of constraints are equivalent if they contain the same members. If
no part of a partial generic type specifies type parameter constraints, the type
parameters are considered unconstrained.

interface IPrintable
{
 void Print();
}

class Printer<T> where T : IPrintable
{
 void PrintOne(T x) => x.Print();
}

Example:

C#

is correct because those parts that include constraints (the first two) effectively
specify the same set of primary, secondary, and constructor constraints for the same
set of type parameters, respectively.

end example

The class_body of a class defines the members of that class.

ANTLR

The modifier partial is used when defining a class, struct, or interface type in multiple
parts. The partial modifier is a contextual keyword (§6.4.4) and only has special
meaning immediately before one of the keywords class , struct , or interface .

partial class Map<K,V>
 where K : IComparable<K>
 where V : IKeyProvider<K>, new()
{
 ...
}

partial class Map<K,V>
 where V : IKeyProvider<K>, new()
 where K : IComparable<K>
{
 ...
}

partial class Map<K,V>
{
 ...
}

14.2.6 Class body

class_body
 : '{' class_member_declaration* '}'
 ;

14.2.7 Partial declarations

Each part of a partial type declaration shall include a partial modifier and shall be
declared in the same namespace or containing type as the other parts. The partial
modifier indicates that additional parts of the type declaration might exist elsewhere,
but the existence of such additional parts is not a requirement; it is valid for the only
declaration of a type to include the partial modifier.

All parts of a partial type shall be compiled together such that the parts can be merged
at compile-time. Partial types specifically do not allow already compiled types to be
extended.

Nested types can be declared in multiple parts by using the partial modifier. Typically,
the containing type is declared using partial as well, and each part of the nested type
is declared in a different part of the containing type.

Example: The following partial class is implemented in two parts, which reside in
different compilation units. The first part is machine generated by a database-
mapping tool while the second part is manually authored:

C#

When the two parts above are compiled together, the resulting code behaves as if
the class had been written as a single unit, as follows:

C#

public partial class Customer
{
 private int id;
 private string name;
 private string address;
 private List<Order> orders;

 public Customer()
 {
 ...
 }
}

public partial class Customer
{
 public void SubmitOrder(Order orderSubmitted) =>
orders.Add(orderSubmitted);

 public bool HasOutstandingOrders() => orders.Count > 0;
}

end example

The handling of attributes specified on the type or type parameters of different parts of
a partial declaration is discussed in §21.3.

The members of a class consist of the members introduced by its
class_member_declarations and the members inherited from the direct base class.

ANTLR

public class Customer
{
 private int id;
 private string name;
 private string address;
 private List<Order> orders;

 public Customer()
 {
 ...
 }

 public void SubmitOrder(Order orderSubmitted) =>
orders.Add(orderSubmitted);

 public bool HasOutstandingOrders() => orders.Count > 0;
}

14.3 Class members

14.3.1 General

class_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | finalizer_declaration
 | static_constructor_declaration
 | type_declaration
 ;

The members of a class are divided into the following categories:

Constants, which represent constant values associated with the class (§14.4).
Fields, which are the variables of the class (§14.5).
Methods, which implement the computations and actions that can be performed
by the class (§14.6).
Properties, which define named characteristics and the actions associated with
reading and writing those characteristics (§14.7).
Events, which define notifications that can be generated by the class (§14.8).
Indexers, which permit instances of the class to be indexed in the same way
(syntactically) as arrays (§14.9).
Operators, which define the expression operators that can be applied to instances
of the class (§14.10).
Instance constructors, which implement the actions required to initialize instances
of the class (§14.11)
Finalizers, which implement the actions to be performed before instances of the
class are permanently discarded (§14.13).
Static constructors, which implement the actions required to initialize the class
itself (§14.12).
Types, which represent the types that are local to the class (§13.7).

A class_declaration creates a new declaration space (§7.3), and the type_parameters and
the class_member_declarations immediately contained by the class_declaration introduce
new members into this declaration space. The following rules apply to
class_member_declarations:

Instance constructors, finalizers, and static constructors shall have the same name
as the immediately enclosing class. All other members shall have names that differ
from the name of the immediately enclosing class.

The name of a type parameter in the type_parameter_list of a class declaration shall
differ from the names of all other type parameters in the same type_parameter_list
and shall differ from the name of the class and the names of all members of the
class.

The name of a type shall differ from the names of all non-type members declared
in the same class. If two or more type declarations share the same fully qualified
name, the declarations shall have the partial modifier (§14.2.7) and these
declarations combine to define a single type.

Note: Since the fully qualified name of a type declaration encodes the number of
type parameters, two distinct types may share the same name as long as they have
different number of type parameters. end note

The name of a constant, field, property, or event shall differ from the names of all
other members declared in the same class.

The name of a method shall differ from the names of all other non-methods
declared in the same class. In addition, the signature (§7.6) of a method shall differ
from the signatures of all other methods declared in the same class, and two
methods declared in the same class shall not have signatures that differ solely by
ref and out .

The signature of an instance constructor shall differ from the signatures of all other
instance constructors declared in the same class, and two constructors declared in
the same class shall not have signatures that differ solely by ref and out .

The signature of an indexer shall differ from the signatures of all other indexers
declared in the same class.

The signature of an operator shall differ from the signatures of all other operators
declared in the same class.

The inherited members of a class (§14.3.4) are not part of the declaration space of a
class.

Note: Thus, a derived class is allowed to declare a member with the same name or
signature as an inherited member (which in effect hides the inherited member). end
note

The set of members of a type declared in multiple parts (§14.2.7) is the union of the
members declared in each part. The bodies of all parts of the type declaration share the
same declaration space (§7.3), and the scope of each member (§7.7) extends to the
bodies of all the parts. The accessibility domain of any member always includes all the
parts of the enclosing type; a private member declared in one part is freely accessible
from another part. It is a compile-time error to declare the same member in more than
one part of the type, unless that member is a type having the partial modifier.

Example:

C#

partial class A
{
 int x; // Error, cannot declare x more than once

 partial class Inner // Ok, Inner is a partial type
 {
 int y;

end example

Field initialization order can be significant within C# code, and some guarantees are
provided, as defined in §14.5.6.1. Otherwise, the ordering of members within a type is
rarely significant, but may be significant when interfacing with other languages and
environments. In these cases, the ordering of members within a type declared in
multiple parts is undefined.

Each class declaration has an associated instance type. For a generic class declaration,
the instance type is formed by creating a constructed type (§8.4) from the type
declaration, with each of the supplied type arguments being the corresponding type
parameter. Since the instance type uses the type parameters, it can only be used where
the type parameters are in scope; that is, inside the class declaration. The instance type
is the type of this for code written inside the class declaration. For non-generic classes,
the instance type is simply the declared class.

Example: The following shows several class declarations along with their instance
types:

C#

end example

 }
}

partial class A
{
 int x; // Error, cannot declare x more than once

 partial class Inner // Ok, Inner is a partial type
 {
 int z;
 }
}

14.3.2 The instance type

class A<T> // instance type: A<T>
{
 class B {} // instance type: A<T>.B
 class C<U> {} // instance type: A<T>.C<U>
}
class D {} // instance type: D

The non-inherited members of a constructed type are obtained by substituting, for each
type_parameter in the member declaration, the corresponding type_argument of the
constructed type. The substitution process is based on the semantic meaning of type
declarations, and is not simply textual substitution.

Example: Given the generic class declaration

C#

the constructed type Gen<int[],IComparable<string>> has the following members:

C#

The type of the member a in the generic class declaration Gen is “two-dimensional
array of T ”, so the type of the member a in the constructed type above is “two-
dimensional array of single-dimensional array of int ”, or int[,][] .

end example

Within instance function members, the type of this is the instance type (§14.3.2) of the
containing declaration.

All members of a generic class can use type parameters from any enclosing class, either
directly or as part of a constructed type. When a particular closed constructed type
(§8.4.3) is used at run-time, each use of a type parameter is replaced with the type
argument supplied to the constructed type.

Example:

C#

14.3.3 Members of constructed types

class Gen<T,U>
{
 public T[,] a;
 public void G(int i, T t, Gen<U,T> gt) {...}
 public U Prop { get {...} set {...} }
 public int H(double d) {...}
}

public int[,][] a;
public void G(int i, int[] t, Gen<IComparable<string>,int[]> gt) {...}
public IComparable<string> Prop { get {...} set {...} }
public int H(double d) {...}

end example

A class inherits the members of its direct base class. Inheritance means that a class
implicitly contains all members of its direct base class, except for the instance
constructors, finalizers, and static constructors of the base class. Some important aspects
of inheritance are:

Inheritance is transitive. If C is derived from B , and B is derived from A , then C
inherits the members declared in B as well as the members declared in A .

A derived class extends its direct base class. A derived class can add new members
to those it inherits, but it cannot remove the definition of an inherited member.

Instance constructors, finalizers, and static constructors are not inherited, but all
other members are, regardless of their declared accessibility (§7.5). However,
depending on their declared accessibility, inherited members might not be
accessible in a derived class.

A derived class can hide (§7.7.2.3) inherited members by declaring new members
with the same name or signature. However, hiding an inherited member does not

class C<V>
{
 public V f1;
 public C<V> f2 = null;

 public C(V x)
 {
 this.f1 = x;
 this.f2 = this;
 }
}

class Application
{
 static void Main()
 {
 C<int> x1 = new C<int>(1);
 Console.WriteLine(x1.f1); // Prints 1

 C<double> x2 = new C<double>(3.1415);
 Console.WriteLine(x2.f1); // Prints 3.1415
 }
}

14.3.4 Inheritance

remove that member—it merely makes that member inaccessible directly through
the derived class.

An instance of a class contains a set of all instance fields declared in the class and
its base classes, and an implicit conversion (§10.2.8) exists from a derived class type
to any of its base class types. Thus, a reference to an instance of some derived
class can be treated as a reference to an instance of any of its base classes.

A class can declare virtual methods, properties, indexers, and events, and derived
classes can override the implementation of these function members. This enables
classes to exhibit polymorphic behavior wherein the actions performed by a
function member invocation vary depending on the run-time type of the instance
through which that function member is invoked.

The inherited members of a constructed class type are the members of the immediate
base class type (§14.2.4.2), which is found by substituting the type arguments of the
constructed type for each occurrence of the corresponding type parameters in the
base_class_specification. These members, in turn, are transformed by substituting, for
each type_parameter in the member declaration, the corresponding type_argument of
the base_class_specification.

Example:

C#

In the code above, the constructed type D<int> has a non-inherited member public
int G(string s) obtained by substituting the type argument int for the type
parameter T . D<int> also has an inherited member from the class declaration B .
This inherited member is determined by first determining the base class type
B<int[]> of D<int> by substituting int for T in the base class specification B<T[]> .
Then, as a type argument to B , int[] is substituted for U in public U F(long
index) , yielding the inherited member public int[] F(long index) .

end example

class B<U>
{
 public U F(long index) {...}
}

class D<T> : B<T[]>
{
 public T G(string s) {...}
}

A class_member_declaration is permitted to declare a member with the same name or
signature as an inherited member. When this occurs, the derived class member is said to
hide the base class member. See §7.7.2.3 for a precise specification of when a member
hides an inherited member.

An inherited member M is considered to be available if M is accessible and there is no
other inherited accessible member N that already hides M . Implicitly hiding an inherited
member is not considered an error, but it does cause the compiler to issue a warning
unless the declaration of the derived class member includes a new modifier to explicitly
indicate that the derived member is intended to hide the base member. If one or more
parts of a partial declaration (§14.2.7) of a nested type include the new modifier, no
warning is issued if the nested type hides an available inherited member.

If a new modifier is included in a declaration that doesn’t hide an available inherited
member, a warning to that effect is issued.

A class_member_declaration can have any one of the permitted kinds of declared
accessibility (§7.5.2): public , protected internal , protected , private protected ,
internal , or private . Except for the protected internal and private protected
combinations, it is a compile-time error to specify more than one access modifier. When
a class_member_declaration does not include any access modifiers, private is assumed.

Types that are used in the declaration of a member are called the constituent types of
that member. Possible constituent types are the type of a constant, field, property,
event, or indexer, the return type of a method or operator, and the parameter types of a
method, indexer, operator, or instance constructor. The constituent types of a member
shall be at least as accessible as that member itself (§7.5.5).

Members of a class are either static members or instance members.

Note: Generally speaking, it is useful to think of static members as belonging to
classes and instance members as belonging to objects (instances of classes). end
note

14.3.5 The new modifier

14.3.6 Access modifiers

14.3.7 Constituent types

14.3.8 Static and instance members

When a field, method, property, event, operator, or constructor declaration includes a
static modifier, it declares a static member. In addition, a constant or type declaration
implicitly declares a static member. Static members have the following characteristics:

When a static member M is referenced in a member_access (§11.7.6) of the form
E.M , E shall denote a type that has a member M . It is a compile-time error for E to
denote an instance.
A static field in a non-generic class identifies exactly one storage location. No
matter how many instances of a non-generic class are created, there is only ever
one copy of a static field. Each distinct closed constructed type (§8.4.3) has its own
set of static fields, regardless of the number of instances of the closed constructed
type.
A static function member (method, property, event, operator, or constructor) does
not operate on a specific instance, and it is a compile-time error to refer to this in
such a function member.

When a field, method, property, event, indexer, constructor, or finalizer declaration does
not include a static modifier, it declares an instance member. (An instance member is
sometimes called a non-static member.) Instance members have the following
characteristics:

When an instance member M is referenced in a member_access (§11.7.6) of the
form E.M , E shall denote an instance of a type that has a member M . It is a
binding-time error for E to denote a type.
Every instance of a class contains a separate set of all instance fields of the class.
An instance function member (method, property, indexer, instance constructor, or
finalizer) operates on a given instance of the class, and this instance can be
accessed as this (§11.7.12).

Example: The following example illustrates the rules for accessing static and instance
members:

C#

class Test
{
 int x;
 static int y;
 void F()
 {
 x = 1; // Ok, same as this.x = 1
 y = 1; // Ok, same as Test.y = 1
 }

 static void G()

The F method shows that in an instance function member, a simple_name (§11.7.4)
can be used to access both instance members and static members. The G method
shows that in a static function member, it is a compile-time error to access an
instance member through a simple_name. The Main method shows that in a
member_access (§11.7.6), instance members shall be accessed through instances,
and static members shall be accessed through types.

end example

A type declared within a class or struct is called a nested type. A type that is declared
within a compilation unit or namespace is called a non-nested type.

Example: In the following example:

C#

 {
 x = 1; // Error, cannot access this.x
 y = 1; // Ok, same as Test.y = 1
 }

 static void Main()
 {
 Test t = new Test();
 t.x = 1; // Ok
 t.y = 1; // Error, cannot access static member through
instance
 Test.x = 1; // Error, cannot access instance member through
type
 Test.y = 1; // Ok
 }
}

14.3.9 Nested types

14.3.9.1 General

class A
{
 class B
 {
 static void F()
 {
 Console.WriteLine("A.B.F");
 }
 }
}

class B is a nested type because it is declared within class A , and class A is a non-
nested type because it is declared within a compilation unit.

end example

The fully qualified name (§7.8.3) for a nested type declarationis S.N where S is the fully
qualified name of the type declarationin which type N is declared and N is the
unqualified name (§7.8.2) of the nested type declaration (including any
generic_dimension_specifier (§11.7.16)).

Non-nested types can have public or internal declared accessibility and have
internal declared accessibility by default. Nested types can have these forms of
declared accessibility too, plus one or more additional forms of declared accessibility,
depending on whether the containing type is a class or struct:

A nested type that is declared in a class can have any of the permitted kinds of
declared accessibility and, like other class members, defaults to private declared
accessibility.
A nested type that is declared in a struct can have any of three forms of declared
accessibility (public , internal , or private) and, like other struct members,
defaults to private declared accessibility.

Example: The example

C#

14.3.9.2 Fully qualified name

14.3.9.3 Declared accessibility

public class List
{
 // Private data structure
 private class Node
 {
 public object Data;
 public Node Next;

 public Node(object data, Node next)
 {
 this.Data = data;
 this.Next = next;
 }
 }

declares a private nested class Node .

end example

A nested type may hide (§7.7.2.2) a base member. The new modifier (§14.3.5) is
permitted on nested type declarations so that hiding can be expressed explicitly.

Example: The example

C#

 private Node first = null;
 private Node last = null;

 // Public interface
 public void AddToFront(object o) {...}
 public void AddToBack(object o) {...}
 public object RemoveFromFront() {...}
 public object RemoveFromBack() {...}
 public int Count { get {...} }
}

14.3.9.4 Hiding

class Base
{
 public static void M()
 {
 Console.WriteLine("Base.M");
 }
}

class Derived: Base
{
 public new class M
 {
 public static void F()
 {
 Console.WriteLine("Derived.M.F");
 }
 }
}

class Test
{
 static void Main()
 {
 Derived.M.F();
 }
}

shows a nested class M that hides the method M defined in Base .

end example

A nested type and its containing type do not have a special relationship with regard to
this_access (§11.7.12). Specifically, this within a nested type cannot be used to refer to
instance members of the containing type. In cases where a nested type needs access to
the instance members of its containing type, access can be provided by providing the
this for the instance of the containing type as a constructor argument for the nested
type.

Example: The following example

C#

14.3.9.5 this access

class C
{
 int i = 123;
 public void F()
 {
 Nested n = new Nested(this);
 n.G();
 }

 public class Nested
 {
 C this_c;

 public Nested(C c)
 {
 this_c = c;
 }

 public void G()
 {
 Console.WriteLine(this_c.i);
 }
 }
}

class Test
{
 static void Main()
 {
 C c = new C();
 c.F();
 }
}

shows this technique. An instance of C creates an instance of Nested , and passes its
own this to Nested ’s constructor in order to provide subsequent access to C ’s
instance members.

end example

A nested type has access to all of the members that are accessible to its containing type,
including members of the containing type that have private and protected declared
accessibility.

Example: The example

C#

shows a class C that contains a nested class Nested . Within Nested , the method G
calls the static method F defined in C , and F has private declared accessibility.

end example

A nested type also may access protected members defined in a base type of its
containing type.

Example: In the following code

C#

14.3.9.6 Access to private and protected members of the containing
type

class C
{
 private static void F() => Console.WriteLine("C.F");

 public class Nested
 {
 public static void G() => F();
 }
}

class Test
{
 static void Main() => C.Nested.G();
}

the nested class Derived.Nested accesses the protected method F defined in
Derived ’s base class, Base , by calling through an instance of Derived .

end example

A generic class declaration may contain nested type declarations. The type parameters
of the enclosing class may be used within the nested types. A nested type declaration
may contain additional type parameters that apply only to the nested type.

Every type declaration contained within a generic class declaration is implicitly a generic
type declaration. When writing a reference to a type nested within a generic type, the
containing constructed type, including its type arguments, shall be named. However,
from within the outer class, the nested type may be used without qualification; the
instance type of the outer class may be implicitly used when constructing the nested
type.

Example: The following shows three different correct ways to refer to a constructed
type created from Inner ; the first two are equivalent:

class Base
{
 protected void F() => Console.WriteLine("Base.F");
}

class Derived: Base
{
 public class Nested
 {
 public void G()
 {
 Derived d = new Derived();
 d.F(); // ok
 }
 }
}

class Test
{
 static void Main()
 {
 Derived.Nested n = new Derived.Nested();
 n.G();
 }
}

14.3.9.7 Nested types in generic classes

C#

end example

Although it is bad programming style, a type parameter in a nested type can hide a
member or type parameter declared in the outer type.

Example:

C#

end example

To facilitate the underlying C# run-time implementation, for each source member
declaration that is a property, event, or indexer, the implementation shall reserve two

class Outer<T>
{
 class Inner<U>
 {
 public static void F(T t, U u) {...}
 }

 static void F(T t)
 {
 Outer<T>.Inner<string>.F(t, "abc"); // These two statements
have
 Inner<string>.F(t, "abc"); // the same effect
 Outer<int>.Inner<string>.F(3, "abc"); // This type is different
 Outer.Inner<string>.F(t, "abc"); // Error, Outer needs
type arg
 }
}

class Outer<T>
{
 class Inner<T> // Valid, hides
Outer's T
 {
 public T t; // Refers to Inner's
T
 }
}

14.3.10 Reserved member names

14.3.10.1 General

method signatures based on the kind of the member declaration, its name, and its type
(§14.3.10.2, §14.3.10.3, §14.3.10.4). It is a compile-time error for a program to declare a
member whose signature matches a signature reserved by a member declared in the
same scope, even if the underlying run-time implementation does not make use of
these reservations.

The reserved names do not introduce declarations, thus they do not participate in
member lookup. However, a declaration’s associated reserved method signatures do
participate in inheritance (§14.3.4), and can be hidden with the new modifier (§14.3.5).

Note: The reservation of these names serves three purposes:

1. To allow the underlying implementation to use an ordinary identifier as a
method name for get or set access to the C# language feature.

2. To allow other languages to interoperate using an ordinary identifier as a
method name for get or set access to the C# language feature.

3. To help ensure that the source accepted by one conforming compiler is
accepted by another, by making the specifics of reserved member names
consistent across all C# implementations.

end note

The declaration of a finalizer (§14.13) also causes a signature to be reserved (§14.3.10.5).

For a property P (§14.7) of type T , the following signatures are reserved:

C#

Both signatures are reserved, even if the property is read-only or write-only.

Example: In the following code

C#

14.3.10.2 Member names reserved for properties

T get_P();
void set_P(T value);

class A
{
 public int P
 {
 get => 123;

A class A defines a read-only property P , thus reserving signatures for get_P and
set_P methods. A class B derives from A and hides both of these reserved
signatures. The example produces the output:

Console

end example

For an event E (§14.8) of delegate type T , the following signatures are reserved:

C#

 }
}

class B : A
{
 public new int get_P() => 456;

 public new void set_P(int value)
 {
 }
}

class Test
{
 static void Main()
 {
 B b = new B();
 A a = b;
 Console.WriteLine(a.P);
 Console.WriteLine(b.P);
 Console.WriteLine(b.get_P());
 }
}

123
123
456

14.3.10.3 Member names reserved for events

void add_E(T handler);
void remove_E(T handler);

14.3.10.4 Member names reserved for indexers

For an indexer (§14.9) of type T with parameter-list L , the following signatures are
reserved:

C#

Both signatures are reserved, even if the indexer is read-only or write-only.

Furthermore the member name Item is reserved.

For a class containing a finalizer (§14.13), the following signature is reserved:

C#

A constant is a class member that represents a constant value: a value that can be
computed at compile-time. A constant_declaration introduces one or more constants of
a given type.

ANTLR

A constant_declaration may include a set of attributes (§21), a new modifier (§14.3.5), and
any one of the permitted kinds of declared accessibility (§14.3.6). The attributes and
modifiers apply to all of the members declared by the constant_declaration. Even though
constants are considered static members, a constant_declaration neither requires nor

T get_Item(L);
void set_Item(L, T value);

14.3.10.5 Member names reserved for finalizers

void Finalize();

14.4 Constants

constant_declaration
 : attributes? constant_modifier* 'const' type constant_declarators ';'
 ;

constant_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

allows a static modifier. It is an error for the same modifier to appear multiple times in
a constant declaration.

The type of a constant_declaration specifies the type of the members introduced by the
declaration. The type is followed by a list of constant_declarators (§12.6.3), each of which
introduces a new member. A constant_declarator consists of an identifier that names the
member, followed by an “= ” token, followed by a constant_expression (§11.21) that gives
the value of the member.

The type specified in a constant declaration shall be sbyte , byte , short , ushort , int ,
uint , long , ulong , char , float , double , decimal , bool , string , an enum_type, or a
reference_type. Each constant_expression shall yield a value of the target type or of a type
that can be converted to the target type by an implicit conversion (§10.2).

The type of a constant shall be at least as accessible as the constant itself (§7.5.5).

The value of a constant is obtained in an expression using a simple_name (§11.7.4) or a
member_access (§11.7.6).

A constant can itself participate in a constant_expression. Thus, a constant may be used
in any construct that requires a constant_expression.

Note: Examples of such constructs include case labels, goto case statements, enum
member declarations, attributes, and other constant declarations. end note

Note: As described in §11.21, a constant_expression is an expression that can be fully
evaluated at compile-time. Since the only way to create a non-null value of a
reference_type other than string is to apply the new operator, and since the new
operator is not permitted in a constant_expression, the only possible value for
constants of reference_types other than string is null . end note

When a symbolic name for a constant value is desired, but when the type of that value is
not permitted in a constant declaration, or when the value cannot be computed at
compile-time by a constant_expression, a readonly field (§14.5.3) may be used instead.

Note: The versioning semantics of const and readonly differ (§14.5.3.3). end note

A constant declaration that declares multiple constants is equivalent to multiple
declarations of single constants with the same attributes, modifiers, and type.

Example:

C#

is equivalent to

C#

end example

Constants are permitted to depend on other constants within the same program as long
as the dependencies are not of a circular nature. The compiler automatically arranges to
evaluate the constant declarations in the appropriate order.

Example: In the following code

C#

the compiler first evaluates A.Y , then evaluates B.Z , and finally evaluates A.X ,
producing the values 10 , 11 , and 12 .

end example

Constant declarations may depend on constants from other programs, but such
dependencies are only possible in one direction.

class A
{
 public const double X = 1.0, Y = 2.0, Z = 3.0;
}

class A
{
 public const double X = 1.0;
 public const double Y = 2.0;
 public const double Z = 3.0;
}

class A
{
 public const int X = B.Z + 1;
 public const int Y = 10;
}

class B
{
 public const int Z = A.Y + 1;
}

Example: Referring to the example above, if A and B were declared in separate
programs, it would be possible for A.X to depend on B.Z , but B.Z could then not
simultaneously depend on A.Y . end example

A field is a member that represents a variable associated with an object or class. A
field_declaration introduces one or more fields of a given type.

ANTLR

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A field_declaration may include a set of attributes (§21), a new modifier (§14.3.5), a valid
combination of the four access modifiers (§14.3.6), and a static modifier (§14.5.2). In
addition, a field_declaration may include a readonly modifier (§14.5.3) or a volatile
modifier (§14.5.4), but not both. The attributes and modifiers apply to all of the
members declared by the field_declaration. It is an error for the same modifier to appear
multiple times in a field_declaration.

14.5 Fields

14.5.1 General

field_declaration
 : attributes? field_modifier* type variable_declarators ';'
 ;

field_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'readonly'
 | 'volatile'
 | unsafe_modifier // unsafe code support
 ;

variable_declarators
 : variable_declarator (',' variable_declarator)*
 ;

variable_declarator
 : identifier ('=' variable_initializer)?
 ;

The type of a field_declaration specifies the type of the members introduced by the
declaration. The type is followed by a list of variable_declarators, each of which
introduces a new member. A variable_declarator consists of an identifier that names that
member, optionally followed by an “= ” token and a variable_initializer (§14.5.6) that
gives the initial value of that member.

The type of a field shall be at least as accessible as the field itself (§7.5.5).

The value of a field is obtained in an expression using a simple_name (§11.7.4), a
member_access (§11.7.6) or a base_access (§11.7.13). The value of a non-readonly field is
modified using an assignment (§11.19). The value of a non-readonly field can be both
obtained and modified using postfix increment and decrement operators (§11.7.14) and
prefix increment and decrement operators (§11.8.6).

A field declaration that declares multiple fields is equivalent to multiple declarations of
single fields with the same attributes, modifiers, and type.

Example:

C#

is equivalent to

C#

end example

When a field declaration includes a static modifier, the fields introduced by the
declaration are static fields. When no static modifier is present, the fields introduced
by the declaration are instance fields. Static fields and instance fields are two of the

class A
{
 public static int X = 1, Y, Z = 100;
}

class A
{
 public static int X = 1;
 public static int Y;
 public static int Z = 100;
}

14.5.2 Static and instance fields

several kinds of variables (§9) supported by C#, and at times they are referred to as
static variables and instance variables, respectively.

As explained in §14.3.8, each instance of a class contains a complete set of the instance
fields of the class, while there is only one set of static fields for each non-generic class or
closed constructed type, regardless of the number of instances of the class or closed
constructed type.

When a field_declaration includes a readonly modifier, the fields introduced by the
declaration are readonly fields. Direct assignments to readonly fields can only occur as
part of that declaration or in an instance constructor or static constructor in the same
class. (A readonly field can be assigned to multiple times in these contexts.) Specifically,
direct assignments to a readonly field are permitted only in the following contexts:

In the variable_declarator that introduces the field (by including a
variable_initializer in the declaration).
For an instance field, in the instance constructors of the class that contains the field
declaration; for a static field, in the static constructor of the class that contains the
field declaration. These are also the only contexts in which it is valid to pass a
readonly field as an out or ref parameter.

Attempting to assign to a readonly field or pass it as an out or ref parameter in any
other context is a compile-time error.

A static readonly field is useful when a symbolic name for a constant value is desired,
but when the type of the value is not permitted in a const declaration, or when the value
cannot be computed at compile-time.

Example: In the following code

C#

14.5.3 Readonly fields

14.5.3.1 General

14.5.3.2 Using static readonly fields for constants

public class Color
{
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);
 public static readonly Color Red = new Color(255, 0, 0);

the Black , White , Red , Green , and Blue members cannot be declared as const
members because their values cannot be computed at compile-time. However,
declaring them static readonly instead has much the same effect.

end example

Constants and readonly fields have different binary versioning semantics. When an
expression references a constant, the value of the constant is obtained at compile-time,
but when an expression references a readonly field, the value of the field is not obtained
until run-time.

Example: Consider an application that consists of two separate programs:

C#

and

C#

 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 private byte red, green, blue;

 public Color(byte r, byte g, byte b)
 {
 red = r;
 green = g;
 blue = b;
 }
}

14.5.3.3 Versioning of constants and static readonly fields

namespace Program1
{
 public class Utils
 {
 public static readonly int x = 1;
 }
}

namespace Program2
{
 class Test
 {
 static void Main()
 {

The Program1 and Program2 namespaces denote two programs that are compiled
separately. Because Program1.Utils.X is declared as a static readonly field, the
value output by the Console.WriteLine statement is not known at compile-time, but
rather is obtained at run-time. Thus, if the value of X is changed and Program1 is
recompiled, the Console.WriteLine statement will output the new value even if
Program2 isn’t recompiled. However, had X been a constant, the value of X would
have been obtained at the time Program2 was compiled, and would remain
unaffected by changes in Program1 until Program2 is recompiled.

end example

When a field_declaration includes a volatile modifier, the fields introduced by that
declaration are volatile fields. For non-volatile fields, optimization techniques that
reorder instructions can lead to unexpected and unpredictable results in multi-threaded
programs that access fields without synchronization such as that provided by the
lock_statement (§12.13). These optimizations can be performed by the compiler, by the
run-time system, or by hardware. For volatile fields, such reordering optimizations are
restricted:

A read of a volatile field is called a volatile read. A volatile read has “acquire
semantics”; that is, it is guaranteed to occur prior to any references to memory that
occur after it in the instruction sequence.
A write of a volatile field is called a volatile write. A volatile write has “release
semantics”; that is, it is guaranteed to happen after any memory references prior to
the write instruction in the instruction sequence.

These restrictions ensure that all threads will observe volatile writes performed by any
other thread in the order in which they were performed. A conforming implementation
is not required to provide a single total ordering of volatile writes as seen from all
threads of execution. The type of a volatile field shall be one of the following:

A reference_type.
A type_parameter that is known to be a reference type (§14.2.5).
The type byte , sbyte , short , ushort , int , uint , char , float , bool ,
System.IntPtr , or System.UIntPtr .

 Console.WriteLine(Program1.Utils.X);
 }
 }
}

14.5.4 Volatile fields

An enum_type having an enum_base type of byte , sbyte , short , ushort , int , or
uint .

Example: The example

C#

produces the output:

Console

In this example, the method Main starts a new thread that runs the method
Thread2 . This method stores a value into a non-volatile field called result , then
stores true in the volatile field finished . The main thread waits for the field
finished to be set to true , then reads the field result . Since finished has been

class Test
{
 public static int result;
 public static volatile bool finished;

 static void Thread2()
 {
 result = 143;
 finished = true;
 }

 static void Main()
 {
 finished = false;

 // Run Thread2() in a new thread
 new Thread(new ThreadStart(Thread2)).Start();

 // Wait for Thread2() to signal that it has a result
 // by setting finished to true.
 for (;;)
 {
 if (finished)
 {
 Console.WriteLine($"result = {result}");
 return;
 }
 }
 }
}

result = 143

declared volatile , the main thread shall read the value 143 from the field result .
If the field finished had not been declared volatile , then it would be permissible
for the store to result to be visible to the main thread after the store to finished ,
and hence for the main thread to read the value 0 from the field result . Declaring
finished as a volatile field prevents any such inconsistency.

end example

The initial value of a field, whether it be a static field or an instance field, is the default
value (§9.3) of the field’s type. It is not possible to observe the value of a field before this
default initialization has occurred, and a field is thus never “uninitialized”.

Example: The example

C#

produces the output

Console

because b and i are both automatically initialized to default values.

end example

14.5.5 Field initialization

class Test
{
 static bool b;
 int i;

 static void Main()
 {
 Test t = new Test();
 Console.WriteLine($"b = {b}, i = {t.i}");
 }
}

b = False, i = 0

14.5.6 Variable initializers

14.5.6.1 General

Field declarations may include variable_initializers. For static fields, variable initializers
correspond to assignment statements that are executed during class initialization. For
instance fields, variable initializers correspond to assignment statements that are
executed when an instance of the class is created.

Example: The example

C#

produces the output

Console

because an assignment to x occurs when static field initializers execute and
assignments to i and s occur when the instance field initializers execute.

end example

The default value initialization described in §14.5.5 occurs for all fields, including fields
that have variable initializers. Thus, when a class is initialized, all static fields in that class
are first initialized to their default values, and then the static field initializers are
executed in textual order. Likewise, when an instance of a class is created, all instance
fields in that instance are first initialized to their default values, and then the instance
field initializers are executed in textual order. When there are field declarations in
multiple partial type declarations for the same type, the order of the parts is unspecified.
However, within each part the field initializers are executed in order.

It is possible for static fields with variable initializers to be observed in their default value
state.

class Test
{
 static double x = Math.Sqrt(2.0);
 int i = 100;
 string s = "Hello";

 static void Main()
 {
 Test a = new Test();
 Console.WriteLine($"x = {x}, i = {a.i}, s = {a.s}");
 }
}

x = 1.4142135623730951, i = 100, s = Hello

Example: However, this is strongly discouraged as a matter of style. The example

C#

exhibits this behavior. Despite the circular definitions of a and b , the program is
valid. It results in the output

Console

because the static fields a and b are initialized to 0 (the default value for int)
before their initializers are executed. When the initializer for a runs, the value of b
is zero, and so a is initialized to 1 . When the initializer for b runs, the value of a is
already 1 , and so b is initialized to 2 .

end example

The static field variable initializers of a class correspond to a sequence of assignments
that are executed in the textual order in which they appear in the class declaration
(§14.5.6.1). Within a partial class, the meaning of “textual order” is specified by §14.5.6.1.
If a static constructor (§14.12) exists in the class, execution of the static field initializers
occurs immediately prior to executing that static constructor. Otherwise, the static field
initializers are executed at an implementation-dependent time prior to the first use of a
static field of that class.

Example: The example

C#

class Test
{
 static int a = b + 1;
 static int b = a + 1;

 static void Main()
 {
 Console.WriteLine($"a = {a}, b = {b}");
 }
}

a = 1, b = 2

14.5.6.2 Static field initialization

class Test
{

might produce either the output:

Console

or the output:

Console

because the execution of X ’s initializer and Y ’s initializer could occur in either order;
they are only constrained to occur before the references to those fields. However, in
the example:

C#

 static void Main()
 {
 Console.WriteLine($"{B.Y} {A.X}");
 }

 public static int F(string s)
 {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 public static int X = Test.F("Init A");
}

class B
{
 public static int Y = Test.F("Init B");
}

Init A
Init B
1 1

Init B
Init A
1 1

class Test
{
 static void Main()
 {
 Console.WriteLine($"{B.Y} {A.X}");
 }

the output shall be:

Console

because the rules for when static constructors execute (as defined in §14.12) provide
that B ’s static constructor (and hence B ’s static field initializers) shall run before
A ’s static constructor and field initializers.

end example

The instance field variable initializers of a class correspond to a sequence of assignments
that are executed immediately upon entry to any one of the instance constructors
(§14.11.3) of that class. Within a partial class, the meaning of “textual order” is specified
by §14.5.6.1. The variable initializers are executed in the textual order in which they
appear in the class declaration (§14.5.6.1). The class instance creation and initialization
process is described further in §14.11.

A variable initializer for an instance field cannot reference the instance being created.
Thus, it is a compile-time error to reference this in a variable initializer, as it is a
compile-time error for a variable initializer to reference any instance member through a
simple_name.

 public static int F(string s)
 {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 static A() {}
 public static int X = Test.F("Init A");
}

class B
{
 static B() {}
 public static int Y = Test.F("Init B");
}

Init B
Init A
1 1

14.5.6.3 Instance field initialization

Example: In the following code

C#

the variable initializer for y results in a compile-time error because it references a
member of the instance being created.

end example

A method is a member that implements a computation or action that can be performed
by an object or class. Methods are declared using method_declarations:

ANTLR

class A
{
 int x = 1;
 int y = x + 1; // Error, reference to instance member of this
}

14.6 Methods

14.6.1 General

method_declaration
 : method_header method_body
 ;

method_header
 : attributes? method_modifier* 'partial'? return_type member_name
 type_parameter_list? '(' formal_parameter_list? ')'
 type_parameter_constraints_clause*
 ;

method_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | 'async'
 | unsafe_modifier // unsafe code support

Grammar notes:

unsafe_modifier (§22.2) is only available in unsafe code (§22).
when recognising a method_body if both the null_conditional_invocation_expression
and expression alternatives are applicable then the former shall be chosen.

Note: The overlapping of, and priority between, alternatives here is solely for
descriptive convenience; the grammar rules could be elaborated to remove the
overlap. ANTLR, and other grammar systems, adopt the same convenience and so
method_body has the specified semantics automatically.

A method_declaration may include a set of attributes (§21) and one of the permitted
kinds of declared accessibility (§14.3.6), the new (§14.3.5), static (§14.6.3), virtual
(§14.6.4), override (§14.6.5), sealed (§14.6.6), abstract (§14.6.7), extern (§14.6.8) and
async (§14.15) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

The declaration includes a valid combination of access modifiers (§14.3.6).
The declaration does not include the same modifier multiple times.
The declaration includes at most one of the following modifiers: static , virtual ,
and override .
The declaration includes at most one of the following modifiers: new and override .
If the declaration includes the abstract modifier, then the declaration does not
include any of the following modifiers: static , virtual , sealed , or extern .

 ;

return_type
 : type
 | 'void'
 ;

member_name
 : identifier
 | interface_type '.' identifier
 ;

method_body
 : block
 | '=>' null_conditional_invocation_expression ';'
 | '=>' expression ';'
 | ';'
 ;

If the declaration includes the private modifier, then the declaration does not
include any of the following modifiers: virtual , override , or abstract .
If the declaration includes the sealed modifier, then the declaration also includes
the override modifier.
If the declaration includes the partial modifier, then it does not include any of the
following modifiers: new, public , protected , internal , private , virtual , sealed ,
override , abstract , or extern .

The return_type of a method declaration specifies the type of the value computed and
returned by the method. The return_type is void if the method does not return a value.
If the declaration includes the partial modifier, then the return type shall be void
(§14.6.9). If the declaration includes the async modifier then the return type shall be
void or a task type (§14.15.1).

A generic method is a method whose declaration includes a type_parameter_list. This
specifies the type parameters for the method. The optional
type_parameter_constraints_clauses specify the constraints for the type parameters. A
method_declaration shall not have type_parameter_constraints_clauses unless it also has a
type_parameter_list. A method_declaration for an explicit interface member
implementation shall not have any type_parameter_constraints_clauses. A generic
method_declaration for an explicit interface member implementation inherits any
constraints from the constraints on the interface method. Similarly, a method
declaration with the override modifier shall not have any
type_parameter_constraints_clauses and the constraints of the method’s type parameters
are inherited from the virtual method being overridden.The member_name specifies the
name of the method. Unless the method is an explicit interface member implementation
(§17.6.2), the member_name is simply an identifier. For an explicit interface member
implementation, the member_name consists of an interface_type followed by a “. ” and
an identifier. In this case, the declaration shall include no modifiers other than (possibly)
extern or async .

The optional formal_parameter_list specifies the parameters of the method (§14.6.2).

The return_type and each of the types referenced in the formal_parameter_list of a
method shall be at least as accessible as the method itself (§7.5.5).

The method_body is either a semicolon, a block body or an expression body. A block
body consists of a block, which specifies the statements to execute when the method is
invoked. An expression body consists of => , followed by a
null_conditional_invocation_expression or expression, followed by a semicolon, and
denotes a single expression to perform when the method is invoked.

For abstract and extern methods, the method_body consists simply of a semicolon. For
partial methods the method_body may consist of either a semicolon, a block body or an
expression body. For all other methods, the method_body is either a block body or an
expression body.

If the method_body consists of a semicolon, the declaration shall not include the async
modifier.

The name, the number of type parameters, and the formal parameter list of a method
define the signature (§7.6) of the method. Specifically, the signature of a method
consists of its name, the number of its type parameters, and the number,
parameter_mode_modifiers (§14.6.2.1), and types of its formal parameters. The return
type is not part of a method’s signature, nor are the names of the formal parameters,
the names of the type parameters, or the constraints. When a formal parameter type
references a type parameter of the method, the ordinal position of the type parameter
(not the name of the type parameter) is used for type equivalence.

The name of a method shall differ from the names of all other non-methods declared in
the same class. In addition, the signature of a method shall differ from the signatures of
all other methods declared in the same class, and two methods declared in the same
class may not have signatures that differ solely by ref and out .

The method’s type_parameters are in scope throughout the method_declaration, and can
be used to form types throughout that scope in return_type, method_body, and
type_parameter_constraints_clauses but not in attributes.

All formal parameters and type parameters shall have different names.

The parameters of a method, if any, are declared by the method’s formal_parameter_list.

ANTLR

14.6.2 Method parameters

14.6.2.1 General

formal_parameter_list
 : fixed_parameters
 | fixed_parameters ',' parameter_array
 | parameter_array
 ;

fixed_parameters
 : fixed_parameter (',' fixed_parameter)*
 ;

The formal parameter list consists of one or more comma-separated parameters of
which only the last may be a parameter_array.

A fixed_parameter consists of an optional set of attributes (§21); an optional ref , out , or
this modifier; a type; an identifier; and an optional default_argument. Each
fixed_parameter declares a parameter of the given type with the given name. The this
modifier designates the method as an extension method and is only allowed on the first
parameter of a static method in a non-generic, non-nested static class. Extension
methods are further described in §14.6.10. A fixed_parameter with a default_argument is
known as an optional parameter, whereas a fixed_parameter without a default_argument
is a required parameter. A required parameter may not appear after an optional
parameter in a formal_parameter_list.

A parameter with a ref , out or this modifier cannot have a default_argument. The
expression in a default_argument shall be one of the following:

a constant_expression
an expression of the form new S() where S is a value type
an expression of the form default(S) where S is a value type

The expression shall be implicitly convertible by an identity or nullable conversion to the
type of the parameter.

fixed_parameter
 : attributes? parameter_modifier? type identifier default_argument?
 ;

default_argument
 : '=' expression
 ;

parameter_modifier
 : parameter_mode_modifier
 | 'this'
 ;

parameter_mode_modifier
 : 'ref'
 | 'out'
 ;

parameter_array
 : attributes? 'params' array_type identifier
 ;

If optional parameters occur in an implementing partial method declaration (§14.6.9), an
explicit interface member implementation (§17.6.2), a single-parameter indexer
declaration (§14.9), or in an operator declaration (§14.10.1) the compiler should give a
warning, since these members can never be invoked in a way that permits arguments to
be omitted.

A parameter_array consists of an optional set of attributes (§21), a params modifier, an
array_type, and an identifier. A parameter array declares a single parameter of the given
array type with the given name. The array_type of a parameter array shall be a single-
dimensional array type (§16.2). In a method invocation, a parameter array permits either
a single argument of the given array type to be specified, or it permits zero or more
arguments of the array element type to be specified. Parameter arrays are described
further in §14.6.2.5.

A parameter_array may occur after an optional parameter, but cannot have a default
value – the omission of arguments for a parameter_array would instead result in the
creation of an empty array.

Example: The following illustrates different kinds of parameters:

C#

In the formal_parameter_list for M , i is a required ref parameter, d is a required
value parameter, b , s , o and t are optional value parameters and a is a parameter
array.

end example

A method declaration creates a separate declaration space (§7.3) for parameters and
type parameters. Names are introduced into this declaration space by the type
parameter list and the formal parameter list of the method. The body of the method, if
any, is considered to be nested within this declaration space. It is an error for two
members of a method declaration space to have the same name. It is an error for the

void M<T>(
 ref int i,
 decimal d,
 bool b = false,
 bool? n = false,
 string s = "Hello",
 object o = null,
 T t = default(T),
 params int[] a
) { }

method declaration space and the local variable declaration space of a nested
declaration space to contain elements with the same name.

A method invocation (§11.7.8.2) creates a copy, specific to that invocation, of the formal
parameters and local variables of the method, and the argument list of the invocation
assigns values or variable references to the newly created formal parameters. Within the
block of a method, formal parameters can be referenced by their identifiers in
simple_name expressions (§11.7.4).

There are four kinds of formal parameters:

Value parameters, which are declared without any modifiers.
Reference parameters, which are declared with the ref modifier.
Output parameters, which are declared with the out modifier.
Parameter arrays, which are declared with the params modifier.

Note: As described in §7.6, the ref and out modifiers are part of a method’s
signature, but the params modifier is not.

A parameter declared with no modifiers is a value parameter. A value parameter
corresponds to a local variable that gets its initial value from the corresponding
argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a
method invocation shall be an expression that is implicitly convertible (§10.2) to the
formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments
only affect the local storage location represented by the value parameter—they have no
effect on the actual argument given in the method invocation.

A parameter declared with a ref modifier is a reference parameter. Unlike a value
parameter, a reference parameter does not create a new storage location. Instead, a
reference parameter represents the same storage location as the variable given as the
argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a
method invocation shall consist of the keyword ref followed by a variable_reference

14.6.2.2 Value parameters

14.6.2.3 Reference parameters

(§9.5) of the same type as the formal parameter. A variable shall be definitely assigned
before it can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

A method declared as an iterator (§14.14) may not have reference parameters.

Example: The example

C#

produces the output

Console

For the invocation of Swap in Main , x represents i and y represents j . Thus, the
invocation has the effect of swapping the values of i and j .

end example

In a method that takes reference parameters, it is possible for multiple names to
represent the same storage location.

Example: In the following code

C#

class Test
{
 static void Swap(ref int x, ref int y)
 {
 int temp = x;
 x = y;
 y = temp;
 }

 static void Main()
 {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine($"i = {i}, j = {j}");
 }
}

i = 2, j = 1

class A
{

the invocation of F in G passes a reference to s for both a and b . Thus, for that
invocation, the names s , a , and b all refer to the same storage location, and the
three assignments all modify the instance field s .

end example

A parameter declared with an out modifier is an output parameter. Similar to a
reference parameter, an output parameter does not create a new storage location.
Instead, an output parameter represents the same storage location as the variable given
as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a
method invocation shall consist of the keyword out followed by a variable_reference
(§9.5) of the same type as the formal parameter. A variable need not be definitely
assigned before it can be passed as an output parameter, but following an invocation
where a variable was passed as an output parameter, the variable is considered
definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered
unassigned and shall be definitely assigned before its value is used.

Every output parameter of a method shall be definitely assigned before the method
returns.

A method declared as a partial method (§14.6.9) or an iterator (§14.14) may not have
output parameters.

Output parameters are typically used in methods that produce multiple return values.

Example:

 string s;
 void F(ref string a, ref string b)
 {
 s = "One";
 a = "Two";
 b = "Three";
 }

 void G()
 {
 F(ref s, ref s);
 }
}

14.6.2.4 Output parameters

C#

The example produces the output:

Console

Note that the dir and name variables can be unassigned before they are passed to
SplitPath , and that they are considered definitely assigned following the call.

end example

A parameter declared with a params modifier is a parameter array. If a formal parameter
list includes a parameter array, it shall be the last parameter in the list and it shall be of a
single-dimensional array type.

class Test
{
 static void SplitPath(string path, out string dir, out string name)
 {
 int i = path.Length;
 while (i > 0)
 {
 char ch = path[i - 1];
 if (ch == '\\' || ch == '/' || ch == ':')
 {
 break;
 }
 i--;
 }
 dir = path.Substring(0, i);
 name = path.Substring(i);
 }

 static void Main()
 {
 string dir, name;
 SplitPath(@"c:\Windows\System\hello.txt", out dir, out name);
 Console.WriteLine(dir);
 Console.WriteLine(name);
 }
}

c:\Windows\System\
hello.txt

14.6.2.5 Parameter arrays

Example: The types string[] and string[][] can be used as the type of a
parameter array, but the type string[,] can not. end example

It is not possible to combine the params modifier with the modifiers ref and out .

A parameter array permits arguments to be specified in one of two ways in a method
invocation:

The argument given for a parameter array can be a single expression that is
implicitly convertible (§10.2) to the parameter array type. In this case, the
parameter array acts precisely like a value parameter.
Alternatively, the invocation can specify zero or more arguments for the parameter
array, where each argument is an expression that is implicitly convertible (§10.2) to
the element type of the parameter array. In this case, the invocation creates an
instance of the parameter array type with a length corresponding to the number of
arguments, initializes the elements of the array instance with the given argument
values, and uses the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array
is precisely equivalent to a value parameter (§14.6.2.2) of the same type.

Example: The example

C#

produces the output

class Test
{
 static void F(params int[] args)
 {
 Console.Write($"Array contains {args.Length} elements:");
 foreach (int i in args)
 {
 Console.Write($" {i}");
 }
 Console.WriteLine();
 }

 static void Main()
 {
 int[] arr = {1, 2, 3};
 F(arr);
 F(10, 20, 30, 40);
 F();
 }
}

Console

The first invocation of F simply passes the array arr as a value parameter. The
second invocation of F automatically creates a four-element int[] with the given
element values and passes that array instance as a value parameter. Likewise, the
third invocation of F creates a zero-element int[] and passes that instance as a
value parameter. The second and third invocations are precisely equivalent to
writing:

C#

end example

When performing overload resolution, a method with a parameter array might be
applicable, either in its normal form or in its expanded form (§11.6.4.2). The expanded
form of a method is available only if the normal form of the method is not applicable
and only if an applicable method with the same signature as the expanded form is not
already declared in the same type.

Example: The example

C#

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

F(new int[] {10, 20, 30, 40});
F(new int[] {});

class Test
{
 static void F(params object[] a) =>
 Console.WriteLine("F(object[])");

 static void F() =>
 Console.WriteLine("F()");

 static void F(object a0, object a1) =>
 Console.WriteLine("F(object,object)");

 static void Main()
 {
 F();
 F(1);
 F(1, 2);

produces the output

Console

In the example, two of the possible expanded forms of the method with a parameter
array are already included in the class as regular methods. These expanded forms
are therefore not considered when performing overload resolution, and the first and
third method invocations thus select the regular methods. When a class declares a
method with a parameter array, it is not uncommon to also include some of the
expanded forms as regular methods. By doing so, it is possible to avoid the
allocation of an array instance that occurs when an expanded form of a method with
a parameter array is invoked.

end example

An array is a reference type, so the value passed for a parameter array can be null .

Example: The example:

C#

produces the output:

 F(1, 2, 3);
 F(1, 2, 3, 4);
 }
}

F()
F(object[])
F(object,object)
F(object[])
F(object[])

class Test
{
 static void F(params string[] array) =>
 Console.WriteLine(array == null);

 static void Main()
 {
 F(null);
 F((string) null);
 }
}

Console

The second invocation produces False as it is equivalent to F(new string[] { null
}) and passes an array containing a single null reference.

end example

When the type of a parameter array is object[] , a potential ambiguity arises between
the normal form of the method and the expanded form for a single object parameter.
The reason for the ambiguity is that an object[] is itself implicitly convertible to type
object . The ambiguity presents no problem, however, since it can be resolved by
inserting a cast if needed.

Example: The example

C#

produces the output

Console

True
False

class Test
{
 static void F(params object[] args)
 {
 foreach (object o in args)
 {
 Console.Write(o.GetType().FullName);
 Console.Write(" ");
 }
 Console.WriteLine();
 }

 static void Main()
 {
 object[] a = {1, "Hello", 123.456};
 object o = a;
 F(a);
 F((object)a);
 F(o);
 F((object[])o);
 }
}

In the first and last invocations of F , the normal form of F is applicable because an
implicit conversion exists from the argument type to the parameter type (both are
of type object[]). Thus, overload resolution selects the normal form of F , and the
argument is passed as a regular value parameter. In the second and third
invocations, the normal form of F is not applicable because no implicit conversion
exists from the argument type to the parameter type (type object cannot be
implicitly converted to type object[]). However, the expanded form of F is
applicable, so it is selected by overload resolution. As a result, a one-element
object[] is created by the invocation, and the single element of the array is
initialized with the given argument value (which itself is a reference to an object[]).

end example

When a method declaration includes a static modifier, that method is said to be a
static method. When no static modifier is present, the method is said to be an instance
method.

A static method does not operate on a specific instance, and it is a compile-time error to
refer to this in a static method.

An instance method operates on a given instance of a class, and that instance can be
accessed as this (§11.7.12).

The differences between static and instance members are discussed further in §14.3.8.

When an instance method declaration includes a virtual modifier, that method is said to
be a virtual method. When no virtual modifier is present, the method is said to be a
non-virtual method.

The implementation of a non-virtual method is invariant: The implementation is the
same whether the method is invoked on an instance of the class in which it is declared
or an instance of a derived class. In contrast, the implementation of a virtual method can

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

14.6.3 Static and instance methods

14.6.4 Virtual methods

be superseded by derived classes. The process of superseding the implementation of an
inherited virtual method is known as overriding that method (§14.6.5).

In a virtual method invocation, the run-time type of the instance for which that
invocation takes place determines the actual method implementation to invoke. In a
non-virtual method invocation, the compile-time type of the instance is the determining
factor. In precise terms, when a method named N is invoked with an argument list A on
an instance with a compile-time type C and a run-time type R (where R is either C or a
class derived from C), the invocation is processed as follows:

At binding-time, overload resolution is applied to C , N , and A , to select a specific
method M from the set of methods declared in and inherited by C . This is
described in §11.7.8.2.
Then at run-time:

If M is a non-virtual method, M is invoked.
Otherwise, M is a virtual method, and the most derived implementation of M
with respect to R is invoked.

For every virtual method declared in or inherited by a class, there exists a most derived
implementation of the method with respect to that class. The most derived
implementation of a virtual method M with respect to a class R is determined as follows:

If R contains the introducing virtual declaration of M , then this is the most derived
implementation of M with respect to R .
Otherwise, if R contains an override of M , then this is the most derived
implementation of M with respect to R .
Otherwise, the most derived implementation of M with respect to R is the same as
the most derived implementation of M with respect to the direct base class of R .

Example: The following example illustrates the differences between virtual and non-
virtual methods:

C#

class A
{
 public void F() => Console.WriteLine("A.F");
 public virtual void G() => Console.WriteLine("A.G");
}

class B : A
{
 public new void F() => Console.WriteLine("B.F");
 public override void G() => Console.WriteLine("B.G");

In the example, A introduces a non-virtual method F and a virtual method G . The
class B introduces a new non-virtual method F , thus hiding the inherited F , and
also overrides the inherited method G . The example produces the output:

Console

Notice that the statement a.G() invokes B.G , not A.G . This is because the run-time
type of the instance (which is B), not the compile-time type of the instance (which
is A), determines the actual method implementation to invoke.

end example

Because methods are allowed to hide inherited methods, it is possible for a class to
contain several virtual methods with the same signature. This does not present an
ambiguity problem, since all but the most derived method are hidden.

Example: In the following code

C#

}

class Test
{
 static void Main()
 {
 B b = new B();
 A a = b;
 a.F();
 b.F();
 a.G();
 b.G();
 }
}

A.F
B.F
B.G
B.G

class A
{
 public virtual void F() => Console.WriteLine("A.F");
}

class B : A
{
 public override void F() => Console.WriteLine("B.F");

the C and D classes contain two virtual methods with the same signature: The one
introduced by A and the one introduced by C . The method introduced by C hides
the method inherited from A . Thus, the override declaration in D overrides the
method introduced by C , and it is not possible for D to override the method
introduced by A . The example produces the output:

Console

Note that it is possible to invoke the hidden virtual method by accessing an instance
of D through a less derived type in which the method is not hidden.

end example

}

class C : B
{
 public new virtual void F() => Console.WriteLine("C.F");
}

class D : C
{
 public override void F() => Console.WriteLine("D.F");
}

class Test
{
 static void Main()
 {
 D d = new D();
 A a = d;
 B b = d;
 C c = d;
 a.F();
 b.F();
 c.F();
 d.F();
 }
}

B.F
B.F
D.F
D.F

14.6.5 Override methods

When an instance method declaration includes an override modifier, the method is said
to be an override method. An override method overrides an inherited virtual method
with the same signature. Whereas a virtual method declaration introduces a new
method, an override method declaration specializes an existing inherited virtual method
by providing a new implementation of that method.

The method overridden by an override declaration is known as the overridden base
method For an override method M declared in a class C , the overridden base method is
determined by examining each base class of C , starting with the direct base class of C
and continuing with each successive direct base class, until in a given base class type at
least one accessible method is located which has the same signature as M after
substitution of type arguments. For the purposes of locating the overridden base
method, a method is considered accessible if it is public , if it is protected , if it is
protected internal , or if it is either internal or private protected and declared in the
same program as C .

A compile-time error occurs unless all of the following are true for an override
declaration:

An overridden base method can be located as described above.
There is exactly one such overridden base method. This restriction has effect only if
the base class type is a constructed type where the substitution of type arguments
makes the signature of two methods the same.
The overridden base method is a virtual, abstract, or override method. In other
words, the overridden base method cannot be static or non-virtual.
The overridden base method is not a sealed method.
There is an identity conversion between the return type of the overridden base
method and the override method.
The override declaration and the overridden base method have the same declared
accessibility. In other words, an override declaration cannot change the
accessibility of the virtual method. However, if the overridden base method is
protected internal and it is declared in a different assembly than the assembly
containing the override declaration then the override declaration’s declared
accessibility shall be protected.
The override declaration does not specify any type_parameter_constraints_clauses.
Instead, the constraints are inherited from the overridden base method.
Constraints that are type parameters in the overridden method may be replaced by
type arguments in the inherited constraint. This can lead to constraints that are not
valid when explicitly specified, such as value types or sealed types.

Example: The following demonstrates how the overriding rules work for generic
classes:

C#

end example

An override declaration can access the overridden base method using a base_access
(§11.7.13).

Example: In the following code

C#

abstract class C<T>
{
 public virtual T F() {...}
 public virtual C<T> G() {...}
 public virtual void H(C<T> x) {...}
}

class D : C<string>
{
 public override string F() {...} // Ok
 public override C<string> G() {...} // Ok
 public override void H(C<T> x) {...} // Error, should be
C<string>
}

class E<T,U> : C<U>
{
 public override U F() {...} // Ok
 public override C<U> G() {...} // Ok
 public override void H(C<T> x) {...} // Error, should be C<U>
}

class A
{
 int x;

 public virtual void PrintFields() => Console.WriteLine($"x = {x}");
}

class B : A
{
 int y;

 public override void PrintFields()
 {
 base.PrintFields();

the base.PrintFields() invocation in B invokes the PrintFields method declared
in A . A base_access disables the virtual invocation mechanism and simply treats the
base method as a non-virtual method. Had the invocation in B been written
((A)this).PrintFields() , it would recursively invoke the PrintFields method
declared in B , not the one declared in A , since PrintFields is virtual and the run-
time type of ((A)this) is B .

end example

Only by including an override modifier can a method override another method. In all
other cases, a method with the same signature as an inherited method simply hides the
inherited method.

Example: In the following code

C#

the F method in B does not include an override modifier and therefore does not
override the F method in A . Rather, the F method in B hides the method in A , and
a warning is reported because the declaration does not include a new modifier.

end example

Example: In the following code

C#

 Console.WriteLine($"y = {y}");
 }
}

class A
{
 public virtual void F() {}
}

class B : A
{
 public virtual void F() {} // Warning, hiding inherited F()
}

class A
{
 public virtual void F() {}
}

the F method in B hides the virtual F method inherited from A . Since the new F in
B has private access, its scope only includes the class body of B and does not
extend to C . Therefore, the declaration of F in C is permitted to override the F
inherited from A .

end example

When an instance method declaration includes a sealed modifier, that method is said to
be a sealed method. A sealed method overrides an inherited virtual method with the
same signature. A sealed method shall also be marked with the override modifier. Use
of the sealed modifier prevents a derived class from further overriding the method.

Example: The example

C#

class B : A
{
 private new void F() {} // Hides A.F within body of B
}

class C : B
{
 public override void F() {} // Ok, overrides A.F
}

14.6.6 Sealed methods

class A
{
 public virtual void F() => Console.WriteLine("A.F");
 public virtual void G() => Console.WriteLine("A.G");
}

class B : A
{
 public sealed override void F() => Console.WriteLine("B.F");
 public override void G() => Console.WriteLine("B.G");
}

class C : B
{
 public override void G() => Console.WriteLine("C.G");
}

the class B provides two override methods: an F method that has the sealed
modifier and a G method that does not. B ’s use of the sealed modifier prevents C
from further overriding F .

end example

When an instance method declaration includes an abstract modifier, that method is
said to be an abstract method. Although an abstract method is implicitly also a virtual
method, it cannot have the modifier virtual .

An abstract method declaration introduces a new virtual method but does not provide
an implementation of that method. Instead, non-abstract derived classes are required to
provide their own implementation by overriding that method. Because an abstract
method provides no actual implementation, the method_body of an abstract method
simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§14.2.2.2).

Example: In the following code

C#

the Shape class defines the abstract notion of a geometrical shape object that can
paint itself. The Paint method is abstract because there is no meaningful default
implementation. The Ellipse and Box classes are concrete Shape implementations.

14.6.7 Abstract methods

public abstract class Shape
{
 public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse : Shape
{
 public override void Paint(Graphics g, Rectangle r) =>
g.DrawEllipse(r);
}

public class Box : Shape
{
 public override void Paint(Graphics g, Rectangle r) =>
g.DrawRect(r);
}

Because these classes are non-abstract, they are required to override the Paint
method and provide an actual implementation.

end example

It is a compile-time error for a base_access (§11.7.13) to reference an abstract method.

Example: In the following code

C#

a compile-time error is reported for the base.F() invocation because it references
an abstract method.

end example

An abstract method declaration is permitted to override a virtual method. This allows an
abstract class to force re-implementation of the method in derived classes, and makes
the original implementation of the method unavailable.

Example: In the following code

C#

abstract class A
{
 public abstract void F();
}

class B : A
{
 // Error, base.F is abstract
 public override void F() => base.F();
}

class A
{
 public virtual void F() => Console.WriteLine("A.F");
}

abstract class B: A
{
 public abstract override void F();
}

class C : B
{

class A declares a virtual method, class B overrides this method with an abstract
method, and class C overrides the abstract method to provide its own
implementation.

end example

When a method declaration includes an extern modifier, the method is said to be an
external method. External methods are implemented externally, typically using a
language other than C#. Because an external method declaration provides no actual
implementation, the method_body of an external method simply consists of a semicolon.
An external method shall not be generic.

The mechanism by which linkage to an external method is achieved, is implementation-
defined.

Example: The following example demonstrates the use of the extern modifier and
the DllImport attribute:

C#

end example

 public override void F() => Console.WriteLine("C.F");
}

14.6.8 External methods

class Path
{
 [DllImport("kernel32", SetLastError=true)]
 static extern bool CreateDirectory(string name, SecurityAttribute
sa);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool RemoveDirectory(string name);

 [DllImport("kernel32", SetLastError=true)]
 static extern int GetCurrentDirectory(int bufSize, StringBuilder
buf);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool SetCurrentDirectory(string name);
}

14.6.9 Partial methods

When a method declaration includes a partial modifier, that method is said to be a
partial method. Partial methods may only be declared as members of partial types
(§14.2.7), and are subject to a number of restrictions.

Partial methods may be defined in one part of a type declaration and implemented in
another. The implementation is optional; if no part implements the partial method, the
partial method declaration and all calls to it are removed from the type declaration
resulting from the combination of the parts.

Partial methods shall not define access modifiers; they are implicitly private. Their return
type shall be void , and their parameters shall not have the out modifier. The identifier
partial is recognized as a contextual keyword (§6.4.4) in a method declaration only if it
appears immediately before the void keyword. A partial method cannot explicitly
implement interface methods.

There are two kinds of partial method declarations: If the body of the method
declaration is a semicolon, the declaration is said to be a defining partial method
declaration. If the body is other than a semicolon, the declaration is said to be an
implementing partial method declaration. Across the parts of a type declaration, there
may be only one defining partial method declaration with a given signature, and there
may be only one implementing partial method declaration with a given signature. If an
implementing partial method declaration is given, a corresponding defining partial
method declaration shall exist, and the declarations shall match as specified in the
following:

The declarations shall have the same modifiers (although not necessarily in the
same order), method name, number of type parameters and number of
parameters.
Corresponding parameters in the declarations shall have the same modifiers
(although not necessarily in the same order) and the same types (modulo
differences in type parameter names).
Corresponding type parameters in the declarations shall have the same constraints
(modulo differences in type parameter names).

An implementing partial method declaration can appear in the same part as the
corresponding defining partial method declaration.

Only a defining partial method participates in overload resolution. Thus, whether or not
an implementing declaration is given, invocation expressions may resolve to invocations
of the partial method. Because a partial method always returns void , such invocation
expressions will always be expression statements. Furthermore, because a partial

method is implicitly private , such statements will always occur within one of the parts
of the type declaration within which the partial method is declared.

Note: The definition of matching defining and implementing partial method
declarations does not require parameter names to match. This can produce
surprising, albeit well defined, behaviour when named arguments (§11.6.2.1) are
used. For example, given the defining partial method declaration for M :

C#

Then the implementing partial method declaration and invocation in other file:

C#

is invalid as the invocation uses the argument name from the implementing and not
the defining partial method declaration.

end note

If no part of a partial type declaration contains an implementing declaration for a given
partial method, any expression statement invoking it is simply removed from the
combined type declaration. Thus the invocation expression, including any
subexpressions, has no effect at run-time. The partial method itself is also removed and
will not be a member of the combined type declaration.

If an implementing declaration exists for a given partial method, the invocations of the
partial methods are retained. The partial method gives rise to a method declaration
similar to the implementing partial method declaration except for the following:

The partial modifier is not included.

The attributes in the resulting method declaration are the combined attributes of
the defining and the implementing partial method declaration in unspecified

partial class P
{
 static partial void M(int x);
}

partial class P
{
 static void Caller() => M(y: 0);
 static partial void M(int y) {}
}

order. Duplicates are not removed.

The attributes on the parameters of the resulting method declaration are the
combined attributes of the corresponding parameters of the defining and the
implementing partial method declaration in unspecified order. Duplicates are not
removed.

If a defining declaration but not an implementing declaration is given for a partial
method M , the following restrictions apply:

It is a compile-time error to create a delegate from M (§11.7.15.6).

It is a compile-time error to refer to M inside an anonymous function that is
converted to an expression tree type (§8.6).

Expressions occurring as part of an invocation of M do not affect the definite
assignment state (§9.4), which can potentially lead to compile-time errors.

M cannot be the entry point for an application (§7.1).

Partial methods are useful for allowing one part of a type declaration to customize the
behavior of another part, e.g., one that is generated by a tool. Consider the following
partial class declaration:

C#

If this class is compiled without any other parts, the defining partial method declarations
and their invocations will be removed, and the resulting combined class declaration will
be equivalent to the following:

partial class Customer
{
 string name;

 public string Name
 {
 get => name;
 set
 {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }
 }

 partial void OnNameChanging(string newName);
 partial void OnNameChanged();
}

C#

Assume that another part is given, however, which provides implementing declarations
of the partial methods:

C#

Then the resulting combined class declaration will be equivalent to the following:

C#

class Customer
{
 string name;

 public string Name
 {
 get => name;
 set => name = value;
 }
}

partial class Customer
{
 partial void OnNameChanging(string newName) =>
 Console.WriteLine($"Changing {name} to {newName}");

 partial void OnNameChanged() =>
 Console.WriteLine($"Changed to {name}");
}

class Customer
{
 string name;

 public string Name
 {
 get => name;
 set
 {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }
 }

 void OnNameChanging(string newName) =>
 Console.WriteLine($"Changing {name} to {newName}");

 void OnNameChanged() =>

When the first parameter of a method includes the this modifier, that method is said to
be an extension method. Extension methods shall only be declared in non-generic, non-
nested static classes. The first parameter of an extension method may have no modifiers
other than this , and the parameter type may not be a pointer type.

Example: The following is an example of a static class that declares two extension
methods:

C#

end example

An extension method is a regular static method. In addition, where its enclosing static
class is in scope, an extension method may be invoked using instance method
invocation syntax (§11.7.8.3), using the receiver expression as the first argument.

Example: The following program uses the extension methods declared above:

C#

 Console.WriteLine($"Changed to {name}");
}

14.6.10 Extension methods

public static class Extensions
{
 public static int ToInt32(this string s) => Int32.Parse(s);

 public static T[] Slice<T>(this T[] source, int index, int count)
 {
 if (index < 0 || count < 0 || source.Length - index < count)
 {
 throw new ArgumentException();
 }
 T[] result = new T[count];
 Array.Copy(source, index, result, 0, count);
 return result;
 }
}

static class Program
{
 static void Main()
 {
 string[] strings = { "1", "22", "333", "4444" };

The Slice method is available on the string[] , and the ToInt32 method is
available on string , because they have been declared as extension methods. The
meaning of the program is the same as the following, using ordinary static method
calls:

C#

end example

The method_body of a method declaration consists of either a block body, an expression
body or a semicolon.

Abstract and external method declarations do not provide a method implementation, so
their method bodies simply consist of a semicolon. For any other method, the method
body is a block (§12.3) that contains the statements to execute when that method is
invoked.

The effective return type of a method is void if the return type is void , or if the method
is async and the return type is System.Threading.Tasks.Task . Otherwise, the effective
return type of a non-async method is its return type, and the effective return type of an
async method with return type System.Threading.Tasks.Task<T> is T .

When the effective return type of a method is void and the method has a block body,
return statements (§12.10.5) in the block shall not specify an expression. If execution of

 foreach (string s in strings.Slice(1, 2))
 {
 Console.WriteLine(s.ToInt32());
 }
 }
}

static class Program
{
 static void Main()
 {
 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in Extensions.Slice(strings, 1, 2))
 {
 Console.WriteLine(Extensions.ToInt32(s));
 }
 }
}

14.6.11 Method body

the block of a void method completes normally (that is, control flows off the end of the
method body), that method simply returns to its caller.

When the effective return type of a method is void and the method has an expression
body, the expression E shall be a statement_expression, and the body is exactly
equivalent to a statment body of the form { E; } .

When the effective return type of a method is not void and the method has a block
body, each return statement in that method’s body shall specify an expression that is
implicitly convertible to the effective return type. The endpoint of the method body of a
value-returning method shall not be reachable. In other words, in a value-returning
method with a block body, control is not permitted to flow off the end of the method
body.

When the effective return type of a method is not void and the method has an
expression body, E , the expression shall be implicitly convertible to the effective return
type, and the body is exactly equivalent to a block body of the form { return E; } .

Example: In the following code

C#

class A
{
 public int F() {} // Error, return value required

 public int G()
 {
 return 1;
 }

 public int H(bool b)
 {
 if (b)
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }

 public int I(bool b) => b ? 1 : 0;
}

the value-returning F method results in a compile-time error because control can
flow off the end of the method body. The G and H methods are correct because all
possible execution paths end in a return statement that specifies a return value. The
I method is correct, because its body is equivalent to a block with just a single
return statement in it.

end example

A property is a member that provides access to a characteristic of an object or a class.
Examples of properties include the length of a string, the size of a font, the caption of a
window, the name of a customer, and so on. Properties are a natural extension of fields
—both are named members with associated types, and the syntax for accessing fields
and properties is the same. However, unlike fields, properties do not denote storage
locations. Instead, properties have accessors that specify the statements to be executed
when their values are read or written. Properties thus provide a mechanism for
associating actions with the reading and writing of an object’s characteristics;
furthermore, they permit such characteristics to be computed.

Properties are declared using property_declarations:

ANTLR

14.7 Properties

14.7.1 General

property_declaration
 : attributes? property_modifier* type member_name property_body
 ;

property_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

property_body

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A property_declaration may include a set of attributes (§21) and any one of the permitted
kinds of declared accessibility (§14.3.6), the new (§14.3.5), static (§14.7.2), virtual
(§14.6.4, §14.7.6), override (§14.6.5, §14.7.6), sealed (§14.6.6), abstract (§14.6.7, §14.7.6),
and extern (§14.6.8) modifiers.

Property declarations are subject to the same rules as method declarations (§14.6) with
regard to valid combinations of modifiers.

The type of a property declaration specifies the type of the property introduced by the
declaration, and the member_name (§14.6.1) specifies the name of the property. Unless
the property is an explicit interface member implementation, the member_name is
simply an identifier. For an explicit interface member implementation (§17.6.2), the
member_name consists of an interface_type followed by a “. ” and an identifier.

The type of a property shall be at least as accessible as the property itself (§7.5.5).

A property_body may either consist of an accessor body or an expression body. In an
accessor body, accessor_declarations, which shall be enclosed in “{ ” and “} ” tokens,
declare the accessors (§14.7.3) of the property. The accessors specify the executable
statements associated with reading and writing the property.

An expression body consisting of => followed by an expression E and a semicolon is
exactly equivalent to the statement body { get { return E; } } , and can therefore only
be used to specify read-only properties where the result of the get accessor is given by
a single expression.

A property_initializer may only be given for an automatically implemented property
(§14.7.4), and causes the initialization of the underlying field of such properties with the
value given by the expression.

Even though the syntax for accessing a property is the same as that for a field, a
property is not classified as a variable. Thus, it is not possible to pass a property as a ref
or out argument.

 : '{' accessor_declarations '}' property_initializer?
 | '=>' expression ';'
 ;

property_initializer
 : '=' variable_initializer ';'
 ;

When a property declaration includes an extern modifier, the property is said to be an
external property. Because an external property declaration provides no actual
implementation, each of its accessor_declarations consists of a semicolon.

When a property declaration includes a static modifier, the property is said to be a
static property. When no static modifier is present, the property is said to be an
instance property.

A static property is not associated with a specific instance, and it is a compile-time error
to refer to this in the accessors of a static property.

An instance property is associated with a given instance of a class, and that instance can
be accessed as this (§11.7.12) in the accessors of that property.

The differences between static and instance members are discussed further in §14.3.8.

The accessor_declarations of a property specify the executable statements associated
with reading and writing that property.

ANTLR

14.7.2 Static and instance properties

14.7.3 Accessors

accessor_declarations
 : get_accessor_declaration set_accessor_declaration?
 | set_accessor_declaration get_accessor_declaration?
 ;

get_accessor_declaration
 : attributes? accessor_modifier? 'get' accessor_body
 ;

set_accessor_declaration
 : attributes? accessor_modifier? 'set' accessor_body
 ;

accessor_modifier
 : 'protected'
 | 'internal'
 | 'private'
 | 'protected' 'internal'
 | 'internal' 'protected'
 | 'protected' 'private'
 | 'private' 'protected'
 ;

The accessor declarations consist of a get_accessor_declaration, a
set_accessor_declaration, or both. Each accessor declaration consists of optional
attributes, an optional accessor_modifier, the token get or set , followed by an
accessor_body.

The use of accessor_modifiers is governed by the following restrictions:

An accessor_modifier shall not be used in an interface or in an explicit interface
member implementation.
For a property or indexer that has no override modifier, an accessor_modifier is
permitted only if the property or indexer has both a get and set accessor, and then
is permitted only on one of those accessors.
For a property or indexer that includes an override modifier, an accessor shall
match the accessor_modifier, if any, of the accessor being overridden.
The accessor_modifier shall declare an accessibility that is strictly more restrictive
than the declared accessibility of the property or indexer itself. To be precise:

If the property or indexer has a declared accessibility of public , the accessibility
declared by accessor_modifier may be either private protected , protected
internal , internal , protected , or private .
If the property or indexer has a declared accessibility of protected internal , the
accessibility declared by accessor_modifier may be either private protected ,
protected private , internal , protected , or private .
If the property or indexer has a declared accessibility of internal or protected ,
the accessibility declared by accessor_modifier shall be either private protected
or private .
If the property or indexer has a declared accessibility of private protected , the
accessibility declared by accessor_modifier shall be private .
If the property or indexer has a declared accessibility of private , no
accessor_modifier may be used.

For abstract and extern properties, the accessor_body for each accessor specified is
simply a semicolon. A non-abstract, non-extern property may also have the
accessor_body for all accessors specified be a semicolon, in which case it is an
automatically implemented property (§14.7.4). An automatically implemented property

accessor_body
 : block
 | '=>' expression ';'
 | ';'
 ;

shall have at least a get accessor. For the accessors of any other non-abstract, non-
extern property, the accessor_body is either

a block that specifies the statements to be executed when the corresponding
accessor is invoked; or
an expression body, which consists of => followed by an expression and a
semicolon, and denotes a single expression to be executed when the
corresponding accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the
property type. Except as the target of an assignment, when a property is referenced in
an expression, the get accessor of the property is invoked to compute the value of the
property (§11.2.2). The body of a get accessor shall conform to the rules for value-
returning methods described in §14.6.11. In particular, all return statements in the body
of a get accessor shall specify an expression that is implicitly convertible to the property
type. Furthermore, the endpoint of a get accessor shall not be reachable.

A set accessor corresponds to a method with a single value parameter of the property
type and a void return type. The implicit parameter of a set accessor is always named
value . When a property is referenced as the target of an assignment (§11.19), or as the
operand of ++ or –- (§11.7.14, §11.8.6), the set accessor is invoked with an argument
that provides the new value (§11.19.2). The body of a set accessor shall conform to the
rules for void methods described in §14.6.11. In particular, return statements in the set
accessor body are not permitted to specify an expression. Since a set accessor implicitly
has a parameter named value , it is a compile-time error for a local variable or constant
declaration in a set accessor to have that name.

Based on the presence or absence of the get and set accessors, a property is classified
as follows:

A property that includes both a get accessor and a set accessor is said to be a
read-write property.
A property that has only a get accessor is said to be a read-only property. It is a
compile-time error for a read-only property to be the target of an assignment.
A property that has only a set accessor is said to be a write-only property. Except
as the target of an assignment, it is a compile-time error to reference a write-only
property in an expression.

Note: The pre- and postfix ++ and -- operators and compound assignment
operators cannot be applied to write-only properties, since these operators read the
old value of their operand before they write the new one. end note

Example: In the following code

C#

the Button control declares a public Caption property. The get accessor of the
Caption property returns the string stored in the private caption field. The set
accessor checks if the new value is different from the current value, and if so, it
stores the new value and repaints the control. Properties often follow the pattern
shown above: The get accessor simply returns a value stored in a private field, and
the set accessor modifies that private field and then performs any additional
actions required to update fully the state of the object. Given the Button class
above, the following is an example of use of the Caption property:

C#

Here, the set accessor is invoked by assigning a value to the property, and the get
accessor is invoked by referencing the property in an expression.

end example

public class Button : Control
{
 private string caption;

 public string Caption
 {
 get => caption;
 set
 {
 if (caption != value)
 {
 caption = value;
 Repaint();
 }
 }
 }

 public override void Paint(Graphics g, Rectangle r)
 {
 // Painting code goes here
 }
}

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

The get and set accessors of a property are not distinct members, and it is not possible
to declare the accessors of a property separately.

Example: The example

C#

does not declare a single read-write property. Rather, it declares two properties with
the same name, one read-only and one write-only. Since two members declared in
the same class cannot have the same name, the example causes a compile-time
error to occur.

end example

When a derived class declares a property by the same name as an inherited property,
the derived property hides the inherited property with respect to both reading and
writing.

Example: In the following code

C#

class A
{
 private string name;

 // Error, duplicate member name
 public string Name
 {
 get => name;
 }

 // Error, duplicate member name
 public string Name
 {
 set => name = value;
 }
}

class A
{
 public int P
 {
 set {...}
 }
}

class B : A
{

the P property in B hides the P property in A with respect to both reading and
writing. Thus, in the statements

C#

the assignment to b.P causes a compile-time error to be reported, since the read-
only P property in B hides the write-only P property in A . Note, however, that a
cast can be used to access the hidden P property.

end example

Unlike public fields, properties provide a separation between an object’s internal state
and its public interface.

Example: Consider the following code, which uses a Point struct to represent a
location:

C#

 public new int P
 {
 get {...}
 }
}

B b = new B();
b.P = 1; // Error, B.P is read-only
((A)b).P = 1; // Ok, reference to A.P

class Label
{
 private int x, y;
 private string caption;

 public Label(int x, int y, string caption)
 {
 this.x = x;
 this.y = y;
 this.caption = caption;
 }

 public int X => x;
 public int Y => y;
 public Point Location => new Point(x, y);
 public string Caption => caption;
}

Here, the Label class uses two int fields, x and y , to store its location. The
location is publicly exposed both as an X and a Y property and as a Location
property of type Point . If, in a future version of Label , it becomes more convenient
to store the location as a Point internally, the change can be made without
affecting the public interface of the class:

C#

Had x and y instead been public readonly fields, it would have been impossible to
make such a change to the Label class.

end example

Note: Exposing state through properties is not necessarily any less efficient than
exposing fields directly. In particular, when a property is non-virtual and contains
only a small amount of code, the execution environment might replace calls to
accessors with the actual code of the accessors. This process is known as inlining,
and it makes property access as efficient as field access, yet preserves the increased
flexibility of properties. end note

Example: Since invoking a get accessor is conceptually equivalent to reading the
value of a field, it is considered bad programming style for get accessors to have
observable side-effects. In the example

C#

class Label
{
 private Point location;
 private string caption;

 public Label(int x, int y, string caption)
 {
 this.location = new Point(x, y);
 this.caption = caption;
 }

 public int X => location.x;
 public int Y => location.y;
 public Point Location => location;
 public string Caption => caption;
}

class Counter
{
 private int next;

the value of the Next property depends on the number of times the property has
previously been accessed. Thus, accessing the property produces an observable side
effect, and the property should be implemented as a method instead.

The “no side-effects” convention for get accessors doesn’t mean that get accessors
should always be written simply to return values stored in fields. Indeed, get
accessors often compute the value of a property by accessing multiple fields or
invoking methods. However, a properly designed get accessor performs no actions
that cause observable changes in the state of the object.

end example

Properties can be used to delay initialization of a resource until the moment it is first
referenced.

Example:

C#

 public int Next => next++;
}

public class Console
{
 private static TextReader reader;
 private static TextWriter writer;
 private static TextWriter error;

 public static TextReader In
 {
 get
 {
 if (reader == null)
 {
 reader = new StreamReader(Console.OpenStandardInput());
 }
 return reader;
 }
 }

 public static TextWriter Out
 {
 get
 {
 if (writer == null)
 {
 writer = new StreamWriter(Console.OpenStandardOutput());
 }

The Console class contains three properties, In , Out , and Error , that represent the
standard input, output, and error devices, respectively. By exposing these members
as properties, the Console class can delay their initialization until they are actually
used. For example, upon first referencing the Out property, as in

C#

the underlying TextWriter for the output device is created. However, if the
application makes no reference to the In and Error properties, then no objects are
created for those devices.

end example

An automatically implemented property (or auto-property for short), is a non-abstract,
non-extern property with semicolon-only accessor bodies. Auto-properties shall have a
get accessor and may optionally have a set accessor.

When a property is specified as an automatically implemented property, a hidden
backing field is automatically available for the property, and the accessors are
implemented to read from and write to that backing field. The hidden backing field is
inaccessible, it can be read and written only through the automatically implemented
property accessors, even within the containing type. If the auto-property has no set
accessor, the backing field is considered readonly (§14.5.3). Just like a readonly field, a

 return writer;
 }
 }

 public static TextWriter Error
 {
 get
 {
 if (error == null)
 {
 error = new StreamWriter(Console.OpenStandardError());
 }
 return error;
 }
 }
...
}

Console.Out.WriteLine("hello, world");

14.7.4 Automatically implemented properties

read-only auto-property may also be assigned to in the body of a constructor of the
enclosing class. Such an assignment assigns directly to the read-only backing field of the
property.

An auto-property may optionally have a property_initializer, which is applied directly to
the backing field as a variable_initializer (§16.7).

Example:

C#

is equivalent to the following declaration:

C#

end example

Example: In the following

C#

public class Point
{
 public int X { get; set; } // Automatically implemented
 public int Y { get; set; } // Automatically implemented
}

public class Point
{
 private int x;
 private int y;

 public int X { get { return x; } set { x = value; } }
 public int Y { get { return y; } set { y = value; } }
}

public class ReadOnlyPoint
{
 public int X { get; }
 public int Y { get; }

 public ReadOnlyPoint(int x, int y)
 {
 X = x;
 Y = y;
 }
}

is equivalent to the following declaration:

C#

The assignments to the read-only field are valid, because they occur within the
constructor.

end example

Although the backing field is hidden, that field may have field-targeted attributes
applied directly to it via the automatically implemented property’s property_declaration
(§14.7.1).

Example: The following code

C#

results in the field-targeted attribute NonSerialized being applied to the compiler-
generated backing field, as if the code had been written as follows:

C#

public class ReadOnlyPoint
{
 private readonly int __x;
 private readonly int __y;
 public int X { get { return __x; } }
 public int Y { get { return __y; } }

 public ReadOnlyPoint(int x, int y)
 {
 __x = x;
 __y = y;
 }
}

[Serializable]
public class Foo
{
 [field: NonSerialized]
 public string MySecret { get; set; }
}

[Serializable]
public class Foo
{
 [NonSerialized]
 private string _mySecretBackingField;

end example

If an accessor has an accessor_modifier, the accessibility domain (§7.5.3) of the accessor
is determined using the declared accessibility of the accessor_modifier. If an accessor
does not have an accessor_modifier, the accessibility domain of the accessor is
determined from the declared accessibility of the property or indexer.

The presence of an accessor_modifier never affects member lookup (§11.5) or overload
resolution (§11.6.4). The modifiers on the property or indexer always determine which
property or indexer is bound to, regardless of the context of the access.

Once a particular property or indexer has been selected, the accessibility domains of the
specific accessors involved are used to determine if that usage is valid:

If the usage is as a value (§11.2.2), the get accessor shall exist and be accessible.
If the usage is as the target of a simple assignment (§11.19.2), the set accessor shall
exist and be accessible.
If the usage is as the target of compound assignment (§11.19.3), or as the target of
the ++ or -- operators (§11.7.14, §11.8.6), both the get accessors and the set
accessor shall exist and be accessible.

Example: In the following example, the property A.Text is hidden by the property
B.Text , even in contexts where only the set accessor is called. In contrast, the
property B.Count is not accessible to class M , so the accessible property A.Count is
used instead.

C#

 public string MySecret
 {
 get { return _mySecretBackingField; }
 set { _mySecretBackingField = value; }
 }
}

14.7.5 Accessibility

class A
{
 public string Text
 {
 get => "hello";
 set { }
 }

end example

An accessor that is used to implement an interface shall not have an accessor_modifier. If
only one accessor is used to implement an interface, the other accessor may be declared
with an accessor_modifier:

Example:

C#

 public int Count
 {
 get => 5;
 set { }
 }
}

class B : A
{
 private string text = "goodbye";
 private int count = 0;

 public new string Text
 {
 get => text;
 protected set => text = value;
 }

 protected new int Count
 {
 get => count;
 set => count = value;
 }
}

class M
{
 static void Main()
 {
 B b = new B();
 b.Count = 12; // Calls A.Count set accessor
 int i = b.Count; // Calls A.Count get accessor
 b.Text = "howdy"; // Error, B.Text set accessor not accessible
 string s = b.Text; // Calls B.Text get accessor
 }
}

public interface I
{
 string Prop { get; }
}

end example

A virtual property declaration specifies that the accessors of the property are virtual. The
virtual modifier applies to all non-private accessors of a property. When an accessor of
a virtual property has the private accessor_modifier, the private accessor is implicitly not
virtual.

An abstract property declaration specifies that the accessors of the property are virtual,
but does not provide an actual implementation of the accessors. Instead, non-abstract
derived classes are required to provide their own implementation for the accessors by
overriding the property. Because an accessor for an abstract property declaration
provides no actual implementation, its accessor_body simply consists of a semicolon. An
abstract property shall not have a private accessor.

A property declaration that includes both the abstract and override modifiers specifies
that the property is abstract and overrides a base property. The accessors of such a
property are also abstract.

Abstract property declarations are only permitted in abstract classes (§14.2.2.2). The
accessors of an inherited virtual property can be overridden in a derived class by
including a property declaration that specifies an override directive. This is known as an
overriding property declaration. An overriding property declaration does not declare a
new property. Instead, it simply specializes the implementations of the accessors of an
existing virtual property.

The override declaration and the overridden base property are required to have the
same declared accessibility. In other words, an override declaration may not change the
accessibility of the base property. However, if the overridden base property is protected
internal and it is declared in a different assembly than the assembly containing the
override declaration then the override declaration’s declared accessibility shall be
protected. If the inherited property has only a single accessor (i.e., if the inherited

public class C : I
{
 public string Prop
 {
 get => "April"; // Must not have a modifier here
 internal set {...} // Ok, because I.Prop has no set accessor
 }
}

14.7.6 Virtual, sealed, override, and abstract accessors

property is read-only or write-only), the overriding property shall include only that
accessor. If the inherited property includes both accessors (i.e., if the inherited property
is read-write), the overriding property can include either a single accessor or both
accessors. There shall be an identity conversion between the type of the overriding and
the inherited property.

An overriding property declaration may include the sealed modifier. Use of this
modifier prevents a derived class from further overriding the property. The accessors of
a sealed property are also sealed.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and
abstract accessors behave exactly like virtual, sealed, override and abstract methods.
Specifically, the rules described in §14.6.4, §14.6.5, §14.6.6, and §14.6.7 apply as if
accessors were methods of a corresponding form:

A get accessor corresponds to a parameterless method with a return value of the
property type and the same modifiers as the containing property.
A set accessor corresponds to a method with a single value parameter of the
property type, a void return type, and the same modifiers as the containing
property.

Example: In the following code

C#

X is a virtual read-only property, Y is a virtual read-write property, and Z is an
abstract read-write property. Because Z is abstract, the containing class A shall also
be declared abstract.

abstract class A
{
 int y;

 public virtual int X
 {
 get => 0;
 }

 public virtual int Y
 {
 get => y;
 set => y = value;
 }

 public abstract int Z { get; set; }
}

A class that derives from A is shown below:

C#

Here, the declarations of X , Y , and Z are overriding property declarations. Each
property declaration exactly matches the accessibility modifiers, type, and name of
the corresponding inherited property. The get accessor of X and the set accessor of
Y use the base keyword to access the inherited accessors. The declaration of Z
overrides both abstract accessors—thus, there are no outstanding abstract
function members in B , and B is permitted to be a non-abstract class.

end example

When a property is declared as an override, any overridden accessors shall be accessible
to the overriding code. In addition, the declared accessibility of both the property or
indexer itself, and of the accessors, shall match that of the overridden member and
accessors.

Example:

C#

class B : A
{
 int z;

 public override int X
 {
 get => base.X + 1;
 }

 public override int Y
 {
 set => base.Y = value < 0 ? 0: value;
 }

 public override int Z
 {
 get => z;
 set => z = value;
 }
}

public class B
{
 public virtual int P
 {
 get {...}

end example

An event is a member that enables an object or class to provide notifications. Clients can
attach executable code for events by supplying event handlers.

Events are declared using event_declarations:

ANTLR

 protected set {...}
 }
}

public class D: B
{
 public override int P
 {
 get {...} // Must not have a modifier here
 protected set {...} // Must specify protected here
 }
}

14.8 Events

14.8.1 General

event_declaration
 : attributes? event_modifier* 'event' type variable_declarators ';'
 | attributes? event_modifier* 'event' type member_name
 '{' event_accessor_declarations '}'
 ;

event_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

event_accessor_declarations
 : add_accessor_declaration remove_accessor_declaration
 | remove_accessor_declaration add_accessor_declaration

unsafe_modifier (§22.2) is only available in unsafe code (§22).

An event_declaration may include a set of attributes (§21) and any one of the permitted
kinds of declared accessibility (§14.3.6), the new (§14.3.5), static (§14.6.3, §14.8.4),
virtual (§14.6.4, §14.8.5), override (§14.6.5, §14.8.5), sealed (§14.6.6), abstract
(§14.6.7, §14.8.5), and extern (§14.6.8) modifiers.

Event declarations are subject to the same rules as method declarations (§14.6) with
regard to valid combinations of modifiers.

The type of an event declaration shall be a delegate_type (§8.2.8), and that delegate_type
shall be at least as accessible as the event itself (§7.5.5).

An event declaration can include event_accessor_declarations. However, if it does not, for
non-extern, non-abstract events, the compiler shall supply them automatically (§14.8.2);
for extern events, the accessors are provided externally.

An event declaration that omits event_accessor_declarations defines one or more events
—one for each of the variable_declarators. The attributes and modifiers apply to all of
the members declared by such an event_declaration.

It is a compile-time error for an event_declaration to include both the abstract modifier
and event_accessor_declarations.

When an event declaration includes an extern modifier, the event is said to be an
external event. Because an external event declaration provides no actual
implementation, it is an error for it to include both the extern modifier and
event_accessor_declarations.

It is a compile-time error for a variable_declarator of an event declaration with an
abstract or external modifier to include a variable_initializer.

An event can be used as the left-hand operand of the += and -= operators. These
operators are used, respectively, to attach event handlers to, or to remove event

 ;

add_accessor_declaration
 : attributes? 'add' block
 ;

remove_accessor_declaration
 : attributes? 'remove' block
 ;

handlers from an event, and the access modifiers of the event control the contexts in
which such operations are permitted.

The only operations that are permitted on an event by code that is outside the type in
which that event is declared, are += and -= . Therefore, while such code can add and
remove handlers for an event, it cannot directly obtain or modify the underlying list of
event handlers.

In an operation of the form x += y or x –= y , when x is an event the result of the
operation has type void (§11.19.4) (as opposed to having the type of x , with the value
of x after the assignment, as for other the += and -= operators defined on non-event
types). This prevents external code from indirectly examining the underlying delegate of
an event.

Example: The following example shows how event handlers are attached to
instances of the Button class:

C#

public delegate void EventHandler(object sender, EventArgs e);

public class Button : Control
{
 public event EventHandler Click;
}

public class LoginDialog : Form
{
 Button okButton;
 Button cancelButton;

 public LoginDialog()
 {
 okButton = new Button(...);
 okButton.Click += new EventHandler(OkButtonClick);
 cancelButton = new Button(...);
 cancelButton.Click += new EventHandler(CancelButtonClick);
 }

 void OkButtonClick(object sender, EventArgs e)
 {
 // Handle okButton.Click event
 }

 void CancelButtonClick(object sender, EventArgs e)
 {
 // Handle cancelButton.Click event
 }
}

Here, the LoginDialog instance constructor creates two Button instances and
attaches event handlers to the Click events.

end example

Within the program text of the class or struct that contains the declaration of an event,
certain events can be used like fields. To be used in this way, an event shall not be
abstract or extern, and shall not explicitly include event_accessor_declarations. Such an
event can be used in any context that permits a field. The field contains a delegate (§19),
which refers to the list of event handlers that have been added to the event. If no event
handlers have been added, the field contains null .

Example: In the following code

C#

Click is used as a field within the Button class. As the example demonstrates, the
field can be examined, modified, and used in delegate invocation expressions. The
OnClick method in the Button class “raises” the Click event. The notion of raising
an event is precisely equivalent to invoking the delegate represented by the event—
thus, there are no special language constructs for raising events. Note that the
delegate invocation is preceded by a check that ensures the delegate is non-null
and that the check is made on a local copy to ensure thread safety.

14.8.2 Field-like events

public delegate void EventHandler(object sender, EventArgs e);

public class Button : Control
{
 public event EventHandler Click;

 protected void OnClick(EventArgs e)
 {
 EventHandler handler = Click;
 if (handler != null)
 {
 handler(this, e);
 }
 }

 public void Reset() => Click = null;
}

Outside the declaration of the Button class, the Click member can only be used on
the left-hand side of the += and –= operators, as in

C#

which appends a delegate to the invocation list of the Click event, and

C#

which removes a delegate from the invocation list of the Click event.

end example

When compiling a field-like event, the compiler automatically creates storage to hold
the delegate, and creates accessors for the event that add or remove event handlers to
the delegate field. The addition and removal operations are thread safe, and may (but
are not required to) be done while holding the lock (§9.4.4.19) in the containing object
for an instance event, or the type object (§11.7.15.7) for a static event.

Note: Thus, an instance event declaration of the form:

C#

shall be compiled to something equivalent to:

C#

b.Click += new EventHandler(...);

Click –= new EventHandler(...);

class X
{
 public event D Ev;
}

class X
{
 private D __Ev; // field to hold the delegate

 public event D Ev
 {
 add
 {
 /* Add the delegate in a thread safe way */
 }

Within the class X , references to Ev on the left-hand side of the += and –
= operators cause the add and remove accessors to be invoked. All other references
to Ev are compiled to reference the hidden field __Ev instead (§11.7.6). The name
“__Ev ” is arbitrary; the hidden field could have any name or no name at all.

end note

Note: Event declarations typically omit event_accessor_declarations, as in the Button
example above. For example, they might be included if the storage cost of one field
per event is not acceptable. In such cases, a class can include
event_accessor_declarations and use a private mechanism for storing the list of event
handlers. end note

The event_accessor_declarations of an event specify the executable statements
associated with adding and removing event handlers.

The accessor declarations consist of an add_accessor_declaration and a
remove_accessor_declaration. Each accessor declaration consists of the token add or
remove followed by a block. The block associated with an add_accessor_declaration
specifies the statements to execute when an event handler is added, and the block
associated with a remove_accessor_declaration specifies the statements to execute when
an event handler is removed.

Each add_accessor_declaration and remove_accessor_declaration corresponds to a
method with a single value parameter of the event type, and a void return type. The
implicit parameter of an event accessor is named value . When an event is used in an
event assignment, the appropriate event accessor is used. Specifically, if the assignment
operator is += then the add accessor is used, and if the assignment operator is –= then
the remove accessor is used. In either case, the right-hand operand of the assignment
operator is used as the argument to the event accessor. The block of an
add_accessor_declaration or a remove_accessor_declaration shall conform to the rules for
void methods described in §14.6.9. In particular, return statements in such a block are
not permitted to specify an expression.

 remove
 {
 /* Remove the delegate in a thread safe way */
 }
 }
}

14.8.3 Event accessors

Since an event accessor implicitly has a parameter named value , it is a compile-time
error for a local variable or constant declared in an event accessor to have that name.

Example: In the following code

C#

class Control : Component
{
 // Unique keys for events
 static readonly object mouseDownEventKey = new object();
 static readonly object mouseUpEventKey = new object();

 // Return event handler associated with key
 protected Delegate GetEventHandler(object key) {...}

 // Add event handler associated with key
 protected void AddEventHandler(object key, Delegate handler) {...}

 // Remove event handler associated with key
 protected void RemoveEventHandler(object key, Delegate handler)
{...}

 // MouseDown event
 public event MouseEventHandler MouseDown
 {
 add { AddEventHandler(mouseDownEventKey, value); }
 remove { RemoveEventHandler(mouseDownEventKey, value); }
 }

 // MouseUp event
 public event MouseEventHandler MouseUp
 {
 add { AddEventHandler(mouseUpEventKey, value); }
 remove { RemoveEventHandler(mouseUpEventKey, value); }
 }

 // Invoke the MouseUp event
 protected void OnMouseUp(MouseEventArgs args)
 {
 MouseEventHandler handler;
 handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey);
 if (handler != null)
 {
 handler(this, args);
 }
 }
}

the Control class implements an internal storage mechanism for events. The
AddEventHandler method associates a delegate value with a key, the
GetEventHandler method returns the delegate currently associated with a key, and
the RemoveEventHandler method removes a delegate as an event handler for the
specified event. Presumably, the underlying storage mechanism is designed such
that there is no cost for associating a null delegate value with a key, and thus
unhandled events consume no storage.

end example

When an event declaration includes a static modifier, the event is said to be a static
event. When no static modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is a compile-time error to
refer to this in the accessors of a static event.

An instance event is associated with a given instance of a class, and this instance can be
accessed as this (§11.7.12) in the accessors of that event.

The differences between static and instance members are discussed further in §14.3.8.

A virtual event declaration specifies that the accessors of that event are virtual. The
virtual modifier applies to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but
does not provide an actual implementation of the accessors. Instead, non-abstract
derived classes are required to provide their own implementation for the accessors by
overriding the event. Because an accessor for an abstract event declaration provides no
actual implementation, it shall not provide event_accessor_declarations.

An event declaration that includes both the abstract and override modifiers specifies
that the event is abstract and overrides a base event. The accessors of such an event are
also abstract.

Abstract event declarations are only permitted in abstract classes (§14.2.2.2).

The accessors of an inherited virtual event can be overridden in a derived class by
including an event declaration that specifies an override modifier. This is known as an

14.8.4 Static and instance events

14.8.5 Virtual, sealed, override, and abstract accessors

overriding event declaration. An overriding event declaration does not declare a new
event. Instead, it simply specializes the implementations of the accessors of an existing
virtual event.

An overriding event declaration shall specify the exact same accessibility modifiers and
name as the overridden event, there shall be an identity conversion between the type of
the overriding and the overridden event, and both the add and remove accessors shall
be specified within the declaration.

An overriding event declaration can include the sealed modifier. Use of this modifier
prevents a derived class from further overriding the event. The accessors of a sealed
event are also sealed.

It is a compile-time error for an overriding event declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and
abstract accessors behave exactly like virtual, sealed, override and abstract methods.
Specifically, the rules described in §14.6.4, §14.6.5, §14.6.6, and §14.6.7 apply as if
accessors were methods of a corresponding form. Each accessor corresponds to a
method with a single value parameter of the event type, a void return type, and the
same modifiers as the containing event.

An indexer is a member that enables an object to be indexed in the same way as an
array. Indexers are declared using indexer_declarations:

ANTLR

14.9 Indexers

indexer_declaration
 : attributes? indexer_modifier* indexer_declarator indexer_body
 ;

indexer_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

An indexer_declaration may include a set of attributes (§21) and any one of the permitted
kinds of declared accessibility (§14.3.6), the new (§14.3.5), virtual (§14.6.4), override
(§14.6.5), sealed (§14.6.6), abstract (§14.6.7), and extern (§14.6.8) modifiers.

Indexer declarations are subject to the same rules as method declarations (§14.6) with
regard to valid combinations of modifiers, with the one exception being that the static
modifier is not permitted on an indexer declaration.

The modifiers virtual , override , and abstract are mutually exclusive except in one
case. The abstract and override modifiers may be used together so that an abstract
indexer can override a virtual one.

The type of an indexer declaration specifies the element type of the indexer introduced
by the declaration.

Note: As indexers are designed to be used in array element-like contexts, the term
element type as defined for an array is also used with an indexer. end note

Unless the indexer is an explicit interface member implementation, the type is followed
by the keyword this . For an explicit interface member implementation, the type is
followed by an interface_type, a “. ”, and the keyword this . Unlike other members,
indexers do not have user-defined names.

The formal_parameter_list specifies the parameters of the indexer. The formal parameter
list of an indexer corresponds to that of a method (§14.6.2), except that at least one
parameter shall be specified, and that the this , ref , and out parameter modifiers are
not permitted.

The type of an indexer and each of the types referenced in the formal_parameter_list
shall be at least as accessible as the indexer itself (§7.5.5).

indexer_declarator
 : type 'this' '[' formal_parameter_list ']'
 | type interface_type '.' 'this' '[' formal_parameter_list ']'
 ;

indexer_body
 : '{' accessor_declarations '}'
 | '=>' expression ';'
 ;

An indexer_body may either consist of an accessor body (§14.7.1) or an expression body
(§14.6.1). In an accessor body, accessor_declarations, which shall be enclosed in “{ ” and
“} ” tokens, declare the accessors (§14.7.3) of the indexer. The accessors specify the
executable statements associated with reading and writing indexer elements.

Based on the presence or absence of get and set accessors, an indexer is classified as
follows:

An indexer that includes both a get accessor and a set accessor is said to be a
read-write indexer.
An indexer that has only a get accessor is said to be a read-only indexer. It is a
compile-time error for a read-only indexer to be the target of an assignment.
An indexer that has only a set accessor is said to be a write-only indexer. Except as
the target of an assignment, it is a compile-time error to reference a write-only
indexer in an expression.

An expression body consisting of “=> ” followed by an expression E and a semicolon is
exactly equivalent to the block body { get { return E; } } , and can therefore only be
used to specify read-only indexers where the result of the get accessor is given by a
single expression.

Even though the syntax for accessing an indexer element is the same as that for an array
element, an indexer element is not classified as a variable. Thus, it is not possible to pass
an indexer element as a ref or out argument.

The formal_parameter_list of an indexer defines the signature (§7.6) of the indexer.
Specifically, the signature of an indexer consists of the number and types of its formal
parameters. The element type and names of the formal parameters are not part of an
indexer’s signature.

The signature of an indexer shall differ from the signatures of all other indexers declared
in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

A property is identified by its name, whereas an indexer is identified by its
signature.
A property is accessed through a simple_name (§11.7.4) or a member_access
(§11.7.6), whereas an indexer element is accessed through an element_access
(§11.7.10.3).
A property can be a static member, whereas an indexer is always an instance
member.

A get accessor of a property corresponds to a method with no parameters,
whereas a get accessor of an indexer corresponds to a method with the same
formal parameter list as the indexer.
A set accessor of a property corresponds to a method with a single parameter
named value , whereas a set accessor of an indexer corresponds to a method with
the same formal parameter list as the indexer, plus an additional parameter named
value .
It is a compile-time error for an indexer accessor to declare a local variable or local
constant with the same name as an indexer parameter.
In an overriding property declaration, the inherited property is accessed using the
syntax base.P , where P is the property name. In an overriding indexer declaration,
the inherited indexer is accessed using the syntax base[E] , where E is a comma-
separated list of expressions.
There is no concept of an “automatically implemented indexer”. It is an error to
have a non-abstract, non-external indexer with semicolon accessors.

Aside from these differences, all rules defined in §14.7.3 and §14.7.4 apply to indexer
accessors as well as to property accessors.

When an indexer declaration includes an extern modifier, the indexer is said to be an
external indexer. Because an external indexer declaration provides no actual
implementation, each of its accessor_declarations consists of a semicolon.

Example: The example below declares a BitArray class that implements an indexer
for accessing the individual bits in the bit array.

C#

class BitArray
{
 int[] bits;
 int length;

 public BitArray(int length)
 {
 if (length < 0)
 {
 throw new ArgumentException();
 }
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length => length;

 public bool this[int index]

An instance of the BitArray class consumes substantially less memory than a
corresponding bool[] (since each value of the former occupies only one bit instead
of the latter’s one byte), but it permits the same operations as a bool[] .

The following CountPrimes class uses a BitArray and the classical “sieve” algorithm
to compute the number of primes between 2 and a given maximum:

C#

 {
 get
 {
 if (index < 0 || index >= length)
 {
 throw new IndexOutOfRangeException();
 }
 return (bits[index >> 5] & 1 << index) != 0;
 }
 set
 {
 if (index < 0 || index >= length)
 {
 throw new IndexOutOfRangeException();
 }
 if (value)
 {
 bits[index >> 5] |= 1 << index;
 }
 else
 {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
}

class Grid
{
 const int NumRows = 26;
 const int NumCols = 10;
 int[,] cells = new int[NumRows, NumCols];

 public int this[char row, int col]
 {
 get
 {
 row = Char.ToUpper(row);
 if (row < 'A' || row > 'Z')
 {
 throw new ArgumentOutOfRangeException("row");
 }
 if (col < 0 || col >= NumCols)

end example

An operator is a member that defines the meaning of an expression operator that can
be applied to instances of the class. Operators are declared using operator_declarations:

ANTLR

 {
 throw new ArgumentOutOfRangeException ("col");
 }
 return cells[row - 'A', col];
 }
 set
 {
 row = Char.ToUpper(row);
 if (row < 'A' || row > 'Z')
 {
 throw new ArgumentOutOfRangeException ("row");
 }
 if (col < 0 || col >= NumCols)
 {
 throw new ArgumentOutOfRangeException ("col");
 }
 cells[row - 'A', col] = value;
 }
 }
}

14.10 Operators

14.10.1 General

operator_declaration
 : attributes? operator_modifier+ operator_declarator operator_body
 ;

operator_modifier
 : 'public'
 | 'static'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

operator_declarator
 : unary_operator_declarator
 | binary_operator_declarator
 | conversion_operator_declarator
 ;

unary_operator_declarator

unsafe_modifier (§22.2) is only available in unsafe code (§22).

There are three categories of overloadable operators: Unary operators (§14.10.2), binary
operators (§14.10.3), and conversion operators (§14.10.4).

The operator_body is either a semicolon, a block body (§14.6.1) or an expression body
(§14.6.1). A block body consists of a block, which specifies the statements to execute
when the operator is invoked. The block shall conform to the rules for value-returning
methods described in §14.6.11. An expression body consists of => followed by an
expression and a semicolon, and denotes a single expression to perform when the
operator is invoked.

For extern operators, the operator_body consists simply of a semicolon. For all other
operators, the operator_body is either a block body or an expression body.

The following rules apply to all operator declarations:

An operator declaration shall include both a public and a static modifier.
The parameter(s) of an operator shall have no modifiers.
The signature of an operator (§14.10.2, §14.10.3, §14.10.4) shall differ from the
signatures of all other operators declared in the same class.

 : type 'operator' overloadable_unary_operator '(' fixed_parameter ')'
 ;

overloadable_unary_operator
 : '+' | '-' | '!' | '~' | '++' | '--' | 'true' | 'false'
 ;

binary_operator_declarator
 : type 'operator' overloadable_binary_operator
 '(' fixed_parameter ',' fixed_parameter ')'
 ;

overloadable_binary_operator
 : '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' | '<<'
 | right_shift | '==' | '!=' | '>' | '<' | '>=' | '<='
 ;

conversion_operator_declarator
 : 'implicit' 'operator' type '(' fixed_parameter ')'
 | 'explicit' 'operator' type '(' fixed_parameter ')'
 ;

operator_body
 : block
 | '=>' expression ';'
 | ';'
 ;

All types referenced in an operator declaration shall be at least as accessible as the
operator itself (§7.5.5).
It is an error for the same modifier to appear multiple times in an operator
declaration.

Each operator category imposes additional restrictions, as described in the following
subclauses.

Like other members, operators declared in a base class are inherited by derived classes.
Because operator declarations always require the class or struct in which the operator is
declared to participate in the signature of the operator, it is not possible for an operator
declared in a derived class to hide an operator declared in a base class. Thus, the new
modifier is never required, and therefore never permitted, in an operator declaration.

Additional information on unary and binary operators can be found in §11.4.

Additional information on conversion operators can be found in §10.5.

The following rules apply to unary operator declarations, where T denotes the instance
type of the class or struct that contains the operator declaration:

A unary + , - , ! , or ~ operator shall take a single parameter of type T or T? and
can return any type.
A unary ++ or -- operator shall take a single parameter of type T or T? and shall
return that same type or a type derived from it.
A unary true or false operator shall take a single parameter of type T or T? and
shall return type bool .

The signature of a unary operator consists of the operator token (+ , - , ! , ~ , ++ , -- ,
true , or false) and the type of the single formal parameter. The return type is not part
of a unary operator’s signature, nor is the name of the formal parameter.

The true and false unary operators require pair-wise declaration. A compile-time error
occurs if a class declares one of these operators without also declaring the other. The
true and false operators are described further in §11.22.

Example: The following example shows an implementation and subsequent usage of
operator++ for an integer vector class:

C#

14.10.2 Unary operators

Note how the operator method returns the value produced by adding 1 to the
operand, just like the postfix increment and decrement operators (§11.7.14), and the
prefix increment and decrement operators (§11.8.6). Unlike in C++, this method
should not modify the value of its operand directly as this would violate the
standard semantics of the postfix increment operator (§11.7.14).

end example

The following rules apply to binary operator declarations, where T denotes the instance
type of the class or struct that contains the operator declaration:

A binary non-shift operator shall take two parameters, at least one of which shall
have type T or T? , and can return any type.

public class IntVector
{
 public IntVector(int length) {...}
 public int Length { get { ... } } // Read-only
property
 public int this[int index] { get { ... } set { ... } } // Read-
write indexer

 public static IntVector operator++(IntVector iv)
 {
 IntVector temp = new IntVector(iv.Length);
 for (int i = 0; i < iv.Length; i++)
 {
 temp[i] = iv[i] + 1;
 }
 return temp;
 }
}

class Test
{
 static void Main()
 {
 IntVector iv1 = new IntVector(4); // Vector of 4 x 0
 IntVector iv2;
 iv2 = iv1++; // iv2 contains 4 x 0, iv1 contains 4
x 1
 iv2 = ++iv1; // iv2 contains 4 x 2, iv1 contains 4
x 2
 }
}

14.10.3 Binary operators

A binary << or >> operator (§11.10) shall take two parameters, the first of which
shall have type T or T? and the second of which shall have type int or int? , and
can return any type. The signature of a binary operator consists of the operator
token (+ , - , * , / , % , & , | , ^ , << , >> , == , != , > , < , >= , or <=) and the types of
the two formal parameters. The return type and the names of the formal
parameters are not part of a binary operator’s signature.

Certain binary operators require pair-wise declaration. For every declaration of either
operator of a pair, there shall be a matching declaration of the other operator of the
pair. Two operator declarations match if identity conversions exist between their return
types and their corresponding parameter types. The following operators require pair-
wise declaration:

operator == and operator !=
operator > and operator <
operator >= and operator <=

A conversion operator declaration introduces a user-defined conversion (§10.5), which
augments the pre-defined implicit and explicit conversions.

A conversion operator declaration that includes the implicit keyword introduces a
user-defined implicit conversion. Implicit conversions can occur in a variety of situations,
including function member invocations, cast expressions, and assignments. This is
described further in §10.2.

A conversion operator declaration that includes the explicit keyword introduces a
user-defined explicit conversion. Explicit conversions can occur in cast expressions, and
are described further in §10.3.

A conversion operator converts from a source type, indicated by the parameter type of
the conversion operator, to a target type, indicated by the return type of the conversion
operator.

For a given source type S and target type T , if S or T are nullable value types, let S₀
and T₀ refer to their underlying types; otherwise, S₀ and T₀ are equal to S and T
respectively. A class or struct is permitted to declare a conversion from a source type S
to a target type T only if all of the following are true:

S₀ and T₀ are different types.

14.10.4 Conversion operators

Either S₀ or T₀ is the instance type of the class or struct that contains the operator
declaration.

Neither S₀ nor T₀ is an interface_type.

Excluding user-defined conversions, a conversion does not exist from S to T or
from T to S .

For the purposes of these rules, any type parameters associated with S or T are
considered to be unique types that have no inheritance relationship with other types,
and any constraints on those type parameters are ignored.

Example: In the following:

C#

the first two operator declarations are permitted because T and int and string ,
respectively are considered unique types with no relationship. However, the third
operator is an error because C<T> is the base class of D<T> .

end example

From the second rule, it follows that a conversion operator shall convert either to or
from the class or struct type in which the operator is declared.

Example: It is possible for a class or struct type C to define a conversion from C to
int and from int to C , but not from int to bool . end example

It is not possible to directly redefine a pre-defined conversion. Thus, conversion
operators are not allowed to convert from or to object because implicit and explicit
conversions already exist between object and all other types. Likewise, neither the
source nor the target types of a conversion can be a base type of the other, since a
conversion would then already exist. However, it is possible to declare operators on

class C<T> {...}

class D<T> : C<T>
{
 public static implicit operator C<int>(D<T> value) {...} // Ok
 public static implicit operator C<string>(D<T> value) {...} // Ok
 public static implicit operator C<T>(D<T> value) {...} //
Error
}

generic types that, for particular type arguments, specify conversions that already exist
as pre-defined conversions.

Example:

C#

when type object is specified as a type argument for T , the second operator
declares a conversion that already exists (an implicit, and therefore also an explicit,
conversion exists from any type to type object).

end example

In cases where a pre-defined conversion exists between two types, any user-defined
conversions between those types are ignored. Specifically:

If a pre-defined implicit conversion (§10.2) exists from type S to type T , all user-
defined conversions (implicit or explicit) from S to T are ignored.
If a pre-defined explicit conversion (§10.3) exists from type S to type T , any user-
defined explicit conversions from S to T are ignored. Furthermore:

If either S or T is an interface type, user-defined implicit conversions from S
to T are ignored.
Otherwise, user-defined implicit conversions from S to T are still considered.

For all types but object , the operators declared by the Convertible<T> type above do
not conflict with pre-defined conversions.

Example:

C#

struct Convertible<T>
{
 public static implicit operator Convertible<T>(T value) {...}
 public static explicit operator T(Convertible<T> value) {...}
}

void F(int i, Convertible<int> n)
{
 i = n; // Error
 i = (int)n; // User-defined explicit conversion
 n = i; // User-defined implicit conversion
 n = (Convertible<int>)i; // User-defined implicit conversion
}

However, for type object , pre-defined conversions hide the user-defined
conversions in all cases but one:

C#

end example

User-defined conversions are not allowed to convert from or to interface_types. In
particular, this restriction ensures that no user-defined transformations occur when
converting to an interface_type, and that a conversion to an interface_type succeeds only
if the object being converted actually implements the specified interface_type.

The signature of a conversion operator consists of the source type and the target type.
(This is the only form of member for which the return type participates in the signature.)
The implicit or explicit classification of a conversion operator is not part of the
operator’s signature. Thus, a class or struct cannot declare both an implicit and an
explicit conversion operator with the same source and target types.

Note: In general, user-defined implicit conversions should be designed to never
throw exceptions and never lose information. If a user-defined conversion can give
rise to exceptions (for example, because the source argument is out of range) or loss
of information (such as discarding high-order bits), then that conversion should be
defined as an explicit conversion. end note

Example: In the following code

C#

void F(object o, Convertible<object> n)
{
 o = n; // Pre-defined boxing conversion
 o = (object)n; // Pre-defined boxing conversion
 n = o; // User-defined implicit conversion
 n = (Convertible<object>)o; // Pre-defined unboxing conversion
}

public struct Digit
{
 byte value;

 public Digit(byte value)
 {
 if (value < 0 || value > 9)
 {
 throw new ArgumentException();
 }

the conversion from Digit to byte is implicit because it never throws exceptions or
loses information, but the conversion from byte to Digit is explicit since Digit can
only represent a subset of the possible values of a byte .

end example

An instance constructor is a member that implements the actions required to initialize
an instance of a class. Instance constructors are declared using constructor_declarations:

ANTLR

 this.value = value;
 }

 public static implicit operator byte(Digit d) => d.value;
 public static explicit operator Digit(byte b) => new Digit(b);
}

14.11 Instance constructors

14.11.1 General

constructor_declaration
 : attributes? constructor_modifier* constructor_declarator
constructor_body
 ;

constructor_modifier
 : 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

constructor_declarator
 : identifier '(' formal_parameter_list? ')' constructor_initializer?
 ;

constructor_initializer
 : ':' 'base' '(' argument_list? ')'
 | ':' 'this' '(' argument_list? ')'
 ;

constructor_body
 : block
 | '=>' expression ';'

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A constructor_declaration may include a set of attributes (§21), any one of the permitted
kinds of declared accessibility (§14.3.6), and an extern (§14.6.8) modifier. A constructor
declaration is not permitted to include the same modifier multiple times.

The identifier of a constructor_declarator shall name the class in which the instance
constructor is declared. If any other name is specified, a compile-time error occurs.

The optional formal_parameter_list of an instance constructor is subject to the same
rules as the formal_parameter_list of a method (§14.6). As the this modifier for
parameters only applies to extension methods (§14.6.10), no parameter in a
constructor’s formal_parameter_list shall contain the this modifier. The formal
parameter list defines the signature (§7.6) of an instance constructor and governs the
process whereby overload resolution (§11.6.4) selects a particular instance constructor in
an invocation.

Each of the types referenced in the formal_parameter_list of an instance constructor shall
be at least as accessible as the constructor itself (§7.5.5).

The optional constructor_initializer specifies another instance constructor to invoke
before executing the statements given in the constructor_body of this instance
constructor. This is described further in §14.11.2.

When a constructor declaration includes an extern modifier, the constructor is said to
be an external constructor. Because an external constructor declaration provides no
actual implementation, its constructor_body consists of a semicolon. For all other
constructors, the constructor_body consists of either

a block, which specifies the statements to initialize a new instance of the class; or
an expression body, which consists of => followed by an expression and a
semicolon, and denotes a single expression to initialize a new instance of the class.

A constructor_body that is a block or expression body corresponds exactly to the block of
an instance method with a void return type (§14.6.11).

Instance constructors are not inherited. Thus, a class has no instance constructors other
than those actually declared in the class, with the exception that if a class contains no
instance constructor declarations, a default instance constructor is automatically
provided (§14.11.5).

 | ';'
 ;

Instance constructors are invoked by object_creation_expressions (§11.7.15.2) and
through constructor_initializers.

All instance constructors (except those for class object) implicitly include an invocation
of another instance constructor immediately before the constructor_body. The
constructor to implicitly invoke is determined by the constructor_initializer:

An instance constructor initializer of the form base(argument_list) (where
argument_list is optional) causes an instance constructor from the direct base class
to be invoked. That constructor is selected using argument_list and the overload
resolution rules of §11.6.4. The set of candidate instance constructors consists of all
the accessible instance constructors of the direct base class. If this set is empty, or
if a single best instance constructor cannot be identified, a compile-time error
occurs.
An instance constructor initializer of the form this(argument_list) (where
argument_list is optional) invokes another instance constructor from the same
class. The constructor is selected using argument_list and the overload resolution
rules of §11.6.4. The set of candidate instance constructors consists of all instance
constructors declared in the class itself. If the resulting set of applicable instance
constructors is empty, or if a single best instance constructor cannot be identified,
a compile-time error occurs. If an instance constructor declaration invokes itself
through a chain of one or more constructor initializers, a compile-time error
occurs.

If an instance constructor has no constructor initializer, a constructor initializer of the
form base() is implicitly provided.

Note: Thus, an instance constructor declaration of the form

C#

is exactly equivalent to

C#

end note

14.11.2 Constructor initializers

C(...) {...}

C(...) : base() {...}

The scope of the parameters given by the formal_parameter_list of an instance
constructor declaration includes the constructor initializer of that declaration. Thus, a
constructor initializer is permitted to access the parameters of the constructor.

Example:

C#

end example

An instance constructor initializer cannot access the instance being created. Therefore it
is a compile-time error to reference this in an argument expression of the constructor
initializer, as it is a compile-time error for an argument expression to reference any
instance member through a simple_name.

When an instance constructor has no constructor initializer, or it has a constructor
initializer of the form base(...) , that constructor implicitly performs the initializations
specified by the variable_initializers of the instance fields declared in its class. This
corresponds to a sequence of assignments that are executed immediately upon entry to
the constructor and before the implicit invocation of the direct base class constructor.
The variable initializers are executed in the textual order in which they appear in the
class declaration (§14.5.6).

Variable initializers are transformed into assignment statements, and these assignment
statements are executed before the invocation of the base class instance constructor.
This ordering ensures that all instance fields are initialized by their variable initializers
before any statements that have access to that instance are executed.

Example: Given the following:

class A
{
 public A(int x, int y) {}
}

class B: A
{
 public B(int x, int y) : base(x + y, x - y) {}
}

14.11.3 Instance variable initializers

14.11.4 Constructor execution

C#

when new B() is used to create an instance of B , the following output is produced:

Console

The value of x is 1 because the variable initializer is executed before the base class
instance constructor is invoked. However, the value of y is 0 (the default value of an
int) because the assignment to y is not executed until after the base class
constructor returns. It is useful to think of instance variable initializers and
constructor initializers as statements that are automatically inserted before the
constructor_body. The example

C#

class A
{
 public A()
 {
 PrintFields();
 }

 public virtual void PrintFields() {}
}
class B: A
{
 int x = 1;
 int y;

 public B()
 {
 y = -1;
 }

 public override void PrintFields() =>
 Console.WriteLine($"x = {x}, y = {y}");
}

x = 1, y = 0

class A
{
 int x = 1, y = -1, count;

 public A()
 {
 count = 0;
 }

contains several variable initializers; it also contains constructor initializers of both
forms (base and this). The example corresponds to the code shown below, where
each comment indicates an automatically inserted statement (the syntax used for
the automatically inserted constructor invocations isn’t valid, but merely serves to
illustrate the mechanism).

C#

 public A(int n)
 {
 count = n;
 }
}

class B : A
{
 double sqrt2 = Math.Sqrt(2.0);
 ArrayList items = new ArrayList(100);
 int max;

 public B(): this(100)
 {
 items.Add("default");
 }

 public B(int n) : base(n - 1)
 {
 max = n;
 }
}

class A
{
 int x, y, count;
 public A()
 {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = 0;
 }

 public A(int n)
 {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = n;
 }
}

class B : A

end example

If a class contains no instance constructor declarations, a default instance constructor is
automatically provided. That default constructor simply invokes a constructor of the
direct base class, as if it had a constructor initializer of the form base() . If the class is
abstract then the declared accessibility for the default constructor is protected.
Otherwise, the declared accessibility for the default constructor is public.

Note: Thus, the default constructor is always of the form

C#

or

C#

where C is the name of the class.

end note

{
 double sqrt2;
 ArrayList items;
 int max;
 public B() : this(100)
 {
 B(100); // Invoke B(int) constructor
 items.Add("default");
 }

 public B(int n) : base(n - 1)
 {
 sqrt2 = Math.Sqrt(2.0); // Variable initializer
 items = new ArrayList(100); // Variable initializer
 A(n - 1); // Invoke A(int) constructor
 max = n;
 }
}

14.11.5 Default constructors

protected C(): base() {}

public C(): base() {}

If overload resolution is unable to determine a unique best candidate for the base-class
constructor initializer then a compile-time error occurs.

Example: In the following code

C#

a default constructor is provided because the class contains no instance constructor
declarations. Thus, the example is precisely equivalent to

C#

end example

A static constructor is a member that implements the actions required to initialize a
closed class. Static constructors are declared using static_constructor_declarations:

ANTLR

class Message
{
 object sender;
 string text;
}

class Message
{
 object sender;
 string text;

 public Message() : base() {}
}

14.12 Static constructors

static_constructor_declaration
 : attributes? static_constructor_modifiers identifier '(' ')'
 static_constructor_body
 ;

static_constructor_modifiers
 : 'static'
 | 'static' 'extern' unsafe_modifier?
 | 'static' unsafe_modifier 'extern'?
 | 'extern' 'static' unsafe_modifier?
 | 'extern' unsafe_modifier 'static'
 | unsafe_modifier 'static' 'extern'?
 | unsafe_modifier 'extern' 'static'

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A static_constructor_declaration may include a set of attributes (§21) and an extern
modifier (§14.6.8).

The identifier of a static_constructor_declaration shall name the class in which the static
constructor is declared. If any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an extern modifier, the static constructor
is said to be an external static constructor. Because an external static constructor
declaration provides no actual implementation, its static_constructor_body consists of a
semicolon. For all other static constructor declarations, the static_constructor_body
consists of either

a block, which specifies the statements to execute in order to initialize the class; or
an expression body, which consists of => followed by an expression and a
semicolon, and denotes a single expression to execute in order to initialize the
class.

A static_constructor_body that is a block or expression body corresponds exactly to the
method_body of a static method with a void return type (§14.6.11).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a closed class executes at most once in a given application
domain. The execution of a static constructor is triggered by the first of the following
events to occur within an application domain:

An instance of the class is created.
Any of the static members of the class are referenced.

If a class contains the Main method (§7.1) in which execution begins, the static
constructor for that class executes before the Main method is called.

To initialize a new closed class type, first a new set of static fields (§14.5.2) for that
particular closed type is created. Each of the static fields is initialized to its default value

 ;

static_constructor_body
 : block
 | '=>' expression ';'
 | ';'
 ;

(§14.5.5). Next, the static field initializers (§14.5.6.2) are executed for those static fields.
Finally, the static constructor is executed.

Example: The example

C#

must produce the output:

Console

class Test
{
 static void Main()
 {
 A.F();
 B.F();
 }
}

class A
{
 static A()
 {
 Console.WriteLine("Init A");
 }

 public static void F()
 {
 Console.WriteLine("A.F");
 }
}

class B
{
 static B()
 {
 Console.WriteLine("Init B");
 }

 public static void F()
 {
 Console.WriteLine("B.F");
 }
}

Init A
A.F
Init B
B.F

because the execution of A ’s static constructor is triggered by the call to A.F , and
the execution of B ’s static constructor is triggered by the call to B.F .

end example

It is possible to construct circular dependencies that allow static fields with variable
initializers to be observed in their default value state.

Example: The example

C#

produces the output

Console

To execute the Main method, the system first runs the initializer for B.Y , prior to
class B ’s static constructor. Y ’s initializer causes A ’s static constructor to be run
because the value of A.X is referenced. The static constructor of A in turn proceeds
to compute the value of X , and in doing so fetches the default value of Y , which is
zero. A.X is thus initialized to 1. The process of running A ’s static field initializers

class A
{
 public static int X;

 static A()
 {
 X = B.Y + 1;
 }
}

class B
{
 public static int Y = A.X + 1;

 static B() {}

 static void Main()
 {
 Console.WriteLine($"X = {A.X}, Y = {B.Y}");
 }
}

X = 1, Y = 2

and static constructor then completes, returning to the calculation of the initial
value of Y , the result of which becomes 2.

end example

Because the static constructor is executed exactly once for each closed constructed class
type, it is a convenient place to enforce run-time checks on the type parameter that
cannot be checked at compile-time via constraints (§14.2.5).

Example: The following type uses a static constructor to enforce that the type
argument is an enum:

C#

end example

Note: In an earlier version of this standard, what is now referred to as a “finalizer”
was called a “destructor”. Experience has shown that the term “destructor” caused
confusion and often resulted to incorrect expectations, especially to programmers
knowing C++. In C++, a destructor is called in a determinate manner, whereas,
in C#, a finalizer is not. To get determinate behavior from C#, one should use
Dispose . end note

A finalizer is a member that implements the actions required to finalize an instance of a
class. A finalizer is declared using a finalizer_declaration:

ANTLR

class Gen<T> where T : struct
{
 static Gen()
 {
 if (!typeof(T).IsEnum)
 {
 throw new ArgumentException("T must be an enum");
 }
 }
}

14.13 Finalizers

finalizer_declaration
 : attributes? '~' identifier '(' ')' finalizer_body
 | attributes? 'extern' unsafe_modifier? '~' identifier '(' ')'

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A finalizer_declaration may include a set of attributes (§21).

The identifier of a finalizer_declarator shall name the class in which the finalizer is
declared. If any other name is specified, a compile-time error occurs.

When a finalizer declaration includes an extern modifier, the finalizer is said to be an
external finalizer. Because an external finalizer declaration provides no actual
implementation, its finalizer_body consists of a semicolon. For all other finalizers, the
finalizer_body consists of either

a block, which specifies the statements to execute in order to finalize an instance of
the class.
or an expression body, which consists of => followed by an expression and a
semicolon, and denotes a single expression to execute in order to finalize an
instance of the class.

A finalizer_body that is a block or expression body corresponds exactly to the
method_body of an instance method with a void return type (§14.6.11).

Finalizers are not inherited. Thus, a class has no finalizers other than the one that may be
declared in that class.

Note: Since a finalizer is required to have no parameters, it cannot be overloaded, so
a class can have, at most, one finalizer. end note

Finalizers are invoked automatically, and cannot be invoked explicitly. An instance
becomes eligible for finalization when it is no longer possible for any code to use that
instance. Execution of the finalizer for the instance may occur at any time after the
instance becomes eligible for finalization (§7.9). When an instance is finalized, the
finalizers in that instance’s inheritance chain are called, in order, from most derived to
least derived. A finalizer may be executed on any thread. For further discussion of the
rules that govern when and how a finalizer is executed, see §7.9.

 finalizer_body
 | attributes? unsafe_modifier 'extern'? '~' identifier '(' ')'
 finalizer_body
 ;

finalizer_body
 : block
 | '=>' expression ';'
 | ';'
 ;

Example: The output of the example

C#

is

Console

since finalizers in an inheritance chain are called in order, from most derived to least
derived.

end example

Finalizers are implemented by overriding the virtual method Finalize on
System.Object . C# programs are not permitted to override this method or call it (or
overrides of it) directly.

Example: For instance, the program

class A
{
 ~A()
 {
 Console.WriteLine("A's finalizer");
 }
}

class B : A
{
 ~B()
 {
 Console.WriteLine("B's finalizer");
 }
}

class Test
{
 static void Main()
 {
 B b = new B();
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

B's finalizer
A's finalizer

C#

contains two errors.

end example

The compiler behaves as if this method, and overrides of it, do not exist at all.

Example: Thus, this program:

C#

is valid and the method shown hides System.Object ’s Finalize method.

end example

For a discussion of the behavior when an exception is thrown from a finalizer, see §20.4.

A function member (§11.6) implemented using an iterator block (§12.3) is called an
iterator.

An iterator block may be used as the body of a function member as long as the return
type of the corresponding function member is one of the enumerator interfaces
(§14.14.2) or one of the enumerable interfaces (§14.14.3). It may occur as a method_body,
operator_body or accessor_body, whereas events, instance constructors, static
constructors and finalizers may not be implemented as iterators.

class A
{
 override protected void Finalize() {} // Error
 public void F()
 {
 this.Finalize(); // Error
 }
}

class A
{
 void Finalize() {} // Permitted
}

14.14 Iterators

14.14.1 General

When a function member is implemented using an iterator block, it is a compile-time
error for the formal parameter list of the function member to specify any ref or out
parameters.

The enumerator interfaces are the non-generic interface
System.Collections.IEnumerator and all instantiations of the generic interface
System.Collections.Generic.IEnumerator<T> . For the sake of brevity, in this subclause
and its siblings these interfaces are referenced as IEnumerator and IEnumerator<T> ,
respectively.

The enumerable interfaces are the non-generic interface
System.Collections.IEnumerable and all instantiations of the generic interface
System.Collections.Generic.IEnumerable<T> . For the sake of brevity, in this subclause
and its siblings these interfaces are referenced as IEnumerable and IEnumerable<T> ,
respectively.

An iterator produces a sequence of values, all of the same type. This type is called the
yield type of the iterator.

The yield type of an iterator that returns IEnumerator or IEnumerable is object .
The yield type of an iterator that returns IEnumerator<T> or IEnumerable<T> is T .

When a function member returning an enumerator interface type is implemented using
an iterator block, invoking the function member does not immediately execute the code
in the iterator block. Instead, an enumerator object is created and returned. This object
encapsulates the code specified in the iterator block, and execution of the code in the
iterator block occurs when the enumerator object’s MoveNext method is invoked. An
enumerator object has the following characteristics:

14.14.2 Enumerator interfaces

14.14.3 Enumerable interfaces

14.14.4 Yield type

14.14.5 Enumerator objects

14.14.5.1 General

It implements IEnumerator and IEnumerator<T> , where T is the yield type of the
iterator.
It implements System.IDisposable .
It is initialized with a copy of the argument values (if any) and instance value
passed to the function member.
It has four potential states, before, running, suspended, and after, and is initially in
the before state.

An enumerator object is typically an instance of a compiler-generated enumerator class
that encapsulates the code in the iterator block and implements the enumerator
interfaces, but other methods of implementation are possible. If an enumerator class is
generated by the compiler, that class will be nested, directly or indirectly, in the class
containing the function member, it will have private accessibility, and it will have a name
reserved for compiler use (§6.4.3).

An enumerator object may implement more interfaces than those specified above.

The following subclauses describe the required behavior of the MoveNext , Current , and
Dispose members of the IEnumerator and IEnumerator<T> interface implementations
provided by an enumerator object.

Enumerator objects do not support the IEnumerator.Reset method. Invoking this
method causes a System.NotSupportedException to be thrown.

The MoveNext method of an enumerator object encapsulates the code of an iterator
block. Invoking the MoveNext method executes code in the iterator block and sets the
Current property of the enumerator object as appropriate. The precise action
performed by MoveNext depends on the state of the enumerator object when MoveNext
is invoked:

If the state of the enumerator object is before, invoking MoveNext :
Changes the state to running.
Initializes the parameters (including this) of the iterator block to the argument
values and instance value saved when the enumerator object was initialized.
Executes the iterator block from the beginning until execution is interrupted (as
described below).

If the state of the enumerator object is running, the result of invoking MoveNext is
unspecified.
If the state of the enumerator object is suspended, invoking MoveNext:

14.14.5.2 The MoveNext method

Changes the state to running.
Restores the values of all local variables and parameters (including this) to the
values saved when execution of the iterator block was last suspended.

Note: The contents of any objects referenced by these variables may have
changed since the previous call to MoveNext . end note

Resumes execution of the iterator block immediately following the yield return
statement that caused the suspension of execution and continues until
execution is interrupted (as described below).

If the state of the enumerator object is after, invoking MoveNext returns false.

When MoveNext executes the iterator block, execution can be interrupted in four ways:
By a yield return statement, by a yield break statement, by encountering the end of
the iterator block, and by an exception being thrown and propagated out of the iterator
block.

When a yield return statement is encountered (§9.4.4.20):
The expression given in the statement is evaluated, implicitly converted to the
yield type, and assigned to the Current property of the enumerator object.
Execution of the iterator body is suspended. The values of all local variables and
parameters (including this) are saved, as is the location of this yield return
statement. If the yield return statement is within one or more try blocks, the
associated finally blocks are not executed at this time.
The state of the enumerator object is changed to suspended.
The MoveNext method returns true to its caller, indicating that the iteration
successfully advanced to the next value.

When a yield break statement is encountered (§9.4.4.20):
If the yield break statement is within one or more try blocks, the associated
finally blocks are executed.
The state of the enumerator object is changed to after.
The MoveNext method returns false to its caller, indicating that the iteration is
complete.

When the end of the iterator body is encountered:
The state of the enumerator object is changed to after.
The MoveNext method returns false to its caller, indicating that the iteration is
complete.

When an exception is thrown and propagated out of the iterator block:
Appropriate finally blocks in the iterator body will have been executed by the
exception propagation.

The state of the enumerator object is changed to after.
The exception propagation continues to the caller of the MoveNext method.

An enumerator object’s Current property is affected by yield return statements in the
iterator block.

When an enumerator object is in the suspended state, the value of Current is the value
set by the previous call to MoveNext . When an enumerator object is in the before,
running, or after states, the result of accessing Current is unspecified.

For an iterator with a yield type other than object , the result of accessing Current
through the enumerator object’s IEnumerable implementation corresponds to accessing
Current through the enumerator object’s IEnumerator<T> implementation and casting
the result to object .

The Dispose method is used to clean up the iteration by bringing the enumerator object
to the after state.

If the state of the enumerator object is before, invoking Dispose changes the state
to after.
If the state of the enumerator object is running, the result of invoking Dispose is
unspecified.
If the state of the enumerator object is suspended, invoking Dispose :

Changes the state to running.
Executes any finally blocks as if the last executed yield return statement were
a yield break statement. If this causes an exception to be thrown and
propagated out of the iterator body, the state of the enumerator object is set to
after and the exception is propagated to the caller of the Dispose method.
Changes the state to after.

If the state of the enumerator object is after, invoking Dispose has no affect.

14.14.5.3 The Current property

14.14.5.4 The Dispose method

14.14.6 Enumerable objects

14.14.6.1 General

When a function member returning an enumerable interface type is implemented using
an iterator block, invoking the function member does not immediately execute the code
in the iterator block. Instead, an enumerable object is created and returned. The
enumerable object’s GetEnumerator method returns an enumerator object that
encapsulates the code specified in the iterator block, and execution of the code in the
iterator block occurs when the enumerator object’s MoveNext method is invoked. An
enumerable object has the following characteristics:

It implements IEnumerable and IEnumerable<T> , where T is the yield type of the
iterator.
It is initialized with a copy of the argument values (if any) and instance value
passed to the function member.

An enumerable object is typically an instance of a compiler-generated enumerable class
that encapsulates the code in the iterator block and implements the enumerable
interfaces, but other methods of implementation are possible. If an enumerable class is
generated by the compiler, that class will be nested, directly or indirectly, in the class
containing the function member, it will have private accessibility, and it will have a name
reserved for compiler use (§6.4.3).

An enumerable object may implement more interfaces than those specified above.

Note: For example, an enumerable object may also implement IEnumerator and
IEnumerator<T> , enabling it to serve as both an enumerable and an enumerator.
Typically, such an implementation would return its own instance (to save allocations)
from the first call to GetEnumerator . Subsequent invocations of GetEnumerator , if
any, would return a new class instance, typically of the same class, so that calls to
different enumerator instances will not affect each other. It cannot return the same
instance even if the previous enumerator has already enumerated past the end of
the sequence, since all future calls to an exhausted enumerator must throw
exceptions. end note

An enumerable object provides an implementation of the GetEnumerator methods of
the IEnumerable and IEnumerable<T> interfaces. The two GetEnumerator methods share
a common implementation that acquires and returns an available enumerator object.
The enumerator object is initialized with the argument values and instance value saved
when the enumerable object was initialized, but otherwise the enumerator object
functions as described in §14.14.5.

14.14.6.2 The GetEnumerator method

A method (§14.6) or anonymous function (§11.17) with the async modifier is called an
async function. In general, the term async is used to describe any kind of function that
has the async modifier.

It is a compile-time error for the formal parameter list of an async function to specify
any ref or out parameters.

The return_type of an async method shall be either void or a task type. The task types
are System.Threading.Tasks.Task and types constructed from
System.Threading.Tasks.Task<T> . For the sake of brevity, in this clause these types are
referenced as Task and Task<T> , respectively. An async method returning a task type is
said to be task-returning.

The exact definition of the task types is implementation-defined, but from the
language’s point of view, a task type is in one of the states incomplete, succeeded or
faulted. A faulted task records a pertinent exception. A succeeded Task<T> records a
result of type T . Task types are awaitable, and tasks can therefore be the operands of
await expressions (§11.8.8).

An async function has the ability to suspend evaluation by means of await expressions
(§11.8.8) in its body. Evaluation may later be resumed at the point of the suspending
await expression by means of a resumption delegate. The resumption delegate is of
type System.Action , and when it is invoked, evaluation of the async function invocation
will resume from the await expression where it left off. The current caller of an async
function invocation is the original caller if the function invocation has never been
suspended or the most recent caller of the resumption delegate otherwise.

Invocation of a task-returning async function causes an instance of the returned task
type to be generated. This is called the return task of the async function. The task is
initially in an incomplete state.

The async function body is then evaluated until it is either suspended (by reaching an
await expression) or terminates, at which point control is returned to the caller, along
with the return task.

14.15 Async Functions

14.15.1 General

14.15.2 Evaluation of a task-returning async function

When the body of the async function terminates, the return task is moved out of the
incomplete state:

If the function body terminates as the result of reaching a return statement or the
end of the body, any result value is recorded in the return task, which is put into a
succeeded state.
If the function body terminates as the result of an uncaught exception (§12.10.6)
the exception is recorded in the return task which is put into a faulted state.

If the return type of the async function is void , evaluation differs from the above in the
following way: Because no task is returned, the function instead communicates
completion and exceptions to the current thread’s synchronization context. The exact
definition of synchronization context is implementation-dependent, but is a
representation of “where” the current thread is running. The synchronization context is
notified when evaluation of a void -returning async function commences, completes
successfully, or causes an uncaught exception to be thrown.

This allows the context to keep track of how many void -returning async functions are
running under it, and to decide how to propagate exceptions coming out of them.

14.15.3 Evaluation of a void-returning async function

15 Structs
Article • 2023-01-13 • 15 minutes to read

Structs are similar to classes in that they represent data structures that can contain data
members and function members. However, unlike classes, structs are value types and do
not require heap allocation. A variable of a struct type directly contains the data of the
struct , whereas a variable of a class type contains a reference to the data, the latter
known as an object.

Note: Structs are particularly useful for small data structures that have value
semantics. Complex numbers, points in a coordinate system, or key-value pairs in a
dictionary are all good examples of structs. Key to these data structures is that they
have few data members, that they do not require use of inheritance or reference
semantics, rather they can be conveniently implemented using value semantics
where assignment copies the value instead of the reference. end note

As described in §8.3.5, the simple types provided by C#, such as int , double , and bool ,
are, in fact, all struct types.

A struct_declaration is a type_declaration (§13.7) that declares a new struct:

ANTLR

A struct_declaration consists of an optional set of attributes (§21), followed by an
optional set of struct_modifiers (§15.2.2), followed by an optional partial modifier
(§14.2.7), followed by the keyword struct and an identifier that names the struct,
followed by an optional type_parameter_list specification (§14.2.3), followed by an

15.1 General

15.2 Struct declarations

15.2.1 General

struct_declaration
 : attributes? struct_modifier* 'partial'? 'struct'
 identifier type_parameter_list? struct_interfaces?
 type_parameter_constraints_clause* struct_body ';'?
 ;

optional struct_interfaces specification (§15.2.4), followed by an optional
type_parameter_constraints-clauses specification (§14.2.5), followed by a struct_body
(§15.2.5), optionally followed by a semicolon.

A struct declaration shall not supply a type_parameter_constraints_clauses unless it also
supplies a type_parameter_list.

A struct declaration that supplies a type_parameter_list is a generic struct declaration.
Additionally, any struct nested inside a generic class declaration or a generic struct
declaration is itself a generic struct declaration, since type arguments for the containing
type shall be supplied to create a constructed type (§8.4).

A struct_declaration may optionally include a sequence of struct_modifiers:

ANTLR

unsafe_modifier (§22.2) is only available in unsafe code (§22).

It is a compile-time error for the same modifier to appear multiple times in a struct
declaration.

Except for readonly , the modifiers of a struct declaration have the same meaning as
those of a class declaration (§14.2.2).

The readonly modifier indicates that the struct_declaration declares a type whose
instances are immutable.

A readonly struct has the following constraints:

Each of its instance fields shall also be declared readonly .
None of its instance properties shall have a set_accessor_declaration (§14.7.3).
It shall not declare any field-like events (§14.8.2).

15.2.2 Struct modifiers

struct_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'readonly'
 | unsafe_modifier // unsafe code support
 ;

When an instance of a readonly struct is passed to a method, its this is treated like an
in argument/parameter, which disallows write access to any instance fields (except by
constructors).

The partial modifier indicates that this struct_declaration is a partial type declaration.
Multiple partial struct declarations with the same name within an enclosing namespace
or type declaration combine to form one struct declaration, following the rules specified
in §14.2.7.

A struct declaration may include a struct_interfaces specification, in which case the struct
is said to directly implement the given interface types. For a constructed struct type,
including a nested type declared within a generic type declaration (§14.3.9.7), each
implemented interface type is obtained by substituting, for each type_parameter in the
given interface, the corresponding type_argument of the constructed type.

ANTLR

The handling of interfaces on multiple parts of a partial struct declaration (§14.2.7) are
discussed further in §14.2.4.3.

Interface implementations are discussed further in §17.6.

The struct_body of a struct defines the members of the struct.

ANTLR

15.2.3 Partial modifier

15.2.4 Struct interfaces

struct_interfaces
 : ':' interface_type_list
 ;

15.2.5 Struct body

struct_body
 : '{' struct_member_declaration* '}'
 ;

15.3 Struct members

The members of a struct consist of the members introduced by its
struct_member_declarations and the members inherited from the type System.ValueType .

ANTLR

fixed_size_buffer_declaration (§22.8.2) is only available in unsafe code (§22).

Note: All kinds of class_member_declarations except finalizer_declaration are also
struct_member_declarations. end note

Except for the differences noted in §15.4, the descriptions of class members provided in
§14.3 through §14.12 apply to struct members as well.

Structs differ from classes in several important ways:

Structs are value types (§15.4.2).
All struct types implicitly inherit from the class System.ValueType (§15.4.3).
Assignment to a variable of a struct type creates a copy of the value being assigned
(§15.4.4).
The default value of a struct is the value produced by setting all fields to their
default value (§15.4.5).
Boxing and unboxing operations are used to convert between a struct type and
certain reference types (§15.4.6).
The meaning of this is different within struct members (§15.4.7).

struct_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | static_constructor_declaration
 | type_declaration
 | fixed_size_buffer_declaration // unsafe code support
 ;

15.4 Class and struct differences

15.4.1 General

Instance field declarations for a struct are not permitted to include variable
initializers (§15.4.8).
A struct is not permitted to declare a parameterless instance constructor (§15.4.9).
A struct is not permitted to declare a finalizer.

Structs are value types (§8.3) and are said to have value semantics. Classes, on the other
hand, are reference types (§8.2) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a
class type contains a reference to an object that contains the data. When a struct B
contains an instance field of type A and A is a struct type, it is a compile-time error for
A to depend on B or a type constructed from B . A struct X directly depends on a struct
Y if X contains an instance field of type Y . Given this definition, the complete set of
structs upon which a struct depends is the transitive closure of the directly depends on
relationship.

Example:

C#

is an error because Node contains an instance field of its own type. Another example

C#

is an error because each of the types A , B , and C depend on each other.

end example

With classes, it is possible for two variables to reference the same object, and thus
possible for operations on one variable to affect the object referenced by the other
variable. With structs, the variables each have their own copy of the data (except in the

15.4.2 Value semantics

struct Node
{
 int data;
 Node next; // error, Node directly depends on itself
}

struct A { B b; }
struct B { C c; }
struct C { A a; }

case of ref and out parameter variables), and it is not possible for operations on one
to affect the other. Furthermore, except when explicitly nullable (§8.3.11), it is not
possible for values of a struct type to be null .

Note: If a struct contains a field of reference type then the contents of the object
referenced can be altered by other operations. However the value of the field itself,
i.e., which object it references, cannot be changed through a mutation of a different
struct value. end note

Example: Given the following

C#

the output is 10 . The assignment of a to b creates a copy of the value, and b is
thus unaffected by the assignment to a.x . Had Point instead been declared as a
class, the output would be 100 because a and b would reference the same object.

end example

All struct types implicitly inherit from the class System.ValueType , which, in turn, inherits
from class object . A struct declaration may specify a list of implemented interfaces, but
it is not possible for a struct declaration to specify a base class.

struct Point
{
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

class A
{
 static void Main()
 {
 Point a = new Point(10, 10);
 Point b = a;
 a.x = 100;
 Console.WriteLine(b.x);
 }
}

15.4.3 Inheritance

Struct types are never abstract and are always implicitly sealed. The abstract and
sealed modifiers are therefore not permitted in a struct declaration.

Since inheritance isn’t supported for structs, the declared accessibility of a struct
member cannot be protected , private protected , or protected internal .

Function members in a struct cannot be abstract or virtual, and the override modifier is
allowed only to override methods inherited from System.ValueType .

Assignment to a variable of a struct type creates a copy of the value being assigned. This
differs from assignment to a variable of a class type, which copies the reference but not
the object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as
the result of a function member, a copy of the struct is created. A struct may be passed
by reference to a function member using a ref or out parameter.

When a property or indexer of a struct is the target of an assignment, the instance
expression associated with the property or indexer access shall be classified as a
variable. If the instance expression is classified as a value, a compile-time error occurs.
This is described in further detail in §11.19.2.

As described in §9.3, several kinds of variables are automatically initialized to their
default value when they are created. For variables of class types and other reference
types, this default value is null . However, since structs are value types that cannot be
null , the default value of a struct is the value produced by setting all value type fields
to their default value and all reference type fields to null .

Example: Referring to the Point struct declared above, the example

C#

initializes each Point in the array to the value produced by setting the x and y
fields to zero.

end example

15.4.4 Assignment

15.4.5 Default values

Point[] a = new Point[100];

The default value of a struct corresponds to the value returned by the default
constructor of the struct (§8.3.3). Unlike a class, a struct is not permitted to declare a
parameterless instance constructor. Instead, every struct implicitly has a parameterless
instance constructor, which always returns the value that results from setting all fields to
their default values.

Note: Structs should be designed to consider the default initialization state a valid
state. In the example

C#

the user-defined instance constructor protects against null values only where it is
explicitly called. In cases where a KeyValuePair variable is subject to default value
initialization, the key and value fields will be null , and the struct should be
prepared to handle this state.

end note

A value of a class type can be converted to type object or to an interface type that is
implemented by the class simply by treating the reference as another type at compile-
time. Likewise, a value of type object or a value of an interface type can be converted
back to a class type without changing the reference (but, of course, a run-time type
check is required in this case).

Since structs are not reference types, these operations are implemented differently for
struct types. When a value of a struct type is converted to certain reference types (as

struct KeyValuePair
{
 string key;
 string value;

 public KeyValuePair(string key, string value)
 {
 if (key == null || value == null)
 {
 throw new ArgumentException();
 }

 this.key = key;
 this.value = value;
 }
}

15.4.6 Boxing and unboxing

defined in §10.2.9), a boxing operation takes place. Likewise, when a value of certain
reference types (as defined in §10.3.6) is converted back to a struct type, an unboxing
operation takes place. A key difference from the same operations on class types is that
boxing and unboxing copies the struct value either into or out of the boxed instance.

Note: Thus, following a boxing or unboxing operation, changes made to the
unboxed struct are not reflected in the boxed struct . end note

For further details on boxing and unboxing, see §10.2.9 and §10.3.6.

The meaning of this in a struct differs from the meaning of this in a class, as
described in §11.7.12. When a struct type overrides a virtual method inherited from
System.ValueType (such as Equals , GetHashCode , or ToString), invocation of the virtual
method through an instance of the struct type does not cause boxing to occur. This is
true even when the struct is used as a type parameter and the invocation occurs
through an instance of the type parameter type.

Example:

C#

15.4.7 Meaning of this

struct Counter
{
 int value;
 public override string ToString()
 {
 value++;
 return value.ToString();
 }
}

class Program
{
 static void Test<T>() where T : new()
 {
 T x = new T();
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 }

 static void Main() => Test<Counter>();
}

The output of the program is:

Console

Although it is bad style for ToString to have side effects, the example demonstrates
that no boxing occurred for the three invocations of x.ToString() .

end example

Similarly, boxing never implicitly occurs when accessing a member on a constrained
type parameter when the member is implemented within the value type. For example,
suppose an interface ICounter contains a method Increment , which can be used to
modify a value. If ICounter is used as a constraint, the implementation of the Increment
method is called with a reference to the variable that Increment was called on, never a
boxed copy.

Example:

C#

1
2
3

interface ICounter
{
 void Increment();
}

struct Counter : ICounter
{
 int value;

 public override string ToString() => value.ToString();

 void ICounter.Increment() => value++;
}

class Program
{
 static void Test<T>() where T : ICounter, new()
 {
 T x = new T();
 Console.WriteLine(x);
 x.Increment(); // Modify x
 Console.WriteLine(x);
 ((ICounter)x).Increment(); // Modify boxed copy of x
 Console.WriteLine(x);

The first call to Increment modifies the value in the variable x . This is not equivalent
to the second call to Increment , which modifies the value in a boxed copy of x .
Thus, the output of the program is:

Console

end example

As described in §15.4.5, the default value of a struct consists of the value that results
from setting all value type fields to their default value and all reference type fields to
null . For this reason, a struct does not permit instance field declarations to include
variable initializers. This restriction applies only to instance fields. Static fields of a struct
are permitted to include variable initializers.

Example: The following

C#

is in error because the instance field declarations include variable initializers.

end example

Unlike a class, a struct is not permitted to declare a parameterless instance constructor.
Instead, every struct implicitly has a parameterless instance constructor, which always
returns the value that results from setting all value type fields to their default value and

 }

 static void Main() => Test<Counter>();
}

0
1
1

15.4.8 Field initializers

struct Point
{
 public int x = 1; // Error, initializer not permitted
 public int y = 1; // Error, initializer not permitted
}

15.4.9 Constructors

all reference type fields to null (§8.3.3). A struct can declare instance constructors
having parameters.

Example: Given the following

C#

the statements both create a Point with x and y initialized to zero.

end example

A struct instance constructor is not permitted to include a constructor initializer of the
form base(argument_list) , where argument_list is optional.

The this parameter of a struct instance constructor corresponds to an out parameter
of the struct type. As such, this shall be definitely assigned (§9.4) at every location
where the constructor returns. Similarly, it cannot be read (even implicitly) in the
constructor body before being definitely assigned.

If the struct instance constructor specifies a constructor initializer, that initializer is
considered a definite assignment to this that occurs prior to the body of the constructor.
Therefore, the body itself has no initialization requirements.

Example: Consider the instance constructor implementation below:

C#

struct Point
{
 int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

class A
{
 static void Main()
 {
 Point p1 = new Point();
 Point p2 = new Point(0, 0);
 }
}

No instance function member (including the set accessors for the properties X and
Y) can be called until all fields of the struct being constructed have been definitely
assigned. Note, however, that if Point were a class instead of a struct, the instance
constructor implementation would be permitted. There is one exception to this, and
that involves automatically implemented properties (§14.7.4). The definite
assignment rules (§11.19.2) specifically exempt assignment to an auto-property of a
struct type within an instance constructor of that struct type: such an assignment is
considered a definite assignment of the hidden backing field of the auto-property.
Thus, the following is allowed:

C#

end example]

struct Point
{
 int x, y;

 public int X
 {
 set { x = value; }
 }

 public int Y
 {
 set { y = value; }
 }

 public Point(int x, int y)
 {
 X = x; // error, this is not yet definitely assigned
 Y = y; // error, this is not yet definitely assigned
 }
}

struct Point
{
 public int X { get; set; }
 public int Y { get; set; }

 public Point(int x, int y)
 {
 X = x; // allowed, definitely assigns backing field
 Y = y; // allowed, definitely assigns backing field
 }
}

Static constructors for structs follow most of the same rules as for classes. The execution
of a static constructor for a struct type is triggered by the first of the following events to
occur within an application domain:

A static member of the struct type is referenced.
An explicitly declared constructor of the struct type is called.

Note: The creation of default values (§15.4.5) of struct types does not trigger the
static constructor. (An example of this is the initial value of elements in an array.)
end note

Automatically implemented properties (§14.7.4) use hidden backing fields, which are
only accessible to the property accessors.

Note: This access restriction means that constructors in structs containing
automatically implemented properties often need an explicit constructor initializer
where they would not otherwise need one, to satisfy the requirement of all fields
being definitely assigned before any function member is invoked or the constructor
returns. end note

15.4.10 Static constructors

15.4.11 Automatically implemented properties

16 Arrays
Article • 2023-01-12 • 11 minutes to read

An array is a data structure that contains a number of variables that are accessed
through computed indices. The variables contained in an array, also called the elements
of the array, are all of the same type, and this type is called the element type of the
array.

An array has a rank that determines the number of indices associated with each array
element. The rank of an array is also referred to as the dimensions of the array. An array
with a rank of one is called a single-dimensional array. An array with a rank greater
than one is called a multi-dimensional array. Specific sized multi-dimensional arrays are
often referred to as two-dimensional arrays, three-dimensional arrays, and so on. Each
dimension of an array has an associated length that is an integral number greater than
or equal to zero. The dimension lengths are not part of the type of the array, but rather
are established when an instance of the array type is created at run-time. The length of a
dimension determines the valid range of indices for that dimension: For a dimension of
length N , indices can range from 0 to N – 1 inclusive. The total number of elements in
an array is the product of the lengths of each dimension in the array. If one or more of
the dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can itself be an array type (§16.2.1). Such arrays of arrays
are distinct from multi-dimensional arrays and can be used to represent “jagged arrays”.

Example:

C#

end example

16.1 General

int[][] pascals =
{
 new int[] {1},
 new int[] {1, 1},
 new int[] {1, 2, 1},
 new int[] {1, 3, 3, 1}
};

Every array type is a reference type (§8.2). The element type of an array can be any type,
including value types and array types.

The grammar productions for array types are provided in §8.2.1.

An array type is written as a non_array_type followed by one or more rank_specifiers.

A non_array_type is any type that is not itself an array_type.

The rank of an array type is given by the leftmost rank_specifier in the array_type: A
rank_specifier indicates that the array is an array with a rank of one plus the number of
“, ” tokens in the rank_specifier.

The element type of an array type is the type that results from deleting the leftmost
rank_specifier:

An array type of the form T[R] is an array with rank R and a non-array element
type T .
An array type of the form T[R][R₁]...[Rₓ] is an array with rank R and an element
type T[R₁]...[Rₓ] .

In effect, the rank_specifiers are read from left to right before the final non-array element
type.

Example: The type in T[][,,][,] is a single-dimensional array of three-dimensional
arrays of two-dimensional arrays of int . end example

At run-time, a value of an array type can be null or a reference to an instance of that
array type.

Note: Following the rules of §16.6, the value may also be a reference to a covariant
array type. end note

The type System.Array is the abstract base type of all array types. An implicit reference
conversion (§10.2.8) exists from any array type to System.Array and to any interface type

16.2 Array types

16.2.1 General

16.2.2 The System.Array type

implemented by System.Array . An explicit reference conversion (§10.3.5) exists from
System.Array and any interface type implemented by System.Array to any array type.
System.Array is not itself an array_type. Rather, it is a class_type from which all
array_types are derived.

At run-time, a value of type System.Array can be null or a reference to an instance of
any array type.

A single-dimensional array T[] implements the interface
System.Collections.Generic.IList<T> (IList<T> for short) and its base interfaces.
Accordingly, there is an implicit conversion from T[] to IList<T> and its base
interfaces. In addition, if there is an implicit reference conversion from S to T then S[]
implements IList<T> and there is an implicit reference conversion from S[] to
IList<T> and its base interfaces (§10.2.8). If there is an explicit reference conversion
from S to T then there is an explicit reference conversion from S[] to IList<T> and its
base interfaces (§10.3.5).

Similarly, a single-dimensional array T[] also implements the interface
System.Collections.Generic.IReadOnlyList<T> (IReadOnlyList<T> for short) and its base
interfaces. Accordingly, there is an implicit conversion from T[] to IReadOnlyList<T>
and its base interfaces. In addition, if there is an implicit reference conversion from S to
T then S[] implements IReadOnlyList<T> and there is an implicit reference conversion
from S[] to IReadOnlyList<T> and its base interfaces (§10.2.8). If there is an explicit
reference conversion from S to T then there is an explicit reference conversion from
S[] to IReadOnlyList<T> and its base interfaces (§10.3.5).

Example: For example:

C#

16.2.3 Arrays and the generic collection interfaces

class Test
{
 static void Main()
 {
 string[] sa = new string[5];
 object[] oa1 = new object[5];
 object[] oa2 = sa;

 IList<string> lst1 = sa; // Ok
 IList<string> lst2 = oa1; // Error, cast needed
 IList<object> lst3 = sa; // Ok
 IList<object> lst4 = oa1; // Ok

The assignment lst2 = oa1 generates a compile-time error since the conversion
from object[] to IList<string> is an explicit conversion, not implicit. The cast
(IList<string>)oa1 will cause an exception to be thrown at run-time since oa1
references an object[] and not a string[] . However the cast (IList<string>)oa2
will not cause an exception to be thrown since oa2 references a string[] .

end example

Whenever there is an implicit or explicit reference conversion from S[] to IList<T> ,
there is also an explicit reference conversion from IList<T> and its base interfaces to
S[] (§10.3.5).

When an array type S[] implements IList<T> , some of the members of the
implemented interface may throw exceptions. The precise behavior of the
implementation of the interface is beyond the scope of this specification.

Array instances are created by array_creation_expressions (§11.7.15.5) or by field or local
variable declarations that include an array_initializer (§16.7). Array instances can also be
created implicitly as part of evaluating an argument list involving a parameter array
(§14.6.2.5).

When an array instance is created, the rank and length of each dimension are
established and then remain constant for the entire lifetime of the instance. In other
words, it is not possible to change the rank of an existing array instance, nor is it
possible to resize its dimensions.

An array instance is always of an array type. The System.Array type is an abstract type
that cannot be instantiated.

 IList<string> lst5 = (IList<string>)oa1; // Exception
 IList<string> lst6 = (IList<string>)oa2; // Ok

 IReadOnlyList<string> lst7 = sa; // Ok
 IReadOnlyList<string> lst8 = oa1; // Error, cast needed
 IReadOnlyList<object> lst9 = sa; // Ok
 IReadOnlyList<object> lst10 = oa1; // Ok
 IReadOnlyList<string> lst11 = (IReadOnlyList<string>)oa1; //
Exception
 IReadOnlyList<string> lst12 = (IReadOnlyList<string>)oa2; // Ok
 }
}

16.3 Array creation

Elements of arrays created by array_creation_expressions are always initialized to their
default value (§9.3).

Array elements are accessed using element_access expressions (§11.7.10.2) of the form
A[I₁, I₂, ..., Iₓ] , where A is an expression of an array type and each Iₑ is an
expression of type int , uint , long , ulong , or can be implicitly converted to one or
more of these types. The result of an array element access is a variable, namely the array
element selected by the indices.

The elements of an array can be enumerated using a foreach statement (§12.9.5).

Every array type inherits the members declared by the System.Array type.

For any two reference_types A and B , if an implicit reference conversion (§10.2.8) or
explicit reference conversion (§10.3.5) exists from A to B , then the same reference
conversion also exists from the array type A[R] to the array type B[R] , where R is any
given rank_specifier (but the same for both array types). This relationship is known as
array covariance. Array covariance, in particular, means that a value of an array type
A[R] might actually be a reference to an instance of an array type B[R] , provided an
implicit reference conversion exists from B to A .

Because of array covariance, assignments to elements of reference type arrays include a
run-time check which ensures that the value being assigned to the array element is
actually of a permitted type (§11.19.2).

Example:

C#

16.4 Array element access

16.5 Array members

16.6 Array covariance

class Test
{
 static void Fill(object[] array, int index, int count, object value)
 {
 for (int i = index; i < index + count; i++)
 {
 array[i] = value;

The assignment to array[i] in the Fill method implicitly includes a run-time
check, which ensures that value is either a null reference or a reference to an
object of a type that is compatible with the actual element type of array . In Main ,
the first two invocations of Fill succeed, but the third invocation causes a
System.ArrayTypeMismatchException to be thrown upon executing the first
assignment to array[i] . The exception occurs because a boxed int cannot be
stored in a string array.

end example

Array covariance specifically does not extend to arrays of value_types. For example, no
conversion exists that permits an int[] to be treated as an object[] .

Array initializers may be specified in field declarations (§14.5), local variable declarations
(§12.6.2), and array creation expressions (§11.7.15.5):

ANTLR

 }
 }

 static void Main()
 {
 string[] strings = new string[100];
 Fill(strings, 0, 100, "Undefined");
 Fill(strings, 0, 10, null);
 Fill(strings, 90, 10, 0);
 }
}

16.7 Array initializers

array_initializer
 : '{' variable_initializer_list? '}'
 | '{' variable_initializer_list ',' '}'
 ;

variable_initializer_list
 : variable_initializer (',' variable_initializer)*
 ;

variable_initializer
 : expression
 | array_initializer
 ;

An array initializer consists of a sequence of variable initializers, enclosed by “{ ” and “} ”
tokens and separated by “, ” tokens. Each variable initializer is an expression or, in the
case of a multi-dimensional array, a nested array initializer.

The context in which an array initializer is used determines the type of the array being
initialized. In an array creation expression, the array type immediately precedes the
initializer, or is inferred from the expressions in the array initializer. In a field or variable
declaration, the array type is the type of the field or variable being declared. When an
array initializer is used in a field or variable declaration,

C#

it is simply shorthand for an equivalent array creation expression:

C#

For a single-dimensional array, the array initializer shall consist of a sequence of
expressions, each having an implicit conversion to the element type of the array (§10.2).
The expressions initialize array elements in increasing order, starting with the element at
index zero. The number of expressions in the array initializer determines the length of
the array instance being created.

Example: The array initializer above creates an int[] instance of length 5 and then
initializes the instance with the following values:

C#

end example

For a multi-dimensional array, the array initializer shall have as many levels of nesting as
there are dimensions in the array. The outermost nesting level corresponds to the
leftmost dimension and the innermost nesting level corresponds to the rightmost
dimension. The length of each dimension of the array is determined by the number of
elements at the corresponding nesting level in the array initializer. For each nested array
initializer, the number of elements shall be the same as the other array initializers at the
same level.

int[] a = {0, 2, 4, 6, 8};

int[] a = new int[] {0, 2, 4, 6, 8};

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

Example: The example:

C#

creates a two-dimensional array with a length of five for the leftmost dimension and
a length of two for the rightmost dimension:

C#

and then initializes the array instance with the following values:

C#

end example

If a dimension other than the rightmost is given with length zero, the subsequent
dimensions are assumed to also have length zero.

Example:

C#

creates a two-dimensional array with a length of zero for both the leftmost and the
rightmost dimension:

C#

end example

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

int[,] b = new int[5, 2];

b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

int[,] c = {};

int[,] c = new int[0, 0];

When an array creation expression includes both explicit dimension lengths and an array
initializer, the lengths shall be constant expressions and the number of elements at each
nesting level shall match the corresponding dimension length.

Example: Here are some examples:

C#

Here, the initializer for y results in a compile-time error because the dimension
length expression is not a constant, and the initializer for z results in a compile-time
error because the length and the number of elements in the initializer do not agree.

end example

Note: C# allows a trailing comma at the end of an array_initializer. This syntax
provides flexibility in adding or deleting members from such a list, and simplifies
machine generation of such lists. end note

int i = 3;
int[] x = new int[3] {0, 1, 2}; // OK
int[] y = new int[i] {0, 1, 2}; // Error, i not a constant
int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

17 Interfaces
Article • 2023-01-12 • 32 minutes to read

An interface defines a contract. A class or struct that implements an interface shall
adhere to its contract. An interface may inherit from multiple base interfaces, and a class
or struct may implement multiple interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself
does not provide implementations for the members that it declares. The interface
merely specifies the members that shall be supplied by classes or structs that implement
the interface.

An interface_declaration is a type_declaration (§13.7) that declares a new interface type.

ANTLR

An interface_declaration consists of an optional set of attributes (§21), followed by an
optional set of interface_modifiers (§17.2.2), followed by an optional partial modifier
(§14.2.7), followed by the keyword interface and an identifier that names the interface,
followed by an optional variant_type_parameter_list specification (§17.2.3), followed by
an optional interface_base specification (§17.2.4), followed by an optional
type_parameter_constraints_clauses specification (§14.2.5), followed by an interface_body
(§17.3), optionally followed by a semicolon.

An interface declaration shall not supply a type_parameter_constraints_clauses unless it
also supplies a type_parameter_list.

An interface declaration that supplies a type_parameter_list is a generic interface
declaration. Additionally, any interface nested inside a generic class declaration or a

17.1 General

17.2 Interface declarations

17.2.1 General

interface_declaration
 : attributes? interface_modifier* 'partial'? 'interface'
 identifier variant_type_parameter_list? interface_base?
 type_parameter_constraints_clause* interface_body ';'?
 ;

generic struct declaration is itself a generic interface declaration, since type arguments
for the containing type shall be supplied to create a constructed type (§8.4).

An interface_declaration may optionally include a sequence of interface modifiers:

ANTLR

unsafe_modifier (§22.2) is only available in unsafe code (§22).

It is a compile-time error for the same modifier to appear multiple times in an interface
declaration.

The new modifier is only permitted on interfaces defined within a class. It specifies that
the interface hides an inherited member by the same name, as described in §14.3.5.

The public , protected , internal , and private modifiers control the accessibility of the
interface. Depending on the context in which the interface declaration occurs, only some
of these modifiers might be permitted (§7.5.2). When a partial type declaration (§14.2.7)
includes an accessibility specification (via the public , protected , internal , and private
modifiers), the rules in §14.2.2 apply.

Variant type parameter lists can only occur on interface and delegate types. The
difference from ordinary type_parameter_lists is the optional variance_annotation on
each type parameter.

ANTLR

17.2.2 Interface modifiers

interface_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

17.2.3 Variant type parameter lists

17.2.3.1 General

variant_type_parameter_list
 : '<' variant_type_parameters '>'

ANTLR

ANTLR

If the variance annotation is out , the type parameter is said to be covariant. If the
variance annotation is in , the type parameter is said to be contravariant. If there is no
variance annotation, the type parameter is said to be invariant.

Example: In the following:

C#

X is covariant, Y is contravariant and Z is invariant.

end example

If a generic interface is declared in multiple parts (§14.2.3), each partial declaration shall
specify the same variance for each type parameter.

The occurrence of variance annotations in the type parameter list of a type restricts the
places where types can occur within the type declaration.

A type T is output-unsafe if one of the following holds:

 ;

variant_type_parameters
 : attributes? variance_annotation? type_parameter
 | variant_type_parameters ',' attributes? variance_annotation?
 type_parameter
 ;

variance_annotation
 : 'in'
 | 'out'
 ;

interface C<out X, in Y, Z>
{
 X M(Y y);
 Z P { get; set; }
}

17.2.3.2 Variance safety

T is a contravariant type parameter
T is an array type with an output-unsafe element type
T is an interface or delegate type Sᵢ,... Aₑ constructed from a generic type
S<Xᵢ, ... Xₑ> where for at least one Aᵢ one of the following holds:

Xᵢ is covariant or invariant and Aᵢ is output-unsafe.
Xᵢ is contravariant or invariant and Aᵢ is input-unsafe.

A type T is input-unsafe if one of the following holds:

T is a covariant type parameter
T is an array type with an input-unsafe element type
T is an interface or delegate type S<Aᵢ,... Aₑ> constructed from a generic type
S<Xᵢ, ... Xₑ> where for at least one Aᵢ one of the following holds:

Xᵢ is covariant or invariant and Aᵢ is input-unsafe.
Xᵢ is contravariant or invariant and Aᵢ is output-unsafe.

Intuitively, an output-unsafe type is prohibited in an output position, and an input-
unsafe type is prohibited in an input position.

A type is output-safe if it is not output-unsafe, and input-safe if it is not input-unsafe.

The purpose of variance annotations is to provide for more lenient (but still type safe)
conversions to interface and delegate types. To this end the definitions of implicit (§10.2)
and explicit conversions (§10.3) make use of the notion of variance-convertibility, which
is defined as follows:

A type T<Aᵢ, ..., Aᵥ> is variance-convertible to a type T<Bᵢ, ..., Bᵥ> if T is either an
interface or a delegate type declared with the variant type parameters T<Xᵢ, ..., Xᵥ> ,
and for each variant type parameter Xᵢ one of the following holds:

Xᵢ is covariant and an implicit reference or identity conversion exists from Aᵢ
to Bᵢ
Xᵢ is contravariant and an implicit reference or identity conversion exists from Bᵢ
to Aᵢ
Xᵢ is invariant and an identity conversion exists from Aᵢ to Bᵢ

17.2.3.3 Variance conversion

17.2.4 Base interfaces

An interface can inherit from zero or more interface types, which are called the explicit
base interfaces of the interface. When an interface has one or more explicit base
interfaces, then in the declaration of that interface, the interface identifier is followed by
a colon and a comma-separated list of base interface types.

ANTLR

The explicit base interfaces can be constructed interface types (§8.4, §17.2). A base
interface cannot be a type parameter on its own, though it can involve the type
parameters that are in scope.

For a constructed interface type, the explicit base interfaces are formed by taking the
explicit base interface declarations on the generic type declaration, and substituting, for
each type_parameter in the base interface declaration, the corresponding type_argument
of the constructed type.

The explicit base interfaces of an interface shall be at least as accessible as the interface
itself (§7.5.5).

Note: For example, it is a compile-time error to specify a private or internal
interface in the interface_base of a public interface. end note

It is a compile-time error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base
interfaces. In other words, the set of base interfaces is the complete transitive closure of
the explicit base interfaces, their explicit base interfaces, and so on. An interface inherits
all members of its base interfaces.

Example: In the following code

C#

interface_base
 : ':' interface_type_list
 ;

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

the base interfaces of IComboBox are IControl , ITextBox , and IListBox . In other
words, the IComboBox interface above inherits members SetText and SetItems as
well as Paint .

end example

Members inherited from a constructed generic type are inherited after type substitution.
That is, any constituent types in the member have the base class declaration’s type
parameters replaced with the corresponding type arguments used in the class_base
specification.

Example: In the following code

C#

the interface IDerived inherits the Combine method after the type parameter T is
replaced with string[,] .

end example

A class or struct that implements an interface also implicitly implements all of the
interface’s base interfaces.

The handling of interfaces on multiple parts of a partial interface declaration (§14.2.7)
are discussed further in §14.2.4.3.

Every base interface of an interface shall be output-safe (§17.2.3.2).

interface IListBox : IControl
{
 void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

interface IBase<T>
{
 T[] Combine(T a, T b);
}

interface IDerived : IBase<string[,]>
{
 // Inherited: string[][,] Combine(string[,] a, string[,] b);
}

The interface_body of an interface defines the members of the interface.

ANTLR

The members of an interface are the members inherited from the base interfaces and
the members declared by the interface itself.

ANTLR

An interface declaration declares zero or more members. The members of an interface
shall be methods, properties, events, or indexers. An interface cannot contain constants,
fields, operators, instance constructors, finalizers, or types, nor can an interface contain
static members of any kind.

All interface members implicitly have public access. It is a compile-time error for
interface member declarations to include any modifiers.

An interface_declaration creates a new declaration space (§7.3), and the type parameters
and interface_member_declarations immediately contained by the interface_declaration
introduce new members into this declaration space. The following rules apply to
interface_member_declarations:

The name of a type parameter in the type_parameter_list of an interface declaration
shall differ from the names of all other type parameters in the same
type_parameter_list and shall differ from the names of all members of the interface.

17.3 Interface body

interface_body
 : '{' interface_member_declaration* '}'
 ;

17.4 Interface members

17.4.1 General

interface_member_declaration
 : interface_method_declaration
 | interface_property_declaration
 | interface_event_declaration
 | interface_indexer_declaration
 ;

The name of a method shall differ from the names of all properties and events
declared in the same interface. In addition, the signature (§7.6) of a method shall
differ from the signatures of all other methods declared in the same interface, and
two methods declared in the same interface may not have signatures that differ
solely by ref and out .
The name of a property or event shall differ from the names of all other members
declared in the same interface.
The signature of an indexer shall differ from the signatures of all other indexers
declared in the same interface.

The inherited members of an interface are specifically not part of the declaration space
of the interface. Thus, an interface is allowed to declare a member with the same name
or signature as an inherited member. When this occurs, the derived interface member is
said to hide the base interface member. Hiding an inherited member is not considered
an error, but it does cause the compiler to issue a warning. To suppress the warning, the
declaration of the derived interface member shall include a new modifier to indicate that
the derived member is intended to hide the base member. This topic is discussed further
in §7.7.2.3.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a
warning is issued to that effect. This warning is suppressed by removing the new
modifier.

Note: The members in class object are not, strictly speaking, members of any
interface (§17.4). However, the members in class object are available via member
lookup in any interface type (§11.5). end note

The set of members of an interface declared in multiple parts (§14.2.7) is the union of
the members declared in each part. The bodies of all parts of the interface declaration
share the same declaration space (§7.3), and the scope of each member (§7.7) extends to
the bodies of all the parts.

Interface methods are declared using interface_method_declarations:

ANTLR

17.4.2 Interface methods

interface_method_declaration
 : attributes? 'new'? return_type identifier type_parameter_list?
 '(' formal_parameter_list? ')' type_parameter_constraints_clause* ';'
 ;

The attributes, return_type, identifier, and formal_parameter_list of an interface method
declaration have the same meaning as those of a method declaration in a class (§14.6).
An interface method declaration is not permitted to specify a method body, and the
declaration therefore always ends with a semicolon. An interface_method_declaration
shall not have type_parameter_constraints_clauses unless it also has a
type_parameter_list.

All formal parameter types of an interface method shall be input-safe (§17.2.3.2), and the
return type shall be either void or output-safe. In addition, any output or reference
formal parameter types shall also be output-safe.

Note: Output parameters are required to be input-safe due to common
implementation restrictions. end note

Furthermore, each class type constraint, interface type constraint and type parameter
constraint on any type parameters of the method shall be input-safe.

Furthermore, each class type constraint, interface type constraint and type parameter
constraint on any type parameter of the method shall be input-safe.

These rules ensure that any covariant or contravariant usage of the interface remains
typesafe.

Example:

C#

is ill-formed because the usage of T as a type parameter constraint on U is not
input-safe.

Were this restriction not in place it would be possible to violate type safety in the
following manner:

C#

interface I<out T>
{
 void M<U>() where U : T; // Error
}

class B {}
class D : B {}
class E : B {}
class C : I<D>
{

This is actually a call to C.M<E> . But that call requires that E derive from D , so type
safety would be violated here.

end example

Interface properties are declared using interface_property_declarations:

ANTLR

ANTLR

The attributes, type, and identifier of an interface property declaration have the same
meaning as those of a property declaration in a class (§14.7).

The accessors of an interface property declaration correspond to the accessors of a class
property declaration (§14.7.3), except that the accessor body shall always be a
semicolon. Thus, the accessors simply indicate whether the property is read-write, read-
only, or write-only.

The type of an interface property shall be output-safe if there is a get accessor, and shall
be input-safe if there is a set accessor.

 public void M<U>() {...}
}

...

I b = new C();
b.M<E>();

17.4.3 Interface properties

interface_property_declaration
 : attributes? 'new'? type identifier '{' interface_accessors '}'
 ;

interface_accessors
 : attributes? 'get' ';'
 | attributes? 'set' ';'
 | attributes? 'get' ';' attributes? 'set' ';'
 | attributes? 'set' ';' attributes? 'get' ';'
 ;

17.4.4 Interface events

Interface events are declared using interface_event_declarations:

ANTLR

The attributes, type, and identifier of an interface event declaration have the same
meaning as those of an event declaration in a class (§14.8).

The type of an interface event shall be input-safe.

Interface indexers are declared using interface_indexer_declarations:

ANTLR

The attributes, type, and formal_parameter_list of an interface indexer declaration have
the same meaning as those of an indexer declaration in a class (§14.9).

The accessors of an interface indexer declaration correspond to the accessors of a class
indexer declaration (§14.9), except that the accessor body shall always be a semicolon.
Thus, the accessors simply indicate whether the indexer is read-write, read-only, or
write-only.

All the formal parameter types of an interface indexer shall be input-safe (§17.2.3.2). In
addition, any output or reference formal parameter types shall also be output-safe.

Note: Output parameters are required to be input-safe due to common
implementation restrictions. end note

The type of an interface indexer shall be output-safe if there is a get accessor, and shall
be input-safe if there is a set accessor.

interface_event_declaration
 : attributes? 'new'? 'event' type identifier ';'
 ;

17.4.5 Interface indexers

interface_indexer_declaration:
 attributes? 'new'? type 'this' '[' formal_parameter_list ']'
 '{' interface_accessors '}'
 ;

17.4.6 Interface member access

Interface members are accessed through member access (§11.7.6) and indexer access
(§11.7.10.3) expressions of the form I.M and I[A] , where I is an interface type, M is a
method, property, or event of that interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain
has exactly zero or one direct base interface), the effects of the member lookup (§11.5),
method invocation (§11.7.8.2), and indexer access (§11.7.10.3) rules are exactly the same
as for classes and structs: More derived members hide less derived members with the
same name or signature. However, for multiple-inheritance interfaces, ambiguities can
occur when two or more unrelated base interfaces declare members with the same
name or signature. This subclause shows several examples, some of which lead to
ambiguities and others which don’t. In all cases, explicit casts can be used to resolve the
ambiguities.

Example: In the following code

C#

the first two statements cause compile-time errors because the member lookup
(§11.5) of Count in IListCounter is ambiguous. As illustrated by the example, the
ambiguity is resolved by casting x to the appropriate base interface type. Such casts
have no run-time costs—they merely consist of viewing the instance as a less
derived type at compile-time.

interface IList
{
 int Count { get; set; }
}

interface ICounter
{
 void Count(int i);
}

interface IListCounter : IList, ICounter {}

class C
{
 void Test(IListCounter x)
 {
 x.Count(1); // Error
 x.Count = 1; // Error
 ((IList)x).Count = 1; // Ok, invokes IList.Count.set
 ((ICounter)x).Count(1); // Ok, invokes ICounter.Count
 }
}

end example

Example: In the following code

C#

the invocation n.Add(1) selects IInteger.Add by applying overload resolution rules
of §11.6.4. Similarly, the invocation n.Add(1.0) selects IDouble.Add . When explicit
casts are inserted, there is only one candidate method, and thus no ambiguity.

end example

Example: In the following code

C#

interface IInteger
{
 void Add(int i);
}

interface IDouble
{
 void Add(double d);
}

interface INumber : IInteger, IDouble {}

class C
{
 void Test(INumber n)
 {
 n.Add(1); // Invokes IInteger.Add
 n.Add(1.0); // Only IDouble.Add is applicable
 ((IInteger)n).Add(1); // Only IInteger.Add is a candidate
 ((IDouble)n).Add(1); // Only IDouble.Add is a candidate
 }
}

interface IBase
{
 void F(int i);
}

interface ILeft : IBase
{
 new void F(int i);
}

the IBase.F member is hidden by the ILeft.F member. The invocation d.F(1) thus
selects ILeft.F , even though IBase.F appears to not be hidden in the access path
that leads through IRight .

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a
member is hidden in any access path, it is hidden in all access paths. Because the
access path from IDerived to ILeft to IBase hides IBase.F , the member is also
hidden in the access path from IDerived to IRight to IBase .

end example

An interface member is sometimes referred to by its qualified interface member name.
The qualified name of an interface member consists of the name of the interface in
which the member is declared, followed by a dot, followed by the name of the member.
The qualified name of a member references the interface in which the member is
declared.

Example: Given the declarations

C#

interface IRight : IBase
{
 void G();
}

interface IDerived : ILeft, IRight {}

class A
{
 void Test(IDerived d)
 {
 d.F(1); // Invokes ILeft.F
 ((IBase)d).F(1); // Invokes IBase.F
 ((ILeft)d).F(1); // Invokes ILeft.F
 ((IRight)d).F(1); // Invokes IBase.F
 }
}

17.5 Qualified interface member names

interface IControl
{
 void Paint();
}

interface ITextBox : IControl

the qualified name of Paint is IControl.Paint and the qualified name of SetText is
ITextBox.SetText . In the example above, it is not possible to refer to Paint as
ITextBox.Paint .

end example

When an interface is part of a namespace, a qualified interface member name can
include the namespace name.

Example:

C#

Within the System namespace, both ICloneable.Clone and System.ICloneable.Clone
are qualified interface member names for the Clone method.

end example

Interfaces may be implemented by classes and structs. To indicate that a class or struct
directly implements an interface, the interface is included in the base class list of the
class or struct.

Example:

C#

{
 void SetText(string text);
}

namespace System
{
 public interface ICloneable
 {
 object Clone();
 }
}

17.6 Interface implementations

17.6.1 General

interface ICloneable
{

end example

A class or struct that directly implements an interface also implicitly implements all of
the interface’s base interfaces. This is true even if the class or struct doesn’t explicitly list
all base interfaces in the base class list.

Example:

C#

Here, class TextBox implements both IControl and ITextBox .

end example

When a class C directly implements an interface, all classes derived from C also
implement the interface implicitly.

 object Clone();
}

interface IComparable
{
 int CompareTo(object other);
}

class ListEntry : ICloneable, IComparable
{
 public object Clone() {...}
 public int CompareTo(object other) {...}
}

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

class TextBox : ITextBox
{
 public void Paint() {...}
 public void SetText(string text) {...}
}

The base interfaces specified in a class declaration can be constructed interface types
(§8.4, §17.2).

Example: The following code illustrates how a class can implement constructed
interface types:

C#

end example

The base interfaces of a generic class declaration shall satisfy the uniqueness rule
described in §17.6.3.

For purposes of implementing interfaces, a class or struct may declare explicit interface
member implementations. An explicit interface member implementation is a method,
property, event, or indexer declaration that references a qualified interface member
name.

Example:

C#

class C<U, V> {}
interface I1<V> {}
class D : C<string, int>, I1<string> {}
class E<T> : C<int, T>, I1<T> {}

17.6.2 Explicit interface member implementations

interface IList<T>
{
 T[] GetElements();
}

interface IDictionary<K, V>
{
 V this[K key] { get; }
 void Add(K key, V value);
}

class List<T> : IList<T>, IDictionary<int, T>
{
 T[] IList<T>. GetElements() {...}
 T IDictionary<int, T>.this[int index] {...}
 void IDictionary<int, T>.Add(int index, T value) {...}
}

Here IDictionary<int,T>.this and IDictionary<int,T>.Add are explicit interface
member implementations.

end example

Example: In some cases, the name of an interface member might not be appropriate
for the implementing class, in which case, the interface member may be
implemented using explicit interface member implementation. A class implementing
a file abstraction, for example, would likely implement a Close member function
that has the effect of releasing the file resource, and implement the Dispose
method of the IDisposable interface using explicit interface member
implementation:

C#

end example

It is not possible to access an explicit interface member implementation through its
qualified interface member name in a method invocation, property access, event access,
or indexer access. An explicit interface member implementation can only be accessed
through an interface instance, and is in that case referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include any
modifiers (§14.6) other than extern or async .

It is a compile-time error for an explicit interface method implementation to include
type_parameter_constraints_clauses. The constraints for a generic explicit interface
method implementation are inherited from the interface method.

interface IDisposable
{
 void Dispose();
}

class MyFile : IDisposable
{
 void IDisposable.Dispose() => Close();

 public void Close()
 {
 // Do what's necessary to close the file
 System.GC.SuppressFinalize(this);
 }
}

Note: Explicit interface member implementations have different accessibility
characteristics than other members. Because explicit interface member
implementations are never accessible through a qualified interface member name in
a method invocation or a property access, they are in a sense private. However,
since they can be accessed through the interface, they are in a sense also as public
as the interface in which they are declared. Explicit interface member
implementations serve two primary purposes:

Because explicit interface member implementations are not accessible through
class or struct instances, they allow interface implementations to be excluded
from the public interface of a class or struct. This is particularly useful when a
class or struct implements an internal interface that is of no interest to a
consumer of that class or struct.
Explicit interface member implementations allow disambiguation of interface
members with the same signature. Without explicit interface member
implementations it would be impossible for a class or struct to have different
implementations of interface members with the same signature and return
type, as would it be impossible for a class or struct to have any implementation
at all of interface members with the same signature but with different return
types.

end note

For an explicit interface member implementation to be valid, the class or struct shall
name an interface in its base class list that contains a member whose qualified interface
member name, type, number of type parameters, and parameter types exactly match
those of the explicit interface member implementation. If an interface function member
has a parameter array, the corresponding parameter of an associated explicit interface
member implementation is allowed, but not required, to have the params modifier. If the
interface function member does not have a parameter array then an associated explicit
interface member implementation shall not have a parameter array.

Example: Thus, in the following class

C#

class Shape : ICloneable
{
 object ICloneable.Clone() {...}
 int IComparable.CompareTo(object other) {...} // invalid
}

the declaration of IComparable.CompareTo results in a compile-time error because
IComparable is not listed in the base class list of Shape and is not a base interface of
ICloneable . Likewise, in the declarations

C#

the declaration of ICloneable.Clone in Ellipse results in a compile-time error
because ICloneable is not explicitly listed in the base class list of Ellipse .

end example

The qualified interface member name of an explicit interface member implementation
shall reference the interface in which the member was declared.

Example: Thus, in the declarations

C#

the explicit interface member implementation of Paint must be written as
IControl.Paint , not ITextBox.Paint .

class Shape : ICloneable
{
 object ICloneable.Clone() {...}
}

class Ellipse : Shape
{
 object ICloneable.Clone() {...} // invalid
}

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

class TextBox : ITextBox
{
 void IControl.Paint() {...}
 void ITextBox.SetText(string text) {...}
}

end example

The interfaces implemented by a generic type declaration shall remain unique for all
possible constructed types. Without this rule, it would be impossible to determine the
correct method to call for certain constructed types.

Example: Suppose a generic class declaration were permitted to be written as
follows:

C#

Were this permitted, it would be impossible to determine which code to execute in
the following case:

C#

end example

To determine if the interface list of a generic type declaration is valid, the following steps
are performed:

Let L be the list of interfaces directly specified in a generic class, struct, or interface
declaration C .
Add to L any base interfaces of the interfaces already in L .
Remove any duplicates from L .
If any possible constructed type created from C would, after type arguments are
substituted into L , cause two interfaces in L to be identical, then the declaration

17.6.3 Uniqueness of implemented interfaces

interface I<T>
{
 void F();
}

class X<U ,V> : I<U>, I<V> // Error: I<U> and I<V> conflict
{
 void I<U>.F() {...}
 void I<V>.F() {...}
}

I<int> x = new X<int, int>();
x.F();

of C is invalid. Constraint declarations are not considered when determining all
possible constructed types.

Note: In the class declaration X above, the interface list L consists of l<U> and
I<V> . The declaration is invalid because any constructed type with U and V being
the same type would cause these two interfaces to be identical types. end note

It is possible for interfaces specified at different inheritance levels to unify:

C#

This code is valid even though Derived<U,V> implements both I<U> and I<V> . The code

C#

invokes the method in Derived , since Derived<int,int>' effectively re-implements
I<int> (§17.6.7).

When a generic method implicitly implements an interface method, the constraints
given for each method type parameter shall be equivalent in both declarations (after any
interface type parameters are replaced with the appropriate type arguments), where
method type parameters are identified by ordinal positions, left to right.

Example: In the following code:

interface I<T>
{
 void F();
}

class Base<U> : I<U>
{
 void I<U>.F() {...}
}

class Derived<U, V> : Base<U>, I<V> // Ok
{
 void I<V>.F() {...}
}

I<int> x = new Derived<int, int>();
x.F();

17.6.4 Implementation of generic methods

C#

the method C.F<T> implicitly implements I<object,C,string>.F<T> . In this case,
C.F<T> is not required (nor permitted) to specify the constraint T: object since
object is an implicit constraint on all type parameters. The method C.G<T> implicitly
implements I<object,C,string>.G<T> because the constraints match those in the
interface, after the interface type parameters are replaced with the corresponding
type arguments. The constraint for method C.H<T> is an error because sealed types
(string in this case) cannot be used as constraints. Omitting the constraint would
also be an error since constraints of implicit interface method implementations are
required to match. Thus, it is impossible to implicitly implement
I<object,C,string>.H<T> . This interface method can only be implemented using an
explicit interface member implementation:

C#

In this case, the explicit interface member implementation invokes a public method
having strictly weaker constraints. The assignment from t to s is valid since T
inherits a constraint of T: string , even though this constraint is not expressible in
source code. end example

interface I<X, Y, Z>
{
 void F<T>(T t) where T : X;
 void G<T>(T t) where T : Y;
 void H<T>(T t) where T : Z;
}

class C : I<object, C, string>
{
 public void F<T>(T t) {...} // Ok
 public void G<T>(T t) where T : C {...} // Ok
 public void H<T>(T t) where T : string {...} // Error
}

class C : I<object, C, string>
{
 ...
 public void H<U>(U u) where U : class {...}

 void I<object, C, string>.H<T>(T t)
 {
 string s = t; // Ok
 H<T>(t);
 }
}

Note: When a generic method explicitly implements an interface method no
constraints are allowed on the implementing method (§14.7.1, §17.6.2). end note

A class or struct shall provide implementations of all members of the interfaces that are
listed in the base class list of the class or struct. The process of locating implementations
of interface members in an implementing class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of
each interface specified in the base class list of C . The implementation of a particular
interface member I.M , where I is the interface in which the member M is declared, is
determined by examining each class or struct S , starting with C and repeating for each
successive base class of C , until a match is located:

If S contains a declaration of an explicit interface member implementation that
matches I and M , then this member is the implementation of I.M .
Otherwise, if S contains a declaration of a non-static public member that
matches M , then this member is the implementation of I.M . If more than one
member matches, it is unspecified which member is the implementation of I.M .
This situation can only occur if S is a constructed type where the two members as
declared in the generic type have different signatures, but the type arguments
make their signatures identical.

A compile-time error occurs if implementations cannot be located for all members of all
interfaces specified in the base class list of C . The members of an interface include those
members that are inherited from base interfaces.

Members of a constructed interface type are considered to have any type parameters
replaced with the corresponding type arguments as specified in §14.3.3.

Example: For example, given the generic interface declaration:

C#

the constructed interface I<string[]> has the members:

17.6.5 Interface mapping

interface I<T>
{
 T F(int x, T[,] y);
 T this[int y] { get; }
}

C#

end example

For purposes of interface mapping, a class or struct member A matches an interface
member B when:

A and B are methods, and the name, type, and formal parameter lists of A and B
are identical.
A and B are properties, the name and type of A and B are identical, and A has
the same accessors as B (A is permitted to have additional accessors if it is not an
explicit interface member implementation).
A and B are events, and the name and type of A and B are identical.
A and B are indexers, the type and formal parameter lists of A and B are identical,
and A has the same accessors as B (A is permitted to have additional accessors if
it is not an explicit interface member implementation).

Notable implications of the interface-mapping algorithm are:

Explicit interface member implementations take precedence over other members
in the same class or struct when determining the class or struct member that
implements an interface member.
Neither non-public nor static members participate in interface mapping.

Example: In the following code

C#

the ICloneable.Clone member of C becomes the implementation of Clone in
‘ICloneable’ because explicit interface member implementations take precedence

string[] F(int x, string[,][] y);
string[] this[int y] { get; }

interface ICloneable
{
 object Clone();
}

class C : ICloneable
{
 object ICloneable.Clone() {...}
 public object Clone() {...}
}

over other members.

end example

If a class or struct implements two or more interfaces containing a member with the
same name, type, and parameter types, it is possible to map each of those interface
members onto a single class or struct member.

Example:

C#

Here, the Paint methods of both IControl and IForm are mapped onto the Paint
method in Page . It is of course also possible to have separate explicit interface
member implementations for the two methods.

end example

If a class or struct implements an interface that contains hidden members, then some
members may need to be implemented through explicit interface member
implementations.

Example:

C#

interface IControl
{
 void Paint();
}

interface IForm
{
 void Paint();
}

class Page : IControl, IForm
{
 public void Paint() {...}
}

interface IBase
{
 int P { get; }
}

interface IDerived : IBase

An implementation of this interface would require at least one explicit interface
member implementation, and would take one of the following forms

C#

end example

When a class implements multiple interfaces that have the same base interface, there
can be only one implementation of the base interface.

Example: In the following code

C#

{
 new int P();
}

class C1 : IDerived
{
 int IBase.P { get; }
 int IDerived.P() {...}
}
class C2 : IDerived
{
 public int P { get; }
 int IDerived.P() {...}
}
class C3 : IDerived
{
 int IBase.P { get; }
 public int P() {...}
}

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

interface IListBox : IControl
{
 void SetItems(string[] items);
}

class ComboBox : IControl, ITextBox, IListBox

it is not possible to have separate implementations for the IControl named in the
base class list, the IControl inherited by ITextBox , and the IControl inherited by
IListBox . Indeed, there is no notion of a separate identity for these interfaces.
Rather, the implementations of ITextBoxand IListBox share the same
implementation of IControl , and ComboBox is simply considered to implement three
interfaces, IControl , ITextBox , and IListBox .

end example

The members of a base class participate in interface mapping.

Example: In the following code

C#

the method F in Class1 is used in Class2's implementation of Interface1 .

end example

A class inherits all interface implementations provided by its base classes.

{
 void IControl.Paint() {...}
 void ITextBox.SetText(string text) {...}
 void IListBox.SetItems(string[] items) {...}
}

interface Interface1
{
 void F();
}

class Class1
{
 public void F() {}
 public void G() {}
}

class Class2 : Class1, Interface1
{
 public new void G() {}
}

17.6.6 Interface implementation inheritance

Without explicitly re-implementing an interface, a derived class cannot in any way alter
the interface mappings it inherits from its base classes.

Example: In the declarations

C#

the Paint method in TextBox hides the Paint method in Control , but it does not
alter the mapping of Control.Paint onto IControl.Paint , and calls to Paint
through class instances and interface instances will have the following effects

C#

end example

However, when an interface method is mapped onto a virtual method in a class, it is
possible for derived classes to override the virtual method and alter the implementation
of the interface.

Example: Rewriting the declarations above to

C#

interface IControl
{
 void Paint();
}

class Control : IControl
{
 public void Paint() {...}
}

class TextBox : Control
{
 public new void Paint() {...}
}

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes Control.Paint();

the following effects will now be observed

C#

end example

Since explicit interface member implementations cannot be declared virtual, it is not
possible to override an explicit interface member implementation. However, it is
perfectly valid for an explicit interface member implementation to call another method,
and that other method can be declared virtual to allow derived classes to override it.

Example:

C#

interface IControl
{
 void Paint();
}

class Control : IControl
{
 public virtual void Paint() {...}
}

class TextBox : Control
{
 public override void Paint() {...}
}

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes TextBox.Paint();

interface IControl
{
 void Paint();
}

class Control : IControl
{
 void IControl.Paint() { PaintControl(); }
 protected virtual void PaintControl() {...}
}

Here, classes derived from Control can specialize the implementation of
IControl.Paint by overriding the PaintControl method.

end example

A class that inherits an interface implementation is permitted to re-implement the
interface by including it in the base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as
an initial implementation of an interface. Thus, the inherited interface mapping has no
effect whatsoever on the interface mapping established for the re-implementation of
the interface.

Example: In the declarations

C#

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn’t
affect the re-implementation in MyControl , which maps IControl.Paint onto
MyControl.Paint .

end example

class TextBox : Control
{
 protected override void PaintControl() {...}
}

17.6.7 Interface re-implementation

interface IControl
{
 void Paint();
}

class Control : IControl
{
 void IControl.Paint() {...}
}

class MyControl : Control, IControl
{
 public void Paint() {}
}

Inherited public member declarations and inherited explicit interface member
declarations participate in the interface mapping process for re-implemented interfaces.

Example:

C#

Here, the implementation of IMethods in Derived maps the interface methods onto
Derived.F , Base.IMethods.G , Derived.IMethods.H , and Base.I .

end example

When a class implements an interface, it implicitly also implements all that interface’s
base interfaces. Likewise, a re-implementation of an interface is also implicitly a re-
implementation of all of the interface’s base interfaces.

Example:

C#

interface IMethods
{
 void F();
 void G();
 void H();
 void I();
}

class Base : IMethods
{
 void IMethods.F() {}
 void IMethods.G() {}
 public void H() {}
 public void I() {}
}

class Derived : Base, IMethods
{
 public void F() {}
 void IMethods.H() {}
}

interface IBase
{
 void F();
}

interface IDerived : IBase
{

Here, the re-implementation of IDerived also re-implements IBase , mapping
IBase.F onto D.F .

end example

Like a non-abstract class, an abstract class shall provide implementations of all members
of the interfaces that are listed in the base class list of the class. However, an abstract
class is permitted to map interface methods onto abstract methods.

Example:

C#

Here, the implementation of IMethods maps F and G onto abstract methods, which
shall be overridden in non-abstract classes that derive from C .

end example

 void G();
}

class C : IDerived
{
 void IBase.F() {...}
 void IDerived.G() {...}
}

class D : C, IDerived
{
 public void F() {...}
 public void G() {...}
}

17.6.8 Abstract classes and interfaces

interface IMethods
{
 void F();
 void G();
}

abstract class C : IMethods
{
 public abstract void F();
 public abstract void G();
 }

Explicit interface member implementations cannot be abstract, but explicit interface
member implementations are of course permitted to call abstract methods.

Example:

C#

Here, non-abstract classes that derive from C would be required to override FF and
GG , thus providing the actual implementation of IMethods .

end example

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 void IMethods.F() { FF(); }
 void IMethods.G() { GG(); }
 protected abstract void FF();
 protected abstract void GG();
}

18 Enums
Article • 2023-01-12 • 6 minutes to read

An enum type is a distinct value type (§8.3) that declares a set of named constants.

Example: The example

C#

declares an enum type named Color with members Red , Green , and Blue .

end example

An enum declaration declares a new enum type. An enum declaration begins with the
keyword enum , and defines the name, accessibility, underlying type, and members of the
enum.

ANTLR

18.1 General

enum Color
{
 Red,
 Green,
 Blue
}

18.2 Enum declarations

enum_declaration
 : attributes? enum_modifier* 'enum' identifier enum_base? enum_body ';'?
 ;

enum_base
 : ':' integral_type
 | ':' integral_type_name
 ;

integral_type_name
 : type_name // Shall resolve to an integral type other than char
 ;

enum_body
 : '{' enum_member_declarations? '}'

Each enum type has a corresponding integral type called the underlying type of the
enum type. This underlying type shall be able to represent all the enumerator values
defined in the enumeration. If the enum_base is present, it explicitly declares the
underlying type. The underlying type shall be one of the integral types (§8.3.6) other
than char . The underlying type may be specified either by an integral_type (§8.3.5), or
an integral_type_name . The integral_type_name is resolved in the same way as
type_name (§7.8.1), including taking any using directives (§13.5) into account.

Note: The char type cannot be used as an underlying type, either by keyword or via
an integral_type_name . end note

An enum declaration that does not explicitly declare an underlying type has an
underlying type of int .

Example: The example

C#

declares an enum with an underlying type of long .

end example

Note: A developer might choose to use an underlying type of long , as in the
example, to enable the use of values that are in the range of long but not in the
range of int , or to preserve this option for the future. end note

Note: C# allows a trailing comma in an enum_body, just like it allows one in an
array_initializer (§16.7). end note

An enum declaration cannot include a type parameter list, but any enum nested inside a
generic class declaration or a generic struct declaration is a generic enum declaration,

 | '{' enum_member_declarations ',' '}'
 ;

enum Color : long
{
 Red,
 Green,
 Blue
}

since type arguments for the containing type shall be supplied to create a constructed
type (§8.4).

An enum_declaration may optionally include a sequence of enum modifiers:

ANTLR

It is a compile-time error for the same modifier to appear multiple times in an enum
declaration.

The modifiers of an enum declaration have the same meaning as those of a class
declaration (§14.2.2). However, the abstract , and sealed , and static modifiers are not
permitted in an enum declaration. Enums cannot be abstract and do not permit
derivation.

The body of an enum type declaration defines zero or more enum members, which are
the named constants of the enum type. No two enum members can have the same
name.

ANTLR

ANTLR

18.3 Enum modifiers

enum_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

18.4 Enum members

enum_member_declarations
 : enum_member_declaration (',' enum_member_declaration)*
 ;

enum_member_declaration
 : attributes? identifier ('=' constant_expression)?
 ;

Each enum member has an associated constant value. The type of this value is the
underlying type for the containing enum. The constant value for each enum member
shall be in the range of the underlying type for the enum.

Example: The example

C#

results in a compile-time error because the constant values -1 , -2 , and -3 are not
in the range of the underlying integral type uint .

end example

Multiple enum members may share the same associated value.

Example: The example

C#

shows an enum in which two enum members—Blue and Max—have the same
associated value.

end example

The associated value of an enum member is assigned either implicitly or explicitly. If the
declaration of the enum member has a constant_expression initializer, the value of that
constant expression, implicitly converted to the underlying type of the enum, is the
associated value of the enum member. If the declaration of the enum member has no
initializer, its associated value is set implicitly, as follows:

enum Color: uint
{
 Red = -1,
 Green = -2,
 Blue = -3
}

enum Color
{
 Red,
 Green,
 Blue,
 Max = Blue
}

If the enum member is the first enum member declared in the enum type, its
associated value is zero.
Otherwise, the associated value of the enum member is obtained by increasing the
associated value of the textually preceding enum member by one. This increased
value shall be within the range of values that can be represented by the underlying
type, otherwise a compile-time error occurs.

Example: The example

C#

prints out the enum member names and their associated values. The output is:

Console

enum Color
{
 Red,
 Green = 10,
 Blue
}

class Test
{
 static void Main()
 {
 Console.WriteLine(StringFromColor(Color.Red));
 Console.WriteLine(StringFromColor(Color.Green));
 Console.WriteLine(StringFromColor(Color.Blue));
 }

 static string StringFromColor(Color c)
 {
 switch (c)
 {
 case Color.Red:
 return $"Red = {(int) c}";
 case Color.Green:
 return $"Green = {(int) c}";
 case Color.Blue:
 return $"Blue = {(int) c}";
 default:
 return "Invalid color";
 }
 }
}

Red = 0
Green = 10
Blue = 11

for the following reasons:

the enum member Red is automatically assigned the value zero (since it has no
initializer and is the first enum member);
the enum member Green is explicitly given the value 10 ;
and the enum member Blue is automatically assigned the value one greater
than the member that textually precedes it.

end example

The associated value of an enum member may not, directly or indirectly, use the value of
its own associated enum member. Other than this circularity restriction, enum member
initializers may freely refer to other enum member initializers, regardless of their textual
position. Within an enum member initializer, values of other enum members are always
treated as having the type of their underlying type, so that casts are not necessary when
referring to other enum members.

Example: The example

C#

results in a compile-time error because the declarations of A and B are circular. A
depends on B explicitly, and B depends on A implicitly.

end example

Enum members are named and scoped in a manner exactly analogous to fields within
classes. The scope of an enum member is the body of its containing enum type. Within
that scope, enum members can be referred to by their simple name. From all other
code, the name of an enum member shall be qualified with the name of its enum type.
Enum members do not have any declared accessibility—an enum member is accessible
if its containing enum type is accessible.

enum Circular
{
 A = B,
 B
}

18.5 The System.Enum type

The type System.Enum is the abstract base class of all enum types (this is distinct and
different from the underlying type of the enum type), and the members inherited from
System.Enum are available in any enum type. A boxing conversion (§10.2.9) exists from
any enum type to System.Enum , and an unboxing conversion (§10.3.6) exists from
System.Enum to any enum type.

Note that System.Enum is not itself an enum_type. Rather, it is a class_type from which all
enum_types are derived. The type System.Enum inherits from the type System.ValueType
(§8.3.2), which, in turn, inherits from type object . At run-time, a value of type
System.Enum can be null or a reference to a boxed value of any enum type.

Each enum type defines a distinct type; an explicit enumeration conversion (§10.3.3) is
required to convert between an enum type and an integral type, or between two enum
types. The set of values of the enum type is the same as the set of values of the
underlying type and is not restricted to the values of the named constants. Any value of
the underlying type of an enum can be cast to the enum type, and is a distinct valid
value of that enum type.

Enum members have the type of their containing enum type (except within other enum
member initializers: see §18.4). The value of an enum member declared in enum type E
with associated value v is (E)v .

The following operators can be used on values of enum types:

== , != , < , > , <= , >= (§11.11.6)
binary + (§11.9.5)
binary - (§11.9.6)
^ , & , | (§11.12.3)
~ (§11.8.5)
++ , -- (§11.7.14 and §11.8.6)
sizeof (§22.6.9)

Every enum type automatically derives from the class System.Enum (which, in turn,
derives from System.ValueType and object). Thus, inherited methods and properties of
this class can be used on values of an enum type.

18.6 Enum values and operations

19 Delegates
Article • 2023-01-12 • 13 minutes to read

A delegate declaration defines a class that is derived from the class System.Delegate . A
delegate instance encapsulates an invocation list, which is a list of one or more
methods, each of which is referred to as a callable entity. For instance methods, a
callable entity consists of an instance and a method on that instance. For static methods,
a callable entity consists of just a method. Invoking a delegate instance with an
appropriate set of arguments causes each of the delegate’s callable entities to be
invoked with the given set of arguments.

Note: An interesting and useful property of a delegate instance is that it does not
know or care about the classes of the methods it encapsulates; all that matters is
that those methods be compatible (§19.4) with the delegate’s type. This makes
delegates perfectly suited for “anonymous” invocation. end note

A delegate_declaration is a type_declaration (§13.7) that declares a new delegate type.

ANTLR

unsafe_modifier is defined in §22.2.

It is a compile-time error for the same modifier to appear multiple times in a delegate
declaration.

19.1 General

19.2 Delegate declarations

delegate_declaration
 : attributes? delegate_modifier* 'delegate' return_type identifier
 variant_type_parameter_list? '(' formal_parameter_list? ')'
 type_parameter_constraints_clause* ';'
 ;

delegate_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

A delegate declaration shall not supply any type_parameter_constraints_clauses unless it
also supplies a variant_type_parameter_list.

A delegate declaration that supplies a variant_type_parameter_list is a generic delegate
declaration. Additionally, any delegate nested inside a generic class declaration or a
generic struct declaration is itself a generic delegate declaration, since type arguments
for the containing type shall be supplied to create a constructed type (§8.4).

The new modifier is only permitted on delegates declared within another type, in which
case it specifies that such a delegate hides an inherited member by the same name, as
described in §14.3.5.

The public , protected , internal , and private modifiers control the accessibility of the
delegate type. Depending on the context in which the delegate declaration occurs,
some of these modifiers might not be permitted (§7.5.2).

The delegate’s type name is identifier.

The optional formal_parameter_list specifies the parameters of the delegate, and
return_type indicates the return type of the delegate.

The optional variant_type_parameter_list (§17.2.3) specifies the type parameters to the
delegate itself.

The return type of a delegate type shall be either void , or output-safe (§17.2.3.2).

All the formal parameter types of a delegate type shall be input-safe (§17.2.3.2). In
addition, any output or reference parameter types shall also be output-safe.

Note: Output parameters are required to be input-safe due to common
implementation restrictions. end note

Furthermore, each class type constraint, interface type constraint and type parameter
constraint on any type parameters of the delegate shall be input-safe.

Delegate types in C# are name equivalent, not structurally equivalent.

Example:

C#

delegate int D1(int i, double d);
delegate int D2(int c, double d);

The delegate types D1 and D2 are two different types, so they are not
interchangeable, despite their identical signatures.

end example

Like other generic type declarations, type arguments shall be given to create a
constructed delegate type. The parameter types and return type of a constructed
delegate type are created by substituting, for each type parameter in the delegate
declaration, the corresponding type argument of the constructed delegate type.

The only way to declare a delegate type is via a delegate_declaration. Every delegate
type is a reference type that is derived from System.Delegate . The members required for
every delegate type are detailed in §19.3. Delegate types are implicitly sealed , so it is
not permissible to derive any type from a delegate type. It is also not permissible to
declare a non-delegate class type deriving from System.Delegate . System.Delegate is
not itself a delegate type; it is a class type from which all delegate types are derived.

Every delegate type inherits members from the Delegate class as described in §14.3.4. In
addition, every delegate type must provide a non-generic Invoke method whose
parameter list matches the formal_parameter_list in the delegate declaration, and whose
return type matches the return_type in the delegate declaration. The Invoke method
shall be at least as accessible as the containing delegate type. Calling the Invoke
method on a delegate type is semantically equivalent to using the delegate invocation
syntax (§19.6) .

Implementations may define additional members in the delegate type.

Except for instantiation, any operation that can be applied to a class or class instance
can also be applied to a delegate class or instance, respectively. In particular, it is
possible to access members of the System.Delegate type via the usual member access
syntax.

A method or delegate type M is compatible with a delegate type D if all of the following
are true:

19.3 Delegate members

19.4 Delegate compatibility

D and M have the same number of parameters, and each parameter in D has the
same ref or out modifiers as the corresponding parameter in M .
For each value parameter (a parameter with no ref or out modifier), an identity
conversion (§10.2.2) or implicit reference conversion (§10.2.8) exists from the
parameter type in D to the corresponding parameter type in M .
For each ref or out parameter, the parameter type in D is the same as the
parameter type in M .
An identity or implicit reference conversion exists from the return type of M to the
return type of D .

This definition of consistency allows covariance in return type and contravariance in
parameter types.

Example:

C#

The methods A.M1 and B.M1 are compatible with both the delegate types D1
and D2 , since they have the same return type and parameter list. The methods B.M2 ,
B.M3 , and B.M4 are incompatible with the delegate types D1 and D2 , since they
have different return types or parameter lists. The methods B.M5 and B.M6 are both
compatible with delegate type D3 .

end example

Example:

delegate int D1(int i, double d);
delegate int D2(int c, double d);
delegate object D3(string s);

class A
{
 public static int M1(int a, double b) {...}
}

class B
{
 public static int M1(int f, double g) {...}
 public static void M2(int k, double l) {...}
 public static int M3(int g) {...}
 public static void M4(int g) {...}
 public static object M5(string s) {...}
 public static int[] M6(object o) {...}
}

C#

The method X.F is compatible with the delegate type Predicate<int> and the
method X.G is compatible with the delegate type Predicate<string> .

end example

Note: The intuitive meaning of delegate compatibility is that a method is compatible
with a delegate type if every invocation of the delegate could be replaced with an
invocation of the method without violating type safety, treating optional parameters
and parameter arrays as explicit parameters. For example, in the following code:

C#

The Print method is compatible with the Action<string> delegate type because
any invocation of an Action<string> delegate would also be a valid invocation of
the Print method.

If the signature of the Print method above were changed to Print(object value,
bool prependTimestamp = false) for example, the Print method would no longer
be compatible with Action<string> by the rules of this clause.

end note

delegate bool Predicate<T>(T value);

class X
{
 static bool F(int i) {...}
 static bool G(string s) {...}
}

delegate void Action<T>(T arg);

class Test
{
 static void Print(object value) => Console.WriteLine(value);

 static void Main()
 {
 Action<string> log = Print;
 log("text");
 }
}

An instance of a delegate is created by a delegate_creation_expression (§11.7.15.6), a
conversion to a delegate type, delegate combination or delegate removal. The newly
created delegate instance then refers to one or more of:

The static method referenced in the delegate_creation_expression, or
The target object (which cannot be null) and instance method referenced in the
delegate_creation_expression, or
Another delegate (§11.7.15.6).

Example:

C#

end example

The set of methods encapsulated by a delegate instance is called an invocation list.
When a delegate instance is created from a single method, it encapsulates that method,
and its invocation list contains only one entry. However, when two non-null delegate
instances are combined, their invocation lists are concatenated—in the order left
operand then right operand—to form a new invocation list, which contains two or more
entries.

When a new delegate is created from a single delegate the resultant invocation list has
just one entry, which is the source delegate (§11.7.15.6).

19.5 Delegate instantiation

delegate void D(int x);

class C
{
 public static void M1(int i) {...}
 public void M2(int i) {...}
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1); // Static method
 C t = new C();
 D cd2 = new D(t.M2); // Instance method
 D cd3 = new D(cd2); // Another delegate
 }
}

Delegates are combined using the binary + (§11.9.5) and += operators (§11.19.3). A
delegate can be removed from a combination of delegates, using the binary - (§11.9.6)
and -= operators (§11.19.3). Delegates can be compared for equality (§11.11.9).

Example: The following example shows the instantiation of a number of delegates,
and their corresponding invocation lists:

C#

When cd1 and cd2 are instantiated, they each encapsulate one method. When cd3
is instantiated, it has an invocation list of two methods, M1 and M2 , in that order.
cd4 ’s invocation list contains M1 , M2 , and M1 , in that order. For cd5 , the invocation
list contains M1 , M2 , M1 , M1 , and M2 , in that order.

When cd1 and cd2 are instantiated, they each encapsulate one method.
When cd3 is instantiated, it has an invocation list of two methods, M1 and M2 , in
that order. cd4s invocation list contains M1 , M2 , and M1 , in that order. For cd5 the
invocation list contains M1 , M2 , M1 , M1 , and M2 , in that order.

delegate void D(int x);

class C
{
 public static void M1(int i) {...}
 public static void M2(int i) {...}
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1); // M1 - one entry in invocation list
 D cd2 = new D(C.M2); // M2 - one entry
 D cd3 = cd1 + cd2; // M1 + M2 - two entries
 D cd4 = cd3 + cd1; // M1 + M2 + M1 - three entries
 D cd5 = cd4 + cd3; // M1 + M2 + M1 + M1 + M2 - five entries
 D td3 = new D(cd3); // [M1 + M2] - ONE entry in invocation
 // list, which is itself a list of two
methods.
 D td4 = td3 + cd1; // [M1 + M2] + M1 - two entries
 D cd6 = cd4 - cd2; // M1 + M1 - two entries in invocation list
 D td6 = td4 - cd2; // [M1 + M2] + M1 - two entries in
invocation list,
 // but still three methods called, M2 not
removed.
 }
}

When creating a delegate from another delegate with a delegate_creation_expression
the result has an invocation list with a different structure from the original, but
which results in the same methods being invoked in the same order. When td3 is
created from cd3 its invocation list has just one member, but that member is a list
of the methods M1 and M2 and those methods are invoked by td3 in the same
order as they are invoked by cd3 . Similarly when td4 is instantiated its invocation
list has just two entries but it invokes the three methods M1 , M2 , and M1 , in that
order just as cd4 does.

The structure of the invocation list affects delegate subtraction. Delegate cd6 ,
created by subtracting cd2 (which invokes M2) from cd4 (which invokes M1 , M2 ,
and M1) invokes M1 and M1 . However delegate td6 , created by subtracting cd2
(which invokes M2) from td4 (which invokes M1 , M2 , and M1) still invokes M1 , M2
and M1 , in that order, as M2 is not a single entry in the list but a member of a nested
list. For more examples of combining (as well as removing) delegates, see §19.6.

end example

Once instantiated, a delegate instance always refers to the same invocation list.

Note: Remember, when two delegates are combined, or one is removed from
another, a new delegate results with its own invocation list; the invocation lists of
the delegates combined or removed remain unchanged. end note

C# provides special syntax for invoking a delegate. When a non-null delegate instance
whose invocation list contains one entry, is invoked, it invokes the one method with the
same arguments it was given, and returns the same value as the referred to method.
(See §11.7.8.4 for detailed information on delegate invocation.) If an exception occurs
during the invocation of such a delegate, and that exception is not caught within the
method that was invoked, the search for an exception catch clause continues in the
method that called the delegate, as if that method had directly called the method to
which that delegate referred.

Invocation of a delegate instance whose invocation list contains multiple entries,
proceeds by invoking each of the methods in the invocation list, synchronously, in order.
Each method so called is passed the same set of arguments as was given to the
delegate instance. If such a delegate invocation includes reference parameters
(§14.6.2.3), each method invocation will occur with a reference to the same variable;

19.6 Delegate invocation

changes to that variable by one method in the invocation list will be visible to methods
further down the invocation list. If the delegate invocation includes output parameters
or a return value, their final value will come from the invocation of the last delegate in
the list. If an exception occurs during processing of the invocation of such a delegate,
and that exception is not caught within the method that was invoked, the search for an
exception catch clause continues in the method that called the delegate, and any
methods further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null results in an exception of
type System.NullReferenceException .

Example: The following example shows how to instantiate, combine, remove, and
invoke delegates:

C#

delegate void D(int x);

class C
{
 public static void M1(int i) => Console.WriteLine("C.M1: " + i);

 public static void M2(int i) => Console.WriteLine("C.M2: " + i);

 public void M3(int i) => Console.WriteLine("C.M3: " + i);
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1);
 cd1(-1); // call M1
 D cd2 = new D(C.M2);
 cd2(-2); // call M2
 D cd3 = cd1 + cd2;
 cd3(10); // call M1 then M2
 cd3 += cd1;
 cd3(20); // call M1, M2, then M1
 C c = new C();
 D cd4 = new D(c.M3);
 cd3 += cd4;
 cd3(30); // call M1, M2, M1, then M3
 cd3 -= cd1; // remove last M1
 cd3(40); // call M1, M2, then M3
 cd3 -= cd4;
 cd3(50); // call M1 then M2
 cd3 -= cd2;
 cd3(60); // call M1
 cd3 -= cd2; // impossible removal is benign

As shown in the statement cd3 += cd1; , a delegate can be present in an invocation
list multiple times. In this case, it is simply invoked once per occurrence. In an
invocation list such as this, when that delegate is removed, the last occurrence in the
invocation list is the one actually removed.

Immediately prior to the execution of the final statement, cd3 -= cd1 ;, the delegate
cd3 refers to an empty invocation list. Attempting to remove a delegate from an
empty list (or to remove a non-existent delegate from a non-empty list) is not an
error.

The output produced is:

Console

end example

 cd3(60); // call M1
 cd3 -= cd1; // invocation list is empty so cd3 is null
 // cd3(70); // System.NullReferenceException thrown
 cd3 -= cd1; // impossible removal is benign
 }
}

C.M1: -1
C.M2: -2
C.M1: 10
C.M2: 10
C.M1: 20
C.M2: 20
C.M1: 20
C.M1: 30
C.M2: 30
C.M1: 30
C.M3: 30
C.M1: 40
C.M2: 40
C.M3: 40
C.M1: 50
C.M2: 50
C.M1: 60
C.M1: 60

20 Exceptions
Article • 2022-03-29 • 3 minutes to read

Exceptions in C# provide a structured, uniform, and type-safe way of handling both
system level and application-level error conditions.

Exception can be thrown in two different ways.

A throw statement (§12.10.6) throws an exception immediately and
unconditionally. Control never reaches the statement immediately following the
throw .
Certain exceptional conditions that arise during the processing of C# statements
and expression cause an exception in certain circumstances when the operation
cannot be completed normally. See §20.5 for a list of the various exceptions that
can occur in this way.

Example: An integer division operation (§11.9.3) throws a
System.DivideByZeroException if the denominator is zero. end example

The System.Exception class is the base type of all exceptions. This class has a few
notable properties that all exceptions share:

Message is a read-only property of type string that contains a human-readable
description of the reason for the exception.
InnerException is a read-only property of type Exception . If its value is non-null ,
it refers to the exception that caused the current exception. (That is, the current
exception was raised in a catch block handling the InnerException .) Otherwise, its
value is null , indicating that this exception was not caused by another exception.
The number of exception objects chained together in this manner can be arbitrary.

The value of these properties can be specified in calls to the instance constructor for
System.Exception .

20.1 General

20.2 Causes of exceptions

20.3 The System.Exception class

Exceptions are handled by a try statement (§12.11).

When an exception occurs, the system searches for the nearest catch clause that can
handle the exception, as determined by the run-time type of the exception. First, the
current method is searched for a lexically enclosing try statement, and the associated
catch clauses of the try statement are considered in order. If that fails, the method that
called the current method is searched for a lexically enclosing try statement that
encloses the point of the call to the current method. This search continues until a catch
clause is found that can handle the current exception, by naming an exception class that
is of the same class, or a base class, of the run-time type of the exception being thrown.
A catch clause that doesn’t name an exception class can handle any exception.

Once a matching catch clause is found, the system prepares to transfer control to the
first statement of the catch clause. Before execution of the catch clause begins, the
system first executes, in order, any finally clauses that were associated with try
statements more nested that than the one that caught the exception.

If no matching catch clause is found:

If the search for a matching catch clause reaches a static constructor (§14.12) or
static field initializer, then a System.TypeInitializationException is thrown at the
point that triggered the invocation of the static constructor. The inner exception of
the System.TypeInitializationException contains the exception that was originally
thrown.
Otherwise, if an exception occurs during finalizer execution, and that exception is
not caught, then the behavior is unspecified.
Otherwise, if the search for matching catch clauses reaches the code that initially
started the thread, then execution of the thread is terminated. The impact of such
termination is implementation-defined.

The following exceptions are thrown by certain C# operations.

Exception Type Description

System.ArithmeticException A base class for exceptions that occur during arithmetic
operations, such as System.DivideByZeroException and
System.OverflowException .

20.4 How exceptions are handled

20.5 Common exception classes

Exception Type Description

System.ArrayTypeMismatchException Thrown when a store into an array fails because the type
of the stored element is incompatible with the type of the
array.

System.DivideByZeroException Thrown when an attempt to divide an integral value by
zero occurs.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an index
that is less than zero or outside the bounds of the array.

System.InvalidCastException Thrown when an explicit conversion from a base type or
interface to a derived type fails at run-time.

System.NullReferenceException Thrown when a null reference is used in a way that
causes the referenced object to be required.

System.OutOfMemoryException Thrown when an attempt to allocate memory (via new)
fails.

System.OverflowException Thrown when an arithmetic operation in a checked
context overflows.

System.StackOverflowException Thrown when the execution stack is exhausted by having
too many pending calls; typically indicative of very deep or
unbounded recursion.

System.TypeInitializationException Thrown when a static constructor or static field initializer
throws an exception, and no catch clause exists to catch
it.

21 Attributes
Article • 2023-01-12 • 26 minutes to read

Much of the C# language enables the programmer to specify declarative information
about the entities defined in the program. For example, the accessibility of a method in
a class is specified by decorating it with the method_modifiers public , protected ,
internal , and private .

C# enables programmers to invent new kinds of declarative information, called
attributes. Programmers can then attach attributes to various program entities, and
retrieve attribute information in a run-time environment.

Note: For instance, a framework might define a HelpAttribute attribute that can be
placed on certain program elements (such as classes and methods) to provide a
mapping from those program elements to their documentation. end note

Attributes are defined through the declaration of attribute classes (§21.2), which can
have positional and named parameters (§21.2.3). Attributes are attached to entities in a
C# program using attribute specifications (§21.3), and can be retrieved at run-time as
attribute instances (§21.4).

A class that derives from the abstract class System.Attribute , whether directly or
indirectly, is an attribute class. The declaration of an attribute class defines a new kind
of attribute that can be placed on program entities. By convention, attribute classes are
named with a suffix of Attribute . Uses of an attribute may either include or omit this
suffix.

A generic class declaration shall not use System.Attribute as a direct or indirect base
class.

Example:

C#

21.1 General

21.2 Attribute classes

21.2.1 General

end example

The attribute AttributeUsage (§21.5.2) is used to describe how an attribute class can be
used.

AttributeUsage has a positional parameter (§21.2.3) that enables an attribute class to
specify the kinds of program entities on which it can be used.

Example: The following example defines an attribute class named SimpleAttribute
that can be placed on class_declarations and interface_declarations only, and shows
several uses of the Simple attribute.

C#

Although this attribute is defined with the name SimpleAttribute , when this
attribute is used, the Attribute suffix may be omitted, resulting in the short name
Simple . Thus, the example above is semantically equivalent to the following

C#

end example

AttributeUsage has a named parameter (§21.2.3), called AllowMultiple , which indicates
whether the attribute can be specified more than once for a given entity. If
AllowMultiple for an attribute class is true, then that attribute class is a multi-use
attribute class, and can be specified more than once on an entity. If AllowMultiple for

public class B : Attribute {}
public class C<T> : B {} // Error – generic cannot be an attribute

21.2.2 Attribute usage

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute : Attribute
{
 ...
}

[Simple] class Class1 {...}
[Simple] interface Interface1 {...}

[SimpleAttribute] class Class1 {...}
[SimpleAttribute] interface Interface1 {...}

an attribute class is false or it is unspecified, then that attribute class is a single-use
attribute class, and can be specified at most once on an entity.

Example: The following example defines a multi-use attribute class named
AuthorAttribute and shows a class declaration with two uses of the Author
attribute:

C#

end example

AttributeUsage has another named parameter (§21.2.3), called Inherited , which
indicates whether the attribute, when specified on a base class, is also inherited by
classes that derive from that base class. If Inherited for an attribute class is true, then
that attribute is inherited. If Inherited for an attribute class is false then that attribute is
not inherited. If it is unspecified, its default value is true.

An attribute class X not having an AttributeUsage attribute attached to it, as in

C#

is equivalent to the following:

C#

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute : Attribute
{
 public string Name { get; }
 public AuthorAttribute(string name) => Name = name;
}

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Class1
{
 ...
}

class X : Attribute { ... }

[AttributeUsage(
 AttributeTargets.All,
 AllowMultiple = false,
 Inherited = true)
]
class X : Attribute { ... }

Attribute classes can have positional parameters and named parameters. Each public
instance constructor for an attribute class defines a valid sequence of positional
parameters for that attribute class. Each non-static public read-write field and property
for an attribute class defines a named parameter for the attribute class. For a property to
define a named parameter, that property shall have both a public get accessor and a
public set accessor.

Example: The following example defines an attribute class named HelpAttribute
that has one positional parameter, url , and one named parameter, Topic . Although
it is non-static and public, the property Url does not define a named parameter,
since it is not read-write. Two uses of this attribute are also shown:

C#

end example

21.2.3 Positional and named parameters

[AttributeUsage(AttributeTargets.Class)]
public class HelpAttribute : Attribute
{
 public HelpAttribute(string url) // url is a positional parameter
 {
 ...
 }

 // Topic is a named parameter
 public string Topic
 {
 get;
 set;
 }

 public string Url { get; }
}

[Help("http://www.mycompany.com/xxx/Class1.htm")]
class Class1
{
}

[Help("http://www.mycompany.com/xxx/Misc.htm", Topic ="Class2")]
class Class2
{
}

21.2.4 Attribute parameter types

The types of positional and named parameters for an attribute class are limited to the
attribute parameter types, which are:

One of the following types: bool , byte , char , double , float , int , long , sbyte ,
short , string , uint , ulong , ushort .
The type object .
The type System.Type .
Enum types.
Single-dimensional arrays of the above types.
A constructor argument or public field that does not have one of these types, shall
not be used as a positional or named parameter in an attribute specification.

Attribute specification is the application of a previously defined attribute to a program
entity. An attribute is a piece of additional declarative information that is specified for a
program entity. Attributes can be specified at global scope (to specify attributes on the
containing assembly or module) and for type_declarations (§13.7),
class_member_declarations (§14.3), interface_member_declarations (§17.4),
struct_member_declarations (§15.3), enum_member_declarations (§18.2),
accessor_declarations (§14.7.3), event_accessor_declarations (§14.8), elements of
formal_parameter_lists (§14.6.2), and elements of type_parameter_lists (§14.2.3).

Attributes are specified in attribute sections. An attribute section consists of a pair of
square brackets, which surround a comma-separated list of one or more attributes. The
order in which attributes are specified in such a list, and the order in which sections
attached to the same program entity are arranged, is not significant. For instance, the
attribute specifications [A][B] , [B][A] , [A, B] , and [B, A] are equivalent.

ANTLR

21.3 Attribute specification

global_attributes
 : global_attribute_section+
 ;

global_attribute_section
 : '[' global_attribute_target_specifier attribute_list ']'
 | '[' global_attribute_target_specifier attribute_list ',' ']'
 ;

global_attribute_target_specifier
 : global_attribute_target ':'
 ;

global_attribute_target

 : identifier
 ;

attributes
 : attribute_section+
 ;

attribute_section
 : '[' attribute_target_specifier? attribute_list ']'
 | '[' attribute_target_specifier? attribute_list ',' ']'
 ;

attribute_target_specifier
 : attribute_target ':'
 ;

attribute_target
 : identifier
 | keyword
 ;

attribute_list
 : attribute (',' attribute)*
 ;

attribute
 : attribute_name attribute_arguments?
 ;

attribute_name
 : type_name
 ;

attribute_arguments
 : '(' positional_argument_list? ')'
 | '(' positional_argument_list ',' named_argument_list ')'
 | '(' named_argument_list ')'
 ;

positional_argument_list
 : positional_argument (',' positional_argument)*
 ;

positional_argument
 : argument_name? attribute_argument_expression
 ;

named_argument_list
 : named_argument (',' named_argument)*
 ;

named_argument
 : identifier '=' attribute_argument_expression
 ;

For the production global_attribute_target, and in the text below, identifier shall have a
spelling equal to assembly or module , where equality is that defined in §6.4.3. For the
production attribute_target, and in the text below, identifier shall have a spelling that is
not equal to assembly or module , using the same definition of equality as above.

An attribute consists of an attribute_name and an optional list of positional and named
arguments. The positional arguments (if any) precede the named arguments. A
positional argument consists of an attribute_argument_expression; a named argument
consists of a name, followed by an equal sign, followed by an
attribute_argument_expression, which, together, are constrained by the same rules as
simple assignment. The order of named arguments is not significant.

Note: For convenience, a trailing comma is allowed in a global_attribute_section and
an attribute_section, just as one is allowed in an array_initializer (§16.7).

The attribute_name identifies an attribute class.

When an attribute is placed at the global level, a global_attribute_target_specifier is
required. When the global_attribute_target is equal to:

assembly — the target is the containing assembly
module — the target is the containing module

No other values for global_attribute_target are allowed.

The standardized attribute_target names are event , field , method , param , property ,
return , type , and typevar . These target names shall only be used in the following
contexts:

event — an event.
field — a field. A field-like event (i.e., one without accessors) (§14.8.2) and an
automatically implemented property (§14.7.4) can also have an attribute with this
target.
method — a constructor, finalizer, method, operator, property get and set
accessors, indexer get and set accessors, and event add and remove accessors. A
field-like event (i.e., one without accessors) can also have an attribute with this
target.

attribute_argument_expression
 : expression
 ;

param — a property set accessor, an indexer set accessor, event add and remove
accessors, and a parameter in a constructor, method, and operator.
property — a property and an indexer.
return — a delegate, method, operator, property get accessor, and indexer get
accessor.
type — a delegate, class, struct, enum, and interface.
typevar — a type parameter.

Certain contexts permit the specification of an attribute on more than one target. A
program can explicitly specify the target by including an attribute_target_specifier.
Without an attribute_target_specifier a default is applied, but an attribute_target_specifier
can be used to affirm or override the default. The contexts are resolved as follows:

For an attribute on a delegate declaration the default target is the delegate.
Otherwise when the attribute_target is equal to:

type — the target is the delegate
return — the target is the return value

For an attribute on a method declaration the default target is the method.
Otherwise when the attribute_target is equal to:

method — the target is the method
return — the target is the return value

For an attribute on an operator declaration the default target is the operator.
Otherwise when the attribute_target is equal to:

method — the target is the operator
return — the target is the return value

For an attribute on a get accessor declaration for a property or indexer declaration
the default target is the associated method. Otherwise when the attribute_target is
equal to:

method — the target is the associated method
return — the target is the return value

For an attribute specified on a set accessor for a property or indexer declaration
the default target is the associated method. Otherwise when the attribute_target is
equal to:

method — the target is the associated method
param — the target is the lone implicit parameter

For an attribute on an automatically implemented property declaration the default
target is the property. Otherwise when the attribute_target is equal to:

field — the target is the compiler-generated backing field for the property
For an attribute specified on an event declaration that omits
event_accessor_declarations the default target is the event declaration. Otherwise

when the attribute_target is equal to:
event — the target is the event declaration
field — the target is the field
method — the targets are the methods

In the case of an event declaration that does not omit event_accessor_declarations
the default target is the method.

method — the target is the associated method
param — the target is the lone parameter

In all other contexts, inclusion of an attribute_target_specifier is permitted but
unnecessary.

Example: a class declaration may either include or omit the specifier type :

C#

end example.

An implementation can accept other attribute_targets, the purposes of which are
implementation defined. An implementation that does not recognize such an
attribute_target shall issue a warning and ignore the containing attribute_section.

By convention, attribute classes are named with a suffix of Attribute . An attribute_name
can either include or omit this suffix. Specifically, an attribute_name is resolved as
follows:

If the right-most identifier of the attribute_name is a verbatim identifier (§6.4.3),
then the attribute_name is resolved as a type_name (§7.8). If the result is not a type
derived from System.Attribute , a compile-time error occurs.
Otherwise,

The attribute_name is resolved as a type_name (§7.8) except any errors are
suppressed. If this resolution is successful and results in a type derived from
System.Attribute then the type is the result of this step.
The characters Attribute are appended to the right-most identifier in the
attribute_name and the resulting string of tokens is resolved as a type_name
(§7.8) except any errors are suppressed. If this resolution is successful and

[type: Author("Brian Kernighan")]
class Class1 {}

[Author("Dennis Ritchie")]
class Class2 {}

results in a type derived from System.Attribute then the type is the result of
this step.

If exactly one of the two steps above results in a type derived from System.Attribute ,
then that type is the result of the attribute_name. Otherwise a compile-time error occurs.

Example: If an attribute class is found both with and without this suffix, an ambiguity
is present, and a compile-time error results. If the attribute_name is spelled such that
its right-most identifier is a verbatim identifier (§6.4.3), then only an attribute
without a suffix is matched, thus enabling such an ambiguity to be resolved. The
example

C#

shows two attribute classes named Example and ExampleAttribute . The attribute
[Example] is ambiguous, since it could refer to either Example or ExampleAttribute .
Using a verbatim identifier allows the exact intent to be specified in such rare cases.
The attribute [ExampleAttribute] is not ambiguous (although it would be if there
was an attribute class named ExampleAttributeAttribute !). If the declaration for
class Example is removed, then both attributes refer to the attribute class named
ExampleAttribute , as follows:

C#

[AttributeUsage(AttributeTargets.All)]
public class Example : Attribute
{}

[AttributeUsage(AttributeTargets.All)]
public class ExampleAttribute : Attribute
{}

[Example] // Error: ambiguity
class Class1 {}

[ExampleAttribute] // Refers to ExampleAttribute
class Class2 {}

[@Example] // Refers to Example
class Class3 {}

[@ExampleAttribute] // Refers to ExampleAttribute
class Class4 {}

[AttributeUsage(AttributeTargets.All)]
public class ExampleAttribute : Attribute
{}

end example

It is a compile-time error to use a single-use attribute class more than once on the same
entity.

Example: The example

C#

results in a compile-time error because it attempts to use HelpString , which is a
single-use attribute class, more than once on the declaration of Class1 .

end example

An expression E is an attribute_argument_expression if all of the following statements
are true:

The type of E is an attribute parameter type (§21.2.4).
At compile-time, the value of E can be resolved to one of the following:

A constant value.

[Example] // Refers to ExampleAttribute
class Class1 {}

[ExampleAttribute] // Refers to ExampleAttribute
class Class2 {}

[@Example] // Error: no attribute named “Example”
class Class3 {}

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute : Attribute
{
 public HelpStringAttribute(string value)
 {
 Value = value;
 }

 public string Value { get; }
}
[HelpString("Description of Class1")]
[HelpString("Another description of Class1")] // multiple uses not
allowed
public class Class1 {}

A System.Type object obtained using a typeof_expression (§11.7.16) specifying a
non-generic type, a closed constructed type (§8.4.3), or an unbound generic
type (§8.4.4), but not an open type (§8.4.3).
A single-dimensional array of attribute_argument_expressions.

Example:

C#

end example

The attributes of a type declared in multiple parts are determined by combining, in an
unspecified order, the attributes of each of its parts. If the same attribute is placed on
multiple parts, it is equivalent to specifying that attribute multiple times on the type.

Example: The two parts:

C#

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Field)]
public class TestAttribute : Attribute
{
 public int P1 { get; set; }

 public Type P2 { get; set; }

 public object P3 { get; set; }
}

[Test(P1 = 1234, P3 = new int[]{1, 3, 5}, P2 = typeof(float))]
class MyClass {}

class C<T> {
 [Test(P2 = typeof(T))] // Error – T not a closed type.
 int x1;

 [Test(P2 = typeof(C<T>))] // Error – C<;T>; not a closed type.
 int x2;

 [Test(P2 = typeof(C<int>))] // Ok
 int x3;

 [Test(P2 = typeof(C<>))] // Ok
 int x4;
}

[Attr1, Attr2("hello")]
partial class A {}

are equivalent to the following single declaration:

C#

end example

Attributes on type parameters combine in the same way.

An attribute instance is an instance that represents an attribute at run-time. An attribute
is defined with an attribute class, positional arguments, and named arguments. An
attribute instance is an instance of the attribute class that is initialized with the
positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing,
as described in the following subclauses.

The compilation of an attribute with attribute class T , positional_argument_list P ,
named_argument_list N , and specified on a program entity E is compiled into an
assembly A via the following steps:

Follow the compile-time processing steps for compiling an
object_creation_expression of the form new T(P) . These steps either result in a
compile-time error, or determine an instance constructor C on T that can be
invoked at run-time.
If C does not have public accessibility, then a compile-time error occurs.
For each named_argument Arg in N :

Let Name be the identifier of the named_argument Arg .

[Attr3, Attr2("goodbye")]
partial class A {}

[Attr1, Attr2("hello"), Attr3, Attr2("goodbye")]
class A {}

21.4 Attribute instances

21.4.1 General

21.4.2 Compilation of an attribute

Name shall identify a non-static read-write public field or property on T . If T has
no such field or property, then a compile-time error occurs.

If any of the values within positional_argument_list P or one of the values within
named_argument_list N is of type System.String and the value is not well-formed
as defined by the Unicode Standard, it is implementation-defined whether the
value compiled is equal to the run-time value retrieved (§21.4.3).

Note: As an example, a string which contains a high surrogate UTF-16 code
unit which isn’t immediately followed by a low surrogate code unit is not well-
formed. end note

Store the following information (for run-time instantiation of the attribute) in the
assembly output by the compiler as a result of compiling the program containing
the attribute: the attribute class T , the instance constructor C on T , the
positional_argument_list P , the named_argument_list N , and the associated
program entity E , with the values resolved completely at compile-time.

The attribute instance represented by T , C , P , and N , and associated with E can be
retrieved at run-time from the assembly A using the following steps:

Follow the run-time processing steps for executing an object_creation_expression of
the form new T(P) , using the instance constructor C and values as determined at
compile-time. These steps either result in an exception, or produce an instance O
of T .
For each named_argument Arg in N , in order:

Let Name be the identifier of the named_argument Arg . If Name does not identify
a non-static public read-write field or property on O , then an exception is
thrown.
Let Value be the result of evaluating the attribute_argument_expression of Arg .
If Name identifies a field on O , then set this field to Value .
Otherwise, Name identifies a property on O . Set this property to Value.
The result is O , an instance of the attribute class T that has been initialized with
the positional_argument_list P and the named_argument_list N .

Note: The format for storing T , C , P , N (and associating it with E) in A and the
mechanism to specify E and retrieve T , C , P , N from A (and hence how an

21.4.3 Run-time retrieval of an attribute instance

attribute instance is obtained at runtime) is beyond the scope of this standard. end
note

Example: In an implementation of the CLI, the Help attribute instances in the
assembly created by compiling the example program in §21.2.3 can be retrieved
with the following program:

C#

end example

A small number of attributes affect the language in some way. These attributes include:

System.AttributeUsageAttribute (§21.5.2), which is used to describe the ways in
which an attribute class can be used.
System.Diagnostics.ConditionalAttribute (§21.5.3), is a multi-use attribute class
which is used to define conditional methods and conditional attribute classes. This
attribute indicates a condition by testing a conditional compilation symbol.
System.ObsoleteAttribute (§21.5.4), which is used to mark a member as obsolete.
System.Runtime.CompilerServices.CallerLineNumberAttribute (§21.5.5.2),
System.Runtime.CompilerServices.CallerFilePathAttribute (§21.5.5.3), and

public sealed class InterrogateHelpUrls
{
 public static void Main(string[] args)
 {
 Type helpType = typeof(HelpAttribute);
 string assemblyName = args[0];
 foreach (Type t in Assembly.Load(assemblyName).GetTypes())
 {
 Console.WriteLine($"Type : {t}");
 HelpAttribute[] helpers =
 (HelpAttribute[])t.GetCustomAttributes(helpType, false);
 for (int at = 0; at != helpers.Length; at++)
 {
 Console.WriteLine($"\tUrl : {helpers[at].Url}");
 }
 }
 }
}

21.5 Reserved attributes

21.5.1 General

System.Runtime.CompilerServices.CallerMemberNameAttribute (§21.5.5.4), which are
used to supply information about the calling context to optional parameters.

An execution environment may provide additional implementation-specific attributes
that affect the execution of a C# program.

The attribute AttributeUsage is used to describe the manner in which the attribute class
can be used.

A class that is decorated with the AttributeUsage attribute shall derive from
System.Attribute , either directly or indirectly. Otherwise, a compile-time error occurs.

Note: For an example of using this attribute, see §21.2.2. end note

The attribute Conditional enables the definition of conditional methods and
conditional attribute classes.

A method decorated with the Conditional attribute is a conditional method. Each
conditional method is thus associated with the conditional compilation symbols
declared in its Conditional attributes.

Example:

C#

21.5.2 The AttributeUsage attribute

21.5.3 The Conditional attribute

21.5.3.1 General

21.5.3.2 Conditional methods

class Eg
{
 [Conditional("ALPHA")]
 [Conditional("BETA")]
 public static void M()
 {
 // ...
 }
}

declares Eg.M as a conditional method associated with the two conditional
compilation symbols ALPHA and BETA .

end example

A call to a conditional method is included if one or more of its associated conditional
compilation symbols is defined at the point of call, otherwise the call is omitted.

A conditional method is subject to the following restrictions:

The conditional method shall be a method in a class_declaration or
struct_declaration. A compile-time error occurs if the Conditional attribute is
specified on a method in an interface declaration.
The conditional method shall have a return type of void .
The conditional method shall not be marked with the override modifier. A
conditional method can be marked with the virtual modifier, however. Overrides
of such a method are implicitly conditional, and shall not be explicitly marked with
a Conditional attribute.
The conditional method shall not be an implementation of an interface method.
Otherwise, a compile-time error occurs.
The parameters of the conditional method shall not have the out modifier.

In addition, a compile-time error occurs if a delegate is created from a conditional
method.

Example: The example

C#

#define DEBUG
using System;
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public static void M()
 {
 Console.WriteLine("Executed Class1.M");
 }
}

class Class2
{
 public static void Test()
 {
 Class1.M();

declares Class1.M as a conditional method. Class2 ’s Test method calls this
method. Since the conditional compilation symbol DEBUG is defined, if Class2.Test
is called, it will call M . If the symbol DEBUG had not been defined, then Class2.Test
would not call Class1.M .

end example

It is important to understand that the inclusion or exclusion of a call to a conditional
method is controlled by the conditional compilation symbols at the point of the call.

Example: In the following code

C#

 }
}

// File class1.cs:
class Class1
{
 [Conditional("DEBUG")]
 public static void F()
 {
 Console.WriteLine("Executed Class1.F");
 }
}

// File class2.cs:
#define DEBUG
class Class2
{
 public static void G()
 {
 Class1.F(); // F is called
 }
}

// File class3.cs:
#undef DEBUG
class Class3
{
 public static void H()
 {
 Class1.F(); // F is not called
 }
}

the classes Class2 and Class3 each contain calls to the conditional method
Class1.F , which is conditional based on whether or not DEBUG is defined. Since this
symbol is defined in the context of Class2 but not Class3 , the call to F in Class2 is
included, while the call to F in Class3 is omitted.

end example

The use of conditional methods in an inheritance chain can be confusing. Calls made to
a conditional method through base , of the form base.M , are subject to the normal
conditional method call rules.

Example: In the following code

C#

Class2 includes a call to the M defined in its base class. This call is omitted because
the base method is conditional based on the presence of the symbol DEBUG , which is
undefined. Thus, the method writes to the console “Class2.M executed ” only.
Judicious use of pp_declarations can eliminate such problems.

// File class1.cs
class Class1
{
 [Conditional("DEBUG")]
 public virtual void M() => Console.WriteLine("Class1.M executed");
}

// File class2.cs
class Class2 : Class1
{
 public override void M()
 {
 Console.WriteLine("Class2.M executed");
 base.M(); // base.M is not called!
 }
}

// File class3.cs
#define DEBUG
class Class3
{
 public static void Test()
 {
 Class2 c = new Class2();
 c.M(); // M is called
 }
}

end example

An attribute class (§21.2) decorated with one or more Conditional attributes is a
conditional attribute class. A conditional attribute class is thus associated with the
conditional compilation symbols declared in its Conditional attributes.

Example:

C#

declares TestAttribute as a conditional attribute class associated with the
conditional compilations symbols ALPHA and BETA .

end example

Attribute specifications (§21.3) of a conditional attribute are included if one or more of
its associated conditional compilation symbols is defined at the point of specification,
otherwise the attribute specification is omitted.

It is important to note that the inclusion or exclusion of an attribute specification of a
conditional attribute class is controlled by the conditional compilation symbols at the
point of the specification.

Example: In the example

C#

21.5.3.3 Conditional attribute classes

[Conditional("ALPHA")]
[Conditional("BETA")]
public class TestAttribute : Attribute {}

// File test.cs:
[Conditional("DEBUG")]
public class TestAttribute : Attribute {}

// File class1.cs:
#define DEBUG
[Test] // TestAttribute is specified
class Class1 {}

// File class2.cs:
#undef DEBUG
[Test] // TestAttribute is not specified
class Class2 {}

the classes Class1 and Class2 are each decorated with attribute Test , which is
conditional based on whether or not DEBUG is defined. Since this symbol is defined
in the context of Class1 but not Class2 , the specification of the Test attribute on
Class1 is included, while the specification of the Test attribute on Class2 is
omitted.

end example

The attribute Obsolete is used to mark types and members of types that should no
longer be used.

If a program uses a type or member that is decorated with the Obsolete attribute, the
compiler shall issue a warning or an error. Specifically, the compiler shall issue a warning
if no error parameter is provided, or if the error parameter is provided and has the value
false . The compiler shall issue an error if the error parameter is specified and has the
value true .

Example: In the following code

C#

the class A is decorated with the Obsolete attribute. Each use of A in Main results in
a warning that includes the specified message, “This class is obsolete; use class B

21.5.4 The Obsolete attribute

[Obsolete("This class is obsolete; use class B instead")]
class A
{
 public void F() {}
}

class B
{
 public void F() {}
}

class Test
{
 static void Main()
 {
 A a = new A(); // Warning
 a.F();
 }
}

instead”.

end example

For purposes such as logging and reporting, it is sometimes useful for a function
member to obtain certain compile-time information about the calling code. The caller-
info attributes provide a way to pass such information transparently.

When an optional parameter is annotated with one of the caller-info attributes, omitting
the corresponding argument in a call does not necessarily cause the default parameter
value to be substituted. Instead, if the specified information about the calling context is
available, that information will be passed as the argument value.

Example:

C#

A call to Log() with no arguments would print the line number and file path of the
call, as well as the name of the member within which the call occurred.

end example

Caller-info attributes can occur on optional parameters anywhere, including in delegate
declarations. However, the specific caller-info attributes have restrictions on the types of
the parameters they can attribute, so that there will always be an implicit conversion
from a substituted value to the parameter type.

21.5.5 Caller-info attributes

21.5.5.1 General

...

public void Log(
 [CallerLineNumber] int line = -1,
 [CallerFilePath] string path = null,
 [CallerMemberName] string name = null
)
{
 Console.WriteLine((line < 0) ? "No line" : "Line "+ line);
 Console.WriteLine((path == null) ? "No file path" : path);
 Console.WriteLine((name == null) ? "No member name" : name);
}

It is an error to have the same caller-info attribute on a parameter of both the defining
and implementing part of a partial method declaration. Only caller-info attributes in the
defining part are applied, whereas caller-info attributes occurring only in the
implementing part are ignored.

Caller information does not affect overload resolution. As the attributed optional
parameters are still omitted from the source code of the caller, overload resolution
ignores those parameters in the same way it ignores other omitted optional parameters
(§11.6.4).

Caller information is only substituted when a function is explicitly invoked in source
code. Implicit invocations such as implicit parent constructor calls do not have a source
location and will not substitute caller information. Also, calls that are dynamically bound
will not substitute caller information. When a caller-info attributed parameter is omitted
in such cases, the specified default value of the parameter is used instead.

One exception is query expressions. These are considered syntactic expansions, and if
the calls they expand to omit optional parameters with caller-info attributes, caller
information will be substituted. The location used is the location of the query clause
which the call was generated from.

If more than one caller-info attribute is specified on a given parameter, they are
preferred in the following order: CallerLineNumber , CallerFilePath , CallerMemberName .

The System.Runtime.CompilerServices.CallerLineNumberAttribute is allowed on optional
parameters when there is a standard implicit conversion (§10.4.2) from the constant
value int.MaxValue to the parameter’s type. This ensures that any non-negative line
number up to that value can be passed without error.

If a function invocation from a location in source code omits an optional parameter with
the CallerLineNumberAttribute , then a numeric literal representing that location’s line
number is used as an argument to the invocation instead of the default parameter value.

If the invocation spans multiple lines, the line chosen is implementation-dependent.

The line number may be affected by #line directives (§6.5.8).

21.5.5.2 The CallerLineNumber attribute

21.5.5.3 The CallerFilePath attribute

The System.Runtime.CompilerServices.CallerFilePathAttribute is allowed on optional
parameters when there is a standard implicit conversion (§10.4.2) from string to the
parameter’s type.

If a function invocation from a location in source code omits an optional parameter with
the CallerFilePathAttribute , then a string literal representing that location’s file path is
used as an argument to the invocation instead of the default parameter value.

The format of the file path is implementation-dependent.

The file path may be affected by #line directives (§6.5.8).

The System.Runtime.CompilerServices.CallerMemberNameAttribute is allowed on optional
parameters when there is a standard implicit conversion (§10.4.2) from string to the
parameter’s type.

If a function invocation from a location within the body of a function member or within
an attribute applied to the function member itself or its return type, parameters or type
parameters in source code omits an optional parameter with the
CallerMemberNameAttribute , then a string literal representing the name of that member
is used as an argument to the invocation instead of the default parameter value.

For invocations that occur within generic methods, only the method name itself is used,
without the type parameter list.

For invocations that occur within explicit interface member implementations, only the
method name itself is used, without the preceding interface qualification.

For invocations that occur within property or event accessors, the member name used is
that of the property or event itself.

For invocations that occur within indexer accessors, the member name used is that
supplied by an IndexerNameAttribute (§21.6) on the indexer member, if present, or the
default name Item otherwise.

For invocations that occur within field or event initializers, the member name used is the
name of the field or event being initialized.

For invocations that occur within declarations of instance constructors, static
constructors, finalizers and operators the member name used is implementation-
dependent.

21.5.5.4 The CallerMemberName attribute

For interoperation with other languages, an indexer may be implemented using indexed
properties. If no IndexerName attribute is present for an indexer, then the name Item is
used by default. The IndexerName attribute enables a developer to override this default
and specify a different name.

Example: By default, an indexer’s name is Item . This can be overridden, as follows:

C#

Now, the indexer’s name is TheItem .

end example

21.6 Attributes for interoperation

[System.Runtime.CompilerServices.IndexerName("TheItem")]
public int this[int index]
{
 get { ... }
 set { ... }
}

22 Unsafe code
Article • 2023-01-17 • 36 minutes to read

An implementation that does not support unsafe code is required to diagnose any
usage of the syntactic rules defined in this clause.

The remainder of this clause, including all of its subclauses, is conditionally normative.

Note: The core C# language, as defined in the preceding clauses, differs notably
from C and C++ in its omission of pointers as a data type. Instead, C# provides
references and the ability to create objects that are managed by a garbage collector.
This design, coupled with other features, makes C# a much safer language than C or
C++. In the core C# language, it is simply not possible to have an uninitialized
variable, a “dangling” pointer, or an expression that indexes an array beyond its
bounds. Whole categories of bugs that routinely plague C and C++ programs are
thus eliminated.

While practically every pointer type construct in C or C++ has a reference type
counterpart in C#, nonetheless, there are situations where access to pointer types
becomes a necessity. For example, interfacing with the underlying operating system,
accessing a memory-mapped device, or implementing a time-critical algorithm
might not be possible or practical without access to pointers. To address this need,
C# provides the ability to write unsafe code.

In unsafe code, it is possible to declare and operate on pointers, to perform
conversions between pointers and integral types, to take the address of variables,
and so forth. In a sense, writing unsafe code is much like writing C code within a C#
program.

Unsafe code is in fact a “safe” feature from the perspective of both developers and
users. Unsafe code shall be clearly marked with the modifier unsafe , so developers
can’t possibly use unsafe features accidentally, and the execution engine works to
ensure that unsafe code cannot be executed in an untrusted environment.

end note

22.1 General

22.2 Unsafe contexts

The unsafe features of C# are available only in unsafe contexts. An unsafe context is
introduced by including an unsafe modifier in the declaration of a type, member, or
local function, or by employing an unsafe_statement:

A declaration of a class, struct, interface, or delegate may include an unsafe
modifier, in which case, the entire textual extent of that type declaration (including
the body of the class, struct, or interface) is considered an unsafe context.

Note: If the type_declaration is partial, only that part is an unsafe context. end
note

A declaration of a field, method, property, event, indexer, operator, instance
constructor, finalizer, static constructor, or local function may include an unsafe
modifier, in which case, the entire textual extent of that member declaration is
considered an unsafe context.
An unsafe_statement enables the use of an unsafe context within a block. The entire
textual extent of the associated block is considered an unsafe context. A local
function declared within an unsafe context is itself unsafe.

The associated grammar extensions are shown below and in subsequent subclauses.

ANTLR

Example: In the following code

C#

the unsafe modifier specified in the struct declaration causes the entire textual
extent of the struct declaration to become an unsafe context. Thus, it is possible to

unsafe_modifier
 : 'unsafe'
 ;

unsafe_statement
 : 'unsafe' block
 ;

public unsafe struct Node
{
 public int Value;
 public Node* Left;
 public Node* Right;
}

declare the Left and Right fields to be of a pointer type. The example above could
also be written

C#

Here, the unsafe modifiers in the field declarations cause those declarations to be
considered unsafe contexts.

end example

Other than establishing an unsafe context, thus permitting the use of pointer types, the
unsafe modifier has no effect on a type or a member.

Example: In the following code

C#

the unsafe modifier on the F method in A simply causes the textual extent of F to
become an unsafe context in which the unsafe features of the language can be
used. In the override of F in B , there is no need to re-specify the unsafe modifier—
unless, of course, the F method in B itself needs access to unsafe features.

public struct Node
{
 public int Value;
 public unsafe Node* Left;
 public unsafe Node* Right;
}

public class A
{
 public unsafe virtual void F()
 {
 char* p;
 ...
 }
}

public class B : A
{
 public override void F()
 {
 base.F();
 ...
 }
}

The situation is slightly different when a pointer type is part of the method’s
signature

C#

Here, because F ’s signature includes a pointer type, it can only be written in an
unsafe context. However, the unsafe context can be introduced by either making the
entire class unsafe, as is the case in A , or by including an unsafe modifier in the
method declaration, as is the case in B .

end example

When the unsafe modifier is used on a partial type declaration (§14.2.7), only that
particular part is considered an unsafe context.

In an unsafe context, a type (§8.1) can be a pointer_type as well as a value_type, a
reference_type, or a type_parameter. In an unsafe context a pointer_type may also be the
element type of an array (§16). A pointer_type may also be used in a typeof expression
(§11.7.16) outside of an unsafe context (as such usage is not unsafe).

A pointer_type is written as an unmanaged_type (§8.8) or the keyword void , followed by
a * token:

ANTLR

The type specified before the * in a pointer type is called the referent type of the
pointer type. It represents the type of the variable to which a value of the pointer type

public unsafe class A
{
 public virtual void F(char* p) {...}
}

public class B: A
{
 public unsafe override void F(char* p) {...}
}

22.3 Pointer types

pointer_type
 : value_type ('*')+
 | 'void' ('*')+
 ;

points.

A pointer_type may only be used in an array_type in an unsafe context (§22.2). A
non_array_type is any type that is not itself an array_type.

Unlike references (values of reference types), pointers are not tracked by the garbage
collector—the garbage collector has no knowledge of pointers and the data to which
they point. For this reason a pointer is not permitted to point to a reference or to a
struct that contains references, and the referent type of a pointer shall be an
unmanaged_type.

The intuitive rule for mixing of pointers and references is that referents of references
(objects) are permitted to contain pointers, but referents of pointers are not permitted
to contain references.

Example: Some examples of pointer types are given in the table below:

Example Description

byte* Pointer to byte

char* Pointer to char

int** Pointer to pointer to int

int*[] Single-dimensional array of pointers to int

void* Pointer to unknown type

end example

For a given implementation, all pointer types shall have the same size and
representation.

Note: Unlike C and C++, when multiple pointers are declared in the same
declaration, in C# the * is written along with the underlying type only, not as a
prefix punctuator on each pointer name. For example:

C#

end note

int* pi, pj; // NOT as int *pi, *pj;

The value of a pointer having type T* represents the address of a variable of type T .
The pointer indirection operator * (§22.6.2) can be used to access this variable.

Example: Given a variable P of type int* , the expression *P denotes the int
variable found at the address contained in P . end example

Like an object reference, a pointer may be null . Applying the indirection operator to a
null -valued pointer results in implementation-defined behavior (§22.6.2). A pointer with
value null is represented by all-bits-zero.

The void* type represents a pointer to an unknown type. Because the referent type is
unknown, the indirection operator cannot be applied to a pointer of type void* , nor can
any arithmetic be performed on such a pointer. However, a pointer of type void* can be
cast to any other pointer type (and vice versa) and compared to values of other pointer
types (§22.6.8).

Pointer types are a separate category of types. Unlike reference types and value types,
pointer types do not inherit from object and no conversions exist between pointer
types and object . In particular, boxing and unboxing (§8.3.12) are not supported for
pointers. However, conversions are permitted between different pointer types and
between pointer types and the integral types. This is described in §22.5.

A pointer_type cannot be used as a type argument (§8.4), and type inference (§11.6.3)
fails on generic method calls that would have inferred a type argument to be a pointer
type.

A pointer_type cannot be used as a type of a subexpression of a dynamically bound
operation (§11.3.3).

A pointer_type may be used as the type of a volatile field (§14.5.4).

Note: Although pointers can be passed as ref or out parameters, doing so can
cause undefined behavior, since the pointer might well be set to point to a local
variable that no longer exists when the called method returns, or the fixed object to
which it used to point, is no longer fixed. For example:

C#

class Test
{
 static int value = 20;

 unsafe static void F(out int* pi1, ref int* pi2)
 {

end note

A method can return a value of some type, and that type can be a pointer.

Example: When given a pointer to a contiguous sequence of ints, that sequence’s
element count, and some other int value, the following method returns the
address of that value in that sequence, if a match occurs; otherwise it returns null :

C#

end example

In an unsafe context, several constructs are available for operating on pointers:

 int i = 10;
 pi1 = &i;
 fixed (int* pj = &value)
 {
 // ...
 pi2 = pj;
 }
 }

 static void Main()
 {
 int i = 10;
 unsafe
 {
 int* px1;
 int* px2 = &i;
 F(out px1, ref px2);
 // Undefined behavior
 Console.WriteLine($"*px1 = {*px1}, *px2 = {*px2}");
 }
 }
}

unsafe static int* Find(int* pi, int size, int value)
{
 for (int i = 0; i < size; ++i)
 {
 if (*pi == value)
 {
 return pi;
 }
 ++pi;
 }
 return null;
}

The unary * operator may be used to perform pointer indirection (§22.6.2).
The -> operator may be used to access a member of a struct through a pointer
(§22.6.3).
The [] operator may be used to index a pointer (§22.6.4).
The unary & operator may be used to obtain the address of a variable (§22.6.5).
The ++ and -- operators may be used to increment and decrement pointers
(§22.6.6).
The binary + and - operators may be used to perform pointer arithmetic (§22.6.7).
The == , != , < , > , <= , and >= operators may be used to compare pointers
(§22.6.8).
The stackalloc operator may be used to allocate memory from the call stack
(§22.9).
The fixed statement may be used to temporarily fix a variable so its address can
be obtained (§22.7).

The address-of operator (§22.6.5) and the fixed statement (§22.7) divide variables into
two categories: Fixed variables and moveable variables.

Fixed variables reside in storage locations that are unaffected by operation of the
garbage collector. (Examples of fixed variables include local variables, value parameters,
and variables created by dereferencing pointers.) On the other hand, moveable variables
reside in storage locations that are subject to relocation or disposal by the garbage
collector. (Examples of moveable variables include fields in objects and elements of
arrays.)

The & operator (§22.6.5) permits the address of a fixed variable to be obtained without
restrictions. However, because a moveable variable is subject to relocation or disposal
by the garbage collector, the address of a moveable variable can only be obtained using
a fixed statement (§22.7), and that address remains valid only for the duration of that
fixed statement.

In precise terms, a fixed variable is one of the following:

A variable resulting from a simple_name (§11.7.4) that refers to a local variable,
value parameter, or parameter array, unless the variable is captured by an
anonymous function (§11.17.6.2).
A variable resulting from a member_access (§11.7.6) of the form V.I , where V is a
fixed variable of a struct_type.

22.4 Fixed and moveable variables

A variable resulting from a pointer_indirection_expression (§22.6.2) of the form *P , a
pointer_member_access (§22.6.3) of the form P->I , or a pointer_element_access
(§22.6.4) of the form P[E] .

All other variables are classified as moveable variables.

A static field is classified as a moveable variable. Also, a ref or out parameter is
classified as a moveable variable, even if the argument given for the parameter is a fixed
variable. Finally, a variable produced by dereferencing a pointer is always classified as a
fixed variable.

In an unsafe context, the set of available implicit conversions (§10.2) is extended to
include the following implicit pointer conversions:

From any pointer_type to the type void* .
From the null literal (§6.4.5.7) to any pointer_type.

Additionally, in an unsafe context, the set of available explicit conversions (§10.3) is
extended to include the following explicit pointer conversions:

From any pointer_type to any other pointer_type.
From sbyte , byte , short , ushort , int , uint , long , or ulong to any pointer_type.
From any pointer_type to sbyte , byte , short , ushort , int , uint , long , or ulong .

Finally, in an unsafe context, the set of standard implicit conversions (§10.4.2) includes
the following pointer conversions:

From any pointer_type to the type void* .
From the null literal to any pointer_type.

Conversions between two pointer types never change the actual pointer value. In other
words, a conversion from one pointer type to another has no effect on the underlying
address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly
aligned for the pointed-to type, the behavior is undefined if the result is dereferenced.
In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly

22.5 Pointer conversions

22.5.1 General

aligned for a pointer to type B , which, in turn, is correctly aligned for a pointer to type
C , then a pointer to type A is correctly aligned for a pointer to type C .

Example: Consider the following case in which a variable having one type is accessed
via a pointer to a different type:

C#

end example

When a pointer type is converted to a pointer to byte , the result points to the lowest
addressed byte of the variable. Successive increments of the result, up to the size of the
variable, yield pointers to the remaining bytes of that variable.

Example: The following method displays each of the eight bytes in a double as a
hexadecimal value:

C#

unsafe static void M()
{
 char c = 'A';
 char* pc = &c;
 void* pv = pc;
 int* pi = (int*)pv;
 int i = *pi; // undefined
 *pi = 123456; // undefined
}

class Test
{
 static void Main()
 {
 double d = 123.456e23;
 unsafe
 {
 byte* pb = (byte*)&d;
 for (int i = 0; i < sizeof(double); ++i)
 {
 Console.Write($" {*pb++:X2}");
 }
 Console.WriteLine();
 }
 }
}

Of course, the output produced depends on endianness. One possibility is " BA FF
51 A2 90 6C 24 45" .

end example

Mappings between pointers and integers are implementation-defined.

Note: However, on 32- and 64-bit CPU architectures with a linear address space,
conversions of pointers to or from integral types typically behave exactly like
conversions of uint or ulong values, respectively, to or from those integral types.
end note

Arrays of pointers can be constructed using array_creation_expression (§11.7.15.5) in an
usafe context. Only some of the conversions that apply to other array types are allowed
on pointer arrays:

The implicit reference conversion (§10.2.6) from any array_type to System.Array
and the interfaces it implements also applies to pointer arrays. However, any
attempt to access the array elements through System.Array or the interfaces it
implements may result in an exception at run-time, as pointer types are not
convertible to object .
The implicit and explicit reference conversions (§10.2.6, §10.3.4) from a single-
dimensional array type S[] to System.Collections.Generic.IList<T> and its
generic base interfaces never apply to pointer arrays.
The explicit reference conversion (§10.3.4) from System.Array and the interfaces it
implements to any array_type applies to pointer arrays.
The explicit reference conversions (§10.3.4) from
System.Collections.Generic.IList<S> and its base interfaces to a single-
dimensional array type T[] never applies to pointer arrays, since pointer types
cannot be used as type arguments, and there are no conversions from pointer
types to non-pointer types.

These restrictions mean that the expansion for the foreach statement over arrays
described in §9.4.4.17 cannot be applied to pointer arrays. Instead, a foreach statement
of the form

foreach (V v in x) embedded_statement

22.5.2 Pointer arrays

where the type of x is an array type of the form T[,,...,] , n is the number of
dimensions minus 1 and T or V is a pointer type, is expanded using nested for-loops as
follows:

C#

The variables a , i0 , i1 , … in are not visible to or accessible to x or the
embedded_statement or any other source code of the program. The variable v is read-
only in the embedded statement. If there is not an explicit conversion (§22.5) from T
(the element type) to V , an error is produced and no further steps are taken. If x has
the value null , a System.NullReferenceException is thrown at run-time.

Note: Although pointer types are not permitted as type arguments, pointer arrays
may be used as type arguments. end note

In an unsafe context, an expression may yield a result of a pointer type, but outside an
unsafe context, it is a compile-time error for an expression to be of a pointer type. In
precise terms, outside an unsafe context a compile-time error occurs if any simple_name
(§11.7.4), member_access (§11.7.6), invocation_expression (§11.7.8), or element_access
(§11.7.10) is of a pointer type.

In an unsafe context, the primary_no_array_creation_expression (§11.7) and
unary_expression (§11.8) productions permit additional constructs, which are described

{
 T[,,...,] a = x;
 for (int i0 = a.GetLowerBound(0); i0 <= a.GetUpperBound(0); i0++)
 {
 for (int i1 = a.GetLowerBound(1); i1 <= a.GetUpperBound(1); i1++)
 {
 ...
 for (int in = a.GetLowerBound(n); in <= a.GetUpperBound(n);
in++)
 {
 V v = (V)a[i0,i1,...,in];
 embedded_statement
 }
 }
 }
}

22.6 Pointers in expressions

22.6.1 General

in the following subclauses.

Note: The precedence and associativity of the unsafe operators is implied by the
grammar. end note

A pointer_indirection_expression consists of an asterisk (*) followed by a
unary_expression.

ANTLR

The unary * operator denotes pointer indirection and is used to obtain the variable to
which a pointer points. The result of evaluating *P , where P is an expression of a
pointer type T* , is a variable of type T . It is a compile-time error to apply the unary *
operator to an expression of type void* or to an expression that isn’t of a pointer type.

The effect of applying the unary * operator to a null -valued pointer is
implementation-defined. In particular, there is no guarantee that this operation throws a
System.NullReferenceException .

If an invalid value has been assigned to the pointer, the behavior of the unary *
operator is undefined.

Note: Among the invalid values for dereferencing a pointer by the unary * operator
are an address inappropriately aligned for the type pointed to (see example in
§22.5), and the address of a variable after the end of its lifetime.

For purposes of definite assignment analysis, a variable produced by evaluating an
expression of the form *P is considered initially assigned (§9.4.2).

A pointer_member_access consists of a primary_expression, followed by a “-> ” token,
followed by an identifier and an optional type_argument_list.

ANTLR

22.6.2 Pointer indirection

pointer_indirection_expression
 : '*' unary_expression
 ;

22.6.3 Pointer member access

In a pointer member access of the form P->I , P shall be an expression of a pointer type,
and I shall denote an accessible member of the type to which P points.

A pointer member access of the form P->I is evaluated exactly as (*P).I . For a
description of the pointer indirection operator (*), see §22.6.2. For a description of the
member access operator (.), see §11.7.6.

Example: In the following code

C#

the -> operator is used to access fields and invoke a method of a struct through a
pointer. Because the operation P->I is precisely equivalent to (*P).I , the Main
method could equally well have been written:

C#

pointer_member_access
 : primary_expression '->' identifier type_argument_list?
 ;

struct Point
{
 public int x;
 public int y;
 public override string ToString() => $"({x},{y})";
}

class Test
{
 static void Main()
 {
 Point point;
 unsafe
 {
 Point* p = &point;
 p->x = 10;
 p->y = 20;
 Console.WriteLine(p->ToString());
 }
 }
}

class Test
{
 static void Main()
 {
 Point point;

end example

A pointer_element_access consists of a primary_no_array_creation_expression followed by
an expression enclosed in “[” and “] ”.

ANTLR

In a pointer element access of the form P[E] , P shall be an expression of a pointer type
other than void* , and E shall be an expression that can be implicitly converted to int ,
uint , long , or ulong .

A pointer element access of the form P[E] is evaluated exactly as *(P + E) . For a
description of the pointer indirection operator (*), see §22.6.2. For a description of the
pointer addition operator (+), see §22.6.7.

Example: In the following code

C#

 unsafe
 {
 Point* p = &point;
 (*p).x = 10;
 (*p).y = 20;
 Console.WriteLine((*p).ToString());
 }
 }
}

22.6.4 Pointer element access

pointer_element_access
 : primary_no_array_creation_expression '[' expression ']'
 ;

class Test
{
 static void Main()
 {
 unsafe
 {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++)
 {
 p[i] = (char)i;
 }
 }

a pointer element access is used to initialize the character buffer in a for loop.
Because the operation P[E] is precisely equivalent to *(P + E) , the example could
equally well have been written:

C#

end example

The pointer element access operator does not check for out-of-bounds errors and the
behavior when accessing an out-of-bounds element is undefined.

Note: This is the same as C and C++. end note

An addressof_expression consists of an ampersand (&) followed by a unary_expression.

ANTLR

Given an expression E which is of a type T and is classified as a fixed variable (§22.4),
the construct &E computes the address of the variable given by E . The type of the result
is T* and is classified as a value. A compile-time error occurs if E is not classified as a
variable, if E is classified as a read-only local variable, or if E denotes a moveable

 }
}

class Test
{
 static void Main()
 {
 unsafe
 {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++)
 {
 *(p + i) = (char)i;
 }
 }
 }
}

22.6.5 The address-of operator

addressof_expression
 : '&' unary_expression
 ;

variable. In the last case, a fixed statement (§22.7) can be used to temporarily “fix” the
variable before obtaining its address.

Note: As stated in §11.7.6, outside an instance constructor or static constructor for a
struct or class that defines a readonly field, that field is considered a value, not a
variable. As such, its address cannot be taken. Similarly, the address of a constant
cannot be taken.

The & operator does not require its argument to be definitely assigned, but following an
& operation, the variable to which the operator is applied is considered definitely
assigned in the execution path in which the operation occurs. It is the responsibility of
the programmer to ensure that correct initialization of the variable actually does take
place in this situation.

Example: In the following code

C#

i is considered definitely assigned following the &i operation used to initialize p .
The assignment to *p in effect initializes i , but the inclusion of this initialization is
the responsibility of the programmer, and no compile-time error would occur if the
assignment was removed.

end example

Note: The rules of definite assignment for the & operator exist such that redundant
initialization of local variables can be avoided. For example, many external APIs take
a pointer to a structure which is filled in by the API. Calls to such APIs typically pass
the address of a local struct variable, and without the rule, redundant initialization of
the struct variable would be required. end note

class Test
{
 static void Main()
 {
 int i;
 unsafe
 {
 int* p = &i;
 *p = 123;
 }
 Console.WriteLine(i);
 }
}

Note: When a local variable, value parameter, or parameter array is captured by an
anonymous function (§11.7.21), that local variable, parameter, or parameter array is
no longer considered to be a fixed variable (§22.7), but is instead considered to be a
moveable variable. Thus it is an error for any unsafe code to take the address of a
local variable, value parameter, or parameter array that has been captured by an
anonymous function. end note

In an unsafe context, the ++ and -- operators (§11.7.14 and §11.8.6) can be applied to
pointer variables of all types except void* . Thus, for every pointer type T* , the following
operators are implicitly defined:

C#

The operators produce the same results as x+1 and x-1 , respectively (§22.6.7). In other
words, for a pointer variable of type T* , the ++ operator adds sizeof(T) to the address
contained in the variable, and the -- operator subtracts sizeof(T) from the address
contained in the variable.

If a pointer increment or decrement operation overflows the domain of the pointer type,
the result is implementation-defined, but no exceptions are produced.

In an unsafe context, the + operator (§11.9.5) and – operator (§11.9.6) can be applied to
values of all pointer types except void* . Thus, for every pointer type T* , the following
operators are implicitly defined:

C#

22.6.6 Pointer increment and decrement

T* operator ++(T* x);
T* operator --(T* x);

22.6.7 Pointer arithmetic

T* operator +(T* x, int y);
T* operator +(T* x, uint y);
T* operator +(T* x, long y);
T* operator +(T* x, ulong y);
T* operator +(int x, T* y);
T* operator +(uint x, T* y);
T* operator +(long x, T* y);
T* operator +(ulong x, T* y);
T* operator –(T* x, int y);
T* operator –(T* x, uint y);

Given an expression P of a pointer type T* and an expression N of type int , uint ,
long , or ulong , the expressions P + N and N + P compute the pointer value of type T*
that results from adding N * sizeof(T) to the address given by P . Likewise, the
expression P – N computes the pointer value of type T* that results from subtracting N
* sizeof(T) from the address given by P .

Given two expressions, P and Q , of a pointer type T* , the expression P – Q computes
the difference between the addresses given by P and Q and then divides that difference
by sizeof(T) . The type of the result is always long . In effect, P - Q is computed as
((long)(P) - (long)(Q)) / sizeof(T) .

Example:

C#

which produces the output:

Console

end example

If a pointer arithmetic operation overflows the domain of the pointer type, the result is
truncated in an implementation-defined fashion, but no exceptions are produced.

T* operator –(T* x, long y);
T* operator –(T* x, ulong y);
long operator –(T* x, T* y);

class Test
{
 static void Main()
 {
 unsafe
 {
 int* values = stackalloc int[20];
 int* p = &values[1];
 int* q = &values[15];
 Console.WriteLine($"p - q = {p - q}");
 Console.WriteLine($"q - p = {q - p}");
 }
 }
}

p - q = -14
q - p = 14

In an unsafe context, the == , != , < , > , <= , and >= operators (§11.11) can be applied to
values of all pointer types. The pointer comparison operators are:

C#

Because an implicit conversion exists from any pointer type to the void* type, operands
of any pointer type can be compared using these operators. The comparison operators
compare the addresses given by the two operands as if they were unsigned integers.

For certain predefined types (§11.7.17), the sizeof operator yields a constant int value.
For all other types, the result of the sizeof operator is implementation-defined and is
classified as a value, not a constant.

The order in which members are packed into a struct is unspecified.

For alignment purposes, there may be unnamed padding at the beginning of a struct,
within a struct, and at the end of the struct. The contents of the bits used as padding are
indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes
in a variable of that type, including any padding.

In an unsafe context, the embedded_statement (§12.1) production permits an additional
construct, the fixed statement, which is used to “fix” a moveable variable such that its
address remains constant for the duration of the statement.

ANTLR

22.6.8 Pointer comparison

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);
bool operator <(void* x, void* y);
bool operator >(void* x, void* y);
bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);

22.6.9 The sizeof operator

22.7 The fixed statement

fixed_statement
 : 'fixed' '(' pointer_type fixed_pointer_declarators ')'
embedded_statement

Each fixed_pointer_declarator declares a local variable of the given pointer_type and
initializes that local variable with the address computed by the corresponding
fixed_pointer_initializer. A local variable declared in a fixed statement is accessible in any
fixed_pointer_initializers occurring to the right of that variable’s declaration, and in the
embedded_statement of the fixed statement. A local variable declared by a fixed
statement is considered read-only. A compile-time error occurs if the embedded
statement attempts to modify this local variable (via assignment or the ++ and --
operators) or pass it as a ref or out parameter.

It is an error to use a captured local variable (§11.17.6.2), value parameter, or parameter
array in a fixed_pointer_initializer. A fixed_pointer_initializer can be one of the following:

The token “& ” followed by a variable_reference (§9.5) to a moveable variable (§22.4)
of an unmanaged type T , provided the type T* is implicitly convertible to the
pointer type given in the fixed statement. In this case, the initializer computes the
address of the given variable, and the variable is guaranteed to remain at a fixed
address for the duration of the fixed statement.
An expression of an array_type with elements of an unmanaged type T , provided
the type T* is implicitly convertible to the pointer type given in the fixed
statement. In this case, the initializer computes the address of the first element in
the array, and the entire array is guaranteed to remain at a fixed address for the
duration of the fixed statement. If the array expression is null or if the array has
zero elements, the initializer computes an address equal to zero.
An expression of type string , provided the type char* is implicitly convertible to
the pointer type given in the fixed statement. In this case, the initializer computes
the address of the first character in the string, and the entire string is guaranteed
to remain at a fixed address for the duration of the fixed statement. The behavior
of the fixed statement is implementation-defined if the string expression is null .

 ;

fixed_pointer_declarators
 : fixed_pointer_declarator (',' fixed_pointer_declarator)*
 ;

fixed_pointer_declarator
 : identifier '=' fixed_pointer_initializer
 ;

fixed_pointer_initializer
 : '&' variable_reference
 | expression
 ;

A simple_name or member_access that references a fixed-size buffer member of a
moveable variable, provided the type of the fixed-size buffer member is implicitly
convertible to the pointer type given in the fixed statement. In this case, the
initializer computes a pointer to the first element of the fixed-size buffer (§22.8.3),
and the fixed-size buffer is guaranteed to remain at a fixed address for the
duration of the fixed statement.

For each address computed by a fixed_pointer_initializer the fixed statement ensures
that the variable referenced by the address is not subject to relocation or disposal by
the garbage collector for the duration of the fixed statement.

Example: If the address computed by a fixed_pointer_initializer references a field of
an object or an element of an array instance, the fixed statement guarantees that
the containing object instance is not relocated or disposed of during the lifetime of
the statement. end example

It is the programmer’s responsibility to ensure that pointers created by fixed statements
do not survive beyond execution of those statements.

Example: When pointers created by fixed statements are passed to external APIs, it
is the programmer’s responsibility to ensure that the APIs retain no memory of
these pointers. end example

Fixed objects can cause fragmentation of the heap (because they can’t be moved). For
that reason, objects should be fixed only when absolutely necessary and then only for
the shortest amount of time possible.

Example: The example

C#

class Test
{
 static int x;
 int y;

 unsafe static void F(int* p)
 {
 *p = 1;
 }

 static void Main()
 {
 Test t = new Test();
 int[] a = new int[10];

demonstrates several uses of the fixed statement. The first statement fixes and
obtains the address of a static field, the second statement fixes and obtains the
address of an instance field, and the third statement fixes and obtains the address of
an array element. In each case, it would have been an error to use the regular &
operator since the variables are all classified as moveable variables.

The third and fourth fixed statements in the example above produce identical
results. In general, for an array instance a , specifying a[0] in a fixed statement is
the same as simply specifying a .

end example

In an unsafe context, array elements of single-dimensional arrays are stored in
increasing index order, starting with index 0 and ending with index Length – 1 . For
multi-dimensional arrays, array elements are stored such that the indices of the
rightmost dimension are increased first, then the next left dimension, and so on to the
left.

Within a fixed statement that obtains a pointer p to an array instance a , the pointer
values ranging from p to p + a.Length - 1 represent addresses of the elements in the
array. Likewise, the variables ranging from p[0] to p[a.Length - 1] represent the actual
array elements. Given the way in which arrays are stored, we can treat an array of any
dimension as though it were linear.

Example:

C#

 unsafe
 {
 fixed (int* p = &x) F(p);
 fixed (int* p = &t.y) F(p);
 fixed (int* p = &a[0]) F(p);
 fixed (int* p = a) F(p);
 }
 }
}

class Test
{
 static void Main()
 {
 int[,,] a = new int[2,3,4];
 unsafe
 {
 fixed (int* p = a)

which produces the output:

Console

end example

Example: In the following code

C#

 {
 for (int i = 0; i < a.Length; ++i) // treat as linear
 {
 p[i] = i;
 }
 }
 }
 for (int i = 0; i < 2; ++i)
 {
 for (int j = 0; j < 3; ++j)
 {
 for (int k = 0; k < 4; ++k)
 {
 Console.Write($"[{i},{j},{k}] = {a[i,j,k],2} ");
 }
 Console.WriteLine();
 }
 }
 }
}

[0,0,0] = 0 [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3
[0,1,0] = 4 [0,1,1] = 5 [0,1,2] = 6 [0,1,3] = 7
[0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23

class Test
{
 unsafe static void Fill(int* p, int count, int value)
 {
 for (; count != 0; count--)
 {
 *p++ = value;
 }
 }

 static void Main()
 {
 int[] a = new int[100];

a fixed statement is used to fix an array so its address can be passed to a method
that takes a pointer.

end example

A char* value produced by fixing a string instance always points to a null-terminated
string. Within a fixed statement that obtains a pointer p to a string instance s , the
pointer values ranging from p to p + s.Length - 1 represent addresses of the
characters in the string, and the pointer value p + s.Length always points to a null
character (the character with value ‘\0’).

Example:

C#

end example

 unsafe
 {
 fixed (int* p = a) Fill(p, 100, -1);
 }
 }
}

class Test
{
 static string name = "xx";

 unsafe static void F(char* p)
 {
 for (int i = 0; p[i] != '\0'; ++i)
 {
 System.Console.WriteLine(p[i]);
 }
 }

 static void Main()
 {
 unsafe
 {
 fixed (char* p = name) F(p);
 fixed (char* p = "xx") F(p);
 }
 }
}

Modifying objects of managed type through fixed pointers can result in undefined
behavior.

Note: For example, because strings are immutable, it is the programmer’s
responsibility to ensure that the characters referenced by a pointer to a fixed string
are not modified. end note

Note: The automatic null-termination of strings is particularly convenient when
calling external APIs that expect “C-style” strings. Note, however, that a string
instance is permitted to contain null characters. If such null characters are present,
the string will appear truncated when treated as a null-terminated char* . end note

Fixed-size buffers are used to declare “C-style” in-line arrays as members of structs, and
are primarily useful for interfacing with unmanaged APIs.

A fixed-size buffer is a member that represents storage for a fixed-length buffer of
variables of a given type. A fixed-size buffer declaration introduces one or more fixed-
size buffers of a given element type.

Note: Like an array, a fixed-size buffer can be thought of as containing elements. As
such, the term element type as defined for an array is also used with a fixed-size
buffer. end note

Fixed-size buffers are only permitted in struct declarations and may only occur in unsafe
contexts (§22.2).

ANTLR

22.8 Fixed-size buffers

22.8.1 General

22.8.2 Fixed-size buffer declarations

fixed_size_buffer_declaration
 : attributes? fixed_size_buffer_modifier* 'fixed' buffer_element_type
 fixed_size_buffer_declarators ';'
 ;

fixed_size_buffer_modifier
 : 'new'
 | 'public'

A fixed-size buffer declaration may include a set of attributes (§21), a new modifier
(§14.3.5), accessibility modifiers corresponding to any of the declared accessibilities
permitted for struct members (§15.4.3) and an unsafe modifier (§22.2). The attributes
and modifiers apply to all of the members declared by the fixed-size buffer declaration.
It is an error for the same modifier to appear multiple times in a fixed-size buffer
declaration.

A fixed-size buffer declaration is not permitted to include the static modifier.

The buffer element type of a fixed-size buffer declaration specifies the element type of
the buffer(s) introduced by the declaration. The buffer element type shall be one of the
predefined types sbyte , byte , short , ushort , int , uint , long , ulong , char , float ,
double , or bool .

The buffer element type is followed by a list of fixed-size buffer declarators, each of
which introduces a new member. A fixed-size buffer declarator consists of an identifier
that names the member, followed by a constant expression enclosed in [and] tokens.
The constant expression denotes the number of elements in the member introduced by
that fixed-size buffer declarator. The type of the constant expression shall be implicitly
convertible to type int , and the value shall be a non-zero positive integer.

The elements of a fixed-size buffer shall be laid out sequentially in memory.

A fixed-size buffer declaration that declares multiple fixed-size buffers is equivalent to
multiple declarations of a single fixed-size buffer declaration with the same attributes,
and element types.

Example:

 | 'internal'
 | 'private'
 | 'unsafe'
 ;

buffer_element_type
 : type
 ;

fixed_size_buffer_declarators
 : fixed_size_buffer_declarator (',' fixed_size_buffer_declarator)*
 ;

fixed_size_buffer_declarator
 : identifier '[' constant_expression ']'
 ;

C#

is equivalent to

C#

end example

Member lookup (§11.5) of a fixed-size buffer member proceeds exactly like member
lookup of a field.

A fixed-size buffer can be referenced in an expression using a simple_name (§11.6.3) or a
member_access (§11.6.5).

When a fixed-size buffer member is referenced as a simple name, the effect is the same
as a member access of the form this.I , where I is the fixed-size buffer member.

In a member access of the form E.I , if E is of a struct type and a member lookup of I
in that struct type identifies a fixed-size member, then E.I is evaluated an classified as
follows:

If the expression E.I does not occur in an unsafe context, a compile-time error
occurs.
If E is classified as a value, a compile-time error occurs.
Otherwise, if E is a moveable variable (§22.4) and the expression E.I is not a
fixed_pointer_initializer (§22.7), a compile-time error occurs.
Otherwise, E references a fixed variable and the result of the expression is a
pointer to the first element of the fixed-size buffer member I in E . The result is of
type S* , where S is the element type of I , and is classified as a value.

unsafe struct A
{
 public fixed int x[5], y[10], z[100];
}

unsafe struct A
{
 public fixed int x[5];
 public fixed int y[10];
 public fixed int z[100];
}

22.8.3 Fixed-size buffers in expressions

The subsequent elements of the fixed-size buffer can be accessed using pointer
operations from the first element. Unlike access to arrays, access to the elements of a
fixed-size buffer is an unsafe operation and is not range checked.

Example: The following declares and uses a struct with a fixed-size buffer member.

C#

end example

Fixed-size buffers are not subject to definite assignment-checking (§9.4), and fixed-size
buffer members are ignored for purposes of definite-assignment checking of struct type
variables.

unsafe struct Font
{
 public int size;
 public fixed char name[32];
}

class Test
{
 unsafe static void PutString(string s, char* buffer, int bufSize)
 {
 int len = s.Length;
 if (len > bufSize)
 {
 len = bufSize;
 }
 for (int i = 0; i < len; i++)
 {
 buffer[i] = s[i];
 }
 for (int i = len; i < bufSize; i++)
 {
 buffer[i] = (char)0;
 }
 }

 unsafe static void Main()
 {
 Font f;
 f.size = 10;
 PutString("Times New Roman", f.name, 32);
 }
}

22.8.4 Definite assignment checking

When the outermost containing struct variable of a fixed-size buffer member is a static
variable, an instance variable of a class instance, or an array element, the elements of the
fixed-size buffer are automatically initialized to their default values (§9.3). In all other
cases, the initial content of a fixed-size buffer is undefined.

In an unsafe context, a local variable declaration (§12.6.2) may include a stack allocation
initializer, which allocates memory from the call stack.

ANTLR

The unmanaged_type (§8.8) indicates the type of the items that will be stored in the
newly allocated location, and the expression indicates the number of these items. Taken
together, these specify the required allocation size. Since the size of a stack allocation
cannot be negative, it is a compile-time error to specify the number of items as a
constant_expression that evaluates to a negative value.

A stack allocation initializer of the form stackalloc T[E] requires T to be an unmanaged
type (§22.3) and E to be an expression implicitly convertible to type int . The construct
allocates E * sizeof(T) bytes from the call stack and returns a pointer, of type T* , to
the newly allocated block. If E is a negative value, then the behavior is undefined. If E is
zero, then no allocation is made, and the pointer returned is implementation-defined. If
there is not enough memory available to allocate a block of the given size, a
System.StackOverflowException is thrown.

The content of the newly allocated memory is undefined.

Stack allocation initializers are not permitted in catch or finally blocks (§12.11).

Note: There is no way to explicitly free memory allocated using stackalloc. end note

All stack-allocated memory blocks created during the execution of a function member
are automatically discarded when that function member returns.

Note: This corresponds to the alloca function, an extension commonly found in C
and C++ implementations. end note

22.9 Stack allocation

stackalloc_initializer
 : 'stackalloc' unmanaged_type '[' expression ']'
 ;

Example: In the following code

C#

a stackalloc initializer is used in the IntToString method to allocate a buffer of 16
characters on the stack. The buffer is automatically discarded when the method
returns.

end example

Except for the stackalloc operator, C# provides no predefined constructs for managing
non-garbage collected memory. Such services are typically provided by supporting class
libraries or imported directly from the underlying operating system.

End of conditionally normative text.

class Test
{
 static string IntToString(int value)
 {
 if (value == int.MinValue)
 {
 return "-2147483648";
 }
 int n = value >= 0 ? value : -value;
 unsafe
 {
 char* buffer = stackalloc char[16];
 char* p = buffer + 16;
 do
 {
 *--p = (char)(n % 10 + '0');
 n /= 10;
 } while (n != 0);
 if (value < 0)
 {
 *--p = '-';
 }
 return new string(p, 0, (int)(buffer + 16 - p));
 }
 }

 static void Main()
 {
 Console.WriteLine(IntToString(12345));
 Console.WriteLine(IntToString(-999));
 }
}

Annex A Grammar
Article • 2022-12-01 • 23 minutes to read

This clause is informative.

This annex contains the grammar productions found in the specification, including the
optional ones for unsafe code. Productions appear here in the same order in which they
appear in the specification.

ANTLR

A.1 General

A.2 Lexical grammar

// Source: §6.3.1 General
DEFAULT : 'default' ;
NULL : 'null' ;
TRUE : 'true' ;
FALSE : 'false' ;
ASTERISK : '*' ;
SLASH : '/' ;

// Source: §6.3.1 General
input
 : input_section?
 ;

input_section
 : input_section_part+
 ;

input_section_part
 : input_element* New_Line
 | PP_Directive
 ;

input_element
 : Whitespace
 | Comment
 | token
 ;

// Source: §6.3.2 Line terminators
New_Line
 : New_Line_Character

 | '\u000D\u000A' // carriage return, line feed
 ;

// Source: §6.3.3 Comments
Comment
 : Single_Line_Comment
 | Delimited_Comment
 ;

fragment Single_Line_Comment
 : '//' Input_Character*
 ;

fragment Input_Character
 // anything but New_Line_Character
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029')
 ;

fragment New_Line_Character
 : '\u000D' // carriage return
 | '\u000A' // line feed
 | '\u0085' // next line
 | '\u2028' // line separator
 | '\u2029' // paragraph separator
 ;

fragment Delimited_Comment
 : '/*' Delimited_Comment_Section* ASTERISK+ '/'
 ;

fragment Delimited_Comment_Section
 : SLASH
 | ASTERISK* Not_Slash_Or_Asterisk
 ;

fragment Not_Slash_Or_Asterisk
 : ~('/' | '*') // Any except SLASH or ASTERISK
 ;

// Source: §6.3.4 White space
Whitespace
 : [\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
 ;

// Source: §6.4.1 General
token
 : identifier
 | keyword
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal

 | operator_or_punctuator
 ;

// Source: §6.4.2 Unicode character escape sequences
fragment Unicode_Escape_Sequence
 : '\\u' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 | '\\U' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 ;

// Source: §6.4.3 Identifiers
identifier
 : Simple_Identifier
 | contextual_keyword
 ;

Simple_Identifier
 : Available_Identifier
 | Escaped_Identifier
 ;

fragment Available_Identifier
 // excluding keywords or contextual keywords, see note below
 : Basic_Identifier
 ;

fragment Escaped_Identifier
 // Includes keywords and contextual keywords prefixed by '@'.
 // See note below.
 : '@' Basic_Identifier
 ;

fragment Basic_Identifier
 : Identifier_Start_Character Identifier_Part_Character*
 ;

fragment Identifier_Start_Character
 : Letter_Character
 | Underscore_Character
 ;

fragment Underscore_Character
 : '_' // underscore
 | '\\u005' [fF] // Unicode_Escape_Sequence for underscore
 ;

fragment Identifier_Part_Character
 : Letter_Character
 | Decimal_Digit_Character
 | Connecting_Character
 | Combining_Character
 | Formatting_Character
 ;

fragment Letter_Character

 // Category Letter, all subcategories; category Number, subcategory
letter.
 : [\p{L}\p{Nl}]
 // Only escapes for categories L & Nl allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Combining_Character
 // Category Mark, subcategories non-spacing and spacing combining.
 : [\p{Mn}\p{Mc}]
 // Only escapes for categories Mn & Mc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Decimal_Digit_Character
 // Category Number, subcategory decimal digit.
 : [\p{Nd}]
 // Only escapes for category Nd allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Connecting_Character
 // Category Punctuation, subcategory connector.
 : [\p{Pc}]
 // Only escapes for category Pc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Formatting_Character
 // Category Other, subcategory format.
 : [\p{Cf}]
 // Only escapes for category Cf allowed, see note below.
 | Unicode_Escape_Sequence
 ;

// Source: §6.4.4 Keywords
keyword
 : 'abstract' | 'as' | 'base' | 'bool' | 'break'
 | 'byte' | 'case' | 'catch' | 'char' | 'checked'
 | 'class' | 'const' | 'continue' | 'decimal' | DEFAULT
 | 'delegate' | 'do' | 'double' | 'else' | 'enum'
 | 'event' | 'explicit' | 'extern' | FALSE | 'finally'
 | 'fixed' | 'float' | 'for' | 'foreach' | 'goto'
 | 'if' | 'implicit' | 'in' | 'int' | 'interface'
 | 'internal' | 'is' | 'lock' | 'long' | 'namespace'
 | 'new' | NULL | 'object' | 'operator' | 'out'
 | 'override' | 'params' | 'private' | 'protected' | 'public'
 | 'readonly' | 'ref' | 'return' | 'sbyte' | 'sealed'
 | 'short' | 'sizeof' | 'stackalloc' | 'static' | 'string'
 | 'struct' | 'switch' | 'this' | 'throw' | TRUE
 | 'try' | 'typeof' | 'uint' | 'ulong' | 'unchecked'
 | 'unsafe' | 'ushort' | 'using' | 'virtual' | 'void'
 | 'volatile' | 'while'
 ;

// Source: §6.4.4 Keywords
contextual_keyword
 : 'add' | 'alias' | 'ascending' | 'async' | 'await'
 | 'by' | 'descending' | 'dynamic' | 'equals' | 'from'
 | 'get' | 'global' | 'group' | 'into' | 'join'
 | 'let' | 'nameof' | 'on' | 'orderby' | 'partial'
 | 'remove' | 'select' | 'set' | 'value' | 'var'
 | 'when' | 'where' | 'yield'
 ;

// Source: §6.4.5.1 General
literal
 : boolean_literal
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal
 | null_literal
 ;

// Source: §6.4.5.2 Boolean literals
boolean_literal
 : TRUE
 | FALSE
 ;

// Source: §6.4.5.3 Integer literals
Integer_Literal
 : Decimal_Integer_Literal
 | Hexadecimal_Integer_Literal
 | Binary_Integer_Literal
 ;

fragment Decimal_Integer_Literal
 : Decimal_Digit Decorated_Decimal_Digit* Integer_Type_Suffix?
 ;

fragment Decorated_Decimal_Digit
 : '_'* Decimal_Digit
 ;

fragment Decimal_Digit
 : '0'..'9'
 ;

fragment Integer_Type_Suffix
 : 'U' | 'u' | 'L' | 'l' |
 'UL' | 'Ul' | 'uL' | 'ul' | 'LU' | 'Lu' | 'lU' | 'lu'
 ;

fragment Hexadecimal_Integer_Literal
 : ('0x' | '0X') Decorated_Hex_Digit+ Integer_Type_Suffix?
 ;

fragment Decorated_Hex_Digit

 : '_'* Hex_Digit
 ;

fragment Hex_Digit
 : '0'..'9' | 'A'..'F' | 'a'..'f'
 ;

fragment Binary_Integer_Literal
 : ('0b' | '0B') Decorated_Binary_Digit+ Integer_Type_Suffix?
 ;

fragment Decorated_Binary_Digit
 : '_'* Binary_Digit
 ;

fragment Binary_Digit
 : '0' | '1'
 ;

// Source: §6.4.5.4 Real literals
Real_Literal
 : Decimal_Digit Decorated_Decimal_Digit* '.'
 Decimal_Digit Decorated_Decimal_Digit* Exponent_Part?
Real_Type_Suffix?
 | '.' Decimal_Digit Decorated_Decimal_Digit* Exponent_Part?
Real_Type_Suffix?
 | Decimal_Digit Decorated_Decimal_Digit* Exponent_Part Real_Type_Suffix?
 | Decimal_Digit Decorated_Decimal_Digit* Real_Type_Suffix
 ;

fragment Exponent_Part
 : ('e' | 'E') Sign? Decimal_Digit Decorated_Decimal_Digit*
 ;

fragment Sign
 : '+' | '-'
 ;

fragment Real_Type_Suffix
 : 'F' | 'f' | 'D' | 'd' | 'M' | 'm'
 ;

// Source: §6.4.5.5 Character literals
Character_Literal
 : '\'' Character '\''
 ;

fragment Character
 : Single_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Character

 // anything but ', \, and New_Line_Character
 : ~['\\\u000D\u000A\u0085\u2028\u2029]
 ;

fragment Simple_Escape_Sequence
 : '\\\'' | '\\"' | '\\\\' | '\\0' | '\\a' | '\\b' |
 '\\f' | '\\n' | '\\r' | '\\t' | '\\v'
 ;

fragment Hexadecimal_Escape_Sequence
 : '\\x' Hex_Digit Hex_Digit? Hex_Digit? Hex_Digit?
 ;

// Source: §6.4.5.6 String literals
String_Literal
 : Regular_String_Literal
 | Verbatim_String_Literal
 ;

fragment Regular_String_Literal
 : '"' Regular_String_Literal_Character* '"'
 ;

fragment Regular_String_Literal_Character
 : Single_Regular_String_Literal_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Regular_String_Literal_Character
 // anything but ", \, and New_Line_Character
 : ~["\\\u000D\u000A\u0085\u2028\u2029]
 ;

fragment Verbatim_String_Literal
 : '@"' Verbatim_String_Literal_Character* '"'
 ;

fragment Verbatim_String_Literal_Character
 : Single_Verbatim_String_Literal_Character
 | Quote_Escape_Sequence
 ;

fragment Single_Verbatim_String_Literal_Character
 : ~["] // anything but quotation mark (U+0022)
 ;

fragment Quote_Escape_Sequence
 : '""'
 ;

// Source: §6.4.5.7 The null literal
null_literal
 : NULL

 ;

// Source: §6.4.6 Operators and punctuators
operator_or_punctuator
 : '{' | '}' | '[' | ']' | '(' | ')' | '.' | ',' | ':' | ';'
 | '+' | '-' | ASTERISK | SLASH | '%' | '&' | '|' | '^' | '!' |
'~'
 | '=' | '<' | '>' | '?' | '??' | '::' | '++' | '--' | '&&' | '||'
 | '->' | '==' | '!=' | '<=' | '>=' | '+=' | '-=' | '*=' | '/=' | '%='
 | '&=' | '|=' | '^=' | '<<' | '<<=' | '=>'
 ;

right_shift
 : '>' '>'
 ;

right_shift_assignment
 : '>' '>='
 ;

// Source: §6.5.1 General
PP_Directive
 : PP_Start PP_Kind PP_New_Line
 ;

fragment PP_Kind
 : PP_Declaration
 | PP_Conditional
 | PP_Line
 | PP_Diagnostic
 | PP_Region
 | PP_Pragma
 ;

// Only recognised at the beginning of a line
fragment PP_Start
 // See note below.
 : { getCharPositionInLine() == 0 }? PP_Whitespace? '#' PP_Whitespace?
 ;

fragment PP_Whitespace
 : ([\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
)+
 ;

fragment PP_New_Line
 : PP_Whitespace? Single_Line_Comment? New_Line
 ;

// Source: §6.5.2 Conditional compilation symbols
fragment PP_Conditional_Symbol
 // Must not be equal to tokens TRUE or FALSE. See note below.

 : Basic_Identifier
 ;

// Source: §6.5.3 Pre-processing expressions
fragment PP_Expression
 : PP_Whitespace? PP_Or_Expression PP_Whitespace?
 ;

fragment PP_Or_Expression
 : PP_And_Expression (PP_Whitespace? '||' PP_Whitespace?
PP_And_Expression)*
 ;

fragment PP_And_Expression
 : PP_Equality_Expression (PP_Whitespace? '&&' PP_Whitespace?
 PP_Equality_Expression)*
 ;

fragment PP_Equality_Expression
 : PP_Unary_Expression (PP_Whitespace? ('==' | '!=') PP_Whitespace?
 PP_Unary_Expression)*
 ;

fragment PP_Unary_Expression
 : PP_Primary_Expression
 | '!' PP_Whitespace? PP_Unary_Expression
 ;

fragment PP_Primary_Expression
 : TRUE
 | FALSE
 | PP_Conditional_Symbol
 | '(' PP_Whitespace? PP_Expression PP_Whitespace? ')'
 ;

// Source: §6.5.4 Definition directives
fragment PP_Declaration
 : 'define' PP_Whitespace PP_Conditional_Symbol
 | 'undef' PP_Whitespace PP_Conditional_Symbol
 ;

// Source: §6.5.5 Conditional compilation directives
fragment PP_Conditional
 : PP_If_Section
 | PP_Elif_Section
 | PP_Else_Section
 | PP_Endif
 ;

fragment PP_If_Section
 : 'if' PP_Whitespace PP_Expression
 ;

fragment PP_Elif_Section
 : 'elif' PP_Whitespace PP_Expression

 ;

fragment PP_Else_Section
 : 'else'
 ;

fragment PP_Endif
 : 'endif'
 ;

// Source: §6.5.6 Diagnostic directives
fragment PP_Diagnostic
 : 'error' PP_Message?
 | 'warning' PP_Message?
 ;

fragment PP_Message
 : PP_Whitespace Input_Character*
 ;

// Source: §6.5.7 Region directives
fragment PP_Region
 : PP_Start_Region
 | PP_End_Region
 ;

fragment PP_Start_Region
 : 'region' PP_Message?
 ;

fragment PP_End_Region
 : 'endregion' PP_Message?
 ;

// Source: §6.5.8 Line directives
fragment PP_Line
 : 'line' PP_Whitespace PP_Line_Indicator
 ;

fragment PP_Line_Indicator
 : Decimal_Digit+ PP_Whitespace PP_Compilation_Unit_Name
 | Decimal_Digit+
 | DEFAULT
 | 'hidden'
 ;

fragment PP_Compilation_Unit_Name
 : '"' PP_Compilation_Unit_Name_Character+ '"'
 ;

fragment PP_Compilation_Unit_Name_Character
 // Any Input_Character except "
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029' | '#')
 ;

ANTLR

// Source: §6.5.9 Pragma directives
fragment PP_Pragma
 : 'pragma' PP_Pragma_Text?
 ;

fragment PP_Pragma_Text
 : PP_Whitespace Input_Character*
 ;

A.3 Syntactic grammar

// Source: §7.8.1 General
namespace_name
 : namespace_or_type_name
 ;

type_name
 : namespace_or_type_name
 ;

namespace_or_type_name
 : identifier type_argument_list?
 | namespace_or_type_name '.' identifier type_argument_list?
 | qualified_alias_member
 ;

// Source: §8.1 General
type
 : reference_type
 | value_type
 | type_parameter
 | pointer_type // unsafe code support
 ;

// Source: §8.2.1 General
reference_type
 : class_type
 | interface_type
 | array_type
 | delegate_type
 | 'dynamic'
 ;

class_type
 : type_name
 | 'object'
 | 'string'
 ;

interface_type
 : type_name
 ;

array_type
 : non_array_type rank_specifier+
 ;

non_array_type
 : value_type
 | class_type
 | interface_type
 | delegate_type
 | 'dynamic'
 | type_parameter
 | pointer_type // unsafe code support
 ;

rank_specifier
 : '[' ','* ']'
 ;

delegate_type
 : type_name
 ;

// Source: §8.3.1 General
value_type
 : non_nullable_value_type
 | nullable_value_type
 ;

non_nullable_value_type
 : struct_type
 | enum_type
 ;

struct_type
 : type_name
 | simple_type
 ;

simple_type
 : numeric_type
 | 'bool'
 ;

numeric_type
 : integral_type
 | floating_point_type
 | 'decimal'
 ;

integral_type
 : 'sbyte'

 | 'byte'
 | 'short'
 | 'ushort'
 | 'int'
 | 'uint'
 | 'long'
 | 'ulong'
 | 'char'
 ;

floating_point_type
 : 'float'
 | 'double'
 ;

enum_type
 : type_name
 ;

nullable_value_type
 : non_nullable_value_type '?'
 ;

// Source: §8.4.2 Type arguments
type_argument_list
 : '<' type_arguments '>'
 ;

type_arguments
 : type_argument (',' type_argument)*
 ;

type_argument
 : type
 ;

// Source: §8.5 Type parameters
type_parameter
 : identifier
 ;

// Source: §8.8 Unmanaged types
unmanaged_type
 : value_type
 | pointer_type // unsafe code support
 ;

// Source: §9.5 Variable references
variable_reference
 : expression
 ;

// Source: §11.6.2.1 General
argument_list
 : argument (',' argument)*

 ;

argument
 : argument_name? argument_value
 ;

argument_name
 : identifier ':'
 ;

argument_value
 : expression
 | 'ref' variable_reference
 | 'out' variable_reference
 ;

// Source: §11.7.1 General
primary_expression
 : primary_no_array_creation_expression
 | array_creation_expression
 ;

primary_no_array_creation_expression
 : literal
 | interpolated_string_expression
 | simple_name
 | parenthesized_expression
 | member_access
 | null_conditional_member_access
 | invocation_expression
 | element_access
 | null_conditional_element_access
 | this_access
 | base_access
 | post_increment_expression
 | post_decrement_expression
 | object_creation_expression
 | delegate_creation_expression
 | anonymous_object_creation_expression
 | typeof_expression
 | sizeof_expression
 | checked_expression
 | unchecked_expression
 | default_value_expression
 | nameof_expression
 | anonymous_method_expression
 | pointer_member_access // unsafe code support
 | pointer_element_access // unsafe code support
 ;

// Source: §11.7.3 Interpolated string expressions
interpolated_string_expression
 : interpolated_regular_string_expression
 | interpolated_verbatim_string_expression
 ;

// interpolated regular string expressions

interpolated_regular_string_expression
 : Interpolated_Regular_String_Start Interpolated_Regular_String_Mid?
 ('{' regular_interpolation '}' Interpolated_Regular_String_Mid?)*
 Interpolated_Regular_String_End
 ;

regular_interpolation
 : expression (',' interpolation_minimum_width)?
 Regular_Interpolation_Format?
 ;

interpolation_minimum_width
 : constant_expression
 ;

Interpolated_Regular_String_Start
 : '$"'
 ;

// the following three lexical rules are context sensitive, see details
below

Interpolated_Regular_String_Mid
 : Interpolated_Regular_String_Element+
 ;

Regular_Interpolation_Format
 : ':' Interpolated_Regular_String_Element+
 ;

Interpolated_Regular_String_End
 : '"'
 ;

fragment Interpolated_Regular_String_Element
 : Interpolated_Regular_String_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Regular_String_Character
 // Any character except " (U+0022), \\ (U+005C),
 // { (U+007B), } (U+007D), and New_Line_Character.
 : ~["\\{}\u000D\u000A\u0085\u2028\u2029]
 ;

// interpolated verbatim string expressions

interpolated_verbatim_string_expression

 : Interpolated_Verbatim_String_Start Interpolated_Verbatim_String_Mid?
 ('{' verbatim_interpolation '}' Interpolated_Verbatim_String_Mid?)*
 Interpolated_Verbatim_String_End
 ;

verbatim_interpolation
 : expression (',' interpolation_minimum_width)?
 Verbatim_Interpolation_Format?
 ;

Interpolated_Verbatim_String_Start
 : '$@"'
 ;

// the following three lexical rules are context sensitive, see details
below

Interpolated_Verbatim_String_Mid
 : Interpolated_Verbatim_String_Element+
 ;

Verbatim_Interpolation_Format
 : ':' Interpolated_Verbatim_String_Element+
 ;

Interpolated_Verbatim_String_End
 : '"'
 ;

fragment Interpolated_Verbatim_String_Element
 : Interpolated_Verbatim_String_Character
 | Quote_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Verbatim_String_Character
 : ~["{}] // Any character except " (U+0022), { (U+007B) and }
(U+007D)
 ;

// lexical fragments used by both regular and verbatim interpolated strings

fragment Open_Brace_Escape_Sequence
 : '{{'
 ;

fragment Close_Brace_Escape_Sequence
 : '}}'
 ;

// Source: §11.7.4 Simple names
simple_name
 : identifier type_argument_list?
 ;

// Source: §11.7.5 Parenthesized expressions
parenthesized_expression
 : '(' expression ')'
 ;

// Source: §11.7.6.1 General
member_access
 : primary_expression '.' identifier type_argument_list?
 | predefined_type '.' identifier type_argument_list?
 | qualified_alias_member '.' identifier type_argument_list?
 ;

predefined_type
 : 'bool' | 'byte' | 'char' | 'decimal' | 'double' | 'float' | 'int'
 | 'long' | 'object' | 'sbyte' | 'short' | 'string' | 'uint' | 'ulong'
 | 'ushort'
 ;

// Source: §11.7.7 Null Conditional Member Access
null_conditional_member_access
 : primary_expression '?' '.' identifier type_argument_list?
 dependent_access*
 ;

dependent_access
 : '.' identifier type_argument_list? // member access
 | '[' argument_list ']' // element access
 | '(' argument_list? ')' // invocation
 ;

null_conditional_projection_initializer
 : primary_expression '?' '.' identifier type_argument_list?
 ;

// Source: §11.7.8.1 General
invocation_expression
 : primary_expression '(' argument_list? ')'
 ;

// Source: §11.7.9 Null Conditional Invocation Expression
null_conditional_invocation_expression
 : null_conditional_member_access '(' argument_list? ')'
 | null_conditional_element_access '(' argument_list? ')'
 ;

// Source: §11.7.10.1 General
element_access
 : primary_no_array_creation_expression '[' argument_list ']'
 ;

// Source: §11.7.11 Null Conditional Element Access
null_conditional_element_access
 : primary_no_array_creation_expression '?' '[' argument_list ']'
 dependent_access*

 ;

// Source: §11.7.12 This access
this_access
 : 'this'
 ;

// Source: §11.7.13 Base access
base_access
 : 'base' '.' identifier type_argument_list?
 | 'base' '[' argument_list ']'
 ;

// Source: §11.7.14 Postfix increment and decrement operators
post_increment_expression
 : primary_expression '++'
 ;

post_decrement_expression
 : primary_expression '--'
 ;

// Source: §11.7.15.2 Object creation expressions
object_creation_expression
 : 'new' type '(' argument_list? ')' object_or_collection_initializer?
 | 'new' type object_or_collection_initializer
 ;

object_or_collection_initializer
 : object_initializer
 | collection_initializer
 ;

// Source: §11.7.15.3 Object initializers
object_initializer
 : '{' member_initializer_list? '}'
 | '{' member_initializer_list ',' '}'
 ;

member_initializer_list
 : member_initializer (',' member_initializer)*
 ;

member_initializer
 : initializer_target '=' initializer_value
 ;

initializer_target
 : identifier
 | '[' argument_list ']'
 ;

initializer_value
 : expression
 | object_or_collection_initializer

 ;

// Source: §11.7.15.4 Collection initializers
collection_initializer
 : '{' element_initializer_list '}'
 | '{' element_initializer_list ',' '}'
 ;

element_initializer_list
 : element_initializer (',' element_initializer)*
 ;

element_initializer
 : non_assignment_expression
 | '{' expression_list '}'
 ;

expression_list
 : expression
 | expression_list ',' expression
 ;

// Source: §11.7.15.5 Array creation expressions
array_creation_expression
 : 'new' non_array_type '[' expression_list ']' rank_specifier*
 array_initializer?
 | 'new' array_type array_initializer
 | 'new' rank_specifier array_initializer
 ;

// Source: §11.7.15.6 Delegate creation expressions
delegate_creation_expression
 : 'new' delegate_type '(' expression ')'
 ;

// Source: §11.7.15.7 Anonymous object creation expressions
anonymous_object_creation_expression
 : 'new' anonymous_object_initializer
 ;

anonymous_object_initializer
 : '{' member_declarator_list? '}'
 | '{' member_declarator_list ',' '}'
 ;

member_declarator_list
 : member_declarator (',' member_declarator)*
 ;

member_declarator
 : simple_name
 | member_access
 | null_conditional_projection_initializer
 | base_access
 | identifier '=' expression

 ;

// Source: §11.7.16 The typeof operator
typeof_expression
 : 'typeof' '(' type ')'
 | 'typeof' '(' unbound_type_name ')'
 | 'typeof' '(' 'void' ')'
 ;

unbound_type_name
 : identifier generic_dimension_specifier?
 | identifier '::' identifier generic_dimension_specifier?
 | unbound_type_name '.' identifier generic_dimension_specifier?
 ;

generic_dimension_specifier
 : '<' comma* '>'
 ;

comma
 : ','
 ;

// Source: §11.7.17 The sizeof operator
sizeof_expression
 : 'sizeof' '(' unmanaged_type ')'
 ;

// Source: §11.7.18 The checked and unchecked operators
checked_expression
 : 'checked' '(' expression ')'
 ;

unchecked_expression
 : 'unchecked' '(' expression ')'
 ;

// Source: §11.7.19 Default value expressions
default_value_expression
 : explictly_typed_default
 | default_literal
 ;

explictly_typed_default
 : 'default' '(' type ')'
 ;

default_literal
 : 'default'
 ;

// Source: §11.7.20 Nameof expressions
nameof_expression
 : 'nameof' '(' named_entity ')'

 ;

named_entity
 : named_entity_target ('.' identifier type_argument_list?)*
 ;

named_entity_target
 : simple_name
 | 'this'
 | 'base'
 | predefined_type
 | qualified_alias_member
 ;

// Source: §11.8.1 General
unary_expression
 : primary_expression
 | '+' unary_expression
 | '-' unary_expression
 | '!' unary_expression
 | '~' unary_expression
 | pre_increment_expression
 | pre_decrement_expression
 | cast_expression
 | await_expression
 | pointer_indirection_expression // unsafe code support
 | addressof_expression // unsafe code support
 ;

// Source: §11.8.6 Prefix increment and decrement operators
pre_increment_expression
 : '++' unary_expression
 ;

pre_decrement_expression
 : '--' unary_expression
 ;

// Source: §11.8.7 Cast expressions
cast_expression
 : '(' type ')' unary_expression
 ;

// Source: §11.8.8.1 General
await_expression
 : 'await' unary_expression
 ;

// Source: §11.9.1 General
multiplicative_expression
 : unary_expression
 | multiplicative_expression '*' unary_expression
 | multiplicative_expression '/' unary_expression
 | multiplicative_expression '%' unary_expression
 ;

additive_expression
 : multiplicative_expression
 | additive_expression '+' multiplicative_expression
 | additive_expression '-' multiplicative_expression
 ;

// Source: §11.10 Shift operators
shift_expression
 : additive_expression
 | shift_expression '<<' additive_expression
 | shift_expression right_shift additive_expression
 ;

// Source: §11.11.1 General
relational_expression
 : shift_expression
 | relational_expression '<' shift_expression
 | relational_expression '>' shift_expression
 | relational_expression '<=' shift_expression
 | relational_expression '>=' shift_expression
 | relational_expression 'is' type
 | relational_expression 'as' type
 ;

equality_expression
 : relational_expression
 | equality_expression '==' relational_expression
 | equality_expression '!=' relational_expression
 ;

// Source: §11.12.1 General
and_expression
 : equality_expression
 | and_expression '&' equality_expression
 ;

exclusive_or_expression
 : and_expression
 | exclusive_or_expression '^' and_expression
 ;

inclusive_or_expression
 : exclusive_or_expression
 | inclusive_or_expression '|' exclusive_or_expression
 ;

// Source: §11.13.1 General
conditional_and_expression
 : inclusive_or_expression
 | conditional_and_expression '&&' inclusive_or_expression
 ;

conditional_or_expression
 : conditional_and_expression

 | conditional_or_expression '||' conditional_and_expression
 ;

// Source: §11.14 The null coalescing operator
null_coalescing_expression
 : conditional_or_expression
 | conditional_or_expression '??' null_coalescing_expression
 | throw_expression
 ;

// Source: §11.15 The throw expression operator
throw_expression
 : 'throw' null_coalescing_expression
 ;

// Source: §11.16 Conditional operator
conditional_expression
 : null_coalescing_expression
 | null_coalescing_expression '?' expression ':' expression
 ;

// Source: §11.17.1 General
lambda_expression
 : 'async'? anonymous_function_signature '=>' anonymous_function_body
 ;

anonymous_method_expression
 : 'async'? 'delegate' explicit_anonymous_function_signature? block
 ;

anonymous_function_signature
 : explicit_anonymous_function_signature
 | implicit_anonymous_function_signature
 ;

explicit_anonymous_function_signature
 : '(' explicit_anonymous_function_parameter_list? ')'
 ;

explicit_anonymous_function_parameter_list
 : explicit_anonymous_function_parameter
 (',' explicit_anonymous_function_parameter)*
 ;

explicit_anonymous_function_parameter
 : anonymous_function_parameter_modifier? type identifier
 ;

anonymous_function_parameter_modifier
 : 'ref'
 | 'out'
 ;

implicit_anonymous_function_signature
 : '(' implicit_anonymous_function_parameter_list? ')'

 | implicit_anonymous_function_parameter
 ;

implicit_anonymous_function_parameter_list
 : implicit_anonymous_function_parameter
 (',' implicit_anonymous_function_parameter)*
 ;

implicit_anonymous_function_parameter
 : identifier
 ;

anonymous_function_body
 : null_conditional_invocation_expression
 | expression
 | block
 ;

// Source: §11.18.1 General
query_expression
 : from_clause query_body
 ;

from_clause
 : 'from' type? identifier 'in' expression
 ;

query_body
 : query_body_clauses? select_or_group_clause query_continuation?
 ;

query_body_clauses
 : query_body_clause
 | query_body_clauses query_body_clause
 ;

query_body_clause
 : from_clause
 | let_clause
 | where_clause
 | join_clause
 | join_into_clause
 | orderby_clause
 ;

let_clause
 : 'let' identifier '=' expression
 ;

where_clause
 : 'where' boolean_expression
 ;

join_clause
 : 'join' type? identifier 'in' expression 'on' expression

 'equals' expression
 ;

join_into_clause
 : 'join' type? identifier 'in' expression 'on' expression
 'equals' expression 'into' identifier
 ;

orderby_clause
 : 'orderby' orderings
 ;

orderings
 : ordering (',' ordering)*
 ;

ordering
 : expression ordering_direction?
 ;

ordering_direction
 : 'ascending'
 | 'descending'
 ;

select_or_group_clause
 : select_clause
 | group_clause
 ;

select_clause
 : 'select' expression
 ;

group_clause
 : 'group' expression 'by' expression
 ;

query_continuation
 : 'into' identifier query_body
 ;

// Source: §11.19.1 General
assignment
 : unary_expression assignment_operator expression
 ;

assignment_operator
 : '=' | '+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' | '<<='
 | right_shift_assignment
 ;

// Source: §11.20 Expression
expression
 : non_assignment_expression

 | assignment
 ;

non_assignment_expression
 : conditional_expression
 | lambda_expression
 | query_expression
 ;

// Source: §11.21 Constant expressions
constant_expression
 : expression
 ;

// Source: §11.22 Boolean expressions
boolean_expression
 : expression
 ;

// Source: §12.1 General
statement
 : labeled_statement
 | declaration_statement
 | embedded_statement
 ;

embedded_statement
 : block
 | empty_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement
 | try_statement
 | checked_statement
 | unchecked_statement
 | lock_statement
 | using_statement
 | yield_statement
 | unsafe_statement // unsafe code support
 | fixed_statement // unsafe code support
 ;

// Source: §12.3.1 General
block
 : '{' statement_list? '}'
 ;

// Source: §12.3.2 Statement lists
statement_list
 : statement+
 ;

// Source: §12.4 The empty statement
empty_statement

 : ';'
 ;

// Source: §12.5 Labeled statements
labeled_statement
 : identifier ':' statement
 ;

// Source: §12.6.1 General
declaration_statement
 : local_variable_declaration ';'
 | local_constant_declaration ';'
 | local_function_declaration
 ;

// Source: §12.6.2 Local variable declarations
local_variable_declaration
 : local_variable_type local_variable_declarators
 ;

local_variable_type
 : type
 | 'var'
 ;

local_variable_declarators
 : local_variable_declarator
 | local_variable_declarators ',' local_variable_declarator
 ;

local_variable_declarator
 : identifier
 | identifier '=' local_variable_initializer
 ;

local_variable_initializer
 : expression
 | array_initializer
 | stackalloc_initializer // unsafe code support
 ;

// Source: §12.6.3 Local constant declarations
local_constant_declaration
 : 'const' type constant_declarators
 ;

constant_declarators
 : constant_declarator (',' constant_declarator)*
 ;

constant_declarator
 : identifier '=' constant_expression
 ;

// Source: §12.6.4 Local function declarations

local_function_declaration
 : local_function_header local_function_body
 ;

local_function_header
 : local_function_modifier* return_type identifier type_parameter_list?
 (formal_parameter_list?) type_parameter_constraints_clause*
 ;
local_function_modifier
 : 'async'
 | 'unsafe'
 ;

local_function_body
 : block
 | '=>' null_conditional_invocation_expression ';'
 | '=>' expression ';'
 ;

// Source: §12.7 Expression statements
expression_statement
 : statement_expression ';'
 ;

statement_expression
 : null_conditional_invocation_expression
 | invocation_expression
 | object_creation_expression
 | assignment
 | post_increment_expression
 | post_decrement_expression
 | pre_increment_expression
 | pre_decrement_expression
 | await_expression
 ;

// Source: §12.8.1 General
selection_statement
 : if_statement
 | switch_statement
 ;

// Source: §12.8.2 The if statement
if_statement
 : 'if' '(' boolean_expression ')' embedded_statement
 | 'if' '(' boolean_expression ')' embedded_statement
 'else' embedded_statement
 ;

// Source: §12.8.3 The switch statement
switch_statement
 : 'switch' '(' expression ')' switch_block
 ;

switch_block

 : '{' switch_section* '}'
 ;

switch_section
 : switch_label+ statement_list
 ;

switch_label
 : 'case' constant_expression ':'
 | 'default' ':'
 ;

// Source: §12.9.1 General
iteration_statement
 : while_statement
 | do_statement
 | for_statement
 | foreach_statement
 ;

// Source: §12.9.2 The while statement
while_statement
 : 'while' '(' boolean_expression ')' embedded_statement
 ;

// Source: §12.9.3 The do statement
do_statement
 : 'do' embedded_statement 'while' '(' boolean_expression ')' ';'
 ;

// Source: §12.9.4 The for statement
for_statement
 : 'for' '(' for_initializer? ';' for_condition? ';' for_iterator? ')'
 embedded_statement
 ;

for_initializer
 : local_variable_declaration
 | statement_expression_list
 ;

for_condition
 : boolean_expression
 ;

for_iterator
 : statement_expression_list
 ;

statement_expression_list
 : statement_expression (',' statement_expression)*
 ;

// Source: §12.9.5 The foreach statement
foreach_statement

 : 'foreach' '(' local_variable_type identifier 'in' expression ')'
 embedded_statement
 ;

// Source: §12.10.1 General
jump_statement
 : break_statement
 | continue_statement
 | goto_statement
 | return_statement
 | throw_statement
 ;

// Source: §12.10.2 The break statement
break_statement
 : 'break' ';'
 ;

// Source: §12.10.3 The continue statement
continue_statement
 : 'continue' ';'
 ;

// Source: §12.10.4 The goto statement
goto_statement
 : 'goto' identifier ';'
 | 'goto' 'case' constant_expression ';'
 | 'goto' 'default' ';'
 ;

// Source: §12.10.5 The return statement
return_statement
 : 'return' expression? ';'
 ;

// Source: §12.10.6 The throw statement
throw_statement
 : 'throw' expression? ';'
 ;

// Source: §12.11 The try statement
try_statement
 : 'try' block catch_clauses
 | 'try' block catch_clauses? finally_clause
 ;

catch_clauses
 : specific_catch_clause+
 | specific_catch_clause* general_catch_clause
 ;

specific_catch_clause
 : 'catch' exception_specifier exception_filter? block
 | 'catch' exception_filter block
 ;

exception_specifier
 : '(' type identifier? ')'
 ;

exception_filter
 : 'when' '(' boolean_expression ')'
 ;

general_catch_clause
 : 'catch' block
 ;

finally_clause
 : 'finally' block
 ;

// Source: §12.12 The checked and unchecked statements
checked_statement
 : 'checked' block
 ;

unchecked_statement
 : 'unchecked' block
 ;

// Source: §12.13 The lock statement
lock_statement
 : 'lock' '(' expression ')' embedded_statement
 ;

// Source: §12.14 The using statement
using_statement
 : 'using' '(' resource_acquisition ')' embedded_statement
 ;

resource_acquisition
 : local_variable_declaration
 | expression
 ;

// Source: §12.15 The yield statement
yield_statement
 : 'yield' 'return' expression ';'
 | 'yield' 'break' ';'
 ;

// Source: §13.2 Compilation units
compilation_unit
 : extern_alias_directive* using_directive* global_attributes?
 namespace_member_declaration*
 ;

// Source: §13.3 Namespace declarations
namespace_declaration

 : 'namespace' qualified_identifier namespace_body ';'?
 ;

qualified_identifier
 : identifier ('.' identifier)*
 ;

namespace_body
 : '{' extern_alias_directive* using_directive*
 namespace_member_declaration* '}'
 ;

// Source: §13.4 Extern alias directives
extern_alias_directive
 : 'extern' 'alias' identifier ';'
 ;

// Source: §13.5.1 General
using_directive
 : using_alias_directive
 | using_namespace_directive
 | using_static_directive
 ;

// Source: §13.5.2 Using alias directives
using_alias_directive
 : 'using' identifier '=' namespace_or_type_name ';'
 ;

// Source: §13.5.3 Using namespace directives
using_namespace_directive
 : 'using' namespace_name ';'
 ;

// Source: §13.5.4 Using static directives
using_static_directive
 : 'using' 'static' type_name ';'
 ;

// Source: §13.6 Namespace member declarations
namespace_member_declaration
 : namespace_declaration
 | type_declaration
 ;

// Source: §13.7 Type declarations
type_declaration
 : class_declaration
 | struct_declaration
 | interface_declaration
 | enum_declaration
 | delegate_declaration
 ;

// Source: §13.8.1 General

qualified_alias_member
 : identifier '::' identifier type_argument_list?
 ;

// Source: §14.2.1 General
class_declaration
 : attributes? class_modifier* 'partial'? 'class' identifier
 type_parameter_list? class_base? type_parameter_constraints_clause*
 class_body ';'?
 ;

// Source: §14.2.2.1 General
class_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'abstract'
 | 'sealed'
 | 'static'
 | unsafe_modifier // unsafe code support
 ;

// Source: §14.2.3 Type parameters
type_parameter_list
 : '<' type_parameters '>'
 ;

type_parameters
 : attributes? type_parameter
 | type_parameters ',' attributes? type_parameter
 ;

// Source: §14.2.4.1 General
class_base
 : ':' class_type
 | ':' interface_type_list
 | ':' class_type ',' interface_type_list
 ;

interface_type_list
 : interface_type (',' interface_type)*
 ;

// Source: §14.2.5 Type parameter constraints
type_parameter_constraints_clauses
 : type_parameter_constraints_clause
 | type_parameter_constraints_clauses type_parameter_constraints_clause
 ;

type_parameter_constraints_clause
 : 'where' type_parameter ':' type_parameter_constraints
 ;

type_parameter_constraints
 : primary_constraint
 | secondary_constraints
 | constructor_constraint
 | primary_constraint ',' secondary_constraints
 | primary_constraint ',' constructor_constraint
 | secondary_constraints ',' constructor_constraint
 | primary_constraint ',' secondary_constraints ','
constructor_constraint
 ;

primary_constraint
 : class_type
 | 'class'
 | 'struct'
 ;

secondary_constraints
 : interface_type
 | type_parameter
 | secondary_constraints ',' interface_type
 | secondary_constraints ',' type_parameter
 ;

constructor_constraint
 : 'new' '(' ')'
 ;

// Source: §14.2.6 Class body
class_body
 : '{' class_member_declaration* '}'
 ;

// Source: §14.3.1 General
class_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | finalizer_declaration
 | static_constructor_declaration
 | type_declaration
 ;

// Source: §14.4 Constants
constant_declaration
 : attributes? constant_modifier* 'const' type constant_declarators ';'
 ;

constant_modifier
 : 'new'

 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

// Source: §14.5.1 General
field_declaration
 : attributes? field_modifier* type variable_declarators ';'
 ;

field_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'readonly'
 | 'volatile'
 | unsafe_modifier // unsafe code support
 ;

variable_declarators
 : variable_declarator (',' variable_declarator)*
 ;

variable_declarator
 : identifier ('=' variable_initializer)?
 ;

// Source: §14.6.1 General
method_declaration
 : method_header method_body
 ;

method_header
 : attributes? method_modifier* 'partial'? return_type member_name
 type_parameter_list? '(' formal_parameter_list? ')'
 type_parameter_constraints_clause*
 ;

method_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | 'async'

 | unsafe_modifier // unsafe code support
 ;

return_type
 : type
 | 'void'
 ;

member_name
 : identifier
 | interface_type '.' identifier
 ;

method_body
 : block
 | '=>' null_conditional_invocation_expression ';'
 | '=>' expression ';'
 | ';'
 ;

// Source: §14.6.2.1 General
formal_parameter_list
 : fixed_parameters
 | fixed_parameters ',' parameter_array
 | parameter_array
 ;

fixed_parameters
 : fixed_parameter (',' fixed_parameter)*
 ;

fixed_parameter
 : attributes? parameter_modifier? type identifier default_argument?
 ;

default_argument
 : '=' expression
 ;

parameter_modifier
 : parameter_mode_modifier
 | 'this'
 ;

parameter_mode_modifier
 : 'ref'
 | 'out'
 ;

parameter_array
 : attributes? 'params' array_type identifier
 ;

// Source: §14.7.1 General
property_declaration

 : attributes? property_modifier* type member_name property_body
 ;

property_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

property_body
 : '{' accessor_declarations '}' property_initializer?
 | '=>' expression ';'
 ;

property_initializer
 : '=' variable_initializer ';'
 ;

// Source: §14.7.3 Accessors
accessor_declarations
 : get_accessor_declaration set_accessor_declaration?
 | set_accessor_declaration get_accessor_declaration?
 ;

get_accessor_declaration
 : attributes? accessor_modifier? 'get' accessor_body
 ;

set_accessor_declaration
 : attributes? accessor_modifier? 'set' accessor_body
 ;

accessor_modifier
 : 'protected'
 | 'internal'
 | 'private'
 | 'protected' 'internal'
 | 'internal' 'protected'
 | 'protected' 'private'
 | 'private' 'protected'
 ;

accessor_body
 : block
 | '=>' expression ';'
 | ';'

 ;

// Source: §14.8.1 General
event_declaration
 : attributes? event_modifier* 'event' type variable_declarators ';'
 | attributes? event_modifier* 'event' type member_name
 '{' event_accessor_declarations '}'
 ;

event_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

event_accessor_declarations
 : add_accessor_declaration remove_accessor_declaration
 | remove_accessor_declaration add_accessor_declaration
 ;

add_accessor_declaration
 : attributes? 'add' block
 ;

remove_accessor_declaration
 : attributes? 'remove' block
 ;

// Source: §14.9 Indexers
indexer_declaration
 : attributes? indexer_modifier* indexer_declarator indexer_body
 ;

indexer_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

indexer_declarator
 : type 'this' '[' formal_parameter_list ']'
 | type interface_type '.' 'this' '[' formal_parameter_list ']'
 ;

indexer_body
 : '{' accessor_declarations '}'
 | '=>' expression ';'
 ;

// Source: §14.10.1 General
operator_declaration
 : attributes? operator_modifier+ operator_declarator operator_body
 ;

operator_modifier
 : 'public'
 | 'static'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

operator_declarator
 : unary_operator_declarator
 | binary_operator_declarator
 | conversion_operator_declarator
 ;

unary_operator_declarator
 : type 'operator' overloadable_unary_operator '(' fixed_parameter ')'
 ;

overloadable_unary_operator
 : '+' | '-' | '!' | '~' | '++' | '--' | 'true' | 'false'
 ;

binary_operator_declarator
 : type 'operator' overloadable_binary_operator
 '(' fixed_parameter ',' fixed_parameter ')'
 ;

overloadable_binary_operator
 : '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' | '<<'
 | right_shift | '==' | '!=' | '>' | '<' | '>=' | '<='
 ;

conversion_operator_declarator
 : 'implicit' 'operator' type '(' fixed_parameter ')'
 | 'explicit' 'operator' type '(' fixed_parameter ')'
 ;

operator_body
 : block
 | '=>' expression ';'

 | ';'
 ;

// Source: §14.11.1 General
constructor_declaration
 : attributes? constructor_modifier* constructor_declarator
constructor_body
 ;

constructor_modifier
 : 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

constructor_declarator
 : identifier '(' formal_parameter_list? ')' constructor_initializer?
 ;

constructor_initializer
 : ':' 'base' '(' argument_list? ')'
 | ':' 'this' '(' argument_list? ')'
 ;

constructor_body
 : block
 | '=>' expression ';'
 | ';'
 ;

// Source: §14.12 Static constructors
static_constructor_declaration
 : attributes? static_constructor_modifiers identifier '(' ')'
 static_constructor_body
 ;

static_constructor_modifiers
 : 'static'
 | 'static' 'extern' unsafe_modifier?
 | 'static' unsafe_modifier 'extern'?
 | 'extern' 'static' unsafe_modifier?
 | 'extern' unsafe_modifier 'static'
 | unsafe_modifier 'static' 'extern'?
 | unsafe_modifier 'extern' 'static'
 ;

static_constructor_body
 : block
 | '=>' expression ';'
 | ';'
 ;

// Source: §14.13 Finalizers
finalizer_declaration
 : attributes? '~' identifier '(' ')' finalizer_body
 | attributes? 'extern' unsafe_modifier? '~' identifier '(' ')'
 finalizer_body
 | attributes? unsafe_modifier 'extern'? '~' identifier '(' ')'
 finalizer_body
 ;

finalizer_body
 : block
 | '=>' expression ';'
 | ';'
 ;

// Source: §15.2.1 General
struct_declaration
 : attributes? struct_modifier* 'partial'? 'struct'
 identifier type_parameter_list? struct_interfaces?
 type_parameter_constraints_clause* struct_body ';'?
 ;

// Source: §15.2.2 Struct modifiers
struct_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'readonly'
 | unsafe_modifier // unsafe code support
 ;

// Source: §15.2.4 Struct interfaces
struct_interfaces
 : ':' interface_type_list
 ;

// Source: §15.2.5 Struct body
struct_body
 : '{' struct_member_declaration* '}'
 ;

// Source: §15.3 Struct members
struct_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | static_constructor_declaration
 | type_declaration

 | fixed_size_buffer_declaration // unsafe code support
 ;

// Source: §16.7 Array initializers
array_initializer
 : '{' variable_initializer_list? '}'
 | '{' variable_initializer_list ',' '}'
 ;

variable_initializer_list
 : variable_initializer (',' variable_initializer)*
 ;

variable_initializer
 : expression
 | array_initializer
 ;

// Source: §17.2.1 General
interface_declaration
 : attributes? interface_modifier* 'partial'? 'interface'
 identifier variant_type_parameter_list? interface_base?
 type_parameter_constraints_clause* interface_body ';'?
 ;

// Source: §17.2.2 Interface modifiers
interface_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

// Source: §17.2.3.1 General
variant_type_parameter_list
 : '<' variant_type_parameters '>'
 ;

// Source: §17.2.3.1 General
variant_type_parameters
 : attributes? variance_annotation? type_parameter
 | variant_type_parameters ',' attributes? variance_annotation?
 type_parameter
 ;

// Source: §17.2.3.1 General
variance_annotation
 : 'in'
 | 'out'
 ;

// Source: §17.2.4 Base interfaces
interface_base

 : ':' interface_type_list
 ;

// Source: §17.3 Interface body
interface_body
 : '{' interface_member_declaration* '}'
 ;

// Source: §17.4.1 General
interface_member_declaration
 : interface_method_declaration
 | interface_property_declaration
 | interface_event_declaration
 | interface_indexer_declaration
 ;

// Source: §17.4.2 Interface methods
interface_method_declaration
 : attributes? 'new'? return_type identifier type_parameter_list?
 '(' formal_parameter_list? ')' type_parameter_constraints_clause* ';'
 ;

// Source: §17.4.3 Interface properties
interface_property_declaration
 : attributes? 'new'? type identifier '{' interface_accessors '}'
 ;

// Source: §17.4.3 Interface properties
interface_accessors
 : attributes? 'get' ';'
 | attributes? 'set' ';'
 | attributes? 'get' ';' attributes? 'set' ';'
 | attributes? 'set' ';' attributes? 'get' ';'
 ;

// Source: §17.4.4 Interface events
interface_event_declaration
 : attributes? 'new'? 'event' type identifier ';'
 ;

// Source: §17.4.5 Interface indexers
interface_indexer_declaration:
 attributes? 'new'? type 'this' '[' formal_parameter_list ']'
 '{' interface_accessors '}'
 ;

// Source: §18.2 Enum declarations
enum_declaration
 : attributes? enum_modifier* 'enum' identifier enum_base? enum_body ';'?
 ;

enum_base
 : ':' integral_type
 | ':' integral_type_name
 ;

integral_type_name
 : type_name // Shall resolve to an integral type other than char
 ;

enum_body
 : '{' enum_member_declarations? '}'
 | '{' enum_member_declarations ',' '}'
 ;

// Source: §18.3 Enum modifiers
enum_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

// Source: §18.4 Enum members
enum_member_declarations
 : enum_member_declaration (',' enum_member_declaration)*
 ;

// Source: §18.4 Enum members
enum_member_declaration
 : attributes? identifier ('=' constant_expression)?
 ;

// Source: §19.2 Delegate declarations
delegate_declaration
 : attributes? delegate_modifier* 'delegate' return_type identifier
 variant_type_parameter_list? '(' formal_parameter_list? ')'
 type_parameter_constraints_clause* ';'
 ;

delegate_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

// Source: §21.3 Attribute specification
global_attributes
 : global_attribute_section+
 ;

global_attribute_section
 : '[' global_attribute_target_specifier attribute_list ']'
 | '[' global_attribute_target_specifier attribute_list ',' ']'
 ;

global_attribute_target_specifier
 : global_attribute_target ':'
 ;

global_attribute_target
 : identifier
 ;

attributes
 : attribute_section+
 ;

attribute_section
 : '[' attribute_target_specifier? attribute_list ']'
 | '[' attribute_target_specifier? attribute_list ',' ']'
 ;

attribute_target_specifier
 : attribute_target ':'
 ;

attribute_target
 : identifier
 | keyword
 ;

attribute_list
 : attribute (',' attribute)*
 ;

attribute
 : attribute_name attribute_arguments?
 ;

attribute_name
 : type_name
 ;

attribute_arguments
 : '(' positional_argument_list? ')'
 | '(' positional_argument_list ',' named_argument_list ')'
 | '(' named_argument_list ')'
 ;

positional_argument_list
 : positional_argument (',' positional_argument)*
 ;

positional_argument
 : argument_name? attribute_argument_expression
 ;

named_argument_list
 : named_argument (',' named_argument)*
 ;

ANTLR

named_argument
 : identifier '=' attribute_argument_expression
 ;

attribute_argument_expression
 : expression
 ;

A.4 Grammar extensions for unsafe code

// Source: §22.2 Unsafe contexts
unsafe_modifier
 : 'unsafe'
 ;

unsafe_statement
 : 'unsafe' block
 ;

// Source: §22.3 Pointer types
pointer_type
 : value_type ('*')+
 | 'void' ('*')+
 ;

// Source: §22.6.2 Pointer indirection
pointer_indirection_expression
 : '*' unary_expression
 ;

// Source: §22.6.3 Pointer member access
pointer_member_access
 : primary_expression '->' identifier type_argument_list?
 ;

// Source: §22.6.4 Pointer element access
pointer_element_access
 : primary_no_array_creation_expression '[' expression ']'
 ;

// Source: §22.6.5 The address-of operator
addressof_expression
 : '&' unary_expression
 ;

// Source: §22.7 The fixed statement
fixed_statement
 : 'fixed' '(' pointer_type fixed_pointer_declarators ')'

End of informative text.

embedded_statement
 ;

fixed_pointer_declarators
 : fixed_pointer_declarator (',' fixed_pointer_declarator)*
 ;

fixed_pointer_declarator
 : identifier '=' fixed_pointer_initializer
 ;

fixed_pointer_initializer
 : '&' variable_reference
 | expression
 ;

// Source: §22.8.2 Fixed-size buffer declarations
fixed_size_buffer_declaration
 : attributes? fixed_size_buffer_modifier* 'fixed' buffer_element_type
 fixed_size_buffer_declarators ';'
 ;

fixed_size_buffer_modifier
 : 'new'
 | 'public'
 | 'internal'
 | 'private'
 | 'unsafe'
 ;

buffer_element_type
 : type
 ;

fixed_size_buffer_declarators
 : fixed_size_buffer_declarator (',' fixed_size_buffer_declarator)*
 ;

fixed_size_buffer_declarator
 : identifier '[' constant_expression ']'
 ;

// Source: §22.9 Stack allocation
stackalloc_initializer
 : 'stackalloc' unmanaged_type '[' expression ']'
 ;

Annex B Portability issues
Article • 2023-01-17 • 3 minutes to read

This clause is informative.

This annex collects some information about portability that appears in this specification.

The behavior is undefined in the following circumstances:

1. The behavior of the enclosing async function when an awaiter’s implementation of
the interface methods INotifyCompletion.OnCompleted and
ICriticalNotifyCompletion.UnsafeOnCompleted does not cause the resumption
delegate to be invoked at most once (§11.8.8.4).

2. Passing pointers as ref or out parameters (§22.3).
3. When dereferencing the result of converting one pointer type to another and the

resulting pointer is not correctly aligned for the pointed-to type. (§22.5.1).
4. When the unary * operator is applied to a pointer containing an invalid value

(§22.6.2).
5. When a pointer is subscripted to access an out-of-bounds element (§22.6.4).
6. Modifying objects of managed type through fixed pointers (§22.7).
7. The content of memory newly allocated by stackalloc (§22.9).
8. Attempting to allocate a negative number of items using stackalloc (§22.9).

A conforming implementation is required to document its choice of behavior in each of
the areas listed in this subclause. The following are implementation-defined:

1. The behavior when an identifier not in Normalization Form C is encountered
(§6.4.3).

2. The interpretation of the input_characters in the pp_pragma-text of a #pragma
directive (§6.5.9).

3. The values of any application parameters passed to Main by the host environment
prior to application startup (§7.1).

B.1 General

B.2 Undefined behavior

B.3 Implementation-defined behavior

4. The precise structure of the expression tree, as well as the exact process for
creating it, when an anonymous function is converted to an expression-tree
(§10.7.3).

5. Whether a System.ArithmeticException (or a subclass thereof) is thrown or the
overflow goes unreported with the resulting value being that of the left operand,
when in an unchecked context and the left operand of an integer division is the
maximum negative int or long value and the right operand is –1 (§11.9.3).

6. When a System.ArithmeticException (or a subclass thereof) is thrown when
performing a decimal remainder operation (§11.9.4).

7. The impact of thread termination when a thread has no handler for an exception,
and the thread is itself terminated (§12.10.6).

8. The impact of thread termination when no matching catch clause is found for an
exception and the code that initially started that thread is reached. (§20.4).

9. The mappings between pointers and integers (§22.5.1).
10. The effect of applying the unary * operator to a null pointer (§22.6.2).
11. The behavior when pointer arithmetic overflows the domain of the pointer type

(§22.6.6, §22.6.7).
12. The result of the sizeof operator for non-pre-defined value types (§22.6.9).
13. The behavior of the fixed statement if the array expression is null or if the array

has zero elements (§22.7).
14. The behavior of the fixed statement if the string expression is null (§22.7).
15. The value returned when a stack allocation of size zero is made (§22.9).

1. The time at which the finalizer (if any) for an object is run, once that object has
become eligible for finalization (§7.9).

2. The value of the result when converting out-of-range values from float or double
values to an integral type in an unchecked context (§10.3.2).

3. The exact target object and target method of the delegate produced from an
anonymous_method_expression contains (§10.7.2).

4. The layout of arrays, except in an unsafe context (§11.7.15.5).
5. Whether there is any way to execute the block of an anonymous function other

than through evaluation and invocation of the lambda_expression or
anonymous_method-expression (§11.17.3).

6. The exact timing of static field initialization (§14.5.6.2).
7. The result of invoking MoveNext when an enumerator object is running (§14.14.5.2).
8. The result of accessing Current when an enumerator object is in the before,

running, or after states (§14.14.5.3).

B.4 Unspecified behavior

9. The result of invoking Dispose when an enumerator object is in the running state
(§14.14.5.4).

10. The attributes of a type declared in multiple parts are determined by combining, in
an unspecified order, the attributes of each of its parts (§21.3).

11. The order in which members are packed into a struct (§22.6.9).
12. An exception occurs during finalizer execution, and that execution is not caught

(§20.4).
13. If more than one member matches, which member is the implementation of I.M.

(§17.6.5)

1. The exact results of floating-point expression evaluation can vary from one
implementation to another, because an implementation is permitted to evaluate
such expressions using a greater range and/or precision than is required. (§8.3.7)

2. The CLI reserves certain signatures for compatibility with other programming
languages. (§14.3.10)

End of informative text.

B.5 Other Issues

Annex C Standard library
Article • 2022-04-09 • 20 minutes to read

A conforming C# implementation shall provide a minimum set of types having specific
semantics. These types and their members are listed here, in alphabetical order by
namespace and type. For a formal definition of these types and their members, refer to
ISO/IEC 23271:2012 Common Language Infrastructure (CLI), Partition IV; Base Class
Library (BCL), Extended Numerics Library, and Extended Array Library, which are included
by reference in this specification.

This text is informative.

The standard library is intended to be the minimum set of types and members required
by a conforming C# implementation. As such, it contains only those members that are
explicitly required by the C# language specification.

It is expected that a conforming C# implementation will supply a significantly more
extensive library that enables useful programs to be written. For example, a conforming
implementation might extend this library by

Adding namespaces.
Adding types.
Adding members to non-interface types.
Adding intervening base classes or interfaces.
Having struct and class types implement additional interfaces.
Adding attributes (other than the ConditionalAttribute) to existing types and
members.

End of informative text.

C#

C.1 General

C.2 Standard Library Types defined in ISO/IEC
23271

namespace System
{
 public delegate void Action();

 public class ArgumentException : SystemException
 {
 public ArgumentException();
 public ArgumentException(string message);
 public ArgumentException(string message, Exception innerException);
 }

 public class ArithmeticException : Exception
 {
 public ArithmeticException();
 public ArithmeticException(string message);
 public ArithmeticException(string message, Exception
innerException);
 }

 public abstract class Array : IList, ICollection, IEnumerable
 {
 public int Length { get; }
 public int Rank { get; }
 public int GetLength(int dimension);
 }

 public class ArrayTypeMismatchException : Exception
 {
 public ArrayTypeMismatchException();
 public ArrayTypeMismatchException(string message);
 public ArrayTypeMismatchException(string message,
 Exception innerException);
 }

 [AttributeUsageAttribute(AttributeTargets.All, Inherited = true,
 AllowMultiple = false)]
 public abstract class Attribute
 {
 protected Attribute();
 }

 public enum AttributeTargets
 {
 Assembly = 0x1,
 Module = 0x2,
 Class = 0x4,
 Struct = 0x8,
 Enum = 0x10,
 Constructor = 0x20,
 Method = 0x40,
 Property = 0x80,
 Field = 0x100,
 Event = 0x200,
 Interface = 0x400,
 Parameter = 0x800,
 Delegate = 0x1000,
 ReturnValue = 0x2000,
 GenericParameter = 0x4000,
 All = 0x7FFF

 }

 [AttributeUsageAttribute(AttributeTargets.Class, Inherited = true)]
 public sealed class AttributeUsageAttribute : Attribute
 {
 public AttributeUsageAttribute(AttributeTargets validOn);
 public bool AllowMultiple { get; set; }
 public bool Inherited { get; set; }
 public AttributeTargets ValidOn { get; }
 }

 public struct Boolean { }
 public struct Byte { }
 public struct Char { }
 public struct Decimal { }
 public abstract class Delegate { }

 public class DivideByZeroException : ArithmeticException
 {
 public DivideByZeroException();
 public DivideByZeroException(string message);
 public DivideByZeroException(string message, Exception
innerException);
 }

 public struct Double { }

 public abstract class Enum : ValueType
 {
 protected Enum();
 }

 public class Exception
 {
 public Exception();
 public Exception(string message);
 public Exception(string message, Exception innerException);
 public sealed Exception InnerException { get; }
 public virtual string Message { get; }
 }

 public class GC { }

 public interface IDisposable
 {
 void Dispose();
 }

 public interface IFormattable { }

 public sealed class IndexOutOfRangeException : Exception
 {
 public IndexOutOfRangeException();
 public IndexOutOfRangeException(string message);
 public IndexOutOfRangeException(string message,

 Exception innerException);
 }

 public struct Int16 { }
 public struct Int32 { }
 public struct Int64 { }
 public struct IntPtr { }

 public class InvalidCastException : Exception
 {
 public InvalidCastException();
 public InvalidCastException(string message);
 public InvalidCastException(string message, Exception
innerException);
 }

 public class InvalidOperationException : Exception
 {
 public InvalidOperationException();
 public InvalidOperationException(string message);
 public InvalidOperationException(string message,
 Exception innerException);
 }

 public class NotSupportedException : Exception
 {
 public NotSupportedException();
 public NotSupportedException(string message);
 public NotSupportedException(string message, Exception
innerException);
 }

 public struct Nullable<T>
 {
 public bool HasValue { get; }
 public T Value { get; }
 }

 public class NullReferenceException : Exception
 {
 public NullReferenceException();
 public NullReferenceException(string message);
 public NullReferenceException(string message, Exception
innerException);
 }

 public class Object
 {
 public Object();
 ~Object();
 public virtual bool Equals(object obj);
 public virtual int GetHashCode();
 public Type GetType();
 public virtual string ToString();
 }

 [AttributeUsageAttribute(AttributeTargets.Class |
AttributeTargets.Struct |
 AttributeTargets.Enum | AttributeTargets.Interface |
 AttributeTargets.Constructor | AttributeTargets.Method |
 AttributeTargets.Property | AttributeTargets.Field |
 AttributeTargets.Event | AttributeTargets.Delegate, Inherited =
false)]
 public sealed class ObsoleteAttribute : Attribute
 {
 public ObsoleteAttribute();
 public ObsoleteAttribute(string message);
 public ObsoleteAttribute(string message, bool error);
 public bool IsError { get; }
 public string Message { get; }
 }

 public class OutOfMemoryException : Exception
 {
 public OutOfMemoryException();
 public OutOfMemoryException(string message);
 public OutOfMemoryException(string message, Exception
innerException);
 }

 public class OverflowException : ArithmeticException
 {
 public OverflowException();
 public OverflowException(string message);
 public OverflowException(string message, Exception innerException);
 }

 public struct SByte { }
 public struct Single { }

 public sealed class StackOverflowException : Exception
 {
 public StackOverflowException();
 public StackOverflowException(string message);
 public StackOverflowException(string message, Exception
innerException);
 }

 public sealed class String : IEnumerable<Char>, IEnumerable
 {
 public int Length { get; }
 public char this [int index] { get; }
 public static string Format(string format, params object[] args);
 }

 public abstract class Type : MemberInfo { }

 public sealed class TypeInitializationException : Exception
 {
 public TypeInitializationException(string fullTypeName,

 Exception innerException);
 }

 public struct UInt16 { }
 public struct UInt32 { }
 public struct UInt64 { }
 public struct UIntPtr { }

 public abstract class ValueType
 {
 protected ValueType();
 }
}

namespace System.Collections
{
 public interface ICollection : IEnumerable
 {
 int Count { get; }
 bool IsSynchronized { get; }
 object SyncRoot { get; }
 void CopyTo(Array array, int index);
 }

 public interface IEnumerable
 {
 IEnumerator GetEnumerator();
 }

 public interface IEnumerator
 {
 object Current { get; }
 bool MoveNext();
 void Reset();
 }

 public interface IList : ICollection, IEnumerable
 {
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 object this [int index] { get; set; }
 int Add(object value);
 void Clear();
 bool Contains(object value);
 int IndexOf(object value);
 void Insert(int index, object value);
 void Remove(object value);
 void RemoveAt(int index);
 }
}

namespace System.Collections.Generic
{
 public interface ICollection<T> : IEnumerable<T>
 {

 int Count { get; }
 bool IsReadOnly { get; }
 void Add(T item);
 void Clear();
 bool Contains(T item);
 void CopyTo(T[] array, int arrayIndex);
 bool Remove(T item);
 }

 public interface IEnumerable<T> : IEnumerable
 {
 IEnumerator<T> GetEnumerator();
 }

 public interface IEnumerator<T> : IDisposable, IEnumerator
 {
 T Current { get; }
 }

 public interface IList<T> : ICollection<T>
 {
 T this [int index] { get; set; }
 int IndexOf(T item);
 void Insert(int index, T item);
 void RemoveAt(int index);
 }

 public interface IReadOnlyCollection<out T> : IEnumerable<T>
 {
 int Count { get; }
 }

 public interface IReadOnlyList<out T> : IReadOnlyCollection<T>
 {
 T this [int index] { get; }
 }
}

namespace System.Diagnostics
{
 [AttributeUsageAttribute(AttributeTargets.Method |
AttributeTargets.Class,
 AllowMultiple = true)]
 public sealed class ConditionalAttribute : Attribute
 {
 public ConditionalAttribute(string conditionString);
 public string ConditionString { get; }
 }
}

namespace System.Reflection
{
 public abstract class MemberInfo
 {
 protected MemberInfo();

The following types, including the members listed, must be defined in a conforming
standard library. (These types might be defined in a future edition of ISO/IEC 23271.) It
is expected that many of these types will have more members available than are listed.

A conforming implementation may provide Task.GetAwaiter() and
Task<T>.GetAwaiter() as extension methods.

C#

 }
}

namespace System.Runtime.CompilerServices
{
 public sealed class IndexerNameAttribute : Attribute
 {
 public IndexerNameAttribute(String indexerName);
 }
}

namespace System.Threading
{
 public static class Monitor
 {
 public static void Enter(object obj);
 public static void Exit(object obj);
 }
}

C.3 Standard Library Types not defined in
ISO/IEC 23271

namespace System
{
 public class FormattableString : IFormattable { }
}

namespace System.Linq.Expressions
{
 public sealed class Expression<TDelegate>
 {
 public TDelegate Compile();
 }
}
namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerFilePathAttribute : Attribute
 {

 public CallerFilePathAttribute() { }
 }

 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerLineNumberAttribute : Attribute
 {
 public CallerLineNumberAttribute() { }
 }

 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerMemberNameAttribute : Attribute
 {
 public CallerMemberNameAttribute() { }
 }

 public static class FormattableStringFactory
 {
 public static FormattableString Create(string format,
 params object[] arguments);
 }

 public interface ICriticalNotifyCompletion : INotifyCompletion
 {
 void UnsafeOnCompleted(Action continuation);
 }

 public interface INotifyCompletion
 {
 void OnCompleted(Action continuation);
 }

 public struct TaskAwaiter : ICriticalNotifyCompletion, INotifyCompletion
 {
 public bool IsCompleted { get; }
 public void GetResult();
 }

 public struct TaskAwaiter<T> : ICriticalNotifyCompletion,
INotifyCompletion
 {
 public bool IsCompleted { get; }
 public T GetResult();
 }
}

namespace System.Threading.Tasks
{
 public class Task
 {
 public System.Runtime.CompilerServices.TaskAwaiter GetAwaiter();
 }
 public class Task<TResult> : Task
 {
 public new System.Runtime.CompilerServices.TaskAwaiter<T>
GetAwaiter();

The meaning of the formats, as used in interpolated string expressions (§11.7.3), are
defined in ISO/IEC 23271:2012. For convenience the following text is copied from the
description of System.IFormatable .

This text is informative.

A format is a string that describes the appearance of an object when it is converted to a
string. Either standard or custom formats can be used. A standard format takes the form
Axx, where A is a single alphabetic character called the format specifier, and xx is an
integer between zero and 99 inclusive, called the precision specifier. The format specifier
controls the type of formatting applied to the value being represented as a string. The
precision specifier controls the number of significant digits or decimal places in the
string, if applicable.

Note: For the list of standard format specifiers, see the table below. Note that a
given data type, such as System.Int32 , might not support one or more of the
standard format specifiers. end note

Note: When a format includes symbols that vary by culture, such as the
currencysymbol included by the ‘C’ and ‘c’ formats, a formatting object supplies the
actual characters used in the string representation. A method might include a
parameter to pass a System.IFormatProvider object that supplies a formatting
object, or the method might use the default formatting object, which contains the
symbol definitions for the current culture. The current culture typically uses the
same set of symbols used system-wide by default. In the Base Class Library, the
formatting object for system-supplied numeric types is a
System.Globalization.NumberFormatInfo instance. For System.DateTime instances, a
System.Globalization.DateTimeFormatInfo is used. end note

The following table describes the standard format specifiers and associated formatting
object members that are used with numeric data types in the Base Class Library.

Format
Specifier

Description

C Currency Format: Used for strings containing a monetary value. The

 }
}

C.4 Format Specifications

c System.Globalization.NumberFormatInfo.CurrencySymbol ,
System.Globalization.NumberFormatInfo.CurrencyGroupSizes ,
System.Globalization.NumberFormatInfo.CurrencyGroupSeparator , and
System.Globalization.NumberFormatInfo.CurrencyDecimalSeparator members of a
System.Globalization.NumberFormatInfo supply the currency symbol, size and
separator for digit groupings, and decimal separator, respectively.

System.Globalization.NumberFormatInfo.CurrencyNegativePattern and
System.Globalization.NumberFormatInfo.CurrencyPositivePattern determine the
symbols used to represent negative and positive values. For example, a negative value
can be prefixed with a minus sign, or enclosed in parentheses.

If the precision specifier is omitted,
System.Globalization.NumberFormatInfo.CurrencyDecimalDigits determines the
number of decimal places in the string. Results are rounded to the nearest
representable value when necessary.

D

d

Decimal Format: (This format is valid only when specified with integral data types.)
Used for strings containing integer values. Negative numbers are prefixed with the
negative number symbol specified by the
System.Globalization.NumberFormatInfo.NegativeSign property.

The precision specifier determines the minimum number of digits that appear in the
string. If the specified precision requires more digits than the value contains, the
string is left-padded with zeros. If the precision specifier specifies fewer digits than are
in the value, the precision specifier is ignored.

E

e

Scientific (Engineering) Format: Used for strings in one of the following forms:

 [-]m.ddddddE+xxx

 [-]m.ddddddE-xxx

 [-]m.dddddde+xxx

 [-]m.dddddde-xxx

The negative number symbol (‘-’) appears only if the value is negative, and is supplied
by the System.Globalization.NumberFormatInfo.NegativeSign property.

Exactly one non-zero decimal digit (m) precedes the decimal separator (‘.’), which is
supplied by the System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property.

The precision specifier determines the number of decimal places (dddddd) in the
string. If the precision specifier is omitted, six decimal places are included in the string.

The exponent (+/-xxx) consists of either a positive or negative number symbol
followed by a minimum of three digits (xxx). The exponent is left-padded with zeros, if
necessary. The case of the format specifier (‘E’ or ‘e’) determines the case used for the
exponent prefix (E or e) in the string. Results are rounded to the nearest representable

value when necessary. The positive number symbol is supplied by the
System.Globalization.NumberFormatInfo.PositiveSign property.

F

f

Fixed-Point Format: Used for strings in the following form:

 [-]m.dd...d

At least one non-zero decimal digit (m) precedes the decimal separator (‘.’), which is
supplied by the System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property.

A negative number symbol sign (‘-’) precedes m only if the value is negative. This
symbol is supplied by the System.Globalization.NumberFormatInfo.NegativeSign
property.

The precision specifier determines the number of decimal places (dd...d) in the string.
If the precision specifier is omitted,
System.Globalization.NumberFormatInfo.NumberDecimalDigits determines the number
of decimal places in the string. Results are rounded to the nearest representable value
when necessary.

G

g

General Format: The string is formatted in either fixed-point format (‘F’ or ‘f’) or
scientific format (‘E’ or ‘e’).

For integral types:

Values are formatted using fixed-point format if exponent < precision specifier, where
exponent is the exponent of the value in scientific format. For all other values,
scientific format is used.

If the precision specifier is omitted, a default precision equal to the field width
required to display the maximum value for the data type is used, which results in the
value being formatted in fixed-point format. The default precisions for integral types
are as follows:

 System.Int16 , System.UInt16 : 5

 System.Int32 , System.UInt32 : 10

 System.Int64 , System.UInt64 : 19

For Single, Decimal and Double types:

Values are formatted using fixed-point format if exponent ≥ -4 and exponent <
precision specifier, where exponent is the exponent of the value in scientific format.
For all other values, scientific format is used. Results are rounded to the nearest
representable value when necessary.

If the precision specifier is omitted, the following default precisions are used:

 System.Single : 7

 System.Double : 15

 System.Decimal : 29

For all types:

The number of digits that appear in the result (not including the exponent) will
not exceed the value of the precision specifier; values are rounded as necessary.
The decimal point and any trailing zeros after the decimal point are removed
whenever possible.
The case of the format specifier (‘G’ or ‘g’) determines whether ‘E’ or ‘e’ prefixes
the scientific format exponent.

N

n

Number Format: Used for strings in the following form:

 [-]d,ddd,ddd.dd...d

The representation of negative values is determined by the
System.Globalization.NumberFormatInfo.NumberNegativePattern property. If the
pattern includes a negative number symbol (‘-’), this symbol is supplied by the
System.Globalization.NumberFormatInfo.NegativeSign property.

At least one non-zero decimal digit (d) precedes the decimal separator (‘.’), which is
supplied by the System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property. Digits between the decimal point and the most significant digit in the value
are grouped using the group size specified by the
System.Globalization.NumberFormatInfo.NumberGroupSizes property. The group
separator (‘,’) is inserted between each digit group, and is supplied by the
System.Globalization.NumberFormatInfo.NumberGroupSeparator property.

The precision specifier determines the number of decimal places (dd...d). If the
precision specifier is omitted,
System.Globalization.NumberFormatInfo.NumberDecimalDigits determines the number
of decimal places in the string. Results are rounded to the nearest representable value
when necessary.

P

p

Percent Format: Used for strings containing a percentage. The
System.Globalization.NumberFormatInfo.PercentSymbol ,
System.Globalization.NumberFormatInfo.PercentGroupSizes ,
System.Globalization.NumberFormatInfo.PercentGroupSeparator , and
System.Globalization.NumberFormatInfo.PercentDecimalSeparator members of a
System.Globalization.NumberFormatInfo supply the percent symbol, size and
separator for digit groupings, and decimal separator, respectively.

System.Globalization.NumberFormatInfo.PercentNegativePattern and
System.Globalization.NumberFormatInfo.PercentPositivePattern determine the
symbols used to represent negative and positive values. For example, a negative value
can be prefixed with a minus sign, or enclosed in parentheses.

If no precision is specified, the number of decimal places in the result is determined
by System.Globalization.NumberFormatInfo.PercentDecimalDigits . Results are
rounded to the nearest representable value when necessary.

The result is scaled by 100 (.99 becomes 99%).

R

r

Round trip Format: (This format is valid only when specified with System.Double or
System.Single .) Used to ensure that the precision of the string representation of a
floating-point value is such that parsing the string does not result in a loss of
precision when compared to the original value. If the maximum precision of the data
type (7 for System.Single , and 15 for System.Double) would result in a loss of
precision, the precision is increased by two decimal places. If a precision specifier is
supplied with this format specifier, it is ignored. This format is otherwise identical to
the fixed-point format.

X

x

Hexadecimal Format: (This format is valid only when specified with integral data
types.) Used for string representations of numbers in Base 16. The precision
determines the minimum number of digits in the string. If the precision specifies more
digits than the number contains, the number is left-padded with zeros. The case of
the format specifier (‘X’ or ‘x’) determines whether upper case or lower case letters are
used in the hexadecimal representation.

If the numerical value is a System.Single or System.Double with a value of NaN ,
PositiveInfinity , or NegativeInfinity , the format specifier is ignored, and one of the
following is returned: System.Globalization.NumberFormatInfo.NaNSymbol ,
System.Globalization.NumberFormatInfo.PositiveInfinitySymbol , or
System.Globalization.NumberFormatInfo.NegativeInfinitySymbol .

A custom format is any string specified as a format that is not in the form of a standard
format string (Axx) described above. The following table describes the characters that
are used in constructing custom formats.

Format
Specifier

Description

0 (zero) Zero placeholder: If the value being formatted has a digit in the position where a
‘0’ appears in the custom format, then that digit is copied to the output string;
otherwise a zero is stored in that position in the output string. The position of the
leftmost ‘0’ before the decimal separator and the rightmost ‘0’ after the decimal
separator determine the range of digits that are always present in the output string.

The number of Zero and/or Digit placeholders after the decimal separator
determines the number of digits that appear after the decimal separator. Values are
rounded as necessary.

Digit placeholder: If the value being formatted has a digit in the position where a
‘#’ appears in the custom format, then that digit is copied to the output string;
otherwise, nothing is stored in that position in the output string. Note that this
specifier never stores the ‘0’ character if it is not a significant digit, even if ‘0’ is the
only digit in the string. (It does display the ‘0’ character in the output string if it is a
significant digit.)

The number of Zero and/or Digit placeholders after the decimal separator
determines the number of digits that appear after the decimal separator. Values are
rounded as necessary.

. (period) Decimal separator: The left most ‘.’ character in the format string determines the
location of the decimal separator in the formatted value; any additional ‘.’
characters are ignored. The
System.Globalization.NumberFormatInfo.NumberDecimalSeparator property
determines the symbol used as the decimal separator.

, (comma) Group separator and number scaling: The ‘,’ character serves two purposes. First, if
the custom format contains this character between two Zero or Digit placeholders
(0 or #) and to the left of the decimal separator if one is present, then the output
will have group separators inserted between each group of digits to the left of the
decimal separator. The
System.Globalization.NumberFormatInfo.NumberGroupSeparator and
System.Globalization.NumberFormatInfo.NumberGroupSizes properties determine the
symbol used as the group separator and the number of digits in each group,
respectively.

If the format string contains one or more ‘,’ characters immediately to the left of the
decimal separator, then the number will be scaled. The scale factor is determined by
the number of group separator characters immediately to the left of the decimal
separator. If there are x characters, then the value is divided by 1000 before it is
formatted. For example, the format string ‘0,,’ will divide a value by one million.
Note that the presence of the ‘,’ character to indicate scaling does not insert group
separators in the output string. Thus, to scale a number by 1 million and insert
group separators, use a custom format similar to ‘#,##0,,’.

% (percent) Percentage placeholder: The presence of a ‘%’ character in a custom format causes
a number to be multiplied by 100 before it is formatted. The percent symbol is
inserted in the output string at the location where the ‘%’ appears in the format
string. The System.Globalization.NumberFormatInfo.PercentSymbol property
determines the percent symbol.

E0

E+0

E-0

e0

e+0

e-0

Engineering format: If any of the strings ‘E’, ‘E+’, ‘E-’, ‘e’, ‘e+’, or ‘e-’ are present in a
custom format and is followed immediately by at least one ‘0’ character, then the
value is formatted using scientific notation. The number of ‘0’ characters following
the exponent prefix (E or e) determines the minimum number of digits in the
exponent. The ‘E+’ and ‘e+’ formats indicate that a positive or negative number
symbol always precedes the exponent. The ‘E’, ‘E-’, ‘e’, or ‘e-’ formats indicate that a
negative number symbol precedes negative exponents; no symbol is precedes
positive exponents. The positive number symbol is supplied by the
System.Globalization.NumberFormatInfo.PositiveSign property. The negative
number symbol is supplied by the
System.Globalization.NumberFormatInfo.NegativeSign property.

\

(backslash)
Escape character: In some languages, such as C#, the backslash character causes
the next character in the custom format to be interpreted as an escape sequence. It
is used with C language formatting sequences, such as ‘\n’ (newline). In some

X

languages, the escape character itself is required to be preceded by an escape
character when used as a literal. Otherwise, the compiler interprets the character as
an escape sequence. This escape character is not required to be supported in all
programming languages.

'ABC'

"ABC"

Literal string: Characters enclosed in single or double quotes are copied to the
output string literally, and do not affect formatting.

;

(semicolon)
Section separator: The ‘;’ character is used to separate sections for positive,
negative, and zero numbers in the format string. (This feature is described in detail
below.)

Other All other characters: All other characters are stored in the output string as literals in
the position in which they appear.

Note that for fixed-point format strings (strings not containing an ‘E0’, ‘E+0’, ‘E-0’, ‘e0’,
‘e+0’, or ‘e-0’), numbers are rounded to as many decimal places as there are Zero or
Digit placeholders to the right of the decimal separator. If the custom format does not
contain a decimal separator, the number is rounded to the nearest integer. If the
number has more digits than there are Zero or Digit placeholders to the left of the
decimal separator, the extra digits are copied to the output string immediately before
the first Zero or Digit placeholder.

A custom format can contain up to three sections separated by section separator
characters, to specify different formatting for positive, negative, and zero values. The
sections are interpreted as follows:

One section: The custom format applies to all values (positive, negative and zero).
Negative values include a negative sign.

Two sections: The first section applies to positive values and zeros, and the second
section applies to negative values. If the value to be formatted is negative, but
becomes zero after rounding according to the format in the second section, then
the resulting zero is formatted according to the first section. Negative values do
not include a negative sign to allow full control over representations of negative
values. For example, a negative can be represented in parenthesis using a custom
format similar to ‘####.####;(####.####)’.

Three sections: The first section applies to positive values, the second section
applies to negative values, and the third section applies to zeros. The second
section can be empty (nothing appears between the semicolons), in which case the
first section applies to all nonzero values, and negative values include a negative
sign. If the number to be formatted is nonzero, but becomes zero after rounding

according to the format in the first or second section, then the resulting zero is
formatted according to the third section.

The System.Enum and System.DateTime types also support using format specifiers to
format string representations of values. The meaning of a specific format specifier varies
according to the kind of data (numeric, date/time, enumeration) being formatted. See
System.Enum and System.Globalization.DateTimeFormatInfo for a comprehensive list of
the format specifiers supported by each type.

The following library types are referenced in this specification. The full names of those
types, including the global namespace qualifier are listed below. Throughout this
specification, these types appear as either the fully qualified name; with the global
namespace qualifier omitted; or as a simple unqualified type name, with the namespace
omitted as well. For example, the type ICollection<T> , when used in this specification,
always means the type global::System.Collections.Generic.ICollection<T> .

global::System.Action

global::System.ArgumentException

global::System.ArithmeticException

global::System.Array

global::System.ArrayTypeMisMatchException

global::System.Attribute

global::System.AttributeTargets

global::System.AttributeUsageAttribute

global::System.Boolean

global::System.Byte

global::System.Char

global::System.Collections.Generic.ICollection<T>

global::System.Collections.Generic.IEnumerable<T>

global::System.Collections.Generic.IEnumerator<T>

global::System.Collections.Generic.IList<T>

global::System.Collections.Generic.IReadonlyCollection<out T>

global::System.Collections.Generic.IReadOnlyList<out T>

global::System.Collections.ICollection

global::System.Collections.IEnumerable

global::System.Collections.IList

global::System.Collections.IEnumerator

C.5 Library Type Abbreviations

global::System.Decimal

global::System.Delegate

global::System.Diagnostics.ConditionalAttribute

global::System.DivideByZeroException

global::System.Double

global::System.Enum

global::System.Exception

global::System.GC

global::System.ICollection

global::System.IDisposable

global::System.IEnumerable

global::System.IEnumerable<out T>

global::System.IList

global::System.IndexOutOfRangeException

global::System.Int16

global::System.Int32

global::System.Int64

global::System.IntPtr

global::System.InvalidCastException

global::System.InvalidOperationException

global::System.Linq.Expressions.Expression<TDelegate>

global::System.MemberInfo

global::System.NotSupportedException

global::System.Nullable<T>

global::System.NullReferenceException

global::System.Object

global::System.ObsoleteAttribute

global::System.OutOfMemoryException

global::System.OverflowException

global::System.Runtime.CompilerServices.CallerFileAttribute

global::System.Runtime.CompilerServices.CallerLineNumberAttribute

global::System.Runtime.CompilerServices.CallerMemberNameAttribute

global::System.Runtime.CompilerServices.ICriticalNotifyCompletion

global::System.Runtime.CompilerServices.IndexerNameAttribute

global::System.Runtime.CompilerServices.INotifyCompletion

global::System.Runtime.CompilerServices.TaskAwaiter

global::System.Runtime.CompilerServices.TaskAwaiter<T>

global::System.SByte

global::System.Single

global::System.StackOverflowException

global::System.String

global::System.SystemException

global::System.Threading.Monitor

global::System.Threading.Tasks.Task

global::System.Threading.Tasks.Task<TResult>

global::System.Type

global::System.TypeInializationException

global::System.UInt16

global::System.UInt32

global::System.UInt64

global::System.UIntPtr

global::System.ValueType

End of informative text.

Annex D Documentation comments
Article • 2023-01-14 • 24 minutes to read

This annex is informative.

C# provides a mechanism for programmers to document their code using a comment
syntax that contains XML text. In source code files, comments having a certain form can
be used to direct a tool to produce XML from those comments and the source code
elements, which they precede. Comments using such syntax are called documentation
comments. They must immediately precede a user-defined type (such as a class,
delegate, or interface) or a member (such as a field, event, property, or method). The
XML generation tool is called the documentation generator. (This generator could be,
but need not be, the C# compiler itself.) The output produced by the documentation
generator is called the documentation file. A documentation file is used as input to a
documentation viewer; a tool intended to produce some sort of visual display of type
information and its associated documentation.

A conforming C# compiler is not required to check the syntax of documentation
comments; such comments are simply ordinary comments. A conforming compiler is
permitted to do such checking, however.

This specification suggests a set of standard tags to be used in documentation
comments, but use of these tags is not required, and other tags may be used if desired,
as long as the rules of well-formed XML are followed. For C# implementations targeting
the CLI, it also provides information about the documentation generator and the format
of the documentation file. No information is provided about the documentation viewer.

Comments having a certain form can be used to direct a tool to produce XML from
those comments and the source code elements that they precede. Such comments are
Single-Line_Comments (§6.3.3) that start with three slashes (///), or
Delimited_Comments (§6.3.3) that start with a slash and two asterisks (/**). They must
immediately precede a user-defined type or a member that they annotate. Attribute
sections (§21.3) are considered part of declarations, so documentation comments must
precede attributes applied to a type or member.

D.1 General

D.2 Introduction

For expository purposes, the format of document comments is shown below as two
grammar rules: Single_Line_Doc_Comment and Delimited_Doc_Comment. However, these
rules are not part of the C# grammar, but rather, they represent particular formats of
Single_Line_Comment and Delimited_Comment lexer rules, respectively.

Syntax:

ANTLR

In a Single_Line_Doc_Comment, if there is a Whitespace character following the ///
characters on each of the Single_Line_Doc_Comments adjacent to the current
Single_Line_Doc_Comment, then that Whitespace character is not included in the XML
output.

In a Delimited_Doc_Comment, if the first non-Whitespace character on the second line is
an ASTERISK and the same pattern of optional Whitespace characters and an ASTERISK
character is repeated at the beginning of each of the lines within the
Delimited_Doc_Comment, then the characters of the repeated pattern are not included
in the XML output. The pattern can include Whitespace characters after, as well as
before, the ASTERISK character.

Example:

C#

The text within documentation comments must be well formed according to the rules of
XML (http://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated

Single_Line_Doc_Comment
 : '///' Input_Character*
 ;

Delimited_Doc_Comment
 : '/**' Delimited_Comment_Section* ASTERISK+ '/'
 ;

/// <summary>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
public class Point
{
 /// <summary>
 /// Method <c>Draw</c> renders the point.
 /// </summary>
 void Draw() {...}
}

http://www.w3.org/TR/REC-xml

and the documentation file will contain a comment saying that an error was
encountered.

Although developers are free to create their own set of tags, a recommended set is
defined in §D.3. Some of the recommended tags have special meanings:

The <param> tag is used to describe parameters. If such a tag is used, the
documentation generator must verify that the specified parameter exists and that
all parameters are described in documentation comments. If such verification fails,
the documentation generator issues a warning.

The cref attribute can be attached to any tag to provide a reference to a code
element. The documentation generator must verify that this code element exists. If
the verification fails, the documentation generator issues a warning. When looking
for a name described in a cref attribute, the documentation generator must
respect namespace visibility according to using statements appearing within the
source code. For code elements that are generic, the normal generic syntax (e.g.,
“List<T> ”) cannot be used because it produces invalid XML. Braces can be used
instead of brackets (e.g.; “List{T} ”), or the XML escape syntax can be used (e.g.,
“List<T> ”).

The <summary> tag is intended to be used by a documentation viewer to display
additional information about a type or member.

The <include> tag includes information from an external XML file.

Note carefully that the documentation file does not provide full information about the
type and members (for example, it does not contain any type information). To get such
information about a type or member, the documentation file must be used in
conjunction with reflection on the type or member.

The documentation generator must accept and process any tag that is valid according
to the rules of XML. The following tags provide commonly used functionality in user
documentation. (Of course, other tags are possible.)

Tag Reference Purpose

<c> §D.3.2 Set text in a code-like font

D.3 Recommended tags

D.3.1 General

Tag Reference Purpose

<code> §D.3.3 Set one or more lines of source code or program output

<example> §D.3.4 Indicate an example

<exception> §D.3.5 Identifies the exceptions a method can throw

<include> §D.3.6 Includes XML from an external file

<list> §D.3.7 Create a list or table

<para> §D.3.8 Permit structure to be added to text

<param> §D.3.9 Describe a parameter for a method or constructor

<paramref> §D.3.10 Identify that a word is a parameter name

<permission> §D.3.11 Document the security accessibility of a member

<remarks> §D.3.12 Describe additional information about a type

<returns> §D.3.13 Describe the return value of a method

<see> §D.3.14 Specify a link

<seealso> §D.3.15 Generate a See Also entry

<summary> §D.3.16 Describe a type or a member of a type

<typeparam> §D.3.17 Describe a type parameter for a generic type or method

<typeparamref> §D.3.18 Identify that a word is a type parameter name

<value> §D.3.19 Describe a property

This tag provides a mechanism to indicate that a fragment of text within a description
should be set in a special font such as that used for a block of code. For lines of actual
code, use <code> (§D.3.3).

Syntax:

<c> text</c>

Example:

C#

D.3.2 <c>

This tag is used to set one or more lines of source code or program output in some
special font. For small code fragments in narrative, use <c> (§D.3.2).

Syntax:

<code> source code or program output</code>

Example:

C#

This tag allows example code within a comment, to specify how a method or other
library member might be used. Ordinarily, this would also involve use of the tag <code>
(§D.3.3) as well.

Syntax:

/// <summary>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
public class Point
{
}

D.3.3 <code>

public class Point
{
 /// <summary>
 /// This method changes the point's location by the given x- and y-
offsets.
 /// <example>
 /// For example:
 /// <code>
 /// Point p = new Point(3,5);
 /// p.Translate(-1,3);
 /// </code>
 /// results in <c>p</c>'s having the value (2,8).
 /// </example>
 /// </summary>
 public void Translate(int dx, int dy)
 {
 ...
 }
}

D.3.4 <example>

<example>description</example>

Example:

See <code> (§D.3.3) for an example.

This tag provides a way to document the exceptions a method can throw.

Syntax:

<exception cref="member">description</exception>

where

cref="member" is the name of a member. The documentation generator checks
that the given member exists and translates member to the canonical element
name in the documentation file.
description is a description of the circumstances in which the exception is thrown.

Example:

C#

D.3.5 <exception>

class MasterFileFormatCorruptException : System.Exception { ... }
class MasterFileLockedOpenException : System.Exception { ... }

public class DataBaseOperations
{
 /// <exception cref="MasterFileFormatCorruptException">
 /// Thrown when the master file is corrupted.
 /// </exception>
 /// <exception cref="MasterFileLockedOpenException">
 /// Thrown when the master file is already open.
 /// </exception>
 public static void ReadRecord(int flag)
 {
 if (flag == 1)
 {
 throw new MasterFileFormatCorruptException();
 }
 else if (flag == 2)
 {
 throw new MasterFileLockedOpenException();
 }
 ...
 }
}

This tag allows including information from an XML document that is external to the
source code file. The external file must be a well-formed XML document, and an XPath
expression is applied to that document to specify what XML from that document to
include. The <include> tag is then replaced with the selected XML from the external
document.

Syntax:

<include file=" filename" path="xpath" />

where

file=" filename" is the file name of an external XML file. The file name is
interpreted relative to the file that contains the include tag.
path="xpath" is an XPath expression that selects some of the XML in the external
XML file.

Example:

If the source code contained a declaration like:

C#

and the external file “docs.xml” had the following contents:

XML

then the same documentation is output as if the source code contained:

D.3.6 <include>

/// <include file="docs.xml" path='extradoc/class[@name="IntList"]/*' />
public class IntList { ... }

<?xml version="1.0"?>
<extradoc>
 <class name="IntList">
 <summary>
 Contains a list of integers.
 </summary>
 </class>
 <class name="StringList">
 <summary>
 Contains a list of strings.
 </summary>
 </class>
</extradoc>

C#

This tag is used to create a list or table of items. It can contain a <listheader> block to
define the heading row of either a table or definition list. (When defining a table, only an
entry for term in the heading need be supplied.)

Each item in the list is specified with an <item> block. When creating a definition list,
both term and description must be specified. However, for a table, bulleted list, or
numbered list, only description need be specified.

Syntax:

XML

where

term is the term to define, whose definition is in description.
description is either an item in a bullet or numbered list, or the definition of a term.

Example:

C#

/// <summary>
/// Contains a list of integers.
/// </summary>
public class IntList { ... }

D.3.7 <list>

<list type="bullet" | "number" | "table">
 <listheader>
 <term>term</term>
 <description>description</description>
 </listheader>
 <item>
 <term>term</term>
 <description>description</description>
 </item>
 ...
 <item>
 <term>term</term>
 <description>description</description>
 </item>
</list>

This tag is for use inside other tags, such as <summary> (§D.3.16) or <returns> (§D.3.13),
and permits structure to be added to text.

Syntax:

<para>content</para>

where

content is the text of the paragraph.

Example:

C#

public class MyClass
{
 /// <summary>Here is an example of a bulleted list:
 /// <list type="bullet">
 /// <item>
 /// <description>Item 1.</description>
 /// </item>
 /// <item>
 /// <description>Item 2.</description>
 /// </item>
 /// </list>
 /// </summary>
 public static void Main()
 {
 ...
 }
}

D.3.8 <para>

public class Point
{
 /// <summary>This is the entry point of the Point class testing program.
 /// <para>
 /// This program tests each method and operator, and
 /// is intended to be run after any non-trivial maintenance has
 /// been performed on the Point class.
 /// </para>
 /// </summary>
 public static void Main()
 {
 ...
 }
}

This tag is used to describe a parameter for a method, constructor, or indexer.

Syntax:

<param name="name">description</param>

where

name is the name of the parameter.
description is a description of the parameter.

Example:

C#

This tag is used to indicate that a word is a parameter. The documentation file can be
processed to format this parameter in some distinct way.

Syntax:

<paramref name="name"/>

where

name is the name of the parameter.

Example:

C#

D.3.9 <param>

public class Point
{
 /// <summary>
 /// This method changes the point's location to
 /// the given coordinates.
 /// </summary>
 /// <param name="xPosition">the new x-coordinate.</param>
 /// <param name="yPosition">the new y-coordinate.</param>
 public void Move(int xPosition, int yPosition)
 {
 ...
 }
}

D.3.10 <paramref>

This tag allows the security accessibility of a member to be documented.

Syntax:

<permission cref="member">description</permission>

where

member is the name of a member. The documentation generator checks that the
given code element exists and translates member to the canonical element name
in the documentation file.
description is a description of the access to the member.

Example:

C#

public class Point
{
 /// <summary>This constructor initializes the new Point to
 /// (<paramref name="xPosition"/>,<paramref name="yPosition"/>).
 /// </summary>
 /// <param name="xPosition">the new Point's x-coordinate.</param>
 /// <param name="yPosition">the new Point's y-coordinate.</param>
 public Point(int xPosition, int yPosition)
 {
 ...
 }
}

D.3.11 <permission>

public class MyClass
{
 /// <permission cref="System.Security.PermissionSet">
 /// Everyone can access this method.
 /// </permission>
 public static void Test()
 {
 ...
 }
}

D.3.12 <remarks>

This tag is used to specify extra information about a type. Use <summary> (§D.3.16) to
describe the type itself and the members of a type.

Syntax:

<remarks>description</remarks>

where

description is the text of the remark.

Example:

C#

This tag is used to describe the return value of a method.

Syntax:

<returns>description</returns>

where

description is a description of the return value.

Example:

C#

/// <summary>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
/// <remarks>
/// Uses polar coordinates
/// </remarks>
public class Point
{
 ...
}

D.3.13 <returns>

public class Point
{
 /// <summary>
 /// Report a point's location as a string.
 /// </summary>
 /// <returns>
 /// A string representing a point's location, in the form (x,y),

This tag allows a link to be specified within text. Use <seealso> (§D.3.15) to indicate text
that is to appear in a See Also subclause.

Syntax:

<see cref="member" href="url" langword="keyword" />

where

member is the name of a member. The documentation generator checks that the
given code element exists and changes member to the element name in the
generated documentation file.
url is a reference to an external source.
langword is a word to be highlighted somehow.

Example:

C#

 /// without any leading, trailing, or embedded whitespace.
 /// </returns>
 public override string ToString() => $"({X},{Y})";
 public int X { get; set; }
 public int Y { get; set; }
}

D.3.14 <see>

public class Point
{
 /// <summary>
 /// This method changes the point's location to
 /// the given coordinates. <see cref="Translate"/>
 /// </summary>
 public void Move(int xPosition, int yPosition)
 {
 ...
 }
 /// <summary>This method changes the point's location by
 /// the given x- and y-offsets. <see cref="Move"/>
 /// </summary>
 public void Translate(int dx, int dy)
 {
 ...
 }
}

This tag allows an entry to be generated for the See Also subclause. Use <see> (§D.3.14)
to specify a link from within text.

Syntax:

<seealso cref="member" href="url" />

where

member is the name of a member. The documentation generator checks that the
given code element exists and changes member to the element name in the
generated documentation file.
url is a reference to an external source.

Example:

C#

This tag can be used to describe a type or a member of a type. Use <remarks> (§D.3.12)
to describe the type itself.

Syntax:

<summary>description</summary>

where

description is a summary of the type or member.

Example:

D.3.15 <seealso>

public class Point
{
 /// <summary>
 /// This method determines whether two Points have the same location.
 /// </summary>
 /// <seealso cref="operator=="/>
 /// <seealso cref="operator!="/>
 public override bool Equals(object o)
 {
 ...
 }
}

D.3.16 <summary>

C#

This tag is used to describe a type parameter for a generic type or method.

Syntax:

<typeparam name="name">description</typeparam>

where

name is the name of the type parameter.
description is a description of the type parameter.

Example:

C#

public class Point
{

 /// <summary>
 /// This constructor initializes the new Point to
 /// (<paramref name="xPosition"/>,<paramref name="yPosition"/>).
 /// </summary>
 public Point(int xPosition, int yPosition)
 {
 ...
 }

 /// <summary>This constructor initializes the new Point to (0,0).
</summary>
 public Point() : this(0, 0)
 {
 }
}

D.3.17 <typeparam>

/// <summary>A generic list class.</summary>
/// <typeparam name="T">The type stored by the list.</typeparam>
public class MyList<T>
{
 ...
}

D.3.18 <typeparamref>

This tag is used to indicate that a word is a type parameter. The documentation file can
be processed to format this type parameter in some distinct way.

Syntax:

<typeparamref name="name"/>

where

name is the name of the type parameter.

Example:

C#

This tag allows a property to be described.

Syntax:

<value>property description</value>

where

property description is a description for the property.

Example:

C#

public class MyClass
{
 /// <summary>
 /// This method fetches data and returns a list of
 /// <typeparamref name="T"/>.
 /// </summary>
 /// <param name="string">query to execute</param>
 public List<T> FetchData<T>(string query)
 {
 ...
 }
}

D.3.19 <value>

public class Point
{
 /// <value>Property <c>X</c> represents the point's x-coordinate.
</value>

The following information is intended for C# implementations targeting the CLI.

The documentation generator generates an ID string for each element in the source
code that is tagged with a documentation comment. This ID string uniquely identifies a
source element. A documentation viewer can use an ID string to identify the
corresponding item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it
is a flat list with a generated ID string for each element.

The documentation generator observes the following rules when it generates the
ID strings:

No white space is placed in the string.

The first part of the string identifies the kind of member being documented, via a
single character followed by a colon. The following kinds of members are defined:

Character Description

E Event

F Field

M Method (including constructors, finalizers, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the error. For
example, the documentation generator generates error information for links
that cannot be resolved.

 public int X { get; set; }
}

D.4 Processing the documentation file

D.4.1 General

D.4.2 ID string format

The second part of the string is the fully qualified name of the element, starting at
the root of the namespace. The name of the element, its enclosing type(s), and
namespace are separated by periods. If the name of the item itself has periods,
they are replaced by # (U+0023) characters. (It is assumed that no element has this
character in its name.)

For methods and properties with arguments, the argument list follows, enclosed in
parentheses. For those without arguments, the parentheses are omitted. The
arguments are separated by commas. The encoding of each argument is the same
as a CLI signature, as follows:

Arguments are represented by their documentation name, which is based on
their fully qualified name, modified as follows:

Arguments that represent generic types have an appended “' ” character
followed by the number of type parameters
Arguments having the out or ref modifier have an @ following their type
name. Arguments passed by value or via params have no special notation.
Arguments that are arrays are represented as [lowerbound : size , … ,
lowerbound : size] where the number of commas is the rank less one, and
the lower bounds and size of each dimension, if known, are represented in
decimal. If a lower bound or size is not specified, it is omitted. If the lower
bound and size for a particular dimension are omitted, the “: ” is omitted as
well. Jagged arrays are represented by one “[] ” per level.
Arguments that have pointer types other than void are represented using
a * following the type name. A void pointer is represented using a type
name of System.Void .
Arguments that refer to generic type parameters defined on types are
encoded using the “` ” character followed by the zero-based index of the
type parameter.
Arguments that use generic type parameters defined in methods use a
double-backtick “`` ” instead of the “` ” used for types.
Arguments that refer to constructed generic types are encoded using the
generic type, followed by “{ ”, followed by a comma-separated list of type
arguments, followed by “} ”.

The following examples each show a fragment of C# code, along with the ID string
produced from each source element capable of having a documentation comment:

D.4.3 ID string examples

Types are represented using their fully qualified name, augmented with generic
information:

C#

IDs:

Console

Fields are represented by their fully qualified name.

C#

enum Color { Red, Blue, Green }

namespace Acme
{
 interface IProcess { ... }

 struct ValueType { ... }

 class Widget : IProcess
 {
 public class NestedClass { ... }
 public interface IMenuItem { ... }
 public delegate void Del(int i);
 public enum Direction { North, South, East, West }
 }

 class MyList<T>
 {
 class Helper<U,V> { ... }
 }
}

"T:Color"
"T:Acme.IProcess"
"T:Acme.ValueType"
"T:Acme.Widget"
"T:Acme.Widget.NestedClass"
"T:Acme.Widget.IMenuItem"
"T:Acme.Widget.Del"
"T:Acme.Widget.Direction"
"T:Acme.MyList`1"
"T:Acme.MyList`1.Helper`2"

namespace Acme
{
 struct ValueType
 {
 private int total;

IDs:

Console

Constructors

C#

IDs:

 }

 class Widget : IProcess
 {
 public class NestedClass
 {
 private int value;
 }

 private string message;
 private static Color defaultColor;
 private const double PI = 3.14159;
 protected readonly double monthlyAverage;
 private long[] array1;
 private Widget[,] array2;
 private unsafe int *pCount;
 private unsafe float **ppValues;
 }
}

"F:Acme.ValueType.total"
"F:Acme.Widget.NestedClass.value"
"F:Acme.Widget.message"
"F:Acme.Widget.defaultColor"
"F:Acme.Widget.PI"
"F:Acme.Widget.monthlyAverage"
"F:Acme.Widget.array1"
"F:Acme.Widget.array2"
"F:Acme.Widget.pCount"
"F:Acme.Widget.ppValues"

namespace Acme
{
 class Widget : IProcess
 {
 static Widget() { ... }
 public Widget() { ... }
 public Widget(string s) { ... }
 }
}

Console

Finalizers

C#

IDs:

Console

Methods

C#

"M:Acme.Widget.#cctor"
"M:Acme.Widget.#ctor"
"M:Acme.Widget.#ctor(System.String)"

namespace Acme
{
 class Widget : IProcess
 {
 ~Widget() { ... }
 }
}

"M:Acme.Widget.Finalize"

namespace Acme
{
 struct ValueType
 {
 public void M(int i) { ... }
 }

 class Widget : IProcess
 {
 public class NestedClass
 {
 public void M(int i) { ... }
 }

 public static void M0() { ... }
 public void M1(char c, out float f, ref ValueType v) { ... }
 public void M2(short[] x1, int[,] x2, long[][] x3) { ... }
 public void M3(long[][] x3, Widget[][,,] x4) { ... }
 public unsafe void M4(char *pc, Color **pf) { ... }
 public unsafe void M5(void *pv, double *[][,] pd) { ... }
 public void M6(int i, params object[] args) { ... }
 }

IDs:

Console

Properties and indexers

C#

IDs:

Console

 class MyList<T>
 {
 public void Test(T t) { ... }
 }

 class UseList
 {
 public void Process(MyList<int> list) { ... }
 public MyList<T> GetValues<T>(T value) { ... }
 }
}

"M:Acme.ValueType.M(System.Int32)"
"M:Acme.Widget.NestedClass.M(System.Int32)"
"M:Acme.Widget.M0"
"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)"
"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])"
"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])"
"M:Acme.Widget.M4(System.Char*,Color**)"
"M:Acme.Widget.M5(System.Void*,System.Double*[0:,0:][])"
"M:Acme.Widget.M6(System.Int32,System.Object[])"
"M:Acme.MyList`1.Test(`0)"
"M:Acme.UseList.Process(Acme.MyList{System.Int32})"
"M:Acme.UseList.GetValues``1(``0)"

namespace Acme
{
 class Widget : IProcess
 {
 public int Width { get { ... } set { ... } }
 public int this[int i] { get { ... } set { ... } }
 public int this[string s, int i] { get { ... } set { ... } }
 }
}

"P:Acme.Widget.Width"
"P:Acme.Widget.Item(System.Int32)"

Events

C#

IDs:

Console

Unary operators

C#

IDs:

Console

The complete set of unary operator function names used is as follows: op_UnaryPlus ,
op_UnaryNegation , op_LogicalNot , op_OnesComplement , op_Increment , op_Decrement ,
op_True , and op_False .

Binary operators

C#

"P:Acme.Widget.Item(System.String,System.Int32)"

namespace Acme
{
 class Widget : IProcess
 {
 public event Del AnEvent;
 }
}

"E:Acme.Widget.AnEvent"

namespace Acme
{
 class Widget : IProcess
 {
 public static Widget operator+(Widget x) { ... }
 }
}

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)"

IDs:

Console

The complete set of binary operator function names used is as follows: op_Addition ,
op_Subtraction , op_Multiply , op_Division , op_Modulus , op_BitwiseAnd , op_BitwiseOr ,
op_ExclusiveOr , op_LeftShift , op_RightShift , op_Equality , op_Inequality ,
op_LessThan , op_LessThanOrEqual , op_GreaterThan , and op_GreaterThanOrEqual .

Conversion operators have a trailing “~ ” followed by the return type.

C#

IDs:

Console

The following example shows the source code of a Point class:

namespace Acme
{
 class Widget : IProcess
 {
 public static Widget operator+(Widget x1, Widget x2) { ... }
 }
}

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)"

namespace Acme
{
 class Widget : IProcess
 {
 public static explicit operator int(Widget x) { ... }
 public static implicit operator long(Widget x) { ... }
 }
}

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32"
"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64"

D.5 An example

D.5.1 C# source code

C#

namespace Graphics
{
 /// <summary>
 /// Class <c>Point</c> models a point in a two-dimensional plane.
 /// </summary>
 public class Point
 {
 /// <value>
 /// Property <c>X</c> represents the point's x-coordinate.
 /// </value>
 public int X { get; set; }

 /// <value>
 /// Property <c>Y</c> represents the point's y-coordinate.
 /// </value>
 public int Y { get; set; }

 /// <summary>
 /// This constructor initializes the new Point to (0,0).
 /// </summary>
 public Point() : this(0, 0) {}

 /// <summary>
 /// This constructor initializes the new Point to
 /// (<paramref name="xPosition"/>,<paramref name="yPosition"/>).
 /// </summary>
 /// <param><c>xPosition</c> is the new Point's x-coordinate.</param>
 /// <param><c>yPosition</c> is the new Point's y-coordinate.</param>
 public Point(int xPosition, int yPosition)
 {
 X = xPosition;
 Y = yPosition;
 }

 /// <summary>
 /// This method changes the point's location to
 /// the given coordinates. <see cref="Translate"/>
 /// </summary>
 /// <param><c>xPosition</c> is the new x-coordinate.</param>
 /// <param><c>yPosition</c> is the new y-coordinate.</param>
 public void Move(int xPosition, int yPosition)
 {
 X = xPosition;
 Y = yPosition;
 }

 /// <summary>
 /// This method changes the point's location by
 /// the given x- and y-offsets.
 /// <example>For example:
 /// <code>
 /// Point p = new Point(3, 5);

 /// p.Translate(-1, 3);
 /// </code>
 /// results in <c>p</c>'s having the value (2, 8).
 /// <see cref="Move"/>
 /// </example>
 /// </summary>
 /// <param><c>dx</c> is the relative x-offset.</param>
 /// <param><c>dy</c> is the relative y-offset.</param>
 public void Translate(int dx, int dy)
 {
 X += dx;
 Y += dy;
 }

 /// <summary>
 /// This method determines whether two Points have the same
location.
 /// </summary>
 /// <param>
 /// <c>o</c> is the object to be compared to the current object.
 /// </param>
 /// <returns>
 /// True if the Points have the same location and they have
 /// the exact same type; otherwise, false.
 /// </returns>
 /// <seealso cref="operator=="/>
 /// <seealso cref="operator!="/>
 public override bool Equals(object o)
 {
 if (o == null)
 {
 return false;
 }
 if ((object)this == o)
 {
 return true;
 }
 if (GetType() == o.GetType())
 {
 Point p = (Point)o;
 return (X == p.X) && (Y == p.Y);
 }
 return false;
 }

 /// <summary>
 /// This method returns a Point's hashcode.
 /// </summary>
 /// <returns>
 /// The int hashcode.
 /// </returns>
 public override int GetHashCode()
 {
 return X + (Y >> 4); // a crude version
 }

 /// <summary>Report a point's location as a string.</summary>
 /// <returns>
 /// A string representing a point's location, in the form (x,y),
 /// without any leading, training, or embedded whitespace.
 /// </returns>
 public override string ToString() => $"({X},{Y})";

 /// <summary>
 /// This operator determines whether two Points have the same
location.
 /// </summary>
 /// <param><c>p1</c> is the first Point to be compared.</param>
 /// <param><c>p2</c> is the second Point to be compared.</param>
 /// <returns>
 /// True if the Points have the same location and they have
 /// the exact same type; otherwise, false.
 /// </returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator!="/>
 public static bool operator==(Point p1, Point p2)
 {
 if ((object)p1 == null || (object)p2 == null)
 {
 return false;
 }
 if (p1.GetType() == p2.GetType())
 {
 return (p1.X == p2.X) && (p1.Y == p2.Y);
 }
 return false;
 }

 /// <summary>
 /// This operator determines whether two Points have the same
location.
 /// </summary>
 /// <param><c>p1</c> is the first Point to be compared.</param>
 /// <param><c>p2</c> is the second Point to be compared.</param>
 /// <returns>
 /// True if the Points do not have the same location and the
 /// exact same type; otherwise, false.
 /// </returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator=="/>
 public static bool operator!=(Point p1, Point p2) => !(p1 == p2);
 }
}

D.5.2 Resulting XML

Here is the output produced by one documentation generator when given the source
code for class Point , shown above:

XML

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>Point</name>
 </assembly>
 <members>
 <member name="T:Graphics.Point">
 <summary>Class <c>Point</c> models a point in a two-dimensional
 plane.
 </summary>
 </member>
 <member name="M:Graphics.Point.#ctor">
 <summary>This constructor initializes the new Point to (0, 0).
</summary>
 </member>
 <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
 <summary>
 This constructor initializes the new Point to
 (<paramref name="xPosition"/>,<paramref name="yor"/>).
 </summary>
 <param><c>xPosition</c> is the new Point's x-coordinate.</param>
 <param><c>yPosition</c> is the new Point's y-coordinate.</param>
 </member>
 <member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
 <summary>
 This method changes the point's location to
 the given coordinates.
 <see cref="M:Graphics.Point.Translate(System.Int32,System.Int32)"/>
 </summary>
 <param><c>xPosition</c> is the new x-coordinate.</param>
 <param><c>yPosition</c> is the new y-coordinate.</param>
 </member>
 <member name="M:Graphics.Point.Translate(System.Int32,System.Int32)">
 <summary>
 This method changes the point's location by
 the given x- and y-offsets.
 <example>For example:
 <code>
 Point p = new Point(3,5);
 p.Translate(-1,3);
 </code>
 results in <c>p</c>'s having the value (2,8).
 </example>
 <see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/>
 </summary>
 <param><c>dx</c> is the relative x-offset.</param>
 <param><c>dy</c> is the relative y-offset.</param>
 </member>
 <member name="M:Graphics.Point.Equals(System.Object)">

 <summary>
 This method determines whether two Points have the same location.
 </summary>
 <param>
 <c>o</c> is the object to be compared to the current object.
 </param>
 <returns>
 True if the Points have the same location and they have
 the exact same type; otherwise, false.
 </returns>
 <seealso
 cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"
/>
 <seealso

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member name="M:Graphics.Point.ToString">
 <summary>
 Report a point's location as a string.
 </summary>
 <returns>
 A string representing a point's location, in the form (x,y),
 without any leading, training, or embedded whitespace.
 </returns>
 </member>
 <member
name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
 <summary>
 This operator determines whether two Points have the same location.
 </summary>
 <param><c>p1</c> is the first Point to be compared.</param>
 <param><c>p2</c> is the second Point to be compared.</param>
 <returns>
 True if the Points have the same location and they have
 the exact same type; otherwise, false.
 </returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member

name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
 <summary>
 This operator determines whether two Points have the same location.
 </summary>
 <param><c>p1</c> is the first Point to be compared.</param>
 <param><c>p2</c> is the second Point to be compared.</param>
 <returns>
 True if the Points do not have the same location and the
 exact same type; otherwise, false.
 </returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>

End of informative text.

 <seealso
 cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member name="M:Graphics.Point.Main">
 <summary>
 This is the entry point of the Point class testing program.
 <para>
 This program tests each method and operator, and
 is intended to be run after any non-trivial maintenance has
 been performed on the Point class.
 </para>
 </summary>
 </member>
 <member name="P:Graphics.Point.X">
 <value>
 Property <c>X</c> represents the point's x-coordinate.
 </value>
 </member>
 <member name="P:Graphics.Point.Y">
 <value>
 Property <c>Y</c> represents the point's y-coordinate.
 </value>
 </member>
 </members>
</doc>

Annex E Bibliography
Article • 2022-01-13 • 2 minutes to read

This annex is informative.

ANSI X3.274-1996, Programming Language REXX. (This document is useful in
understanding floating-point decimal arithmetic rules.)

ISO/IEC 9075-1, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework)

ISO/IEC 9899, Programming languages — C.

ISO/IEC 14882 Programming languages — C++

ISO 80000-1, Quantities and units — Part 1: General. (This document defines
“banker’s rounding.”)

End of informative text.

Pattern Matching for C# 7
Article • 2021-09-21 • 15 minutes to read

Pattern matching extensions for C# enable many of the benefits of algebraic data types
and pattern matching from functional languages, but in a way that smoothly integrates
with the feel of the underlying language. The basic features are: record types, which are
types whose semantic meaning is described by the shape of the data; and pattern
matching, which is a new expression form that enables extremely concise multilevel
decomposition of these data types. Elements of this approach are inspired by related
features in the programming languages F# and Scala .

The is operator is extended to test an expression against a pattern.

antlr

This form of relational_expression is in addition to the existing forms in the C#
specification. It is a compile-time error if the relational_expression to the left of the is
token does not designate a value or does not have a type.

Every identifier of the pattern introduces a new local variable that is definitely assigned
after the is operator is true (i.e. definitely assigned when true).

Note: There is technically an ambiguity between type in an is-expression and
constant_pattern, either of which might be a valid parse of a qualified identifier. We
try to bind it as a type for compatibility with previous versions of the language; only
if that fails do we resolve it as we do in other contexts, to the first thing found
(which must be either a constant or a type). This ambiguity is only present on the
right-hand-side of an is expression.

Patterns are used in the is operator and in a switch_statement to express the shape of
data against which incoming data is to be compared. Patterns may be recursive so that
parts of the data may be matched against sub-patterns.

Is expression

relational_expression
 : relational_expression 'is' pattern
 ;

Patterns

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p29-syme.pdf
https://infoscience.epfl.ch/record/98468/files/MatchingObjectsWithPatterns-TR.pdf

antlr

Note: There is technically an ambiguity between type in an is-expression and
constant_pattern, either of which might be a valid parse of a qualified identifier. We
try to bind it as a type for compatibility with previous versions of the language; only
if that fails do we resolve it as we do in other contexts, to the first thing found
(which must be either a constant or a type). This ambiguity is only present on the
right-hand-side of an is expression.

The declaration_pattern both tests that an expression is of a given type and casts it to
that type if the test succeeds. If the simple_designation is an identifier, it introduces a
local variable of the given type named by the given identifier. That local variable is
definitely assigned when the result of the pattern-matching operation is true.

antlr

The runtime semantic of this expression is that it tests the runtime type of the left-hand
relational_expression operand against the type in the pattern. If it is of that runtime type
(or some subtype), the result of the is operator is true . It declares a new local variable
named by the identifier that is assigned the value of the left-hand operand when the
result is true .

pattern
 : declaration_pattern
 | constant_pattern
 | var_pattern
 ;

declaration_pattern
 : type simple_designation
 ;

constant_pattern
 : shift_expression
 ;

var_pattern
 : 'var' simple_designation
 ;

Declaration pattern

declaration_pattern
 : type simple_designation
 ;

Certain combinations of static type of the left-hand-side and the given type are
considered incompatible and result in compile-time error. A value of static type E is said
to be pattern compatible with the type T if there exists an identity conversion, an
implicit reference conversion, a boxing conversion, an explicit reference conversion, or
an unboxing conversion from E to T . It is a compile-time error if an expression of type
E is not pattern compatible with the type in a type pattern that it is matched with.

Note: In C# 7.1 we extend this to permit a pattern-matching operation if either the
input type or the type T is an open type. This paragraph is replaced by the
following:

Certain combinations of static type of the left-hand-side and the given type are
considered incompatible and result in compile-time error. A value of static type E is
said to be pattern compatible with the type T if there exists an identity conversion,
an implicit reference conversion, a boxing conversion, an explicit reference
conversion, or an unboxing conversion from E to T , or if either E or T is an open
type. It is a compile-time error if an expression of type E is not pattern compatible
with the type in a type pattern that it is matched with.

The declaration pattern is useful for performing run-time type tests of reference types,
and replaces the idiom

C#

With the slightly more concise

C#

It is an error if type is a nullable value type.

The declaration pattern can be used to test values of nullable types: a value of type
Nullable<T> (or a boxed T) matches a type pattern T2 id if the value is non-null and
the type of T2 is T , or some base type or interface of T . For example, in the code
fragment

C#

var v = expr as Type;
if (v != null) { // code using v }

if (expr is Type v) { // code using v }

The condition of the if statement is true at runtime and the variable v holds the value
3 of type int inside the block.

antlr

A constant pattern tests the value of an expression against a constant value. The
constant may be any constant expression, such as a literal, the name of a declared const
variable, or an enumeration constant, or a typeof expression.

If both e and c are of integral types, the pattern is considered matched if the result of
the expression e == c is true .

Otherwise the pattern is considered matching if object.Equals(e, c) returns true . In
this case it is a compile-time error if the static type of e is not pattern compatible with
the type of the constant.

antlr

An expression e matches a var_pattern always. In other words, a match to a var pattern
always succeeds. If the simple_designation is an identifier, then at runtime the value of e
is bound to a newly introduced local variable. The type of the local variable is the static
type of e.

It is an error if the name var binds to a type.

int? x = 3;
if (x is int v) { // code using v }

Constant pattern

constant_pattern
 : shift_expression
 ;

Var pattern

var_pattern
 : 'var' simple_designation
 ;

Switch statement

The switch statement is extended to select for execution the first block having an
associated pattern that matches the switch expression.

antlr

The order in which patterns are matched is not defined. A compiler is permitted to
match patterns out of order, and to reuse the results of already matched patterns to
compute the result of matching of other patterns.

If a case-guard is present, its expression is of type bool . It is evaluated as an additional
condition that must be satisfied for the case to be considered satisfied.

It is an error if a switch_label can have no effect at runtime because its pattern is
subsumed by previous cases. [TODO: We should be more precise about the techniques
the compiler is required to use to reach this judgment.]

A pattern variable declared in a switch_label is definitely assigned in its case block if and
only if that case block contains precisely one switch_label.

[TODO: We should specify when a switch block is reachable.]

The scope of a variable declared in a pattern is as follows:

If the pattern is a case label, then the scope of the variable is the case block.

Otherwise the variable is declared in an is_pattern expression, and its scope is based on
the construct immediately enclosing the expression containing the is_pattern expression
as follows:

If the expression is in an expression-bodied lambda, its scope is the body of the
lambda.
If the expression is in an expression-bodied method or property, its scope is the
body of the method or property.

switch_label
 : 'case' complex_pattern case_guard? ':'
 | 'case' constant_expression case_guard? ':'
 | 'default' ':'
 ;

case_guard
 : 'when' expression
 ;

Scope of pattern variables

If the expression is in a when clause of a catch clause, its scope is that catch
clause.
If the expression is in an iteration_statement, its scope is just that statement.
Otherwise if the expression is in some other statement form, its scope is the scope
containing the statement.

For the purpose of determining the scope, an embedded_statement is considered to be
in its own scope. For example, the grammar for an if_statement is

antlr

So if the controlled statement of an if_statement declares a pattern variable, its scope is
restricted to that embedded_statement:

C#

In this case the scope of z is the embedded statement M(y is var z); .

Other cases are errors for other reasons (e.g. in a parameter's default value or an
attribute, both of which are an error because those contexts require a constant
expression).

In C# 7.3 we added the following contexts in which a pattern variable may be
declared:

If the expression is in a constructor initializer, its scope is the constructor
initializer and the constructor's body.
If the expression is in a field initializer, its scope is the equals_value_clause in
which it appears.
If the expression is in a query clause that is specified to be translated into the
body of a lambda, its scope is just that expression.

if_statement
 : 'if' '(' boolean_expression ')' embedded_statement
 | 'if' '(' boolean_expression ')' embedded_statement 'else'
embedded_statement
 ;

if (x) M(y is var z);

Changes to syntactic disambiguation

There are situations involving generics where the C# grammar is ambiguous, and the
language spec says how to resolve those ambiguities:

7.6.5.2 Grammar ambiguities

The productions for simple-name (§7.6.3) and member-access (§7.6.5) can give rise to
ambiguities in the grammar for expressions. For example, the statement:

C#

could be interpreted as a call to F with two arguments, G < A and B > (7) .
Alternatively, it could be interpreted as a call to F with one argument, which is a call
to a generic method G with two type arguments and one regular argument.

If a sequence of tokens can be parsed (in context) as a simple-name (§7.6.3),
member-access (§7.6.5), or pointer-member-access (§18.5.2) ending with a type-
argument-list (§4.4.1), the token immediately following the closing > token is
examined. If it is one of

none

then the type-argument-list is retained as part of the simple-name, member-access
or pointer-member-access and any other possible parse of the sequence of tokens is
discarded. Otherwise, the type-argument-list is not considered to be part of the
simple-name, member-access or > pointer-member-access, even if there is no other
possible parse of the sequence of tokens. Note that these rules are not applied
when parsing a type-argument-list in a namespace-or-type-name (§3.8). The
statement

C#

will, according to this rule, be interpreted as a call to F with one argument, which is
a call to a generic method G with two type arguments and one regular argument.
The statements

F(G<A,B>(7));

()] } : ; , . ? == != | ^

F(G<A,B>(7));

C#

will each be interpreted as a call to F with two arguments. The statement

C#

will be interpreted as a less than operator, greater than operator, and unary plus
operator, as if the statement had been written x = (F < A) > (+y) , instead of as a
simple-name with a type-argument-list followed by a binary plus operator. In the
statement

C#

the tokens C<T> are interpreted as a namespace-or-type-name with a type-
argument-list.

There are a number of changes being introduced in C# 7 that make these
disambiguation rules no longer sufficient to handle the complexity of the language.

It is now possible to declare a variable in an out argument:

C#

However, the type may be generic:

C#

Since the language grammar for the argument uses expression, this context is subject to
the disambiguation rule. In this case the closing > is followed by an identifier, which is

F(G < A, B > 7);
F(G < A, B >> 7);

x = F < A > +y;

x = y is C<T> + z;

Out variable declarations

M(out Type name);

M(out A name);

not one of the tokens that permits it to be treated as a type-argument-list. I therefore
propose to add identifier to the set of tokens that triggers the disambiguation to a
type-argument-list.

A tuple literal runs into exactly the same issue. Consider the tuple expression

C#

Under the old C# 6 rules for parsing an argument list, this would parse as a tuple with
four elements, starting with A < B as the first. However, when this appears on the left of
a deconstruction, we want the disambiguation triggered by the identifier token as
described above:

C#

This is a deconstruction declaration which declares two variables, the first of which is of
type A<B,C> and named D . In other words, the tuple literal contains two expressions,
each of which is a declaration expression.

For simplicity of the specification and compiler, I propose that this tuple literal be parsed
as a two-element tuple wherever it appears (whether or not it appears on the left-hand-
side of an assignment). That would be a natural result of the disambiguation described
in the previous section.

Pattern matching introduces a new context where the expression-type ambiguity arises.
Previously the right-hand-side of an is operator was a type. Now it can be a type or
expression, and if it is a type it may be followed by an identifier. This can, technically,
change the meaning of existing code:

C#

This could be parsed under C#6 rules as

Tuples and deconstruction declarations

(A < B, C > D, E < F, G > H)

(A<B,C> D, E<F,G> H) = e;

Pattern-matching

var x = e is T < A > B;

C#

but under under C#7 rules (with the disambiguation proposed above) would be parsed
as

C#

which declares a variable B of type T<A> . Fortunately, the native and Roslyn compilers
have a bug whereby they give a syntax error on the C#6 code. Therefore this particular
breaking change is not a concern.

Pattern-matching introduces additional tokens that should drive the ambiguity
resolution toward selecting a type. The following examples of existing valid C#6 code
would be broken without additional disambiguation rules:

C#

I propose to revise the specification to change the list of disambiguating tokens from

none

to

none

And, in certain contexts, we treat identifier as a disambiguating token. Those contexts
are where the sequence of tokens being disambiguated is immediately preceded by one

var x = ((e is T) < A) > B;

var x = e is T<A> B;

var x = e is A && f; // &&
var x = e is A || f; // ||
var x = e is A & f; // &
var x = e is A[]; // [

Proposed change to the disambiguation rule

()] } : ; , . ? == != | ^

()] } : ; , . ? == != | ^ && || & [

of the keywords is , case , or out , or arises while parsing the first element of a tuple
literal (in which case the tokens are preceded by (or : and the identifier is followed by
a ,) or a subsequent element of a tuple literal.

The revised disambiguation rule would be something like this

If a sequence of tokens can be parsed (in context) as a simple-name (§7.6.3),
member-access (§7.6.5), or pointer-member-access (§18.5.2) ending with a type-
argument-list (§4.4.1), the token immediately following the closing > token is
examined, to see if it is

One of ()] } : ; , . ? == != | ^ && || & [; or
One of the relational operators < > <= >= is as ; or
A contextual query keyword appearing inside a query expression; or
In certain contexts, we treat identifier as a disambiguating token. Those
contexts are where the sequence of tokens being disambiguated is
immediately preceded by one of the keywords is , case or out , or arises while
parsing the first element of a tuple literal (in which case the tokens are
preceded by (or : and the identifier is followed by a ,) or a subsequent
element of a tuple literal.

If the following token is among this list, or an identifier in such a context, then the
type-argument-list is retained as part of the simple-name, member-access or pointer-
member-access and any other possible parse of the sequence of tokens is discarded.
Otherwise, the type-argument-list is not considered to be part of the simple-name,
member-access or pointer-member-access, even if there is no other possible parse of
the sequence of tokens. Note that these rules are not applied when parsing a type-
argument-list in a namespace-or-type-name (§3.8).

No breaking changes are known due to this proposed disambiguation rule.

Here are some interesting results of these disambiguation rules:

The expression (A < B, C > D) is a tuple with two elements, each a comparison.

Modified disambiguation rule

Breaking changes due to this proposal

Interesting examples

The expression (A<B,C> D, E) is a tuple with two elements, the first of which is a
declaration expression.

The invocation M(A < B, C > D, E) has three arguments.

The invocation M(out A<B,C> D, E) has two arguments, the first of which is an out
declaration.

The expression e is A C uses a declaration expression.

The case label case A C: uses a declaration expression.

We can replace the idiom

C#

With the slightly more concise and direct

C#

We can replace the idiom

C#

Some examples of pattern matching

Is-As

var v = expr as Type;
if (v != null) {
 // code using v
}

if (expr is Type v) {
 // code using v
}

Testing nullable

Type? v = x?.y?.z;
if (v.HasValue) {
 var value = v.GetValueOrDefault();
 // code using value
}

With the slightly more concise and direct

C#

Suppose we define a set of recursive types to represent expressions (per a separate
proposal):

C#

Now we can define a function to compute the (unreduced) derivative of an expression:

C#

An expression simplifier demonstrates positional patterns:

C#

if (x?.y?.z is Type value) {
 // code using value
}

Arithmetic simplification

abstract class Expr;
class X() : Expr;
class Const(double Value) : Expr;
class Add(Expr Left, Expr Right) : Expr;
class Mult(Expr Left, Expr Right) : Expr;
class Neg(Expr Value) : Expr;

Expr Deriv(Expr e)
{
 switch (e) {
 case X(): return Const(1);
 case Const(*): return Const(0);
 case Add(var Left, var Right):
 return Add(Deriv(Left), Deriv(Right));
 case Mult(var Left, var Right):
 return Add(Mult(Deriv(Left), Right), Mult(Left, Deriv(Right)));
 case Neg(var Value):
 return Neg(Deriv(Value));
 }
}

Expr Simplify(Expr e)
{
 switch (e) {
 case Mult(Const(0), *): return Const(0);

 case Mult(*, Const(0)): return Const(0);
 case Mult(Const(1), var x): return Simplify(x);
 case Mult(var x, Const(1)): return Simplify(x);
 case Mult(Const(var l), Const(var r)): return Const(l*r);
 case Add(Const(0), var x): return Simplify(x);
 case Add(var x, Const(0)): return Simplify(x);
 case Add(Const(var l), Const(var r)): return Const(l+r);
 case Neg(Const(var k)): return Const(-k);
 default: return e;
 }
}

Out variable declarations
Article • 2021-09-21 • 2 minutes to read

The out variable declaration feature enables a variable to be declared at the location that
it is being passed as an out argument.

antlr

A variable declared this way is called an out variable. You may use the contextual
keyword var for the variable's type. The scope will be the same as for a pattern-variable
introduced via pattern-matching.

According to Language Specification (section 7.6.7 Element access) the argument-list of
an element-access (indexing expression) does not contain ref or out arguments.
However, they are permitted by the compiler for various scenarios, for example indexers
declared in metadata that accept out .

Within the scope of a local variable introduced by an argument_value, it is a compile-
time error to refer to that local variable in a textual position that precedes its
declaration.

It is also an error to reference an implicitly-typed (§8.5.1) out variable in the same
argument list that immediately contains its declaration.

Overload resolution is modified as follows:

We add a new conversion:

There is a conversion from expression from an implicitly-typed out variable
declaration to every type.

Also

The type of an explicitly-typed out variable argument is the declared type.

and

An implicitly-typed out variable argument has no type.

argument_value
 : 'out' type identifier
 | ...
 ;

The conversion from expression from an implicitly-typed out variable declaration is not
considered better than any other conversion from expression.

The type of an implicitly-typed out variable is the type of the corresponding parameter
in the signature of the method selected by overload resolution.

The new syntax node DeclarationExpressionSyntax is added to represent the
declaration in an out var argument.

Async Task Types in C#
Article • 2021-10-13 • 3 minutes to read

Extend async to support task types that match a specific pattern, in addition to the well
known types System.Threading.Tasks.Task and System.Threading.Tasks.Task<T> .

A task type is a class or struct with an associated builder type identified with
System.Runtime.CompilerServices.AsyncMethodBuilderAttribute . The task type may be
non-generic, for async methods that do not return a value, or generic, for methods that
return a value.

To support await , the task type must have a corresponding, accessible GetAwaiter()
method that returns an instance of an awaiter type (see C# 7.7.7.1 Awaitable
expressions).

C#

The builder type is a class or struct that corresponds to the specific task type. The
builder type can have at most 1 type parameter and must not be nested in a generic
type. The builder type has the following public methods. For non-generic builder types,
SetResult() has no parameters.

C#

Task Type

[AsyncMethodBuilder(typeof(MyTaskMethodBuilder<>))]
class MyTask<T>
{
 public Awaiter<T> GetAwaiter();
}

class Awaiter<T> : INotifyCompletion
{
 public bool IsCompleted { get; }
 public T GetResult();
 public void OnCompleted(Action completion);
}

Builder Type

class MyTaskMethodBuilder<T>
{

The types above are used by the compiler to generate the code for the state machine of
an async method. (The generated code is equivalent to the code generated for async
methods that return Task , Task<T> , or void . The difference is, for those well known
types, the builder types are also known to the compiler.)

Builder.Create() is invoked to create an instance of the builder type.

builder.Start(ref stateMachine) is invoked to associate the builder with compiler-
generated state machine instance. The builder must call stateMachine.MoveNext() either
in Start() or after Start() has returned to advance the state machine. After Start()
returns, the async method calls builder.Task for the task to return from the async
method.

Each call to stateMachine.MoveNext() will advance the state machine. If the state
machine completes successfully, builder.SetResult() is called, with the method return
value if any. If an exception is thrown in the state machine,
builder.SetException(exception) is called.

If the state machine reaches an await expr expression, expr.GetAwaiter() is invoked. If
the awaiter implements ICriticalNotifyCompletion and IsCompleted is false, the state
machine invokes builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine) .
AwaitUnsafeOnCompleted() should call awaiter.UnsafeOnCompleted(action) with an

 public static MyTaskMethodBuilder<T> Create();

 public void Start<TStateMachine>(ref TStateMachine stateMachine)
 where TStateMachine : IAsyncStateMachine;

 public void SetStateMachine(IAsyncStateMachine stateMachine);
 public void SetException(Exception exception);
 public void SetResult(T result);

 public void AwaitOnCompleted<TAwaiter, TStateMachine>(
 ref TAwaiter awaiter, ref TStateMachine stateMachine)
 where TAwaiter : INotifyCompletion
 where TStateMachine : IAsyncStateMachine;
 public void AwaitUnsafeOnCompleted<TAwaiter, TStateMachine>(
 ref TAwaiter awaiter, ref TStateMachine stateMachine)
 where TAwaiter : ICriticalNotifyCompletion
 where TStateMachine : IAsyncStateMachine;

 public MyTask<T> Task { get; }
}

Execution

Action that calls stateMachine.MoveNext() when the awaiter completes. Similarly for
INotifyCompletion and builder.AwaitOnCompleted() .

SetStateMachine(IAsyncStateMachine) is called by the compiler-generated
IAsyncStateMachine implementation. That can be used to identify the instance of the
builder associated with a state machine instance, particularly for cases where the state
machine is implemented as a value type: if the builder calls
stateMachine.SetStateMachine(stateMachine) , the stateMachine will call
builder.SetStateMachine(stateMachine) on the builder instance associated with
stateMachine .

Overload resolution is extended to recognize task types in addition to Task and
Task<T> .

An async lambda with no return value is an exact match for an overload candidate
parameter of non-generic task type, and an async lambda with return type T is an exact
match for an overload candidate parameter of generic task type.

Otherwise if an async lambda is not an exact match for either of two candidate
parameters of task types, or an exact match for both, and there is an implicit conversion
from one candidate type to the other, the from candidate wins. Otherwise recursively
evaluate the types A and B within Task1<A> and Task2 for better match.

Otherwise if an async lambda is not an exact match for either of two candidate
parameters of task types, but one candidate is a more specialized type than the other,
the more specialized candidate wins.

Overload Resolution

Infer tuple names (aka. tuple projection
initializers)
Article • 2021-09-21 • 2 minutes to read

In a number of common cases, this feature allows the tuple element names to be
omitted and instead be inferred. For instance, instead of typing (f1: x.f1, f2: x?.f2) ,
the element names "f1" and "f2" can be inferred from (x.f1, x?.f2) .

This parallels the behavior of anonymous types, which allow inferring member names
during creation. For instance, new { x.f1, y?.f2 } declares members "f1" and "f2".

This is particularly handy when using tuples in LINQ:

C#

There are two parts to the change:

1. Try to infer a candidate name for each tuple element which does not have an
explicit name:

Using same rules as name inference for anonymous types.
In C#, this allows three cases: y (identifier), x.y (simple member access)
and x?.y (conditional access).
In VB, this allows for additional cases, such as x.y() .

Rejecting reserved tuple names (case-sensitive in C#, case-insensitive in VB),
as they are either forbidden or already implicit. For instance, such as ItemN ,
Rest , and ToString .
If any candidate names are duplicates (case-sensitive in C#, case-insensitive
in VB) within the entire tuple, we drop those candidates,

2. During conversions (which check and warn about dropping names from tuple
literals), inferred names would not produce any warnings. This avoids breaking

Summary

// "c" and "result" have element names "f1" and "f2"
var result = list.Select(c => (c.f1, c.f2)).Where(t => t.f2 == 1);

Detailed design

existing tuple code.

Note that the rule for handling duplicates is different than that for anonymous types.
For instance, new { x.f1, x.f1 } produces an error, but (x.f1, x.f1) would still be
allowed (just without any inferred names). This avoids breaking existing tuple code.

For consistency, the same would apply to tuples produced by deconstruction-
assignments (in C#):

C#

The same would also apply to VB tuples, using the VB-specific rules for inferring name
from expression and case-insensitive name comparisons.

When using the C# 7.1 compiler (or later) with language version "7.0", the element
names will be inferred (despite the feature not being available), but there will be a use-
site error for trying to access them. This will limit additions of new code that would later
face the compatibility issue (described below).

The main drawback is that this introduces a compatibility break from C# 7.0:

C#

The compatibility council found this break acceptable, given that it is limited and the
time window since tuples shipped (in C# 7.0) is short.

LDM April 4th 2017
Github discussion (thanks @alrz for bringing this issue up)
Tuples design

// tuple has element names "f1" and "f2"
var tuple = ((x.f1, x?.f2) = (1, 2));

Drawbacks

Action y = () => M();
var t = (x: x, y);
t.y(); // this might have previously picked up an extension method called
“y”, but would now call the lambda.

References

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-05.md#tuple-names
https://github.com/dotnet/csharplang/issues/370
https://github.com/dotnet/roslyn/blob/master/docs/features/tuples.md

pattern-matching with generics
Article • 2022-02-23 • 2 minutes to read

The specification for the existing C# as operator (§11.11.12) permits there to be no
conversion between the type of the operand and the specified type when either is an
open type. However, in C# 7 the Type identifier pattern requires there be a conversion
between the type of the input and the given type.

We propose to relax this and change expression is Type identifier , in addition to
being permitted in the conditions when it is permitted in C# 7, to also be permitted
when expression as Type would be allowed. Specifically, the new cases are cases where
the type of the expression or the specified type is an open type.

Cases where pattern-matching should "obviously" be permitted currently fail to compile.
See, for example, https://github.com/dotnet/roslyn/issues/16195 .

We change the paragraph in the pattern-matching specification (the proposed addition
is shown in bold):

Certain combinations of static type of the left-hand-side and the given type are
considered incompatible and result in compile-time error. A value of static type E is
said to be pattern compatible with the type T if there exists an identity conversion,
an implicit reference conversion, a boxing conversion, an explicit reference
conversion, or an unboxing conversion from E to T , or if either E or T is an open
type. It is a compile-time error if an expression of type E is not pattern compatible
with the type in a type pattern that it is matched with.

None.

Summary

Motivation

Detailed design

Drawbacks

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#111112-the-as-operator
https://github.com/dotnet/roslyn/issues/16195

None.

None.

LDM considered this question and felt it was a bug-fix level change. We are treating it as
a separate language feature because just making the change after the language has
been released would introduce a forward incompatibility. Using the proposed change
requires that the programmer specify language version 7.1.

Alternatives

Unresolved questions

Design meetings

Readonly references
Article • 2021-10-13 • 24 minutes to read

The "readonly references" feature is actually a group of features that leverage the
efficiency of passing variables by reference, but without exposing the data to
modifications:

in parameters
ref readonly returns
readonly structs
ref /in extension methods
ref readonly locals
ref conditional expressions

There is an existing proposal that touches this topic
https://github.com/dotnet/roslyn/issues/115 as a special case of readonly parameters
without going into many details. Here I just want to acknowledge that the idea by itself
is not very new.

Prior to this feature C# did not have an efficient way of expressing a desire to pass struct
variables into method calls for readonly purposes with no intention of modifying.
Regular by-value argument passing implies copying, which adds unnecessary costs. That
drives users to use by-ref argument passing and rely on comments/documentation to
indicate that the data is not supposed to be mutated by the callee. It is not a good
solution for many reasons.
The examples are numerous - vector/matrix math operators in graphics libraries like
XNA are known to have ref operands purely because of performance considerations.
There is code in Roslyn compiler itself that uses structs to avoid allocations and then
passes them by reference to avoid copying costs.

Summary

Passing arguments as readonly references.

Motivation

Solution (in parameters)

https://github.com/dotnet/roslyn/issues/115
https://msdn.microsoft.com/library/bb194944.aspx

Similarly to the out parameters, in parameters are passed as managed references with
additional guarantees from the callee.
Unlike out parameters which must be assigned by the callee before any other use, in
parameters cannot be assigned by the callee at all.

As a result in parameters allow for effectiveness of indirect argument passing without
exposing arguments to mutations by the callee.

in parameters are declared by using in keyword as a modifier in the parameter
signature.

For all purposes the in parameter is treated as a readonly variable. Most of the
restrictions on the use of in parameters inside the method are the same as with
readonly fields.

Indeed an in parameter may represent a readonly field. Similarity of restrictions is
not a coincidence.

For example fields of an in parameter which has a struct type are all recursively
classified as readonly variables .

C#

in parameters are allowed anywhere where ordinary byval parameters are
allowed. This includes indexers, operators (including conversions), delegates,
lambdas, local functions.

Declaring in parameters

static Vector3 Add (in Vector3 v1, in Vector3 v2)
{
 // not OK!!
 v1 = default(Vector3);

 // not OK!!
 v1.X = 0;

 // not OK!!
 foo(ref v1.X);

 // OK
 return new Vector3(v1.X + v2.X, v1.Y + v2.Y, v1.Z + v2.Z);
}

C#

in is not allowed in combination with out or with anything that out does not
combine with.

It is not permitted to overload on ref /out /in differences.

It is permitted to overload on ordinary byval and in differences.

For the purpose of OHI (Overloading, Hiding, Implementing), in behaves similarly
to an out parameter. All the same rules apply. For example the overriding method
will have to match in parameters with in parameters of an identity-convertible
type.

For the purpose of delegate/lambda/method group conversions, in behaves
similarly to an out parameter. Lambdas and applicable method group conversion
candidates will have to match in parameters of the target delegate with in
parameters of an identity-convertible type.

For the purpose of generic variance, in parameters are nonvariant.

NOTE: There are no warnings on in parameters that have reference or primitives
types. It may be pointless in general, but in some cases user must/want to pass
primitives as in . Examples - overriding a generic method like Method(in T param)
when T was substituted to be int , or when having methods like Volatile.Read(in
int location)

It is conceivable to have an analyzer that warns in cases of inefficient use of in
parameters, but the rules for such analysis would be too fuzzy to be a part of a
language specification.

There are two ways to pass arguments to in parameters.

 (in int x) => x //
lambda expression
 TValue this[in TKey index]; //
indexer
 public static Vector3 operator +(in Vector3 x, in Vector3 y) => ... //
operator

Use of in at call sites. (in arguments)

An argument with an in modifier at the call site can match in parameters.

C#

in argument must be a readable LValue(*). Example: M1(in 42) is invalid

(*) The notion of LValue/RValue vary between languages.
Here, by LValue I mean an expression that represent a location that can be referred
to directly. And RValue means an expression that yields a temporary result which
does not persist on its own.

In particular it is valid to pass readonly fields, in parameters or other formally
readonly variables as in arguments. Example: dictionary[in Guid.Empty] is legal.
Guid.Empty is a static readonly field.

in argument must have type identity-convertible to the type of the parameter.
Example: M1<object>(in Guid.Empty) is invalid. Guid.Empty is not identity-
convertible to object

The motivation for the above rules is that in arguments guarantee aliasing of the
argument variable. The callee always receives a direct reference to the same location as
represented by the argument.

in rare situations when in arguments must be stack-spilled due to await
expressions used as operands of the same call, the behavior is the same as with

in arguments can match in parameters:

int x = 1;

void M1<T>(in T x)
{
 // . . .
}

var x = M1(in x); // in argument to a method

class D
{
 public string this[in Guid index];
}

D dictionary = . . . ;
var y = dictionary[in Guid.Empty]; // in argument to an indexer

https://en.wikipedia.org/wiki/Value_(computer_science)#lrvalue

out and ref arguments - if the variable cannot be spilled in referentially-
transparent manner, an error is reported.

Examples:

1. M1(in staticField, await SomethingAsync()) is valid. staticField is a static field
which can be accessed more than once without observable side effects. Therefore
both the order of side effects and aliasing requirements can be provided.

2. M1(in RefReturningMethod(), await SomethingAsync()) will produce an error.
RefReturningMethod() is a ref returning method. A method call may have
observable side effects, therefore it must be evaluated before the
SomethingAsync() operand. However the result of the invocation is a reference that
cannot be preserved across the await suspension point which make the direct
reference requirement impossible.

NOTE: the stack spilling errors are considered to be implementation-specific
limitations. Therefore they do not have effect on overload resolution or lambda
inference.

Regular arguments without modifiers can match in parameters. In such case the
arguments have the same relaxed constraints as an ordinary byval arguments would
have.

The motivation for this scenario is that in parameters in APIs may result in
inconveniences for the user when arguments cannot be passed as a direct reference -
ex: literals, computed or await -ed results or arguments that happen to have more
specific types.
All these cases have a trivial solution of storing the argument value in a temporary local
of appropriate type and passing that local as an in argument.
To reduce the need for such boilerplate code compiler can perform the same
transformation, if needed, when in modifier is not present at the call site.

In addition, in some cases, such as invocation of operators, or in extension methods,
there is no syntactical way to specify in at all. That alone requires specifying the
behavior of ordinary byval arguments when they match in parameters.

In particular:

it is valid to pass RValues. A reference to a temporary is passed in such case.
Example:

Ordinary byval arguments can match in parameters:

C#

implicit conversions are allowed.

This is actually a special case of passing an RValue

A reference to a temporary holding converted value is passed in such case. Example:

C#

in a case of a receiver of an in extension method (as opposed to ref extension
methods), RValues or implicit this-argument-conversions are allowed. A reference
to a temporary holding converted value is passed in such case. Example:

C#

More information on ref /in extension methods is provided further in this document.

argument spilling due to await operands could spill "by-value", if necessary. In
scenarios where providing a direct reference to the argument is not possible due
to intervening await a copy of the argument's value is spilled instead.
Example:

C#

Since the result of a side-effecting invocation is a reference that cannot be preserved
across await suspension, a temporary containing the actual value will be preserved
instead (as it would in an ordinary byval parameter case).

Print("hello"); // not an error.

void Print<T>(in T x)
{
 //. . .
}

Print<int>(Short.MaxValue) // not an error.

public static IEnumerable<T> Concat<T>(in this (IEnumerable<T>,
IEnumerable<T>) arg) => . . .;

("aa", "bb").Concat<char>() // not an error.

M1(RefReturningMethod(), await SomethingAsync()) // not an error.

It is permitted for an in parameter to specify a default value. That makes the
corresponding argument optional.

Omitting optional argument at the call site results in passing the default value via a
temporary.

C#

Just like ref and out variables, in variables are references/aliases to existing locations.

While callee is not allowed to write into them, reading an in parameter can observe
different values as a side effect of other evaluations.

Example:

C#

Omitted optional arguments

Print("hello"); // not an error, same as
Print("hello", c: Color.Black);

void Print(string s, in Color c = Color.Black)
{
 // . . .
}

Aliasing behavior in general

static Vector3 v = Vector3.UnitY;

static void Main()
{
 Test(v);
}

static void Test(in Vector3 v1)
{
 Debug.Assert(v1 == Vector3.UnitY);
 // changes v1 deterministically (no races required)
 ChangeV();
 Debug.Assert(v1 == Vector3.UnitX);
}

static void ChangeV()
{
 v = Vector3.UnitX;
}

For the purpose of lambda/async capturing in parameters behave the same as out and
ref parameters.

in parameters cannot be captured in a closure
in parameters are not allowed in iterator methods
in parameters are not allowed in async methods

Some uses of in parameter passing may require indirect use of a temporary local
variable:

in arguments are always passed as direct aliases when call-site uses in .
Temporary is never used in such case.
in arguments are not required to be direct aliases when call-site does not use in .
When argument is not an LValue, a temporary may be used.
in parameter may have default value. When corresponding argument is omitted
at the call site, the default value are passed via a temporary.
in arguments may have implicit conversions, including those that do not preserve
identity. A temporary is used in those cases.
receivers of ordinary struct calls may not be writeable LValues (existing case!). A
temporary is used in those cases.

The life time of the argument temporaries matches the closest encompassing scope of
the call-site.

The formal life time of temporary variables is semantically significant in scenarios
involving escape analysis of variables returned by reference.

When System.Runtime.CompilerServices.IsReadOnlyAttribute is applied to a byref
parameter, it means that the parameter is an in parameter.

In addition, if the method is abstract or virtual, then the signature of such parameters
(and only such parameters) must have
modreq[System.Runtime.InteropServices.InAttribute] .

Motivation: this is done to ensure that in a case of method overriding/implementing the
in parameters match.

in parameters and capturing of local variables.

Temporary variables.

Metadata representation of in parameters.

Same requirements apply to Invoke methods in delegates.

Motivation: this is to ensure that existing compilers cannot simply ignore readonly
when creating or assigning delegates.

The motivation for this sub-feature is roughly symmetrical to the reasons for the in
parameters - avoiding copying, but on the returning side. Prior to this feature, a method
or an indexer had two options: 1) return by reference and be exposed to possible
mutations or 2) return by value which results in copying.

The feature allows a member to return variables by reference without exposing them to
mutations.

A combination of modifiers ref readonly on the return signature is used to to indicate
that the member returns a readonly reference.

For all purposes a ref readonly member is treated as a readonly variable - similar to
readonly fields and in parameters.

For example fields of ref readonly member which has a struct type are all recursively
classified as readonly variables. - It is permitted to pass them as in arguments, but not
as ref or out arguments.

C#

Returning by readonly reference.

Motivation

Solution (ref readonly returns)

Declaring ref readonly returning members

ref readonly Guid Method1()
{
}

Method2(in Method1()); // valid. Can pass as `in` argument.

Method3(ref Method1()); // not valid. Cannot pass as `ref` argument

ref readonly returns are allowed in the same places were ref returns are allowed.
This includes indexers, delegates, lambdas, local functions.

It is not permitted to overload on ref /ref readonly / differences.

It is permitted to overload on ordinary byval and ref readonly return differences.

For the purpose of OHI (Overloading, Hiding, Implementing), ref readonly is
similar but distinct from ref . For example the a method that overrides ref
readonly one, must itself be ref readonly and have identity-convertible type.

For the purpose of delegate/lambda/method group conversions, ref readonly is
similar but distinct from ref . Lambdas and applicable method group conversion
candidates have to match ref readonly return of the target delegate with ref
readonly return of the type that is identity-convertible.

For the purpose of generic variance, ref readonly returns are nonvariant.

NOTE: There are no warnings on ref readonly returns that have reference or
primitives types. It may be pointless in general, but in some cases user must/want to
pass primitives as in . Examples - overriding a generic method like ref readonly T
Method() when T was substituted to be int .

It is conceivable to have an analyzer that warns in cases of inefficient use of ref
readonly returns, but the rules for such analysis would be too fuzzy to be a part of a
language specification.

Inside the method body the syntax is the same as with regular ref returns. The readonly
will be inferred from the containing method.

The motivation is that return ref readonly <expression> is unnecessary long and only
allows for mismatches on the readonly part that would always result in errors. The ref
is, however, required for consistency with other scenarios where something is passed via
strict aliasing vs. by value.

Unlike the case with in parameters, ref readonly returns never return via a local
copy. Considering that the copy would cease to exist immediately upon returning
such practice would be pointless and dangerous. Therefore ref readonly returns
are always direct references.

Returning from ref readonly members

Example:

C#

An argument of return ref must be an LValue (existing rule)
An argument of return ref must be "safe to return" (existing rule)
In a ref readonly member an argument of return ref is not required to be
writeable . For example such member can ref-return a readonly field or one of its
in parameters.

Normal safe to return rules for references will apply to readonly references as well.

Note that a ref readonly can be obtained from a regular ref local/parameter/return,
but not the other way around. Otherwise the safety of ref readonly returns is inferred
the same way as for regular ref returns.

Considering that RValues can be passed as in parameter and returned as ref readonly
we need one more rule - RValues are not safe-to-return by reference.

Consider the situation when an RValue is passed to an in parameter via a copy and
then returned back in a form of a ref readonly . In the context of the caller the
result of such invocation is a reference to local data and as such is unsafe to return.
Once RValues are not safe to return, the existing rule #6 already handles this case.

Example:

C#

struct ImmutableArray<T>
{
 private readonly T[] array;

 public ref readonly T ItemRef(int i)
 {
 // returning a readonly reference to an array element
 return ref this.array[i];
 }
}

Safe to Return rules.

ref readonly Vector3 Test1()
{
 // can pass an RValue as "in" (via a temp copy)

Updated safe to return rules:

1. refs to variables on the heap are safe to return
2. ref/in parameters are safe to return in parameters naturally can only be returned

as readonly.
3. out parameters are safe to return (but must be definitely assigned, as is already

the case today)
4. instance struct fields are safe to return as long as the receiver is safe to return
5. 'this' is not safe to return from struct members
6. a ref, returned from another method is safe to return if all refs/outs passed to

that method as formal parameters were safe to return. Specifically it is irrelevant
if receiver is safe to return, regardless whether receiver is a struct, class or typed as a
generic type parameter.

7. RValues are not safe to return by reference. Specifically RValues are safe to pass as
in parameters.

NOTE: There are additional rules regarding safety of returns that come into play
when ref-like types and ref-reassignments are involved. The rules equally apply to
ref and ref readonly members and therefore are not mentioned here.

ref readonly members provide the same aliasing behavior as ordinary ref members
(except for being readonly). Therefore for the purpose of capturing in lambdas, async,
iterators, stack spilling etc... the same restrictions apply. - I.E. due to inability to capture
the actual references and due to side-effecting nature of member evaluation such
scenarios are disallowed.

It is permitted and required to make a copy when ref readonly return is a receiver
of regular struct methods, which take this as an ordinary writeable reference.
Historically in all cases where such invocations are applied to readonly variable a
local copy is made.

 // but the result is not safe to return
 // because the RValue argument was not safe to return by reference
 return ref Test2(default(Vector3));
}

ref readonly Vector3 Test2(in Vector3 r)
{
 // this is ok, r is returnable
 return ref r;
}

Aliasing behavior.

When System.Runtime.CompilerServices.IsReadOnlyAttribute is applied to the return of
a byref returning method, it means that the method returns a readonly reference.

In addition, the result signature of such methods (and only those methods) must have
modreq[System.Runtime.CompilerServices.IsReadOnlyAttribute] .

Motivation: this is to ensure that existing compilers cannot simply ignore readonly
when invoking methods with ref readonly returns

In short - a feature that makes this parameter of all instance members of a struct,
except for constructors, an in parameter.

Compiler must assume that any method call on a struct instance may modify the
instance. Indeed a writeable reference is passed to the method as this parameter and
fully enables this behavior. To allow such invocations on readonly variables, the
invocations are applied to temp copies. That could be unintuitive and sometimes forces
people to abandon readonly for performance reasons.
Example: https://codeblog.jonskeet.uk/2014/07/16/micro-optimization-the-surprising-
inefficiency-of-readonly-fields/

After adding support for in parameters and ref readonly returns the problem of
defensive copying will get worse since readonly variables will become more common.

Allow readonly modifier on struct declarations which would result in this being treated
as in parameter on all struct instance methods except for constructors.

C#

Metadata representation.

Readonly structs

Motivation

Solution

static void Test(in Vector3 v1)
{
 // no need to make a copy of v1 since Vector3 is a readonly struct
 System.Console.WriteLine(v1.ToString());
}

readonly struct Vector3

https://codeblog.jonskeet.uk/2014/07/16/micro-optimization-the-surprising-inefficiency-of-readonly-fields/

Instance fields of a readonly struct must be readonly.
Motivation: can only be written to externally, but not through members.
Instance autoproperties of a readonly struct must be get-only.
Motivation: consequence of restriction on instance fields.
Readonly struct may not declare field-like events.
Motivation: consequence of restriction on instance fields.

When System.Runtime.CompilerServices.IsReadOnlyAttribute is applied to a value type,
it means that the type is a readonly struct .

In particular:

The identity of the IsReadOnlyAttribute type is unimportant. In fact it can be
embedded by the compiler in the containing assembly if needed.

There is actually an existing proposal (https://github.com/dotnet/roslyn/issues/165)
and corresponding prototype PR (https://github.com/dotnet/roslyn/pull/15650). I just
want to acknowledge that this idea is not entirely new. It is, however, relevant here since
ref readonly elegantly removes the most contentious issue about such methods - what
to do with RValue receivers.

The general idea is allowing extension methods to take the this parameter by
reference, as long as the type is known to be a struct type.

{
 . . .

 public override string ToString()
 {
 // not OK!! `this` is an `in` parameter
 foo(ref this.X);

 // OK
 return $"X: {X}, Y: {Y}, Z: {Z}";
 }
}

Restrictions on members of readonly struct

Metadata representation.

ref /in extension methods

https://github.com/dotnet/roslyn/issues/165
https://github.com/dotnet/roslyn/pull/15650

C#

The reasons for writing such extension methods are primarily:

1. Avoid copying when receiver is a large struct
2. Allow mutating extension methods on structs

The reasons why we do not want to allow this on classes

1. It would be of very limited purpose.
2. It would break long standing invariant that a method call cannot turn non-null

receiver to become null after invocation.

In fact, currently a non-null variable cannot become null unless explicitly assigned
or passed by ref or out . That greatly aids readability or other forms of "can this be
a null here" analysis. 3. It would be hard to reconcile with "evaluate once" semantics
of null-conditional accesses. Example: obj.stringField?.RefExtension(...) - need
to capture a copy of stringField to make the null check meaningful, but then
assignments to this inside RefExtension would not be reflected back to the field.

An ability to declare extension methods on structs that take the first argument by
reference was a long-standing request. One of the blocking consideration was "what
happens if receiver is not an LValue?".

There is a precedent that any extension method could also be called as a static
method (sometimes it is the only way to resolve ambiguity). It would dictate that
RValue receivers should be disallowed.
On the other hand there is a practice of making invocation on a copy in similar
situations when struct instance methods are involved.

The reason why the "implicit copying" exists is because the majority of struct methods
do not actually modify the struct while not being able to indicate that. Therefore the
most practical solution was to just make the invocation on a copy, but this practice is
known for harming performance and causing bugs.

Now, with availability of in parameters, it is possible for an extension to signal the
intent. Therefore the conundrum can be resolved by requiring ref extensions to be
called with writeable receivers while in extensions permit implicit copying if necessary.

public static void Extension(ref this Guid self)
{
 // do something
}

C#

The purpose of ref extension methods is to mutate the receiver directly or by invoking
mutating members. Therefore ref this T extensions are allowed as long as T is
constrained to be a struct.

On the other hand in extension methods exist specifically to reduce implicit copying.
However any use of an in T parameter will have to be done through an interface
member. Since all interface members are considered mutating, any such use would
require a copy. - Instead of reducing copying, the effect would be the opposite.
Therefore in this T is not allowed when T is a generic type parameter regardless of
constraints.

The following forms of this declaration in an extension method are now allowed:

1. this T arg - regular byval extension. (existing case)

T can be any type, including reference types or type parameters. Instance will be
the same variable after the call. Allows implicit conversions of this-argument-
conversion kind. Can be called on RValues.

in this T self - in extension. T must be an actual struct type. Instance will be
the same variable after the call. Allows implicit conversions of this-argument-
conversion kind. Can be called on RValues (may be invoked on a temp if needed).

// this can be called on either RValue or an LValue
public static void Reader(in this Guid self)
{
 // do something nonmutating.
 WriteLine(self == default(Guid));
}

// this can be called only on an LValue
public static void Mutator(ref this Guid self)
{
 // can mutate self
 self = new Guid();
}

in extensions and generics.

Valid kinds of extension methods (recap):

ref this T self - ref extension. T must be a struct type or a generic type
parameter constrained to be a struct. Instance may be written to by the invocation.
Allows only identity conversions. Must be called on writeable LValue. (never
invoked via a temp).

Once ref readonly members were introduced, it was clear from the use that they need
to be paired with appropriate kind of local. Evaluation of a member may produce or
observe side effects, therefore if the result must be used more than once, it needs to be
stored. Ordinary ref locals do not help here since they cannot be assigned a readonly
reference.

Allow declaring ref readonly locals. This is a new kind of ref locals that is not
writeable. As a result ref readonly locals can accept references to readonly variables
without exposing these variables to writes.

The syntax of such locals uses ref readonly modifiers at declaration site (in that specific
order). Similarly to ordinary ref locals, ref readonly locals must be ref-initialized at
declaration. Unlike regular ref locals, ref readonly locals can refer to readonly LValues
like in parameters, readonly fields, ref readonly methods.

For all purposes a ref readonly local is treated as a readonly variable. Most of the
restrictions on the use are the same as with readonly fields or in parameters.

For example fields of an in parameter which has a struct type are all recursively
classified as readonly variables .

C#

Readonly ref locals.

Motivation.

Solution.

Declaring and using ref readonly locals.

static readonly ref Vector3 M1() => . . .

static readonly ref Vector3 M1_Trace()
{
 // OK

Except for their readonly nature, ref readonly locals behave like ordinary ref locals
and are subject to exactly same restrictions.
For example restrictions related to capturing in closures, declaring in async methods or
the safe-to-return analysis equally applies to ref readonly locals.

Use of ref and ref readonly locals exposed a need to ref-initialize such locals with one
or another target variable based on a condition.

A typical workaround is to introduce a method like:

C#

 ref readonly var r1 = ref M1();

 // Not valid. Need an LValue
 ref readonly Vector3 r2 = ref default(Vector3);

 // Not valid. r1 is readonly.
 Mutate(ref r1);

 // OK.
 Print(in r1);

 // OK.
 return ref r1;
}

Restrictions on use of ref readonly locals

Ternary ref expressions. (aka "Conditional
LValues")

Motivation

ref T Choice(bool condition, ref T consequence, ref T alternative)
{
 if (condition)
 {
 return ref consequence;
 }
 else
 {
 return ref alternative;
 }
}

Note that Choice is not an exact replacement of a ternary since all arguments must be
evaluated at the call site, which was leading to unintuitive behavior and bugs.

The following will not work as expected:

C#

Allow special kind of conditional expression that evaluates to a reference to one of
LValue argument based on a condition.

The syntax for the ref flavor of a conditional expression is <condition> ? ref
<consequence> : ref <alternative>;

Just like with the ordinary conditional expression only <consequence> or <alternative>
is evaluated depending on result of the boolean condition expression.

Unlike ordinary conditional expression, ref conditional expression:

requires that <consequence> and <alternative> are LValues.
ref conditional expression itself is an LValue and
ref conditional expression is writeable if both <consequence> and <alternative>
are writeable LValues

Examples:
ref ternary is an LValue and as such it can be passed/assigned/returned by reference;

C#

Being an LValue, it can also be assigned to.

C#

 // will crash with NRE because 'arr[0]' will be executed unconditionally
 ref var r = ref Choice(arr != null, ref arr[0], ref otherArr[0]);

Solution

Using ref ternary expression.

 // pass by reference
 foo(ref (arr != null ? ref arr[0]: ref otherArr[0]));

 // return by reference
 return ref (arr != null ? ref arr[0]: ref otherArr[0]);

Can be used as a receiver of a method call and skip copying if necessary.

C#

ref ternary can be used in a regular (not ref) context as well.

C#

I can see two major arguments against enhanced support for references and readonly
references:

1. The problems that are solved here are very old. Why suddenly solve them now,
especially since it would not help existing code?

As we find C# and .Net used in new domains, some problems become more prominent.
As examples of environments that are more critical than average about computation
overheads, I can list

cloud/datacenter scenarios where computation is billed for and responsiveness is a
competitive advantage.
Games/VR/AR with soft-realtime requirements on latencies

 // assign to
 (arr != null ? ref arr[0]: ref otherArr[0]) = 1;

 // error. readOnlyField is readonly and thus conditional expression is
readonly
 (arr != null ? ref arr[0]: ref obj.readOnlyField) = 1;

 // no copies
 (arr != null ? ref arr[0]: ref otherArr[0]).StructMethod();

 // invoked on a copy.
 // The receiver is `readonly` because readOnlyField is readonly.
 (arr != null ? ref arr[0]: ref obj.readOnlyField).StructMethod();

 // no copies. `ReadonlyStructMethod` is a method on a `readonly` struct
 // and can be invoked directly on a readonly receiver
 (arr != null ? ref arr[0]: ref
obj.readOnlyField).ReadonlyStructMethod();

 // only an example
 // a regular ternary could work here just the same
 int x = (arr != null ? ref arr[0]: ref otherArr[0]);

Drawbacks

This feature does not sacrifice any of the existing strengths such as type-safety, while
allowing to lower overheads in some common scenarios.

2. Can we reasonably guarantee that the callee will play by the rules when it opts into
readonly contracts?

We have similar trust when using out . Incorrect implementation of out can cause
unspecified behavior, but in reality it rarely happens.

Making the formal verification rules familiar with ref readonly would further mitigate
the trust issue.

The main competing design is really "do nothing".

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-02-
22.md https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-
2017-03-01.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-08-
28.md https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-
2017-09-25.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-09-
27.md

Alternatives

Unresolved questions

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-02-22.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-01.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-08-28.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-09-25.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-09-27.md

Compile time enforcement of safety for
ref-like types
Article • 2022-08-09 • 16 minutes to read

The main reason for the additional safety rules when dealing with types like Span<T>
and ReadOnlySpan<T> is that such types must be confined to the execution stack.

There are two reasons why Span<T> and similar types must be a stack-only types.

1. Span<T> is semantically a struct containing a reference and a range - (ref T data,
int length) . Regardless of actual implementation, writes to such struct would not
be atomic. Concurrent "tearing" of such struct would lead to the possibility of
length not matching the data , causing out-of-range accesses and type-safety
violations, which ultimately could result in GC heap corruption in seemingly "safe"
code.

2. Some implementations of Span<T> literally contain a managed pointer in one of its
fields. Managed pointers are not supported as fields of heap objects and code that
manages to put a managed pointer on the GC heap typically crashes at JIT time.

All the above problems would be alleviated if instances of Span<T> are constrained to
exist only on the execution stack.

An additional problem arises due to composition. It would be generally desirable to
build more complex data types that would embed Span<T> and ReadOnlySpan<T>
instances. Such composite types would have to be structs and would share all the
hazards and requirements of Span<T> . As a result the safety rules described here should
be viewed as applicable to the whole range of ref-like types.

The draft language specification is intended to ensure that values of a ref-like type occur
only on the stack.

ref-like structs are explicitly marked in the source code using ref modifier:

C#

Introduction

Generalized ref-like types in source code

Designating a struct as ref-like will allow the struct to have ref-like instance fields and
will also make all the requirements of ref-like types applicable to the struct.

Ref-like structs will be marked with
System.Runtime.CompilerServices.IsRefLikeAttribute attribute.

The attribute will be added to common base libraries such as mscorlib . In a case if the
attribute is not available, compiler will generate an internal one similarly to other
embedded-on-demand attributes such as IsReadOnlyAttribute .

An additional measure will be taken to prevent the use of ref-like structs in compilers
not familiar with the safety rules (this includes C# compilers prior to the one in which
this feature is implemented).

Having no other good alternatives that work in old compilers without servicing, an
Obsolete attribute with a known string will be added to all ref-like structs. Compilers
that know how to use ref-like types will ignore this particular form of Obsolete .

A typical metadata representation:

C#

NOTE: it is not the goal to make it so that any use of ref-like types on old compilers fails
100%. That is hard to achieve and is not strictly necessary. For example there would

ref struct TwoSpans<T>
{
 // can have ref-like instance fields
 public Span<T> first;
 public Span<T> second;
}

// error: arrays of ref-like types are not allowed.
TwoSpans<T>[] arr = null;

Metadata representation of ref-like structs

 [IsRefLike]
 [Obsolete("Types with embedded references are not supported in this
version of your compiler.")]
 public struct TwoSpans<T>
 {
 //
 }

always be a way to get around the Obsolete using dynamic code or, for example,
creating an array of ref-like types through reflection.

In particular, if user wants to actually put an Obsolete or Deprecated attribute on a ref-
like type, we will have no choice other than not emitting the predefined one since
Obsolete attribute cannot be applied more than once..

C#

Examples:

SpanLikeType M1(ref SpanLikeType x, Span<byte> y)
{
 // this is all valid, unconcerned with stack-referring stuff
 var local = new SpanLikeType(y);
 x = local;
 return x;
}

void Test1(ref SpanLikeType param1, Span<byte> param2)
{
 Span<byte> stackReferring1 = stackalloc byte[10];
 var stackReferring2 = new SpanLikeType(stackReferring1);

 // this is allowed
 stackReferring2 = M1(ref stackReferring2, stackReferring1);

 // this is NOT allowed
 stackReferring2 = M1(ref param1, stackReferring1);

 // this is NOT allowed
 param1 = M1(ref stackReferring2, stackReferring1);

 // this is NOT allowed
 param2 = stackReferring1.Slice(10);

 // this is allowed
 param1 = new SpanLikeType(param2);

 // this is allowed
 stackReferring2 = param1;
}

ref SpanLikeType M2(ref SpanLikeType x)
{
 return ref x;
}

ref SpanLikeType Test2(ref SpanLikeType param1, Span<byte> param2)
{
 Span<byte> stackReferring1 = stackalloc byte[10];

Below we describe a set of safety rules for ref-like types (ref structs) to ensure that
values of these types occur only on the stack. A different, simpler set of safety rules
would be possible if locals cannot be passed by reference. This specification would also
permit the safe reassignment of ref locals.

We associate with each expression at compile-time the concept of what scope that
expression is permitted to escape to, "safe-to-escape". Similarly, for each lvalue we
maintain a concept of what scope a reference to it is permitted to escape to, "ref-safe-
to-escape". For a given lvalue expression, these may be different.

These are analogous to the "safe to return" of the ref locals feature, but it is more fine-
grained. Where the "safe-to-return" of an expression records only whether (or not) it
may escape the enclosing method as a whole, the safe-to-escape records which scope it
may escape to (which scope it may not escape beyond). The basic safety mechanism is
enforced as follows. Given an assignment from an expression E1 with a safe-to-escape
scope S1, to an (lvalue) expression E2 with safe-to-escape scope S2, it is an error if S2 is
a wider scope than S1. By construction, the two scopes S1 and S2 are in a nesting

 var stackReferring2 = new SpanLikeType(stackReferring1);

 ref var stackReferring3 = M2(ref stackReferring2);

 // this is allowed
 stackReferring3 = M1(ref stackReferring2, stackReferring1);

 // this is allowed
 M2(ref stackReferring3) = stackReferring2;

 // this is NOT allowed
 M1(ref param1) = stackReferring2;

 // this is NOT allowed
 param1 = stackReferring3;

 // this is NOT allowed
 return ref stackReferring3;

 // this is allowed
 return ref param1;
}

Draft language specification

Overview

relationship, because a legal expression is always safe-to-return from some scope
enclosing the expression.

For the time being it is sufficient, for the purpose of the analysis, to support just two
scopes - external to the method, and top-level scope of the method. That is because
ref-like values with inner scopes cannot be created and ref locals do not support re-
assignment. The rules, however, can support more than two scope levels.

The precise rules for computing the safe-to-return status of an expression, and the rules
governing the legality of expressions, follow.

The ref-safe-to-escape is a scope, enclosing an lvalue expression, to which it is safe for a
ref to the lvalue to escape to. If that scope is the entire method, we say that a ref to the
lvalue is safe to return from the method.

The ref-safe-to-escape scope for an lvalue expression can never be to a greater scope
than the safe-to-escape for the same value. That means when the spec limits the safe-to-
escape of a value it is implicitly also limiting the ref-safe-to-escape as well. However ref-
safe-to-escape scope can be to a smaller scope than safe-to-escape. Consider that non-
ref locals have safe-to-escape scope outside method but ref-safe-to-escape inside the
method.

The safe-to-escape is a scope, enclosing an expression, to which it is safe for the value to
escape to. If that scope is the entire method, we say that the value is safe to return from
the method.

An expression whose type is not a ref struct type is always safe-to-return from the
entire enclosing method. Otherwise we refer to the rules below.

An lvalue designating a formal parameter is ref-safe-to-escape (by reference) as follows:

If the parameter is a ref , out , or in parameter, it is ref-safe-to-escape from the
entire method (e.g. by a return ref statement); otherwise
If the parameter is the this parameter of a struct type, it is ref-safe-to-escape to
the top-level scope of the method (but not from the entire method itself); Sample

ref-safe-to-escape

safe-to-escape

Parameters

Otherwise the parameter is a value parameter, and it is ref-safe-to-escape to the
top-level scope of the method (but not from the method itself).

An expression that is an rvalue designating the use of a formal parameter is safe-to-
escape (by value) from the entire method (e.g. by a return statement). This applies to
the this parameter as well.

An lvalue designating a local variable is ref-safe-to-escape (by reference) as follows:

If the variable is a ref variable, then its ref-safe-to-escape is taken from the ref-
safe-to-escape of its initializing expression; otherwise
The variable is ref-safe-to-escape the scope in which it was declared.

An expression that is an rvalue designating the use of a local variable is safe-to-escape
(by value) as follows:

But the general rule above, a local whose type is not a ref struct type is safe-to-
return from the entire enclosing method.
If the variable is an iteration variable of a foreach loop, then the variable's safe-to-
escape scope is the same as the safe-to-escape of the foreach loop's expression.
A local of ref struct type and uninitialized at the point of declaration is safe-to-
return from the entire enclosing method.
Otherwise the variable's type is a ref struct type, and the variable's declaration
requires an initializer. The variable's safe-to-escape scope is the same as the safe-
to-escape of its initializer.

An lvalue designating a reference to a field, e.F , is ref-safe-to-escape (by reference) as
follows:

If e is of a reference type, it is ref-safe-to-escape from the entire method; otherwise
If e is of a value type, its ref-safe-to-escape is taken from the ref-safe-to-escape of
e .

An rvalue designating a reference to a field, e.F , has a safe-to-escape scope that is the
same as the safe-to-escape of e .

Locals

Field reference

Operators including ?:

The application of a user-defined operator is treated as a method invocation.

For an operator that yields an rvalue, such as e1 + e2 or c ? e1 : e2 , the safe-to-escape
of the result is the narrowest scope among the safe-to-escape of the operands of the
operator. As a consequence, for a unary operator that yields an rvalue, such as +e , the
safe-to-escape of the result is the safe-to-escape of the operand.

For an operator that yields an lvalue, such as c ? ref e1 : ref e2

the ref-safe-to-escape of the result is the narrowest scope among the ref-safe-to-
escape of the operands of the operator.
the safe-to-escape of the operands must agree, and that is the safe-to-escape of
the resulting lvalue.

An lvalue resulting from a ref-returning method invocation e1.M(e2, ...) is ref-safe-to-
escape the smallest of the following scopes:

The entire enclosing method
the ref-safe-to-escape of all ref and out argument expressions (excluding the
receiver)
For each in parameter of the method, if there is a corresponding expression that
is an lvalue, its ref-safe-to-escape, otherwise the nearest enclosing scope
the safe-to-escape of all argument expressions (including the receiver)

Note: the last bullet is necessary to handle code such as

C#

or

C#

An rvalue resulting from a method invocation e1.M(e2, ...) is safe-to-escape from the
smallest of the following scopes:

The entire enclosing method

Method invocation

var sp = new Span(...)
return ref sp[0];

return ref M(sp, 0);

the safe-to-escape of all argument expressions (including the receiver)

An rvalue is ref-safe-to-escape from the nearest enclosing scope. This occurs for example
in an invocation such as M(ref d.Length) where d is of type dynamic . It is also
consistent with (and perhaps subsumes) our handling of arguments corresponding to
in parameters.

A property invocation (either get or set) it treated as a method invocation of the
underlying method by the above rules.

A stackalloc expression is an rvalue that is safe-to-escape to the top-level scope of the
method (but not from the entire method itself).

A new expression that invokes a constructor obeys the same rules as a method
invocation that is considered to return the type being constructed.

In addition safe-to-escape is no wider than the smallest of the safe-to-escape of all
arguments/operands of the object initializer expressions, recursively, if initializer is
present.

The language relies on Span<T> not having a constructor of the following form:

C#

An Rvalue

Property invocations

stackalloc

Constructor invocations

Span constructor

void Example(ref int x)
{
 // Create a span of length one
 var span = new Span<int>(ref x);
}

Such a constructor makes Span<T> which are used as fields indistinguishable from a ref
field. The safety rules described in this document depend on ref fields not being a valid
construct in C# or .NET.

A default expression is safe-to-escape from the entire enclosing method.

We wish to ensure that no ref local variable, and no variable of ref struct type, refers
to stack memory or variables that are no longer alive. We therefore have the following
language constraints:

Neither a ref parameter, nor a ref local, nor a parameter or local of a ref struct
type can be lifted into a lambda or local function.

Neither a ref parameter nor a parameter of a ref struct type may be an argument
on an iterator method or an async method.

Neither a ref local, nor a local of a ref struct type may be in scope at the point of
a yield return statement or an await expression.

A ref struct type may not be used as a type argument, or as an element type in a
tuple type.

A ref struct type may not be the declared type of a field, except that it may be
the declared type of an instance field of another ref struct .

A ref struct type may not be the element type of an array.

A value of a ref struct type may not be boxed:
There is no conversion from a ref struct type to the type object or the type
System.ValueType .
A ref struct type may not be declared to implement any interface
No instance method declared in object or in System.ValueType but not
overridden in a ref struct type may be called with a receiver of that ref
struct type.
No instance method of a ref struct type may be captured by method
conversion to a delegate type.

default expressions

Language Constraints

For a ref reassignment e1 = ref e2 , the ref-safe-to-escape of e2 must be at least
as wide a scope as the ref-safe-to-escape of e1 .

For a ref return statement return ref e1 , the ref-safe-to-escape of e1 must be ref-
safe-to-escape from the entire method. (TODO: Do we also need a rule that e1
must be safe-to-escape from the entire method, or is that redundant?)

For a return statement return e1 , the safe-to-escape of e1 must be safe-to-escape
from the entire method.

For an assignment e1 = e2 , if the type of e1 is a ref struct type, then the safe-
to-escape of e2 must be at least as wide a scope as the safe-to-escape of e1 .

For a method invocation if there is a ref or out argument of a ref struct type
(including the receiver unless the type is readonly), with safe-to-escape E1, then no
argument (including the receiver) may have a narrower safe-to-escape than E1.
Sample

A local function or anonymous function may not refer to a local or parameter of
ref struct type declared in an enclosing scope.

Open Issue: We need some rule that permits us to produce an error when needing
to spill a stack value of a ref struct type at an await expression, for example in the
code

C#

These explanations and samples help explain why many of the safety rules above exist

When invoking a method where there is an out or ref parameter that is a ref struct
then all of the ref struct parameters need to have the same lifetime. This is necessary
because C# must make all of its decisions around lifetime safety based on the
information available in the signature of the method and the lifetime of the values at the
call site.

Foo(new Span<int>(...), await e2);

Explanations

Method Arguments Must Match

When there are ref parameters that are ref struct then there is the potential that they
could swap around their contents. Hence at the call site we must ensure all of these
potential swaps are compatible. If the language didn't enforce that then it will allow for
bad code like the following.

C#

This analysis of ref parameters includes the receiver in instance methods. This is
necessary because it can be used to store values passed in as parameters, just as a ref
parameter could`. This means with mismatched lifetimes you could create a type safety
hole in the following way:

C#

void M1(ref Span<int> s1)
{
 Span<int> s2 = stackalloc int[1];
 Swap(ref s1, ref s2);
}

void Swap(ref Span<int> x, ref Span<int> y)
{
 // This will effectively assign the stackalloc to the s1 parameter and
allow it
 // to escape to the caller of M1
 ref x = ref y;
}

ref struct S
{
 public Span<int> Span;

 public void Set(Span<int> span)
 {
 Span = span;
 }
}

void Broken(ref S s)
{
 Span<int> span = stackalloc int[1];

 // The result of a stackalloc is now stored in s.Span and escaped to the
caller
 // of Broken
 s.Set(span);
}

For the purpose of this analysis the receiver is considered an in , not a ref , if the type is
a readonly struct . In that case the receiver cannot be used to store values from other
parameters, it is effectively an in parameter for analysis purposes. Hence the same
example above is legal when S is readonly because the span cannot be stored
anywhere.

When it comes to span safety rules, the this value in an instance member is modeled
as a parameter to the member. Now for a struct the type of this is actually ref S
where in a class it's simply S (for members of a class / struct named S).

Yet this has different escaping rules than other ref parameters. Specifically it is not
ref-safe-to-escape while other parameters are:

C#

The reason for this restriction actually has little to do with struct member invocation.
There are some rules that need to be worked out with respect to member invocation on
struct members where the receiver is an rvalue. But that is very approachable.

The reason for this restriction is actually about interface invocation. Specifically it comes
down to whether or not the following sample should or should not compile;

C#

Struct This Escape

ref struct S
{
 int Field;

 // Illegal because `this` isn't safe to escape as ref
 ref int Get() => ref Field;

 // Legal
 ref int GetParam(ref int p) => ref p;
}

interface I1
{
 ref int Get();
}

ref int Use<T>(T p)
 where T : I1
{

Consider the case where T is instantiated as a struct . If the this parameter is ref-safe-
to-escape then the return of p.Get could point to the stack (specifically it could be a
field inside of the instantiated type of T). That means the language could not allow this
sample to compile as it could be returning a ref to a stack location. On the other hand
if this is not ref-safe-to-escape then p.Get cannot refer to the stack and hence it's safe
to return.

This is why the escapability of this in a struct is really all about interfaces. It can
absolutely be made to work but it has a trade off. The design eventually came down in
favor of making interfaces more flexible.

There is potential for us to relax this in the future though.

Though not legal today there are cases where creating a length one Span<T> instance
over a value would be beneficial:

C#

This feature gets more compelling if we lift the restrictions on fixed sized buffers as it
would allow for Span<T> instances of even greater length.

 return ref p.Get();
}

Future Considerations

Length one Span<T> over ref values

void RefExample()
{
 int x = ...;

 // Today creating a length one Span<int> requires a stackalloc and a new
 // local
 Span<int> span1 = stackalloc [] { x };
 Use(span1);
 x = span1[0];

 // Simpler to just allow length one span
 var span2 = new Span<int>(ref x);
 Use(span2);
}

https://github.com/dotnet/csharplang/blob/master/proposals/fixed-sized-buffers.md

If there is ever a need to go down this path then the language could accommodate this
by ensuring such Span<T> instances were downward facing only. That is they were only
ever safe-to-escape to the scope in which they were created. This ensure the language
never had to consider a ref value escaping a method via a ref struct return or field of
ref struct . This would likely also require further changes to recognize such
constructors as capturing a ref parameter in this way though.

Conditional ref expressions
Article • 2021-09-21 • 2 minutes to read

The pattern of binding a ref variable to one or another expression conditionally is not
currently expressible in C#.

The typical workaround is to introduce a method like:

C#

Note that this is not an exact replacement of a ternary since all arguments must be
evaluated at the call site.

The following will not work as expected:

C#

The proposed syntax would look like:

C#

The above attempt with "Choice" can be correctly written using ref ternary as:

C#

ref T Choice(bool condition, ref T consequence, ref T alternative)
{
 if (condition)
 {
 return ref consequence;
 }
 else
 {
 return ref alternative;
 }
}

 // will crash with NRE because 'arr[0]' will be executed
unconditionally
 ref var r = ref Choice(arr != null, ref arr[0], ref otherArr[0]);

 <condition> ? ref <consequence> : ref <alternative>;

 ref var r = ref (arr != null ? ref arr[0]: ref otherArr[0]);

The difference from Choice is that consequence and alternative expressions are
accessed in a truly conditional manner, so we do not see a crash if arr == null

The ternary ref is just a ternary where both alternative and consequence are refs. It will
naturally require that consequence/alternative operands are LValues. It will also require
that consequence and alternative have types that are identity convertible to each other.

The type of the expression will be computed similarly to the one for the regular ternary.
I.E. in a case if consequence and alternative have identity convertible, but different types,
the existing type-merging rules will apply.

Safe-to-return will be assumed conservatively from the conditional operands. If either is
unsafe to return the whole thing is unsafe to return.

Ref ternary is an LValue and as such it can be passed/assigned/returned by reference;

C#

Being an LValue, it can also be assigned to.

C#

Ref ternary can be used in a regular (not ref) context as well. Although it would not be
common since you could as well just use a regular ternary.

C#

Implementation notes:

The complexity of the implementation would seem to be the size of a moderate-to-
large bug fix. - I.E not very expensive. I do not think we need any changes to the syntax
or parsing. There is no effect on metadata or interop. The feature is completely
expression based. No effect on debugging/PDB either

 // pass by reference
 foo(ref (arr != null ? ref arr[0]: ref otherArr[0]));

 // return by reference
 return ref (arr != null ? ref arr[0]: ref otherArr[0]);

 // assign to
 (arr != null ? ref arr[0]: ref otherArr[0]) = 1;

 int x = (arr != null ? ref arr[0]: ref otherArr[0]);

Unmanaged type constraint
Article • 2021-09-21 • 4 minutes to read

The unmanaged constraint feature will give language enforcement to the class of types
known as "unmanaged types" in the C# language spec. This is defined in section 18.2 as
a type which is not a reference type and doesn't contain reference type fields at any
level of nesting.

The primary motivation is to make it easier to author low level interop code in C#.
Unmanaged types are one of the core building blocks for interop code, yet the lack of
support in generics makes it impossible to create re-usable routines across all
unmanaged types. Instead developers are forced to author the same boiler plate code
for every unmanaged type in their library:

C#

To enable this type of scenario the language will be introducing a new constraint:
unmanaged:

C#

This constraint can only be met by types which fit into the unmanaged type definition in
the C# language spec. Another way of looking at it is that a type satisfies the
unmanaged constraint if it can also be used as a pointer.

C#

Summary

Motivation

int Hash(Point point) { ... }
int Hash(TimeSpan timeSpan) { ... }

void Hash<T>(T value) where T : unmanaged
{
 ...
}

Hash(new Point()); // Okay
Hash(42); // Okay

Type parameters with the unmanaged constraint can use all the features available to
unmanaged types: pointers, fixed, etc ...

C#

This constraint will also make it possible to have efficient conversions between
structured data and streams of bytes. This is an operation that is common in networking
stacks and serialization layers:

C#

Such routines are advantageous because they are provably safe at compile time and
allocation free. Interop authors today can not do this (even though it's at a layer where
perf is critical). Instead they need to rely on allocating routines that have expensive
runtime checks to verify values are correctly unmanaged.

The language will introduce a new constraint named unmanaged . In order to satisfy this
constraint a type must be a struct and all the fields of the type must fall into one of the
following categories:

Have the type sbyte , byte , short , ushort , int , uint , long , ulong , char , float ,
double , decimal , bool , IntPtr or UIntPtr .
Be any enum type.
Be a pointer type.
Be a user defined struct that satisfies the unmanaged constraint.

Hash("hello") // Error: Type string does not satisfy the unmanaged
constraint

void Hash<T>(T value) where T : unmanaged
{
 // Okay
 fixed (T* p = &value)
 {
 ...
 }
}

Span<byte> Convert<T>(ref T value) where T : unmanaged
{
 ...
}

Detailed design

Compiler generated instance fields, such as those backing auto-implemented properties,
must also meet these constraints.

For example:

C#

The unmanaged constraint cannot be combined with struct , class or new() . This
restriction derives from the fact that unmanaged implies struct hence the other
constraints do not make sense.

The unmanaged constraint is not enforced by CLR, only by the language. To prevent mis-
use by other languages, methods which have this constraint will be protected by a mod-
req. This will prevent other languages from using type arguments which are not
unmanaged types.

The token unmanaged in the constraint is not a keyword, nor a contextual keyword.
Instead it is like var in that it is evaluated at that location and will either:

Bind to user defined or referenced type named unmanaged : This will be treated just
as any other named type constraint is treated.
Bind to no type: This will be interpreted as the unmanaged constraint.

In the case there is a type named unmanaged and it is available without qualification in
the current context, then there will be no way to use the unmanaged constraint. This
parallels the rules surrounding the feature var and user defined types of the same
name.

// Unmanaged type
struct Point
{
 int X;
 int Y {get; set;}
}

// Not an unmanaged type
struct Student
{
 string FirstName;
 string LastName;
}

Drawbacks

The primary drawback of this feature is that it serves a small number of developers:
typically low level library authors or frameworks. Hence it's spending precious language
time for a small number of developers.

Yet these frameworks are often the basis for the majority of .NET applications out there.
Hence performance / correctness wins at this level can have a ripple effect on the .NET
ecosystem. This makes the feature worth considering even with the limited audience.

There are a couple of alternatives to consider:

The status quo: The feature is not justified on its own merits and developers
continue to use the implicit opt in behavior.

The F# language encodes the constraint in the signature file which means C# cannot re-
use their representation. A new attribute will need to be chosen for this constraint.
Additionally a method which has this constraint must be protected by a mod-req.

The F# language has a very similar feature which uses the keyword unmanaged. The
blittable name comes from the use in Midori. May want to look to precedence here and
use unmanaged instead.

Resolution The language decide to use unmanaged

Does the verifier / runtime need to be updated to understand the use of pointers to
generic type parameters? Or can it simply work as is without changes?

Resolution No changes needed. All pointer types are simply unverifiable.

Alternatives

Questions

Metadata Representation

Blittable vs. Unmanaged

Verifier

Design meetings

https://learn.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/generics/constraints

n/a

Indexing fixed fields should not require
pinning regardless of the
movable/unmovable context.
Article • 2021-09-21 • 2 minutes to read

The change has the size of a bug fix. It can be in 7.3 and does not conflict with whatever
direction we take further. This change is only about allowing the following scenario to
work even though s is moveable. It is already valid when s is not moveable.

NOTE: in either case, it still requires unsafe context. It is possible to read uninitialized
data or even out of range. That is not changing.

C#

The main “challenge” that I see here is how to explain the relaxation in the spec. In
particular, since the following would still need pinning. (because s is moveable and we
explicitly use the field as a pointer)

C#

unsafe struct S
{
 public fixed int myFixedField[10];
}

class Program
{
 static S s;

 unsafe static void Main()
 {
 int p = s.myFixedField[5]; // indexing fixed-size array fields would
be ok
 }
}

unsafe struct S
{
 public fixed int myFixedField[10];
}

class Program
{
 static S s;

One reason why we require pinning of the target when it is movable is the artifact of our
code generation strategy, - we always convert to an unmanaged pointer and thus force
the user to pin via fixed statement. However, conversion to unmanaged is unnecessary
when doing indexing. The same unsafe pointer math is equally applicable when we have
the receiver in the form of a managed pointer. If we do that, then the intermediate ref is
managed (GC-tracked) and the pinning is unnecessary.

The change https://github.com/dotnet/roslyn/pull/24966 is a prototype PR that
relaxes this requirement.

 unsafe static void Main()
 {
 int* ptr = s.myFixedField; // taking a pointer explicitly still
requires pinning.
 int p = ptr[5];
 }
}

https://github.com/dotnet/roslyn/pull/24966

Pattern-based fixed statement
Article • 2021-09-21 • 3 minutes to read

Introduce a pattern that would allow types to participate in fixed statements.

The language provides a mechanism for pinning managed data and obtain a native
pointer to the underlying buffer.

C#

The set of types that can participate in fixed is hardcoded and limited to arrays and
System.String . Hardcoding "special" types does not scale when new primitives such as
ImmutableArray<T> , Span<T> , Utf8String are introduced.

In addition, the current solution for System.String relies on a fairly rigid API. The shape
of the API implies that System.String is a contiguous object that embeds UTF16
encoded data at a fixed offset from the object header. Such approach has been found
problematic in several proposals that could require changes to the underlying layout. It
would be desirable to be able to switch to something more flexible that decouples
System.String object from its internal representation for the purpose of unmanaged
interop.

A viable pattern-based “fixed” need to:

Summary

Motivation

fixed(byte* ptr = byteArray)
{
 // ptr is a native pointer to the first element of the array
 // byteArray is protected from being moved/collected by the GC for the
duration of this block
}

Detailed design

Pattern

Provide the managed references to pin the instance and to initialize the pointer
(preferably this is the same reference)
Convey unambiguously the type of the unmanaged element (i.e. “char” for “string”)
Prescribe the behavior in "empty" case when there is nothing to refer to.
Should not push API authors toward design decisions that hurt the use of the type
outside of fixed .

I think the above could be satisfied by recognizing a specially named ref-returning
member: ref [readonly] T GetPinnableReference() .

In order to be used by the fixed statement the following conditions must be met:

1. There is only one such member provided for a type.
2. Returns by ref or ref readonly . (readonly is permitted so that authors of

immutable/readonly types could implement the pattern without adding writeable
API that could be used in safe code)

3. T is an unmanaged type. (since T* becomes the pointer type. The restriction will
naturally expand if/when the notion of "unmanaged" is expanded)

4. Returns managed nullptr when there is no data to pin – probably the cheapest
way to convey emptiness. (note that “” string returns a ref to '\0' since strings are
null-terminated)

Alternatively for the #3 we can allow the result in empty cases be undefined or
implementation-specific. That, however, may make the API more dangerous and prone
to abuse and unintended compatibility burdens.

C#

becomes the following pseudocode (not all expressible in C#)

C#

Translation

fixed(byte* ptr = thing)
{
 // <BODY>
}

byte* ptr;
// specially decorated "pinned" IL local slot, not visible to user code.
pinned ref byte _pinned;

try

GetPinnableReference is intended to be used only in fixed , but nothing prevents
its use in safe code, so implementor must keep that in mind.

Users can introduce GetPinnableReference or similar member and use it as

C#

There is no solution for System.String if alternative solution is desired.

[] Behavior in "empty" state. - nullptr or undefined ?

{
 // NOTE: null check is omitted for value types
 // NOTE: `thing` is evaluated only once (temporary is introduced if
necessary)
 if (thing != null)
 {
 // obtain and "pin" the reference
 _pinned = ref thing.GetPinnableReference();

 // unsafe cast in IL
 ptr = (byte*)_pinned;
 }
 else
 {
 ptr = default(byte*);
 }

 // <BODY>
}
finally // finally can be omitted when not observable
{
 // "unpin" the object
 _pinned = nullptr;
}

Drawbacks

Alternatives

fixed(byte* ptr = thing.GetPinnableReference())
{
 // <BODY>
}

Unresolved questions

[] Should the extension methods be considered ?
[] If a pattern is detected on System.String , should it win over ?

None yet.

Design meetings

Ref Local Reassignment
Article • 2021-09-21 • 2 minutes to read

In C# 7.3, we add support for rebinding the referent of a ref local variable or a ref
parameter.

We add the following to the set of assignment_operators.

antlr

The =ref operator is called the ref assignment operator. It is not a compound
assignment operator. The left operand must be an expression that binds to a ref local
variable, a ref parameter (other than this), or an out parameter. The right operand must
be an expression that yields an lvalue designating a value of the same type as the left
operand.

The right operand must be definitely assigned at the point of the ref assignment.

When the left operand binds to an out parameter, it is an error if that out parameter
has not been definitely assigned at the beginning of the ref assignment operator.

If the left operand is a writeable ref (i.e. it designates anything other than a ref
readonly local or in parameter), then the right operand must be a writeable lvalue.

The ref assignment operator yields an lvalue of the assigned type. It is writeable if the
left operand is writeable (i.e. not ref readonly or in).

The safety rules for this operator are:

For a ref reassignment e1 = ref e2 , the ref-safe-to-escape of e2 must be at least
as wide a scope as the ref-safe-to-escape of e1 .

Where ref-safe-to-escape is defined in Safety for ref-like types

assignment_operator
 : '=' 'ref'
 ;

Stackalloc array initializers
Article • 2021-09-21 • 2 minutes to read

Allow array initializer syntax to be used with stackalloc .

Ordinary arrays can have their elements initialized at creation time. It seems reasonable
to allow that in stackalloc case.

The question of why such syntax is not allowed with stackalloc arises fairly frequently.
See, for example, #1112

Ordinary arrays can be created through the following syntax:

C#

We should allow stack allocated arrays be created through:

C#

The semantics of all cases is roughly the same as with arrays.
For example: in the last case the element type is inferred from the initializer and must be
an "unmanaged" type.

NOTE: the feature is not dependent on the target being a Span<T> . It is just as applicable
in T* case, so it does not seem reasonable to predicate it on Span<T> case.

Summary

Motivation

Detailed design

new int[3]
new int[3] { 1, 2, 3 }
new int[] { 1, 2, 3 }
new[] { 1, 2, 3 }

stackalloc int[3] // currently allowed
stackalloc int[3] { 1, 2, 3 }
stackalloc int[] { 1, 2, 3 }
stackalloc[] { 1, 2, 3 }

https://github.com/dotnet/csharplang/issues/1112

The naive implementation could just initialize the array right after creation through a
series of element-wise assignments.

Similarly to the case with arrays, it might be possible and desirable to detect cases
where all or most of the elements are blittable types and use more efficient techniques
by copying over the pre-created state of all the constant elements.

This is a convenience feature. It is possible to just do nothing.

None yet.

Translation

Drawbacks

Alternatives

Unresolved questions

Design meetings

Expression variables in initializers
Article • 2021-09-21 • 2 minutes to read

We extend the features introduced in C# 7 to permit expressions containing expression
variables (out variable declarations and declaration patterns) in field initializers, property
initializers, ctor-initializers, and query clauses.

This completes a couple of the rough edges left in the C# language due to lack of time.

We remove the restriction preventing the declaration of expression variables (out
variable declarations and declaration patterns) in a ctor-initializer. Such a declared
variable is in scope throughout the body of the constructor.

We remove the restriction preventing the declaration of expression variables (out
variable declarations and declaration patterns) in a field or property initializer. Such a
declared variable is in scope throughout the initializing expression.

We remove the restriction preventing the declaration of expression variables (out
variable declarations and declaration patterns) in a query expression clause that is
translated into the body of a lambda. Such a declared variable is in scope throughout
that expression of the query clause.

None.

The appropriate scope for expression variables declared in these contexts is not obvious,
and deserves further LDM discussion.

Summary

Motivation

Detailed design

Drawbacks

Alternatives

[] What is the appropriate scope for these variables?

None.

Unresolved questions

Design meetings

Support for == and != on tuple types
Article • 2022-02-23 • 4 minutes to read

Allow expressions t1 == t2 where t1 and t2 are tuple or nullable tuple types of same
cardinality, and evaluate them roughly as temp1.Item1 == temp2.Item1 && temp1.Item2
== temp2.Item2 (assuming var temp1 = t1; var temp2 = t2;).

Conversely it would allow t1 != t2 and evaluate it as temp1.Item1 != temp2.Item1 ||
temp1.Item2 != temp2.Item2 .

In the nullable case, additional checks for temp1.HasValue and temp2.HasValue are used.
For instance, nullableT1 == nullableT2 evaluates as temp1.HasValue == temp2.HasValue
? (temp1.HasValue ? ... : true) : false .

When an element-wise comparison returns a non-bool result (for instance, when a non-
bool user-defined operator == or operator != is used, or in a dynamic comparison),
then that result will be either converted to bool or run through operator true or
operator false to get a bool . The tuple comparison always ends up returning a bool .

As of C# 7.2, such code produces an error (error CS0019: Operator '==' cannot be
applied to operands of type '(...)' and '(...)'), unless there is a user-defined
operator== .

When binding the == (or !=) operator, the existing rules are: (1) dynamic case, (2)
overload resolution, and (3) fail. This proposal adds a tuple case between (1) and (2): if
both operands of a comparison operator are tuples (have tuple types or are tuple
literals) and have matching cardinality, then the comparison is performed element-wise.
This tuple equality is also lifted onto nullable tuples.

Both operands (and, in the case of tuple literals, their elements) are evaluated in order
from left to right. Each pair of elements is then used as operands to bind the operator
== (or !=), recursively. Any elements with compile-time type dynamic cause an error.
The results of those element-wise comparisons are used as operands in a chain of
conditional AND (or OR) operators.

For instance, in the context of (int, (int, int)) t1, t2; , t1 == (1, (2, 3)) would
evaluate as temp1.Item1 == temp2.Item1 && temp1.Item2.Item1 == temp2.Item2.Item1 &&
temp1.Item2.Item2 == temp2.Item2.Item2 .

Details

When a tuple literal is used as operand (on either side), it receives a converted tuple
type formed by the element-wise conversions which are introduced when binding the
operator == (or !=) element-wise.

For instance, in (1L, 2, "hello") == (1, 2L, null) , the converted type for both tuple
literals is (long, long, string) and the second literal has no natural type.

In (a, b) == x , the fact that x can deconstruct into two elements does not play a role.
That could conceivably be in a future proposal, although it would raise questions about
x == y (is this a simple comparison or an element-wise comparison, and if so using
what cardinality?). Similarly, conversions to tuple play no role.

When converting a tuple literal, we warn when an explicit tuple element name was
provided in the literal, but it doesn't match the target tuple element name. We use the
same rule in tuple comparison, so that assuming (int a, int b) t we warn on d in t
== (c, d: 0) .

If an element-wise comparison is dynamic in a tuple equality, we use a dynamic
invocation of the operator false and negate that to get a bool and continue with
further element-wise comparisons.

If an element-wise comparison returns some other non-bool type in a tuple equality,
there are two cases:

if the non-bool type converts to bool , we apply that conversion,
if there is no such conversion, but the type has an operator false , we'll use that
and negate the result.

In a tuple inequality, the same rules apply except that we'll use the operator true
(without negation) instead of the operator false .

Those rules are similar to the rules involved for using a non-bool type in an if
statement and some other existing contexts.

Deconstruction and conversions to tuple

Tuple element names

Non-bool element-wise comparison results

The left-hand-side value is evaluated first, then the right-hand-side value, then the
element-wise comparisons from left to right (including conversions, and with early exit
based on existing rules for conditional AND/OR operators).

For instance, if there is a conversion from type A to type B and a method (A, A)
GetTuple() , evaluating (new A(1), (new B(2), new B(3))) == (new B(4), GetTuple())
means:

new A(1)

new B(2)

new B(3)

new B(4)

GetTuple()

then the element-wise conversions and comparisons and conditional logic is
evaluated (convert new A(1) to type B , then compare it with new B(4) , and so on).

This is a special case from regular comparisons, that carries over to tuple comparisons.
The null == null comparison is allowed, and the null literals do not get any type. In
tuple equality, this means, (0, null) == (0, null) is also allowed and the null and
tuple literals don't get a type either.

This is another special case from regular comparisons, that carries over to tuple
comparisons. If you have a struct S without operator== , the (S?)x == null
comparison is allowed, and it is interpreted as ((S?).x).HasValue . In tuple equality, the
same rule is applied, so (0, (S?)x) == (0, null) is allowed.

If someone wrote their own ValueTuple types with an implementation of the
comparison operator, it would have previously been picked up by overload resolution.
But since the new tuple case comes before overload resolution, we would handle this
case with tuple comparison instead of relying on the user-defined comparison.

Relates to relational and type testing operators (§11.11) Relates to #190

Evaluation order and special cases

Comparing null to null

Comparing a nullable struct to null without operator==

Compatibility

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1111-relational-and-type-testing-operators
https://github.com/dotnet/csharplang/issues/190

Nullable reference types in C#
Article • 2021-09-21 • 7 minutes to read

The goal of this feature is to:

Allow developers to express whether a variable, parameter or result of a reference
type is intended to be null or not.
Provide warnings when such variables, parameters and results are not used
according to that intent.

The language already contains the T? syntax for value types. It is straightforward to
extend this syntax to reference types.

It is assumed that the intent of an unadorned reference type T is for it to be non-null.

A flow analysis tracks nullable reference variables. Where the analysis deems that they
would not be null (e.g. after a check or an assignment), their value will be considered a
non-null reference.

A nullable reference can also explicitly be treated as non-null with the postfix x!
operator (the "damnit" operator), for when flow analysis cannot establish a non-null
situation that the developer knows is there.

Otherwise, a warning is given if a nullable reference is dereferenced, or is converted to a
non-null type.

A warning is given when converting from S[] to T?[] and from S?[] to T[] .

A warning is given when converting from C<S> to C<T?> except when the type
parameter is covariant (out), and when converting from C<S?> to C<T> except when the
type parameter is contravariant (in).

A warning is given on C<T?> if the type parameter has non-null constraints.

Expression of intent

Checking of nullable references

Checking of non-null references

A warning is given if a null literal is assigned to a non-null variable or passed as a non-
null parameter.

A warning is also given if a constructor does not explicitly initialize non-null reference
fields.

We cannot adequately track that all elements of an array of non-null references are
initialized. However, we could issue a warning if no element of a newly created array is
assigned to before the array is read from or passed on. That might handle the common
case without being too noisy.

We need to decide whether default(T) generates a warning, or is simply treated as
being of the type T? .

Nullability adornments should be represented in metadata as attributes. This means that
downlevel compilers will ignore them.

We need to decide if only nullable annotations are included, or there's also some
indication of whether non-null was "on" in the assembly.

If a type parameter T has non-nullable constraints, it is treated as non-nullable within its
scope.

If a type parameter is unconstrained or has only nullable constraints, the situation is a
little more complex: this means that the corresponding type argument could be either
nullable or non-nullable. The safe thing to do in that situation is to treat the type
parameter as both nullable and non-nullable, giving warnings when either is violated.

It is worth considering whether explicit nullable reference constraints should be allowed.
Note, however, that we cannot avoid having nullable reference types implicitly be
constraints in certain cases (inherited constraints).

The class constraint is non-null. We can consider whether class? should be a valid
nullable constraint denoting "nullable reference type".

Metadata representation

Generics

Type inference

In type inference, if a contributing type is a nullable reference type, the resulting type
should be nullable. In other words, nullness is propagated.

We should consider whether the null literal as a participating expression should
contribute nullness. It doesn't today: for value types it leads to an error, whereas for
reference types the null successfully converts to the plain type.

C#

As a feature, nullable reference types allow developers to express their intent, and
provide warnings through flow analysis if that intent is contradicted. There is a common
question as to whether or not null guards are necessary.

C#

In the previous example, the DoWork function accepts a Worker and guards against it
potentially being null . If the worker argument is null , the DoWork function will throw .
With nullable reference types, the code in the previous example makes the intent that
the Worker parameter would not be null . If the DoWork function was a public API, such
as a NuGet package or a shared library - as guidance you should leave null guards in
place. As a public API, the only guarantee that a caller isn't passing null is to guard
against it.

string? n = "world";
var x = b ? "Hello" : n; // string?
var y = b ? "Hello" : null; // string? or error
var z = b ? 7 : null; // Error today, could be int?

Null guard guidance

Example of null guard

public void DoWork(Worker worker)
{
 // Guard against worker being null
 if (worker is null)
 {
 throw new ArgumentNullException(nameof(worker));
 }

 // Otherwise use worker argument
}

A more compelling use of the previous example is to express that the Worker parameter
could be null , thus making the null guard more appropriate. If you remove the null
guard in the following example, the compiler warns that you may be dereferencing null.
Regardless, both null guards are still valid.

C#

For non-public APIs, such as source code entirely in control by a developer or dev team
- the nullable reference types could allow for the safe removal of null guards where the
developers can guarantee it is not necessary. The feature can help with warnings, but it
cannot guarantee that at runtime code execution could result in a
NullReferenceException .

Non-null warnings are an obvious breaking change on existing code, and should be
accompanied with an opt-in mechanism.

Less obviously, warnings from nullable types (as described above) are a breaking change
on existing code in certain scenarios where the nullability is implicit:

Unconstrained type parameters will be treated as implicitly nullable, so assigning
them to object or accessing e.g. ToString will yield warnings.
if type inference infers nullness from null expressions, then existing code will
sometimes yield nullable rather than non-nullable types, which can lead to new
warnings.

So nullable warnings also need to be optional

Finally, adding annotations to an existing API will be a breaking change to users who
have opted in to warnings, when they upgrade the library. This, too, merits the ability to

Express intent

public void DoWork(Worker? worker)
{
 // Guard against worker being null
 if (worker is null)
 {
 throw new ArgumentNullException(nameof(worker));
 }

 // Otherwise use worker argument
}

Breaking changes

opt in or out. "I want the bug fixes, but I am not ready to deal with their new
annotations"

In summary, you need to be able to opt in/out of:

Nullable warnings
Non-null warnings
Warnings from annotations in other files

The granularity of the opt-in suggests an analyzer-like model, where swaths of code can
opt in and out with pragmas and severity levels can be chosen by the user. Additionally,
per-library options ("ignore the annotations from JSON.NET until I'm ready to deal with
the fall out") may be expressible in code as attributes.

The design of the opt-in/transition experience is crucial to the success and usefulness of
this feature. We need to make sure that:

Users can adopt nullability checking gradually as they want to
Library authors can add nullability annotations without fear of breaking customers
Despite these, there is not a sense of "configuration nightmare"

We could consider not using the ? annotations on locals, but just observing whether
they are used in accordance with what gets assigned to them. I don't favor this; I think
we should uniformly let people express their intent.

We could consider a shorthand T! x on parameters, that auto-generates a runtime null
check.

Certain patterns on generic types, such as FirstOrDefault or TryGet , have slightly weird
behavior with non-nullable type arguments, because they explicitly yield default values
in certain situations. We could try to nuance the type system to accommodate these
better. For instance, we could allow ? on unconstrained type parameters, even though
the type argument could already be nullable. I doubt that it is worth it, and it leads to
weirdness related to interaction with nullable value types.

We could consider adopting some of the above semantics for nullable value types as
well.

Tweaks

Nullable value types

We already mentioned type inference, where we could infer int? from (7, null) ,
instead of just giving an error.

Another opportunity is to apply the flow analysis to nullable value types. When they are
deemed non-null, we could actually allow using as the non-nullable type in certain ways
(e.g. member access). We just have to be careful that the things that you can already do
on a nullable value type will be preferred, for back compat reasons.

Recursive Pattern Matching
Article • 2022-03-24 • 12 minutes to read

Pattern matching extensions for C# enable many of the benefits of algebraic data types
and pattern matching from functional languages, but in a way that smoothly integrates
with the feel of the underlying language. Elements of this approach are inspired by
related features in the programming languages F# and Scala .

The is operator is extended to test an expression against a pattern.

antlr

This form of relational_expression is in addition to the existing forms in the C#
specification. It is a compile-time error if the relational_expression to the left of the is
token does not designate a value or does not have a type.

Every identifier of the pattern introduces a new local variable that is definitely assigned
after the is operator is true (i.e. definitely assigned when true).

Note: There is technically an ambiguity between type in an is-expression and
constant_pattern, either of which might be a valid parse of a qualified identifier. We
try to bind it as a type for compatibility with previous versions of the language; only
if that fails do we resolve it as we do an expression in other contexts, to the first
thing found (which must be either a constant or a type). This ambiguity is only
present on the right-hand-side of an is expression.

Summary

Detailed design

Is Expression

relational_expression
 : is_pattern_expression
 ;
is_pattern_expression
 : relational_expression 'is' pattern
 ;

Patterns

https://www.microsoft.com/research/wp-content/uploads/2016/02/p29-syme.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-73589-2.pdf

Patterns are used in the is_pattern operator, in a switch_statement, and in a
switch_expression to express the shape of data against which incoming data (which we
call the input value) is to be compared. Patterns may be recursive so that parts of the
data may be matched against sub-patterns.

antlr

pattern
 : declaration_pattern
 | constant_pattern
 | var_pattern
 | positional_pattern
 | property_pattern
 | discard_pattern
 ;
declaration_pattern
 : type simple_designation
 ;
constant_pattern
 : constant_expression
 ;
var_pattern
 : 'var' designation
 ;
positional_pattern
 : type? '(' subpatterns? ')' property_subpattern? simple_designation?
 ;
subpatterns
 : subpattern
 | subpattern ',' subpatterns
 ;
subpattern
 : pattern
 | identifier ':' pattern
 ;
property_subpattern
 : '{' '}'
 | '{' subpatterns ','? '}'
 ;
property_pattern
 : type? property_subpattern simple_designation?
 ;
simple_designation
 : single_variable_designation
 | discard_designation
 ;
discard_pattern
 : '_'
 ;

Declaration Pattern

antlr

The declaration_pattern both tests that an expression is of a given type and casts it to
that type if the test succeeds. This may introduce a local variable of the given type
named by the given identifier, if the designation is a single_variable_designation. That
local variable is definitely assigned when the result of the pattern-matching operation is
true .

The runtime semantic of this expression is that it tests the runtime type of the left-hand
relational_expression operand against the type in the pattern. If it is of that runtime type
(or some subtype) and not null , the result of the is operator is true .

Certain combinations of static type of the left-hand-side and the given type are
considered incompatible and result in compile-time error. A value of static type E is said
to be pattern-compatible with a type T if there exists an identity conversion, an implicit
reference conversion, a boxing conversion, an explicit reference conversion, or an
unboxing conversion from E to T , or if one of those types is an open type. It is a
compile-time error if an input of type E is not pattern-compatible with the type in a type
pattern that it is matched with.

The type pattern is useful for performing run-time type tests of reference types, and
replaces the idiom

C#

With the slightly more concise

C#

It is an error if type is a nullable value type.

The type pattern can be used to test values of nullable types: a value of type
Nullable<T> (or a boxed T) matches a type pattern T2 id if the value is non-null and

declaration_pattern
 : type simple_designation
 ;

var v = expr as Type;
if (v != null) { // code using v

if (expr is Type v) { // code using v

the type of T2 is T , or some base type or interface of T . For example, in the code
fragment

C#

The condition of the if statement is true at runtime and the variable v holds the value
3 of type int inside the block. After the block the variable v is in scope but not
definitely assigned.

antlr

A constant pattern tests the value of an expression against a constant value. The
constant may be any constant expression, such as a literal, the name of a declared const
variable, or an enumeration constant. When the input value is not an open type, the
constant expression is implicitly converted to the type of the matched expression; if the
type of the input value is not pattern-compatible with the type of the constant
expression, the pattern-matching operation is an error.

The pattern c is considered matching the converted input value e if object.Equals(c, e)
would return true .

We expect to see e is null as the most common way to test for null in newly written
code, as it cannot invoke a user-defined operator== .

antlr

int? x = 3;
if (x is int v) { // code using v

Constant Pattern

constant_pattern
 : constant_expression
 ;

Var Pattern

var_pattern
 : 'var' designation
 ;
designation
 : simple_designation
 | tuple_designation
 ;

If the designation is a simple_designation, an expression e matches the pattern. In other
words, a match to a var pattern always succeeds with a simple_designation. If the
simple_designation is a single_variable_designation, the value of e is bounds to a newly
introduced local variable. The type of the local variable is the static type of e.

If the designation is a tuple_designation, then the pattern is equivalent to a
positional_pattern of the form (var designation, ...) where the designations are those
found within the tuple_designation. For example, the pattern var (x, (y, z)) is
equivalent to (var x, (var y, var z)) .

It is an error if the name var binds to a type.

antlr

An expression e matches the pattern _ always. In other words, every expression matches
the discard pattern.

A discard pattern may not be used as the pattern of an is_pattern_expression.

simple_designation
 : single_variable_designation
 | discard_designation
 ;
single_variable_designation
 : identifier
 ;
discard_designation
 : _
 ;
tuple_designation
 : '(' designations? ')'
 ;
designations
 : designation
 | designations ',' designation
 ;

Discard Pattern

discard_pattern
 : '_'
 ;

Positional Pattern

A positional pattern checks that the input value is not null , invokes an appropriate
Deconstruct method, and performs further pattern matching on the resulting values. It
also supports a tuple-like pattern syntax (without the type being provided) when the
type of the input value is the same as the type containing Deconstruct , or if the type of
the input value is a tuple type, or if the type of the input value is object or ITuple and
the runtime type of the expression implements ITuple .

antlr

If the type is omitted, we take it to be the static type of the input value.

Given a match of an input value to the pattern type (subpattern_list) , a method is
selected by searching in type for accessible declarations of Deconstruct and selecting
one among them using the same rules as for the deconstruction declaration.

It is an error if a positional_pattern omits the type, has a single subpattern without an
identifier, has no property_subpattern and has no simple_designation. This disambiguates
between a constant_pattern that is parenthesized and a positional_pattern.

In order to extract the values to match against the patterns in the list,

If type was omitted and the input value's type is a tuple type, then the number of
subpatterns is required to be the same as the cardinality of the tuple. Each tuple
element is matched against the corresponding subpattern, and the match succeeds
if all of these succeed. If any subpattern has an identifier, then that must name a
tuple element at the corresponding position in the tuple type.
Otherwise, if a suitable Deconstruct exists as a member of type, it is a compile-time
error if the type of the input value is not pattern-compatible with type. At runtime
the input value is tested against type. If this fails then the positional pattern match
fails. If it succeeds, the input value is converted to this type and Deconstruct is
invoked with fresh compiler-generated variables to receive the out parameters.
Each value that was received is matched against the corresponding subpattern, and

positional_pattern
 : type? '(' subpatterns? ')' property_subpattern? simple_designation?
 ;
subpatterns
 : subpattern
 | subpattern ',' subpatterns
 ;
subpattern
 : pattern
 | identifier ':' pattern
 ;

the match succeeds if all of these succeed. If any subpattern has an identifier, then
that must name a parameter at the corresponding position of Deconstruct .
Otherwise if type was omitted, and the input value is of type object or ITuple or
some type that can be converted to ITuple by an implicit reference conversion,
and no identifier appears among the subpatterns, then we match using ITuple .
Otherwise the pattern is a compile-time error.

The order in which subpatterns are matched at runtime is unspecified, and a failed
match may not attempt to match all subpatterns.

This example uses many of the features described in this specification

c#

A property pattern checks that the input value is not null and recursively matches
values extracted by the use of accessible properties or fields.

antlr

It is an error if any subpattern of a property_pattern does not contain an identifier (it
must be of the second form, which has an identifier). A trailing comma after the last
subpattern is optional.

Note that a null-checking pattern falls out of a trivial property pattern. To check if the
string s is non-null, you can write any of the following forms

Example

 var newState = (GetState(), action, hasKey) switch {
 (DoorState.Closed, Action.Open, _) => DoorState.Opened,
 (DoorState.Opened, Action.Close, _) => DoorState.Closed,
 (DoorState.Closed, Action.Lock, true) => DoorState.Locked,
 (DoorState.Locked, Action.Unlock, true) => DoorState.Closed,
 (var state, _, _) => state };

Property Pattern

property_pattern
 : type? property_subpattern simple_designation?
 ;
property_subpattern
 : '{' '}'
 | '{' subpatterns ','? '}'
 ;

C#

Given a match of an expression e to the pattern type { property_pattern_list } , it is a
compile-time error if the expression e is not pattern-compatible with the type T
designated by type. If the type is absent, we take it to be the static type of e. If the
identifier is present, it declares a pattern variable of type type. Each of the identifiers
appearing on the left-hand-side of its property_pattern_list must designate an accessible
readable property or field of T. If the simple_designation of the property_pattern is
present, it defines a pattern variable of type T.

At runtime, the expression is tested against T. If this fails then the property pattern
match fails and the result is false . If it succeeds, then each property_subpattern field or
property is read and its value matched against its corresponding pattern. The result of
the whole match is false only if the result of any of these is false . The order in which
subpatterns are matched is not specified, and a failed match may not match all
subpatterns at runtime. If the match succeeds and the simple_designation of the
property_pattern is a single_variable_designation, it defines a variable of type T that is
assigned the matched value.

Note: The property pattern can be used to pattern-match with anonymous types.

C#

A switch_expression is added to support switch -like semantics for an expression context.

The C# language syntax is augmented with the following syntactic productions:

antlr

if (s is object o) ... // o is of type object
if (s is string x) ... // x is of type string
if (s is {} x) ... // x is of type string
if (s is {}) ...

Example

if (o is string { Length: 5 } s)

Switch Expression

multiplicative_expression
 : switch_expression
 | multiplicative_expression '*' switch_expression

The switch_expression is not permitted as an expression_statement.

We are looking at relaxing this in a future revision.

The type of the switch_expression is the best common type (§11.6.3.15) of the
expressions appearing to the right of the => tokens of the switch_expression_arms if
such a type exists and the expression in every arm of the switch expression can be
implicitly converted to that type. In addition, we add a new switch expression conversion,
which is a predefined implicit conversion from a switch expression to every type T for
which there exists an implicit conversion from each arm's expression to T .

It is an error if some switch_expression_arm's pattern cannot affect the result because
some previous pattern and guard will always match.

A switch expression is said to be exhaustive if some arm of the switch expression
handles every value of its input. The compiler shall produce a warning if a switch
expression is not exhaustive.

At runtime, the result of the switch_expression is the value of the expression of the first
switch_expression_arm for which the expression on the left-hand-side of the
switch_expression matches the switch_expression_arm's pattern, and for which the
case_guard of the switch_expression_arm, if present, evaluates to true . If there is no such
switch_expression_arm, the switch_expression throws an instance of the exception
System.Runtime.CompilerServices.SwitchExpressionException .

 | multiplicative_expression '/' switch_expression
 | multiplicative_expression '%' switch_expression
 ;
switch_expression
 : range_expression 'switch' '{' '}'
 | range_expression 'switch' '{' switch_expression_arms ','? '}'
 ;
switch_expression_arms
 : switch_expression_arm
 | switch_expression_arms ',' switch_expression_arm
 ;
switch_expression_arm
 : pattern case_guard? '=>' expression
 ;
case_guard
 : 'when' null_coalescing_expression
 ;

Optional parens when switching on a tuple literal

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116315-finding-the-best-common-type-of-a-set-of-expressions

In order to switch on a tuple literal using the switch_statement, you have to write what
appear to be redundant parens

C#

To permit

C#

the parentheses of the switch statement are optional when the expression being
switched on is a tuple literal.

Giving the compiler flexibility in reordering the operations executed during pattern-
matching can permit flexibility that can be used to improve the efficiency of pattern-
matching. The (unenforced) requirement would be that properties accessed in a pattern,
and the Deconstruct methods, are required to be "pure" (side-effect free, idempotent,
etc). That doesn't mean that we would add purity as a language concept, only that we
would allow the compiler flexibility in reordering operations.

Resolution 2018-04-04 LDM: confirmed: the compiler is permitted to reorder calls to
Deconstruct , property accesses, and invocations of methods in ITuple , and may assume
that returned values are the same from multiple calls. The compiler should not invoke
functions that cannot affect the result, and we will be very careful before making any
changes to the compiler-generated order of evaluation in the future.

The compilation of pattern matching can take advantage of common parts of patterns.
For example, if the top-level type test of two successive patterns in a switch_statement is
the same type, the generated code can skip the type test for the second pattern.

When some of the patterns are integers or strings, the compiler can generate the same
kind of code it generates for a switch-statement in earlier versions of the language.

For more on these kinds of optimizations, see [Scott and Ramsey (2000)] .

switch ((a, b))
{

switch (a, b)
{

Order of evaluation in pattern-matching

Some Possible Optimizations

https://www.cs.tufts.edu/~nr/cs257/archive/norman-ramsey/match.pdf

default interface methods
Article • 2022-08-12 • 27 minutes to read

Add support for virtual extension methods - methods in interfaces with concrete
implementations. A class or struct that implements such an interface is required to have
a single most specific implementation for the interface method, either implemented by
the class or struct, or inherited from its base classes or interfaces. Virtual extension
methods enable an API author to add methods to an interface in future versions without
breaking source or binary compatibility with existing implementations of that interface.

These are similar to Java's "Default Methods" .

(Based on the likely implementation technique) this feature requires corresponding
support in the CLI/CLR. Programs that take advantage of this feature cannot run on
earlier versions of the platform.

The principal motivations for this feature are

Default interface methods enable an API author to add methods to an interface in
future versions without breaking source or binary compatibility with existing
implementations of that interface.
The feature enables C# to interoperate with APIs targeting Android (Java) and
iOS (Swift) , which support similar features.
As it turns out, adding default interface implementations provides the elements of
the "traits" language feature
(https://en.wikipedia.org/wiki/Trait_(computer_programming)). Traits have
proven to be a powerful programming technique
(http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf).

The syntax for an interface is extended to permit

member declarations that declare constants, operators, static constructors, and
nested types;

Summary

Motivation

Detailed design

http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html#//apple_ref/doc/uid/TP40014097-CH25-ID267
https://en.wikipedia.org/wiki/Trait_(computer_programming)
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf

a body for a method or indexer, property, or event accessor (that is, a "default"
implementation);
member declarations that declare static fields, methods, properties, indexers, and
events;
member declarations using the explicit interface implementation syntax; and
Explicit access modifiers (the default access is public).

Members with bodies permit the interface to provide a "default" implementation for the
method in classes and structs that do not provide their own implementation.

Interfaces may not contain instance state. While static fields are now permitted, instance
fields are not permitted in interfaces. Instance auto-properties are not supported in
interfaces, as they would implicitly declare a hidden field.

Static and private methods permit useful refactoring and organization of code used to
implement the interface's public API.

A method override in an interface must use the explicit interface implementation syntax.

It is an error to declare a class type, struct type, or enum type within the scope of a type
parameter that was declared with a variance_annotation. For example, the declaration of
C below is an error.

C#

The simplest form of this feature is the ability to declare a concrete method in an
interface, which is a method with a body.

C#

A class that implements this interface need not implement its concrete method.

interface IOuter<out T>
{
 class C { } // error: class declaration within the scope of variant type
parameter 'T'
}

Concrete methods in interfaces

interface IA
{
 void M() { WriteLine("IA.M"); }
}

C#

The final override for IA.M in class C is the concrete method M declared in IA . Note
that a class does not inherit members from its interfaces; that is not changed by this
feature:

C#

Within an instance member of an interface, this has the type of the enclosing interface.

The syntax for an interface is relaxed to permit modifiers on its members. The following
are permitted: private , protected , internal , public , virtual , abstract , sealed ,
static , extern , and partial .

TODO: check what other modifiers exist.

An interface member whose declaration includes a body is a virtual member unless
the sealed or private modifier is used. The virtual modifier may be used on a
function member that would otherwise be implicitly virtual . Similarly, although
abstract is the default on interface members without bodies, that modifier may be
given explicitly. A non-virtual member may be declared using the sealed keyword.

It is an error for a private or sealed function member of an interface to have no body.
A private function member may not have the modifier sealed .

Access modifiers may be used on interface members of all kinds of members that are
permitted. The access level public is the default but it may be given explicitly.

Open Issue: We need to specify the precise meaning of the access modifiers such as
protected and internal , and which declarations do and do not override them (in a
derived interface) or implement them (in a class that implements the interface).

class C : IA { } // OK

IA i = new C();
i.M(); // prints "IA.M"

new C().M(); // error: class 'C' does not contain a member 'M'

Modifiers in interfaces

Interfaces may declare static members, including nested types, methods, indexers,
properties, events, and static constructors. The default access level for all interface
members is public .

Interfaces may not declare instance constructors, destructors, or fields.

Closed Issue: Should operator declarations be permitted in an interface? Probably
not conversion operators, but what about others? Decision: Operators are permitted
except for conversion, equality, and inequality operators.

Closed Issue: Should new be permitted on interface member declarations that hide
members from base interfaces? Decision: Yes.

Closed Issue: We do not currently permit partial on an interface or its members.
That would require a separate proposal. Decision: Yes.
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#permit-partial-in-interface

Explicit implementations allow the programmer to provide a most specific
implementation of a virtual member in an interface where the compiler or runtime
would not otherwise find one. An implementation declaration is permitted to explicitly
implement a particular base interface method by qualifying the declaration with the
interface name (no access modifier is permitted in this case). Implicit implementations
are not permitted.

C#

Explicit implementations in interfaces may not be declared sealed .

Explicit implementation in interfaces

interface IA
{
 void M() { WriteLine("IA.M"); }
}
interface IB : IA
{
 void IA.M() { WriteLine("IB.M"); } // Explicit implementation
}
interface IC : IA
{
 void M() { WriteLine("IC.M"); } // Creates a new M, unrelated to `IA.M`.
Warning
}

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#permit-partial-in-interface

Public virtual function members in an interface may only be implemented in a derived
interface explicitly (by qualifying the name in the declaration with the interface type that
originally declared the method, and omitting an access modifier). The member must be
accessible where it is implemented.

A virtual (concrete) method declared in an interface may be reabstracted in a derived
interface

C#

The abstract modifier is required in the declaration of IB.M , to indicate that IA.M is
being reabstracted.

This is useful in derived interfaces where the default implementation of a method is
inappropriate and a more appropriate implementation should be provided by
implementing classes.

Open Issue: Should reabstraction be permitted?

We require that every interface and class have a most specific implementation for every
virtual member among the implementations appearing in the type or its direct and
indirect interfaces. The most specific implementation is a unique implementation that is
more specific than every other implementation. If there is no implementation, the
member itself is considered the most specific implementation.

One implementation M1 is considered more specific than another implementation M2 if
M1 is declared on type T1 , M2 is declared on type T2 , and either

1. T1 contains T2 among its direct or indirect interfaces, or
2. T2 is an interface type but T1 is not an interface type.

Reabstraction

interface IA
{
 void M() { WriteLine("IA.M"); }
}
interface IB : IA
{
 abstract void IA.M();
}
class C : IB { } // error: class 'C' does not implement 'IA.M'.

The most specific implementation rule

For example:

C#

The most specific implementation rule ensures that a conflict (i.e. an ambiguity arising
from diamond inheritance) is resolved explicitly by the programmer at the point where
the conflict arises.

Because we support explicit reabstractions in interfaces, we could do so in classes as
well

C#

Open issue: should we support explicit interface abstract implementations in
classes?

In addition, it is an error if in a class declaration the most specific implementation of
some interface method is an abstract implementation that was declared in an interface.
This is an existing rule restated using the new terminology.

C#

interface IA
{
 void M() { WriteLine("IA.M"); }
}
interface IB : IA
{
 void IA.M() { WriteLine("IB.M"); }
}
interface IC : IA
{
 void IA.M() { WriteLine("IC.M"); }
}
interface ID : IB, IC { } // error: no most specific implementation for
'IA.M'
abstract class C : IB, IC { } // error: no most specific implementation for
'IA.M'
abstract class D : IA, IB, IC // ok
{
 public abstract void M();
}

abstract class E : IA, IB, IC // ok
{
 abstract void IA.M();
}

It is possible for a virtual property declared in an interface to have a most specific
implementation for its get accessor in one interface and a most specific implementation
for its set accessor in a different interface. This is considered a violation of the most
specific implementation rule.

Because interfaces may now contain executable code, it is useful to abstract common
code into private and static methods. We now permit these in interfaces.

Closed issue: Should we support private methods? Should we support static
methods? Decision: YES

Open issue: should we permit interface methods to be protected or internal or
other access? If so, what are the semantics? Are they virtual by default? If so, is
there a way to make them non-virtual?

Open issue: If we support static methods, should we support (static) operators?

Code in a type that derives from an interface with a default method can explicitly invoke
that interface's "base" implementation.

C#

interface IF
{
 void M();
}
abstract class F : IF { } // error: 'F' does not implement 'IF.M'

static and private methods

Base interface invocations

interface I0
{
 void M() { Console.WriteLine("I0"); }
}
interface I1 : I0
{
 override void M() { Console.WriteLine("I1"); }
}
interface I2 : I0
{
 override void M() { Console.WriteLine("I2"); }
}

An instance (nonstatic) method is permitted to invoke the implementation of an
accessible instance method in a direct base interface nonvirtually by naming it using the
syntax base(Type).M . This is useful when an override that is required to be provided due
to diamond inheritance is resolved by delegating to one particular base implementation.

C#

When a virtual or abstract member is accessed using the syntax base(Type).M , it is
required that Type contains a unique most specific override for M .

Interfaces now contain types. These types may be used in the base clause as base
interfaces. When binding a base clause, we may need to know the set of base interfaces
to bind those types (e.g. to lookup in them and to resolve protected access). The
meaning of an interface's base clause is thus circularly defined. To break the cycle, we
add a new language rules corresponding to a similar rule already in place for classes.

While determining the meaning of the interface_base of an interface, the base interfaces
are temporarily assumed to be empty. Intuitively this ensures that the meaning of a base
clause cannot recursively depend on itself.

interface I3 : I1, I2
{
 // an explicit override that invoke's a base interface's default method
 void I0.M() { I2.base.M(); }
}

interface IA
{
 void M() { WriteLine("IA.M"); }
}
interface IB : IA
{
 override void IA.M() { WriteLine("IB.M"); }
}
interface IC : IA
{
 override void IA.M() { WriteLine("IC.M"); }
}

class D : IA, IB, IC
{
 void IA.M() { base(IB).M(); }
}

Binding base clauses

We used to have the following rules:

"When a class B derives from a class A, it is a compile-time error for A to depend on B. A
class directly depends on its direct base class (if any) and directly depends on the class
within which it is immediately nested (if any). Given this definition, the complete set of
classes upon which a class depends is the reflexive and transitive closure of the directly
depends on relationship."

It is a compile-time error for an interface to directly or indirectly inherit from itself. The
base interfaces of an interface are the explicit base interfaces and their base interfaces.
In other words, the set of base interfaces is the complete transitive closure of the explicit
base interfaces, their explicit base interfaces, and so on.

We are adjusting them as follows:

When a class B derives from a class A, it is a compile-time error for A to depend on B. A
class directly depends on its direct base class (if any) and directly depends on the type
within which it is immediately nested (if any).

When an interface IB extends an interface IA, it is a compile-time error for IA to depend
on IB. An interface directly depends on its direct base interfaces (if any) and directly
depends on the type within which it is immediately nested (if any).

Given these definitions, the complete set of types upon which a type depends is the
reflexive and transitive closure of the directly depends on relationship.

The rules presented here are intended to have no effect on the meaning of existing
programs.

Example 1:

C#

Example 2:

Effect on existing programs

interface IA
{
 void M();
}
class C: IA // Error: IA.M has no concrete most specific override in C
{
 public static void M() { } // method unrelated to 'IA.M' because static
}

C#

The same rules give similar results to the analogous situation involving default interface
methods:

C#

Closed issue: confirm that this is an intended consequence of the specification.
Decision: YES

Closed Issue: The spec should describe the runtime method resolution algorithm in
the face of interface default methods. We need to ensure that the semantics are
consistent with the language semantics, e.g. which declared methods do and do not
override or implement an internal method.

In order for compilers to detect when they are compiling for a runtime that supports this
feature, libraries for such runtimes are modified to advertise that fact through the API
discussed in https://github.com/dotnet/corefx/issues/17116 . We add

interface IA
{
 void M();
}
class Base: IA
{
 void IA.M() { }
}
class Derived: Base, IA // OK, all interface members have a concrete most
specific override
{
 private void M() { } // method unrelated to 'IA.M' because private
}

interface IA
{
 void M() { }
}
class Derived: IA // OK, all interface members have a concrete most specific
override
{
 private void M() { } // method unrelated to 'IA.M' because private
}

Runtime method resolution

CLR support API

https://github.com/dotnet/corefx/issues/17116

C#

Open issue: Is that the best name for the CLR feature? The CLR feature does much
more than just that (e.g. relaxes protection constraints, supports overrides in
interfaces, etc). Perhaps it should be called something like "concrete methods in
interfaces", or "traits"?

[] It would be useful to catalog the kinds of source and binary compatibility effects
caused by adding default interface methods and overrides to existing interfaces.

This proposal requires a coordinated update to the CLR specification (to support
concrete methods in interfaces and method resolution). It is therefore fairly "expensive"
and it may be worth doing in combination with other features that we also anticipate
would require CLR changes.

None.

Open questions are called out throughout the proposal, above.
See also https://github.com/dotnet/csharplang/issues/406 for a list of open
questions.
The detailed specification must describe the resolution mechanism used at runtime
to select the precise method to be invoked.

namespace System.Runtime.CompilerServices
{
 public static class RuntimeFeature
 {
 // Presence of the field indicates runtime support
 public const string DefaultInterfaceImplementation =
nameof(DefaultInterfaceImplementation);
 }
}

Further areas to be specified

Drawbacks

Alternatives

Unresolved questions

https://github.com/dotnet/csharplang/issues/406

The interaction of metadata produced by new compilers and consumed by older
compilers needs to be worked out in detail. For example, we need to ensure that
the metadata representation that we use does not cause the addition of a default
implementation in an interface to break an existing class that implements that
interface when compiled by an older compiler. This may affect the metadata
representation that we can use.
The design must consider interoperation with other languages and existing
compilers for other languages.

The earlier draft spec contained the ability to "reabstract" an inherited method:

C#

My notes for 2017-03-20 showed that we decided not to allow this. However, there are
at least two use cases for it:

1. The Java APIs, with which some users of this feature hope to interoperate, depend
on this facility.

2. Programming with traits benefits from this. Reabstraction is one of the elements of
the "traits" language feature
(https://en.wikipedia.org/wiki/Trait_(computer_programming)). The following is
permitted with classes:

C#

Resolved Questions

Abstract Override

interface IA
{
 void M();
}
interface IB : IA
{
 override void M() { }
}
interface IC : IB
{
 override void M(); // make it abstract again
}

public abstract class Base
{
 public abstract void M();

https://en.wikipedia.org/wiki/Trait_(computer_programming)

Unfortunately this code cannot be refactored as a set of interfaces (traits) unless this is
permitted. By the Jared principle of greed, it should be permitted.

Closed issue: Should reabstraction be permitted? [YES] My notes were wrong. The
LDM notes say that reabstraction is permitted in an interface. Not in a class.

From Aleksey Tsingauz :

We decided to allow modifiers explicitly stated on interface members, unless there is
a reason to disallow some of them. This brings an interesting question around
virtual modifier. Should it be required on members with default implementation?

We could say that:

if there is no implementation and neither virtual, nor sealed are specified, we
assume the member is abstract.
if there is an implementation and neither abstract, nor sealed are specified, we
assume the member is virtual.
sealed modifier is required to make a method neither virtual, nor abstract.

Alternatively, we could say that virtual modifier is required for a virtual member. I.e,
if there is a member with implementation not explicitly marked with virtual modifier,
it is neither virtual, nor abstract. This approach might provide better experience
when a method is moved from a class to an interface:

an abstract method stays abstract.
a virtual method stays virtual.
a method without any modifier stays neither virtual, nor abstract.
sealed modifier cannot be applied to a method that is not an override.

What do you think?

}
public abstract class A : Base
{
 public override void M() { }
}
public abstract class B : A
{
 public override abstract void M(); // reabstract Base.M
}

Virtual Modifier vs Sealed Modifier

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-21.md
https://github.com/AlekseyTs

Closed Issue: Should a concrete method (with implementation) be implicitly
virtual? [YES]

Decisions: Made in the LDM 2017-04-05:

1. non-virtual should be explicitly expressed through sealed or private .
2. sealed is the keyword to make interface instance members with bodies non-virtual
3. We want to allow all modifiers in interfaces
4. Default accessibility for interface members is public, including nested types
5. private function members in interfaces are implicitly sealed, and sealed is not

permitted on them.
6. Private classes (in interfaces) are permitted and can be sealed, and that means

sealed in the class sense of sealed.
7. Absent a good proposal, partial is still not allowed on interfaces or their members.

When a library provides a default implementation

C#

We understand that the implementation of I1.M in C is I1.M . What if the assembly
containing I2 is changed as follows and recompiled

C#

but C is not recompiled. What happens when the program is run? An invocation of (C
as I1).M()

Binary Compatibility 1

interface I1
{
 void M() { Impl1 }
}
interface I2 : I1
{
}
class C : I2
{
}

interface I2 : I1
{
 override void M() { Impl2 }
}

1. Runs I1.M
2. Runs I2.M
3. Throws some kind of runtime error

Decision: Made 2017-04-11: Runs I2.M , which is the unambiguously most specific
override at runtime.

Closed Issue: Can an event be overridden "piecewise"?

Consider this case:

C#

This "partial" implementation of the event is not permitted because, as in a class, the
syntax for an event declaration does not permit only one accessor; both (or neither)
must be provided. You could accomplish the same thing by permitting the abstract
remove accessor in the syntax to be implicitly abstract by the absence of a body:

C#

Event accessors (closed)

public interface I1
{
 event T e1;
}
public interface I2 : I1
{
 override event T
 {
 add { }
 // error: "remove" accessor missing
 }
}

public interface I1
{
 event T e1;
}
public interface I2 : I1
{
 override event T
 {
 add { }
 remove; // implicitly abstract
 }
}

Note that this is a new (proposed) syntax. In the current grammar, event accessors have a
mandatory body.

Closed Issue: Can an event accessor be (implicitly) abstract by the omission of a
body, similarly to the way that methods in interfaces and property accessors are
(implicitly) abstract by the omission of a body?

Decision: (2017-04-18) No, event declarations require both concrete accessors (or
neither).

Closed Issue: We should confirm that this is permitted (otherwise adding a default
implementation would be a breaking change):

C#

Decision: (2017-04-18) Yes, adding a body to an interface member declaration shouldn't
break C.

The previous question implicitly assumes that the sealed modifier can be applied to an
override in an interface. This contradicts the draft specification. Do we want to permit
sealing an override? Source and binary compatibility effects of sealing should be
considered.

Closed Issue: Should we permit sealing an override?

Decision: (2017-04-18) Let's not allowed sealed on overrides in interfaces. The only use
of sealed on interface members is to make them non-virtual in their initial declaration.

Reabstraction in a Class (closed)

interface I1
{
 void M() { }
}
abstract class C : I1
{
 public abstract void M(); // implement I1.M with an abstract method in C
}

Sealed Override (closed)

The draft of the proposal prefers class overrides to interface overrides in diamond
inheritance scenarios:

We require that every interface and class have a most specific override for every
interface method among the overrides appearing in the type or its direct and
indirect interfaces. The most specific override is a unique override that is more
specific than every other override. If there is no override, the method itself is
considered the most specific override.

One override M1 is considered more specific than another override M2 if M1 is
declared on type T1 , M2 is declared on type T2 , and either

1. T1 contains T2 among its direct or indirect interfaces, or
2. T2 is an interface type but T1 is not an interface type.

The scenario is this

C#

We should confirm this behavior (or decide otherwise)

Closed Issue: Confirm the draft spec, above, for most specific override as it applies to
mixed classes and interfaces (a class takes priority over an interface). See

Diamond inheritance and classes (closed)

interface IA
{
 void M();
}
interface IB : IA
{
 override void M() { WriteLine("IB"); }
}
class Base : IA
{
 void IA.M() { WriteLine("Base"); }
}
class Derived : Base, IB // allowed?
{
 static void Main()
 {
 IA a = new Derived();
 a.M(); // what does it do?
 }
}

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-
19.md#diamonds-with-classes .

There are some unfortunate interactions between default interface methods and structs.

C#

Note that interface members are not inherited:

C#

Consequently, the client must box the struct to invoke interface methods

C#

Boxing in this way defeats the principal benefits of a struct type. Moreover, any
mutation methods will have no apparent effect, because they are operating on a boxed
copy of the struct:

C#

Interface methods vs structs (closed)

interface IA
{
 public void M() { }
}
struct S : IA
{
}

var s = default(S);
s.M(); // error: 'S' does not contain a member 'M'

IA s = default(S); // an S, boxed
s.M(); // ok

interface IB
{
 public void Increment() { P += 1; }
 public int P { get; set; }
}
struct T : IB
{
 public int P { get; set; } // auto-property
}

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-19.md#diamonds-with-classes

Closed Issue: What can we do about this:

1. Forbid a struct from inheriting a default implementation. All interface
methods would be treated as abstract in a struct . Then we may take time
later to decide how to make it work better.

2. Come up with some kind of code generation strategy that avoids boxing.
Inside a method like IB.Increment , the type of this would perhaps be akin to
a type parameter constrained to IB . In conjunction with that, to avoid boxing
in the caller, non-abstract methods would be inherited from interfaces. This
may increase compiler and CLR implementation work substantially.

3. Not worry about it and just leave it as a wart.
4. Other ideas?

Decision: Not worry about it and just leave it as a wart. See
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-
19.md#structs-and-default-implementations .

The draft spec suggests a syntax for base interface invocations inspired by Java:
Interface.base.M() . We need to select a syntax, at least for the initial prototype. My
favorite is base<Interface>.M() .

Closed Issue: What is the syntax for a base member invocation?

Decision: The syntax is base(Interface).M() . See
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-
19.md#base-invocation . The interface so named must be a base interface, but does
not need to be a direct base interface.

Open Issue: Should base interface invocations be permitted in class members?

Decision: Yes. https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-
2017-04-19.md#base-invocation

T t = default(T);
Console.WriteLine(t.P); // prints 0
(t as IB).Increment();
Console.WriteLine(t.P); // prints 0

Base interface invocations (closed)

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-19.md#structs-and-default-implementations
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-19.md#base-invocation
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-19.md#base-invocation

In an interface, non-public members from base interfaces are overridden using the
override modifier. If it is an "explicit" override that names the interface containing the
member, the access modifier is omitted.

Closed Issue: If it is an "implicit" override that does not name the interface, does the
access modifier have to match?

Decision: Only public members may be implicitly overridden, and the access must
match. See https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-
2017-04-18.md#dim-implementing-a-non-public-interface-member-not-in-list .

Open Issue: Is the access modifier required, optional, or omitted on an explicit
override such as override void IB.M() {}?

Open Issue: Is override required, optional, or omitted on an explicit override such
as void IB.M() {}?

How does one implement a non-public interface member in a class? Perhaps it must be
done explicitly?

C#

Closed Issue: How does one implement a non-public interface member in a class?

Decision: You can only implement non-public interface members explicitly. See
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-
18.md#dim-implementing-a-non-public-interface-member-not-in-list .

Overriding non-public interface members (closed)

interface IA
{
 internal void MI();
 protected void MP();
}
class C : IA
{
 // are these implementations?
 internal void MI() {}
 protected void MP() {}
}

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-18.md#dim-implementing-a-non-public-interface-member-not-in-list
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-18.md#dim-implementing-a-non-public-interface-member-not-in-list

Decision: No override keyword permitted on interface members.
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#does-an-override-in-an-interface-introduce-a-new-member

Consider the following code in which each type is in a separate assembly

C#

We understand that the implementation of I1.M in C is I2.M . What if the assembly
containing I3 is changed as follows and recompiled

C#

but C is not recompiled. What happens when the program is run? An invocation of (C
as I1).M()

1. Runs I1.M
2. Runs I2.M
3. Runs I3.M
4. Either 2 or 3, deterministically
5. Throws some kind of runtime exception

Decision: Throw an exception (5). See
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-

Binary Compatibility 2 (closed)

interface I1
{
 void M() { Impl1 }
}
interface I2 : I1
{
 override void M() { Impl2 }
}
interface I3 : I1
{
}
class C : I2, I3
{
}

interface I3 : I1
{
 override void M() { Impl3 }
}

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#does-an-override-in-an-interface-introduce-a-new-member
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#issues-in-default-interface-methods

17.md#issues-in-default-interface-methods .

Given that interfaces may be used in ways analogous to the way abstract classes are
used, it may be useful to declare them partial . This would be particularly useful in the
face of generators.

Proposal: Remove the language restriction that interfaces and members of
interfaces may not be declared partial .

Decision: Yes. See
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#permit-partial-in-interface .

Open Issue: Is a static Main method in an interface a candidate to be the
program's entry point?

Decision: Yes. See
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#main-in-an-interface .

Can we please confirm (or reverse) our decision to permit non-virtual public methods in
an interface?

C#

Semi-Closed Issue: (2017-04-18) We think it is going to be useful, but will come
back to it. This is a mental model tripping block.

Permit partial in interface? (closed)

Main in an interface? (closed)

Confirm intent to support public non-virtual methods
(closed)

interface IA
{
 public sealed void M() { }
}

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#issues-in-default-interface-methods
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#permit-partial-in-interface
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#main-in-an-interface

Decision: Yes. https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-
2018-10-17.md#confirm-that-we-support-public-non-virtual-methods .

There are a few ways to observe whether an override declaration introduces a new
member or not.

C#

Open Issue: Does an override declaration in an interface introduce a new member?
(closed)

In a class, an overriding method is "visible" in some senses. For example, the names of
its parameters take precedence over the names of parameters in the overridden
method. It may be possible to duplicate that behavior in interfaces, as there is always a
most specific override. But do we want to duplicate that behavior?

Also, it is possible to "override" an override method? [Moot]

Decision: No override keyword permitted on interface members.
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#does-an-override-in-an-interface-introduce-a-new-member .

Does an override in an interface introduce a new
member? (closed)

interface IA
{
 void M(int x) { }
}
interface IB : IA
{
 override void M(int y) { }
}
interface IC : IB
{
 static void M2()
 {
 M(y: 3); // permitted?
 }
 override void IB.M(int z) { } // permitted? What does it override?
}

Properties with a private accessor (closed)

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#confirm-that-we-support-public-non-virtual-methods
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#does-an-override-in-an-interface-introduce-a-new-member

We say that private members are not virtual, and the combination of virtual and private
is disallowed. But what about a property with a private accessor?

C#

Is this allowed? Is the set accessor here virtual or not? Can it be overridden where it is
accessible? Does the following implicitly implement only the get accessor?

C#

Is the following presumably an error because IA.P.set isn't virtual and also because it
isn't accessible?

C#

Decision: The first example looks valid, while the last does not. This is resolved
analogously to how it already works in C#.
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#properties-with-a-private-accessor

interface IA
{
 public virtual int P
 {
 get => 3;
 private set => { }
 }
}

class C : IA
{
 public int P
 {
 get => 4;
 set { }
 }
}

class C : IA
{
 int IA.P
 {
 get => 4;
 set { }
 }
}

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#properties-with-a-private-accessor

Our previous "resolution" to how to handle base invocations doesn't actually provide
sufficient expressiveness. It turns out that in C# and the CLR, unlike Java, you need to
specify both the interface containing the method declaration and the location of the
implementation you want to invoke.

I propose the following syntax for base calls in interfaces. I’m not in love with it, but it
illustrates what any syntax must be able to express:

C#

If there is no ambiguity, you can write it more simply

C#

Or

C#

Base Interface Invocations, round 2 (closed)

interface I1 { void M(); }
interface I2 { void M(); }
interface I3 : I1, I2 { void I1.M() { } void I2.M() { } }
interface I4 : I1, I2 { void I1.M() { } void I2.M() { } }
interface I5 : I3, I4
{
 void I1.M()
 {
 base<I3>(I1).M(); // calls I3's implementation of I1.M
 base<I4>(I1).M(); // calls I4's implementation of I1.M
 }
 void I2.M()
 {
 base<I3>(I2).M(); // calls I3's implementation of I2.M
 base<I4>(I2).M(); // calls I4's implementation of I2.M
 }
}

interface I1 { void M(); }
interface I3 : I1 { void I1.M() { } }
interface I4 : I1 { void I1.M() { } }
interface I5 : I3, I4
{
 void I1.M()
 {
 base<I3>.M(); // calls I3's implementation of I1.M
 base<I4>.M(); // calls I4's implementation of I1.M
 }
}

Or

C#

Decision: Decided on base(N.I1<T>).M(s) , conceding that if we have an invocation
binding there may be problem here later on.
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-11-
14.md#default-interface-implementations

@vancem asserts that we should seriously consider producing a warning if a value type
declaration fails to override some interface method, even if it would inherit an
implementation of that method from an interface. Because it causes boxing and
undermines constrained calls.

Decision: This seems like something more suited for an analyzer. It also seems like this
warning could be noisy, since it would fire even if the default interface method is never
called and no boxing will ever occur.

interface I1 { void M(); }
interface I2 { void M(); }
interface I3 : I1, I2 { void I1.M() { } void I2.M() { } }
interface I5 : I3
{
 void I1.M()
 {
 base(I1).M(); // calls I3's implementation of I1.M
 }
 void I2.M()
 {
 base(I2).M(); // calls I3's implementation of I2.M
 }
}

interface I1 { void M(); }
interface I3 : I1 { void I1.M() { } }
interface I5 : I3
{
 void I1.M()
 {
 base.M(); // calls I3's implementation of I1.M
 }
}

Warning for struct not implementing default method?
(closed)

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-11-14.md#default-interface-implementations

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#warning-for-struct-not-implementing-default-method

When are interface static constructors run? The current CLI draft proposes that it occurs
when the first static method or field is accessed. If there are neither of those then it
might never be run??

[2018-10-09 The CLR team proposes "Going to mirror what we do for valuetypes (cctor
check on access to each instance method)"]

Decision: Static constructors are also run on entry to instance methods, if the static
constructor was not beforefieldinit , in which case static constructors are run before
access to the first static field.
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-
17.md#when-are-interface-static-constructors-run

2017-03-08 LDM Meeting Notes 2017-03-21 LDM Meeting Notes 2017-03-23
meeting "CLR Behavior for Default Interface Methods" 2017-04-05 LDM Meeting
Notes 2017-04-11 LDM Meeting Notes 2017-04-18 LDM Meeting Notes 2017-
04-19 LDM Meeting Notes 2017-05-17 LDM Meeting Notes 2017-05-31 LDM
Meeting Notes 2017-06-14 LDM Meeting Notes 2018-10-17 LDM Meeting Notes
2018-11-14 LDM Meeting Notes

Interface static constructors (closed)

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#warning-for-struct-not-implementing-default-method
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md#when-are-interface-static-constructors-run
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-08.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-03-21.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/CLR-2017-03-23.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-05.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-11.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-18.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-04-19.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-05-17.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-05-31.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-06-14.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-11-14.md

Async Streams
Article • 2022-10-11 • 21 minutes to read

C# has support for iterator methods and async methods, but no support for a method
that is both an iterator and an async method. We should rectify this by allowing for
await to be used in a new form of async iterator, one that returns an
IAsyncEnumerable<T> or IAsyncEnumerator<T> rather than an IEnumerable<T> or
IEnumerator<T> , with IAsyncEnumerable<T> consumable in a new await foreach . An
IAsyncDisposable interface is also used to enable asynchronous cleanup.

https://github.com/dotnet/roslyn/issues/261
https://github.com/dotnet/roslyn/issues/114

There has been much discussion of IAsyncDisposable (e.g.
https://github.com/dotnet/roslyn/issues/114) and whether it's a good idea. However,
it's a required concept to add in support of async iterators. Since finally blocks may
contain awaits, and since finally blocks need to be run as part of disposing of
iterators, we need async disposal. It's also just generally useful any time cleaning up of
resources might take any period of time, e.g. closing files (requiring flushes),
deregistering callbacks and providing a way to know when deregistration has
completed, etc.

The following interface is added to the core .NET libraries (e.g. System.Private.CoreLib /
System.Runtime):

C#

Summary

Related discussion

Detailed design

Interfaces

IAsyncDisposable

https://github.com/dotnet/roslyn/issues/261
https://github.com/dotnet/roslyn/issues/114
https://github.com/dotnet/roslyn/issues/114

As with Dispose , invoking DisposeAsync multiple times is acceptable, and subsequent
invocations after the first should be treated as nops, returning a synchronously
completed successful task (DisposeAsync need not be thread-safe, though, and need not
support concurrent invocation). Further, types may implement both IDisposable and
IAsyncDisposable , and if they do, it's similarly acceptable to invoke Dispose and then
DisposeAsync or vice versa, but only the first should be meaningful and subsequent
invocations of either should be a nop. As such, if a type does implement both,
consumers are encouraged to call once and only once the more relevant method based
on the context, Dispose in synchronous contexts and DisposeAsync in asynchronous
ones.

(I'm leaving discussion of how IAsyncDisposable interacts with using to a separate
discussion. And coverage of how it interacts with foreach is handled later in this
proposal.)

Alternatives considered:

DisposeAsync accepting a CancellationToken : while in theory it makes sense that
anything async can be canceled, disposal is about cleanup, closing things out,
free'ing resources, etc., which is generally not something that should be canceled;
cleanup is still important for work that's canceled. The same CancellationToken
that caused the actual work to be canceled would typically be the same token
passed to DisposeAsync , making DisposeAsync worthless because cancellation of
the work would cause DisposeAsync to be a nop. If someone wants to avoid being
blocked waiting for disposal, they can avoid waiting on the resulting ValueTask , or
wait on it only for some period of time.
DisposeAsync returning a Task : Now that a non-generic ValueTask exists and can
be constructed from an IValueTaskSource , returning ValueTask from DisposeAsync
allows an existing object to be reused as the promise representing the eventual
async completion of DisposeAsync , saving a Task allocation in the case where
DisposeAsync completes asynchronously.
Configuring DisposeAsync with a bool continueOnCapturedContext
(ConfigureAwait): While there may be issues related to how such a concept is

namespace System
{
 public interface IAsyncDisposable
 {
 ValueTask DisposeAsync();
 }
}

exposed to using , foreach , and other language constructs that consume this, from
an interface perspective it's not actually doing any await 'ing and there's nothing
to configure... consumers of the ValueTask can consume it however they wish.
IAsyncDisposable inheriting IDisposable : Since only one or the other should be
used, it doesn't make sense to force types to implement both.
IDisposableAsync instead of IAsyncDisposable : We've been following the naming
that things/types are an "async something" whereas operations are "done async",
so types have "Async" as a prefix and methods have "Async" as a suffix.

Two interfaces are added to the core .NET libraries:

C#

Typical consumption (without additional language features) would look like:

C#

Discarded options considered:

IAsyncEnumerable / IAsyncEnumerator

namespace System.Collections.Generic
{
 public interface IAsyncEnumerable<out T>
 {
 IAsyncEnumerator<T> GetAsyncEnumerator(CancellationToken
cancellationToken = default);
 }

 public interface IAsyncEnumerator<out T> : IAsyncDisposable
 {
 ValueTask<bool> MoveNextAsync();
 T Current { get; }
 }
}

IAsyncEnumerator<T> enumerator = enumerable.GetAsyncEnumerator();
try
{
 while (await enumerator.MoveNextAsync())
 {
 Use(enumerator.Current);
 }
}
finally { await enumerator.DisposeAsync(); }

Task<bool> MoveNextAsync(); T current { get; } : Using Task<bool> would
support using a cached task object to represent synchronous, successful
MoveNextAsync calls, but an allocation would still be required for asynchronous
completion. By returning ValueTask<bool> , we enable the enumerator object to
itself implement IValueTaskSource<bool> and be used as the backing for the
ValueTask<bool> returned from MoveNextAsync , which in turn allows for
significantly reduced overheads.
ValueTask<(bool, T)> MoveNextAsync(); : It's not only harder to consume, but it
means that T can no longer be covariant.
ValueTask<T?> TryMoveNextAsync(); : Not covariant.
Task<T?> TryMoveNextAsync(); : Not covariant, allocations on every call, etc.
ITask<T?> TryMoveNextAsync(); : Not covariant, allocations on every call, etc.
ITask<(bool,T)> TryMoveNextAsync(); : Not covariant, allocations on every call, etc.
Task<bool> TryMoveNextAsync(out T result); : The out result would need to be set
when the operation returns synchronously, not when it asynchronously completes
the task potentially sometime long in the future, at which point there'd be no way
to communicate the result.
IAsyncEnumerator<T> not implementing IAsyncDisposable : We could choose to
separate these. However, doing so complicates certain other areas of the proposal,
as code must then be able to deal with the possibility that an enumerator doesn't
provide disposal, which makes it difficult to write pattern-based helpers. Further, it
will be common for enumerators to have a need for disposal (e.g. any C# async
iterator that has a finally block, most things enumerating data from a network
connection, etc.), and if one doesn't, it is simple to implement the method purely
as public ValueTask DisposeAsync() => default(ValueTask); with minimal
additional overhead.
_ IAsyncEnumerator<T> GetAsyncEnumerator() : No cancellation token parameter.

C#

Viable alternative:

namespace System.Collections.Generic
{
 public interface IAsyncEnumerable<out T>
 {
 IAsyncEnumerator<T> GetAsyncEnumerator();
 }

 public interface IAsyncEnumerator<out T> : IAsyncDisposable
 {
 ValueTask<bool> WaitForNextAsync();

TryGetNext is used in an inner loop to consume items with a single interface call as long
as they're available synchronously. When the next item can't be retrieved synchronously,
it returns false, and any time it returns false, a caller must subsequently invoke
WaitForNextAsync to either wait for the next item to be available or to determine that
there will never be another item. Typical consumption (without additional language
features) would look like:

C#

The advantage of this is two-fold, one minor and one major:

Minor: Allows for an enumerator to support multiple consumers. There may be
scenarios where it's valuable for an enumerator to support multiple concurrent
consumers. That can't be achieved when MoveNextAsync and Current are separate
such that an implementation can't make their usage atomic. In contrast, this
approach provides a single method TryGetNext that supports pushing the
enumerator forward and getting the next item, so the enumerator can enable
atomicity if desired. However, it's likely that such scenarios could also be enabled
by giving each consumer its own enumerator from a shared enumerable. Further,
we don't want to enforce that every enumerator support concurrent usage, as that
would add non-trivial overheads to the majority case that doesn't require it, which
means a consumer of the interface generally couldn't rely on this any way.
Major: Performance. The MoveNextAsync /Current approach requires two interface
calls per operation, whereas the best case for WaitForNextAsync /TryGetNext is that
most iterations complete synchronously, enabling a tight inner loop with
TryGetNext , such that we only have one interface call per operation. This can have

 T TryGetNext(out bool success);
 }
}

IAsyncEnumerator<T> enumerator = enumerable.GetAsyncEnumerator();
try
{
 while (await enumerator.WaitForNextAsync())
 {
 while (true)
 {
 int item = enumerator.TryGetNext(out bool success);
 if (!success) break;
 Use(item);
 }
 }
}
finally { await enumerator.DisposeAsync(); }

a measurable impact in situations where the interface calls dominate the
computation.

However, there are non-trivial downsides, including significantly increased complexity
when consuming these manually, and an increased chance of introducing bugs when
using them. And while the performance benefits show up in microbenchmarks, we don't
believe they'll be impactful in the vast majority of real usage. If it turns out they are, we
can introduce a second set of interfaces in a light-up fashion.

Discarded options considered:

ValueTask<bool> WaitForNextAsync(); bool TryGetNext(out T result); : out
parameters can't be covariant. There's also a small impact here (an issue with the
try pattern in general) that this likely incurs a runtime write barrier for reference
type results.

There are several possible approaches to supporting cancellation:

1. IAsyncEnumerable<T> /IAsyncEnumerator<T> are cancellation-agnostic:
CancellationToken doesn't appear anywhere. Cancellation is achieved by logically
baking the CancellationToken into the enumerable and/or enumerator in whatever
manner is appropriate, e.g. when calling an iterator, passing the CancellationToken
as an argument to the iterator method and using it in the body of the iterator, as is
done with any other parameter.

2. IAsyncEnumerator<T>.GetAsyncEnumerator(CancellationToken) : You pass a
CancellationToken to GetAsyncEnumerator , and subsequent MoveNextAsync
operations respect it however it can.

3. IAsyncEnumerator<T>.MoveNextAsync(CancellationToken) : You pass a
CancellationToken to each individual MoveNextAsync call.

4. 1 && 2: You both embed CancellationTokens into your enumerable/enumerator
and pass CancellationTokens into GetAsyncEnumerator .

5. 1 && 3: You both embed CancellationTokens into your enumerable/enumerator
and pass CancellationTokens into MoveNextAsync .

From a purely theoretical perspective, (5) is the most robust, in that (a) MoveNextAsync
accepting a CancellationToken enables the most fine-grained control over what's
canceled, and (b) CancellationToken is just any other type that can passed as an
argument into iterators, embedded in arbitrary types, etc.

Cancellation

However, there are multiple problems with that approach:

How does a CancellationToken passed to GetAsyncEnumerator make it into the
body of the iterator? We could expose a new iterator keyword that you could dot
off of to get access to the CancellationToken passed to GetEnumerator , but a)
that's a lot of additional machinery, b) we're making it a very first-class citizen, and
c) the 99% case would seem to be the same code both calling an iterator and
calling GetAsyncEnumerator on it, in which case it can just pass the
CancellationToken as an argument into the method.
How does a CancellationToken passed to MoveNextAsync get into the body of the
method? This is even worse, as if it's exposed off of an iterator local object, its
value could change across awaits, which means any code that registered with the
token would need to unregister from it prior to awaits and then re-register after;
it's also potentially quite expensive to need to do such registering and
unregistering in every MoveNextAsync call, regardless of whether implemented by
the compiler in an iterator or by a developer manually.
How does a developer cancel a foreach loop? If it's done by giving a
CancellationToken to an enumerable/enumerator, then either a) we need to
support foreach 'ing over enumerators, which raises them to being first-class
citizens, and now you need to start thinking about an ecosystem built up around
enumerators (e.g. LINQ methods) or b) we need to embed the CancellationToken
in the enumerable anyway by having some WithCancellation extension method
off of IAsyncEnumerable<T> that would store the provided token and then pass it
into the wrapped enumerable's GetAsyncEnumerator when the GetAsyncEnumerator
on the returned struct is invoked (ignoring that token). Or, you can just use the
CancellationToken you have in the body of the foreach.
If/when query comprehensions are supported, how would the CancellationToken
supplied to GetEnumerator or MoveNextAsync be passed into each clause? The
easiest way would simply be for the clause to capture it, at which point whatever
token is passed to GetAsyncEnumerator /MoveNextAsync is ignored.

An earlier version of this document recommended (1), but we since switched to (4).

The two main problems with (1):

producers of cancellable enumerables have to implement some boilerplate, and
can only leverage the compiler's support for async-iterators to implement a
IAsyncEnumerator<T> GetAsyncEnumerator(CancellationToken) method.
it is likely that many producers would be tempted to just add a CancellationToken
parameter to their async-enumerable signature instead, which will prevent

consumers from passing the cancellation token they want when they are given an
IAsyncEnumerable type.

There are two main consumption scenarios:

1. await foreach (var i in GetData(token)) ... where the consumer calls the
async-iterator method,

2. await foreach (var i in givenIAsyncEnumerable.WithCancellation(token)) ...
where the consumer deals with a given IAsyncEnumerable instance.

We find that a reasonable compromise to support both scenarios in a way that is
convenient for both producers and consumers of async-streams is to use a specially
annotated parameter in the async-iterator method. The [EnumeratorCancellation]
attribute is used for this purpose. Placing this attribute on a parameter tells the compiler
that if a token is passed to the GetAsyncEnumerator method, that token should be used
instead of the value originally passed for the parameter.

Consider IAsyncEnumerable<int> GetData([EnumeratorCancellation] CancellationToken
token = default) . The implementer of this method can simply use the parameter in the
method body. The consumer can use either consumption patterns above:

1. if you use GetData(token) , then the token is saved into the async-enumerable and
will be used in iteration,

2. if you use givenIAsyncEnumerable.WithCancellation(token) , then the token passed
to GetAsyncEnumerator will supersede any token saved in the async-enumerable.

foreach will be augmented to support IAsyncEnumerable<T> in addition to its existing
support for IEnumerable<T> . And it will support the equivalent of IAsyncEnumerable<T>
as a pattern if the relevant members are exposed publicly, falling back to using the
interface directly if not, in order to enable struct-based extensions that avoid allocating
as well as using alternative awaitables as the return type of MoveNextAsync and
DisposeAsync .

Using the syntax:

C#

foreach

Syntax

foreach (var i in enumerable)

C# will continue to treat enumerable as a synchronous enumerable, such that even if it
exposes the relevant APIs for async enumerables (exposing the pattern or implementing
the interface), it will only consider the synchronous APIs.

To force foreach to instead only consider the asynchronous APIs, await is inserted as
follows:

C#

No syntax would be provided that would support using either the async or the sync
APIs; the developer must choose based on the syntax used.

The compile-time processing of an await foreach statement first determines the
collection type, enumerator type and iteration type of the expression (very similar to
https://github.com/dotnet/csharpstandard/blob/draft-
v6/standard/statements.md#1295-the-foreach-statement). This determination
proceeds as follows:

If the type X of expression is dynamic or an array type, then an error is produced
and no further steps are taken.
Otherwise, determine whether the type X has an appropriate GetAsyncEnumerator
method:

Perform member lookup on the type X with identifier GetAsyncEnumerator and
no type arguments. If the member lookup does not produce a match, or it
produces an ambiguity, or produces a match that is not a method group, check
for an enumerable interface as described below.
Perform overload resolution using the resulting method group and an empty
argument list. If overload resolution results in no applicable methods, results in
an ambiguity, or results in a single best method but that method is either static
or not public, check for an enumerable interface as described below.
If the return type E of the GetAsyncEnumerator method is not a class, struct or
interface type, an error is produced and no further steps are taken.
Member lookup is performed on E with the identifier Current and no type
arguments. If the member lookup produces no match, the result is an error, or
the result is anything except a public instance property that permits reading, an
error is produced and no further steps are taken.

await foreach (var i in enumerable)

Semantics

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/statements.md#1295-the-foreach-statement

Member lookup is performed on E with the identifier MoveNextAsync and no
type arguments. If the member lookup produces no match, the result is an
error, or the result is anything except a method group, an error is produced and
no further steps are taken.
Overload resolution is performed on the method group with an empty
argument list. If overload resolution results in no applicable methods, results in
an ambiguity, or results in a single best method but that method is either static
or not public, or its return type is not awaitable into bool , an error is produced
and no further steps are taken.
The collection type is X , the enumerator type is E , and the iteration type is the
type of the Current property.

Otherwise, check for an enumerable interface:
If among all the types Tᵢ for which there is an implicit conversion from X to
IAsyncEnumerable<ᵢ> , there is a unique type T such that T is not dynamic and
for all the other Tᵢ there is an implicit conversion from IAsyncEnumerable<T> to
IAsyncEnumerable<Tᵢ> , then the collection type is the interface
IAsyncEnumerable<T> , the enumerator type is the interface IAsyncEnumerator<T> ,
and the iteration type is T .
Otherwise, if there is more than one such type T , then an error is produced and
no further steps are taken.

Otherwise, an error is produced and no further steps are taken.

The above steps, if successful, unambiguously produce a collection type C , enumerator
type E and iteration type T .

C#

is then expanded to:

C#

await foreach (V v in x) «embedded_statement»

{
 E e = ((C)(x)).GetAsyncEnumerator();
 try {
 while (await e.MoveNextAsync()) {
 V v = (V)(T)e.Current;
 «embedded_statement»
 }
 }
 finally {
 ... // Dispose e

The body of the finally block is constructed according to the following steps:

If the type E has an appropriate DisposeAsync method:
Perform member lookup on the type E with identifier DisposeAsync and no type
arguments. If the member lookup does not produce a match, or it produces an
ambiguity, or produces a match that is not a method group, check for the
disposal interface as described below.
Perform overload resolution using the resulting method group and an empty
argument list. If overload resolution results in no applicable methods, results in
an ambiguity, or results in a single best method but that method is either static
or not public, check for the disposal interface as described below.
If the return type of the DisposeAsync method is not awaitable, an error is
produced and no further steps are taken.
The finally clause is expanded to the semantic equivalent of:

C#

Otherwise, if there is an implicit conversion from E to the System.IAsyncDisposable
interface, then

If E is a non-nullable value type then the finally clause is expanded to the
semantic equivalent of:

C#

Otherwise the finally clause is expanded to the semantic equivalent of:

C#

 }
}

 finally {
 await e.DisposeAsync();
 }

 finally {
 await ((System.IAsyncDisposable)e).DisposeAsync();
 }

finally {
 System.IAsyncDisposable d = e as System.IAsyncDisposable;
 if (d != null) await d.DisposeAsync();
}

except that if E is a value type, or a type parameter instantiated to a value type,
then the conversion of e to System.IAsyncDisposable shall not cause boxing to
occur.

Otherwise, the finally clause is expanded to an empty block:

C#

This pattern-based compilation will allow ConfigureAwait to be used on all of the awaits,
via a ConfigureAwait extension method:

C#

This will be based on types we'll add to .NET as well, likely to
System.Threading.Tasks.Extensions.dll:

C#

finally {
}

ConfigureAwait

await foreach (T item in enumerable.ConfigureAwait(false))
{
 ...
}

// Approximate implementation, omitting arg validation and the like
namespace System.Threading.Tasks
{
 public static class AsyncEnumerableExtensions
 {
 public static ConfiguredAsyncEnumerable<T> ConfigureAwait<T>(this
IAsyncEnumerable<T> enumerable, bool continueOnCapturedContext) =>
 new ConfiguredAsyncEnumerable<T>(enumerable,
continueOnCapturedContext);

 public struct ConfiguredAsyncEnumerable<T>
 {
 private readonly IAsyncEnumerable<T> _enumerable;
 private readonly bool _continueOnCapturedContext;

 internal ConfiguredAsyncEnumerable(IAsyncEnumerable<T>
enumerable, bool continueOnCapturedContext)
 {
 _enumerable = enumerable;
 _continueOnCapturedContext = continueOnCapturedContext;
 }

Note that this approach will not enable ConfigureAwait to be used with pattern-based
enumerables, but then again it's already the case that the ConfigureAwait is only
exposed as an extension on Task /Task<T> /ValueTask /ValueTask<T> and can't be
applied to arbitrary awaitable things, as it only makes sense when applied to Tasks (it
controls a behavior implemented in Task's continuation support), and thus doesn't make
sense when using a pattern where the awaitable things may not be tasks. Anyone
returning awaitable things can provide their own custom behavior in such advanced
scenarios.

(If we can come up with some way to support a scope- or assembly-level
ConfigureAwait solution, then this won't be necessary.)

The language / compiler will support producing IAsyncEnumerable<T>s and
IAsyncEnumerator<T>s in addition to consuming them. Today the language supports
writing an iterator like:

 public ConfiguredAsyncEnumerator<T> GetAsyncEnumerator() =>
 new ConfiguredAsyncEnumerator<T>
(_enumerable.GetAsyncEnumerator(), _continueOnCapturedContext);

 public struct ConfiguredAsyncEnumerator<T>
 {
 private readonly IAsyncEnumerator<T> _enumerator;
 private readonly bool _continueOnCapturedContext;

 internal Enumerator(IAsyncEnumerator<T> enumerator, bool
continueOnCapturedContext)
 {
 _enumerator = enumerator;
 _continueOnCapturedContext = continueOnCapturedContext;
 }

 public ConfiguredValueTaskAwaitable<bool> MoveNextAsync() =>

_enumerator.MoveNextAsync().ConfigureAwait(_continueOnCapturedContext);

 public T Current => _enumerator.Current;

 public ConfiguredValueTaskAwaitable DisposeAsync() =>

_enumerator.DisposeAsync().ConfigureAwait(_continueOnCapturedContext);
 }
 }
 }
}

Async Iterators

C#

but await can't be used in the body of these iterators. We will add that support.

The existing language support for iterators infers the iterator nature of the method
based on whether it contains any yields. The same will be true for async iterators. Such
async iterators will be demarcated and differentiated from synchronous iterators via
adding async to the signature, and must then also have either IAsyncEnumerable<T> or
IAsyncEnumerator<T> as its return type. For example, the above example could be
written as an async iterator as follows:

C#

static IEnumerable<int> MyIterator()
{
 try
 {
 for (int i = 0; i < 100; i++)
 {
 Thread.Sleep(1000);
 yield return i;
 }
 }
 finally
 {
 Thread.Sleep(200);
 Console.WriteLine("finally");
 }
}

Syntax

static async IAsyncEnumerable<int> MyIterator()
{
 try
 {
 for (int i = 0; i < 100; i++)
 {
 await Task.Delay(1000);
 yield return i;
 }
 }
 finally
 {
 await Task.Delay(200);
 Console.WriteLine("finally");
 }
}

Alternatives considered:

Not using async in the signature: Using async is likely technically required by the
compiler, as it uses it to determine whether await is valid in that context. But even
if it's not required, we've established that await may only be used in methods
marked as async , and it seems important to keep the consistency.
Enabling custom builders for IAsyncEnumerable<T> : That's something we could look
at for the future, but the machinery is complicated and we don't support that for
the synchronous counterparts.
Having an iterator keyword in the signature: Async iterators would use async
iterator in the signature, and yield could only be used in async methods that
included iterator ; iterator would then be made optional on synchronous
iterators. Depending on your perspective, this has the benefit of making it very
clear by the signature of the method whether yield is allowed and whether the
method is actually meant to return instances of type IAsyncEnumerable<T> rather
than the compiler manufacturing one based on whether the code uses yield or
not. But it is different from synchronous iterators, which don't and can't be made
to require one. Plus some developers don't like the extra syntax. If we were
designing it from scratch, we'd probably make this required, but at this point
there's much more value in keeping async iterators close to sync iterators.

There are over ~200 overloads of methods on the System.Linq.Enumerable class, all of
which work in terms of IEnumerable<T> ; some of these accept IEnumerable<T> , some of
them produce IEnumerable<T> , and many do both. Adding LINQ support for
IAsyncEnumerable<T> would likely entail duplicating all of these overloads for it, for
another ~200. And since IAsyncEnumerator<T> is likely to be more common as a
standalone entity in the asynchronous world than IEnumerator<T> is in the synchronous
world, we could potentially need another ~200 overloads that work with
IAsyncEnumerator<T> . Plus, a large number of the overloads deal with predicates (e.g.
Where that takes a Func<T, bool>), and it may be desirable to have
IAsyncEnumerable<T> -based overloads that deal with both synchronous and
asynchronous predicates (e.g. Func<T, ValueTask<bool>> in addition to Func<T, bool>).
While this isn't applicable to all of the now ~400 new overloads, a rough calculation is
that it'd be applicable to half, which means another ~200 overloads, for a total of ~600
new methods.

LINQ

That is a staggering number of APIs, with the potential for even more when extension
libraries like Interactive Extensions (Ix) are considered. But Ix already has an
implementation of many of these, and there doesn't seem to be a great reason to
duplicate that work; we should instead help the community improve Ix and recommend
it for when developers want to use LINQ with IAsyncEnumerable<T> .

There is also the issue of query comprehension syntax. The pattern-based nature of
query comprehensions would allow them to "just work" with some operators, e.g. if Ix
provides the following methods:

C#

then this C# code will "just work":

C#

However, there is no query comprehension syntax that supports using await in the
clauses, so if Ix added, for example:

C#

then this would "just work":

C#

public static IAsyncEnumerable<TResult> Select<TSource, TResult>(this
IAsyncEnumerable<TSource> source, Func<TSource, TResult> func);
public static IAsyncEnumerable<T> Where(this IAsyncEnumerable<T> source,
Func<T, bool> func);

IAsyncEnumerable<int> enumerable = ...;
IAsyncEnumerable<int> result = from item in enumerable
 where item % 2 == 0
 select item * 2;

public static IAsyncEnumerable<TResult> Select<TSource, TResult>(this
IAsyncEnumerable<TSource> source, Func<TSource, ValueTask<TResult>> func);

IAsyncEnumerable<string> result = from url in urls
 where item % 2 == 0
 select SomeAsyncMethod(item);

async ValueTask<int> SomeAsyncMethod(int item)
{
 await Task.Yield();
 return item * 2;
}

but there'd be no way to write it with the await inline in the select clause. As a
separate effort, we could look into adding async { ... } expressions to the language,
at which point we could allow them to be used in query comprehensions and the above
could instead be written as:

C#

or to enabling await to be used directly in expressions, such as by supporting async
from . However, it's unlikely a design here would impact the rest of the feature set one
way or the other, and this isn't a particularly high-value thing to invest in right now, so
the proposal is to do nothing additional here right now.

Integration with IObservable<T> and other asynchronous frameworks (e.g. reactive
streams) would be done at the library level rather than at the language level. For
example, all of the data from an IAsyncEnumerator<T> can be published to an
IObserver<T> simply by await foreach 'ing over the enumerator and OnNext 'ing the data
to the observer, so an AsObservable<T> extension method is possible. Consuming an
IObservable<T> in a await foreach requires buffering the data (in case another item is
pushed while the previous item is still being processing), but such a push-pull adapter
can easily be implemented to enable an IObservable<T> to be pulled from with an
IAsyncEnumerator<T> . Etc. Rx/Ix already provide prototypes of such implementations,
and libraries like
https://github.com/dotnet/corefx/tree/master/src/System.Threading.Channels provide
various kinds of buffering data structures. The language need not be involved at this
stage.

IAsyncEnumerable<int> result = from item in enumerable
 where item % 2 == 0
 select async
 {
 await Task.Yield();
 return item * 2;
 };

Integration with other asynchronous
frameworks

https://github.com/dotnet/corefx/tree/master/src/System.Threading.Channels

Ranges
Article • 2021-11-09 • 12 minutes to read

This feature is about delivering two new operators that allow constructing System.Index
and System.Range objects, and using them to index/slice collections at runtime.

To use the new syntactic forms for System.Index and System.Range , new well-known
types and members may be necessary, depending on which syntactic forms are used.

To use the "hat" operator (^), the following is required

C#

To use the System.Index type as an argument in an array element access, the following
member is required:

C#

The .. syntax for System.Range will require the System.Range type, as well as one or
more of the following members:

C#

Summary

Overview

Well-known types and members

namespace System
{
 public readonly struct Index
 {
 public Index(int value, bool fromEnd);
 }
}

int System.Index.GetOffset(int length);

namespace System
{
 public readonly struct Range

The .. syntax allows for either, both, or none of its arguments to be absent. Regardless
of the number of arguments, the Range constructor is always sufficient for using the
Range syntax. However, if any of the other members are present and one or more of the
.. arguments are missing, the appropriate member may be substituted.

Finally, for a value of type System.Range to be used in an array element access
expression, the following member must be present:

C#

C# has no way of indexing a collection from the end, but rather most indexers use the
"from start" notion, or do a "length - i" expression. We introduce a new Index expression
that means "from the end". The feature will introduce a new unary prefix "hat" operator.
Its single operand must be convertible to System.Int32 . It will be lowered into the
appropriate System.Index factory method call.

We augment the grammar for unary_expression with the following additional syntax
form:

antlr

We call this the index from end operator. The predefined index from end operators are as
follows:

 {
 public Range(System.Index start, System.Index end);
 public static Range StartAt(System.Index start);
 public static Range EndAt(System.Index end);
 public static Range All { get; }
 }
}

namespace System.Runtime.CompilerServices
{
 public static class RuntimeHelpers
 {
 public static T[] GetSubArray<T>(T[] array, System.Range range);
 }
}

System.Index

unary_expression
 : '^' unary_expression
 ;

C#

The behavior of this operator is only defined for input values greater than or equal to
zero.

Examples:

C#

C# has no syntactic way to access "ranges" or "slices" of collections. Usually users are
forced to implement complex structures to filter/operate on slices of memory, or resort
to LINQ methods like list.Skip(5).Take(2) . With the addition of System.Span<T> and
other similar types, it becomes more important to have this kind of operation supported
on a deeper level in the language/runtime, and have the interface unified.

The language will introduce a new range operator x..y . It is a binary infix operator that
accepts two expressions. Either operand can be omitted (examples below), and they
have to be convertible to System.Index . It will be lowered to the appropriate
System.Range factory method call.

We replace the C# grammar rules for multiplicative_expression with the following (in
order to introduce a new precedence level):

antlr

System.Index operator ^(int fromEnd);

var array = new int[] { 1, 2, 3, 4, 5 };
var thirdItem = array[2]; // array[2]
var lastItem = array[^1]; // array[new Index(1, fromEnd: true)]

System.Range

range_expression
 : unary_expression
 | range_expression? '..' range_expression?
 ;

multiplicative_expression
 : range_expression
 | multiplicative_expression '*' range_expression
 | multiplicative_expression '/' range_expression
 | multiplicative_expression '%' range_expression
 ;

All forms of the range operator have the same precedence. This new precedence group
is lower than the unary operators and higher than the multiplicative arithmetic operators.

We call the .. operator the range operator. The built-in range operator can roughly be
understood to correspond to the invocation of a built-in operator of this form:

C#

Examples:

C#

Moreover, System.Index should have an implicit conversion from System.Int32 , in order
to avoid the need to overload mixing integers and indexes over multi-dimensional
signatures.

The language will provide an instance indexer member with a single parameter of type
Index for types which meet the following criteria:

The type is Countable.
The type has an accessible instance indexer which takes a single int as the
argument.
The type does not have an accessible instance indexer which takes an Index as the
first parameter. The Index must be the only parameter or the remaining
parameters must be optional.

System.Range operator ..(Index start = 0, Index end = ^0);

var array = new int[] { 1, 2, 3, 4, 5 };
var slice1 = array[2..^3]; // array[new Range(2, new Index(3, fromEnd:
true))]
var slice2 = array[..^3]; // array[Range.EndAt(new Index(3, fromEnd:
true))]
var slice3 = array[2..]; // array[Range.StartAt(2)]
var slice4 = array[..]; // array[Range.All]

Adding Index and Range support to existing
library types

Implicit Index support

A type is Countable if it has a property named Length or Count with an accessible getter
and a return type of int . The language can make use of this property to convert an
expression of type Index into an int at the point of the expression without the need to
use the type Index at all. In case both Length and Count are present, Length will be
preferred. For simplicity going forward, the proposal will use the name Length to
represent Count or Length .

For such types, the language will act as if there is an indexer member of the form T
this[Index index] where T is the return type of the int based indexer including any
ref style annotations. The new member will have the same get and set members with
matching accessibility as the int indexer.

The new indexer will be implemented by converting the argument of type Index into an
int and emitting a call to the int based indexer. For discussion purposes, let's use the
example of receiver[expr] . The conversion of expr to int will occur as follows:

When the argument is of the form ^expr2 and the type of expr2 is int , it will be
translated to receiver.Length - expr2 .
Otherwise, it will be translated as expr.GetOffset(receiver.Length) .

Regardless of the specific conversion strategy, the order of evaluation should be
equivalent to the following:

1. receiver is evaluated;
2. expr is evaluated;
3. length is evaluated, if needed;
4. the int based indexer is invoked.

This allows for developers to use the Index feature on existing types without the need
for modification. For example:

C#

The receiver and Length expressions will be spilled as appropriate to ensure any side
effects are only executed once. For example:

C#

List<char> list = ...;
var value = list[^1];

// Gets translated to
var value = list[list.Count - 1];

This code will print "Get Length 3".

The language will provide an instance indexer member with a single parameter of type
Range for types which meet the following criteria:

The type is Countable.
The type has an accessible member named Slice which has two parameters of
type int .
The type does not have an instance indexer which takes a single Range as the first
parameter. The Range must be the only parameter or the remaining parameters
must be optional.

For such types, the language will bind as if there is an indexer member of the form T
this[Range range] where T is the return type of the Slice method including any ref
style annotations. The new member will also have matching accessibility with Slice .

When the Range based indexer is bound on an expression named receiver , it will be
lowered by converting the Range expression into two values that are then passed to the
Slice method. For discussion purposes, let's use the example of receiver[expr] .

class Collection {
 private int[] _array = new[] { 1, 2, 3 };

 public int Length {
 get {
 Console.Write("Length ");
 return _array.Length;
 }
 }

 public int this[int index] => _array[index];
}

class SideEffect {
 Collection Get() {
 Console.Write("Get ");
 return new Collection();
 }

 void Use() {
 int i = Get()[^1];
 Console.WriteLine(i);
 }
}

Implicit Range support

The first argument of Slice will be obtained by converting the range typed expression
in the following way:

When expr is of the form expr1..expr2 (where expr2 can be omitted) and expr1
has type int , then it will be emitted as expr1 .
When expr is of the form ^expr1..expr2 (where expr2 can be omitted), then it will
be emitted as receiver.Length - expr1 .
When expr is of the form ..expr2 (where expr2 can be omitted), then it will be
emitted as 0 .
Otherwise, it will be emitted as expr.Start.GetOffset(receiver.Length) .

This value will be re-used in the calculation of the second Slice argument. When doing
so it will be referred to as start . The second argument of Slice will be obtained by
converting the range typed expression in the following way:

When expr is of the form expr1..expr2 (where expr1 can be omitted) and expr2
has type int , then it will be emitted as expr2 - start .
When expr is of the form expr1..^expr2 (where expr1 can be omitted), then it will
be emitted as (receiver.Length - expr2) - start .
When expr is of the form expr1.. (where expr1 can be omitted), then it will be
emitted as receiver.Length - start .
Otherwise, it will be emitted as expr.End.GetOffset(receiver.Length) - start .

Regardless of the specific conversion strategy, the order of evaluation should be
equivalent to the following:

1. receiver is evaluated;
2. expr is evaluated;
3. length is evaluated, if needed;
4. the Slice method is invoked.

The receiver , expr , and length expressions will be spilled as appropriate to ensure any
side effects are only executed once. For example:

C#

class Collection {
 private int[] _array = new[] { 1, 2, 3 };

 public int Length {
 get {
 Console.Write("Length ");
 return _array.Length;
 }

This code will print "Get Length 2".

The language will special case the following known types:

string : the method Substring will be used instead of Slice .
array : the method System.Runtime.CompilerServices.RuntimeHelpers.GetSubArray
will be used instead of Slice .

The new operators (^ and ..) are syntactic sugar. The functionality can be
implemented by explicit calls to System.Index and System.Range factory methods, but it
will result in a lot more boilerplate code, and the experience will be unintuitive.

These two operators will be lowered to regular indexer/method calls, with no change in
subsequent compiler layers.

Compiler can optimize indexers for built-in types like arrays and strings, and lower
the indexing to the appropriate existing methods.
System.Index will throw if constructed with a negative value.

 }

 public int[] Slice(int start, int length) {
 var slice = new int[length];
 Array.Copy(_array, start, slice, 0, length);
 return slice;
 }
}

class SideEffect {
 Collection Get() {
 Console.Write("Get ");
 return new Collection();
 }

 void Use() {
 var array = Get()[0..2];
 Console.WriteLine(array.Length);
 }
}

Alternatives

IL Representation

Runtime behavior

^0 does not throw, but it translates to the length of the collection/enumerable it is
supplied to.
Range.All is semantically equivalent to 0..^0 , and can be deconstructed to these
indices.

The inspiration for this behavior was collection initializers. Using the structure of a type
to convey that it had opted into a feature. In the case of collection initializers types can
opt into the feature by implementing the interface IEnumerable (non generic).

This proposal initially required that types implement ICollection in order to qualify as
Indexable. That required a number of special cases though:

ref struct : these cannot implement interfaces yet types like Span<T> are ideal for
index / range support.
string : does not implement ICollection and adding that interface has a large
cost.

This means to support key types special casing is already needed. The special casing of
string is less interesting as the language does this in other areas (foreach lowering,
constants, etc ...). The special casing of ref struct is more concerning as it's special
casing an entire class of types. They get labeled as Indexable if they simply have a
property named Count with a return type of int .

After consideration the design was normalized to say that any type which has a property
Count / Length with a return type of int is Indexable. That removes all special casing,
even for string and arrays.

Detecting on the property names Count or Length does complicate the design a bit.
Picking just one to standardize though is not sufficient as it ends up excluding a large
number of types:

Use Length : excludes pretty much every collection in System.Collections and sub-
namespaces. Those tend to derive from ICollection and hence prefer Count over
length.

Considerations

Detect Indexable based on ICollection

Detect just Count

Use Count : excludes string , arrays, Span<T> and most ref struct based types

The extra complication on the initial detection of Indexable types is outweighed by its
simplification in other aspects.

The name Slice was chosen as it's the de-facto standard name for slice style operations
in .NET. Starting with netcoreapp2.1 all span style types use the name Slice for slicing
operations. Prior to netcoreapp2.1 there really aren't any examples of slicing to look to
for an example. Types like List<T> , ArraySegment<T> , SortedList<T> would've been
ideal for slicing but the concept didn't exist when types were added.

Thus, Slice being the sole example, it was chosen as the name.

Another way to view the Index transformation in an indexer expression is as a target
type conversion. Instead of binding as if there is a member of the form return_type
this[Index] , the language instead assigns a target typed conversion to int .

This concept could be generalized to all member access on Countable types. Whenever
an expression with type Index is used as an argument to an instance member
invocation and the receiver is Countable then the expression will have a target type
conversion to int . The member invocations applicable for this conversion include
methods, indexers, properties, extension methods, etc ... Only constructors are excluded
as they have no receiver.

The target type conversion will be implemented as follows for any expression which has
a type of Index . For discussion purposes lets use the example of receiver[expr] :

When expr is of the form ^expr2 and the type of expr2 is int , it will be translated
to receiver.Length - expr2 .
Otherwise, it will be translated as expr.GetOffset(receiver.Length) .

The receiver and Length expressions will be spilled as appropriate to ensure any side
effects are only executed once. For example:

C#

Choice of Slice as a name

Index target type conversion

class Collection {
 private int[] _array = new[] { 1, 2, 3 };

This code will print "Get Length 3".

This feature would be beneficial to any member which had a parameter that represented
an index. For example List<T>.InsertAt . This also has the potential for confusion as the
language can't give any guidance as to whether or not an expression is meant for
indexing. All it can do is convert any Index expression to int when invoking a member
on a Countable type.

Restrictions:

This conversion is only applicable when the expression with type Index is directly
an argument to the member. It would not apply to any nested expressions.

All members in the pattern must be instance members
If a Length method is found but it has the wrong return type, continue looking for
Count
The indexer used for the Index pattern must have exactly one int parameter
The Slice method used for the Range pattern must have exactly two int parameters
When looking for the pattern members, we look for original definitions, not
constructed members

 public int Length {
 get {
 Console.Write("Length ");
 return _array.Length;
 }
 }

 public int GetAt(int index) => _array[index];
}

class SideEffect {
 Collection Get() {
 Console.Write("Get ");
 return new Collection();
 }

 void Use() {
 int i = Get().GetAt(^1);
 Console.WriteLine(i);
 }
}

Decisions made during implementation

Jan 10, 2018
Jan 18, 2018
Jan 22, 2018
Dec 3, 2018
Mar 25, 2019
April 1st, 2019
April 15, 2019

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-01-10.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-01-18.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-01-22.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-12-03.md
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-03-25.md#pattern-based-indexing-with-index-and-range
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-04-01.md
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-04-15.md#follow-up-decisions-for-pattern-based-indexrange

"pattern-based using" and "using
declarations"
Article • 2022-12-14 • 3 minutes to read

The language will add two new capabilities around the using statement in order to
make resource management simpler: using should recognize a disposable pattern in
addition to IDisposable and add a using declaration to the language.

The using statement is an effective tool for resource management today but it requires
quite a bit of ceremony. Methods that have a number of resources to manage can get
syntactically bogged down with a series of using statements. This syntax burden is
enough that most coding style guidelines explicitly have an exception around braces for
this scenario.

The using declaration removes much of the ceremony here and gets C# on par with
other languages that include resource management blocks. Additionally the pattern-
based using lets developers expand the set of types that can participate here. In many
cases removing the need to create wrapper types that only exist to allow for a values
use in a using statement.

Together these features allow developers to simplify and expand the scenarios where
using can be applied.

The language will allow for using to be added to a local variable declaration. Such a
declaration will have the same effect as declaring the variable in a using statement at
the same location.

C#

Summary

Motivation

Detailed Design

using declaration

The lifetime of a using local will extend to the end of the scope in which it is declared.
The using locals will then be disposed in the reverse order in which they are declared.

C#

There are no restrictions around goto , or any other control flow construct in the face of
a using declaration. Instead the code acts just as it would for the equivalent using
statement:

C#

A local declared in a using local declaration will be implicitly read-only. This matches
the behavior of locals declared in a using statement.

if (...)
{
 using FileStream f = new FileStream(@"C:\users\jaredpar\using.md");
 // statements
}

// Equivalent to
if (...)
{
 using (FileStream f = new FileStream(@"C:\users\jaredpar\using.md"))
 {
 // statements
 }
}

{
 using var f1 = new FileStream("...");
 using var f2 = new FileStream("..."), f3 = new FileStream("...");
 ...
 // Dispose f3
 // Dispose f2
 // Dispose f1
}

{
 using var f1 = new FileStream("...");
 target:
 using var f2 = new FileStream("...");
 if (someCondition)
 {
 // Causes f2 to be disposed but has no effect on f1
 goto target;
 }
}

The language grammar for using declarations will be the following:

antlr

Restrictions around using declaration:

May not appear directly inside a case label but instead must be within a block
inside the case label.
May not appear as part of an out variable declaration.
Must have an initializer for each declarator.
The local type must be implicitly convertible to IDisposable or fulfill the using
pattern.

The language will add the notion of a disposable pattern for ref struct types: that is a
ref struct which has an accessible Dispose instance method. Types which fit the
disposable pattern can participate in a using statement or declaration without being
required to implement IDisposable .

C#

This will allow developers to leverage using for ref struct types. These types can't
implement interfaces today and hence can't participate in using statements.

local-using-declaration:
 'using' type using-declarators

using-declarators:
 using-declarator
 using-declarators , using-declarator

using-declarator:
 identifier = expression

pattern-based using

ref struct Resource
{
 public void Dispose() { ... }
}

using (var r = new Resource())
{
 // statements
}

The same restrictions from a traditional using statement apply here as well: local
variables declared in the using are read-only, a null value will not cause an exception
to be thrown, etc ... The code generation will be different only in that there will not be a
cast to IDisposable before calling Dispose:

C#

In order to fit the disposable pattern the Dispose method must be an accessible
instance member, parameterless and have a void return type. It cannot be an extension
method.

A using declaration is illegal directly inside a case label due to complications around
its actual lifetime. One potential solution is to simply give it the same lifetime as an out
var in the same location. It was deemed the extra complexity to the feature
implementation and the ease of the work around (just add a block to the case label)
didn't justify taking this route.

A fixed statement has all of the properties of using statements that motivated the
ability to have using locals. Consideration should be given to extending this feature to
fixed locals as well. The lifetime and ordering rules should apply equally well for using
and fixed here.

{
 Resource r = new Resource();
 try {
 // statements
 }
 finally {
 if (r != null) r.Dispose();
 }
}

Considerations

case labels without blocks

Future Expansions

fixed locals

Static local functions
Article • 2021-09-21 • 2 minutes to read

Support local functions that disallow capturing state from the enclosing scope.

Avoid unintentionally capturing state from the enclosing context. Allow local functions
to be used in scenarios where a static method is required.

A local function declared static cannot capture state from the enclosing scope. As a
result, locals, parameters, and this from the enclosing scope are not available within a
static local function.

A static local function cannot reference instance members from an implicit or explicit
this or base reference.

A static local function may reference static members from the enclosing scope.

A static local function may reference constant definitions from the enclosing scope.

nameof() in a static local function may reference locals, parameters, or this or base
from the enclosing scope.

Accessibility rules for private members in the enclosing scope are the same for static
and non-static local functions.

A static local function definition is emitted as a static method in metadata, even if
only used in a delegate.

A non-static local function or lambda can capture state from an enclosing static local
function but cannot capture state outside the enclosing static local function.

A static local function cannot be invoked in an expression tree.

Summary

Motivation

Detailed design

A call to a local function is emitted as call rather than callvirt , regardless of whether
the local function is static .

Overload resolution of a call within a local function not affected by whether the local
function is static .

Removing the static modifier from a local function in a valid program does not change
the meaning of the program.

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-09-
10.md#static-local-functions

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-09-10.md#static-local-functions

Null coalescing assignment
Article • 2022-06-14 • 2 minutes to read

Simplifies a common coding pattern where a variable is assigned a value if it is null.

As part of this proposal, we will also loosen the type requirements on ?? to allow an
expression whose type is an unconstrained type parameter to be used on the left-hand
side.

It is common to see code of the form

C#

This proposal adds a non-overloadable binary operator to the language that performs
this function.

There have been at least eight separate community requests for this feature.

We add a new form of assignment operator

antlr

Which follows the existing semantic rules for compound assignment operators
(§11.18.3), except that we elide the assignment if the left-hand side is non-null. The
rules for this feature are as follows.

Summary

Motivation

if (variable == null)
{
 variable = expression;
}

Detailed design

assignment_operator
 : '??='
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11183-compound-assignment

Given a ??= b , where A is the type of a , B is the type of b , and A0 is the underlying
type of A if A is a nullable value type:

1. If A does not exist or is a non-nullable value type, a compile-time error occurs.
2. If B is not implicitly convertible to A or A0 (if A0 exists), a compile-time error

occurs.
3. If A0 exists and B is implicitly convertible to A0 , and B is not dynamic, then the

type of a ??= b is A0 . a ??= b is evaluated at runtime as:

C#

Except that a is only evaluated once.
4. Otherwise, the type of a ??= b is A . a ??= b is evaluated at runtime as a ?? (a =

b) , except that a is only evaluated once.

For the relaxation of the type requirements of ?? , we update the spec where it currently
states that, given a ?? b , where A is the type of a :

1. If A exists and is not a nullable type or a reference type, a compile-time error
occurs.

We relax this requirement to:

1. If A exists and is a non-nullable value type, a compile-time error occurs.

This allows the null coalescing operator to work on unconstrained type parameters, as
the unconstrained type parameter T exists, is not a nullable type, and is not a reference
type.

As with any language feature, we must question whether the additional complexity to
the language is repaid in the additional clarity offered to the body of C# programs that
would benefit from the feature.

var tmp = a.GetValueOrDefault();
if (!a.HasValue) { tmp = b; a = tmp; }
tmp

Drawbacks

Alternatives

The programmer can write (x = x ?? y) , if (x == null) x = y; , or x ?? (x = y) by
hand.

[] Requires LDM review
[] Should we also support &&= and ||= operators?

None.

Unresolved questions

Design meetings

Readonly Instance Members
Article • 2021-09-21 • 4 minutes to read

Championed Issue: https://github.com/dotnet/csharplang/issues/1710

Provide a way to specify individual instance members on a struct do not modify state, in
the same way that readonly struct specifies no instance members modify state.

It is worth noting that readonly instance member != pure instance member . A pure
instance member guarantees no state will be modified. A readonly instance member
only guarantees that instance state will not be modified.

All instance members on a readonly struct could be considered implicitly readonly
instance members . Explicit readonly instance members declared on non-readonly structs
would behave in the same manner. For example, they would still create hidden copies if
you called an instance member (on the current instance or on a field of the instance)
which was itself not-readonly.

Today, users have the ability to create readonly struct types which the compiler
enforces that all fields are readonly (and by extension, that no instance members modify
the state). However, there are some scenarios where you have an existing API that
exposes accessible fields or that has a mix of mutating and non-mutating members.
Under these circumstances, you cannot mark the type as readonly (it would be a
breaking change).

This normally doesn't have much impact, except in the case of in parameters. With in
parameters for non-readonly structs, the compiler will make a copy of the parameter for
each instance member invocation, since it cannot guarantee that the invocation does
not modify internal state. This can lead to a multitude of copies and worse overall
performance than if you had just passed the struct directly by value. For an example, see
this code on sharplab

Some other scenarios where hidden copies can occur include static readonly fields
and literals . If they are supported in the future, blittable constants would end up in

Summary

Motivation

https://github.com/dotnet/csharplang/issues/1710
https://sharplab.io/#v2:CYLg1APgAgDABFAjAbgLACgNQMxwM4AuATgK4DGBcAagKYUD2RATBgN4ZycK4BmANvQCGlAB5p0XbnH5DKAT3GSOXHNIHC4AGRoA7AOYEAFgGUAjiUFEawZZ3YTJXPTQK3H9x54QB2OAAoROAAqOBEASjgwNy8YvzlguDkwxS8AXzd09EysXCgmOABhOA8VXnVKAFk/AEsdajoCRnyAN0E+EhoIks8oX1b2mgA6bX0jMwsrYEi4fo7h3QMTc0trFM5M1KA==

the same boat; that is they all currently necessitate a full copy (on instance member
invocation) if the struct is not marked readonly .

Allow a user to specify that an instance member is, itself, readonly and does not modify
the state of the instance (with all the appropriate verification done by the compiler, of
course). For example:

C#

Design

public struct Vector2
{
 public float x;
 public float y;

 public readonly float GetLengthReadonly()
 {
 return MathF.Sqrt(LengthSquared);
 }

 public float GetLength()
 {
 return MathF.Sqrt(LengthSquared);
 }

 public readonly float GetLengthIllegal()
 {
 var tmp = MathF.Sqrt(LengthSquared);

 x = tmp; // Compiler error, cannot write x
 y = tmp; // Compiler error, cannot write y

 return tmp;
 }

 public readonly float LengthSquared
 {
 get
 {
 return (x * x) +
 (y * y);
 }
 }
}

public static class MyClass
{
 public static float ExistingBehavior(in Vector2 vector)
 {
 // This code causes a hidden copy, the compiler effectively emits:

Readonly can be applied to property accessors to indicate that this will not be mutated
in the accessor. The following examples have readonly setters because those accessors
modify the state of member field, but do not modify the value of that member field.

C#

When readonly is applied to the property syntax, it means that all accessors are
readonly .

C#

 // var tmpVector = vector;
 // return tmpVector.GetLength();
 //
 // This is done because the compiler doesn't know that `GetLength()`
 // won't mutate `vector`.

 return vector.GetLength();
 }

 public static float ReadonlyBehavior(in Vector2 vector)
 {
 // This code is emitted exactly as listed. There are no hidden
 // copies as the `readonly` modifier indicates that the method
 // won't mutate `vector`.

 return vector.GetLengthReadonly();
 }
}

public readonly int Prop1
{
 get
 {
 return this._store["Prop1"];
 }
 set
 {
 this._store["Prop1"] = value;
 }
}

public readonly int Prop2
{
 get
 {
 return this._store["Prop2"];
 }
 set
 {

Readonly can only be applied to accessors which do not mutate the containing type.

C#

Readonly can be applied to some auto-implemented properties, but it won't have a
meaningful effect. The compiler will treat all auto-implemented getters as readonly
whether or not the readonly keyword is present.

C#

Readonly can be applied to manually-implemented events, but not field-like events.
Readonly cannot be applied to individual event accessors (add/remove).

C#

 this._store["Prop2"] = value;
 }
}

public int Prop3
{
 readonly get
 {
 return this._prop3;
 }
 set
 {
 this._prop3 = value;
 }
}

// Allowed
public readonly int Prop4 { get; }
public int Prop5 { readonly get; }
public int Prop6 { readonly get; set; }

// Not allowed
public readonly int Prop7 { get; set; }
public int Prop8 { get; readonly set; }

// Allowed
public readonly event Action<EventArgs> Event1
{
 add { }
 remove { }
}

// Not allowed
public readonly event Action<EventArgs> Event2;

Some other syntax examples:

Expression bodied members: public readonly float ExpressionBodiedMember => (x
* x) + (y * y);

Generic constraints: public readonly void GenericMethod<T>(T value) where T :
struct { }

The compiler would emit the instance member, as usual, and would additionally emit a
compiler recognized attribute indicating that the instance member does not modify
state. This effectively causes the hidden this parameter to become in T instead of ref
T .

This would allow the user to safely call said instance method without the compiler
needing to make a copy.

The restrictions would include:

The readonly modifier cannot be applied to static methods, constructors or
destructors.
The readonly modifier cannot be applied to delegates.
The readonly modifier cannot be applied to members of class or interface.

Same drawbacks as exist with readonly struct methods today. Certain code may still
cause hidden copies.

Using an attribute or another keyword may also be possible.

public event Action<EventArgs> Event3
{
 readonly add { }
 readonly remove { }
}
public static readonly event Event4
{
 add { }
 remove { }
}

Drawbacks

Notes

This proposal is somewhat related to (but is more a subset of) functional purity
and/or constant expressions , both of which have had some existing proposals.

Permit stackalloc in nested contexts
Article • 2022-02-23 • 2 minutes to read

We modify the section Stack allocation (§22.9) of the C# language specification to
relax the places when a stackalloc expression may appear. We delete

antlr

and replace them with

antlr

Note that the addition of an array_initializer to stackalloc_initializer (and making the
index expression optional) was an extension in C# 7.3 and is not described here.

The element type of the stackalloc expression is the unmanaged_type named in the
stackalloc expression, if any, or the common type among the elements of the
array_initializer otherwise.

The type of the stackalloc_initializer with element type K depends on its syntactic
context:

If the stackalloc_initializer appears directly as the local_variable_initializer of a
local_variable_declaration statement or a for_initializer, then its type is K* .
Otherwise its type is System.Span<K> .

Stack allocation

local_variable_initializer_unsafe
 : stackalloc_initializer
 ;

stackalloc_initializer
 : 'stackalloc' unmanaged_type '[' expression ']'
 ;

primary_no_array_creation_expression
 : stackalloc_initializer
 ;

stackalloc_initializer
 : 'stackalloc' unmanaged_type '[' expression? ']' array_initializer?
 | 'stackalloc' '[' expression? ']' array_initializer
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#229-stack-allocation
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.3/stackalloc-array-initializers.md

The stackalloc conversion is a new built-in implicit conversion from expression. When the
type of a stackalloc_initializer is K* , there is an implicit stackalloc conversion from the
stackalloc_initializer to the type System.Span<K> .

Stackalloc Conversion

Records
Article • 2021-09-21 • 14 minutes to read

This proposal tracks the specification for the C# 9 records feature, as agreed to by the
C# language design team.

The syntax for a record is as follows:

antlr

Record types are reference types, similar to a class declaration. It is an error for a record
to provide a record_base argument_list if the record_declaration does not contain a
parameter_list . At most one partial type declaration of a partial record may provide a
parameter_list .

Record parameters cannot use ref , out or this modifiers (but in and params are
allowed).

Records cannot inherit from classes, unless the class is object , and classes cannot
inherit from records. Records can inherit from other records.

record_declaration
 : attributes? class_modifier* 'partial'? 'record' identifier
type_parameter_list?
 parameter_list? record_base? type_parameter_constraints_clause*
record_body
 ;

record_base
 : ':' class_type argument_list?
 | ':' interface_type_list
 | ':' class_type argument_list? ',' interface_type_list
 ;

record_body
 : '{' class_member_declaration* '}' ';'?
 | ';'
 ;

Inheritance

Members of a record type

In addition to the members declared in the record body, a record type has additional
synthesized members. Members are synthesized unless a member with a "matching"
signature is declared in the record body or an accessible concrete non-virtual member
with a "matching" signature is inherited. A matching member prevents the compiler
from generating that member, not any other synthesized members. Two members are
considered matching if they have the same signature or would be considered "hiding" in
an inheritance scenario. It is an error for a member of a record to be named "Clone". It is
an error for an instance field of a record to have an unsafe type.

The synthesized members are as follows:

If the record is derived from object , the record type includes a synthesized readonly
property equivalent to a property declared as follows:

C#

The property is private if the record type is sealed . Otherwise, the property is virtual
and protected . The property can be declared explicitly. It is an error if the explicit
declaration does not match the expected signature or accessibility, or if the explicit
declaration doesn't allow overriding it in a derived type and the record type is not
sealed .

If the record type is derived from a base record type Base , the record type includes a
synthesized readonly property equivalent to a property declared as follows:

C#

The property can be declared explicitly. It is an error if the explicit declaration does not
match the expected signature or accessibility, or if the explicit declaration doesn't allow
overriding it in a derived type and the record type is not sealed . It is an error if either
synthesized, or explicitly declared property doesn't override a property with this
signature in the record type Base (for example, if the property is missing in the Base , or
sealed, or not virtual, etc.). The synthesized property returns typeof(R) where R is the
record type.

Equality members

Type EqualityContract { get; };

protected override Type EqualityContract { get; };

The record type implements System.IEquatable<R> and includes a synthesized strongly-
typed overload of Equals(R? other) where R is the record type. The method is public ,
and the method is virtual unless the record type is sealed . The method can be
declared explicitly. It is an error if the explicit declaration does not match the expected
signature or accessibility, or the explicit declaration doesn't allow overriding it in a
derived type and the record type is not sealed .

If Equals(R? other) is user-defined (not synthesized) but GetHashCode is not, a warning
is produced.

C#

The synthesized Equals(R?) returns true if and only if each of the following are true :

other is not null , and
For each instance field fieldN in the record type that is not inherited, the value of
System.Collections.Generic.EqualityComparer<TN>.Default.Equals(fieldN,

other.fieldN) where TN is the field type, and
If there is a base record type, the value of base.Equals(other) (a non-virtual call to
public virtual bool Equals(Base? other)); otherwise the value of
EqualityContract == other.EqualityContract .

The record type includes synthesized == and != operators equivalent to operators
declared as follows:

C#

The Equals method called by the == operator is the Equals(R? other) method specified
above. The != operator delegates to the == operator. It is an error if the operators are
declared explicitly.

If the record type is derived from a base record type Base , the record type includes a
synthesized override equivalent to a method declared as follows:

C#

public virtual bool Equals(R? other);

public static bool operator==(R? left, R? right)
 => (object)left == right || (left?.Equals(right) ?? false);
public static bool operator!=(R? left, R? right)
 => !(left == right);

It is an error if the override is declared explicitly. It is an error if the method doesn't
override a method with same signature in record type Base (for example, if the method
is missing in the Base , or sealed, or not virtual, etc.). The synthesized override returns
Equals((object?)other) .

The record type includes a synthesized override equivalent to a method declared as
follows:

C#

It is an error if the override is declared explicitly. It is an error if the method doesn't
override object.Equals(object? obj) (for example, due to shadowing in intermediate
base types, etc.). The synthesized override returns Equals(other as R) where R is the
record type.

The record type includes a synthesized override equivalent to a method declared as
follows:

C#

The method can be declared explicitly. It is an error if the explicit declaration doesn't
allow overriding it in a derived type and the record type is not sealed . It is an error if
either synthesized, or explicitly declared method doesn't override object.GetHashCode()
(for example, due to shadowing in intermediate base types, etc.).

A warning is reported if one of Equals(R?) and GetHashCode() is explicitly declared but
the other method is not explicit.

The synthesized override of GetHashCode() returns an int result of combining the
following values:

For each instance field fieldN in the record type that is not inherited, the value of
System.Collections.Generic.EqualityComparer<TN>.Default.GetHashCode(fieldN)

where TN is the field type, and
If there is a base record type, the value of base.GetHashCode() ; otherwise the value
of

public sealed override bool Equals(Base? other);

public override bool Equals(object? obj);

public override int GetHashCode();

System.Collections.Generic.EqualityComparer<System.Type>.Default.GetHashCode(E

qualityContract) .

For example, consider the following record types:

C#

For those record types, the synthesized equality members would be something like:

C#

record R1(T1 P1);
record R2(T1 P1, T2 P2) : R1(P1);
record R3(T1 P1, T2 P2, T3 P3) : R2(P1, P2);

class R1 : IEquatable<R1>
{
 public T1 P1 { get; init; }
 protected virtual Type EqualityContract => typeof(R1);
 public override bool Equals(object? obj) => Equals(obj as R1);
 public virtual bool Equals(R1? other)
 {
 return !(other is null) &&
 EqualityContract == other.EqualityContract &&
 EqualityComparer<T1>.Default.Equals(P1, other.P1);
 }
 public static bool operator==(R1? left, R1? right)
 => (object)left == right || (left?.Equals(right) ?? false);
 public static bool operator!=(R1? left, R1? right)
 => !(left == right);
 public override int GetHashCode()
 {
 return
Combine(EqualityComparer<Type>.Default.GetHashCode(EqualityContract),
 EqualityComparer<T1>.Default.GetHashCode(P1));
 }
}

class R2 : R1, IEquatable<R2>
{
 public T2 P2 { get; init; }
 protected override Type EqualityContract => typeof(R2);
 public override bool Equals(object? obj) => Equals(obj as R2);
 public sealed override bool Equals(R1? other) => Equals((object?)other);
 public virtual bool Equals(R2? other)
 {
 return base.Equals((R1?)other) &&
 EqualityComparer<T2>.Default.Equals(P2, other.P2);
 }
 public static bool operator==(R2? left, R2? right)
 => (object)left == right || (left?.Equals(right) ?? false);
 public static bool operator!=(R2? left, R2? right)

A record type contains two copying members:

A constructor taking a single argument of the record type. It is referred to as a
"copy constructor".
A synthesized public parameterless instance "clone" method with a compiler-
reserved name

The purpose of the copy constructor is to copy the state from the parameter to the new
instance being created. This constructor doesn't run any instance field/property
initializers present in the record declaration. If the constructor is not explicitly declared, a
constructor will be synthesized by the compiler. If the record is sealed, the constructor
will be private, otherwise it will be protected. An explicitly declared copy constructor
must be either public or protected, unless the record is sealed. The first thing the
constructor must do, is to call a copy constructor of the base, or a parameter-less object
constructor if the record inherits from object. An error is reported if a user-defined copy
constructor uses an implicit or explicit constructor initializer that doesn't fulfill this

 => !(left == right);
 public override int GetHashCode()
 {
 return Combine(base.GetHashCode(),
 EqualityComparer<T2>.Default.GetHashCode(P2));
 }
}

class R3 : R2, IEquatable<R3>
{
 public T3 P3 { get; init; }
 protected override Type EqualityContract => typeof(R3);
 public override bool Equals(object? obj) => Equals(obj as R3);
 public sealed override bool Equals(R2? other) => Equals((object?)other);
 public virtual bool Equals(R3? other)
 {
 return base.Equals((R2?)other) &&
 EqualityComparer<T3>.Default.Equals(P3, other.P3);
 }
 public static bool operator==(R3? left, R3? right)
 => (object)left == right || (left?.Equals(right) ?? false);
 public static bool operator!=(R3? left, R3? right)
 => !(left == right);
 public override int GetHashCode()
 {
 return Combine(base.GetHashCode(),
 EqualityComparer<T3>.Default.GetHashCode(P3));
 }
}

Copy and Clone members

requirement. After a base copy constructor is invoked, a synthesized copy constructor
copies values for all instance fields implicitly or explicitly declared within the record type.
The sole presence of a copy constructor, whether explicit or implicit, doesn't prevent an
automatic addition of a default instance constructor.

If a virtual "clone" method is present in the base record, the synthesized "clone" method
overrides it and the return type of the method is the current containing type if the
"covariant returns" feature is supported and the override return type otherwise. An error
is produced if the base record clone method is sealed. If a virtual "clone" method is not
present in the base record, the return type of the clone method is the containing type
and the method is virtual, unless the record is sealed or abstract. If the containing record
is abstract, the synthesized clone method is also abstract. If the "clone" method is not
abstract, it returns the result of a call to a copy constructor.

If the record is derived from object , the record includes a synthesized method
equivalent to a method declared as follows:

C#

The method is private if the record type is sealed . Otherwise, the method is virtual
and protected .

The method:

1. calls the method
System.Runtime.CompilerServices.RuntimeHelpers.EnsureSufficientExecutionStack

() if the method is present and the record has printable members.
2. for each of the record's printable members (non-static public field and readable

property members), appends that member's name followed by " = " followed by
the member's value separated with ", ",

3. return true if the record has printable members.

For a member that has a value type, we will convert its value to a string representation
using the most efficient method available to the target platform. At present that means
calling ToString before passing to StringBuilder.Append .

If the record type is derived from a base record Base , the record includes a synthesized
override equivalent to a method declared as follows:

Printing members: PrintMembers and ToString methods

bool PrintMembers(System.Text.StringBuilder builder);

C#

If the record has no printable members, the method calls the base PrintMembers
method with one argument (its builder parameter) and returns the result.

Otherwise, the method:

1. calls the base PrintMembers method with one argument (its builder parameter),
2. if the PrintMembers method returned true, append ", " to the builder,
3. for each of the record's printable members, appends that member's name followed

by " = " followed by the member's value: this.member (or this.member.ToString()
for value types), separated with ", ",

4. return true.

The PrintMembers method can be declared explicitly. It is an error if the explicit
declaration does not match the expected signature or accessibility, or if the explicit
declaration doesn't allow overriding it in a derived type and the record type is not
sealed .

The record includes a synthesized method equivalent to a method declared as follows:

C#

The method can be declared explicitly. It is an error if the explicit declaration does not
match the expected signature or accessibility, or if the explicit declaration doesn't allow
overriding it in a derived type and the record type is not sealed . It is an error if either
synthesized, or explicitly declared method doesn't override object.ToString() (for
example, due to shadowing in intermediate base types, etc.).

The synthesized method:

1. creates a StringBuilder instance,
2. appends the record name to the builder, followed by " { ",
3. invokes the record's PrintMembers method giving it the builder, followed by " " if it

returned true,
4. appends "}",
5. returns the builder's contents with builder.ToString() .

For example, consider the following record types:

protected override bool PrintMembers(StringBuilder builder);

public override string ToString();

C#

For those record types, the synthesized printing members would be something like:

C#

record R1(T1 P1);
record R2(T1 P1, T2 P2, T3 P3) : R1(P1);

class R1 : IEquatable<R1>
{
 public T1 P1 { get; init; }

 protected virtual bool PrintMembers(StringBuilder builder)
 {
 builder.Append(nameof(P1));
 builder.Append(" = ");
 builder.Append(this.P1); // or builder.Append(this.P1.ToString());
if P1 has a value type

 return true;
 }

 public override string ToString()
 {
 var builder = new StringBuilder();
 builder.Append(nameof(R1));
 builder.Append(" { ");

 if (PrintMembers(builder))
 builder.Append(" ");

 builder.Append("}");
 return builder.ToString();
 }
}

class R2 : R1, IEquatable<R2>
{
 public T2 P2 { get; init; }
 public T3 P3 { get; init; }

 protected override bool PrintMembers(StringBuilder builder)
 {
 if (base.PrintMembers(builder))
 builder.Append(", ");

 builder.Append(nameof(P2));
 builder.Append(" = ");
 builder.Append(this.P2); // or builder.Append(this.P2); if P2 has a
value type

 builder.Append(", ");

In addition to the above members, records with a parameter list ("positional records")
synthesize additional members with the same conditions as the members above.

A record type has a public constructor whose signature corresponds to the value
parameters of the type declaration. This is called the primary constructor for the type,
and causes the implicitly declared default class constructor, if present, to be suppressed.
It is an error to have a primary constructor and a constructor with the same signature
already present in the class.

At runtime the primary constructor

1. executes the instance initializers appearing in the class-body

2. invokes the base class constructor with the arguments provided in the record_base
clause, if present

If a record has a primary constructor, any user-defined constructor, except "copy
constructor" must have an explicit this constructor initializer.

 builder.Append(nameof(P3));
 builder.Append(" = ");
 builder.Append(this.P3); // or builder.Append(this.P3); if P3 has a
value type

 return true;
 }

 public override string ToString()
 {
 var builder = new StringBuilder();
 builder.Append(nameof(R2));
 builder.Append(" { ");

 if (PrintMembers(builder))
 builder.Append(" ");

 builder.Append("}");
 return builder.ToString();
 }
}

Positional record members

Primary Constructor

Parameters of the primary constructor as well as members of the record are in scope
within the argument_list of the record_base clause and within initializers of instance
fields or properties. Instance members would be an error in these locations (similar to
how instance members are in scope in regular constructor initializers today, but an error
to use), but the parameters of the primary constructor would be in scope and useable
and would shadow members. Static members would also be useable, similar to how
base calls and initializers work in ordinary constructors today.

A warning is produced if a parameter of the primary constructor is not read.

Expression variables declared in the argument_list are in scope within the
argument_list . The same shadowing rules as within an argument list of a regular
constructor initializer apply.

For each record parameter of a record type declaration there is a corresponding public
property member whose name and type are taken from the value parameter
declaration.

For a record:

A public get and init auto-property is created (see separate init accessor
specification). An inherited abstract property with matching type is overridden. It
is an error if the inherited property does not have public overridable get and
init accessors. It is an error if the inherited property is hidden.
The auto-property is initialized to the value of the corresponding primary
constructor parameter. Attributes can be applied to the synthesized auto-property
and its backing field by using property: or field: targets for attributes
syntactically applied to the corresponding record parameter.

A positional record with at least one parameter synthesizes a public void-returning
instance method called Deconstruct with an out parameter declaration for each
parameter of the primary constructor declaration. Each parameter of the Deconstruct
method has the same type as the corresponding parameter of the primary constructor
declaration. The body of the method assigns each parameter of the Deconstruct method
to the value from an instance member access to a member of the same name. The
method can be declared explicitly. It is an error if the explicit declaration does not match
the expected signature or accessibility, or is static.

Properties

Deconstruct

A with expression is a new expression using the following syntax.

antlr

A with expression is not permitted as a statement.

A with expression allows for "non-destructive mutation", designed to produce a copy of
the receiver expression with modifications in assignments in the
member_initializer_list .

A valid with expression has a receiver with a non-void type. The receiver type must be a
record.

On the right hand side of the with expression is a member_initializer_list with a
sequence of assignments to identifier, which must be an accessible instance field or
property of the receiver's type.

First, receiver's "clone" method (specified above) is invoked and its result is converted to
the receiver's type. Then, each member_initializer is processed the same way as an
assignment to a field or property access of the result of the conversion. Assignments are
processed in lexical order.

with expression

with_expression
 : switch_expression
 | switch_expression 'with' '{' member_initializer_list? '}'
 ;

member_initializer_list
 : member_initializer (',' member_initializer)*
 ;

member_initializer
 : identifier '=' expression
 ;

Top-level statements
Article • 2022-06-23 • 4 minutes to read

Allow a sequence of statements to occur right before the
namespace_member_declarations of a compilation_unit (i.e. source file).

The semantics are that if such a sequence of statements is present, the following type
declaration, modulo the actual method name, would be emitted:

c#

See also https://github.com/dotnet/csharplang/issues/3117 .

There's a certain amount of boilerplate surrounding even the simplest of programs,
because of the need for an explicit Main method. This seems to get in the way of
language learning and program clarity. The primary goal of the feature therefore is to
allow C# programs without unnecessary boilerplate around them, for the sake of
learners and the clarity of code.

The only additional syntax is allowing a sequence of statements in a compilation unit,
just before the namespace_member_declarations:

antlr

Summary

partial class Program
{
 static async Task Main(string[] args)
 {
 // statements
 }
}

Motivation

Detailed design

Syntax

https://github.com/dotnet/csharplang/issues/3117

Only one compilation_unit is allowed to have statements.

Example:

c#

If any top-level statements are present in any compilation unit of the program, the
meaning is as if they were combined in the block body of a Main method of a Program
class in the global namespace, as follows:

c#

The type is named "Program", so can be referenced by name from source code. It is a
partial type, so a type named "Program" in source code must also be declared as partial.
But the method name "Main" is used only for illustration purposes, the actual name
used by the compiler is implementation dependent and the method cannot be
referenced by name from source code.

compilation_unit
 : extern_alias_directive* using_directive* global_attributes? statement*
namespace_member_declaration*
 ;

if (args.Length == 0
 || !int.TryParse(args[0], out int n)
 || n < 0) return;
Console.WriteLine(Fib(n).curr);

(int curr, int prev) Fib(int i)
{
 if (i == 0) return (1, 0);
 var (curr, prev) = Fib(i - 1);
 return (curr + prev, curr);
}

Semantics

partial class Program
{
 static async Task Main(string[] args)
 {
 // statements
 }
}

The method is designated as the entry point of the program. Explicitly declared methods
that by convention could be considered as an entry point candidates are ignored. A
warning is reported when that happens. It is an error to specify -main:<type> compiler
switch when there are top-level statements.

The entry point method always has one formal parameter, string[] args . The execution
environment creates and passes a string[] argument containing the command-line
arguments that were specified when the application was started. The string[]
argument is never null, but it may have a length of zero if no command-line arguments
were specified. The ‘args’ parameter is in scope within top-level statements and is not in
scope outside of them. Regular name conflict/shadowing rules apply.

Async operations are allowed in top-level statements to the degree they are allowed in
statements within a regular async entry point method. However, they are not required, if
await expressions and other async operations are omitted, no warning is produced.

The signature of the generated entry point method is determined based on operations
used by the top level statements as follows:

Async-operations\Return-with-
expression

Present Absent

Present static Task<int>

Main(string[] args)

static Task Main(string[]

args)

Absent static int Main(string[]

args)

static void Main(string[]

args)

The example above would yield the following $Main method declaration:

c#

partial class Program
{
 static void $Main(string[] args)
 {
 if (args.Length == 0
 || !int.TryParse(args[0], out int n)
 || n < 0) return;
 Console.WriteLine(Fib(n).curr);

 (int curr, int prev) Fib(int i)
 {
 if (i == 0) return (1, 0);
 var (curr, prev) = Fib(i - 1);
 return (curr + prev, curr);
 }

At the same time an example like this:

c#

would yield:

c#

An example like this:

c#

would yield:

c#

And an example like this:

 }
}

await System.Threading.Tasks.Task.Delay(1000);
System.Console.WriteLine("Hi!");

partial class Program
{
 static async Task $Main(string[] args)
 {
 await System.Threading.Tasks.Task.Delay(1000);
 System.Console.WriteLine("Hi!");
 }
}

await System.Threading.Tasks.Task.Delay(1000);
System.Console.WriteLine("Hi!");
return 0;

partial class Program
{
 static async Task<int> $Main(string[] args)
 {
 await System.Threading.Tasks.Task.Delay(1000);
 System.Console.WriteLine("Hi!");
 return 0;
 }
}

c#

would yield:

c#

Even though top-level local variables and functions are "wrapped" into the generated
entry point method, they should still be in scope throughout the program in every
compilation unit. For the purpose of simple-name evaluation, once the global
namespace is reached:

First, an attempt is made to evaluate the name within the generated entry point
method and only if this attempt fails
The "regular" evaluation within the global namespace declaration is performed.

This could lead to name shadowing of namespaces and types declared within the global
namespace as well as to shadowing of imported names.

If the simple name evaluation occurs outside of the top-level statements and the
evaluation yields a top-level local variable or function, that should lead to an error.

In this way we protect our future ability to better address "Top-level functions" (scenario
2 in https://github.com/dotnet/csharplang/issues/3117), and are able to give useful
diagnostics to users who mistakenly believe them to be supported.

System.Console.WriteLine("Hi!");
return 2;

partial class Program
{
 static int $Main(string[] args)
 {
 System.Console.WriteLine("Hi!");
 return 2;
 }
}

Scope of top-level local variables and local functions

https://github.com/dotnet/csharplang/issues/3117

Nullable Reference Types Specification
Article • 2021-10-20 • 18 minutes to read

This is a work in progress - several parts are missing or incomplete.

This feature adds two new kinds of nullable types (nullable reference types and nullable
generic types) to the existing nullable value types, and introduces a static flow analysis
for purpose of null-safety.

Nullable reference types and nullable type parameters have the same syntax T? as the
short form of nullable value types, but do not have a corresponding long form.

For the purposes of the specification, the current nullable_type production is renamed
to nullable_value_type , and nullable_reference_type and nullable_type_parameter
productions are added:

antlr

Syntax

Nullable reference types and nullable type parameters

type
 : value_type
 | reference_type
 | nullable_type_parameter
 | type_parameter
 | type_unsafe
 ;

reference_type
 : ...
 | nullable_reference_type
 ;

nullable_reference_type
 : non_nullable_reference_type '?'
 ;

non_nullable_reference_type
 : reference_type
 ;

nullable_type_parameter
 : non_nullable_non_value_type_parameter '?'
 ;

The non_nullable_reference_type in a nullable_reference_type must be a nonnullable
reference type (class, interface, delegate or array).

The non_nullable_non_value_type_parameter in nullable_type_parameter must be a type
parameter that isn't constrained to be a value type.

Nullable reference types and nullable type parameters cannot occur in the following
positions:

as a base class or interface
as the receiver of a member_access
as the type in an object_creation_expression
as the delegate_type in a delegate_creation_expression
as the type in an is_expression , a catch_clause or a type_pattern
as the interface in a fully qualified interface member name

A warning is given on a nullable_reference_type and nullable_type_parameter in a
disabled nullable annotation context.

The class constraint has a nullable counterpart class? :

antlr

A type parameter constrained with class (in an enabled annotation context) must be
instantiated with a nonnullable reference type.

A type parameter constrained with class? (or class in a disabled annotation context)
may either be instantiated with a nullable or nonnullable reference type.

A warning is given on a class? constraint in a disabled annotation context.

non_nullable_non_value_type_parameter
 : type_parameter
 ;

class and class? constraint

primary_constraint
 : ...
 | 'class' '?'
 ;

A type parameter constrained with notnull may not be a nullable type (nullable value
type, nullable reference type or nullable type parameter).

antlr

The default constraint can be used on a method override or explicit implementation to
disambiguate T? meaning "nullable type parameter" from "nullable value type"
(Nullable<T>). Lacking the default constraint a T? syntax in an override or explicit
implementation will be interpreted as Nullable<T>

See https://github.com/dotnet/csharplang/blob/master/proposals/csharp-
9.0/unconstrained-type-parameter-annotations.md#default-constraint

The post-fix ! operator is called the null-forgiving operator. It can be applied on a
primary_expression or within a null_conditional_expression:

antlr

notnull constraint

primary_constraint
 : ...
 | 'notnull'
 ;

default constraint

The null-forgiving operator

primary_expression
 : ...
 | null_forgiving_expression
 ;

null_forgiving_expression
 : primary_expression '!'
 ;

null_conditional_expression
 : primary_expression null_conditional_operations_no_suppression
suppression?
 ;

null_conditional_operations_no_suppression
 : null_conditional_operations? '?' '.' identifier type_argument_list?
 | null_conditional_operations? '?' '[' argument_list ']'

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-9.0/unconstrained-type-parameter-annotations.md#default-constraint

For example:

C#

The postfix ! operator has no runtime effect - it evaluates to the result of the
underlying expression. Its only role is to change the null state of the expression to "not
null", and to limit warnings given on its use.

#nullable directives control the nullable annotation and warning contexts.

antlr

 | null_conditional_operations '.' identifier type_argument_list?
 | null_conditional_operations '[' argument_list ']'
 | null_conditional_operations '(' argument_list? ')'
 ;

null_conditional_operations
 : null_conditional_operations_no_suppression suppression?
 ;

suppression
 : '!'
 ;

var v = expr!;
expr!.M();
_ = a?.b!.c;

Nullable compiler directives

pp_directive
 : ...
 | pp_nullable
 ;

pp_nullable
 : whitespace? '#' whitespace? 'nullable' whitespace nullable_action
(whitespace nullable_target)? pp_new_line
 ;

nullable_action
 : 'disable'
 | 'enable'
 | 'restore'
 ;

nullable_target
 : 'warnings'

#pragma warning directives are expanded to allow changing the nullable warning
context:

antlr

For example:

C#

Every line of source code has a nullable annotation context and a nullable warning
context. These control whether nullable annotations have effect, and whether nullability
warnings are given. The annotation context of a given line is either disabled or enabled.
The warning context of a given line is either disabled or enabled.

Both contexts can be specified at the project level (outside of C# source code), or
anywhere within a source file via #nullable pre-processor directives. If no project level
settings are provided the default is for both contexts to be disabled.

The #nullable directive controls the annotation and warning contexts within the source
text, and take precedence over the project-level settings.

A directive sets the context(s) it controls for subsequent lines of code, until another
directive overrides it, or until the end of the source file.

The effect of the directives is as follows:

#nullable disable : Sets the nullable annotation and warning contexts to disabled
#nullable enable : Sets the nullable annotation and warning contexts to enabled
#nullable restore : Restores the nullable annotation and warning contexts to
project settings
#nullable disable annotations : Sets the nullable annotation context to disabled

 | 'annotations'
 ;

pragma_warning_body
 : ...
 | 'warning' whitespace warning_action whitespace 'nullable'
 ;

#pragma warning disable nullable

Nullable contexts

#nullable enable annotations : Sets the nullable annotation context to enabled
#nullable restore annotations : Restores the nullable annotation context to
project settings
#nullable disable warnings : Sets the nullable warning context to disabled
#nullable enable warnings : Sets the nullable warning context to enabled
#nullable restore warnings : Restores the nullable warning context to project
settings

A given type can have one of three nullabilities: oblivious, nonnullable, and nullable.

Nonnullable types may cause warnings if a potential null value is assigned to them.
Oblivious and nullable types, however, are "null-assignable" and can have null values
assigned to them without warnings.

Values of oblivious and nonnullable types can be dereferenced or assigned without
warnings. Values of nullable types, however, are "null-yielding" and may cause warnings
when dereferenced or assigned without proper null checking.

The default null state of a null-yielding type is "maybe null" or "maybe default". The
default null state of a non-null-yielding type is "not null".

The kind of type and the nullable annotation context it occurs in determine its
nullability:

A nonnullable value type S is always nonnullable
A nullable value type S? is always nullable
An unannotated reference type C in a disabled annotation context is oblivious
An unannotated reference type C in an enabled annotation context is nonnullable
A nullable reference type C? is nullable (but a warning may be yielded in a disabled
annotation context)

Type parameters additionally take their constraints into account:

A type parameter T where all constraints (if any) are either nullable types or the
class? constraint is nullable
A type parameter T where at least one constraint is either oblivious or nonnullable
or one of the struct or class or notnull constraints is

oblivious in a disabled annotation context
nonnullable in an enabled annotation context

Nullability of types

A nullable type parameter T? is nullable, but a warning is yielded in a disabled
annotation context if T isn't a value type

A type is deemed to occur in a given annotation context when the last token of the
type is within that context.

Whether a given reference type C in source code is interpreted as oblivious or
nonnullable depends on the annotation context of that source code. But once
established, it is considered part of that type, and "travels with it" e.g. during
substitution of generic type arguments. It is as if there is an annotation like ? on the
type, but invisible.

Nullable reference types can be used as generic constraints.

class? is a new constraint denoting "possibly nullable reference type", whereas class
in an enabled annotation context denotes "nonnullable reference type".

default is a new constraint denoting a type parameter that isn't known to be a
reference or value type. It can only be used on overridden and explicitly implemented
methods. With this constraint, T? means a nullable type parameter, as opposed to
being a shorthand for Nullable<T> .

notnull is a new constraint denoting a type parameter that is nonnullable.

The nullability of a type argument or of a constraint does not impact whether the type
satisfies the constraint, except where that is already the case today (nullable value types
do not satisfy the struct constraint). However, if the type argument does not satisfy the
nullability requirements of the constraint, a warning may be given.

Every expression in a given source location has a null state, which indicated whether it is
believed to potentially evaluate to null. The null state is either "not null", "maybe null",
or "maybe default". The null state is used to determine whether a warning should be
given about null-unsafe conversions and dereferences.

Oblivious vs nonnullable

Constraints

Null state and null tracking

The distinction between "maybe null" and "maybe default" is subtle and applies to type
parameters. The distinction is that a type parameter T which has the state "maybe null"
means the value is in the domain of legal values for T however that legal value may
include null . Where as a "maybe default" means that the value may be outside the
legal domain of values for T .

Example:

c#

For certain expressions denoting variables, fields or properties, the null state is tracked
between occurrences, based on assignments to them, tests performed on them and the
control flow between them. This is similar to how definite assignment is tracked for
variables. The tracked expressions are the ones of the following form:

antlr

Where the identifiers denote fields or properties.

The null state for tracked variables is "not null" in unreachable code. This follows other
decisions around unreachable code like considering all locals to be definitely assigned.

// The value `t` here has the state "maybe null". It's possible for `T` to
be instantiated
// with `string?` in which case `null` would be within the domain of legal
values here. The
// assumption though is the value provided here is within the legal values
of `T`. Hence
// if `T` is `string` then `null` will not be a value, just as we assume
that `null` is not
// provided for a normal `string` parameter
void M<T>(T t)
{
 // There is no guarantee that default(T) is within the legal values for
T hence the
 // state *must* be "maybe-default" and hence `local` must be `T?`
 T? local = default(T);
}

Null tracking for variables

tracked_expression
 : simple_name
 | this
 | base
 | tracked_expression '.' identifier
 ;

Describe null state transitions similar to definite assignment

The null state of an expression is derived from its form and type, and from the null state
of variables involved in it.

The null state of a null literal depends on the target type of the expression. If the target
type is a type parameter constrained to a reference type then it's "maybe default".
Otherwise it is "maybe null".

The null state of a default literal depends on the target type of the default literal. A
default literal with target type T has the same null state as the default(T) expression.

The null state of any other literal is "not null".

If a simple_name is not classified as a value, its null state is "not null". Otherwise it is a
tracked expression, and its null state is its tracked null state at this source location.

If a member_access is not classified as a value, its null state is "not null". Otherwise, if it is
a tracked expression, its null state is its tracked null state at this source location.
Otherwise its null state is the default null state of its type.

c#

Null state for expressions

Literals

Simple names

Member access

var person = new Person();

// The receiver is a tracked expression hence the member_access of the
property
// is tracked as well
if (person.FirstName is not null)
{
 Use(person.FirstName);
}

// The return of an invocation is not a tracked expression hence the
member_access
// of the return is also not tracked
if (GetAnonymous().FirstName is not null)

If an invocation_expression invokes a member that is declared with one or more
attributes for special null behavior, the null state is determined by those attributes.
Otherwise the null state of the expression is the default null state of its type.

The null state of an invocation_expression is not tracked by the compiler.

c#

{
 // Warning: Cannot convert null literal to non-nullable reference type.
 Use(GetAnonymous().FirstName);
}

void Use(string s)
{
 // ...
}

public class Person
{
 public string? FirstName { get; set; }
 public string? LastName { get; set; }

 private static Person s_anonymous = new Person();
 public static Person GetAnonymous() => s_anonymous;
}

Invocation expressions

// The result of an invocation_expression is not tracked
if (GetText() is not null)
{
 // Warning: Converting null literal or possible null value to non-
nullable type.
 string s = GetText();
 // Warning: Dereference of a possibly null reference.
 Use(s);
}

// Nullable friendly pattern
if (GetText() is string s)
{
 Use(s);
}

string? GetText() => ...
Use(string s) { }

If an element_access invokes an indexer that is declared with one or more attributes for
special null behavior, the null state is determined by those attributes. Otherwise the null
state of the expression is the default null state of its type.

c#

If B denotes the base type of the enclosing type, base.I has the same null state as
((B)this).I and base[E] has the same null state as ((B)this)[E] .

default(T) has the null state based on the properties of the type T :

If the type is a nonnullable type then it has the null state "not null"
Else if the type is a type parameter then it has the null state "maybe default"
Else it has the null state "maybe null"

A null_conditional_expression has the null state based on the expression type. Note
that this refers to the type of the null_conditional_expression , not the original type of
the member being invoked:

If the type is a nullable value type then it has the null state "maybe null"

Element access

object?[] array = ...;
if (array[0] != null)
{
 // Warning: Converting null literal or possible null value to non-
nullable type.
 object o = array[0];
 // Warning: Dereference of a possibly null reference.
 Console.WriteLine(o.ToString());
}

// Nullable friendly pattern
if (array[0] is {} o)
{
 Console.WriteLine(o.ToString());
}

Base access

Default expressions

Null-conditional expressions ?.

Else if the type is a nullable type parameter then it has the null state "maybe
default"
Else it has the null state "maybe null"

If a cast expression (T)E invokes a user-defined conversion, then the null state of the
expression is the default null state for the type of the user-defined conversion.
Otherwise:

If T is a nonnullable value type then T has the null state "not null"
Else if T is a nullable value type then T has the null state "maybe null"
Else if T is a nullable type in the form U? where U is a type parameter then T has
the null state "maybe default"
Else if T is a nullable type, and E has null state "maybe null" or "maybe default",
then T has the null state "maybe null"
Else if T is a type parameter, and E has null state "maybe null" or "maybe default",
then T has the null state "maybe default"
Else T has the same null state as E

If a unary or binary operator invokes an user-defined operator then the null state of the
expression is the default null state for the type of the user-defined operator. Otherwise
it is the null state of the expression.

Something special to do for binary + over strings and delegates?

The null state of await E is the default null state of its type.

The null state of an E as T expression depends first on properties of the type T . If the
type of T is nonnullable then the null state is "not null". Otherwise the null state
depends on the conversion from the type of E to type T :

If the conversion is an identity, boxing, implicit reference, or implicit nullable
conversion, then the null state is the null state of E

Cast expressions

Unary and binary operators

Await expressions

The as operator

Else if T is a type parameter then it has the null state "maybe default"
Else it has the null state "maybe null"

The null state of E1 ?? E2 is the null state of E2

The null state of E1 ? E2 : E3 is based on the null state of E2 and E3 :

If both are "not null" then the null state is "not null"
Else if either is "maybe default" then the null state is "maybe default"
Else the null state is "not null"

The null state of a query expression is the default null state of its type.

Additional work needed here

E1 = E2 and E1 op= E2 have the same null state as E2 after any implicit conversions
have been applied.

(E) , checked(E) and unchecked(E) all have the same null state as E .

The null state of the following expression forms is always "not null":

this access
interpolated strings
new expressions (object, delegate, anonymous object and array creation
expressions)
typeof expressions
nameof expressions

The null-coalescing operator

The conditional operator

Query expressions

Assignment operators

Expressions that propagate null state

Expressions that are never null

anonymous functions (anonymous methods and lambda expressions)
null-forgiving expressions
is expressions

Nested functions (lambdas and local functions) are treated like methods, except in
regards to their captured variables. The initial state of a captured variable inside a
lambda or local function is the intersection of the nullable state of the variable at all the
"uses" of that nested function or lambda. A use of a local function is either a call to that
function, or where it is converted to a delegate. A use of a lambda is the point at which
it is defined in source.

var infers an annotated type for reference types, and type parameters that aren't
constrained to be a value type. For instance:

in var s = ""; the var is inferred as string? .
in var t = new T(); with an unconstrained T the var is inferred as T? .

Generic type inference is enhanced to help decide whether inferred reference types
should be nullable or not. This is a best effort. It may yield warnings regarding nullability
constraints, and may lead to nullable warnings when the inferred types of the selected
overload are applied to the arguments.

Nullable reference types flow into the bounds from the initial expressions, as described
below. In addition, two new kinds of bounds, namely null and default are introduced.
Their purpose is to carry through occurrences of null or default in the input
expressions, which may cause an inferred type to be nullable, even when it otherwise
wouldn't.

The determination of what bounds to add in the first phase are enhanced as follows:

Nested functions

Type inference

nullable implicitly typed local variables

Generic type inference

The first phase

If an argument Ei has a reference type, the type U used for inference depends on the
null state of Ei as well as its declared type:

If the declared type is a nonnullable reference type U0 or a nullable reference type
U0? then

if the null state of Ei is "not null" then U is U0
if the null state of Ei is "maybe null" then U is U0?

Otherwise if Ei has a declared type, U is that type
Otherwise if Ei is null then U is the special bound null
Otherwise if Ei is default then U is the special bound default
Otherwise no inference is made.

In inferences from the type U to the type V , if V is a nullable reference type V0? , then
V0 is used instead of V in the following clauses.

If V is one of the unfixed type variables, U is added as an exact, upper or lower
bound as before
Otherwise, if U is null or default , no inference is made
Otherwise, if U is a nullable reference type U0? , then U0 is used instead of U in the
subsequent clauses.

The essence is that nullability that pertains directly to one of the unfixed type variables
is preserved into its bounds. For the inferences that recurse further into the source and
target types, on the other hand, nullability is ignored. It may or may not match, but if it
doesn't, a warning will be issued later if the overload is chosen and applied.

The spec currently does not do a good job of describing what happens when multiple
bounds are identity convertible to each other, but are different. This may happen
between object and dynamic , between tuple types that differ only in element names,
between types constructed thereof and now also between C and C? for reference types.

In addition we need to propagate "nullness" from the input expressions to the result
type.

To handle these we add more phases to fixing, which is now:

Exact, upper-bound and lower-bound inferences

Fixing

1. Gather all the types in all the bounds as candidates, removing ? from all that are
nullable reference types

2. Eliminate candidates based on requirements of exact, lower and upper bounds
(keeping null and default bounds)

3. Eliminate candidates that do not have an implicit conversion to all the other
candidates

4. If the remaining candidates do not all have identity conversions to one another,
then type inference fails

5. Merge the remaining candidates as described below
6. If the resulting candidate is a reference type and all of the exact bounds or any of

the lower bounds are nullable reference types, null or default , then ? is added
to the resulting candidate, making it a nullable reference type.

Merging is described between two candidate types. It is transitive and commutative, so
the candidates can be merged in any order with the same ultimate result. It is undefined
if the two candidate types are not identity convertible to each other.

The Merge function takes two candidate types and a direction (+ or -):

Merge(T , T , d) = T
Merge(S , T? , +) = Merge(S? , T , +) = Merge(S , T , +)?
Merge(S , T? , -) = Merge(S? , T , -) = Merge(S , T , -)
Merge(C<S1,...,Sn> , C<T1,...,Tn> , +) = C<Merge(S1 , T1 , d1),...,Merge(Sn , Tn ,
dn)> , where

di = + if the i 'th type parameter of C<...> is covariant
di = - if the i 'th type parameter of C<...> is contra- or invariant

Merge(C<S1,...,Sn> , C<T1,...,Tn> , -) = C<Merge(S1 , T1 , d1),...,Merge(Sn , Tn ,
dn)> , where

di = - if the i 'th type parameter of C<...> is covariant
di = + if the i 'th type parameter of C<...> is contra- or invariant

Merge((S1 s1,..., Sn sn) , (T1 t1,..., Tn tn) , d) = (Merge(S1 , T1 ,
d)n1,...,Merge(Sn , Tn , d) nn) , where

ni is absent if si and ti differ, or if both are absent
ni is si if si and ti are the same

Merge(object , dynamic) = Merge(dynamic , object) = dynamic

Warnings

Potential null assignment

Potential null dereference

Constraint nullability mismatch

Nullable types in disabled annotation context

Override and implementation nullability mismatch

Attributes for special null behavior

Pattern-matching changes for C# 9.0
Article • 2021-09-21 • 11 minutes to read

We are considering a small handful of enhancements to pattern-matching for C# 9.0
that have natural synergy and work well to address a number of common programming
problems:

https://github.com/dotnet/csharplang/issues/2925 Type patterns
https://github.com/dotnet/csharplang/issues/1350 Parenthesized patterns to
enforce or emphasize precedence of the new combinators
https://github.com/dotnet/csharplang/issues/1350 Conjunctive and patterns
that require both of two different patterns to match;
https://github.com/dotnet/csharplang/issues/1350 Disjunctive or patterns that
require either of two different patterns to match;
https://github.com/dotnet/csharplang/issues/1350 Negated not patterns that
require a given pattern not to match; and
https://github.com/dotnet/csharplang/issues/812 Relational patterns that
require the input value to be less than, less than or equal to, etc a given constant.

Parenthesized patterns permit the programmer to put parentheses around any pattern.
This is not so useful with the existing patterns in C# 8.0, however the new pattern
combinators introduce a precedence that the programmer may want to override.

antlr

We permit a type as a pattern:

antlr

Parenthesized Patterns

primary_pattern
 : parenthesized_pattern
 | // all of the existing forms
 ;
parenthesized_pattern
 : '(' pattern ')'
 ;

Type Patterns

https://github.com/dotnet/csharplang/issues/2925
https://github.com/dotnet/csharplang/issues/1350
https://github.com/dotnet/csharplang/issues/1350
https://github.com/dotnet/csharplang/issues/1350
https://github.com/dotnet/csharplang/issues/1350
https://github.com/dotnet/csharplang/issues/812

This retcons the existing is-type-expression to be an is-pattern-expression in which the
pattern is a type-pattern, though we would not change the syntax tree produced by the
compiler.

One subtle implementation issue is that this grammar is ambiguous. A string such as
a.b can be parsed either as a qualified name (in a type context) or a dotted expression
(in an expression context). The compiler is already capable of treating a qualified name
the same as a dotted expression in order to handle something like e is Color.Red . The
compiler's semantic analysis would be further extended to be capable of binding a
(syntactic) constant pattern (e.g. a dotted expression) as a type in order to treat it as a
bound type pattern in order to support this construct.

After this change, you would be able to write

C#

Relational patterns permit the programmer to express that an input value must satisfy a
relational constraint when compared to a constant value:

C#

primary_pattern
 : type-pattern
 | // all of the existing forms
 ;
type_pattern
 : type
 ;

void M(object o1, object o2)
{
 var t = (o1, o2);
 if (t is (int, string)) {} // test if o1 is an int and o2 is a string
 switch (o1) {
 case int: break; // test if o1 is an int
 case System.String: break; // test if o1 is a string
 }
}

Relational Patterns

 public static LifeStage LifeStageAtAge(int age) => age switch
 {
 < 0 => LifeStage.Prenatal,
 < 2 => LifeStage.Infant,
 < 4 => LifeStage.Toddler,

Relational patterns support the relational operators < , <= , > , and >= on all of the built-
in types that support such binary relational operators with two operands of the same
type in an expression. Specifically, we support all of these relational patterns for sbyte ,
byte , short , ushort , int , uint , long , ulong , char , float , double , decimal , nint , and
nuint .

antlr

The expression is required to evaluate to a constant value. It is an error if that constant
value is double.NaN or float.NaN . It is an error if the expression is a null constant.

When the input is a type for which a suitable built-in binary relational operator is
defined that is applicable with the input as its left operand and the given constant as its
right operand, the evaluation of that operator is taken as the meaning of the relational
pattern. Otherwise we convert the input to the type of the expression using an explicit
nullable or unboxing conversion. It is a compile-time error if no such conversion exists.
The pattern is considered not to match if the conversion fails. If the conversion succeeds
then the result of the pattern-matching operation is the result of evaluating the
expression e OP v where e is the converted input, OP is the relational operator, and v
is the constant expression.

Pattern combinators permit matching both of two different patterns using and (this can
be extended to any number of patterns by the repeated use of and), either of two
different patterns using or (ditto), or the negation of a pattern using not .

 < 6 => LifeStage.EarlyChild,
 < 12 => LifeStage.MiddleChild,
 < 20 => LifeStage.Adolescent,
 < 40 => LifeStage.EarlyAdult,
 < 65 => LifeStage.MiddleAdult,
 _ => LifeStage.LateAdult,
 };

primary_pattern
 : relational_pattern
 ;
relational_pattern
 : '<' relational_expression
 | '<=' relational_expression
 | '>' relational_expression
 | '>=' relational_expression
 ;

Pattern Combinators

A common use of a combinator will be the idiom

c#

More readable than the current idiom e is object , this pattern clearly expresses that
one is checking for a non-null value.

The and and or combinators will be useful for testing ranges of values

c#

This example illustrates that and will have a higher parsing priority (i.e. will bind more
closely) than or . The programmer can use the parenthesized pattern to make the
precedence explicit:

c#

Like all patterns, these combinators can be used in any context in which a pattern is
expected, including nested patterns, the is-pattern-expression, the switch-expression, and
the pattern of a switch statement's case label.

antlr

if (e is not null) ...

bool IsLetter(char c) => c is >= 'a' and <= 'z' or >= 'A' and <= 'Z';

bool IsLetter(char c) => c is (>= 'a' and <= 'z') or (>= 'A' and <= 'Z');

pattern
 : disjunctive_pattern
 ;
disjunctive_pattern
 : disjunctive_pattern 'or' conjunctive_pattern
 | conjunctive_pattern
 ;
conjunctive_pattern
 : conjunctive_pattern 'and' negated_pattern
 | negated_pattern
 ;
negated_pattern
 : 'not' negated_pattern
 | primary_pattern
 ;
primary_pattern
 : // all of the patterns forms previously defined
 ;

Due to the introduction of the type pattern, it is possible for a generic type to appear
before the token => . We therefore add => to the set of tokens listed in 7.5.4.2 Grammar
Ambiguities to permit disambiguation of the < that begins the type argument list. See
also https://github.com/dotnet/roslyn/issues/47614 .

Are and , or , and not some kind of contextual keyword? If so, is there a breaking
change (e.g. compared to their use as a designator in a declaration-pattern).

We expect to support all of the primitive types that can be compared in an expression
using a relational operator. The meaning in simple cases is clear

c#

But when the input is not such a primitive type, what type do we attempt to convert it
to?

c#

We have proposed that when the input type is already a comparable primitive, that is
the type of the comparison. However, when the input is not a comparable primitive, we
treat the relational as including an implicit type test to the type of the constant on the
right-hand-side of the relational. If the programmer intends to support more than one
input type, that must be done explicitly:

c#

Change to 7.5.4.2 Grammar Ambiguities

Open Issues with Proposed Changes

Syntax for relational operators

Semantics (e.g. type) for relational operators

bool IsValidPercentage(int x) => x is >= 0 and <= 100;

bool IsValidPercentage(object x) => x is >= 0 and <= 100;

bool IsValidPercentage(object x) => x is
 >= 0 and <= 100 or // integer tests

https://github.com/dotnet/roslyn/issues/47614

It has been suggested that when you write an and combinator, type information learned
on the left about the top-level type could flow to the right. For example

C#

Here, the input type to the second pattern is narrowed by the type narrowing
requirements of left of the and . We would define type narrowing semantics for all
patterns as follows. The narrowed type of a pattern P is defined as follows:

1. If P is a type pattern, the narrowed type is the type of the type pattern's type.
2. If P is a declaration pattern, the narrowed type is the type of the declaration

pattern's type.
3. If P is a recursive pattern that gives an explicit type, the narrowed type is that type.
4. If P is matched via the rules for ITuple , the narrowed type is the type

System.Runtime.CompilerServices.ITuple .
5. If P is a constant pattern where the constant is not the null constant and where the

expression has no constant expression conversion to the input type, the narrowed
type is the type of the constant.

6. If P is a relational pattern where the constant expression has no constant
expression conversion to the input type, the narrowed type is the type of the
constant.

7. If P is an or pattern, the narrowed type is the common type of the narrowed type
of the subpatterns if such a common type exists. For this purpose, the common
type algorithm considers only identity, boxing, and implicit reference conversions,
and it considers all subpatterns of a sequence of or patterns (ignoring
parenthesized patterns).

8. If P is an and pattern, the narrowed type is the narrowed type of the right pattern.
Moreover, the narrowed type of the left pattern is the input type of the right
pattern.

9. Otherwise the narrowed type of P is P 's input type.

 >= 0F and <= 100F or // float tests
 >= 0D and <= 100D; // double tests

Flowing type information from the left to the right of and

bool isSmallByte(object o) => o is byte and < 100;

Variable definitions and definite assignment

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-8.0/patterns.md#positional-pattern

The addition of or and not patterns creates some interesting new problems around
pattern variables and definite assignment. Since variables can normally be declared at
most once, it would seem any pattern variable declared on one side of an or pattern
would not be definitely assigned when the pattern matches. Similarly, a variable
declared inside a not pattern would not be expected to be definitely assigned when the
pattern matches. The simplest way to address this is to forbid declaring pattern variables
in these contexts. However, this may be too restrictive. There are other approaches to
consider.

One scenario that is worth considering is this

C#

This does not work today because, for an is-pattern-expression, the pattern variables are
considered definitely assigned only where the is-pattern-expression is true ("definitely
assigned when true").

Supporting this would be simpler (from the programmer's perspective) than also adding
support for a negated-condition if statement. Even if we add such support,
programmers would wonder why the above snippet does not work. On the other hand,
the same scenario in a switch makes less sense, as there is no corresponding point in
the program where definitely assigned when false would be meaningful. Would we
permit this in an is-pattern-expression but not in other contexts where patterns are
permitted? That seems irregular.

Related to this is the problem of definite assignment in a disjunctive-pattern.

C#

We would only expect i to be definitely assigned when the input is not zero. But since
we don't know whether the input is zero or not inside the block, i is not definitely
assigned. However, what if we permit i to be declared in different mutually exclusive
patterns?

C#

if (e is not int i) return;
M(i); // is i definitely assigned here?

if (e is 0 or int i)
{
 M(i); // is i definitely assigned here?
}

Here, the variable i is definitely assigned inside the block, and takes it value from the
other element of the tuple when a zero element is found.

It has also been suggested to permit variables to be (multiply) defined in every case of a
case block:

C#

To make any of this work, we would have to carefully define where such multiple
definitions are permitted and under what conditions such a variable is considered
definitely assigned.

Should we elect to defer such work until later (which I advise), we could say in C# 9

beneath a not or or , pattern variables may not be declared.

Then, we would have time to develop some experience that would provide insight into
the possible value of relaxing that later.

These new pattern forms introduce many new opportunities for diagnosable
programmer error. We will need to decide what kinds of errors we will diagnose, and
how to do so. Here are some examples:

C#

This case can never match (because the input cannot be both an int and a double). We
already have an error when we detect a case that can never match, but its wording ("The
switch case has already been handled by a previous case" and "The pattern has already
been handled by a previous arm of the switch expression") may be misleading in new
scenarios. We may have to modify the wording to just say that the pattern will never
match the input.

if ((e1, e2) is (0, int i) or (int i, 0))
{
 M(i);
}

 case (0, int x):
 case (int x, 0):
 Console.WriteLine(x);

Diagnostics, subsumption, and exhaustiveness

case >= 0 and <= 100D:

C#

Similarly, this would be an error because a value cannot be both 1 and 2 .

C#

This case is possible to match, but the or 1 at the end adds no meaning to the pattern.
I suggest we should aim to produce an error whenever some conjunct or disjunct of a
compound pattern does not either define a pattern variable or affect the set of matched
values.

C#

Here, 0 or 1 or adds nothing to the second case, as those values would have been
handled by the first case. This too deserves an error.

C#

A switch expression such as this should be considered exhaustive (it handles all possible
input values).

In C# 8.0, a switch expression with an input of type byte is only considered exhaustive if
it contains a final arm whose pattern matches everything (a discard-pattern or var-
pattern). Even a switch expression that has an arm for every distinct byte value is not
considered exhaustive in C# 8. In order to properly handle exhaustiveness of relational
patterns, we will have to handle this case too. This will technically be a breaking change,
but no user is likely to notice.

case 1 and 2:

case 1 or 2 or 3 or 1:

case < 2: break;
case 0 or 1 or 2 or 3 or 4 or 5: break;

byte b = ...;
int x = b switch { <100 => 0, 100 => 1, 101 => 2, >101 => 3 };

Init Only Setters
Article • 2021-09-21 • 15 minutes to read

This proposal adds the concept of init only properties and indexers to C#. These
properties and indexers can be set at the point of object creation but become effectively
get only once object creation has completed. This allows for a much more flexible
immutable model in C#.

The underlying mechanisms for building immutable data in C# haven't changed since
1.0. They remain:

1. Declaring fields as readonly .
2. Declaring properties that contain only a get accessor.

These mechanisms are effective at allowing the construction of immutable data but they
do so by adding cost to the boilerplate code of types and opting such types out of
features like object and collection initializers. This means developers must choose
between ease of use and immutability.

A simple immutable object like Point requires twice as much boiler plate code to
support construction as it does to declare the type. The bigger the type the bigger the
cost of this boiler plate:

C#

Summary

Motivation

struct Point
{
 public int X { get; }
 public int Y { get; }

 public Point(int x, int y)
 {
 this.X = x;
 this.Y = y;
 }
}

The init accessor makes immutable objects more flexible by allowing the caller to
mutate the members during the act of construction. That means the object's immutable
properties can participate in object initializers and thus removes the need for all
constructor boilerplate in the type. The Point type is now simply:

C#

The consumer can then use object initializers to create the object

C#

An init only property (or indexer) is declared by using the init accessor in place of the
set accessor:

C#

An instance property containing an init accessor is considered settable in the following
circumstances, except when in a local function or lambda:

During an object initializer
During a with expression initializer
Inside an instance constructor of the containing or derived type, on this or base
Inside the init accessor of any property, on this or base
Inside attribute usages with named parameters

struct Point
{
 public int X { get; init; }
 public int Y { get; init; }
}

var p = new Point() { X = 42, Y = 13 };

Detailed Design

init accessors

class Student
{
 public string FirstName { get; init; }
 public string LastName { get; init; }
}

The times above in which the init accessors are settable are collectively referred to in
this document as the construction phase of the object.

This means the Student class can be used in the following ways:

C#

The rules around when init accessors are settable extend across type hierarchies. If the
member is accessible and the object is known to be in the construction phase then the
member is settable. That specifically allows for the following:

C#

At the point an init accessor is invoked, the instance is known to be in the open
construction phase. Hence an init accessor is allowed to take the following actions in
addition to what a normal set accessor can do:

1. Call other init accessors available through this or base

var s = new Student()
{
 FirstName = "Jared",
 LastName = "Parosns",
};
s.LastName = "Parsons"; // Error: LastName is not settable

class Base
{
 public bool Value { get; init; }
}

class Derived : Base
{
 Derived()
 {
 // Not allowed with get only properties but allowed with init
 Value = true;
 }
}

class Consumption
{
 void Example()
 {
 var d = new Derived() { Value = true; };
 }
}

2. Assign readonly fields declared on the same type through this

C#

The ability to assign readonly fields from an init accessor is limited to those fields
declared on the same type as the accessor. It cannot be used to assign readonly fields
in a base type. This rule ensures that type authors remain in control over the mutability
behavior of their type. Developers who do not wish to utilize init cannot be impacted
from other types choosing to do so:

C#

class Complex
{
 readonly int Field1;
 int Field2;
 int Prop1 { get; init ; }
 int Prop2
 {
 get => 42;
 init
 {
 Field1 = 13; // okay
 Field2 = 13; // okay
 Prop1 = 13; // okay
 }
 }
}

class Base
{
 internal readonly int Field;
 internal int Property
 {
 get => Field;
 init => Field = value; // Okay
 }

 internal int OtherProperty { get; init; }
}

class Derived : Base
{
 internal readonly int DerivedField;
 internal int DerivedProperty
 {
 get => DerivedField;
 init
 {
 DerivedField = 42; // Okay
 Property = 0; // Okay

When init is used in a virtual property then all the overrides must also be marked as
init . Likewise it is not possible to override a simple set with init .

C#

An interface declaration can also participate in init style initialization via the
following pattern:

C#

 Field = 13; // Error Field is readonly
 }
 }

 public Derived()
 {
 Property = 42; // Okay
 Field = 13; // Error Field is readonly
 }
}

class Base
{
 public virtual int Property { get; init; }
}

class C1 : Base
{
 public override int Property { get; init; }
}

class C2 : Base
{
 // Error: Property must have init to override Base.Property
 public override int Property { get; set; }
}

interface IPerson
{
 string Name { get; init; }
}

class Init
{
 void M<T>() where T : IPerson, new()
 {
 var local = new T()
 {
 Name = "Jared"
 };
 local.Name = "Jraed"; // Error

Restrictions of this feature:

The init accessor can only be used on instance properties
A property cannot contain both an init and set accessor
All overrides of a property must have init if the base had init . This rule also
applies to interface implementation.

init accessors (both auto-implemented accessors and manually-implemented
accessors) are permitted on properties of readonly structs, as well as readonly
properties. init accessors are not permitted to be marked readonly themselves, in
both readonly and non-readonly struct types.

C#

Property init accessors will be emitted as a standard set accessor with the return type
marked with a modreq of IsExternalInit . This is a new type which will have the
following definition:

C#

 }
}

Readonly structs

readonly struct ReadonlyStruct1
{
 public int Prop1 { get; init; } // Allowed
}

struct ReadonlyStruct2
{
 public readonly int Prop2 { get; init; } // Allowed

 public int Prop3 { get; readonly init; } // Error
}

Metadata encoding

namespace System.Runtime.CompilerServices
{
 public sealed class IsExternalInit
 {
 }
}

The compiler will match the type by full name. There is no requirement that it appear in
the core library. If there are multiple types by this name then the compiler will tie break
in the following order:

1. The one defined in the project being compiled
2. The one defined in corelib

If neither of these exist then a type ambiguity error will be issued.

The design for IsExternalInit is futher covered in this issue

One of the main pivot points in how this feature is encoded will come down to the
following question:

Is it a binary breaking change to replace init with set?

Replacing init with set and thus making a property fully writable is never a source
breaking change on a non-virtual property. It simply expands the set of scenarios where
the property can be written. The only behavior in question is whether or not this remains
a binary breaking change.

If we want to make the change of init to set a source and binary compatible change
then it will force our hand on the modreq vs. attributes decision below because it will
rule out modreqs as a solution. If on the other hand this is seen as a non-interesting
then this will make the modreq vs. attribute decision less impactful.

Resolution This scenario is not seen as compelling by LDM.

The emit strategy for init property accessors must choose between using attributes or
modreqs when emitting during metadata. These have different trade offs that need to
be considered.

Annotating a property set accessor with a modreq declaration means CLI compliant
compilers will ignore the accessor unless it understands the modreq. That means only

Questions

Breaking changes

Modreqs vs. attributes

https://github.com/dotnet/runtime/issues/34978

compilers aware of init will read the member. Compilers unaware of init will ignore
the set accessor and hence will not accidentally treat the property as read / write.

The downside of modreq is init becomes a part of the binary signature of the set
accessor. Adding or removing init will break binary compatbility of the application.

Using attributes to annotate the set accessor means that only compilers which
understand the attribute will know to limit access to it. A compiler unaware of init will
see it as a simple read / write property and allow access.

This would seemingly mean this decision is a choice between extra safety at the expense
of binary compatibility. Digging in a bit the extra safety is not exactly what it seems. It
will not protect against the following circumstances:

1. Reflection over public members
2. The use of dynamic
3. Compilers that don't recognize modreqs

It should also be considered that, when we complete the IL verification rules for .NET 5,
init will be one of those rules. That means extra enforcement will be gained from
simply verifying compilers emitting verifiable IL.

The primary languages for .NET (C#, F# and VB) will all be updated to recognize these
init accessors. Hence the only realistic scenario here is when a C# 9 compiler emits
init properties and they are seen by an older toolset such as C# 8, VB 15, etc ... C# 8.
That is the trade off to consider and weigh against binary compatibility.

Note This discussion primarily applies to members only, not to fields. While init fields
were rejected by LDM they are still interesting to consider for the modreq vs. attribute
discussion. The init feature for fields is a relaxation of the existing restriction of
readonly . That means if we emit the fields as readonly + an attribute there is no risk of
older compilers mis-using the field because they would already recognize readonly .
Hence using a modreq here doesn't add any extra protection.

Resolution The feature will use a modreq to encode the property init setter. The
compelling factors were (in no particular order):

Desire to discourage older compilers from violating init semantics
Desire to make adding or removing init in a virtual declaration or interface
both a source and binary breaking change.

Given there was also no significant support for removing init to be a binary
compatible change it made the choice of using modreq straight forward.

There were three syntax forms which got significant consideration during our LDM
meeting:

C#

Resolution There was no syntax which was overwhelmingly favored in LDM.

One point which got significant attention was how the choice of syntax would impact
our ability to do init members as a general feature in the future. Choosing option 1
would mean that it would be difficult to define a property which had an init style get
method in the future. Eventually it was decided that if we decided to go forward with
general init members in future, we could allow init to be a modifier in the property
accessor list as well as a short hand for init set . Essentially the following two
declarations would be identical.

C#

The decision was made to move forward with init as a standalone accessor in the
property accessor list.

Consider the following scenario. A type declares an init only member which is not set
in the constructor. Should the code which constructs the object get a warning if they
failed to initialize the value?

At that point it is clear the field will never be set and hence has a lot of similarities with
the warning around failing to initialize private data. Hence a warning would seemingly
have some value here?

There are significant downsides to this warning though:

init vs. initonly

// 1. Use init
int Option1 { get; init; }
// 2. Use init set
int Option2 { get; init set; }
// 3. Use initonly
int Option3 { get; initonly; }

int Property1 { get; init; }
int Property1 { get; init set; }

Warn on failed init

1. It complicates the compatibility story of changing readonly to init .
2. It requires carrying additional metadata around to denote the members which are

required to be initialized by the caller.

Further if we believe there is value here in the overall scenario of forcing object creators
to be warned / error'd about specific fields then this likely makes sense as a general
feature. There is no reason it should be limited to just init members.

Resolution There will be no warning on consumption of init fields and properties.

LDM wants to have a broader discussion on the idea of required fields and properties.
That may cause us to come back and reconsider our position on init members and
validation.

In the same way init can serve as a property accessor it could also serve as a
designation on fields to give them similar behaviors as init properties. That would
allow for the field to be assigned before construction was complete by the type, derived
types, or object initializers.

C#

In metadata these fields would be marked in the same way as readonly fields but with
an additional attribute or modreq to indicate they are init style fields.

Resolution LDM agrees this proposal is sound but overall the scenario felt disjoint from
properties. The decision was to proceed only with init properties for now. This has a
suitable level of flexibility as an init property can mutate a readonly field on the

Allow init as a field modifier

class Student
{
 public init string FirstName;
 public init string LastName;
}

var s = new Student()
{
 FirstName = "Jarde",
 LastName = "Parsons",
}

s.FirstName = "Jared"; // Error FirstName is readonly

declaring type of the property. This will be reconsidered if there is significant customer
feedback that justifies the scenario.

In the same way the readonly modifier can be applied to a struct to automatically
declare all fields as readonly , the init only modifier can be declared on a struct or
class to automatically mark all fields as init . This means the following two type
declarations are equivalent:

C#

Resolution This feature is too cute here and conflicts with the readonly struct feature
on which it is based. The readonly struct feature is simple in that it applies readonly to
all members: fields, methods, etc ... The init struct feature would only apply to
properties. This actually ends up making it confusing for users.

Given that init is only valid on certain aspects of a type, we rejected the idea of having
it as a type modifier.

The init feature is designed to be compatible with existing get only properties.
Specifically it is meant to be a completely additive change for a property which is get
only today but desires more flexbile object creation semantics.

For example consider the following type:

Allow init as a type modifier

struct Point
{
 public init int X;
 public init int Y;
}

// vs.

init struct Point
{
 public int X;
 public int Y;
}

Considerations

Compatibility

C#

Adding init to these properties is a non-breaking change:

C#

When .NET Core decides to re-implement IL verification, the rules will need to be
adjusted to account for init members. This will need to be included in the rule changes
for non-mutating acess to readonly data.

The IL verification rules will need to be broken into two parts:

1. Allowing init members to set a readonly field.
2. Determining when an init member can be legally called.

The first is a simple adjustment to the existing rules. The IL verifier can be taught to
recognize init members and from there it just needs to consider a readonly field to be
settable on this in such a member.

The second rule is more complicated. In the simple case of object initializers the rule is
straight forward. It should be legal to call init members when the result of a new

class Name
{
 public string First { get; }
 public string Last { get; }

 public Name(string first, string last)
 {
 First = first;
 Last = last;
 }
}

class Name
{
 public string First { get; init; }
 public string Last { get; init; }

 public Name(string first, string last)
 {
 First = first;
 Last = last;
 }
}

IL verification

expression is still on the stack. That is until the value has been stored in a local, array
element or field or passed as an argument to another method it will still be legal to call
init members. This ensures that once the result of the new expression is published to a
named identifier (other than this) then it will no longer be legal to call init members.

The more complicated case though is when we mix init members, object initializers
and await . That can cause the newly created object to be temporarily hoisted into a
state machine and hence put into a field.

C#

Here the result of new Student() will be hoised into a state machine as a field before the
set of Name occurs. The compiler will need to mark such hoisted fields in a way that the
IL verifier understands they're not user accessible and hence doesn't violate the
intended semantics of init .

The init modifier could be extended to apply to all instance members. This would
generalize the concept of init during object construction and allow types to declare
helper methods that could partipate in the construction process to initialize init fields
and properties.

Such members would have all the restricions that an init accessor does in this design.
The need is questionable though and this can be safely added in a future version of the
language in a compatible manner.

One potential implementation of init properties is to make init completely separate
from set . That means that a property can potentially have three different accessors:
get , set , and init .

This has the potential advantage of allowing the use of modreq to enforce correctness
while maintaining binary compatibility. The implementation would roughly be the
following:

var student = new Student()
{
 Name = await SomeMethod()
};

init members

Generate three accessors

1. An init accessor is always emitted if there is a set . When not defined by the
developer it is simply a reference to set .

2. The set of a property in an object initializer will always use init if present but fall
back to set if it's missing.

This means that a developer can always safely delete init from a property.

The downside of this design is that is only useful if init is always emitted when there is
a set . The language can't know if init was deleted in the past, it has to assume it was
and hence the init must always be emitted. That would cause a significant metadata
expansion and is simply not worth the cost of the compatibility here.

Target-typed new expressions
Article • 2021-09-21 • 3 minutes to read

Do not require type specification for constructors when the type is known.

Allow field initialization without duplicating the type.

C#

Allow omitting the type when it can be inferred from usage.

C#

Instantiate an object without spelling out the type.

C#

A new syntactic form, target_typed_new of the object_creation_expression is accepted in
which the type is optional.

antlr

Summary

Motivation

Dictionary<string, List<int>> field = new() {
 { "item1", new() { 1, 2, 3 } }
};

XmlReader.Create(reader, new() { IgnoreWhitespace = true });

private readonly static object s_syncObj = new();

Specification

object_creation_expression
 : 'new' type '(' argument_list? ')' object_or_collection_initializer?
 | 'new' type object_or_collection_initializer
 | target_typed_new
 ;
target_typed_new

A target_typed_new expression does not have a type. However, there is a new object
creation conversion that is an implicit conversion from expression, that exists from a
target_typed_new to every type.

Given a target type T , the type T0 is T 's underlying type if T is an instance of
System.Nullable . Otherwise T0 is T . The meaning of a target_typed_new expression that
is converted to the type T is the same as the meaning of a corresponding
object_creation_expression that specifies T0 as the type.

It is a compile-time error if a target_typed_new is used as an operand of a unary or
binary operator, or if it is used where it is not subject to an object creation conversion.

Open Issue: should we allow delegates and tuples as the target-type?

The above rules include delegates (a reference type) and tuples (a struct type). Although
both types are constructible, if the type is inferable, an anonymous function or a tuple
literal can already be used.

C#

The following are consequences of the specification:

throw new() is allowed (the target type is System.Exception)
Target-typed new is not allowed with binary operators.
It is disallowed when there is no type to target: unary operators, collection of a
foreach , in a using , in a deconstruction, in an await expression, as an anonymous
type property (new { Prop = new() }), in a lock statement, in a sizeof , in a fixed
statement, in a member access (new().field), in a dynamically dispatched
operation (someDynamic.Method(new())), in a LINQ query, as the operand of the is
operator, as the left operand of the ?? operator, ...
It is also disallowed as a ref .

 : 'new' '(' argument_list? ')' object_or_collection_initializer?
 ;

(int a, int b) t = new(1, 2); // "new" is redundant
Action a = new(() => {}); // "new" is redundant

(int a, int b) t = new(); // OK; same as (0, 0)
Action a = new(); // no constructor found

Miscellaneous

The following kinds of types are not permitted as targets of the conversion
Enum types: new() will work (as new Enum() works to give the default value),
but new(1) will not work as enum types do not have a constructor.
Interface types: This would work the same as the corresponding creation
expression for COM types.
Array types: arrays need a special syntax to provide the length.
dynamic: we don't allow new dynamic() , so we don't allow new() with dynamic
as a target type.
tuples: These have the same meaning as an object creation using the
underlying type.
All the other types that are not permitted in the object_creation_expression are
excluded as well, for instance, pointer types.

There were some concerns with target-typed new creating new categories of breaking
changes, but we already have that with null and default , and that has not been a
significant problem.

Most of complaints about types being too long to duplicate in field initialization is
about type arguments not the type itself, we could infer only type arguments like new
Dictionary(...) (or similar) and infer type arguments locally from arguments or the
collection initializer.

Should we forbid usages in expression trees? (no)
How the feature interacts with dynamic arguments? (no special treatment)
How IntelliSense should work with new()? (only when there is a single target-type)

LDM-2017-10-18
LDM-2018-05-21
LDM-2018-06-25
LDM-2018-08-22

Drawbacks

Alternatives

Questions

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-10-18.md#100
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-05-21.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-06-25.md
https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-08-22.md#target-typed-new

LDM-2018-10-17
LDM-2020-03-25

https://github.com/dotnet/csharplang/blob/master/meetings/2018/LDM-2018-10-17.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-03-25.md

Module Initializers
Article • 2021-09-21 • 2 minutes to read

Although the .NET platform has a feature that directly supports writing initialization
code for the assembly (technically, the module), it is not exposed in C#. This is a rather
niche scenario, but once you run into it the solutions appear to be pretty painful. There
are reports of a number of customers (inside and outside Microsoft) struggling with
the problem, and there are no doubt more undocumented cases.

Enable libraries to do eager, one-time initialization when loaded, with minimal
overhead and without the user needing to explicitly call anything
One particular pain point of current static constructor approaches is that the
runtime must do additional checks on usage of a type with a static constructor, in
order to decide whether the static constructor needs to be run or not. This adds
measurable overhead.
Enable source generators to run some global initialization logic without the user
needing to explicitly call anything

A method can be designated as a module initializer by decorating it with a
[ModuleInitializer] attribute.

C#

The attribute can be used like this:

C#

Summary

Motivation

Detailed design

using System;
namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]
 public sealed class ModuleInitializerAttribute : Attribute { }
}

https://github.com/dotnet/runtime/blob/master/docs/design/specs/Ecma-335-Augments.md#module-initializer
https://www.google.com/search?q=.net+module+constructor+c%23&oq=.net+module+constructor

Some requirements are imposed on the method targeted with this attribute:

1. The method must be static .
2. The method must be parameterless.
3. The method must return void .
4. The method must not be generic or be contained in a generic type.
5. The method must be accessible from the containing module.

This means the method's effective accessibility must be internal or public .
This also means the method cannot be a local function.

When one or more valid methods with this attribute are found in a compilation, the
compiler will emit a module initializer which calls each of the attributed methods. The
calls will be emitted in a reserved, but deterministic order.

Why should we not do this?

Perhaps the existing third-party tooling for "injecting" module initializers is
sufficient for users who have been asking for this feature.

using System.Runtime.CompilerServices;
class C
{
 [ModuleInitializer]
 internal static void M1()
 {
 // ...
 }
}

Drawbacks

Design meetings

April 8th, 2020

https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-04-08.md#module-initializers

Extending Partial Methods
Article • 2022-02-23 • 5 minutes to read

This proposal aims to remove all restrictions around the signatures of partial methods
in C#. The goal being to expand the set of scenarios in which these methods can work
with source generators as well as being a more general declaration form for C#
methods.

See also the original partial methods specification (§14.6.9).

C# has limited support for developers splitting methods into declarations and
definitions / implementations.

C#

One behavior of partial methods is that when the definition is absent then the
language will simply erase any calls to the partial method. Essentially it behaves like a
call to a [Conditional] method where the condition was evaluated to false.

C#

Summary

Motivation

partial class C
{
 // The declaration of C.M
 partial void M(string message);
}

partial class C
{
 // The definition of C.M
 partial void M(string message) => Console.WriteLine(message);
}

partial class D
{
 partial void M(string message);

 void Example()
 {
 M(GetIt()); // Call to M and GetIt erased at compile time

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1469-partial-methods

The original motivation for this feature was source generation in the form of designer
generated code. Users were constantly editing the generated code because they wanted
to hook some aspect of the generated code. Most notably parts of the Windows Forms
startup process, after components were initialized.

Editing the generated code was error prone because any action which caused the
designer to regenerate the code would cause the user edit to be erased. The partial
method feature eased this tension because it allowed designers to emit hooks in the
form of partial methods.

Designers could emit hooks like partial void OnComponentInit() and developers could
define declarations for them or not define them. In either case though the generated
code would compile and developers who were interested in the process could hook in
as needed.

This does mean that partial methods have several restrictions:

1. Must have a void return type.
2. Cannot have out parameters.
3. Cannot have any accessibility (implicitly private).

These restrictions exist because the language must be able to emit code when the call
site is erased. Given they can be erased private is the only possible accessibility
because the member can't be exposed in assembly metadata. These restrictions also
serve to limit the set of scenarios in which partial methods can be applied.

The proposal here is to remove all of the existing restrictions around partial methods.
Essentially let them have out , non-void return types or any type of accessibility. Such
partial declarations would then have the added requirement that a definition must
exist. That means the language does not have to consider the impact of erasing the call
sites.

This would expand the set of generator scenarios that partial methods could
participate in and hence link in nicely with our source generators feature. For example a
regex could be defined using the following pattern:

C#

 }

 string GetIt() => "Hello World";
}

This gives both the developer a simple declarative way of opting into generators as well
as giving generators a very easy set of declarations to look through in the source code
to drive their generated output.

Compare that with the difficulty that a generator would have hooking up the following
snippet of code.

C#

Given that the compiler doesn't allow generators to modify code hooking up this
pattern would be pretty much impossible for generators. They would need to resort to
reflection in the IsMatch implementation, or asking users to change their call sites to a
new method + refactor the regex to pass the string literal as an argument. It's pretty
messy.

The language will change to allow partial methods to be annotated with an explicit
accessibility modifier. This means they can be labeled as private , public , etc ...

When a partial method has an explicit accessibility modifier though the language will
require that the declaration has a matching definition even when the accessibility is
private :

C#

[RegexGenerated("(dog|cat|fish)")]
partial bool IsPetMatch(string input);

var regex = new RegularExpression("(dog|cat|fish)");
if (regex.IsMatch(someInput))
{

}

Detailed Design

partial class C
{
 // Okay because no definition is required here
 partial void M1();

 // Okay because M2 has a definition
 private partial void M2();

 // Error: partial method M3 must have a definition
 private partial void M3();

Further the language will remove all restrictions on what can appear on a partial
method which has an explicit accessibility. Such declarations can contain non-void
return types, out parameters, extern modifier, etc ... These signatures will have the full
expressivity of the C# language.

C#

This explicitly allows for partial methods to participate in overrides and interface
implementations:

C#

The compiler will change the error it emits when a partial method contains an illegal
element to essentially say:

}

partial class C
{
 private partial void M2() { }
}

partial class D
{
 // Okay
 internal partial bool TryParse(string s, out int i);
}

partial class D
{
 internal partial bool TryParse(string s, out int i) { }
}

interface IStudent
{
 string GetName();
}

partial class C : IStudent
{
 public virtual partial string GetName();
}

partial class C
{
 public virtual partial string GetName() => "Jarde";
}

Cannot use ref on a partial method that lacks explicit accessibility

This will help point developers in the right direction when using this feature.

Restrictions:

partial declarations with explicit accessibility must have a definition
partial declarations and definition signatures must match on all method and
parameter modifiers. The only aspects which can differ are parameter names and
attribute lists (this is not new but rather an existing requirement of partial
methods).

Given that we're expanding partial to be more friendly to source generators should we
also expand it to work on all class members? For example should we be able to declare
partial constructors, operators, etc ...

Resolution The idea is sound but at this point in the C# 9 schedule we're trying to avoid
unnecessary feature creep. Want to solve the immediate problem of expanding the
feature to work with modern source generators.

Extending partial to support other members will be considered for the C# 10 release.
Seems likely that we will consider this extension.

The crux of this proposal is essentially ensuring that a declaration has a corresponding
definition / implementation. Given that should we use abstract since it's already a
language keyword that forces the developer to think about having an implementation?

Resolution There was a healthy discussion about this but eventually it was decided
against. Yes the requirements are familiar but the concepts are significantly different.
Could easily lead the developer to believe they were creating virtual slots when they
were not doing so.

Questions

partial on all members

Use abstract instead of partial

Static anonymous functions
Article • 2021-09-21 • 2 minutes to read

Allow a 'static' modifier on lambdas and anonymous methods, which disallows capture
of locals or instance state from containing scopes.

Avoid unintentionally capturing state from the enclosing context, which can result in
unexpected retention of captured objects or unexpected additional allocations.

A lambda or anonymous method may have a static modifier. The static modifier
indicates that the lambda or anonymous method is a static anonymous function.

A static anonymous function cannot capture state from the enclosing scope. As a result,
locals, parameters, and this from the enclosing scope are not available within a static
anonymous function.

A static anonymous function cannot reference instance members from an implicit or
explicit this or base reference.

A static anonymous function may reference static members from the enclosing scope.

A static anonymous function may reference constant definitions from the enclosing
scope.

nameof() in a static anonymous function may reference locals, parameters, or this or
base from the enclosing scope.

Accessibility rules for private members in the enclosing scope are the same for static
and non-static anonymous functions.

No guarantee is made as to whether a static anonymous function definition is emitted as
a static method in metadata. This is left up to the compiler implementation to
optimize.

Summary

Motivation

Detailed design

A non-static local function or anonymous function can capture state from an enclosing
static anonymous function but cannot capture state outside the enclosing static
anonymous function.

Removing the static modifier from an anonymous function in a valid program does
not change the meaning of the program.

Target-Typed Conditional Expression
Article • 2022-02-23 • 3 minutes to read

For a conditional expression c ? e1 : e2 , when

1. there is no common type for e1 and e2 , or
2. for which a common type exists but one of the expressions e1 or e2 has no

implicit conversion to that type

we define a new implicit conditional expression conversion that permits an implicit
conversion from the conditional expression to any type T for which there is a
conversion-from-expression from e1 to T and also from e2 to T . It is an error if a
conditional expression neither has a common type between e1 and e2 nor is subject to
a conditional expression conversion.

We change

Better conversion from expression

Given an implicit conversion C1 that converts from an expression E to a type T1 ,
and an implicit conversion C2 that converts from an expression E to a type T2 , C1
is a better conversion than C2 if E does not exactly match T2 and at least one of
the following holds:

E exactly matches T1 (§11.6.4.4)
T1 is a better conversion target than T2 (§11.6.4.6)

to

Better conversion from expression

Given an implicit conversion C1 that converts from an expression E to a type T1 ,
and an implicit conversion C2 that converts from an expression E to a type T2 , C1

Conditional Expression Conversion

Better Conversion from Expression

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11646-better-conversion-target

is a better conversion than C2 if E does not exactly match T2 and at least one of
the following holds:

E exactly matches T1 (§11.6.4.4)
C1 is not a conditional expression conversion and C2 is a conditional
expression conversion.
T1 is a better conversion target than T2 (§11.6.4.6) and either C1 and C2
are both conditional expression conversions or neither is a conditional
expression conversion.

The current C# language specification says

A cast_expression of the form (T)E , where T is a type and E is a unary_expression,
performs an explicit conversion (§10.3) of the value of E to type T .

In the presence of the conditional expression conversion there may be more than one
possible conversion from E to T . With the addition of conditional expression conversion,
we prefer any other conversion to a conditional expression conversion, and use the
conditional expression conversion only as a last resort.

The reason for the change to Better conversion from expression is to handle a case such
as this:

C#

This approach does have two small downsides. First, it is not quite the same as the
switch expression:

C#

Cast Expression

Design Notes

M(b ? 1 : 2);

void M(short);
void M(long);

M(b ? 1 : 2); // calls M(long)
M(b switch { true => 1, false => 2 }); // calls M(short)

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11646-better-conversion-target
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#103-explicit-conversions

This is still a breaking change, but its scope is less likely to affect real programs:

C#

This becomes ambiguous because the conversion to long is better for the first
argument (because it does not use the conditional expression conversion), but the
conversion to short is better for the second argument (because short is a better
conversion target than long). This breaking change seems less serious because it does
not silently change the behavior of an existing program.

The reason for the notes on the cast expression is to handle a case such as this:

C#

This program currently uses the explicit conversion from int to short , and we want to
preserve the current language meaning of this program. The change would be
unobservable at runtime, but with the following program the change would be
observable:

C#

where c is of type C , d is of type D , and there is an implicit user-defined conversion
from C to D , and an implicit user-defined conversion from D to A , and an implicit user-
defined conversion from C to A . If this code is compiled before C# 9.0, when b is true
we convert from c to D then to A . If we use the conditional expression conversion, then
when b is true we convert from c to A directly, which executes a different sequence of
user code. Therefore we treat the conditional expression conversion as a last resort in a
cast, to preserve existing behavior.

M(b ? 1 : 2, 1); // calls M(long, long) without this feature; ambiguous with
this feature.

M(short, short);
M(long, long);

_ = (short)(b ? 1 : 2);

_ = (A)(b ? c : d);

Covariant returns
Article • 2022-02-23 • 10 minutes to read

Support covariant return types. Specifically, permit the override of a method to declare a
more derived return type than the method it overrides, and similarly to permit the
override of a read-only property to declare a more derived type. Override declarations
appearing in more derived types would be required to provide a return type at least as
specific as that appearing in overrides in its base types. Callers of the method or
property would statically receive the more refined return type from an invocation.

It is a common pattern in code that different method names have to be invented to
work around the language constraint that overrides must return the same type as the
overridden method.

This would be useful in the factory pattern. For example, in the Roslyn code base we
would have

C#

C#

This is a specification for covariant return types in C#. Our intent is to permit the
override of a method to return a more derived return type than the method it overrides,
and similarly to permit the override of a read-only property to return a more derived

Summary

Motivation

class Compilation ...
{
 public virtual Compilation WithOptions(Options options)...
}

class CSharpCompilation : Compilation
{
 public override CSharpCompilation WithOptions(Options options)...
}

Detailed design

https://github.com/dotnet/csharplang/issues/49

return type. Callers of the method or property would statically receive the more refined
return type from an invocation, and overrides appearing in more derived types would be
required to provide a return type at least as specific as that appearing in overrides in its
base types.

The existing constraint on class override (§14.6.5) methods

The override method and the overridden base method have the same return
type.

is modified to

The override method must have a return type that is convertible by an identity
conversion or (if the method has a value return - not a ref return) implicit
reference conversion to the return type of the overridden base method.

And the following additional requirements are appended to that list:

The override method must have a return type that is convertible by an identity
conversion or (if the method has a value return - not a ref return) implicit
reference conversion to the return type of every override of the overridden
base method that is declared in a (direct or indirect) base type of the override
method.
The override method's return type must be at least as accessible as the
override method (Accessibility domains - §7.5.3).

This constraint permits an override method in a private class to have a private return
type. However it requires a public override method in a public type to have a public
return type.

The existing constraint on class override (§14.7.6) properties

An overriding property declaration shall specify the exact same accessibility
modifiers and name as the inherited property, and there shall be an identity
conversion between the type of the overriding and the inherited property. If the
inherited property has only a single accessor (i.e., if the inherited property is read-

Class Method Override

Class Property and Indexer Override

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1465-override-methods
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/ref-locals-returns.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/ref-locals-returns.md
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#753-accessibility-domains
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1476-virtual-sealed-override-and-abstract-accessors

only or write-only), the overriding property shall include only that accessor. If the
inherited property includes both accessors (i.e., if the inherited property is read-
write), the overriding property can include either a single accessor or both accessors.

is modified to

An overriding property declaration shall specify the exact same accessibility
modifiers and name as the inherited property, and there shall be an identity
conversion or (if the inherited property is read-only and has a value return - not a
ref return) implicit reference conversion from the type of the overriding
property to the type of the inherited property. If the inherited property has only a
single accessor (i.e., if the inherited property is read-only or write-only), the
overriding property shall include only that accessor. If the inherited property
includes both accessors (i.e., if the inherited property is read-write), the overriding
property can include either a single accessor or both accessors. The overriding
property's type must be at least as accessible as the overriding property
(Accessibility domains - §7.5.3).

The remainder of the draft specification below proposes a further extension to
covariant returns of interface methods to be considered later.

Adding to the kinds of members that are permitted in an interface with the addition of
the DIM feature in C# 8.0, we further add support for override members along with
covariant returns. These follow the rules of override members as specified for classes,
with the following differences:

The following text in classes:

The method overridden by an override declaration is known as the overridden base
method. For an override method M declared in a class C , the overridden base
method is determined by examining each base class of C , starting with the direct
base class of C and continuing with each successive direct base class, until in a
given base class type at least one accessible method is located which has the same
signature as M after substitution of type arguments.

is given the corresponding specification for interfaces:

Interface Method, Property, and Indexer Override

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/ref-locals-returns.md
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#753-accessibility-domains

The method overridden by an override declaration is known as the overridden base
method. For an override method M declared in an interface I , the overridden base
method is determined by examining each direct or indirect base interface of I ,
collecting the set of interfaces declaring an accessible method which has the same
signature as M after substitution of type arguments. If this set of interfaces has a
most derived type, to which there is an identity or implicit reference conversion from
every type in this set, and that type contains a unique such method declaration,
then that is the overridden base method.

We similarly permit override properties and indexers in interfaces as specified for
classes in 15.7.6 Virtual, sealed, override, and abstract accessors.

Name lookup in the presence of class override declarations currently modify the result
of name lookup by imposing on the found member details from the most derived
override declaration in the class hierarchy starting from the type of the identifier's
qualifier (or this when there is no qualifier). For example, in 12.6.2.2 Corresponding
parameters we have

For virtual methods and indexers defined in classes, the parameter list is picked from
the first declaration or override of the function member found when starting with
the static type of the receiver, and searching through its base classes.

to this we add

For virtual methods and indexers defined in interfaces, the parameter list is picked
from the declaration or override of the function member found in the most derived
type among those types containing the declaration of override of the function
member. It is a compile-time error if no unique such type exists.

For the result type of a property or indexer access, the existing text

If I identifies an instance property, then the result is a property access with an
associated instance expression of E and an associated type that is the type of
the property. If T is a class type, the associated type is picked from the first
declaration or override of the property found when starting with T, and
searching through its base classes.

is augmented with

Name Lookup

If T is an interface type, the associated type is picked from the declaration or
override of the property found in the most derived of T or its direct or indirect base
interfaces. It is a compile-time error if no unique such type exists.

A similar change should be made in 12.7.7.3 Indexer access

In 12.7.6 Invocation expressions we augment the existing text

Otherwise, the result is a value, with an associated type of the return type of
the method or delegate. If the invocation is of an instance method, and the
receiver is of a class type T, the associated type is picked from the first
declaration or override of the method found when starting with T and
searching through its base classes.

with

If the invocation is of an instance method, and the receiver is of an interface type T,
the associated type is picked from the declaration or override of the method found
in the most derived interface from among T and its direct and indirect base
interfaces. It is a compile-time error if no unique such type exists.

This section of the specification

For purposes of interface mapping, a class member A matches an interface member
B when:

A and B are methods, and the name, type, and formal parameter lists of A
and B are identical.
A and B are properties, the name and type of A and B are identical, and A
has the same accessors as B (A is permitted to have additional accessors if it is
not an explicit interface member implementation).
A and B are events, and the name and type of A and B are identical.
A and B are indexers, the type and formal parameter lists of A and B are
identical, and A has the same accessors as B (A is permitted to have
additional accessors if it is not an explicit interface member implementation).

is modified as follows:

Implicit Interface Implementations

For purposes of interface mapping, a class member A matches an interface member
B when:

A and B are methods, and the name and formal parameter lists of A and B
are identical, and the return type of A is convertible to the return type of B via
an identity of implicit reference convertion to the return type of B .
A and B are properties, the name of A and B are identical, A has the same
accessors as B (A is permitted to have additional accessors if it is not an
explicit interface member implementation), and the type of A is convertible to
the return type of B via an identity conversion or, if A is a readonly property,
an implicit reference conversion.
A and B are events, and the name and type of A and B are identical.
A and B are indexers, the formal parameter lists of A and B are identical, A
has the same accessors as B (A is permitted to have additional accessors if it is
not an explicit interface member implementation), and the type of A is
convertible to the return type of B via an identity conversion or, if A is a
readonly indexer, an implicit reference conversion.

This is technically a breaking change, as the program below prints "C1.M" today, but
would print "C2.M" under the proposed revision.

c#

Due to this breaking change, we might consider not supporting covariant return types
on implicit implementations.

using System;

interface I1 { object M(); }
class C1 : I1 { public object M() { return "C1.M"; } }
class C2 : C1, I1 { public new string M() { return "C2.M"; } }
class Program
{
 static void Main()
 {
 I1 i = new C2();
 Console.WriteLine(i.M());
 }
}

Constraints on Interface Implementation

We will need a rule that an explicit interface implementation must declare a return
type no less derived than the return type declared in any override in its base
interfaces.

TBD

The specification does not say how the caller gets the more refined return type.
Presumably that would be done in a way similar to the way that callers get the most
derived override's parameter specifications.

If we have the following interfaces:

C#

Note that in I3 , the methods I1.M() and I2.M() have been “merged”. When
implementing I3 , it is necessary to implement them both together.

Generally, we require an explicit implementation to refer to the original method. The
question is, in a class

C#

What does that mean here? What should N be?

I suggest that we permit implementing either I1.M or I2.M (but not both), and treat
that as an implementation of both.

[] Every language change must pay for itself.

API Compatibility Implications

Open Issues

interface I1 { I1 M(); }
interface I2 { I2 M(); }
interface I3: I1, I2 { override I3 M(); }

class C : I1, I2, I3
{
 C IN.M();
}

Drawbacks

[] We should ensure that the performance is reasonable, even in the case of deep
inheritance hierarchies
[] We should ensure that artifacts of the translation strategy do not affect
language semantics, even when consuming new IL from old compilers.

We could relax the language rules slightly to allow, in source,

C#

[] How will APIs that have been compiled to use this feature work in older versions
of the language?

some discussion at https://github.com/dotnet/roslyn/issues/357 .
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-01-
08.md
Offline discussion toward a decision to support overriding of class methods only in
C# 9.0.

Alternatives

abstract class Cloneable
{
 public abstract Cloneable Clone();
}

class Digit : Cloneable
{
 public override Cloneable Clone()
 {
 return this.Clone();
 }

 public new Digit Clone() // Error: 'Digit' already defines a member
called 'Clone' with the same parameter types
 {
 return this;
 }
}

Unresolved questions

Design meetings

https://github.com/dotnet/roslyn/issues/357
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-01-08.md

Extension GetEnumerator support for
foreach loops.

Article • 2022-02-23 • 5 minutes to read

Allow foreach loops to recognize an extension method GetEnumerator method that
otherwise satisfies the foreach pattern, and loop over the expression when it would
otherwise be an error.

This will bring foreach inline with how other features in C# are implemented, including
async and pattern-based deconstruction.

The spec change is relatively straightforward. We modify The foreach statement section
to this text:

The compile-time processing of a foreach statement first determines the collection
type, enumerator type and element type of the expression. This determination
proceeds as follows:

If the type X of expression is an array type then there is an implicit reference
conversion from X to the IEnumerable interface (since System.Array
implements this interface). The collection type is the IEnumerable interface, the
enumerator type is the IEnumerator interface and the element type is the
element type of the array type X .

If the type X of expression is dynamic then there is an implicit conversion from
expression to the IEnumerable interface (§10.2.10). The collection type is the
IEnumerable interface and the enumerator type is the IEnumerator interface. If
the var identifier is given as the local_variable_type then the element type is
dynamic , otherwise it is object .

Otherwise, determine whether the type X has an appropriate GetEnumerator
method:

Summary

Motivation

Detailed design

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#10210-implicit-dynamic-conversions

Perform member lookup on the type X with identifier GetEnumerator and
no type arguments. If the member lookup does not produce a match, or it
produces an ambiguity, or produces a match that is not a method group,
check for an enumerable interface as described below. It is recommended
that a warning be issued if member lookup produces anything except a
method group or no match.
Perform overload resolution using the resulting method group and an
empty argument list. If overload resolution results in no applicable methods,
results in an ambiguity, or results in a single best method but that method
is either static or not public, check for an enumerable interface as described
below. It is recommended that a warning be issued if overload resolution
produces anything except an unambiguous public instance method or no
applicable methods.
If the return type E of the GetEnumerator method is not a class, struct or
interface type, an error is produced and no further steps are taken.
Member lookup is performed on E with the identifier Current and no type
arguments. If the member lookup produces no match, the result is an error,
or the result is anything except a public instance property that permits
reading, an error is produced and no further steps are taken.
Member lookup is performed on E with the identifier MoveNext and no type
arguments. If the member lookup produces no match, the result is an error,
or the result is anything except a method group, an error is produced and
no further steps are taken.
Overload resolution is performed on the method group with an empty
argument list. If overload resolution results in no applicable methods,
results in an ambiguity, or results in a single best method but that method
is either static or not public, or its return type is not bool , an error is
produced and no further steps are taken.
The collection type is X , the enumerator type is E , and the element type is
the type of the Current property.

Otherwise, check for an enumerable interface:
If among all the types Ti for which there is an implicit conversion from X to
IEnumerable<Ti> , there is a unique type T such that T is not dynamic and
for all the other Ti there is an implicit conversion from IEnumerable<T> to
IEnumerable<Ti> , then the collection type is the interface IEnumerable<T> ,
the enumerator type is the interface IEnumerator<T> , and the element type
is T .
Otherwise, if there is more than one such type T , then an error is produced
and no further steps are taken.

Otherwise, if there is an implicit conversion from X to the
System.Collections.IEnumerable interface, then the collection type is this
interface, the enumerator type is the interface
System.Collections.IEnumerator , and the element type is object .

Otherwise, determine whether the type 'X' has an appropriate GetEnumerator
extension method:

Perform extension method lookup on the type X with identifier
GetEnumerator . If the member lookup does not produce a match, or it
produces an ambiguity, or produces a match which is not a method group,
an error is produced and no further steps are taken. It is recommended that
a warning be issues if member lookup produces anything except a method
group or no match.
Perform overload resolution using the resulting method group and a single
argument of type X . If overload resolution produces no applicable
methods, results in an ambiguity, or results in a single best method but that
method is not accessible, an error is produced an no further steps are taken.

This resolution permits the first argument to be passed by ref if X is a
struct type, and the ref kind is in .

If the return type E of the GetEnumerator method is not a class, struct or
interface type, an error is produced and no further steps are taken.
Member lookup is performed on E with the identifier Current and no type
arguments. If the member lookup produces no match, the result is an error,
or the result is anything except a public instance property that permits
reading, an error is produced and no further steps are taken.
Member lookup is performed on E with the identifier MoveNext and no type
arguments. If the member lookup produces no match, the result is an error,
or the result is anything except a method group, an error is produced and
no further steps are taken.
Overload resolution is performed on the method group with an empty
argument list. If overload resolution results in no applicable methods,
results in an ambiguity, or results in a single best method but that method
is either static or not public, or its return type is not bool , an error is
produced and no further steps are taken.
The collection type is X , the enumerator type is E , and the element type is
the type of the Current property.

Otherwise, an error is produced and no further steps are taken.

For await foreach , the rules are similarly modified. The only change that is required to
that spec is removing the Extension methods do not contribute. line from the
description, as the rest of that spec is based on the above rules with different names
substituted for the pattern methods.

Every change adds additional complexity to the language, and this potentially allows
things that weren't designed to be foreached to be foreached, like Range .

Doing nothing.

None at this point.

Drawbacks

Alternatives

Unresolved questions

Lambda discard parameters
Article • 2022-02-23 • 2 minutes to read

Allow discards (_) to be used as parameters of lambdas and anonymous methods. For
example:

lambdas: (_, _) => 0 , (int _, int _) => 0
anonymous methods: delegate(int _, int _) { return 0; }

Unused parameters do not need to be named. The intent of discards is clear, i.e. they
are unused/discarded.

Method parameters - §14.6.2 In the parameter list of a lambda or anonymous method
with more than one parameter named _ , such parameters are discard parameters. Note:
if a single parameter is named _ then it is a regular parameter for backwards
compatibility reasons.

Discard parameters do not introduce any names to any scopes. Note this implies they
do not cause any _ (underscore) names to be hidden.

Simple names (§11.7.4) If K is zero and the simple_name appears within a block and if
the block's (or an enclosing block's) local variable declaration space (Declarations -
§7.3) contains a local variable, parameter (with the exception of discard parameters) or
constant with name I , then the simple_name refers to that local variable, parameter or
constant and is classified as a variable or value.

Scopes - §7.7 With the exception of discard parameters, the scope of a parameter
declared in a lambda_expression (§11.16) is the anonymous_function_body of that
lambda_expression With the exception of discard parameters, the scope of a parameter
declared in an anonymous_method_expression (§11.16) is the block of that
anonymous_method_expression.

Summary

Motivation

Detailed design

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1462-method-parameters
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1174-simple-names
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#73-declarations
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#77-scopes
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1116-anonymous-function-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1116-anonymous-function-expressions

Corresponding parameters - §11.6.2.2

Related spec sections

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11622-corresponding-parameters

Attributes on local functions
Article • 2022-02-23 • 2 minutes to read

Local function declarations are now permitted to have attributes (§21). Parameters
and type parameters on local functions are also allowed to have attributes.

Attributes with a specified meaning when applied to a method, its parameters, or its
type parameters will have the same meaning when applied to a local function, its
parameters, or its type parameters, respectively.

A local function can be made conditional in the same sense as a conditional method
(§21.5.3) by decorating it with a [ConditionalAttribute] . A conditional local function
must also be static . All restrictions on conditional methods also apply to conditional
local functions, including that the return type must be void .

The extern modifier is now permitted on local functions. This makes the local function
external in the same sense as an external method (§14.6.8).

Similarly to an external method, the local-function-body of an external local function
must be a semicolon. A semicolon local-function-body is only permitted on an external
local function.

An external local function must also be static .

The local functions grammar is modified as follows:

Attributes

Extern

Syntax

local-function-header
 : attributes? local-function-modifiers? return-type identifier type-
parameter-list?
 (formal-parameter-list?) type-parameter-constraints-clauses
 ;

local-function-modifiers
 : (async | unsafe | static | extern)*

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/attributes.md#21-attributes
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/attributes.md#2153-the-conditional-attribute
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1468-external-methods
https://learn.microsoft.com/en-ca/dotnet/_csharplang/proposals/csharp-7.0/local-functions#syntax-grammar

 ;

local-function-body
 : block
 | arrow-expression-body
 | ';'
 ;

Native-sized integers
Article • 2022-07-22 • 12 minutes to read

Language support for a native-sized signed and unsigned integer types.

The motivation is for interop scenarios and for low-level libraries.

The identifiers nint and nuint are new contextual keywords that represent native
signed and unsigned integer types. The identifiers are only treated as keywords when
name lookup does not find a viable result at that program location.

C#

The types nint and nuint are represented by the underlying types System.IntPtr and
System.UIntPtr with compiler surfacing additional conversions and operations for those
types as native ints.

Constant expressions may be of type nint or nuint . There is no direct syntax for native
int literals. Implicit or explicit casts of other integral constant values can be used instead:
const nint i = (nint)42; .

nint constants are in the range [int.MinValue , int.MaxValue].

nuint constants are in the range [uint.MinValue , uint.MaxValue].

There are no MinValue or MaxValue fields on nint or nuint because, other than
nuint.MinValue , those values cannot be emitted as constants.

Constant folding is supported for all unary operators { + , - , ~ } and binary operators {
+ , - , * , / , % , == , != , < , <= , > , >= , & , | , ^ , << , >> }. Constant folding operations are

Summary

Design

nint x = 3;
string y = nameof(nuint);
_ = nint.Equals(x, 3);

Constants

evaluated with Int32 and UInt32 operands rather than native ints for consistent
behavior regardless of compiler platform. If the operation results in a constant value in
32-bits, constant folding is performed at compile-time. Otherwise the operation is
executed at runtime and not considered a constant.

There is an identity conversion between nint and IntPtr , and between nuint and
UIntPtr . There is an identity conversion between compound types that differ by native
ints and underlying types only: arrays, Nullable<> , constructed types, and tuples.

The tables below cover the conversions between special types. (The IL for each
conversion includes the variants for unchecked and checked contexts if different.)

General notes on the table below:

conv.u is a zero-extending conversion to native integer and conv.i is sign-
extending conversion to native integer.
checked contexts for both widening and narrowing are:

conv.ovf.* for signed to *
conv.ovf.*.un for unsigned to *

unchecked contexts for widening are:
conv.i* for signed to * (where * is the target width)
conv.u* for unsigned to * (where * is the target width)

unchecked contexts for narrowing are:
conv.i* for any to signed * (where * is the target width)
conv.u* for any to unsigned * (where * is the target width)

Taking a few examples:

sbyte to nint and sbyte to nuint use conv.i while byte to nint and byte to
nuint use conv.u because they are all widening.
nint to byte and nuint to byte use conv.u1 while nint to sbyte and nuint to
sbyte use conv.i1 . For byte , sbyte , short , and ushort the "stack type" is int32 .
So conv.i1 is effectively "downcast to a signed byte and then sign-extend up to
int32" while conv.u1 is effectively "downcast to an unsigned byte and then zero-
extend up to int32".
checked void* to nint uses conv.ovf.i.un the same way that checked void* to
long uses conv.ovf.i8.un .

Conversions

Operand Target Conversion ILOperand Target Conversion IL

object nint Unboxing unbox

void* nint PointerToVoid nop / conv.ovf.i.un

sbyte nint ImplicitNumeric conv.i

byte nint ImplicitNumeric conv.u

short nint ImplicitNumeric conv.i

ushort nint ImplicitNumeric conv.u

int nint ImplicitNumeric conv.i

uint nint ExplicitNumeric conv.u / conv.ovf.i.un

long nint ExplicitNumeric conv.i / conv.ovf.i

ulong nint ExplicitNumeric conv.i / conv.ovf.i.un

char nint ImplicitNumeric conv.u

float nint ExplicitNumeric conv.i / conv.ovf.i

double nint ExplicitNumeric conv.i / conv.ovf.i

decimal nint ExplicitNumeric long decimal.op_Explicit(decimal) conv.i / ...
conv.ovf.i

IntPtr nint Identity

UIntPtr nint None

object nuint Unboxing unbox

void* nuint PointerToVoid nop

sbyte nuint ExplicitNumeric conv.i / conv.ovf.u

byte nuint ImplicitNumeric conv.u

short nuint ExplicitNumeric conv.i / conv.ovf.u

ushort nuint ImplicitNumeric conv.u

int nuint ExplicitNumeric conv.i / conv.ovf.u

uint nuint ImplicitNumeric conv.u

Operand Target Conversion IL

long nuint ExplicitNumeric conv.u / conv.ovf.u

ulong nuint ExplicitNumeric conv.u / conv.ovf.u.un

char nuint ImplicitNumeric conv.u

float nuint ExplicitNumeric conv.u / conv.ovf.u

double nuint ExplicitNumeric conv.u / conv.ovf.u

decimal nuint ExplicitNumeric ulong decimal.op_Explicit(decimal) conv.u / ...
conv.ovf.u.un

IntPtr nuint None

UIntPtr nuint Identity

Enumeration nint ExplicitEnumeration

Enumeration nuint ExplicitEnumeration

Operand Target Conversion IL

nint object Boxing box

nint void* PointerToVoid nop / conv.ovf.u

nint nuint ExplicitNumeric conv.u (can be omitted) / conv.ovf.u

nint sbyte ExplicitNumeric conv.i1 / conv.ovf.i1

nint byte ExplicitNumeric conv.u1 / conv.ovf.u1

nint short ExplicitNumeric conv.i2 / conv.ovf.i2

nint ushort ExplicitNumeric conv.u2 / conv.ovf.u2

nint int ExplicitNumeric conv.i4 / conv.ovf.i4

nint uint ExplicitNumeric conv.u4 / conv.ovf.u4

nint long ImplicitNumeric conv.i8

nint ulong ExplicitNumeric conv.i8 / conv.ovf.u8

nint char ExplicitNumeric conv.u2 / conv.ovf.u2

nint float ImplicitNumeric conv.r4

Operand Target Conversion IL

nint double ImplicitNumeric conv.r8

nint decimal ImplicitNumeric conv.i8 decimal decimal.op_Implicit(long)

nint IntPtr Identity

nint UIntPtr None

nint Enumeration ExplicitEnumeration

nuint object Boxing box

nuint void* PointerToVoid nop

nuint nint ExplicitNumeric conv.i (can be omitted) / conv.ovf.i.un

nuint sbyte ExplicitNumeric conv.i1 / conv.ovf.i1.un

nuint byte ExplicitNumeric conv.u1 / conv.ovf.u1.un

nuint short ExplicitNumeric conv.i2 / conv.ovf.i2.un

nuint ushort ExplicitNumeric conv.u2 / conv.ovf.u2.un

nuint int ExplicitNumeric conv.i4 / conv.ovf.i4.un

nuint uint ExplicitNumeric conv.u4 / conv.ovf.u4.un

nuint long ExplicitNumeric conv.u8 / conv.ovf.i8.un

nuint ulong ImplicitNumeric conv.u8

nuint char ExplicitNumeric conv.u2 / conv.ovf.u2.un

nuint float ImplicitNumeric conv.r.un conv.r4

nuint double ImplicitNumeric conv.r.un conv.r8

nuint decimal ImplicitNumeric conv.u8 decimal decimal.op_Implicit(ulong)

nuint IntPtr None

nuint UIntPtr Identity

nuint Enumeration ExplicitEnumeration

Conversion from A to Nullable is:

an implicit nullable conversion if there is an identity conversion or implicit
conversion from A to B ;
an explicit nullable conversion if there is an explicit conversion from A to B ;
otherwise invalid.

Conversion from Nullable<A> to B is:

an explicit nullable conversion if there is an identity conversion or implicit or
explicit numeric conversion from A to B ;
otherwise invalid.

Conversion from Nullable<A> to Nullable is:

an identity conversion if there is an identity conversion from A to B ;
an explicit nullable conversion if there is an implicit or explicit numeric conversion
from A to B ;
otherwise invalid.

The predefined operators are as follows. These operators are considered during
overload resolution based on normal rules for implicit conversions if at least one of the
operands is of type nint or nuint .

(The IL for each operator includes the variants for unchecked and checked contexts if
different.)

Unary Operator Signature IL

+ nint operator +(nint value) nop

+ nuint operator +(nuint value) nop

- nint operator -(nint value) neg

~ nint operator ~(nint value) not

~ nuint operator ~(nuint value) not

Binary Operator Signature IL

+ nint operator +(nint left, nint right) add / add.ovf

+ nuint operator +(nuint left, nuint right) add / add.ovf.un

Operators

Binary Operator Signature IL

- nint operator -(nint left, nint right) sub / sub.ovf

- nuint operator -(nuint left, nuint right) sub / sub.ovf.un

* nint operator *(nint left, nint right) mul / mul.ovf

* nuint operator *(nuint left, nuint right) mul / mul.ovf.un

/ nint operator /(nint left, nint right) div

/ nuint operator /(nuint left, nuint right) div.un

% nint operator %(nint left, nint right) rem

% nuint operator %(nuint left, nuint right) rem.un

== bool operator ==(nint left, nint right) beq / ceq

== bool operator ==(nuint left, nuint right) beq / ceq

!= bool operator !=(nint left, nint right) bne

!= bool operator !=(nuint left, nuint right) bne

< bool operator <(nint left, nint right) blt / clt

< bool operator <(nuint left, nuint right) blt.un / clt.un

<= bool operator <=(nint left, nint right) ble

<= bool operator <=(nuint left, nuint right) ble.un

> bool operator >(nint left, nint right) bgt / cgt

> bool operator >(nuint left, nuint right) bgt.un / cgt.un

>= bool operator >=(nint left, nint right) bge

>= bool operator >=(nuint left, nuint right) bge.un

& nint operator &(nint left, nint right) and

& nuint operator &(nuint left, nuint right) and

| nint operator |(nint left, nint right) or

| nuint operator |(nuint left, nuint right) or

^ nint operator ^(nint left, nint right) xor

Binary Operator Signature IL

^ nuint operator ^(nuint left, nuint right) xor

<< nint operator <<(nint left, int right) shl

<< nuint operator <<(nuint left, int right) shl

>> nint operator >>(nint left, int right) shr

>> nuint operator >>(nuint left, int right) shr.un

For some binary operators, the IL operators support additional operand types (see
ECMA-335 III.1.5 Operand type table). But the set of operand types supported by C#
is limited for simplicity and for consistency with existing operators in the language.

Lifted versions of the operators, where the arguments and return types are nint? and
nuint? , are supported.

Compound assignment operations x op= y where x or y are native ints follow the
same rules as with other primitive types with pre-defined operators. Specifically the
expression is bound as x = (T)(x op y) where T is the type of x and where x is only
evaluated once.

The shift operators should mask the number of bits to shift - to 5 bits if sizeof(nint) is
4, and to 6 bits if sizeof(nint) is 8. (see §11.10) in C# spec).

The C#9 compiler will report errors binding to predefined native integer operators when
compiling with an earlier language version, but will allow use of predefined conversions
to and from native integers.

csc -langversion:9 -t:library A.cs

C#

csc -langversion:8 -r:A.dll B.cs

C#

public class A
{
 public static nint F;
}

class B : A
{

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1110-shift-operators

There are no predefined operators in C# for pointer addition or subtraction with native
integer offsets. Instead, nint and nuint values are promoted to long and ulong and
pointer arithmetic uses predefined operators for those types.

C#

The binary numeric promotions informative text (see §11.4.7.3) in C# spec) is updated
as follows:

…
Otherwise, if either operand is of type ulong , the other operand is converted
to type ulong , or a binding-time error occurs if the other operand is of type
sbyte , short , int , nint , or long .
Otherwise, if either operand is of type nuint , the other operand is converted
to type nuint , or a binding-time error occurs if the other operand is of type
sbyte , short , int , nint , or long .
Otherwise, if either operand is of type long , the other operand is converted to
type long .

 static void Main()
 {
 F = F + 1; // error: nint operator+ not available with -
langversion:8
 F = (System.IntPtr)F + 1; // ok
 }
}

Pointer arithmetic

static T* AddLeftS(nint x, T* y) => x + y; // T* operator +(long left, T*
right)
static T* AddLeftU(nuint x, T* y) => x + y; // T* operator +(ulong left, T*
right)
static T* AddRightS(T* x, nint y) => x + y; // T* operator +(T* left, long
right)
static T* AddRightU(T* x, nuint y) => x + y; // T* operator +(T* left, ulong
right)
static T* SubRightS(T* x, nint y) => x - y; // T* operator -(T* left, long
right)
static T* SubRightU(T* x, nuint y) => x - y; // T* operator -(T* left, ulong
right)

Binary numeric promotions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11473-binary-numeric-promotions

Otherwise, if either operand is of type uint and the other operand is of type
sbyte , short , nint , or int , both operands are converted to type long .
Otherwise, if either operand is of type uint , the other operand is converted to
type uint .
Otherwise, if either operand is of type nint , the other operand is converted
to type nint .
Otherwise, both operands are converted to type int .

The conversions and operators are synthesized by the compiler and are not part of the
underlying IntPtr and UIntPtr types. As a result those conversions and operators are
not available from the runtime binder for dynamic .

C#

The only constructor for nint or nuint is the parameter-less constructor.

The following members of System.IntPtr and System.UIntPtr are explicitly excluded
from nint or nuint :

C#

Dynamic

nint x = 2;
nint y = x + x; // ok
dynamic d = x;
nint z = d + x; // RuntimeBinderException: '+' cannot be applied
'System.IntPtr' and 'System.IntPtr'

Type members

// constructors
// arithmetic operators
// implicit and explicit conversions
public static readonly IntPtr Zero; // use 0 instead
public static int Size { get; } // use sizeof() instead
public static IntPtr Add(IntPtr pointer, int offset);
public static IntPtr Subtract(IntPtr pointer, int offset);
public int ToInt32();
public long ToInt64();
public void* ToPointer();

The remaining members of System.IntPtr and System.UIntPtr are implicitly included in
nint and nuint . For .NET Framework 4.7.2:

C#

Interfaces implemented by System.IntPtr and System.UIntPtr are implicitly included in
nint and nuint , with occurrences of the underlying types replaced by the
corresponding native integer types. For instance if IntPtr implements ISerializable,
IEquatable<IntPtr>, IComparable<IntPtr> , then nint implements ISerializable,
IEquatable<nint>, IComparable<nint> .

nint and System.IntPtr , and nuint and System.UIntPtr , are considered equivalent for
overriding, hiding, and implementing.

Overloads cannot differ by nint and System.IntPtr , and nuint and System.UIntPtr ,
alone. Overrides and implementations may differ by nint and System.IntPtr , or nuint
and System.UIntPtr , alone. Methods hide other methods that differ by nint and
System.IntPtr , or nuint and System.UIntPtr , alone.

nint and nuint expressions used as array indices are emitted without conversion.

C#

nint and nuint cannot be used as an enum base type from C#.

C#

public override bool Equals(object obj);
public override int GetHashCode();
public override string ToString();
public string ToString(string format);

Overriding, hiding, and implementing

Miscellaneous

static object GetItem(object[] array, nint index)
{
 return array[index]; // ok
}

enum E : nint // error: byte, sbyte, short, ushort, int, uint, long, or
ulong expected

Reads and writes are atomic for nint and nuint .

Fields may be marked volatile for types nint and nuint . ECMA-334 15.5.4 does not
include enum with base type System.IntPtr or System.UIntPtr however.

default(nint) and new nint() are equivalent to (nint)0 ; default(nuint) and new
nuint() are equivalent to (nuint)0 .

typeof(nint) is typeof(IntPtr) ; typeof(nuint) is typeof(UIntPtr) .

sizeof(nint) and sizeof(nuint) are supported but require compiling in an unsafe
context (as required for sizeof(IntPtr) and sizeof(UIntPtr)). The values are not
compile-time constants. sizeof(nint) is implemented as sizeof(IntPtr) rather than
IntPtr.Size ; sizeof(nuint) is implemented as sizeof(UIntPtr) rather than
UIntPtr.Size .

Compiler diagnostics for type references involving nint or nuint report nint or nuint
rather than IntPtr or UIntPtr .

nint and nuint are represented in metadata as System.IntPtr and System.UIntPtr .

Type references that include nint or nuint are emitted with a
System.Runtime.CompilerServices.NativeIntegerAttribute to indicate which parts of the
type reference are native ints.

C#

{
}

Metadata

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(
 AttributeTargets.Class |
 AttributeTargets.Event |
 AttributeTargets.Field |
 AttributeTargets.GenericParameter |
 AttributeTargets.Parameter |
 AttributeTargets.Property |
 AttributeTargets.ReturnValue,
 AllowMultiple = false,
 Inherited = false)]
 public sealed class NativeIntegerAttribute : Attribute
 {

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-334.pdf

The encoding of type references with NativeIntegerAttribute is covered in
NativeIntegerAttribute.md .

An alternative to the "type erasure" approach above is to introduce new types:
System.NativeInt and System.NativeUInt .

C#

Distinct types would allow overloading distinct from IntPtr and would allow distinct
parsing and ToString() . But there would be more work for the CLR to handle these
types efficiently which defeats the primary purpose of the feature - efficiency. And
interop with existing native int code that uses IntPtr would be more difficult.

Another alternative is to add more native int support for IntPtr in the framework but
without any specific compiler support. Any new conversions and arithmetic operations
would be supported by the compiler automatically. But the language would not provide
keywords, constants, or checked operations.

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-05-
26.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-06-
13.md

 public NativeIntegerAttribute()
 {
 TransformFlags = new[] { true };
 }
 public NativeIntegerAttribute(bool[] flags)
 {
 TransformFlags = flags;
 }
 public readonly bool[] TransformFlags;
 }
}

Alternatives

public readonly struct NativeInt
{
 public IntPtr Value;
}

Design meetings

https://github.com/dotnet/roslyn/blob/master/docs/features/NativeIntegerAttribute.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-05-26.md
https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-06-13.md

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-07-
05.md#native-int-and-intptr-operators
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-10-
23.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-03-
25.md

https://github.com/dotnet/csharplang/blob/master/meetings/2017/LDM-2017-07-05.md#native-int-and-intptr-operators
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-10-23.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-03-25.md

Function Pointers
Article • 2022-03-24 • 22 minutes to read

This proposal provides language constructs that expose IL opcodes that cannot
currently be accessed efficiently, or at all, in C# today: ldftn and calli . These IL
opcodes can be important in high performance code and developers need an efficient
way to access them.

The motivations and background for this feature are described in the following issue (as
is a potential implementation of the feature):

https://github.com/dotnet/csharplang/issues/191

This is an alternate design proposal to compiler intrinsics

The language will allow for the declaration of function pointers using the delegate*
syntax. The full syntax is described in detail in the next section but it is meant to
resemble the syntax used by Func and Action type declarations.

C#

These types are represented using the function pointer type as outlined in ECMA-335.
This means invocation of a delegate* will use calli where invocation of a delegate will
use callvirt on the Invoke method. Syntactically though invocation is identical for
both constructs.

Summary

Motivation

Detailed Design

Function pointers

unsafe class Example {
 void Example(Action<int> a, delegate*<int, void> f) {
 a(42);
 f(42);
 }
}

https://github.com/dotnet/csharplang/issues/191
https://github.com/dotnet/csharplang/blob/master/proposals/intrinsics.md

The ECMA-335 definition of method pointers includes the calling convention as part of
the type signature (section 7.1). The default calling convention will be managed .
Unmanaged calling conventions can by specified by putting an unmanaged keyword afer
the delegate* syntax, which will use the runtime platform default. Specific unmanaged
conventions can then be specified in brackets to the unmanaged keyword by specifying
any type starting with CallConv in the System.Runtime.CompilerServices namespace,
leaving off the CallConv prefix. These types must come from the program's core library,
and the set of valid combinations is platform-dependent.

C#

Conversions between delegate* types is done based on their signature including the
calling convention.

C#

//This method has a managed calling convention. This is the same as leaving
the managed keyword off.
delegate* managed<int, int>;

// This method will be invoked using whatever the default unmanaged calling
convention on the runtime
// platform is. This is platform and architecture dependent and is
determined by the CLR at runtime.
delegate* unmanaged<int, int>;

// This method will be invoked using the cdecl calling convention
// Cdecl maps to System.Runtime.CompilerServices.CallConvCdecl
delegate* unmanaged[Cdecl] <int, int>;

// This method will be invoked using the stdcall calling convention, and
suppresses GC transition
// Stdcall maps to System.Runtime.CompilerServices.CallConvStdcall
// SuppressGCTransition maps to
System.Runtime.CompilerServices.CallConvSuppressGCTransition
delegate* unmanaged[Stdcall, SuppressGCTransition] <int, int>;

unsafe class Example {
 void Conversions() {
 delegate*<int, int, int> p1 = ...;
 delegate* managed<int, int, int> p2 = ...;
 delegate* unmanaged<int, int, int> p3 = ...;

 p1 = p2; // okay p1 and p2 have compatible signatures
 Console.WriteLine(p2 == p1); // True
 p2 = p3; // error: calling conventions are incompatible
 }
}

A delegate* type is a pointer type which means it has all of the capabilities and
restrictions of a standard pointer type:

Only valid in an unsafe context.
Methods which contain a delegate* parameter or return type can only be called
from an unsafe context.
Cannot be converted to object .
Cannot be used as a generic argument.
Can implicitly convert delegate* to void* .
Can explicitly convert from void* to delegate* .

Restrictions:

Custom attributes cannot be applied to a delegate* or any of its elements.
A delegate* parameter cannot be marked as params
A delegate* type has all of the restrictions of a normal pointer type.
Pointer arithmetic cannot be performed directly on function pointer types.

The full function pointer syntax is represented by the following grammar:

antlr

Function pointer syntax

pointer_type
 : ...
 | funcptr_type
 ;

funcptr_type
 : 'delegate' '*' calling_convention_specifier? '<'
funcptr_parameter_list funcptr_return_type '>'
 ;

calling_convention_specifier
 : 'managed'
 | 'unmanaged' ('[' unmanaged_calling_convention ']')?
 ;

unmanaged_calling_convention
 : 'Cdecl'
 | 'Stdcall'
 | 'Thiscall'
 | 'Fastcall'
 | identifier (',' identifier)*
 ;

If no calling_convention_specifier is provided, the default is managed . The precise
metadata encoding of the calling_convention_specifier and what identifiers are
valid in the unmanaged_calling_convention is covered in Metadata Representation of
Calling Conventions.

C#

In an unsafe context, the set of available implicit conversions (Implicit conversions) is
extended to include the following implicit pointer conversions:

Existing conversions - (§22.5)

funptr_parameter_list
 : (funcptr_parameter ',')*
 ;

funcptr_parameter
 : funcptr_parameter_modifier? type
 ;

funcptr_return_type
 : funcptr_return_modifier? return_type
 ;

funcptr_parameter_modifier
 : 'ref'
 | 'out'
 | 'in'
 ;

funcptr_return_modifier
 : 'ref'
 | 'ref readonly'
 ;

delegate int Func1(string s);
delegate Func1 Func2(Func1 f);

// Function pointer equivalent without calling convention
delegate*<string, int>;
delegate*<delegate*<string, int>, delegate*<string, int>>;

// Function pointer equivalent with calling convention
delegate* managed<string, int>;
delegate*<delegate* managed<string, int>, delegate*<string, int>>;

Function pointer conversions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#225-pointer-conversions

From funcptr_type F0 to another funcptr_type F1 , provided all of the following are
true:

F0 and F1 have the same number of parameters, and each parameter D0n in
F0 has the same ref , out , or in modifiers as the corresponding parameter
D1n in F1 .
For each value parameter (a parameter with no ref , out , or in modifier), an
identity conversion, implicit reference conversion, or implicit pointer conversion
exists from the parameter type in F0 to the corresponding parameter type in
F1 .
For each ref , out , or in parameter, the parameter type in F0 is the same as
the corresponding parameter type in F1 .
If the return type is by value (no ref or ref readonly), an identity, implicit
reference, or implicit pointer conversion exists from the return type of F1 to the
return type of F0 .
If the return type is by reference (ref or ref readonly), the return type and ref
modifiers of F1 are the same as the return type and ref modifiers of F0 .
The calling convention of F0 is the same as the calling convention of F1 .

Method groups will now be allowed as arguments to an address-of expression. The type
of such an expression will be a delegate* which has the equivalent signature of the
target method and a managed calling convention:

C#

In an unsafe context, a method M is compatible with a function pointer type F if all of
the following are true:

Allow address-of to target methods

unsafe class Util {
 public static void Log() { }

 void Use() {
 delegate*<void> ptr1 = &Util.Log;

 // Error: type "delegate*<void>" not compatible with "delegate*
<int>";
 delegate*<int> ptr2 = &Util.Log;
 }
}

M and F have the same number of parameters, and each parameter in M has the
same ref , out , or in modifiers as the corresponding parameter in F .
For each value parameter (a parameter with no ref , out , or in modifier), an
identity conversion, implicit reference conversion, or implicit pointer conversion
exists from the parameter type in M to the corresponding parameter type in F .
For each ref , out , or in parameter, the parameter type in M is the same as the
corresponding parameter type in F .
If the return type is by value (no ref or ref readonly), an identity, implicit
reference, or implicit pointer conversion exists from the return type of F to the
return type of M .
If the return type is by reference (ref or ref readonly), the return type and ref
modifiers of F are the same as the return type and ref modifiers of M .
The calling convention of M is the same as the calling convention of F . This
includes both the calling convention bit, as well as any calling convention flags
specified in the unmanaged identifier.
M is a static method.

In an unsafe context, an implicit conversion exists from an address-of expression whose
target is a method group E to a compatible function pointer type F if E contains at
least one method that is applicable in its normal form to an argument list constructed
by use of the parameter types and modifiers of F , as described in the following.

A single method M is selected corresponding to a method invocation of the form
E(A) with the following modifications:

The arguments list A is a list of expressions, each classified as a variable and
with the type and modifier (ref , out , or in) of the corresponding
funcptr_parameter_list of F .
The candidate methods are only those methods that are applicable in their
normal form, not those applicable in their expanded form.
The candidate methods are only those methods that are static.

If the algorithm of overload resolution produces an error, then a compile-time
error occurs. Otherwise, the algorithm produces a single best method M having the
same number of parameters as F and the conversion is considered to exist.
The selected method M must be compatible (as defined above) with the function
pointer type F . Otherwise, a compile-time error occurs.
The result of the conversion is a function pointer of type F .

This means developers can depend on overload resolution rules to work in conjunction
with the address-of operator:

C#

The address-of operator will be implemented using the ldftn instruction.

Restrictions of this feature:

Only applies to methods marked as static .
Non-static local functions cannot be used in & . The implementation details of
these methods are deliberately not specified by the language. This includes
whether they are static vs. instance or exactly what signature they are emitted with.

The section in unsafe code on operators is modified as such:

In an unsafe context, several constructs are available for operating on all
_pointer_type_s that are not _funcptr_type_s:

The * operator may be used to perform pointer indirection (§22.6.2).
The -> operator may be used to access a member of a struct through a
pointer (§22.6.3).
The [] operator may be used to index a pointer (§22.6.4).
The & operator may be used to obtain the address of a variable (§22.6.5).
The ++ and -- operators may be used to increment and decrement pointers
(§22.6.6).
The + and - operators may be used to perform pointer arithmetic (§22.6.7).
The == , != , < , > , <= , and => operators may be used to compare pointers
(§22.6.8).
The stackalloc operator may be used to allocate memory from the call stack
(§22.8).

unsafe class Util {
 public static void Log() { }
 public static void Log(string p1) { }
 public static void Log(int i) { };

 void Use() {
 delegate*<void> a1 = &Log; // Log()
 delegate*<int, void> a2 = &Log; // Log(int i)

 // Error: ambiguous conversion from method group Log to "void*"
 void* v = &Log;
 }

Operators on Function Pointer Types

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2262-pointer-indirection
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2263-pointer-member-access
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2264-pointer-element-access
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2265-the-address-of-operator
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2266-pointer-increment-and-decrement
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2267-pointer-arithmetic
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2268-pointer-comparison
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#228-fixed-size-buffers

The fixed statement may be used to temporarily fix a variable so its address
can be obtained (§22.7).

In an unsafe context, several constructs are available for operating on all
_funcptr_type_s:

The & operator may be used to obtain the address of static methods (Allow
address-of to target methods)
The == , != , < , > , <= , and => operators may be used to compare pointers
(§22.6.8).

Additionally, we modify all the sections in Pointers in expressions to forbid function
pointer types, except Pointer comparison and The sizeof operator .

The better function member specification will be changed to include the following line:

A delegate* is more specific than void*

This means that it is possible to overload on void* and a delegate* and still sensibly
use the address-of operator.

In unsafe code, the following changes are made to the type inference algorithms:

§11.6.3.4

The following is added:

If E is an address-of method group and T is a function pointer type then all the
parameter types of T are input types of E with type T .

§11.6.3.5

The following is added:

Better function member

Type Inference

Input types

Output types

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#227-the-fixed-statement
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/unsafe-code.md#2268-pointer-comparison
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11634-input-types
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11635-output-types

If E is an address-of method group and T is a function pointer type then the return
type of T is an output type of E with type T .

§11.6.3.7

The following bullet is added between bullets 2 and 3:

If E is an address-of method group and T is a function pointer type with
parameter types T1...Tk and return type Tb , and overload resolution of E
with the types T1..Tk yields a single method with return type U , then a lower-
bound inference is made from U to Tb .

§11.6.4.4

The following sub-bullet is added as a case to bullet 2:

V is a function pointer type delegate*<V2..Vk, V1> and U is a function pointer
type delegate*<U2..Uk, U1> , and the calling convention of V is identical to U ,
and the refness of Vi is identical to Ui .

§11.6.3.10

The following case is added to bullet 3:

V is a function pointer type delegate*<V2..Vk, V1> and there is a function
pointer type delegate*<U2..Uk, U1> such that U is identical to delegate*
<U2..Uk, U1> , and the calling convention of V is identical to U , and the refness
of Vi is identical to Ui .

The first bullet of inference from Ui to Vi is modified to:

If U is not a function pointer type and Ui is not known to be a reference type,
or if U is a function pointer type and Ui is not known to be a function pointer
type or a reference type, then an exact inference is made

Output type inferences

Better conversion from expression

Lower-bound inferences

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11637-output-type-inferences
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116310-lower-bound-inferences

Then, added after the 3rd bullet of inference from Ui to Vi :

Otherwise, if V is delegate*<V2..Vk, V1> then inference depends on the i-th
parameter of delegate*<V2..Vk, V1> :

If V1:
If the return is by value, then a lower-bound inference is made.
If the return is by reference, then an exact inference is made.

If V2..Vk:
If the parameter is by value, then an upper-bound inference is made.
If the parameter is by reference, then an exact inference is made.

§11.6.3.11

The following case is added to bullet 2:

U is a function pointer type delegate*<U2..Uk, U1> and V is a function pointer
type which is identical to delegate*<V2..Vk, V1> , and the calling convention of
U is identical to V , and the refness of Ui is identical to Vi .

The first bullet of inference from Ui to Vi is modified to:

If U is not a function pointer type and Ui is not known to be a reference type,
or if U is a function pointer type and Ui is not known to be a function pointer
type or a reference type, then an exact inference is made

Then added after the 3rd bullet of inference from Ui to Vi :

Otherwise, if U is delegate*<U2..Uk, U1> then inference depends on the i-th
parameter of delegate*<U2..Uk, U1> :

If U1:
If the return is by value, then an upper-bound inference is made.
If the return is by reference, then an exact inference is made.

If U2..Uk:
If the parameter is by value, then a lower-bound inference is made.
If the parameter is by reference, then an exact inference is made.

Upper-bound inferences

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116311-upper-bound-inferences

Function pointer signatures have no parameter flags location, so we must encode
whether parameters and the return type are in , out , or ref readonly by using
modreqs.

We reuse System.Runtime.InteropServices.InAttribute , applied as a modreq to the ref
specifier on a parameter or return type, to mean the following:

If applied to a parameter ref specifier, this parameter is treated as in .
If applied to the return type ref specifier, the return type is treated as ref
readonly .

We use System.Runtime.InteropServices.OutAttribute , applied as a modreq to the ref
specifier on a parameter type, to mean that the parameter is an out parameter.

It is an error to apply OutAttribute as a modreq to a return type.
It is an error to apply both InAttribute and OutAttribute as a modreq to a
parameter type.
If either are specified via modopt, they are ignored.

Calling conventions are encoded in a method signature in metadata by a combination
of the CallKind flag in the signature and zero or more modopts at the start of the
signature. ECMA-335 currently declares the following elements in the CallKind flag:

antlr

Metadata representation of in , out , and ref
readonly parameters and return types

in

out

Errors

Metadata Representation of Calling Conventions

CallKind
 : default
 | unmanaged cdecl
 | unmanaged fastcall
 | unmanaged thiscall

Of these, function pointers in C# will support all but varargs .

In addition, the runtime (and eventually 335) will be updated to include a new CallKind
on new platforms. This does not have a formal name currently, but this document will
use unmanaged ext as a placeholder to stand for the new extensible calling convention
format. With no modopts, unmanaged ext is the platform default calling convention,
unmanaged without the square brackets.

A calling_convention_specifier that is omitted, or specified as managed , maps to the
default CallKind . This is default CallKind of any method not attributed with
UnmanagedCallersOnly .

C# recognizes 4 special identifiers that map to specific existing unmanaged CallKinds
from ECMA 335. In order for this mapping to occur, these identifiers must be specified
on their own, with no other identifiers, and this requirement is encoded into the spec for
unmanaged_calling_conventions. These identifiers are Cdecl , Thiscall , Stdcall , and
Fastcall , which correspond to unmanaged cdecl , unmanaged thiscall , unmanaged
stdcall , and unmanaged fastcall , respectively. If more than one identifer is specified,
or the single identifier is not of the specially recognized identifiers, we perform special
name lookup on the identifier with the following rules:

We prepend the identifier with the string CallConv
We look only at types defined in the System.Runtime.CompilerServices namespace.
We look only at types defined in the core library of the application, which is the
library that defines System.Object and has no dependencies.
We look only at public types.

If lookup succeeds on all of the identifiers specified in an
unmanaged_calling_convention , we encode the CallKind as unmanaged ext , and encode
each of the resolved types in the set of modopts at the beginning of the function pointer
signature. As a note, these rules mean that users cannot prefix these identifiers with
CallConv , as that will result in looking up CallConvCallConvVectorCall .

When interpreting metadata, we first look at the CallKind . If it is anything other than
unmanaged ext , we ignore all modopts on the return type for the purposes of

 | unmanaged stdcall
 | varargs
 ;

Mapping the calling_convention_specifier to a CallKind

determining the calling convention, and use only the CallKind . If the CallKind is
unmanaged ext , we look at the modopts at the start of the function pointer type, taking
the union of all types that meet the following requirements:

The is defined in the core library, which is the library that references no other
libraries and defines System.Object .
The type is defined in the System.Runtime.CompilerServices namespace.
The type starts with the prefix CallConv .
The type is public.

These represent the types that must be found when performing lookup on the
identifiers in an unmanaged_calling_convention when defining a function pointer type
in source.

It is an error to attempt to use a function pointer with a CallKind of unmanaged ext if
the target runtime does not support the feature. This will be determined by looking for
the presence of the
System.Runtime.CompilerServices.RuntimeFeature.UnmanagedCallKind constant. If this
constant is present, the runtime is considered to support the feature.

System.Runtime.InteropServices.UnmanagedCallersOnlyAttribute is an attribute used by
the CLR to indicate that a method should be called with a specific calling convention.
Because of this, we introduce the following support for working with the attribute:

It is an error to directly call a method annotated with this attribute from C#. Users
must obtain a function pointer to the method and then invoke that pointer.
It is an error to apply the attribute to anything other than an ordinary static
method or ordinary static local function. The C# compiler will mark any non-static
or static non-ordinary methods imported from metadata with this attribute as
unsupported by the language.
It is an error for a method marked with the attribute to have a parameter or return
type that is not an unmanaged_type .
It is an error for a method marked with the attribute to have type parameters, even
if those type parameters are constrained to unmanaged .
It is an error for a method in a generic type to be marked with the attribute.
It is an error to convert a method marked with the attribute to a delegate type.
It is an error to specify any types for UnmanagedCallersOnly.CallConvs that do not
meet the requirements for calling convention modopts in metadata.

System.Runtime.InteropServices.UnmanagedCallersOnlyAttr
ibute

When determining the calling convention of a method marked with a valid
UnmanagedCallersOnly attribute, the compiler performs the following checks on the
types specified in the CallConvs property to determine the effective CallKind and
modopts that should be used to determine the calling convention:

If no types are specified, the CallKind is treated as unmanaged ext , with no calling
convention modopts at the start of the function pointer type.
If there is one type specified, and that type is named CallConvCdecl ,
CallConvThiscall , CallConvStdcall , or CallConvFastcall , the CallKind is treated
as unmanaged cdecl , unmanaged thiscall , unmanaged stdcall , or unmanaged
fastcall , respectively, with no calling convention modopts at the start of the
function pointer type.
If multiple types are specified or the single type is not named one of the specially
called out types above, the CallKind is treated as unmanaged ext , with the union of
the types specified treated as modopts at the start of the function pointer type.

The compiler then looks at this effective CallKind and modopt collection and uses
normal metadata rules to determine the final calling convention of the function pointer
type.

https://github.com/dotnet/runtime/issues/38135 tracks adding this flag. Depending
on the feedback from review, we will either use the property specified in the issue, or
use the presence of UnmanagedCallersOnlyAttribute as the flag that determines whether
the runtimes supports unmanaged ext .

The proposal could be extended to support instance methods by taking advantage of
the EXPLICITTHIS CLI calling convention (named instance in C# code). This form of CLI
function pointers puts the this parameter as an explicit first parameter of the function
pointer syntax.

C#

Open Questions

Detecting runtime support for unmanaged ext

Considerations

Allow instance methods

https://github.com/dotnet/runtime/issues/38135

This is sound but adds some complication to the proposal. Particularly because function
pointers which differed by the calling convention instance and managed would be
incompatible even though both cases are used to invoke managed methods with the
same C# signature. Also in every case considered where this would be valuable to have
there was a simple work around: use a static local function.

C#

Instead of requiring unsafe at every use of a delegate* , only require it at the point
where a method group is converted to a delegate* . This is where the core safety issues
come into play (knowing that the containing assembly cannot be unloaded while the
value is alive). Requiring unsafe on the other locations can be seen as excessive.

This is how the design was originally intended. But the resulting language rules felt very
awkward. It's impossible to hide the fact that this is a pointer value and it kept peeking
through even without the unsafe keyword. For example the conversion to object can't
be allowed, it can't be a member of a class , etc ... The C# design is to require unsafe
for all pointer uses and hence this design follows that.

Developers will still be capable of presenting a safe wrapper on top of delegate* values
the same way that they do for normal pointer types today. Consider:

C#

unsafe class Instance {
 void Use() {
 delegate* instance<Instance, string> f = &ToString;
 f(this);
 }
}

unsafe class Instance {
 void Use() {
 static string toString(Instance i) => i.ToString();
 delegate*<Instance, string> f = &toString;
 f(this);
 }
}

Don't require unsafe at declaration

unsafe struct Action {
 delegate*<void> _ptr;

Instead of using a new syntax element, delegate* , simply use existing delegate types
with a * following the type:

C#

Handling calling convention can be done by annotating the delegate types with an
attribute that specifies a CallingConvention value. The lack of an attribute would signify
the managed calling convention.

Encoding this in IL is problematic. The underlying value needs to be represented as a
pointer yet it also must:

1. Have a unique type to allow for overloads with different function pointer types.
2. Be equivalent for OHI purposes across assembly boundaries.

The last point is particularly problematic. This mean that every assembly which uses
Func<int>* must encode an equivalent type in metadata even though Func<int>* is
defined in an assembly though don't control. Additionally any other type which is
defined with the name System.Func<T> in an assembly that is not mscorlib must be
different than the version defined in mscorlib.

One option that was explored was emitting such a pointer as mod_req(Func<int>) void* .
This doesn't work though as a mod_req cannot bind to a TypeSpec and hence cannot
target generic instantiations.

The function pointer syntax can be cumbersome, particularly in complex cases like
nested function pointers. Rather than have developers type out the signature every time
the language could allow for named declarations of function pointers as is done with
delegate .

C#

 Action(delegate*<void> ptr) => _ptr = ptr;
 public void Invoke() => _ptr();
}

Using delegates

Func<object, object, bool>* ptr = &object.ReferenceEquals;

Named function pointers

Part of the problem here is the underlying CLI primitive doesn't have names hence this
would be purely a C# invention and require a bit of metadata work to enable. That is
doable but is a significant about of work. It essentially requires C# to have a companion
to the type def table purely for these names.

Also when the arguments for named function pointers were examined we found they
could apply equally well to a number of other scenarios. For example it would be just as
convenient to declare named tuples to reduce the need to type out the full signature in
all cases.

C#

After discussion we decided to not allow named declaration of delegate* types. If we
find there is significant need for this based on customer usage feedback then we will
investigate a naming solution that works for function pointers, tuples, generics, etc ...
This is likely to be similar in form to other suggestions like full typedef support in the
language.

This refers to the proposal to allow for the declaration of delegate types which can
only refer to static members. The advantage being that such delegate instances can
be allocation free and better in performance sensitive scenarios.

func* void Action();

unsafe class NamedExample {
 void M(Action a) {
 a();
 }
}

(int x, int y) Point;

class NamedTupleExample {
 void M(Point p) {
 Console.WriteLine(p.x);
 }
}

Future Considerations

static delegates

https://github.com/dotnet/csharplang/issues/302

If the function pointer feature is implemented the static delegate proposal will likely
be closed out. The proposed advantage of that feature is the allocation free nature.
However recent investigations have found that is not possible to achieve due to
assembly unloading. There must be a strong handle from the static delegate to the
method it refers to in order to keep the assembly from being unloaded out from under
it.

To maintain every static delegate instance would be required to allocate a new handle
which runs counter to the goals of the proposal. There were some designs where the
allocation could be amortized to a single allocation per call-site but that was a bit
complex and didn't seem worth the trade off.

That means developers essentially have to decide between the following trade offs:

1. Safety in the face of assembly unloading: this requires allocations and hence
delegate is already a sufficient option.

2. No safety in face of assembly unloading: use a delegate* . This can be wrapped in
a struct to allow usage outside an unsafe context in the rest of the code.

Suppress emitting of localsinit flag.
Article • 2021-09-21 • 3 minutes to read

Allow suppressing emit of localsinit flag via SkipLocalsInitAttribute attribute.

Per CLR spec local variables that do not contain references are not initialized to a
particular value by the VM/JIT. Reading from such variables without initialization is type-
safe, but otherwise the behavior is undefined and implementation specific. Typically
uninitialized locals contain whatever values were left in the memory that is now
occupied by the stack frame. That could lead to nondeterministic behavior and hard to
reproduce bugs.

There are two ways to "assign" a local variable:

by storing a value or
by specifying localsinit flag which forces everything that is allocated form the
local memory pool to be zero-initialized NOTE: this includes both local variables
and stackalloc data.

Use of uninitialized data is discouraged and is not allowed in verifiable code. While it
might be possible to prove that by the means of flow analysis, it is permitted for the
verification algorithm to be conservative and simply require that localsinit is set.

Historically C# compiler emits localsinit flag on all methods that declare locals.

While C# employs definite-assignment analysis which is more strict than what CLR spec
would require (C# also needs to consider scoping of locals), it is not strictly guaranteed
that the resulting code would be formally verifiable:

CLR and C# rules may not agree on whether passing a local as out argument is a
use .
CLR and C# rules may not agree on treatment of conditional branches when
conditions are known (constant propagation).
CLR could as well simply require localinits , since that is permitted.

Summary

Motivation

Background

In high-performance application the cost of forced zero-initialization could be
noticeable. It is particularly noticeable when stackalloc is used.

In some cases JIT can elide initial zero-initialization of individual locals when such
initialization is "killed" by subsequent assignments. Not all JITs do this and such
optimization has limits. It does not help with stackalloc .

To illustrate that the problem is real - there is a known bug where a method not
containing any IL locals would not have localsinit flag. The bug is already being
exploited by users by putting stackalloc into such methods - intentionally to avoid
initialization costs. That is despite the fact that absence of IL locals is an unstable
metric and may vary depending on changes in codegen strategy. The bug should be
fixed and users should get a more documented and reliable way of suppressing the flag.

Allow specifying System.Runtime.CompilerServices.SkipLocalsInitAttribute as a way to
tell the compiler to not emit localsinit flag.

The end result of this will be that the locals may not be zero-initialized by the JIT, which
is in most cases unobservable in C#.
In addition to that stackalloc data will not be zero-initialized. That is definitely
observable, but also is the most motivating scenario.

Permitted and recognized attribute targets are: Method , Property , Module , Class ,
Struct , Interface , Constructor . However compiler will not require that attribute is
defined with the listed targets nor it will care in which assembly the attribute is defined.

When attribute is specified on a container (class , module , containing method for a
nested method, ...), the flag affects all methods contained within the container.

Synthesized methods "inherit" the flag from the logical container/owner.

The flag affects only codegen strategy for actual method bodies. I.E. the flag has no
effect on abstract methods and is not propagated to overriding/implementing methods.

This is explicitly a compiler feature and not a language feature.
Similarly to compiler command line switches the feature controls implementation details
of a particular codegen strategy and does not need to be required by the C# spec.

Problem

Detailed design

Old/other compilers may not honor the attribute. Ignoring the attribute is
compatible behavior. Only may result in a slight perf hit.

The code without localinits flag may trigger verification failures. Users that ask
for this feature are generally unconcerned with verifiability.

Applying the attribute at higher levels than an individual method has nonlocal
effect, which is observable when stackalloc is used. Yet, this is the most requested
scenario.

omit localinits flag when method is declared in unsafe context. That could cause
silent and dangerous behavior change from deterministic to nondeterministic in a
case of stackalloc .

omit localinits flag always. Even worse than above.

omit localinits flag unless stackalloc is used in the method body. Does not
address the most requested scenario and may turn code unverifiable with no
option to revert that back.

Should the attribute be actually emitted to metadata?

None yet.

Drawbacks

Alternatives

Unresolved questions

Design meetings

Unconstrained type parameter
annotations
Article • 2021-09-21 • 2 minutes to read

Allow nullable annotations for type parameters that are not constrained to value types
or reference types: T? .

C#

In C#8, ? annotations could only be applied to type parameters that were explicitly
constrained to value types or reference types. In C#9, ? annotations can be applied to
any type parameter, regardless of constraints.

Unless a type parameter is explicitly constrained to value types, annotations can only be
applied within a #nullable enable context.

If a type parameter T is substituted with a reference type, then T? represents a nullable
instance of that reference type.

C#

If T is substituted with a value type, then T? represents an instance of T .

C#

If T is substituted with an annotated type U? , then T? represents the annotated type
U? rather than U?? .

Summary

static T? FirstOrDefault<T>(this IEnumerable<T> collection) { ... }

? annotation

var s1 = new string[0].FirstOrDefault(); // string? s1
var s2 = new string?[0].FirstOrDefault(); // string? s2

var i1 = new int[0].FirstOrDefault(); // int i1
var i2 = new int?[0].FirstOrDefault(); // int? i2

C#

If T is substituted with a type U , then T? represents U? , even within a #nullable
disable context.

C#

For return values, T? is equivalent to [MaybeNull]T ; for argument values, T? is
equivalent to [AllowNull]T . The equivalence is important when overriding or
implementing interfaces from an assembly compiled with C#8.

C#

For compatibility with existing code where overridden and explicitly implemented
generic methods could not include explicit constraint clauses, T? in an overridden or
explicitly implemented method is treated as Nullable<T> where T is a value type.

To allow annotations for type parameters constrained to reference types, C#8 allowed
explicit where T : class and where T : struct constraints on the overridden or
explicitly implemented method.

C#

var u1 = new U[0].FirstOrDefault(); // U? u1
var u2 = new U?[0].FirstOrDefault(); // U? u2

#nullable disable
var u3 = new U[0].FirstOrDefault(); // U? u3

public abstract class A
{
 [return: MaybeNull] public abstract T F1<T>();
 public abstract void F2<T>([AllowNull] T t);
}

public class B : A
{
 public override T? F1<T>() where T : default { ... } // matches
A.F1<T>()
 public override void F2<T>(T? t) where T : default { ... } // matches
A.F2<T>()
}

default constraint

To allow annotations for type parameters that are not constrained to reference types or
value types, C#9 allows a new where T : default constraint.

C#

It is an error to use a default constraint other than on a method override or explicit
implementation. It is an error to use a default constraint when the corresponding type
parameter in the overridden or interface method is constrained to a reference type or
value type.

https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-11-
25.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-06-
17.md#t

class A1
{
 public virtual void F1<T>(T? t) where T : struct { }
 public virtual void F1<T>(T? t) where T : class { }
}

class B1 : A1
{
 public override void F1<T>(T? t) /*where T : struct*/ { }
 public override void F1<T>(T? t) where T : class { }
}

class A2
{
 public virtual void F2<T>(T? t) where T : struct { }
 public virtual void F2<T>(T? t) { }
}

class B2 : A2
{
 public override void F2<T>(T? t) /*where T : struct*/ { }
 public override void F2<T>(T? t) where T : default { }
}

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-11-25.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-06-17.md#t

Record structs
Article • 2022-02-23 • 10 minutes to read

The syntax for a record struct is as follows:

antlr

Record struct types are value types, like other struct types. They implicitly inherit from
the class System.ValueType . The modifiers and members of a record struct are subject to
the same restrictions as those of structs (accessibility on type, modifiers on members,
base(...) instance constructor initializers, definite assignment for this in constructor,
destructors, ...). Record structs will also follow the same rules as structs for parameterless
instance constructors and field initializers, but this document assumes that we will lift
those restrictions for structs generally.

See §15.4.9 See parameterless struct constructors spec.

Record structs cannot use ref modifier.

At most one partial type declaration of a partial record struct may provide a
parameter_list . The parameter_list may be empty.

Record struct parameters cannot use ref , out or this modifiers (but in and params
are allowed).

In addition to the members declared in the record struct body, a record struct type has
additional synthesized members. Members are synthesized unless a member with a
"matching" signature is declared in the record struct body or an accessible concrete
non-virtual member with a "matching" signature is inherited. Two members are

record_struct_declaration
 : attributes? struct_modifier* 'partial'? 'record' 'struct' identifier
type_parameter_list?
 parameter_list? struct_interfaces? type_parameter_constraints_clause*
record_struct_body
 ;

record_struct_body
 : struct_body
 | ';'
 ;

Members of a record struct

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/structs.md#1549-constructors

considered matching if they have the same signature or would be considered "hiding" in
an inheritance scenario. See Signatures and overloading §7.6 . It is an error for a
member of a record struct to be named "Clone".

It is an error for an instance field of a record struct to have an unsafe type.

A record struct is not permitted to declare a destructor.

The synthesized members are as follows:

The synthesized equality members are similar as in a record class (Equals for this type,
Equals for object type, == and != operators for this type),
except for the lack of EqualityContract , null checks or inheritance.

The record struct implements System.IEquatable<R> and includes a synthesized
strongly-typed overload of Equals(R other) where R is the record struct. The method is
public . The method can be declared explicitly. It is an error if the explicit declaration
does not match the expected signature or accessibility.

If Equals(R other) is user-defined (not synthesized) but GetHashCode is not, a warning is
produced.

C#

The synthesized Equals(R) returns true if and only if for each instance field fieldN in
the record struct the value of
System.Collections.Generic.EqualityComparer<TN>.Default.Equals(fieldN,

other.fieldN) where TN is the field type is true .

The record struct includes synthesized == and != operators equivalent to operators
declared as follows:

C#

Equality members

public readonly bool Equals(R other);

public static bool operator==(R r1, R r2)
 => r1.Equals(r2);
public static bool operator!=(R r1, R r2)
 => !(r1 == r2);

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#76-signatures-and-overloading

The Equals method called by the == operator is the Equals(R other) method specified
above. The != operator delegates to the == operator. It is an error if the operators are
declared explicitly.

The record struct includes a synthesized override equivalent to a method declared as
follows:

C#

It is an error if the override is declared explicitly. The synthesized override returns other
is R temp && Equals(temp) where R is the record struct.

The record struct includes a synthesized override equivalent to a method declared as
follows:

C#

The method can be declared explicitly.

A warning is reported if one of Equals(R) and GetHashCode() is explicitly declared but
the other method is not explicit.

The synthesized override of GetHashCode() returns an int result of combining the
values of
System.Collections.Generic.EqualityComparer<TN>.Default.GetHashCode(fieldN) for
each instance field fieldN with TN being the type of fieldN .

For example, consider the following record struct:

C#

For this record struct, the synthesized equality members would be something like:

C#

public override readonly bool Equals(object? obj);

public override readonly int GetHashCode();

record struct R1(T1 P1, T2 P2);

struct R1 : IEquatable<R1>
{
 public T1 P1 { get; set; }
 public T2 P2 { get; set; }

The record struct includes a synthesized method equivalent to a method declared as
follows:

C#

The method does the following:

1. for each of the record struct's printable members (non-static public field and
readable property members), appends that member's name followed by " = "
followed by the member's value separated with ", ",

2. return true if the record struct has printable members.

For a member that has a value type, we will convert its value to a string representation
using the most efficient method available to the target platform. At present that means
calling ToString before passing to StringBuilder.Append .

If the record's printable members do not include a readable property with a non-
readonly get accessor, then the synthesized PrintMembers is readonly . There is no
requirement for the record's fields to be readonly for the PrintMembers method to be
readonly .

 public override bool Equals(object? obj) => obj is R1 temp &&
Equals(temp);
 public bool Equals(R1 other)
 {
 return
 EqualityComparer<T1>.Default.Equals(P1, other.P1) &&
 EqualityComparer<T2>.Default.Equals(P2, other.P2);
 }
 public static bool operator==(R1 r1, R1 r2)
 => r1.Equals(r2);
 public static bool operator!=(R1 r1, R1 r2)
 => !(r1 == r2);
 public override int GetHashCode()
 {
 return Combine(
 EqualityComparer<T1>.Default.GetHashCode(P1),
 EqualityComparer<T2>.Default.GetHashCode(P2));
 }
}

Printing members: PrintMembers and ToString methods

private bool PrintMembers(System.Text.StringBuilder builder);

The PrintMembers method can be declared explicitly. It is an error if the explicit
declaration does not match the expected signature or accessibility.

The record struct includes a synthesized method equivalent to a method declared as
follows:

C#

If the record struct's PrintMembers method is readonly , then the synthesized ToString()
method is readonly .

The method can be declared explicitly. It is an error if the explicit declaration does not
match the expected signature or accessibility.

The synthesized method:

1. creates a StringBuilder instance,
2. appends the record struct name to the builder, followed by " { ",
3. invokes the record struct's PrintMembers method giving it the builder, followed by

" " if it returned true,
4. appends "}",
5. returns the builder's contents with builder.ToString() .

For example, consider the following record struct:

C#

For this record struct, the synthesized printing members would be something like:

C#

public override string ToString();

record struct R1(T1 P1, T2 P2);

struct R1 : IEquatable<R1>
{
 public T1 P1 { get; set; }
 public T2 P2 { get; set; }

 private bool PrintMembers(StringBuilder builder)
 {
 builder.Append(nameof(P1));
 builder.Append(" = ");
 builder.Append(this.P1); // or builder.Append(this.P1.ToString());
if P1 has a value type

In addition to the above members, record structs with a parameter list ("positional
records") synthesize additional members with the same conditions as the members
above.

A record struct has a public constructor whose signature corresponds to the value
parameters of the type declaration. This is called the primary constructor for the type. It
is an error to have a primary constructor and a constructor with the same signature
already present in the struct. If the type declaration does not include a parameter list, no
primary constructor is generated.

C#

 builder.Append(", ");

 builder.Append(nameof(P2));
 builder.Append(" = ");
 builder.Append(this.P2); // or builder.Append(this.P2.ToString());
if P2 has a value type

 return true;
 }

 public override string ToString()
 {
 var builder = new StringBuilder();
 builder.Append(nameof(R1));
 builder.Append(" { ");

 if (PrintMembers(builder))
 builder.Append(" ");

 builder.Append("}");
 return builder.ToString();
 }
}

Positional record struct members

Primary Constructor

record struct R1
{
 public R1() { } // ok
}

record struct R2()
{
 public R2() { } // error: 'R2' already defines constructor with same

Instance field declarations for a record struct are permitted to include variable
initializers. If there is no primary constructor, the instance initializers execute as part of
the parameterless constructor. Otherwise, at runtime the primary constructor executes
the instance initializers appearing in the record-struct-body.

If a record struct has a primary constructor, any user-defined constructor must have an
explicit this constructor initializer that calls the primary constructor or an explicitly
declared constructor.

Parameters of the primary constructor as well as members of the record struct are in
scope within initializers of instance fields or properties. Instance members would be an
error in these locations (similar to how instance members are in scope in regular
constructor initializers today, but an error to use), but the parameters of the primary
constructor would be in scope and useable and would shadow members. Static
members would also be useable.

A warning is produced if a parameter of the primary constructor is not read.

The definite assignment rules for struct instance constructors apply to the primary
constructor of record structs. For instance, the following is an error:

C#

For each record struct parameter of a record struct declaration there is a corresponding
public property member whose name and type are taken from the value parameter
declaration.

For a record struct:

A public get and init auto-property is created if the record struct has readonly
modifier, get and set otherwise. Both kinds of set accessors (set and init) are
considered "matching". So the user may declare an init-only property in place of a
synthesized mutable one. An inherited abstract property with matching type is

parameter types
}

record struct Pos(int X) // definite assignment error in primary constructor
{
 private int x;
 public int X { get { return x; } set { x = value; } } = X;
}

Properties

overridden. No auto-property is created if the record struct has an instance field
with expected name and type. It is an error if the inherited property does not have
public get and set /init accessors. It is an error if the inherited property or field
is hidden.
The auto-property is initialized to the value of the corresponding primary
constructor parameter. Attributes can be applied to the synthesized auto-property
and its backing field by using property: or field: targets for attributes
syntactically applied to the corresponding record struct parameter.

A positional record struct with at least one parameter synthesizes a public void-
returning instance method called Deconstruct with an out parameter declaration for
each parameter of the primary constructor declaration. Each parameter of the
Deconstruct method has the same type as the corresponding parameter of the primary
constructor declaration. The body of the method assigns each parameter of the
Deconstruct method to the value from an instance member access to a member of the
same name. If the instance members accessed in the body do not include a property
with a non-readonly get accessor, then the synthesized Deconstruct method is
readonly . The method can be declared explicitly. It is an error if the explicit declaration
does not match the expected signature or accessibility, or is static.

It is now valid for the receiver in a with expression to have a struct type.

On the right hand side of the with expression is a member_initializer_list with a
sequence of assignments to identifier, which must be an accessible instance field or
property of the receiver's type.

For a receiver with struct type, the receiver is first copied, then each member_initializer
is processed the same way as an assignment to a field or property access of the result of
the conversion. Assignments are processed in lexical order.

Deconstruct

Allow with expression on structs

Improvements on records

Allow record class

The existing syntax for record types allows record class with the same meaning as
record :

antlr

See https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-10-
05.md#changing-the-member-type-of-a-primary-constructor-parameter

No auto-property is created if the record has or inherits an instance field with expected
name and type.

See parameterless struct constructors spec.

how to recognize record structs in metadata? (we don't have an unspeakable clone
method to leverage...)

confirm that we want to keep PrintMembers design (separate method returning
bool) (answer: yes)
confirm we won't allow record ref struct (issue with IEquatable<RefStruct> and
ref fields) (answer: yes)
confirm implementation of equality members. Alternative is that synthesized bool
Equals(R other) , bool Equals(object? other) and operators all just delegate to
ValueType.Equals . (answer: yes)

record_declaration
 : attributes? class_modifier* 'partial'? 'record' 'class'? identifier
type_parameter_list?
 parameter_list? record_base? type_parameter_constraints_clause*
record_body
 ;

Allow user-defined positional members to be fields

Allow parameterless constructors and member
initializers in structs

Open questions

Answered

https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-10-05.md#changing-the-member-type-of-a-primary-constructor-parameter

confirm that we want to allow field initializers when there is a primary constructor.
Do we also want to allow parameterless struct constructors while we're at it (the
Activator issue was apparently fixed)? (answer: yes, updated spec should be
reviewed in LDM)
how much do we want to say about Combine method? (answer: as little as possible)
should we disallow a user-defined constructor with a copy constructor signature?
(answer: no, there is no notion of copy constructor in the record structs spec)
confirm that we want to disallow members named "Clone". (answer: correct)
double-check that synthesized Equals logic is functionally equivalent to runtime
implementation (e.g. float.NaN) (answer: confirmed in LDM)
could field- or property-targeting attributes be placed in the positional parameter
list? (answer: yes, same as for record class)
with on generics? (answer: out of scope for C# 10)
should GetHashCode include a hash of the type itself, to get different values
between record struct S1; and record struct S2;? (answer: no)

Parameterless struct constructors
Article • 2022-04-02 • 7 minutes to read

Support parameterless constructors and instance field initializers for struct types.

Explicit parameterless constructors would give more control over minimally constructed
instances of the struct type. Instance field initializers would allow simplified initialization
across multiple constructors. Together these would close an obvious gap between
struct and class declarations.

Support for field initializers would also allow initialization of fields in record struct
declarations without explicitly implementing the primary constructor.

C#

If struct field initializers are supported for constructors with parameters, it seems natural
to extend that to parameterless constructors as well.

C#

Instance field declarations for a struct may include initializers.

Summary

Motivation

record struct Person(string Name)
{
 public object Id { get; init; } = GetNextId();
}

record struct Person()
{
 public string Name { get; init; }
 public object Id { get; init; } = GetNextId();
}

Proposal

Instance field initializers

As with class field initializers §14.5.6.3 :

A variable initializer for an instance field cannot reference the instance being
created.

An error is reported if a struct has field initializers and no declared instance constructors
since the field initializers will not be run.

C#

A struct may declare a parameterless instance constructor.

A parameterless instance constructor is valid for all struct kinds including struct ,
readonly struct , ref struct , and record struct .

If no parameterless instance constructor is declared, the struct (see §15.4.9) ...

implicitly has a parameterless instance constructor which always returns the value
that results from setting all value type fields to their default value and all reference
type fields to null.

A parameterless instance struct constructor must be declared public .

C#

Non-public constructors are ignored when importing types from metadata.

Constructors can be declared extern or unsafe . Constructors cannot be partial .

struct S { int F = 42; } // error: 'struct' with field initializers must
include an explicitly declared constructor

Constructors

Modifiers

struct S0 { } // ok
struct S1 { public S1() { } } // ok
struct S2 { internal S2() { } } // error: parameterless constructor must be
'public'

Executing field initializers

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14563-instance-field-initialization
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/structs.md#1549-constructors

Instance variable initializers (§14.11.3) is modified as follows:

When a class instance constructor has no constructor initializer, or it has a
constructor initializer of the form base(...) , that constructor implicitly performs the
initializations specified by the variable_initializers of the instance fields declared in
its class. This corresponds to a sequence of assignments that are executed
immediately upon entry to the constructor and before the implicit invocation of the
direct base class constructor.

When a struct instance constructor has no constructor initializer, that constructor
implicitly performs the initializations specified by the variable_initializers of the
instance fields declared in its struct. This corresponds to a sequence of
assignments that are executed immediately upon entry to the constructor.

When a struct instance constructor has a this() constructor initializer that
represents the default parameterless constructor, the declared constructor
implicitly clears all instance fields and performs the initializations specified by the
variable_initializers of the instance fields declared in its struct. Immediately upon
entry to the constructor, all value type fields are set to their default value and all
reference type fields are set to null . Immediately after that, a sequence of
assignments corresponding to the variable_initializers are executed.

Instance fields (other than fixed fields) must be definitely assigned in struct instance
constructors that do not have a this() initializer (see §15.4.9).

C#

Definite assignment

struct S0 // ok
{
 int x;
 object y;
}

struct S1 // error: 'struct' with field initializers must include an
explicitly declared constructor
{
 int x = 1;
 object y;
}

struct S2
{
 int x = 1;
 object y;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14113-instance-variable-initializers
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/structs.md#1549-constructors

A base() initializer is disallowed in struct constructors.

The compiler will not emit a call to the base System.ValueType constructor from struct
instance constructors.

An error is reported if a record struct has field initializers and does not contain a
primary constructor nor any instance constructors since the field initializers will not be
run.

C#

A record struct with an empty parameter list will have a parameterless primary
constructor.

C#

An explicit parameterless constructor in a record struct must have a this initializer
that calls the primary constructor or an explicitly declared constructor.

C#

 public S2() { } // error: field 'y' must be assigned
}

struct S3 // ok
{
 int x = 1;
 object y;
 public S3() { y = 2; }
}

No base() initializer

record struct

record struct R0; // ok
record struct R1 { int F = 42; } // error: 'struct' with field
initializers must include an explicitly declared constructor
record struct R2() { int F = 42; } // ok
record struct R3(int F); // ok

record struct R3(); // primary .ctor: public R3() { }
record struct R4() { int F = 42; } // primary .ctor: public R4() { F = 42; }

The implicitly-defined parameterless constructor will zero fields rather than calling any
parameterless constructors for the field types. No warnings are reported that field
constructors are ignored. No change from C#9.

C#

default ignores the parameterless constructor and generates a zeroed instance. No
change from C#9.

C#

record struct R5(int F)
{
 public R5() { } // error: must have 'this' initializer
that calls explicit .ctor
 public R5(object o) : this() { } // ok
 public int F = F;
}

Fields

struct S0
{
 public S0() { }
}

struct S1
{
 S0 F; // S0 constructor ignored
}

struct S<T> where T : struct
{
 T F; // constructor (if any) ignored
}

default expression

// struct S { public S() { } }

_ = default(S); // constructor ignored, no warning

new()

Object creation invokes the parameterless constructor if public; otherwise the instance is
zeroed. No change from C#9.

C#

A warning wave may report a warning for use of new() with a struct type that has
constructors but no parameterless constructor. No warning will be reported when using
substituting such a struct type for a type parameter with a new() or struct constraint.

C#

A local or field of a struct type that is not explicitly initialized is zeroed. The compiler
reports a definite assignment error for an uninitialized struct that is not empty. No
change from C#9.

C#

Array allocation ignores any parameterless constructor and generates zeroed elements.
No change from C#9.

C#

// public struct PublicConstructor { public PublicConstructor() { } }
// public struct PrivateConstructor { private PrivateConstructor() { } }

_ = new PublicConstructor(); // call PublicConstructor::.ctor()
_ = new PrivateConstructor(); // initobj PrivateConstructor

struct S { public S(int i) { } }
static T CreateNew<T>() where T : new() => new T();

_ = new S(); // warning: no constructor called
_ = CreateNew<S>(); // ok

Uninitialized values

NoConstructor s1;
PublicConstructor s2;
s1.ToString(); // error: use of unassigned local (unless type is empty)
s2.ToString(); // error: use of unassigned local (unless type is empty)

Array allocation

// struct S { public S() { } }

A parameter default value of new() binds to the parameterless constructor if public (and
reports an error that the value is not constant); otherwise the instance is zeroed. No
change from C#9.

C#

The new() and struct type parameter constraints require the parameterless constructor
to be public if defined (see Satisfying constraints - §8.4.5).

The compiler assumes all structs satisfy new() and struct constraints. No change from
C#9.

C#

new T() is emitted as a call to System.Activator.CreateInstance<T>() , and the compiler
assumes the implementation of CreateInstance<T>() invokes the public parameterless
constructor if defined.

var a = new S[1]; // constructor ignored, no warning

Parameter default value new()

// public struct PublicConstructor { public PublicConstructor() { } }
// public struct PrivateConstructor { private PrivateConstructor() { } }

static void F1(PublicConstructor s1 = new()) { } // error: default value
must be constant
static void F2(PrivateConstructor s2 = new()) { } // ok: initobj

Type parameter constraints: new() and struct

// public struct PublicConstructor { public PublicConstructor() { } }
// public struct InternalConstructor { internal InternalConstructor() { } }

static T CreateNew<T>() where T : new() => new T();
static T CreateStruct<T>() where T : struct => new T();

_ = CreateNew<PublicConstructor>(); // ok
_ = CreateStruct<PublicConstructor>(); // ok

_ = CreateNew<InternalConstructor>(); // compiles; may fail at runtime
_ = CreateStruct<InternalConstructor>(); // compiles; may fail at runtime

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/types.md#845-satisfying-constraints

With .NET Framework, Activator.CreateInstance<T>() invokes the parameterless
constructor if the constraint is where T : new() but appears to ignore the parameterless
constructor if the constraint is where T : struct .

Constructors with optional parameters are not considered parameterless constructors.
No change from C#9.

C#

Explicit parameterless struct instance constructors will be emitted to metadata.

Public parameterless struct instance constructors will be imported from metadata; non-
public struct instance constructors will be ignored. No change from C#9.

https://github.com/dotnet/roslyn/issues/1029

https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-04-
28.md#open-questions-in-record-and-parameterless-structs
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-03-
10.md#parameterless-struct-constructors
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-01-
27.md#field-initializers

Optional parameters

struct S1 { public S1(string s = "") { } }
struct S2 { public S2(params object[] args) { } }

_ = new S1(); // ok: ignores constructor
_ = new S2(); // ok: ignores constructor

Metadata

See also

Design meetings

https://github.com/dotnet/roslyn/issues/1029
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-04-28.md#open-questions-in-record-and-parameterless-structs
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-03-10.md#parameterless-struct-constructors
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-01-27.md#field-initializers

Global Using Directive
Article • 2022-03-24 • 13 minutes to read

Syntax for a using directive is extended with an optional global keyword that can
precede the using keyword:

antlr

The global_using_directives are allowed only on the Compilation Unit level (cannot
be used inside a namespace_declaration).
The global_using_directives, if any, must precede any using_directives.
The scope of a global_using_directives extends over the
namespace_member_declarations of all compilation units within the program. The
scope of a global_using_directive specifically does not include other
global_using_directives. Thus, peer global_using_directives or those from a different
compilation unit do not affect each other, and the order in which they are written
is insignificant. The scope of a global_using_directive specifically does not include
using_directives immediately contained in any compilation unit of the program.

The effect of adding a global_using_directive to a program can be thought of as the
effect of adding a similar using_directive that resolves to the same target namespace or
type to every compilation unit of the program. However, the target of a
global_using_directive is resolved in context of the compilation unit that contains it.

compilation_unit
 : extern_alias_directive* global_using_directive* using_directive*
global_attributes? namespace_member_declaration*
 ;

global_using_directive
 : global_using_alias_directive
 | global_using_namespace_directive
 | global_using_static_directive
 ;

global_using_alias_directive
 : 'global' 'using' identifier '=' namespace_or_type_name ';'
 ;

global_using_namespace_directive
 : 'global' 'using' namespace_name ';'
 ;

global_using_static_directive
 : 'global' 'using' 'static' type_name ';'
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#77-scopes

These are the relevant bullet points with proposed additions (which are in bold):

The scope of name defined by an extern_alias_directive extends over the
global_using_directives, using_directives, global_attributes and
namespace_member_declarations of its immediately containing compilation unit or
namespace body. An extern_alias_directive does not contribute any new members
to the underlying declaration space. In other words, an extern_alias_directive is not
transitive, but, rather, affects only the compilation unit or namespace body in
which it occurs.
The scope of a name defined or imported by a global_using_directive extends
over the global_attributes and namespace_member_declarations of all the
compilation_units in the program.

Changes are made to the algorithm determining the meaning of a
namespace_or_type_name as follows.

This is the relevant bullet point with proposed additions (which are in bold):

If the namespace_or_type_name is of the form I or of the form I<A1, ..., Ak> :
If K is zero and the namespace_or_type_name appears within a generic method
declaration (§14.6) and if that declaration includes a type parameter
(§14.2.3) with name I , then the namespace_or_type_name refers to that type
parameter.
Otherwise, if the namespace_or_type_name appears within a type declaration,
then for each instance type T (§14.3.2), starting with the instance type of that
type declaration and continuing with the instance type of each enclosing class
or struct declaration (if any):

If K is zero and the declaration of T includes a type parameter with name I ,
then the namespace_or_type_name refers to that type parameter.
Otherwise, if the namespace_or_type_name appears within the body of the
type declaration, and T or any of its base types contain a nested accessible
type having name I and K type parameters, then the
namespace_or_type_name refers to that type constructed with the given type
arguments. If there is more than one such type, the type declared within the
more derived type is selected. Note that non-type members (constants,
fields, methods, properties, indexers, operators, instance constructors,
destructors, and static constructors) and type members with a different

§7.7 Scopes

§7.8 Namespace and type names

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#146-methods
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1423-type-parameters
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1432-the-instance-type
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#77-scopes
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/basic-concepts.md#78-namespace-and-type-names

number of type parameters are ignored when determining the meaning of
the namespace_or_type_name.

If the previous steps were unsuccessful then, for each namespace N , starting
with the namespace in which the namespace_or_type_name occurs, continuing
with each enclosing namespace (if any), and ending with the global namespace,
the following steps are evaluated until an entity is located:

If K is zero and I is the name of a namespace in N , then:
If the location where the namespace_or_type_name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I
with a namespace or type, or any namespace declaration for N in the
program contains a global_using_alias_directive that associates the
name I with a namespace or type, then the namespace_or_type_name is
ambiguous and a compile-time error occurs.
Otherwise, the namespace_or_type_name refers to the namespace named
I in N .

Otherwise, if N contains an accessible type having name I and K type
parameters, then:

If K is zero and the location where the namespace_or_type_name occurs is
enclosed by a namespace declaration for N and the namespace
declaration contains an extern_alias_directive or using_alias_directive that
associates the name I with a namespace or type, or any namespace
declaration for N in the program contains a global_using_alias_directive
that associates the name I with a namespace or type, then the
namespace_or_type_name is ambiguous and a compile-time error occurs.
Otherwise, the namespace_or_type_name refers to the type constructed
with the given type arguments.

Otherwise, if the location where the namespace_or_type_name occurs is
enclosed by a namespace declaration for N :

If K is zero and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I
with an imported namespace or type, or any namespace declaration for
N in the program contains a global_using_alias_directive that associates
the name I with an imported namespace or type, then the
namespace_or_type_name refers to that namespace or type.
Otherwise, if the namespaces and type declarations imported by the
using_namespace_directives and using_alias_directives of the namespace
declaration and the namespaces and type declarations imported by the
global_using_namespace_directives and global_using_static_directives of

any namespace declaration for N in the program contain exactly one
accessible type having name I and K type parameters, then the
namespace_or_type_name refers to that type constructed with the given
type arguments.
Otherwise, if the namespaces and type declarations imported by the
using_namespace_directives and using_alias_directives of the namespace
declaration and the namespaces and type declarations imported by the
global_using_namespace_directives and global_using_static_directives of
any namespace declaration for N in the program contain more than one
accessible type having name I and K type parameters, then the
namespace_or_type_name is ambiguous and an error occurs.

Otherwise, the namespace_or_type_name is undefined and a compile-time error
occurs.

Changes are made to the simple_name evaluation rules as follows.

This is the relevant bullet point with proposed additions (which are in bold):

Otherwise, for each namespace N , starting with the namespace in which the
simple_name occurs, continuing with each enclosing namespace (if any), and
ending with the global namespace, the following steps are evaluated until an entity
is located:

If K is zero and I is the name of a namespace in N , then:
If the location where the simple_name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I with
a namespace or type, or any namespace declaration for N in the program
contains a global_using_alias_directive that associates the name I with a
namespace or type, then the simple_name is ambiguous and a compile-time
error occurs.
Otherwise, the simple_name refers to the namespace named I in N .

Otherwise, if N contains an accessible type having name I and K type
parameters, then:

If K is zero and the location where the simple_name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I with
a namespace or type, or any namespace declaration for N in the program
contains a global_using_alias_directive that associates the name I with a

Simple names §11.7.4

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1174-simple-names

namespace or type, then the simple_name is ambiguous and a compile-time
error occurs.
Otherwise, the namespace_or_type_name refers to the type constructed with
the given type arguments.

Otherwise, if the location where the simple_name occurs is enclosed by a
namespace declaration for N :

If K is zero and the namespace declaration contains an extern_alias_directive
or using_alias_directive that associates the name I with an imported
namespace or type, or any namespace declaration for N in the program
contains a global_using_alias_directive that associates the name I with an
imported namespace or type, then the simple_name refers to that
namespace or type.
Otherwise, if the namespaces and type declarations imported by the
using_namespace_directives and using_static_directives of the namespace
declaration and the namespaces and type declarations imported by the
global_using_namespace_directives and global_using_static_directives of
any namespace declaration for N in the program contain exactly one
accessible type or non-extension static member having name I and K type
parameters, then the simple_name refers to that type or member constructed
with the given type arguments.
Otherwise, if the namespaces and types imported by the
using_namespace_directives of the namespace declaration and the
namespaces and type declarations imported by the
global_using_namespace_directives and global_using_static_directives of
any namespace declaration for N in the program contain more than one
accessible type or non-extension-method static member having name I and
K type parameters, then the simple_name is ambiguous and an error occurs.

Changes are made to the algorithm to find the best type_name C as follows. This is the
relevant bullet point with proposed additions (which are in bold):

Starting with the closest enclosing namespace declaration, continuing with each
enclosing namespace declaration, and ending with the containing compilation unit,
successive attempts are made to find a candidate set of extension methods:

If the given namespace or compilation unit directly contains non-generic type
declarations Ci with eligible extension methods Mj , then the set of those
extension methods is the candidate set.

Extension method invocations §11.7.8.3

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11783-extension-method-invocations

If types Ci imported by using_static_declarations and directly declared in
namespaces imported by using_namespace_directives in the given namespace or
compilation unit and, if containing compilation unit is reached, imported by
global_using_static_declarations and directly declared in namespaces
imported by global_using_namespace_directives in the program directly
contain eligible extension methods Mj , then the set of those extension methods
is the candidate set.

A compilation_unit defines the overall structure of a source file. A compilation unit
consists of zero or more global_using_directives followed by zero or more
using_directives followed by zero or more global_attributes followed by zero or more
namespace_member_declarations.

antlr

A C# program consists of one or more compilation units, each contained in a separate
source file. When a C# program is compiled, all of the compilation units are processed
together. Thus, compilation units can depend on each other, possibly in a circular
fashion.

The global_using_directives of a compilation unit affect the global_attributes and
namespace_member_declarations of all compilation units in the program.

The scope of an extern_alias_directive extends over the global_using_directives,
using_directives, global_attributes and namespace_member_declarations of its
immediately containing compilation unit or namespace body.

The order in which using_alias_directives are written has no significance, and resolution
of the namespace_or_type_name referenced by a using_alias_directive is not affected by
the using_alias_directive itself or by other using_directives in the immediately containing

Compilation units §13.2

compilation_unit
 : extern_alias_directive* global_using_directive* using_directive*
global_attributes? namespace_member_declaration*
 ;

Extern aliases §13.4

Using alias directives §13.5.2

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/namespaces.md#132-compilation-units
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/namespaces.md#134-extern-alias-directives
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/namespaces.md#1352-using-alias-directives

compilation unit or namespace body, and, if the using_alias_directive is immediately
contained in a compilation unit, is not affected by the global_using_directives in the
program. In other words, the namespace_or_type_name of a using_alias_directive is
resolved as if the immediately containing compilation unit or namespace body had no
using_directives and, if the using_alias_directive is immediately contained in a
compilation unit, the program had no global_using_directives. A using_alias_directive
may however be affected by extern_alias_directives in the immediately containing
compilation unit or namespace body.

A global_using_alias_directive introduces an identifier that serves as an alias for a
namespace or type within the program.

antlr

Within member declarations in any compilation unit of a program that contains a
global_using_alias_directive, the identifier introduced by the global_using_alias_directive
can be used to reference the given namespace or type.

The identifier of a global_using_alias_directive must be unique within the declaration
space of any compilation unit of a program that contains the
global_using_alias_directive.

Just like regular members, names introduced by global_using_alias_directives are hidden
by similarly named members in nested scopes.

The order in which global_using_alias_directives are written has no significance, and
resolution of the namespace_or_type_name referenced by a global_using_alias_directive
is not affected by the global_using_alias_directive itself or by other
global_using_directives or using_directives in the program. In other words, the
namespace_or_type_name of a global_using_alias_directive is resolved as if the
immediately containing compilation unit had no using_directives and the entire
containing program had no global_using_directives. A global_using_alias_directive may
however be affected by extern_alias_directives in the immediately containing
compilation unit.

A global_using_alias_directive can create an alias for any namespace or type.

Global Using alias directives

global_using_alias_directive
 : 'global' 'using' identifier '=' namespace_or_type_name ';'
 ;

Accessing a namespace or type through an alias yields exactly the same result as
accessing that namespace or type through its declared name.

Using aliases can name a closed constructed type, but cannot name an unbound generic
type declaration without supplying type arguments.

A global_using_namespace_directive imports the types contained in a namespace into
the program, enabling the identifier of each type to be used without qualification.

antlr

Within member declarations in a program that contains a
global_using_namespace_directive, the types contained in the given namespace can be
referenced directly.

A global_using_namespace_directive imports the types contained in the given
namespace, but specifically does not import nested namespaces.

Unlike a global_using_alias_directive, a global_using_namespace_directive may import
types whose identifiers are already defined within a compilation unit of the program. In
effect, in a given compilation unit, names imported by any
global_using_namespace_directive in the program are hidden by similarly named
members in the compilation unit.

When more than one namespace or type imported by
global_using_namespace_directives or global_using_static_directives in the same program
contain types by the same name, references to that name as a type_name are
considered ambiguous.

Furthermore, when more than one namespace or type imported by
global_using_namespace_directives or global_using_static_directives in the same program
contain types or members by the same name, references to that name as a simple_name
are considered ambiguous.

The namespace_name referenced by a global_using_namespace_directive is resolved in
the same way as the namespace_or_type_name referenced by a

Global Using namespace directives

global_using_namespace_directive
 : 'global' 'using' namespace_name ';'
 ;

global_using_alias_directive. Thus, global_using_namespace_directives in the same
program do not affect each other and can be written in any order.

A global_using_static_directive imports the nested types and static members contained
directly in a type declaration into the containing program, enabling the identifier of each
member and type to be used without qualification.

antlr

Within member declarations in a program that contains a global_using_static_directive,
the accessible nested types and static members (except extension methods) contained
directly in the declaration of the given type can be referenced directly.

A global_using_static_directive specifically does not import extension methods directly as
static methods, but makes them available for extension method invocation.

A global_using_static_directive only imports members and types declared directly in the
given type, not members and types declared in base classes.

Ambiguities between multiple global_using_namespace_directives and
global_using_static_directives are discussed in the section for
global_using_namespace_directives (above).

Changes are made to the algorithm determining the meaning of a
qualified_alias_member as follows.

This is the relevant bullet point with proposed additions (which are in bold):

Otherwise, starting with the namespace declaration (§13.3) immediately
containing the qualified_alias_member (if any), continuing with each enclosing
namespace declaration (if any), and ending with the compilation unit containing
the qualified_alias_member, the following steps are evaluated until an entity is
located:

If the namespace declaration or compilation unit contains a using_alias_directive
that associates N with a type, or, when a compilation unit is reached, the

Global Using static directives

global_using_static_directive
 : 'global' 'using' 'static' type_name ';'
 ;

Qualified alias member §13.8

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/namespaces.md#133-namespace-declarations
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/namespaces.md#138-qualified-alias-member

program contains a global_using_alias_directive that associates N with a type,
then the qualified_alias_member is undefined and a compile-time error occurs.
Otherwise, if the namespace declaration or compilation unit contains an
extern_alias_directive or using_alias_directive that associates N with a
namespace, *or, when a compilation unit is reached, the program contains a
global_using_alias_directive that associates N with a namespace, then:

If the namespace associated with N contains a namespace named I and K is
zero, then the qualified_alias_member refers to that namespace.
Otherwise, if the namespace associated with N contains a non-generic type
named I and K is zero, then the qualified_alias_member refers to that type.
Otherwise, if the namespace associated with N contains a type named I that
has K type parameters, then the qualified_alias_member refers to that type
constructed with the given type arguments.
Otherwise, the qualified_alias_member is undefined and a compile-time error
occurs.

File Scoped Namespaces
Article • 2022-02-23 • 2 minutes to read

File scoped namespaces use a less verbose format for the typical case of files containing
only one namespace. The file scoped namespace format is namespace X.Y.Z; (note the
semicolon and lack of braces). This allows for files like the following:

c#

The semantics are that using the namespace X.Y.Z; form is equivalent to writing
namespace X.Y.Z { ... } where the remainder of the file following the file-scoped
namespace is in the ... section of a standard namespace declaration.

Analysis of the C# ecosystem shows that approximately 99.7% files are all of either one
of these forms:

c#

or

c#

Summary

namespace X.Y.Z;

using System;

class X
{
}

Motivation

namespace X.Y.Z
{
 // usings

 // types
}

// usings

However, both these forms force the user to indent the majority of their code and add a
fair amount of ceremony for what is effectively a very basic concept. This affects clarity,
uses horizontal and vertical space, and is often unsatisfying for users both used to C#
and coming from other languages (which commonly have less ceremony here).

The primary goal of the feature therefore is to meet the needs of the majority of the
ecosystem with less unnecessary boilerplate.

This proposal takes the form of a diff to the existing compilation units (§13.2) section
of the specification.

A compilation_unit defines the overall structure of a source file. A compilation unit
consists of zero or more using_directives followed by zero or more global_attributes
followed by zero or more namespace_member_declarations.

A compilation_unit defines the overall structure of a source file. A compilation unit
consists of zero or more using_directives followed by zero or more global_attributes
followed by a compilation_unit_body. A compilation_unit_body can either be a
file_scoped_namespace_declaration or zero or more statements and
namespace_member_declarations.

antlr

... unchanged ...

namespace X.Y.Z
{
 // types
}

Detailed design

Diff

compilation_unit
~~ : extern_alias_directive* using_directive* global_attributes?
namespace_member_declaration*~~
 : extern_alias_directive* using_directive* global_attributes?
compilation_unit_body
 ;

compilation_unit_body
 : statement* namespace_member_declaration*
 | file_scoped_namespace_declaration
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/namespaces.md#132-compilation-units

A file_scoped_namespace_declaration will contribute members corresponding to the
namespace_declaration it is semantically equivalent to. See (Namespace Declarations) for
more details.

A namespace_declaration consists of the keyword namespace , followed by a namespace
name and body, optionally followed by a semicolon. A
file_scoped_namespace_declaration consists of the keyword namespace , followed by a
namespace name, a semicolon and an optional list of extern_alias_directives,
using_directives and type_declarations.

antlr

... unchanged ...

the two namespace declarations above contribute to the same declaration space, in this
case declaring two classes with the fully qualified names N1.N2.A and N1.N2.B . Because
the two declarations contribute to the same declaration space, it would have been an
error if each contained a declaration of a member with the same name.

A file_scoped_namespace_declaration permits a namespace declaration to be written
without the { ... } block. For example:

C#

is semantically equivalent to

Namespace declarations

namespace_declaration
 : 'namespace' qualified_identifier namespace_body ';'?
 ;

file_scoped_namespace_declaration
 : 'namespace' qualified_identifier ';' extern_alias_directive*
using_directive* type_declaration*
 ;

... unchanged ...

extern alias A;
namespace Name;
using B;
class C
{
}

C#

Specifically, a file_scoped_namespace_declaration is treated the same as a
namespace_declaration at the same location in the compilation_unit with the same
qualified_identifier. The extern_alias_directives, using_directives and type_declarations of
that file_scoped_namespace_declaration act as if they were declared in the same order
inside the namespace_body of that namespace_declaration.

A source file cannot contain both a file_scoped_namespace_declaration and a
namespace_declaration. A source file cannot contain multiple
file_scoped_namespace_declarations. A compilation_unit cannot contain both a
file_scoped_namespace_declaration and any top level statements. type_declarations
cannot precede a file_scoped_namespace_declaration.

... unchanged ...

extern alias A;
namespace Name
{
 using B;
 class C
 {
 }
}

Extern aliases

Extended property patterns
Article • 2021-09-21 • 2 minutes to read

Allow property subpatterns to reference nested members, for instance:

C#

Instead of:

C#

When you want to match a child property, nesting another recursive pattern adds too
much noise which will hurt readability with no real advantage.

The property_pattern syntax is modified as follow:

diff

Summary

if (e is MethodCallExpression { Method.Name: "MethodName" })

if (e is MethodCallExpression { Method: { Name: "MethodName" } })

Motivation

Detailed design

property_pattern
 : type? property_pattern_clause simple_designation?
 ;

property_pattern_clause
 : '{' (subpattern (',' subpattern)* ','?)? '}'
 ;

subpattern
- : identifier ':' pattern
+ : subpattern_name ':' pattern
 ;

+subpattern_name
+ : identifier

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-8.0/patterns.md#property-pattern

The receiver for each name lookup is the type of the previous member T0, starting from
the input type of the property_pattern. if T is a nullable type, T0 is its underlying type,
otherwise T0 is equal to T.

For example, a pattern of the form { Prop1.Prop2: pattern } is exactly equivalent to {
Prop1: { Prop2: pattern } } .

Note that this will include the null check when T is a nullable value type or a reference
type. This null check means that the nested properties available will be the properties of
T0, not of T.

Repeated member paths are allowed. The compilation of pattern matching can take
advantage of common parts of patterns.

+ | subpattern_name '.' identifier
+ ;

Improved Interpolated Strings
Article • 2022-03-21 • 29 minutes to read

We introduce a new pattern for creating and using interpolated string expressions to
allow for efficient formatting and use in both general string scenarios and more
specialized scenarios such as logging frameworks, without incurring unnecessary
allocations from formatting the string in the framework.

Today, string interpolation mainly lowers down to a call to string.Format . This, while
general purpose, can be inefficient for a number of reasons:

1. It boxes any struct arguments, unless the runtime has happened to introduce an
overload of string.Format that takes exactly the correct types of arguments in
exactly the correct order.

This ordering is why the runtime is hesitant to introduce generic versions of
the method, as it would lead to combinatoric explosion of generic
instantiations of a very common method.

2. It has to allocate an array for the arguments in most cases.
3. There is no opportunity to avoid instantiating the instance if it's not needed.

Logging frameworks, for example, will recommend avoiding string interpolation
because it will cause a string to be realized that may not be needed, depending on
the current log-level of the application.

4. It can never use Span or other ref struct types today, because ref structs are not
allowed as generic type parameters, meaning that if a user wants to avoid copying
to intermediate locations they have to manually format strings.

Internally, the runtime has a type called ValueStringBuilder to help deal with the first 2
of these scenarios. They pass a stackalloc'd buffer to the builder, repeatedly call
AppendFormat with every part, and then get a final string out. If the resulting string goes
past the bounds of the stack buffer, they can then move to an array on the heap.
However, this type is dangerous to expose directly, as incorrect usage could lead to a
rented array to be double-disposed, which then will cause all sorts of undefined
behavior in the program as two locations think they have sole access to the rented array.

Summary

Motivation

This proposal creates a way to use this type safely from native C# code by just writing an
interpolated string literal, leaving written code unchanged while improving every
interpolated string that a user writes. It also extends this pattern to allow for
interpolated strings passed as arguments to other methods to use a handler pattern,
defined by receiver of the method, that will allow things like logging frameworks to
avoid allocating strings that will never be needed, and giving C# users familiar,
convenient interpolation syntax.

We introduce a new handler pattern that can represent an interpolated string passed as
an argument to a method. The simple English of the pattern is as follows:

When an interpolated_string_expression is passed as an argument to a method, we look
at the type of the parameter. If the parameter type has a constructor that can be
invoked with 2 int parameters, literalLength and formattedCount , optionally takes
additional parameters specified by an attribute on the original parameter, optionally has
an out boolean trailing parameter, and the type of the original parameter has instance
AppendLiteral and AppendFormatted methods that can be invoked for every part of the
interpolated string, then we lower the interpolation using that, instead of into a
traditional call to string.Format(formatStr, args) . A more concrete example is helpful
for picturing this:

C#

Detailed Design

The handler pattern

// The handler that will actually "build" the interpolated string"
[InterpolatedStringHandler]
public ref struct TraceLoggerParamsInterpolatedStringHandler
{
 // Storage for the built-up string

 private bool _logLevelEnabled;

 public TraceLoggerParamsInterpolatedStringHandler(int literalLength, int
formattedCount, Logger logger, out bool handlerIsValid)
 {
 if (!logger._logLevelEnabled)
 {
 handlerIsValid = false;
 return;
 }

 handlerIsValid = true;

Here, because TraceLoggerParamsInterpolatedStringHandler has a constructor with the
correct parameters, we say that the interpolated string has an implicit handler
conversion to that parameter, and it lowers to the pattern shown above. The specese
needed for this is a bit complicated, and is expanded below.

 _logLevelEnabled = logger.EnabledLevel;
 }

 public void AppendLiteral(string s)
 {
 // Store and format part as required
 }

 public void AppendFormatted<T>(T t)
 {
 // Store and format part as required
 }
}

// The logger class. The user has an instance of this, accesses it via
static state, or some other access
// mechanism
public class Logger
{
 // Initialization code omitted
 public LogLevel EnabledLevel;

 public void
LogTrace([InterpolatedStringHandlerArguments("")]TraceLoggerParamsInterpolat
edStringHandler handler)
 {
 // Impl of logging
 }
}

Logger logger = GetLogger(LogLevel.Info);

// Given the above definitions, usage looks like this:
var name = "Fred Silberberg";
logger.LogTrace($"{name} will never be printed because info is < trace!");

// This is converted to:
var name = "Fred Silberberg";
var receiverTemp = logger;
var handler = new TraceLoggerParamsInterpolatedStringHandler(literalLength:
47, formattedCount: 1, receiverTemp, out var handlerIsValid);
if (handlerIsValid)
{
 handler.AppendFormatted(name);
 handler.AppendLiteral(" will never be printed because info is <
trace!");
}
receiverTemp.LogTrace(handler);

The rest of this proposal will use Append... to refer to either of AppendLiteral or
AppendFormatted in cases when both are applicable.

The compiler recognizes the
System.Runtime.CompilerServices.InterpolatedStringHandlerAttribute :

C#

This attribute is used by the compiler to determine if a type is a valid interpolated string
handler type.

The compiler also recognizes the
System.Runtime.CompilerServices.InterpolatedStringHandlerArgumentAttribute :

C#

This attribute is used on parameters, to inform the compiler how to lower an
interpolated string handler pattern used in a parameter position.

New attributes

using System;
namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct,
AllowMultiple = false, Inherited = false)]
 public sealed class InterpolatedStringHandlerAttribute : Attribute
 {
 public InterpolatedStringHandlerAttribute()
 {
 }
 }
}

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, AllowMultiple = false,
Inherited = false)]
 public sealed class InterpolatedStringHandlerArgumentAttribute :
Attribute
 {
 public InterpolatedHandlerArgumentAttribute(string argument);
 public InterpolatedHandlerArgumentAttribute(params string[]
arguments);

 public string[] Arguments { get; }
 }
}

Type T is said to be an applicable_interpolated_string_handler_type if it is attributed with
System.Runtime.CompilerServices.InterpolatedStringHandlerAttribute . There exists an
implicit interpolated_string_handler_conversion to T from an
interpolated_string_expression, or an additive_expression composed entirely of
_interpolated_string_expression_s and using only + operators.

For simplicity in the rest of this speclet, interpolated_string_expression refers to both a
simple interpolated_string_expression, and to an additive_expression composed entirely
of _interpolated_string_expression_s and using only + operators.

Note that this conversion always exists, regardless of whether there will be later errors
when actually attempting to lower the interpolation using the handler pattern. This is
done to help ensure that there are predictable and useful errors and that runtime
behavior doesn't change based on the content of an interpolated string.

We adjust the wording of the applicable function member algorithm (§11.6.4.2) as
follows (a new sub-bullet is added to each section, in bold):

A function member is said to be an applicable function member with respect to an
argument list A when all of the following are true:

Each argument in A corresponds to a parameter in the function member
declaration as described in Corresponding parameters (§11.6.2.2), and any
parameter to which no argument corresponds is an optional parameter.
For each argument in A , the parameter passing mode of the argument (i.e., value,
ref , or out) is identical to the parameter passing mode of the corresponding
parameter, and

for a value parameter or a parameter array, an implicit conversion (§10.2)
exists from the argument to the type of the corresponding parameter, or
for a ref parameter whose type is a struct type, an implicit
interpolated_string_handler_conversion exists from the argument to the type
of the corresponding parameter, or
for a ref or out parameter, the type of the argument is identical to the type of
the corresponding parameter. After all, a ref or out parameter is an alias for
the argument passed.

For a function member that includes a parameter array, if the function member is
applicable by the above rules, it is said to be applicable in its normal form. If a function

Interpolated string handler conversion

Applicable function member adjustments

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11642-applicable-function-member
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11622-corresponding-parameters
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#102-implicit-conversions

member that includes a parameter array is not applicable in its normal form, the
function member may instead be applicable in its expanded form:

The expanded form is constructed by replacing the parameter array in the function
member declaration with zero or more value parameters of the element type of
the parameter array such that the number of arguments in the argument list A
matches the total number of parameters. If A has fewer arguments than the
number of fixed parameters in the function member declaration, the expanded
form of the function member cannot be constructed and is thus not applicable.
Otherwise, the expanded form is applicable if for each argument in A the
parameter passing mode of the argument is identical to the parameter passing
mode of the corresponding parameter, and

for a fixed value parameter or a value parameter created by the expansion, an
implicit conversion (§10.2) exists from the type of the argument to the type of
the corresponding parameter, or
for a ref parameter whose type is a struct type, an implicit
interpolated_string_handler_conversion exists from the argument to the type
of the corresponding parameter, or
for a ref or out parameter, the type of the argument is identical to the type of
the corresponding parameter.

Important note: this means that if there are 2 otherwise equivalent overloads, that only
differ by the type of the applicable_interpolated_string_handler_type, these overloads will
be considered ambiguous. Further, because we do not see through explicit casts, it is
possible that there could arise an unresolvable scenario where both applicable
overloads use InterpolatedStringHandlerArguments and are totally uncallable without
manually performing the handler lowering pattern. We could potentially make changes
to the better function member algorithm to resolve this if we so choose, but this
scenario unlikely to occur and isn't a priority to address.

We change the better conversion from expression (§11.6.4.4) section to the following:

Given an implicit conversion C1 that converts from an expression E to a type T1 , and an
implicit conversion C2 that converts from an expression E to a type T2 , C1 is a better
conversion than C2 if:

1. E is a non-constant interpolated_string_expression, C1 is an
implicit_string_handler_conversion, T1 is an

Better conversion from expression adjustments

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#102-implicit-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression

applicable_interpolated_string_handler_type, and C2 is not an
implicit_string_handler_conversion, or

2. E does not exactly match T2 and at least one of the following holds:

E exactly matches T1 (§11.6.4.4)
T1 is a better conversion target than T2 (§11.6.4.6)

This does mean that there are some potentially non-obvious overload resolution rules,
depending on whether the interpolated string in question is a constant-expression or
not. For example:

C#

This is introduced so that things that can simply be emitted as constants do so, and
don't incur any overhead, while things that cannot be constant use the handler pattern.

We introduce a new type in System.Runtime.CompilerServices :
DefaultInterpolatedStringHandler . This is a ref struct with many of the same semantics
as ValueStringBuilder , intended for direct use by the C# compiler. This struct would
look approximately like this:

C#

void Log(string s) { ... }
void Log(TraceLoggerParamsInterpolatedStringHandler p) { ... }

Log($""); // Calls Log(string s), because $"" is a constant expression
Log($"{"test"}"); // Calls Log(string s), because $"{"test"}" is a constant
expression
Log($"{1}"); // Calls Log(TraceLoggerParamsInterpolatedStringHandler p),
because $"{1}" is not a constant expression

InterpolatedStringHandler and Usage

// API Proposal issue: https://github.com/dotnet/runtime/issues/50601
namespace System.Runtime.CompilerServices
{
 [InterpolatedStringHandler]
 public ref struct DefaultInterpolatedStringHandler
 {
 public DefaultInterpolatedStringHandler(int literalLength, int
formattedCount);
 public string ToStringAndClear();

 public void AppendLiteral(string value);

 public void AppendFormatted<T>(T value);

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11646-better-conversion-target

We make a slight change to the rules for the meaning of an
interpolated_string_expression (§11.7.3):

If the type of an interpolated string is string and the type
System.Runtime.CompilerServices.DefaultInterpolatedStringHandler exists, and the
current context supports using that type, the string is lowered using the handler
pattern. The final string value is then obtained by calling ToStringAndClear() on the
handler type. Otherwise, if the type of an interpolated string is System.IFormattable or
System.FormattableString [the rest is unchanged]

The "and the current context supports using that type" rule is intentionally vague to give
the compiler leeway in optimizing usage of this pattern. The handler type is likely to be
a ref struct type, and ref struct types are normally not permitted in async methods. For
this particular case, the compiler would be allowed to make use the handler if none of
the interpolation holes contain an await expression, as we can statically determine that
the handler type is safely used without additional complicated analysis because the
handler will be dropped after the interpolated string expression is evaluated.

Open Question:

Do we want to instead just make the compiler know about
DefaultInterpolatedStringHandler and skip the string.Format call entirely? It would
allow us to hide a method that we don't necessarily want to put in people's faces when
they manually call string.Format .

Answer: Yes.

Open Question:

 public void AppendFormatted<T>(T value, string? format);
 public void AppendFormatted<T>(T value, int alignment);
 public void AppendFormatted<T>(T value, int alignment, string?
format);

 public void AppendFormatted(ReadOnlySpan<char> value);
 public void AppendFormatted(ReadOnlySpan<char> value, int alignment
= 0, string? format = null);

 public void AppendFormatted(string? value);
 public void AppendFormatted(string? value, int alignment = 0,
string? format = null);

 public void AppendFormatted(object? value, int alignment = 0,
string? format = null);
 }
}

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1173-interpolated-string-expressions

Do we want to have handlers for System.IFormattable and System.FormattableString as
well?

Answer: No.

In this section, method invocation resolution refers to the steps listed in §11.7.8.2 .

Given an applicable_interpolated_string_handler_type T and an
interpolated_string_expression i , method invocation resolution and validation for a valid
constructor on T is performed as follows:

1. Member lookup for instance constructors is performed on T . The resulting method
group is called M .

2. The argument list A is constructed as follows:
a. The first two arguments are integer constants, representing the literal length of

i , and the number of interpolation components in i , respectively.
b. If i is used as an argument to some parameter pi in method M1 , and

parameter pi is attributed with
System.Runtime.CompilerServices.InterpolatedStringHandlerArgumentAttribute ,
then for every name Argx in the Arguments array of that attribute the compiler
matches it to a parameter px that has the same name. The empty string is
matched to the receiver of M1 .

If any Argx is not able to be matched to a parameter of M1 , or an Argx
requests the receiver of M1 and M1 is a static method, an error is produced
and no further steps are taken.
Otherwise, the type of every resolved px is added to the argument list, in
the order specified by the Arguments array. Each px is passed with the
same ref semantics as is specified in M1 .

c. The final argument is a bool , passed as an out parameter.
3. Traditional method invocation resolution is performed with method group M and

argument list A . For the purposes of method invocation final validation, the
context of M is treated as a member_access through type T .

Handler pattern codegen

Constructor resolution

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11782-method-invocations

If a single-best constructor F was found, the result of overload resolution is
F .
If no applicable constructors were found, step 3 is retried, removing the final
bool parameter from A . If this retry also finds no applicable members, an
error is produced and no further steps are taken.
If no single-best method was found, the result of overload resolution is
ambiguous, an error is produced, and no further steps are taken.

4. Final validation on F is performed.

If any element of A occurred lexically after i , an error is produced and no
further steps are taken.
If any A requests the receiver of F , and F is an indexer being used as an
initializer_target in a member_initializer, then an error is reported and no
further steps are taken.

Note: the resolution here intentionally do not use the actual expressions passed as other
arguments for Argx elements. We only consider the types post-conversion. This makes
sure that we don't have double-conversion issues, or unexpected cases where a lambda
is bound to one delegate type when passed to M1 and bound to a different delegate
type when passed to M .

Note: We report an error for indexers uses as member initializers because of the order of
evaluation for nested member initializers. Consider this code snippet:

C#

var x1 = new C1 { C2 = { [GetString()] = { A = 2, B = 4 } } };

/* Lowering:
__c1 = new C1();
string argTemp = GetString();
__c1.C2[argTemp][1] = 2;
__c1.C2[argTemp][3] = 4;

Prints:
GetString
get_C2
get_C2
*/

string GetString()
{
 Console.WriteLine("GetString");
 return "";
}

The arguments to __c1.C2[] are evaluated before the receiver of the indexer. While we
could come up with a lowering that works for this scenario (either by creating a temp for
__c1.C2 and sharing it across both indexer invocations, or only using it for the first
indexer invocation and sharing the argument across both invocations) we think that any
lowering would be confusing for what we believe is a pathological scenario. Therefore,
we forbid the scenario entirely.

Open Question:

If we use a constructor instead of Create , we'd improve runtime codegen, at the
expense of narrowing the pattern a bit.

Answer: We will restrict to constructors for now. We can revisit adding a general Create
method later if the scenario arises.

class C1
{
 private C2 c2 = new C2();
 public C2 C2 { get { Console.WriteLine("get_C2"); return c2; } set { } }
}

class C2
{
 public C3 this[string s]
 {
 get => new C3();
 set { }
 }
}

class C3
{
 public int A
 {
 get => 0;
 set { }
 }
 public int B
 {
 get => 0;
 set { }
 }
}

Append... method overload resolution

Given an applicable_interpolated_string_handler_type T and an
interpolated_string_expression i , overload resolution for a set of valid Append...
methods on T is performed as follows:

1. If there are any interpolated_regular_string_character components in i :
a. Member lookup on T with the name AppendLiteral is performed. The resulting

method group is called Ml .
b. The argument list Al is constructed with one value parameter of type string .
c. Traditional method invocation resolution is performed with method group Ml

and argument list Al . For the purposes of method invocation final validation,
the context of Ml is treated as a member_access through an instance of T .

If a single-best method Fi is found and no errors were produced, the
result of method invocation resolution is Fi .
Otherwise, an error is reported.

2. For every interpolation ix component of i :
a. Member lookup on T with the name AppendFormatted is performed. The

resulting method group is called Mf .
b. The argument list Af is constructed:

i. The first parameter is the expression of ix , passed by value.
ii. If ix directly contains a constant_expression component, then an integer

value parameter is added, with the name alignment specified.
iii. If ix is directly followed by an interpolation_format, then a string value

parameter is added, with the name format specified.
c. Traditional method invocation resolution is performed with method group Mf

and argument list Af . For the purposes of method invocation final validation,
the context of Mf is treated as a member_access through an instance of T .

If a single-best method Fi is found, the result of method invocation
resolution is Fi .
Otherwise, an error is reported.

3. Finally, for every Fi discovered in steps 1 and 2, final validation is performed:

If any Fi does not return bool by value or void , an error is reported.
If all Fi do not return the same type, an error is reported.

Note that these rules do not permit extension methods for the Append... calls. We
could consider enabling that if we choose, but this is analogous to the enumerator

pattern, where we allow GetEnumerator to be an extension method, but not Current or
MoveNext() .

These rules do permit default parameters for the Append... calls, which will work with
things like CallerLineNumber or CallerArgumentExpression (when supported by the
language).

We have separate overload lookup rules for base elements vs interpolation holes
because some handlers will want to be able to understand the difference between the
components that were interpolated and the components that were part of the base
string.

Open Question

Some scenarios, like structured logging, want to be able to provide names for
interpolation elements. For example, today a logging call might look like Log("{name}
bought {itemCount} items", name, items.Count); . The names inside the {} provide
important structure information for loggers that help with ensuring output is consistent
and uniform. Some cases might be able to reuse the :format component of an
interpolation hole for this, but many loggers already understand format specifiers and
have existing behavior for output formatting based on this info. Is there some syntax we
can use to enable putting these named specifiers in?

Some cases may be able to get away with CallerArgumentExpression , provided that
support does land in C# 10. But for cases that invoke a method/property, that may not
be sufficient.

Answer:

While there are some interesting parts to templated strings we could explore in an
orthogonal language feature, we don't think a specific syntax here has much benefit
over solutions such as using a tuple: $"{("StructuredCategory", myExpression)}" .

Given an applicable_interpolated_string_handler_type T and an
interpolated_string_expression i that had a valid constructor Fc and Append... methods
Fa resolved, lowering for i is performed as follows:

1. Any arguments to Fc that occur lexically before i are evaluated and stored into
temporary variables in lexical order. In order to preserve lexical ordering, if i

Performing the conversion

occurred as part of a larger expression e , any components of e that occurred
before i will be evaluated as well, again in lexical order.

2. Fc is called with the length of the interpolated string literal components, the
number of interpolation holes, any previously evaluated arguments, and a bool out
argument (if Fc was resolved with one as the last parameter). The result is stored
into a temporary value ib .
a. The length of the literal components is calculated after replacing any

open_brace_escape_sequence with a single { , and any
close_brace_escape_sequence with a single } .

3. If Fc ended with a bool out argument, a check on that bool value is generated. If
true, the methods in Fa will be called. Otherwise, they will not be called.

4. For every Fax in Fa , Fax is called on ib with either the current literal component
or interpolation expression, as appropriate. If Fax returns a bool , the result is
logically anded with all preceding Fax calls.
a. If Fax is a call to AppendLiteral , the literal component is unescaped by

replacing any open_brace_escape_sequence with a single { , and any
close_brace_escape_sequence with a single } .

5. The result of the conversion is ib .

Again, note that arguments passed to Fc and arguments passed to e are the same
temp. Conversions may occur on top of the temp to convert to a form that Fc requires,
but for example lambdas cannot be bound to a different delegate type between Fc and
e .

Open Question

This lowering means that subsequent parts of the interpolated string after a false-
returning Append... call don't get evaluated. This could potentially be very confusing,
particularly if the format hole is side-effecting. We could instead evaluate all format
holes first, then repeatedly call Append... with the results, stopping if it returns false.
This would ensure that all expressions get evaluated as one might expect, but we call as
few methods as we need to. While the partial evaluation might be desirable for some
more advanced cases, it is perhaps non-intuitive for the general case.

Another alternative, if we want to always evaluate all format holes, is to remove the
Append... version of the API and just do repeated Format calls. The handler can track
whether it should just be dropping the argument and immediately returning for this
version.

Answer: We will have conditional evaluation of the holes.

Open Question

Do we need to dispose of disposable handler types, and wrap calls with try/finally to
ensure that Dispose is called? For example, the interpolated string handler in the bcl
might have a rented array inside it, and if one of the interpolation holes throws an
exception during evaluation, that rented array could be leaked if it wasn't disposed.

Answer: No. handlers can be assigned to locals (such as MyHandler handler = $"
{MyCode()};), and the lifetime of such handlers is unclear. Unlike foreach enumerators,
where the lifetime is obvious and no user-defined local is created for the enumerator.

To minimize complexity of the implementation, we have a few limitations on how we
perform nullable analysis on interpolated string handler constructors used as arguments
to a method or indexer. In particular, we do not flow information from the constructor
back through to the original slots of parameters or arguments from the original context,
and we do not use constructor parameter types to inform generic type inference for
type parameters in the containing method. An example of where this can have an
impact is:

C#

C#

Impact on nullable reference types

string s = "";
C c = new C();
c.M(s, $"", c.ToString(), s.ToString()); // No warnings on c.ToString() or
s.ToString(), as the `MaybeNull` does not flow back.

public class C
{
 public void M(string s1, [InterpolatedStringHandlerArgument("", "s1")]
CustomHandler c1, string s2, string s3) { }
}

[InterpolatedStringHandler]
public partial struct CustomHandler
{
 public CustomHandler(int literalLength, int formattedCount, [MaybeNull]
C c, [MaybeNull] string s) : this()
 {
 }
}

string? s = null;
M(s, $""); // Infers `string` for `T` because of the `T?` parameter, not

For type author simplicity, we could consider allowing expressions of type string to be
implicitly-convertible to applicable_interpolated_string_handler_types. As proposed
today, authors will likely need to overload on both that handler type and regular string
types, so their users don't have to understand the difference. This may be an annoying
and non-obvious overhead, as a string expression can be viewed as an interpolation
with expression.Length prefilled length and 0 holes to be filled.

This would allow new APIs to only expose a handler, without also having to expose a
string -accepting overload. However, it won't get around the need for changes to
better conversion from expression, so while it would work it may be unnecessary
overhead.

Answer:

We think that this could end up being confusing, and there's an easy workaround for
custom handler types: add a user-defined conversion from string.

ValueStringBuilder as it exists today has 2 constructors: one that takes a count, and
allocates on the heap eagerly, and one that takes a Span<char> . That Span<char> is
usually a fixed size in the runtime codebase, around 250 elements on average. To truly
replace that type, we should consider an extension to this where we also recognize

`string?`, as flow analysis does not consider the unannotated `T` parameter
of the constructor

void M<T>(T? t, [InterpolatedStringHandlerArgument("s1")] CustomHandler<T>
c) { }

[InterpolatedStringHandler]
public partial struct CustomHandler<T>
{
 public CustomHandler(int literalLength, int formattedCount, T t) :
this()
 {
 }
}

Other considerations

Allow string types to be convertible to handlers as well

Incorporating spans for heap-less strings

GetInterpolatedString methods that take a Span<char> , instead of just the count
version. However, we see a few potential thorny cases to resolve here:

We don't want to stackalloc repeatedly in a hot loop. If we were to do this
extension to the feature, we'd likely want to share the stackalloc'd span between
loop iterations. We know this is safe, as Span<T> is a ref struct that can't be stored
on the heap, and users would have to be pretty devious to manage to extract a
reference to that Span (such as creating a method that accepts such a handler then
deliberately retrieving the Span from the handler and returning it to the caller).
However, allocating ahead of time produces other questions:

Should we eagerly stackalloc? What if the loop is never entered, or exits before
it needs the space?
If we don't eagerly stackalloc, does that mean we introduce a hidden branch on
every loop? Most loops likely won't care about this, but it could affect some
tight loops that don't want to pay the cost.

Some strings can be quite big, and the appropriate amount to stackalloc is
dependent on a number of factors, including runtime factors. We don't really want
the C# compiler and specification to have to determine this ahead of time, so we'd
want to resolve https://github.com/dotnet/runtime/issues/25423 and add an API
for the compiler to call in these cases. It also adds more pros and cons to the
points from the previous loop, where we don't want to potentially allocate large
arrays on the heap many times or before one is needed.

Answer:

This is out of scope for C# 10. We can look at this in general when we look at the more
general params Span<T> feature.

For simplicity, this spec currently just proposes recognizing a Append... method, and
things that always succeed (like InterpolatedStringHandler) would always return true
from the method. This was done to support partial formatting scenarios where the user
wants to stop formatting if an error occurs or if it's unnecessary, such as the logging
case, but could potentially introduce a bunch of unnecessary branches in standard
interpolated string usage. We could consider an addendum where we use just FormatX
methods if no Append... method is present, but it does present questions about what
we do if there's a mix of both Append... and FormatX calls.

Answer:

Non-try version of the API

https://github.com/dotnet/runtime/issues/25423

We want the non-try version of the API. The proposal has been updated to reflect this.

There is unfortunate lack of symmetry in the proposal at it currently exists: invoking an
extension method in reduced form produces different semantics than invoking the
extension method in normal form. This is different from most other locations in the
language, where reduced form is just a sugar. We propose adding an attribute to the
framework that we will recognize when binding a method, that informs the compiler
that certain parameters should be passed to the constructor on the handler. Usage looks
like this:

C#

Usage of this is then:

C#

Passing previous arguments to the handler

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, AllowMultiple = false,
Inherited = false)]
 public sealed class InterpolatedStringHandlerArgumentAttribute :
Attribute
 {
 public InterpolatedStringHandlerArgumentAttribute(string argument);
 public InterpolatedStringHandlerArgumentAttribute(params string[]
arguments);

 public string[] Arguments { get; }
 }
}

namespace System
{
 public sealed class String
 {
 public static string Format(IFormatProvider? provider,
[InterpolatedStringHandlerArgument("provider")] ref
DefaultInterpolatedStringHandler handler);
 …
 }
}

namespace System.Runtime.CompilerServices
{
 public ref struct DefaultInterpolatedStringHandler
 {
 public DefaultInterpolatedStringHandler(int baseLength, int

The questions we need to answer:

1. Do we like this pattern in general?
2. Do we want to allow these arguments to come from after the handler parameter?

Some existing patterns in the BCL, such as Utf8Formatter , put the value to be
formatted before the thing needed to format into. To fit in best with these patterns,
we'd likely want to allow this, but we need to decide if this out-of-order evaluate is
ok.

Answer:

We want to support this. The spec has been updated to reflect this. Arguments will be
required to be specified in lexical order at the call site, and if a needed argument to the
create method is specified after the interpolated string literal, an error is produced.

Because $"{await A()}" is a valid expression today, we need to rationalize how
interpolation holes with await. We could solve this with a few rules:

1. If an interpolated string used as a string , IFormattable , or FormattableString has
an await in an interpolation hole, fall back to old-style formatter.

2. If an interpolated string is subject to an implicit_string_handler_conversion and
applicable_interpolated_string_handler_type is a ref struct , await is not allowed
to be used in the format holes.

Fundamentally, this desugaring could use a ref struct in an async method as long as we
guarantee that the ref struct will not need to be saved to the heap, which should be
possible if we forbid awaits in the interpolation holes.

holeCount, IFormatProvider? provider); // additional factory
 …
 }
}

var formatted = string.Format(CultureInfo.InvariantCulture, $"{X} = {Y}");

// Is lowered to

var tmp1 = CultureInfo.InvariantCulture;
var handler = new DefaultInterpolatedStringHandler(3, 2, tmp1);
handler.AppendFormatted(X);
handler.AppendLiteral(" = ");
handler.AppendFormatted(Y);
var formatted = string.Format(tmp1, handler);

await usage in interpolation holes

Alternatively, we could simply make all handler types non-ref structs, including the
framework handler for interpolated strings. This would, however, preclude us from
someday recognizing a Span version that does not need to allocate any scratch space at
all.

Answer:

We will treat interpolated string handlers the same as any other type: this means that if
the handler type is a ref struct and the current context doesn't allow the usage of ref
structs, it is illegal to use handler here. The spec around lowering of string literals used
as strings is intentionally vague to allow the compiler to decide on what rules it deems
appropriate, but for custom handler types they will have to follow the same rules as the
rest of the language.

Some handlers might want to be passed as ref parameters (either in or ref). Should we
allow either? And if so, what will a ref handler look like? ref $"" is confusing, as you're
not actually passing the string by ref, you're passing the handler that is created from the
ref by ref, and has similar potential issues with async methods.

Answer:

We want to support this. The spec has been updated to reflect this. The rules should
reflect the same rules that apply to extension methods on value types.

Because this proposal makes interpolated strings context sensitive, we would like to
allow the compiler to treat a binary expression composed entirely of interpolated
strings, or an interpolated string subjected to a cast, as an interpolated string literal for
the purposes of overload resolution. For example, take the following scenario:

C#

Handlers as ref parameters

Interpolated strings through binary expressions and
conversions

struct Handler1
{
 public Handler1(int literalLength, int formattedCount, C c) => ...;
 // AppendX... methods as necessary
}
struct Handler2
{
 public Handler2(int literalLength, int formattedCount, C c) => ...;

This would be ambiguous, necessitating a cast to either Handler1 or Handler2 in order
to resolve. However, in making that cast, we would potentially throw away the
information that there is context from the method receiver, meaning that the cast would
fail because there is nothing to fill in the information of c . A similar issue arises with
binary concatenation of strings: the user could want to format the literal across several
lines to avoid line wrapping, but would not be able to because that would no longer be
an interpolated string literal convertible to the handler type.

To resolve these cases, we make the following changes:

An additive_expression composed entirely of interpolated_string_expressions and
using only + operators is considered to be an interpolated_string_literal for the
purposes of conversions and overload resolution. The final interpolated string is
created by logically concatinating all individual interpolated_string_expression
components, from left to right.
A cast_expression or a relational_expression with operator as whose operand is an
interpolated_string_expressions is considered an interpolated_string_expressions for
the purposes of conversions and overload resolution.

Open Questions:

Do we want to do this? We don't do this for System.FormattableString , for example, but
that can be broken out onto a different line, whereas this can be context-dependent and
therefore not able to be broken out into a different line. There are also no overload
resolution concerns with FormattableString and IFormattable .

Answer:

We think that this is a valid use case for additive expressions, but that the cast version is
not compelling enough at this time. We can add it later if necessary. The spec has been
updated to reflect this decision.

 // AppendX... methods as necessary
}

class C
{
 void M(Handler1 handler) => ...;
 void M(Handler2 handler) => ...;
}

c.M($"{X}"); // Ambiguous between the M overloads

Other use cases

See https://github.com/dotnet/runtime/issues/50635 for examples of proposed
handler APIs using this pattern.

https://github.com/dotnet/runtime/issues/50635

Constant Interpolated Strings
Article • 2022-08-24 • 3 minutes to read

Enables constants to be generated from interpolated strings of type string constant.

The following code is already legal:

However, there have been many community requests to make the following also legal:

This proposal represents the next logical step for constant string generation, where
existing string syntax that works in other situations is made to work for constants.

The following represent the updated specifications for constant expressions under this
new proposal. Current specifications from which this was directly based on can be found
in §11.20 .

Summary

Motivation

public class C
{
 const string S1 = "Hello world";
 const string S2 = "Hello" + " " + "World";
 const string S3 = S1 + " Kevin, welcome to the team!";
}

public class C
{
 const string S1 = $"Hello world";
 const string S2 = $"Hello{" "}World";
 const string S3 = $"{S1} Kevin, welcome to the team!";
}

Detailed design

Constant Expressions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1120-constant-expressions

A constant_expression is an expression that can be fully evaluated at compile-time.

antlr

A constant expression must be the null literal or a value with one of the following
types: sbyte , byte , short , ushort , int , uint , long , ulong , char , float , double ,
decimal , bool , object , string , or any enumeration type. Only the following constructs
are permitted in constant expressions:

Literals (including the null literal).
References to const members of class and struct types.
References to members of enumeration types.
References to const parameters or local variables
Parenthesized sub-expressions, which are themselves constant expressions.
Cast expressions, provided the target type is one of the types listed above.
checked and unchecked expressions
Default value expressions
Nameof expressions
The predefined + , - , ! , and ~ unary operators.
The predefined + , - , * , / , % , << , >> , & , | , ^ , && , || , == , != , < , > , <= , and >=
binary operators, provided each operand is of a type listed above.
The ?: conditional operator.
Interpolated strings ${} , provided that all components are constant expressions of
type string and all interpolated components lack alignment and format specifiers.

The following conversions are permitted in constant expressions:

Identity conversions
Numeric conversions
Enumeration conversions
Constant expression conversions
Implicit and explicit reference conversions, provided that the source of the
conversions is a constant expression that evaluates to the null value.

Other conversions including boxing, unboxing and implicit reference conversions of
non-null values are not permitted in constant expressions. For example:

C#

constant_expression
 : expression
 ;

the initialization of i is an error because a boxing conversion is required. The
initialization of str is an error because an implicit reference conversion from a non-null
value is required.

Whenever an expression fulfills the requirements listed above, the expression is
evaluated at compile-time. This is true even if the expression is a sub-expression of a
larger expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time
evaluation of non-constant expressions, except that where run-time evaluation would
have thrown an exception, compile-time evaluation causes a compile-time error to
occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that
occur in integral-type arithmetic operations and conversions during the compile-time
evaluation of the expression always cause compile-time errors (§11.20).

Constant expressions occur in the contexts listed below. In these contexts, a compile-
time error occurs if an expression cannot be fully evaluated at compile-time.

Constant declarations (§14.4).
Enumeration member declarations (§18.4).
Default arguments of formal parameter lists (§14.6.2)
case labels of a switch statement (§12.8.3).
goto case statements (§12.10.4).
Dimension lengths in an array creation expression (§11.7.15.5) that includes an
initializer.
Attributes (§21).

An implicit constant expression conversion (§10.2.11) permits a constant expression of
type int to be converted to sbyte , byte , short , ushort , uint , or ulong , provided the
value of the constant expression is within the range of the destination type.

class C
{
 const object i = 5; // error: boxing conversion not permitted
 const object str = "hello"; // error: implicit reference conversion
}

Drawbacks

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1120-constant-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#144-constants
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/enums.md#184-enum-members
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1462-method-parameters
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/statements.md#1283-the-switch-statement
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/statements.md#12104-the-goto-statement
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#117155-array-creation-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/attributes.md#21-attributes
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#10211-implicit-constant-expression-conversions

This proposal adds additional complexity to the compiler in exchange for broader
applicability of interpolated strings. As these strings are fully evaluated at compile time,
the valuable automatic formatting features of interpolated strings are less neccesary.
Most use cases can be largely replicated through the alternatives below.

The current + operator for string concatenation can combine strings in a similar manner
to the current proposal.

What parts of the design are still undecided?

Link to design notes that affect this proposal, and describe in one sentence for each
what changes they led to.

Alternatives

Unresolved questions

Design meetings

Lambda improvements
Article • 2022-02-23 • 13 minutes to read

Proposed changes:

1. Allow lambdas with attributes
2. Allow lambdas with explicit return type
3. Infer a natural delegate type for lambdas and method groups

Support for attributes on lambdas would provide parity with methods and local
functions.

Support for explicit return types would provide symmetry with lambda parameters
where explicit types can be specified. Allowing explicit return types would also provide
control over compiler performance in nested lambdas where overload resolution must
bind the lambda body currently to determine the signature.

A natural type for lambda expressions and method groups will allow more scenarios
where lambdas and method groups may be used without an explicit delegate type,
including as initializers in var declarations.

Requiring explicit delegate types for lambdas and method groups has been a friction
point for customers, and has become an impediment to progress in ASP.NET with recent
work on MapAction .

ASP.NET MapAction without proposed changes (MapAction() takes a System.Delegate
argument):

C#

ASP.NET MapAction with natural types for method groups:

Summary

Motivation

[HttpGet("/")] Todo GetTodo() => new(Id: 0, Name: "Name");
app.MapAction((Func<Todo>)GetTodo);

[HttpPost("/")] Todo PostTodo([FromBody] Todo todo) => todo;
app.MapAction((Func<Todo, Todo>)PostTodo);

https://github.com/dotnet/aspnetcore/pull/29878
https://github.com/dotnet/aspnetcore/pull/29878
https://github.com/dotnet/aspnetcore/pull/29878

C#

ASP.NET MapAction with attributes and natural types for lambda expressions:

C#

Attributes may be added to lambda expressions and lambda parameters. To avoid
ambiguity between method attributes and parameter attributes, a lambda expression
with attributes must use a parenthesized parameter list. Parameter types are not
required.

C#

Multiple attributes may be specified, either comma-separated within the same attribute
list or as separate attribute lists.

C#

Attributes are not supported for anonymous methods declared with delegate { }
syntax.

C#

[HttpGet("/")] Todo GetTodo() => new(Id: 0, Name: "Name");
app.MapAction(GetTodo);

[HttpPost("/")] Todo PostTodo([FromBody] Todo todo) => todo);
app.MapAction(PostTodo);

app.MapAction([HttpGet("/")] () => new Todo(Id: 0, Name: "Name"));
app.MapAction([HttpPost("/")] ([FromBody] Todo todo) => todo);

Attributes

f = [A] () => { }; // [A] lambda
f = [return:A] x => x; // syntax error at '=>'
f = [return:A] (x) => x; // [A] lambda
f = [A] static x => x; // syntax error at '=>'

f = ([A] x) => x; // [A] x
f = ([A] ref int x) => x; // [A] x

var f = [A1, A2][A3] () => { }; // ok
var g = ([A1][A2, A3] int x) => x; // ok

https://github.com/dotnet/aspnetcore/pull/29878

The parser will look ahead to differentiate a collection initializer with an element
assignment from a collection initializer with a lambda expression.

C#

The parser will treat ?[as the start of a conditional element access.

C#

Attributes on the lambda expression or lambda parameters will be emitted to metadata
on the method that maps to the lambda.

In general, customers should not depend on how lambda expressions and local
functions map from source to metadata. How lambdas and local functions are emitted
can, and has, changed between compiler versions.

The changes proposed here are targeted at the Delegate driven scenario. It should be
valid to inspect the MethodInfo associated with a Delegate instance to determine the
signature of the lambda expression or local function including any explicit attributes and
additional metadata emitted by the compiler such as default parameters. This allows
teams such as ASP.NET to make available the same behaviors for lambdas and local
functions as ordinary methods.

An explicit return type may be specified before the parenthesized parameter list.

C#

f = [A] delegate { return 1; }; // syntax error at 'delegate'
f = delegate ([A] int x) { return x; }; // syntax error at '['

var y = new C { [A] = x }; // ok: y[A] = x
var z = new C { [A] x => x }; // ok: z[0] = [A] x => x

x = b ? [A]; // ok
y = b ? [A] () => { } : z; // syntax error at '('

Explicit return type

f = T () => default; // ok
f = short x => 1; // syntax error at '=>'
f = ref int (ref int x) => ref x; // ok
f = static void (_) => { }; // ok
f = async async (async async) => async; // ok?

The parser will look ahead to differentiate a method call T() from a lambda expression
T () => e .

Explicit return types are not supported for anonymous methods declared with delegate
{ } syntax.

C#

Method type inference should make an exact inference from an explicit lambda return
type.

C#

Variance conversions are not allowed from lambda return type to delegate return type
(matching similar behavior for parameter types).

C#

The parser allows lambda expressions with ref return types within expressions without
additional parentheses.

C#

var cannot be used as an explicit return type for lambda expressions.

C#

f = delegate int { return 1; }; // syntax error
f = delegate int (int x) { return x; }; // syntax error

static void F<T>(Func<T, T> f) { ... }
F(int (i) => i); // Func<int, int>

Func<object> f1 = string () => null; // error
Func<object?> f2 = object () => x; // warning

d = ref int () => x; // d = (ref int () => x)
F(ref int () => x); // F((ref int () => x))

class var { }

d = var (var v) => v; // error: contextual keyword 'var' cannot
be used as explicit lambda return type
d = @var (var v) => v; // ok
d = ref var (ref var v) => ref v; // error: contextual keyword 'var' cannot

An anonymous function expression (§11.16) (a lambda expression or an anonymous
method) has a natural type if the parameters types are explicit and the return type is
either explicit or can be inferred (see §11.6.3.13).

A method group has a natural type if all candidate methods in the method group have a
common signature. (If the method group may include extension methods, the
candidates include the containing type and all extension method scopes.)

The natural type of an anonymous function expression or method group is a
function_type. A function_type represents a method signature: the parameter types and
ref kinds, and return type and ref kind. Anonymous function expressions or method
groups with the same signature have the same function_type.

Function_types are used in a few specific contexts only:

implicit and explicit conversions
method type inference (§11.6.3) and best common type (§11.6.3.15)
var initializers

A function_type exists at compile time only: function_types do not appear in source or
metadata.

From a function_type F there are implicit function_type conversions:

To a function_type G if the parameters and return types of F are variance-
convertible to the parameters and return type of G
To System.MulticastDelegate or base classes or interfaces of
System.MulticastDelegate

To System.Linq.Expressions.Expression or
System.Linq.Expressions.LambdaExpression

Anonymous function expressions and method groups already have conversions from
expression to delegate types and expression tree types (see anonymous function
conversions §10.7 and method group conversions §10.8). Those conversions are
sufficient for converting to strongly-typed delegate types and expression tree types. The

be used as explicit lambda return type
d = ref @var (ref var v) => ref v; // ok

Natural (function) type

Conversions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1116-anonymous-function-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116313-inferred-return-type
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1163-type-inference
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116315-finding-the-best-common-type-of-a-set-of-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#107-anonymous-function-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#108-method-group-conversions

function_type conversions above add conversions from type to the base types only:
System.MulticastDelegate , System.Linq.Expressions.Expression , etc.

There are no conversions to a function_type from a type other than a function_type.
There are no explicit conversions for function_types since function_types cannot be
referenced in source.

A conversion to System.MulticastDelegate or base type or interface realizes the
anonymous function or method group as an instance of an appropriate delegate type. A
conversion to System.Linq.Expressions.Expression<TDelegate> or base type realizes the
lambda expression as an expression tree with an appropriate delegate type.

C#

Function_type conversions are not implicit or explicit standard conversions §10.4 and
are not considered when determining whether a user-defined conversion operator is
applicable to an anonymous function or method group. From evaluation of user defined
conversions §10.5.3 :

For a conversion operator to be applicable, it must be possible to perform a
standard conversion (§10.4) from the source type to the operand type of the
operator, and it must be possible to perform a standard conversion from the result
type of the operator to the target type.

C#

A warning is reported for an implicit conversion of a method group to object , since the
conversion is valid but perhaps unintentional.

C#

Delegate d = delegate (object obj) { }; // Action<object>
Expression e = () => ""; // Expression<Func<string>>
object o = "".Clone; // Func<object>

class C
{
 public static implicit operator C(Delegate d) { ... }
}

C c;
c = () => 1; // error: cannot convert lambda expression to type 'C'
c = (C)(() => 2); // error: cannot convert lambda expression to type 'C'

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#104-standard-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#1053-evaluation-of-user-defined-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#104-standard-conversions

The existing rules for type inference are mostly unchanged (see §11.6.3). There are
however a couple of changes below to specific phases of type inference.

The first phase (§11.6.3.2) allows an anonymous function to bind to Ti even if Ti is
not a delegate or expression tree type (perhaps a type parameter constrained to
System.Delegate for instance).

For each of the method arguments Ei :

If Ei is an anonymous function and Ti is a delegate type or expression tree
type, an explicit parameter type inference is made from Ei to Ti and an
explicit return type inference is made from Ei to Ti .
Otherwise, if Ei has a type U and xi is a value parameter then a lower-bound
inference is made from U to Ti .
Otherwise, if Ei has a type U and xi is a ref or out parameter then an exact
inference is made from U to Ti .
Otherwise, no inference is made for this argument.

Explicit return type inference

An explicit return type inference is made from an expression E to a type T in the
following way:

If E is an anonymous function with explicit return type Ur and T is a
delegate type or expression tree type with return type Vr then an exact
inference (§11.6.3.9) is made from Ur to Vr .

Random r = new Random();
object obj;
obj = r.NextDouble; // warning: Converting method group to 'object'.
Did you intend to invoke the method?
obj = (object)r.NextDouble; // ok

Type inference

First phase

Fixing

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1163-type-inference
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11632-the-first-phase
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11639-exact-inferences

Fixing (§11.6.3.12) ensures other conversions are preferred over function_type
conversions. (Lambda expressions and method group expressions only contribute to
lower bounds so handling of function_types is needed for lower bounds only.)

An unfixed type variable Xi with a set of bounds is fixed as follows:

The set of candidate types Uj starts out as the set of all types in the set of
bounds for Xi where function types are ignored in lower bounds if there any
types that are not function types.
We then examine each bound for Xi in turn: For each exact bound U of Xi all
types Uj which are not identical to U are removed from the candidate set. For
each lower bound U of Xi all types Uj to which there is not an implicit
conversion from U are removed from the candidate set. For each upper bound
U of Xi all types Uj from which there is not an implicit conversion to U are
removed from the candidate set.
If among the remaining candidate types Uj there is a unique type V from
which there is an implicit conversion to all the other candidate types, then Xi
is fixed to V .
Otherwise, type inference fails.

Best common type (§11.6.3.15) is defined in terms of type inference so the type
inference changes above apply to best common type as well.

C#

Anonymous functions and method groups with function types can be used as initializers
in var declarations.

C#

Best common type

var fs = new[] { (string s) => s.Length; (string s) => int.Parse(s) } //
Func<string, int>[]

var

var f1 = () => default; // error: cannot infer type
var f2 = x => x; // error: cannot infer type
var f3 = () => 1; // System.Func<int>
var f4 = string () => null; // System.Func<string>
var f5 = delegate (object o) { }; // System.Action<object>

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116312-fixing
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#116315-finding-the-best-common-type-of-a-set-of-expressions

Function types are not used in assignments to discards.

C#

The delegate type for the anonymous function or method group with parameter types
P1, ..., Pn and return type R is:

if any parameter or return value is not by value, or there are more than 16
parameters, or any of the parameter types or return are not valid type arguments
(say, (int* p) => { }), then the delegate is a synthesized internal anonymous
delegate type with signature that matches the anonymous function or method
group, and with parameter names arg1, ..., argn or arg if a single parameter;
if R is void , then the delegate type is System.Action<P1, ..., Pn> ;
otherwise the delegate type is System.Func<P1, ..., Pn, R> .

The compiler may allow more signatures to bind to System.Action<> and System.Func<>
types in the future (if ref struct types are allowed type arguments for instance).

modopt() or modreq() in the method group signature are ignored in the corresponding
delegate type.

If two anonymous functions or method groups in the same compilation require
synthesized delegate types with the same parameter types and modifiers and the same
return type and modifiers, the compiler will use the same synthesized delegate type.

Better function member (§11.6.4.3) is updated to prefer members where none of the
conversions and none of the type arguments involved inferred types from lambda

static void F1() { }
static void F1<T>(this T t) { }
static void F2(this string s) { }

var f6 = F1; // error: multiple methods
var f7 = "".F1; // System.Action
var f8 = F2; // System.Action<string>

d = () => 0; // ok
_ = () => 1; // error

Delegate types

Overload resolution

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11643-better-function-member

expressions or method groups.

Better function member

... Given an argument list A with a set of argument expressions {E1, E2, ..., En}
and two applicable function members Mp and Mq with parameter types {P1, P2,
..., Pn} and {Q1, Q2, ..., Qn} , Mp is defined to be a better function member
than Mq if

1. for each argument, the implicit conversion from Ex to Px is not a
function_type_conversion, and

Mp is a non-generic method or Mp is a generic method with type
parameters {X1, X2, ..., Xp} and for each type parameter Xi the type
argument is inferred from an expression or from a type other than a
function_type, and
for at least one argument, the implicit conversion from Ex to Qx is a
function_type_conversion, or Mq is a generic method with type
parameters {Y1, Y2, ..., Yq} and for at least one type parameter Yi
the type argument is inferred from a function_type, or

2. for each argument, the implicit conversion from Ex to Qx is not better than
the implicit conversion from Ex to Px , and for at least one argument, the
conversion from Ex to Px is better than the conversion from Ex to Qx .

Better conversion from expression (§11.6.4.4) is updated to prefer conversions that did
not involve inferred types from lambda expressions or method groups.

Better conversion from expression

Given an implicit conversion C1 that converts from an expression E to a type T1 ,
and an implicit conversion C2 that converts from an expression E to a type T2 , C1
is a better conversion than C2 if:

1. C1 is not a function_type_conversion and C2 is a function_type_conversion, or
2. E is a non-constant interpolated_string_expression, C1 is an

implicit_string_handler_conversion, T1 is an
applicable_interpolated_string_handler_type, and C2 is not an
implicit_string_handler_conversion, or

3. E does not exactly match T2 and at least one of the following holds:

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression

E exactly matches T1 (§11.6.4.4)
T1 is a better conversion target than T2 (§11.6.4.6)

antlr

Should default values be supported for lambda expression parameters for
completeness?

Should System.Diagnostics.ConditionalAttribute be disallowed on lambda expressions
since there are few scenarios where a lambda expression could be used conditionally?

C#

Should the function_type be available from the compiler API, in addition to the resulting
delegate type?

Currently, the inferred delegate type uses System.Action<> or System.Func<> when
parameter and return types are valid type arguments and there are no more than 16
parameters, and if the expected Action<> or Func<> type is missing, an error is reported.
Instead, should the compiler use System.Action<> or System.Func<> regardless of arity?
And if the expected type is missing, synthesize a delegate type otherwise?

Syntax

lambda_expression
 : modifier* identifier '=>' (block | expression)
 | attribute_list* modifier* type? lambda_parameters '=>' (block |
expression)
 ;

lambda_parameters
 : lambda_parameter
 | '(' (lambda_parameter (',' lambda_parameter)*)? ')'
 ;

lambda_parameter
 : identifier
 | attribute_list* modifier* type? identifier equals_value_clause?
 ;

Open issues

([Conditional("DEBUG")] static (x, y) => Assert(x == y))(a, b); // ok?

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11644-better-conversion-from-expression
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11646-better-conversion-target

CallerArgumentExpression
Article • 2022-05-03 • 7 minutes to read

Allow developers to capture the expressions passed to a method, to enable better error
messages in diagnostic/testing APIs and reduce keystrokes.

When an assertion or argument validation fails, the developer wants to know as much as
possible about where and why it failed. However, today's diagnostic APIs do not fully
facilitate this. Consider the following method:

C#

When one of the asserts fail, only the filename, line number, and method name will be
provided in the stack trace. The developer will not be able to tell which assert failed
from this information-- they will have to open the file and navigate to the provided line
number to see what went wrong.

This is also the reason testing frameworks have to provide a variety of assert methods.
With xUnit, Assert.True and Assert.False are not frequently used because they do not
provide enough context about what failed.

While the situation is a bit better for argument validation because the names of invalid
arguments are shown to the developer, the developer must pass these names to
exceptions manually. If the above example were rewritten to use traditional argument
validation instead of Debug.Assert , it would look like

C#

Summary

Motivation

T Single<T>(this T[] array)
{
 Debug.Assert(array != null);
 Debug.Assert(array.Length == 1);

 return array[0];
}

T Single<T>(this T[] array)
{

Notice that nameof(array) must be passed to each exception, although it's already clear
from context which argument is invalid.

In the above examples, including the string "array != null" or "array.Length == 1" in
the assert message would help the developer determine what failed. Enter
CallerArgumentExpression : it's an attribute the framework can use to obtain the string
associated with a particular method argument. We would add it to Debug.Assert like so

C#

The source code in the above example would stay the same. However, the code the
compiler actually emits would correspond to

C#

 if (array == null)
 {
 throw new ArgumentNullException(nameof(array));
 }

 if (array.Length != 1)
 {
 throw new ArgumentException("Array must contain a single element.",
nameof(array));
 }

 return array[0];
}

Detailed design

public static class Debug
{
 public static void Assert(bool condition,
[CallerArgumentExpression("condition")] string message = null);
}

T Single<T>(this T[] array)
{
 Debug.Assert(array != null, "array != null");
 Debug.Assert(array.Length == 1, "array.Length == 1");

 return array[0];
}

The compiler specially recognizes the attribute on Debug.Assert . It passes the string
associated with the argument referred to in the attribute's constructor (in this case,
condition) at the call site. When either assert fails, the developer will be shown the
condition that was false and will know which one failed.

For argument validation, the attribute cannot be used directly, but can be made use of
through a helper class:

C#

public static class Verify
{
 public static void Argument(bool condition, string message,
[CallerArgumentExpression("condition")] string conditionExpression = null)
 {
 if (!condition) throw new ArgumentException(message: message,
paramName: conditionExpression);
 }

 public static void InRange(int argument, int low, int high,
 [CallerArgumentExpression("argument")] string argumentExpression =
null,
 [CallerArgumentExpression("low")] string lowExpression = null,
 [CallerArgumentExpression("high")] string highExpression = null)
 {
 if (argument < low)
 {
 throw new ArgumentOutOfRangeException(paramName:
argumentExpression,
 message: $"{argumentExpression} ({argument}) cannot be less
than {lowExpression} ({low}).");
 }

 if (argument > high)
 {
 throw new ArgumentOutOfRangeException(paramName:
argumentExpression,
 message: $"{argumentExpression} ({argument}) cannot be
greater than {highExpression} ({high}).");
 }
 }

 public static void NotNull<T>(T argument,
[CallerArgumentExpression("argument")] string argumentExpression = null)
 where T : class
 {
 if (argument == null) throw new ArgumentNullException(paramName:
argumentExpression);
 }
}

T Single<T>(this T[] array)

A proposal to add such a helper class to the framework is underway at
https://github.com/dotnet/corefx/issues/17068 . If this language feature was
implemented, the proposal could be updated to take advantage of this feature.

The this parameter in an extension method may be referenced by
CallerArgumentExpression . For example:

C#

thisExpression will receive the expression corresponding to the object before the dot. If
it's called with static method syntax, e.g. Ext.ShouldBe(contestant.Points, 1337) , it will
behave as if first parameter wasn't marked this .

There should always be an expression corresponding to the this parameter. Even if an
instance of a class calls an extension method on itself, e.g. this.Single() from inside a
collection type, the this is mandated by the compiler so "this" will get passed. If this
rule is changed in the future, we can consider passing null or the empty string.

{
 Verify.NotNull(array); // paramName: "array"
 Verify.Argument(array.Length == 1, "Array must contain a single
element."); // paramName: "array.Length == 1"

 return array[0];
}

T ElementAt(this T[] array, int index)
{
 Verify.NotNull(array); // paramName: "array"
 // paramName: "index"
 // message: "index (-1) cannot be less than 0 (0).", or
 // "index (6) cannot be greater than array.Length - 1 (5)."
 Verify.InRange(index, 0, array.Length - 1);

 return array[index];
}

Extension methods

public static void ShouldBe<T>(this T @this, T expected,
[CallerArgumentExpression("this")] string thisExpression = null) {}

contestant.Points.ShouldBe(1337); // thisExpression: "contestant.Points"

Extra details

https://github.com/dotnet/corefx/issues/17068

Like the other Caller* attributes, such as CallerMemberName , this attribute may
only be used on parameters with default values.
Multiple parameters marked with CallerArgumentExpression are permitted, as
shown above.
The attribute's namespace will be System.Runtime.CompilerServices .
If null or a string that is not a parameter name (e.g. "notAParameterName") is
provided, the compiler will pass in an empty string.
The type of the parameter CallerArgumentExpressionAttribute is applied to must
have a standard conversion from string . This means no user-defined conversions
from string are allowed, and in practice means the type of such a parameter must
be string , object , or an interface implemented by string .

People who know how to use decompilers will be able to see some of the source
code at call sites for methods marked with this attribute. This may be
undesirable/unexpected for closed-source software.

Although this is not a flaw in the feature itself, a source of concern may be that
there exists a Debug.Assert API today that only takes a bool . Even if the overload
taking a message had its second parameter marked with this attribute and made
optional, the compiler would still pick the no-message one in overload resolution.
Therefore, the no-message overload would have to be removed to take advantage
of this feature, which would be a binary (although not source) breaking change.

If being able to see source code at call sites for methods that use this attribute
proves to be a problem, we can make the attribute's effects opt-in. Developers will
enable it through an assembly-wide [assembly: EnableCallerArgumentExpression]
attribute they put in AssemblyInfo.cs .

In the case the attribute's effects are not enabled, calling methods marked with
the attribute would not be an error, to allow existing methods to use the
attribute and maintain source compatibility. However, the attribute would be
ignored and the method would be called with whatever default value was
provided.

C#

Drawbacks

Alternatives

To prevent the binary compatibility problem from occurring every time we want to
add new caller info to Debug.Assert , an alternative solution would be to add a
CallerInfo struct to the framework that contains all the necessary information
about the caller.

C#

// Assembly1

void Foo(string bar); // V1
void Foo(string bar, string barExpression = "not provided"); // V2
void Foo(string bar, [CallerArgumentExpression("bar")] string barExpression
= "not provided"); // V3

// Assembly2

Foo(a); // V1: Compiles to Foo(a), V2, V3: Compiles to Foo(a, "not
provided")
Foo(a, "provided"); // V2, V3: Compiles to Foo(a, "provided")

// Assembly3

[assembly: EnableCallerArgumentExpression]

Foo(a); // V1: Compiles to Foo(a), V2: Compiles to Foo(a, "not provided"),
V3: Compiles to Foo(a, "a")
Foo(a, "provided"); // V2, V3: Compiles to Foo(a, "provided")

struct CallerInfo
{
 public string MemberName { get; set; }
 public string TypeName { get; set; }
 public string Namespace { get; set; }
 public string FullTypeName { get; set; }
 public string FilePath { get; set; }
 public int LineNumber { get; set; }
 public int ColumnNumber { get; set; }
 public Type Type { get; set; }
 public MethodBase Method { get; set; }
 public string[] ArgumentExpressions { get; set; }
}

[Flags]
enum CallerInfoOptions
{
 MemberName = 1, TypeName = 2, ...
}

public static class Debug
{
 public static void Assert(bool condition,

This was originally proposed at https://github.com/dotnet/csharplang/issues/87 .

There are a few disadvantages of this approach:

Despite being pay-for-play friendly by allowing you to specify which properties
you need, it could still hurt perf significantly by allocating an array for the
expressions/calling MethodBase.GetCurrentMethod even when the assert passes.

Additionally, while passing a new flag to the CallerInfo attribute won't be a
breaking change, Debug.Assert won't be guaranteed to actually receive that new
parameter from call sites that compiled against an old version of the method.

TBD

 // If a flag is not set here, the corresponding CallerInfo member is
not populated by the caller, so it's
 // pay-for-play friendly.
 [CallerInfo(CallerInfoOptions.FilePath | CallerInfoOptions.Method |
CallerInfoOptions.ArgumentExpressions)] CallerInfo callerInfo =
default(CallerInfo))
 {
 string filePath = callerInfo.FilePath;
 MethodBase method = callerInfo.Method;
 string conditionExpression = callerInfo.ArgumentExpressions[0];
 ...
 }
}

class Bar
{
 void Foo()
 {
 Debug.Assert(false);

 // Translates to:

 var callerInfo = new CallerInfo();
 callerInfo.FilePath = @"C:\Bar.cs";
 callerInfo.Method = MethodBase.GetCurrentMethod();
 callerInfo.ArgumentExpressions = new string[] { "false" };
 Debug.Assert(false, callerInfo);
 }
}

Unresolved questions

Design meetings

https://github.com/dotnet/csharplang/issues/87

N/A

Enhanced #line directives
Article • 2022-06-04 • 8 minutes to read

The compiler applies the mapping defined by #line directives to diagnostic locations
and sequence points emitted to the PDB.

Currently only the line number and file path can be mapped while the starting character
is inferred from the source code. The proposal is to allow specifying full span mapping.

DSLs that generate C# source code (such as ASP.NET Razor) can't currently produce
precise source mapping using #line directives. This results in degraded debugging
experience in some cases as the sequence points emitted to the PDB can't map to the
precise location in the original source code.

For example, the following Razor code

generates code like so (simplified):

C#

The above directive would map the sequence point emitted by the compiler for the
_builder.Add(DateTime.Now); statement to the line 2, but the column would be off (16
instead of 7).

Summary

Motivation

@page "/"
Time: @DateTime.Now

#line hidden
void Render()
{
 _builder.Add("Time:");
#line 2 "page.razor"
 _builder.Add(DateTime.Now);
#line hidden
}

The Razor source generator actually incorrectly generates the following code:

C#

The intent was to preserve the starting character and it works for diagnostic location
mapping. However, this does not work for sequence points since #line directive only
applies to the sequence points that follow it. There is no sequence point in the middle of
the _builder.Add(DateTime.Now); statement (sequence points can only be emitted at IL
instructions with empty evaluation stack). The #line 2 directive in above code thus has
no effect on the generated PDB and the debugger won't place a breakpoint or stop on
the @DateTime.Now snippet in the Razor page.

Issues addressed by this proposal: https://github.com/dotnet/roslyn/issues/43432
https://github.com/dotnet/roslyn/issues/46526

We amend the syntax of line_indicator used in pp_line directive like so:

Current:

Proposed:

#line hidden
void Render()
{
 _builder.Add("Time:");
 _builder.Add(
#line 2 "page.razor"
 DateTime.Now
#line hidden
);
}

Detailed design

line_indicator
 : decimal_digit+ whitespace file_name
 | decimal_digit+
 | 'default'
 | 'hidden'
 ;

https://github.com/dotnet/roslyn/issues/43432
https://github.com/dotnet/roslyn/issues/46526

That is, the #line directive would accept either 5 decimal numbers (start line, start
character, end line, end character, character offset), 4 decimal numbers (start line, start
character, end line, end character), or a single one (line).

If character offset is not specified its default value is 0, otherwise it specifies the number
of UTF-16 characters. The number must be non-negative and less then length of the line
following the #line directive in the unmapped file.

(start line, start character)-(end line, end character) specifies a span in the mapped file.
start line and end line are positive integers that specify line numbers. start character, end
character are positive integers that specify UTF-16 character numbers. start line, start
character, end line, end character are 1-based, meaning that the first line of the file and
the first UTF-16 character on each line is assigned number 1.

The implementation would constraint these numbers so that they specify a valid
sequence point source span :

start line - 1 is within range [0, 0x20000000) and not equal to 0xfeefee.
end line - 1 is within range [0, 0x20000000) and not equal to 0xfeefee.
start character - 1 is within range [0, 0x10000)
end character - 1 is within range [0, 0x10000)
end line is greater or equal to start line.
start line is equal to end line then end character is greater than start character.

Note that the numbers specified in the directive syntax are 1-based numbers but
the actual spans in the PDB are zero-based. Hence the -1 adjustments above.

The mapped spans of sequence points and the locations of diagnostics that #line
directive applies to are calculated as follows.

Let d be the zero-based number of the unmapped line containing the #line directive.
Let span L = (start: (start line - 1, start character - 1), end: (end line - 1, end character - 1))

line_indicator
 : '(' decimal_digit+ ',' decimal_digit+ ')' '-' '(' decimal_digit+ ','
decimal_digit+ ')' whitespace decimal_digit+ whitespace file_name
 | '(' decimal_digit+ ',' decimal_digit+ ')' '-' '(' decimal_digit+ ','
decimal_digit+ ')' whitespace file_name
 | decimal_digit+ whitespace file_name
 | decimal_digit+
 | 'default'
 | 'hidden'
 ;

https://github.com/dotnet/runtime/blob/main/docs/design/specs/PortablePdb-Metadata.md#sequence-points-blob

be zero-based span specified by the directive.

Function M that maps a position (line, character) within the scope of the #line directive
in the source file containing the #line directive to a mapped position (mapped line,
mapped character) is defined as follows:

M(l, c) =

l = d + 1 => (L.start.line + l – d – 1, L.start.character + max(c – character offset, 0)) l > d +
1 => (L.start.line + l – d – 1, c)

The syntax constructs that sequence points are associated with are determined by the
compiler implementation and not covered by this specification. The compiler also
decides for each sequence point its unmapped span. This span may partially or fully
cover the associated syntax construct.

Once the unmapped spans are determined by the compiler the function M defined
above is applied to their starting and ending positions, with the exception of the ending
position of all sequence points within the scope of the #line directive whose unmapped
location is at line d + 1 and character less than character offset. The end position of all
these sequence points is L.end.

Example [5.i] demonstrates why it is necessary to provide the ability to specify the
end position of the first sequence point span.

The above definition allows the generator of the unmapped source code to avoid
intimate knowledge of which exact source constructs of the C# language produce
sequence points. The mapped spans of the sequence points in the scope of the
#line directive are derived from the relative position of the corresponding
unmapped spans to the first unmapped span.

Specifying the character offset allows the generator to insert any single-line prefix on
the first line. This prefix is generated code that is not present in the mapped file.
Such inserted prefix affects the value of the first unmapped sequence point span.
Therefore the starting character of subsequent sequence point spans need to be
offset by the length of the prefix (character offset). See example [2].

For clarity the examples use spanof('...') and lineof('...') pseudo-syntax to
express the mapped span start position and line number, respectively, of the specified
code snippet.

Consider the following code with unmapped zero-based line numbers listed on the
right:

d = 3 L = (0, 9)..(0, 14)

There are 4 sequence point spans the directive applies to with following unmapped and
mapped spans: (4, 2)..(4, 5) => (0, 9)..(0, 14) (4, 6)..(5, 1) => (0, 15)..(1, 1) (5, 2)..(5, 5) =>
(1, 2)..(1, 5) (6, 4)..(6, 7) => (2, 4)..(2, 7)

Razor generates _builder.Add(prefix of length 15 (including two leading spaces).

Examples

1. First and subsequent spans

#line (1,10)-(1,15) "a" // 3
 A();B(// 4
);C(); // 5
 D(); // 6

2. Character offset

Razor:

Generated C#:

C#

d = 4 L = (1, 1)..(3,0) character offset = 15

Spans:

_builder.Add(F(…)); => F(…) : (5, 2)..(7, 2) => (1, 1)..(3, 0)
1+1 => 1+1 : (5, 23)..(5, 25) => (1, 9)..(1, 11)
2+2 => 2+2 : (6, 7)..(6, 9) => (2, 7)..(2, 9)

Razor:

Generated C#:

C#

@page "/"
@F(() => 1+1,
 () => 2+2
)

#line hidden
void Render()
{
#line spanof('F(...)') 15 "page.razor" // 4
 _builder.Add(F(() => 1+1, // 5
 () => 2+2 // 6
)); // 7
#line hidden
}
);
}

3. Razor: Single-line span

@page "/"
Time: @DateTime.Now

Razor:

Generated C#:

C#

#line hidden
void Render()
{
 _builder.Add("Time:");
#line spanof('DateTime.Now') 15 "page.razor"
 _builder.Add(DateTime.Now);
#line hidden
);
}

4. Razor: Multi-line span

@page "/"
@JsonToHtml(@"
{
 ""key1"": "value1",
 ""key2"": "value2"
}")

#line hidden
void Render()
{
 _builder.Add("Time:");
#line spanof('JsonToHtml(@"...")') 15 "page.razor"
 _builder.Add(JsonToHtml(@"
{
 ""key1"": "value1",
 ""key2"": "value2"
}"));
#line hidden
}
);
}

5. Razor: block constructs

i. block containing expressions

In this example, the mapped span of the first sequence point that is associated with the
IL instruction that is emitted for the _builder.Add(Html.Helper(() => statement needs
to cover the whole expression of Html.Helper(...) in the generated file a.razor . This is
achieved by application of rule [1] to the end position of the sequence point.

C#

Uses existing #line line file form since

a) Razor does not add any prefix, b) { is not present in the generated file and there
can't be a sequence point placed on it, therefore the span of the first unmapped
sequence point is unknown to Razor.

The starting character of Console in the generated file must be aligned with the Razor
file.

C#

@Html.Helper(() =>
{
 <p>Hello World</p>
 @DateTime.Now
})

#line spanof('Html.Helper(() => { ... })') 13 "a.razor"
_builder.Add(Html.Helper(() =>
#line lineof('{') "a.razor"
{
#line spanof('DateTime.Now') 13 "a.razor"
_builder.Add(DateTime.Now);
#line lineof('}') "a.razor"
}
#line hidden
)

ii. block containing statements

@{Console.WriteLine(1);Console.WriteLine(2);}

#line lineof('@{') "a.razor"
 Console.WriteLine(1);Console.WriteLine(2);
#line hidden

Uses existing #line line file form since

a) Razor does not add any prefix, b) { is not present in the generated file and there
can't be a sequence point placed on it, therefore the span of the first unmapped
sequence point is unknown to Razor.

The starting character of [Parameter] in the generated file must be aligned with the
Razor file.

C#

Uses existing #line line file form since a) Razor does not add any prefix. b) the span
of the first unmapped sequence point may not be known to Razor (or shouldn't need to
know).

The starting character of the keyword in the generated file must be aligned with the
Razor file.

iii. block containing top-level code (@code, @functions)

@code {
 [Parameter]
 public int IncrementAmount { get; set; }
}

#line lineof('[') "a.razor"
 [Parameter]
 public int IncrementAmount { get; set; }
#line hidden

6. Razor: @for , @foreach , @while , @do , @if , @switch , @using , @try ,
@lock

@for (var i = 0; i < 10; i++)
{
}
@if (condition)
{
}
else

C#

{
}

#line lineof('for') "a.razor"
 for (var i = 0; i < 10; i++)
{
}
#line lineof('if') "a.razor"
 if (condition)
{
}
else
{
}
#line hidden

Improved Definite Assignment Analysis
Article • 2022-05-29 • 13 minutes to read

Definite assignment §9.4 as specified has a few gaps which have caused users
inconvenience. In particular, scenarios involving comparison to boolean constants,
conditional-access, and null coalescing.

csharplang discussion of this proposal:
https://github.com/dotnet/csharplang/discussions/4240

Probably a dozen or so user reports can be found via this or similar queries (i.e. search
for "definite assignment" instead of "CS0165", or search in csharplang).
https://github.com/dotnet/roslyn/issues?
q=is%3Aclosed+is%3Aissue+label%3A%22Resolution-By+Design%22+cs0165

I have included related issues in the scenarios below to give a sense of the relative
impact of each scenario.

As a point of reference, let's start with a well-known "happy case" that does work in
definite assignment and in nullable.

C#

Summary

Related discussions and issues

Scenarios

#nullable enable

C c = new C();
if (c != null && c.M(out object obj0))
{
 obj0.ToString(); // ok
}

public class C
{
 public bool M(out object obj)
 {
 obj = new object();
 return true;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#94-definite-assignment
https://github.com/dotnet/csharplang/discussions/4240
https://github.com/dotnet/roslyn/issues?q=is%3Aclosed+is%3Aissue+label%3A%22Resolution-By+Design%22+cs0165

https://github.com/dotnet/csharplang/discussions/801
https://github.com/dotnet/roslyn/issues/45582

Links to 4 other issues where people were affected by this.

C#

https://github.com/dotnet/roslyn/issues/33559
https://github.com/dotnet/csharplang/discussions/4214
https://github.com/dotnet/csharplang/issues/3659
https://github.com/dotnet/csharplang/issues/3485
https://github.com/dotnet/csharplang/issues/3659

This scenario is probably the biggest one. We do support this in nullable but not in
definite assignment.

C#

https://github.com/dotnet/csharplang/discussions/916

 }
}

Comparison to bool constant

if ((c != null && c.M(out object obj1)) == true)
{
 obj1.ToString(); // undesired error
}

if ((c != null && c.M(out object obj2)) is true)
{
 obj2.ToString(); // undesired error
}

Comparison between a conditional access and a constant
value

if (c?.M(out object obj3) == true)
{
 obj3.ToString(); // undesired error
}

Conditional access coalesced to a bool constant

https://github.com/dotnet/csharplang/discussions/801
https://github.com/dotnet/roslyn/issues/45582
https://github.com/dotnet/roslyn/issues/33559
https://github.com/dotnet/csharplang/discussions/4214
https://github.com/dotnet/csharplang/issues/3659
https://github.com/dotnet/csharplang/issues/3485
https://github.com/dotnet/csharplang/issues/3659
https://github.com/dotnet/csharplang/discussions/916

https://github.com/dotnet/csharplang/issues/3365

This scenario is very similar to the previous one. This is also supported in nullable but
not in definite assignment.

C#

https://github.com/dotnet/roslyn/issues/4272

It's worth pointing out that we already have special behavior for when the condition
expression is constant (i.e. true ? a : b). We just unconditionally visit the arm indicated
by the constant condition and ignore the other arm.

Also note that we haven't handled this scenario in nullable.

C#

We introduce a new section ?. (null-conditional operator) expressions. See the null-
conditional operator specification (§11.7.7)and Precise rules for determining definite
assignment §9.4.4 for context.

As in the definite assignment rules linked above, we refer to a given initially unassigned
variable as v.

We introduce the concept of "directly contains". An expression E is said to "directly
contain" a subexpression E if it is not subject to a user-defined conversion §10.5

if (c?.M(out object obj4) ?? false)
{
 obj4.ToString(); // undesired error
}

Conditional expressions where one arm is a bool constant

if (c != null ? c.M(out object obj4) : false)
{
 obj4.ToString(); // undesired error
}

Specification

?. (null-conditional operator) expressions

1

https://github.com/dotnet/csharplang/issues/3365
https://github.com/dotnet/roslyn/issues/4272
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1177-null-conditional-member-access
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#944-precise-rules-for-determining-definite-assignment
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#105-user-defined-conversions

whose parameter is not of a non-nullable value type, and one of the following
conditions holds:

E is E . For example, a?.b() directly contains the expression a?.b() .
If E is a parenthesized expression (E2) , and E directly contains E .
If E is a null-forgiving operator expression E2! , and E directly contains E .
If E is a cast expression (T)E2 , and the cast does not subject E to a non-lifted
user-defined conversion whose parameter is not of a non-nullable value type, and
E directly contains E .

For an expression E of the form primary_expression null_conditional_operations , let E
be the expression obtained by textually removing the leading ? from each of the
null_conditional_operations of E that have one, as in the linked specification above.

In subsequent sections we will refer to E as the non-conditional counterpart to the null-
conditional expression. Note that some expressions in subsequent sections are subject
to additional rules that only apply when one of the operands directly contains a null-
conditional expression.

The definite assignment state of v at any point within E is the same as the definite
assignment state at the corresponding point within E0.
The definite assignment state of v after E is the same as the definite assignment
state of v after primary_expression.

We use the concept of "directly contains" to allow us to skip over relatively simple
"wrapper" expressions when analyzing conditional accesses that are compared to other
values. For example, ((a?.b(out x))!) == true is expected to result in the same flow
state as a?.b == true in general.

We also want to allow analysis to function in the presence of a number of possible
conversions on a conditional access. Propagating out "state when not null" is not
possible when the conversion is user-defined, though, since we can't count on user-
defined conversions to honor the constraint that the output is non-null only if the input
is non-null. The only exception to this is when the user-defined conversion's input is a
non-nullable value type. For example:

C#

1

2 1

2 1

2

2 1

0

0

Remarks

public struct S1 { }
public struct S2 { public static implicit operator S2?(S1 s1) => null; }

This also includes lifted conversions like the following:

C#

When we consider whether a variable is assigned at a given point within a null-
conditional expression, we simply assume that any preceding null-conditional
operations within the same null-conditional expression succeeded.

For example, given a conditional expression a?.b(out x)?.c(x) , the non-conditional
counterpart is a.b(out x).c(x) . If we want to know the definite assignment state of x
before ?.c(x) , for example, then we perform a "hypothetical" analysis of a.b(out x)
and use the resulting state as an input to ?.c(x) .

We introduce a new section "Boolean constant expressions":

For an expression expr where expr is a constant expression with a bool value:

The definite assignment state of v after expr is determined by:
If expr is a constant expression with value true, and the state of v before expr is
"not definitely assigned", then the state of v after expr is "definitely assigned
when false".
If expr is a constant expression with value false, and the state of v before expr is
"not definitely assigned", then the state of v after expr is "definitely assigned
when true".

string x;

S1? s1 = null;
_ = s1?.M1(x = "a") ?? s1.Value.M2(x = "a");

x.ToString(); // ok

public struct S1
{
 public S1 M1(object obj) => this;
 public S2 M2(object obj) => new S2();
}
public struct S2
{
 public static implicit operator S2(S1 s1) => null;
}

Boolean constant expressions

Remarks

We assume that if an expression has a constant value bool false , for example, it's
impossible to reach any branch that requires the expression to return true . Therefore
variables are assumed to be definitely assigned in such branches. This ends up
combining nicely with the spec changes for expressions like ?? and ?: and enabling a
lot of useful scenarios.

It's also worth noting that we never expect to be in a conditional state before visiting a
constant expression. That's why we do not account for scenarios such as "expr is a
constant expression with value true, and the state of v before expr is "definitely assigned
when true".

We augment section §9.4.4.29 as follows:

For an expression expr of the form expr_first ?? expr_second :

...
The definite assignment state of v after expr is determined by:

...
If expr_first directly contains a null-conditional expression E, and v is definitely
assigned after the non-conditional counterpart E , then the definite assignment
state of v after expr is the same as the definite assignment state of v after
expr_second.

The above rule formalizes that for an expression like a?.M(out x) ?? (x = false) , either
the a?.M(out x) was fully evaluated and produced a non-null value, in which case x was
assigned, or the x = false was evaluated, in which case x was also assigned. Therefore
x is always assigned after this expression.

This also handles the dict?.TryGetValue(key, out var value) ?? false scenario, by
observing that v is definitely assigned after dict.TryGetValue(key, out var value) , and
v is "definitely assigned when true" after false , and concluding that v must be
"definitely assigned when true".

The more general formulation also allows us to handle some more unusual scenarios,
such as:

if (x?.M(out y) ?? (b && z.M(out y))) y.ToString();

if (x?.M(out y) ?? z?.M(out y) ?? false) y.ToString();

?? (null-coalescing expressions) augment

0

Remarks

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#94429--expressions

We augment section §9.4.4.30 as follows:

For an expression expr of the form expr_cond ? expr_true : expr_false :

...
The definite assignment state of v after expr is determined by:

...
If the state of v after expr_true is "definitely assigned when true", and the state
of v after expr_false is "definitely assigned when true", then the state of v after
expr is "definitely assigned when true".
If the state of v after expr_true is "definitely assigned when false", and the state
of v after expr_false is "definitely assigned when false", then the state of v after
expr is "definitely assigned when false".

This makes it so when both arms of a conditional expression result in a conditional state,
we join the corresponding conditional states and propagate it out instead of unsplitting
the state and allowing the final state to be non-conditional. This enables scenarios like
the following:

C#

This is an admittedly niche scenario, that compiles without error in the native compiler,
but was broken in Roslyn in order to match the specification at the time. See internal
issue .

We introduce a new section ==/!= (relational equality operator) expressions.

?: (conditional) expressions

Remarks

bool b = true;
object x = null;
int y;
if (b ? x != null && Set(out y) : x != null && Set(out y))
{
 y.ToString();
}

bool Set(out int x) { x = 0; return true; }

==/!= (relational equality operator) expressions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#94430--expressions
https://vstfdevdiv.corp.microsoft.com/DevDiv2/DevDiv/_workitems/edit/529603

The general rules for expressions with embedded expressions §9.4.4.23 apply, except
for the scenarios described below.

For an expression expr of the form expr_first == expr_second , where == is a[predefined
comparison operator (§11.11) or a lifted operator (§11.4.8), the definite assignment
state of v after expr is determined by:

If expr_first directly contains a null-conditional expression E and expr_second is a
constant expression with value null, and the state of v after the non-conditional
counterpart E is "definitely assigned", then the state of v after expr is "definitely
assigned when false".
If expr_first directly contains a null-conditional expression E and expr_second is an
expression of a non-nullable value type, or a constant expression with a non-null
value, and the state of v after the non-conditional counterpart E is "definitely
assigned", then the state of v after expr is "definitely assigned when true".
If expr_first is of type boolean, and expr_second is a constant expression with value
true, then the definite assignment state after expr is the same as the definite
assignment state after expr_first.
If expr_first is of type boolean, and expr_second is a constant expression with value
false, then the definite assignment state after expr is the same as the definite
assignment state of v after the logical negation expression !expr_first .

For an expression expr of the form expr_first != expr_second , where != is a predefined
comparison operator (§11.11) or a lifted operator ((§11.4.8)), the definite assignment
state of v after expr is determined by:

If expr_first directly contains a null-conditional expression E and expr_second is a
constant expression with value null, and the state of v after the non-conditional
counterpart E is "definitely assigned", then the state of v after expr is "definitely
assigned when true".
If expr_first directly contains a null-conditional expression E and expr_second is an
expression of a non-nullable value type, or a constant expression with a non-null
value, and the state of v after the non-conditional counterpart E is "definitely
assigned", then the state of v after expr is "definitely assigned when false".
If expr_first is of type boolean, and expr_second is a constant expression with value
true, then the definite assignment state after expr is the same as the definite
assignment state of v after the logical negation expression !expr_first .
If expr_first is of type boolean, and expr_second is a constant expression with value
false, then the definite assignment state after expr is the same as the definite
assignment state after expr_first.

0

0

0

0

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#94423-general-rules-for-expressions-with-embedded-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1111-relational-and-type-testing-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1148-lifted-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1111-relational-and-type-testing-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1148-lifted-operators

All of the above rules in this section are commutative, meaning that if a rule applies
when evaluated in the form expr_second op expr_first , it also applies in the form
expr_first op expr_second .

The general idea expressed by these rules is:

if a conditional access is compared to null , then we know the operations
definitely occurred if the result of the comparison is false
if a conditional access is compared to a non-nullable value type or a non-null
constant, then we know the operations definitely occurred if the result of the
comparison is true .
since we can't trust user-defined operators to provide reliable answers where
initialization safety is concerned, the new rules only apply when a predefined
== /!= operator is in use.

We may eventually want to refine these rules to thread through conditional state which
is present at the end of a member access or call. Such scenarios don't really happen in
definite assignment, but they do happen in nullable in the presence of
[NotNullWhen(true)] and similar attributes. This would require special handling for bool
constants in addition to just handling for null /non-null constants.

Some consequences of these rules:

if (a?.b(out var x) == true)) x() else x(); will error in the 'else' branch
if (a?.b(out var x) == 42)) x() else x(); will error in the 'else' branch
if (a?.b(out var x) == false)) x() else x(); will error in the 'else' branch
if (a?.b(out var x) == null)) x() else x(); will error in the 'then' branch
if (a?.b(out var x) != true)) x() else x(); will error in the 'then' branch
if (a?.b(out var x) != 42)) x() else x(); will error in the 'then' branch
if (a?.b(out var x) != false)) x() else x(); will error in the 'then' branch
if (a?.b(out var x) != null)) x() else x(); will error in the 'else' branch

We introduce a new section is operator and is pattern expressions.

For an expression expr of the form E is T , where T is any type or pattern

Remarks

is operator and is pattern expressions

The definite assignment state of v before E is the same as the definite assignment
state of v before expr.
The definite assignment state of v after expr is determined by:

If E directly contains a null-conditional expression, and the state of v after the
non-conditional counterpart E is "definitely assigned", and T is any type or a
pattern that does not match a null input, then the state of v after expr is
"definitely assigned when true".
If E directly contains a null-conditional expression, and the state of v after the
non-conditional counterpart E is "definitely assigned", and T is a pattern that
matches a null input, then the state of v after expr is "definitely assigned when
false".
If E is of type boolean and T is a pattern which only matches a true input, then
the definite assignment state of v after expr is the same as the definite
assignment state of v after E.
If E is of type boolean and T is a pattern which only matches a false input,
then the definite assignment state of v after expr is the same as the definite
assignment state of v after the logical negation expression !expr .
Otherwise, if the definite assignment state of v after E is "definitely assigned",
then the definite assignment state of v after expr is "definitely assigned".

This section is meant to address similar scenarios as in the == /!= section above. This
specification does not address recursive patterns, e.g. (a?.b(out x), c?.d(out y)) is
(object, object) . Such support may come later if time permits.

This specification doesn't currently address scenarios involving pattern switch
expressions and switch statements. For example:

C#

It seems like support for this could come later if time permits.

0

0

Remarks

Additional scenarios

_ = c?.M(out object obj4) switch
{
 not null => obj4.ToString() // undesired error
};

There have been several categories of bugs filed for nullable which require we
essentially increase the sophistication of pattern analysis. It is likely that any ruling we
make which improves definite assignment would also be carried over to nullable.

https://github.com/dotnet/roslyn/issues/49353
https://github.com/dotnet/roslyn/issues/46819
https://github.com/dotnet/roslyn/issues/44127

It feels odd to have the analysis "reach down" and have special recognition of
conditional accesses, when typically flow analysis state is supposed to propagate
upward. We are concerned about how a solution like this could intersect painfully with
possible future language features that do null checks.

Two alternatives to this proposal:

1. Introduce "state when null" and "state when not null" to the language and
compiler. This has been judged to be too much effort for the scenarios we are
trying to solve, but that we could potentially implement the above proposal and
then move to a "state when null/not null" model later on without breaking people.

2. Do nothing.

There are impacts on switch expressions that should be specified:
https://github.com/dotnet/csharplang/discussions/4240#discussioncomment-343395

https://github.com/dotnet/csharplang/discussions/4243

Drawbacks

Alternatives

Unresolved questions

Design meetings

https://github.com/dotnet/roslyn/issues/49353
https://github.com/dotnet/roslyn/issues/46819
https://github.com/dotnet/roslyn/issues/44127
https://github.com/dotnet/csharplang/discussions/4240#discussioncomment-343395
https://github.com/dotnet/csharplang/discussions/4243

AsyncMethodBuilder override
Article • 2021-09-21 • 8 minutes to read

Allow per-method override of the async method builder to use. For some async
methods we want to customize the invocation of Builder.Create() to use a different
builder type.

C#

Today, async method builders are tied to a given type used as a return type of an async
method. For example, any method that's declared as async Task uses
AsyncTaskMethodBuilder , and any method that's declared as async ValueTask<T> uses
AsyncValueTaskMethodBuilder<T> . This is due to the [AsyncMethodBuilder(Type)]
attribute on the type used as a return type, e.g. ValueTask<T> is attributed as
[AsyncMethodBuilder(typeof(AsyncValueTaskMethodBuilder<>))] . This addresses the
majority common case, but it leaves a few notable holes for advanced scenarios.

In .NET 5, an experimental feature was shipped that provides two modes in which
AsyncValueTaskMethodBuilder and AsyncValueTaskMethodBuilder<T> operate. The on-by-
default mode is the same as has been there since the functionality was introduced: when
the state machine needs to be lifted to the heap, an object is allocated to store the
state, and the async method returns a ValueTask{<T>} backed by a Task{<T>} . However,
if an environment variable is set, all builders in the process switch to a mode where,
instead, the ValueTask{<T>} instances are backed by reusable IValueTaskSource{<T>}
implementations that are pooled. Each async method has its own pool with a fixed
maximum number of instances allowed to be pooled, and as long as no more than that
number are ever returned to the pool to be pooled at the same time, async
ValueTask<{T}> methods effectively become free of any GC allocation overhead.

There are several problems with this experimental mode, however, which is both why a)
it's off by default and b) we're likely to remove it in a future release unless very

Summary

[AsyncMethodBuilderAttribute(typeof(PoolingAsyncValueTaskMethodBuilder<>))]
// new usage of AsyncMethodBuilderAttribute type
static async ValueTask<int> ExampleAsync() { ... }

Motivation

compelling new information emerges
(https://github.com/dotnet/runtime/issues/13633).

It introduces a behavioral difference for consumers of the returned ValueTask{<T>}
if that ValueTask isn't being consumed according to spec. When it's backed by a
Task , you can do with the ValueTask things you can do with a Task , like await it
multiple times, await it concurrently, block waiting for it to complete, etc. But when
it's backed by an arbitrary IValueTaskSource , such operations are prohibited, and
automatically switching from the former to the latter can lead to bugs. With the
switch at the process level and affecting all async ValueTask methods in the
process, whether you control them or not, it's too big a hammer.
It's not necessarily a performance win, and could represent a regression in some
situations. The implementation is trading the cost of pooling (accessing a pool isn't
free) with the cost of GC, and in various situations the GC can win. Again, applying
the pooling to all async ValueTask methods in the process rather than being
selective about the ones it would most benefit is too big a hammer.
It adds to the IL size of a trimmed application, even if the flag isn't set, and then to
the resulting asm size. It's possible that can be worked around with improvements
to the implementation to teach it that for a given deployment the environment
variable will always be false, but as it stands today, every async ValueTask method
saw for example an ~2K binary footprint increase in aot images due to this option,
and, again, that applies to all async ValueTask methods in the whole application
closure.
Different methods may benefit from differing levels of control, e.g. the size of the
pool employed because of knowledge of the method and how it's used, but the
same setting is applied to all uses of the builder. One could imagine working
around that by having the builder code use reflection at runtime to look for some
attribute, but that adds significant run-time expense, and likely on the startup path.

On top of all of these issues with the existing pooling, it's also the case that developers
are prevented from writing their own customized builders for types they don't own. If,
for example, a developer wants to implement their own pooling support, they also have
to introduce a brand new task-like type, rather than just being able to use
{Value}Task{<T>} , because the attribute specifying the builder is only specifiable on the
type declaration of the return type.

We need a way to have an individual async method opt-in to a specific builder.

Detailed design

https://github.com/dotnet/runtime/issues/13633

In dotnet/runtime , add AttributeTargets.Method to the targets for
System.Runtime.CompilerServices.AsyncMethodBuilderAttribute :

C#

This allows the attribute to be applied on methods or local functions or lambdas.

Example of usage on a method:

C#

It is an error to apply the attribute multiple times on a given method.
It is an error to apply the attribute to a lambda with an implicit return type.

Using AsyncMethodBuilderAttribute on methods

namespace System.Runtime.CompilerServices
{
 /// <summary>
 /// Indicates the type of the async method builder that should be used
by a language compiler:
 /// - to build the return type of an async method that is attributed,
 /// - to build the attributed type when used as the return type of an
async method.
 /// </summary>
 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class |
AttributeTargets.Struct | AttributeTargets.Interface |
AttributeTargets.Delegate | AttributeTargets.Enum, Inherited = false,
AllowMultiple = false)]
 public sealed class AsyncMethodBuilderAttribute : Attribute
 {
 /// <summary>Initializes the <see
cref="AsyncMethodBuilderAttribute"/>.</summary>
 /// <param name="builderType">The <see cref="Type"/> of the
associated builder.</param>
 public AsyncMethodBuilderAttribute(Type builderType) => BuilderType
= builderType;

 /// <summary>Gets the <see cref="Type"/> of the associated builder.
</summary>
 public Type BuilderType { get; }
 }
}

[AsyncMethodBuilder(typeof(PoolingAsyncValueTaskMethodBuilder<>))] // new
usage, referring to some custom builder type
static async ValueTask<int> ExampleAsync() { ... }

A developer who wants to use a specific custom builder for all of their methods can do
so by putting the relevant attribute on each method.

When compiling an async method, the builder type is determined by:

1. using the builder type from the AsyncMethodBuilder attribute if one is present,
2. otherwise, falling back to the builder type determined by previous approach. (see

spec for task-like types).

If an AsyncMethodBuilder attribute is present, we take the builder type specified by the
attribute and construct it if necessary.
If the override type is an open generic type, take the single type argument of the async
method's return type and substitute it into the override type.
If the override type is a bound generic type, then we produce an error.
If the async method's return type does not have a single type argument, then we
produce an error.

We verify that the builder type is compatible with the return type of the async method:

1. look for the public Create method with no type parameters and no parameters on
the constructed builder type.
It is an error if the method is not found. It is an error if the method returns a type
other than the constructed builder type.

2. look for the public Task property.
It is an error if the property is not found.

3. consider the type of that Task property (a task-like type):
It is an error if the task-like type does not matches the return type of the async
method.

Note that it is not necessary for the return type of the method to be a task-like type.

The builder type determined above is used as part of the existing async method design.

For example, today if a method is defined as:

C#

Determining the builder type for an async method

Execution

public async ValueTask<T> ExampleAsync() { ... }

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/task-types.md

the compiler will generate code akin to:

C#

With this change, if the developer wrote:

C#

it would instead be compiled to:

C#

Just those small additions enable:

Anyone to write their own builder that can be applied to async methods that
return Task<T> and ValueTask<T>
As "anyone", the runtime to ship the experimental builder support as new public
builder types that can be opted into on a method-by-method basis; the existing

[AsyncStateMachine(typeof(<ExampleAsync>d__29))]
[CompilerGenerated]
static ValueTask<int> ExampleAsync()
{
 <ExampleAsync>d__29 stateMachine;
 stateMachine.<>t__builder = AsyncValueTaskMethodBuilder<int>.Create();
 stateMachine.<>1__state = -1;
 stateMachine.<>t__builder.Start(ref stateMachine);
 return stateMachine.<>t__builder.Task;
}

[AsyncMethodBuilder(typeof(PoolingAsyncValueTaskMethodBuilder<>))] // new
usage, referring to some custom builder type
static async ValueTask<int> ExampleAsync() { ... }

[AsyncStateMachine(typeof(<ExampleAsync>d__29))]
[CompilerGenerated]
[AsyncMethodBuilder(typeof(PoolingAsyncValueTaskMethodBuilder<>))] //
retained but not necessary anymore
static ValueTask<int> ExampleAsync()
{
 <ExampleAsync>d__29 stateMachine;
 stateMachine.<>t__builder =
PoolingAsyncValueTaskMethodBuilder<int>.Create(); // <>t__builder now a
different type
 stateMachine.<>1__state = -1;
 stateMachine.<>t__builder.Start(ref stateMachine);
 return stateMachine.<>t__builder.Task;
}

support would be removed from the existing builders. Methods (including some
we care about in the core libraries) can then be attributed on a case-by-case basis
to use the pooling support, without impacting any other unattributed methods.

and with minimal surface area changes or feature work in the compiler.

Note that we need the emitted code to allow a different type being returned from
Create method:

Note that this mechanism to change the the builder type cannot be used when the
synthesized entry-point for top-level statements is async. An explicit entry-point should
be used instead.

The syntax for applying such an attribute to a method is verbose. The impact of
this is lessened if a developer can apply it to multiple methods en mass, e.g. at the
type or module level.

Implement a different task-like type and expose that difference to consumers.
ValueTask was made extensible via the IValueTaskSource interface to avoid that
need, however.
Address just the ValueTask pooling part of the issue by enabling the experiment as
the on-by-default-and-only implementation. That doesn't address other aspects,
such as configuring the pooling, or enabling someone else to provide their own
builder.
Earlier versions of this document allowed for scoped override of builder types.

1. Replace or also create. All of the examples in this proposal are about replacing a
buildable task-like's builder. Should the feature be scoped to just that? Or should
you be able to use this attribute on a method with a return type that doesn't
already have a builder (e.g. some common interface)? That could impact overload
resolution.

AsyncPooledBuilder _builder = AsyncPooledBuilderWithSize4.Create();

Drawbacks

Alternatives

Unresolved questions

2. Private Builders. Should the compiler support non-public async method builders?
This is not spec'd today, but experimentally we only support public ones. That
makes some sense when the attribute is applied to a type to control what builder
is used with that type, since anyone writing an async method with that type as the
return type would need access to the builder. However, with this new feature,
when that attribute is applied to a method, it only impacts the implementation of
that method, and thus could reasonably reference a non-public builder. Likely we
will want to support library authors who have non-public ones they want to use.

Static abstract members in interfaces
Article • 2022-09-29 • 15 minutes to read

[x] Proposed
[] Prototype: Not Started
[] Implementation: Not Started
[] Specification: Not Started

An interface is allowed to specify abstract static members that implementing classes and
structs are then required to provide an explicit or implicit implementation of. The
members can be accessed off of type parameters that are constrained by the interface.

There is currently no way to abstract over static members and write generalized code
that applies across types that define those static members. This is particularly
problematic for member kinds that only exist in a static form, notably operators.

This feature allows generic algorithms over numeric types, represented by interface
constraints that specify the presence of given operators. The algorithms can therefore
be expressed in terms of such operators:

c#

Summary

Motivation

// Interface specifies static properties and operators
interface IAddable<T> where T : IAddable<T>
{
 static abstract T Zero { get; }
 static abstract T operator +(T t1, T t2);
}

// Classes and structs (including built-ins) can implement interface
struct Int32 : …, IAddable<Int32>
{
 static Int32 I.operator +(Int32 x, Int32 y) => x + y; // Explicit
 public static int Zero => 0; // Implicit
}

// Generic algorithms can use static members on T
public static T AddAll<T>(T[] ts) where T : IAddable<T>
{
 T result = T.Zero; // Call static operator
 foreach (T t in ts) { result += t; } // Use `+`

The feature would allow static interface members to be declared virtual.

Today, instance members in interfaces are implicitly abstract (or virtual if they have a
default implementation), but can optionally have an abstract (or virtual) modifier.
Non-virtual instance members must be explicitly marked as sealed .

Static interface members today are implicitly non-virtual, and do not allow abstract ,
virtual or sealed modifiers.

Static interface members other than fields are allowed to also have the abstract
modifier. Abstract static members are not allowed to have a body (or in the case of
properties, the accessors are not allowed to have a body).

c#

 return result;
}

// Generic method can be applied to built-in and user-defined types
int sixtyThree = AddAll(new [] { 1, 2, 4, 8, 16, 32 });

Syntax

Interface members

Today's rules

Proposal

Abstract static members

interface I<T> where T : I<T>
{
 static abstract void M();
 static abstract T P { get; set; }
 static abstract event Action E;
 static abstract T operator +(T l, T r);
 static abstract bool operator ==(T l, T r);
 static abstract bool operator !=(T l, T r);
 static abstract implicit operator T(string s);
 static abstract explicit operator string(T t);
}

Static interface members other than fields are allowed to also have the virtual
modifier. Virtual static members are required to have a body.

c#

For symmetry with non-virtual instance members, static members should be allowed an
optional sealed modifier, even though they are non-virtual by default:

c#

Classes and structs can implement abstract instance members of interfaces either
implicitly or explicitly. An implicitly implemented interface member is a normal (virtual or
non-virtual) member declaration of the class or struct that just "happens" to also

Virtual static members

interface I<T> where T : I<T>
{
 static virtual void M() {}
 static virtual T P { get; set; }
 static virtual event Action E;
 static virtual T operator +(T l, T r) { throw new
NotImplementedException(); }
}

Explicitly non-virtual static members

interface I0
{
 static sealed void M() => Console.WriteLine("Default behavior");

 static sealed int f = 0;

 static sealed int P1 { get; set; }
 static sealed int P2 { get => f; set => f = value; }

 static sealed event Action E1;
 static sealed event Action E2 { add => E1 += value; remove => E1 -=
value; }

 static sealed I0 operator +(I0 l, I0 r) => l;
}

Implementation of interface members

Today's rules

implement the interface member. The member can even be inherited from a base class
and thus not even be present in the class declaration.

An explicitly implemented interface member uses a qualified name to identify the
interface member in question. The implementation is not directly accessible as a
member on the class or struct, but only through the interface.

No new syntax is needed in classes and structs to facilitate implicit implementation of
static abstract interface members. Existing static member declarations serve that
purpose.

Explicit implementations of static abstract interface members use a qualified name along
with the static modifier.

c#

Today all unary and binary operator declarations have some requirement involving at
least one of their operands to be of type T or T? , where T is the instance type of the
enclosing type.

These requirements need to be relaxed so that a restricted operand is allowed to be of a
type parameter that counts as "the instance type of the enclosing type".

Proposal

class C : I<C>
{
 string _s;
 public C(string s) => _s = s;
 static void I<C>.M() => Console.WriteLine("Implementation");
 static C I<C>.P { get; set; }
 static event Action I<C>.E;
 static C I<C>.operator +(C l, C r) => new C($"{l._s} {r._s}");
 static bool I<C>.operator ==(C l, C r) => l._s == r._s;
 static bool I<C>.operator !=(C l, C r) => l._s != r._s;
 static implicit I<C>.operator C(string s) => new C(s);
 static explicit I<C>.operator string(C c) => c._s;
}

Semantics

Operator restrictions

In order for a type parameter T to count as " the instance type of the enclosing type", it
must meet the following requirements:

T is a direct type parameter on the interface in which the operator declaration
occurs, and
T is directly constrained by what the spec calls the "instance type" - i.e. the
surrounding interface with its own type parameters used as type arguments.

Abstract/virtual declarations of == and != operators, as well as abstract/virtual
declarations of implicit and explicit conversion operators will be allowed in interfaces.
Derived interfaces will be allowed to implement them too.

For == and != operators, at least one parameter type must be a type parameter that
counts as "the instance type of the enclosing type", as defined in the previous section.

The rules for when a static member declaration in a class or struct is considered to
implement a static abstract interface member, and for what requirements apply when it
does, are the same as for instance members.

TBD: There may be additional or different rules necessary here that we haven't yet
thought of.

We discussed the issue raised by https://github.com/dotnet/csharplang/issues/5955
and decided to add a restriction around usage of an interface as a type argument
(https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-03-
28.md#type-hole-in-static-abstracts). Here is the restriction as it was proposed by
https://github.com/dotnet/csharplang/issues/5955 and approved by the LDM.

An interface containing or inheriting a static abstract/virtual member that does not have
most specific implementation in the interface cannot be used as a type argument. If all
static abstract/virtual members have most specific implementation, the interface can be
used as a type argument.

Equality operators and conversions

Implementing static abstract members

Interfaces as type arguments

Accessing static abstract interface members

https://github.com/dotnet/csharplang/issues/5955
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-03-28.md#type-hole-in-static-abstracts
https://github.com/dotnet/csharplang/issues/5955

A static abstract interface member M may be accessed on a type parameter T using the
expression T.M when T is constrained by an interface I and M is an accessible static
abstract member of I .

c#

At runtime, the actual member implementation used is the one that exists on the actual
type provided as a type argument.

c#

Since query expressions are spec'ed as a syntactic rewrite, C# actually lets you use a type
as the query source, as long as it has static members for the query operators you use! In
other words, if the syntax fits, we allow it! We think this behavior was not intentional or
important in the original LINQ, and we don't want to do the work to support it on type
parameters. If there are scenarios out there we will hear about them, and can choose to
embrace this later.

Variance safety rules should apply to signatures of static abstract members. The addition
proposed in https://github.com/dotnet/csharplang/blob/main/proposals/variance-
safety-for-static-interface-members.md#variance-safety should be adjusted from

These restrictions do not apply to occurrences of types within declarations of static
members.

to

These restrictions do not apply to occurrences of types within declarations of non-virtual,
non-abstract static members.

T M<T>() where T : I<T>
{
 T.M();
 T t = T.P;
 T.E += () => { };
 return t + T.P;
}

C c = M<C>(); // The static members of C get called

Variance safety §17.2.3.2

§10.5.4 User defined implicit conversions

https://github.com/dotnet/csharplang/blob/main/proposals/variance-safety-for-static-interface-members.md#variance-safety
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/interfaces.md#17232-variance-safety
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#1054-user-defined-implicit-conversions

The following bullet points

Determine the types S , S₀ and T₀ .
If E has a type, let S be that type.
If S or T are nullable value types, let Sᵢ and Tᵢ be their underlying types,
otherwise let Sᵢ and Tᵢ be S and T , respectively.
If Sᵢ or Tᵢ are type parameters, let S₀ and T₀ be their effective base classes,
otherwise let S₀ and T₀ be Sₓ and Tᵢ , respectively.

Find the set of types, D , from which user-defined conversion operators will be
considered. This set consists of S0 (if S0 is a class or struct), the base classes of S0
(if S0 is a class), and T0 (if T0 is a class or struct).
Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of the user-defined and lifted implicit conversion operators declared by
the classes or structs in D that convert from a type encompassing S to a type
encompassed by T . If U is empty, the conversion is undefined and a compile-time
error occurs.

are adjusted as follows:

Determine the types S , S₀ and T₀ .
If E has a type, let S be that type.
If S or T are nullable value types, let Sᵢ and Tᵢ be their underlying types,
otherwise let Sᵢ and Tᵢ be S and T , respectively.
If Sᵢ or Tᵢ are type parameters, let S₀ and T₀ be their effective base classes,
otherwise let S₀ and T₀ be Sₓ and Tᵢ , respectively.

Find the set of applicable user-defined and lifted conversion operators, U .
Find the set of types, D1 , from which user-defined conversion operators will be
considered. This set consists of S0 (if S0 is a class or struct), the base classes of
S0 (if S0 is a class), and T0 (if T0 is a class or struct).
Find the set of applicable user-defined and lifted conversion operators, U1 . This
set consists of the user-defined and lifted implicit conversion operators declared
by the classes or structs in D1 that convert from a type encompassing S to a
type encompassed by T .
If U1 is not empty, then U is U1 . Otherwise,

Find the set of types, D2 , from which user-defined conversion operators will
be considered. This set consists of Sᵢ effective interface set and their base
interfaces (if Sᵢ is a type parameter), and Tᵢ effective interface set (if Tᵢ is a
type parameter).

Find the set of applicable user-defined and lifted conversion operators, U2 .
This set consists of the user-defined and lifted implicit conversion operators
declared by the interfaces in D2 that convert from a type encompassing S to
a type encompassed by T .
If U2 is not empty, then U is U2

If U is empty, the conversion is undefined and a compile-time error occurs.

The following bullet points

Determine the types S , S₀ and T₀ .
If E has a type, let S be that type.
If S or T are nullable value types, let Sᵢ and Tᵢ be their underlying types,
otherwise let Sᵢ and Tᵢ be S and T , respectively.
If Sᵢ or Tᵢ are type parameters, let S₀ and T₀ be their effective base classes,
otherwise let S₀ and T₀ be Sᵢ and Tᵢ , respectively.

Find the set of types, D , from which user-defined conversion operators will be
considered. This set consists of S0 (if S0 is a class or struct), the base classes of S0
(if S0 is a class), T0 (if T0 is a class or struct), and the base classes of T0 (if T0 is a
class).
Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of the user-defined and lifted implicit or explicit conversion operators
declared by the classes or structs in D that convert from a type encompassing or
encompassed by S to a type encompassing or encompassed by T . If U is empty,
the conversion is undefined and a compile-time error occurs.

are adjusted as follows:

Determine the types S , S₀ and T₀ .
If E has a type, let S be that type.
If S or T are nullable value types, let Sᵢ and Tᵢ be their underlying types,
otherwise let Sᵢ and Tᵢ be S and T , respectively.
If Sᵢ or Tᵢ are type parameters, let S₀ and T₀ be their effective base classes,
otherwise let S₀ and T₀ be Sᵢ and Tᵢ , respectively.

Find the set of applicable user-defined and lifted conversion operators, U .
Find the set of types, D1 , from which user-defined conversion operators will be
considered. This set consists of S0 (if S0 is a class or struct), the base classes of

§10.5.5 User-defined explicit conversions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#1055-user-defined-explicit-conversions

S0 (if S0 is a class), T0 (if T0 is a class or struct), and the base classes of T0 (if
T0 is a class).
Find the set of applicable user-defined and lifted conversion operators, U1 . This
set consists of the user-defined and lifted implicit or explicit conversion
operators declared by the classes or structs in D1 that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed
by T .
If U1 is not empty, then U is U1 . Otherwise,

Find the set of types, D2 , from which user-defined conversion operators will
be considered. This set consists of Sᵢ effective interface set and their base
interfaces (if Sᵢ is a type parameter), and Tᵢ effective interface set and their
base interfaces (if Tᵢ is a type parameter).
Find the set of applicable user-defined and lifted conversion operators, U2 .
This set consists of the user-defined and lifted implicit or explicit conversion
operators declared by the interfaces in D2 that convert from a type
encompassing or encompassed by S to a type encompassing or
encompassed by T .
If U2 is not empty, then U is U2

If U is empty, the conversion is undefined and a compile-time error occurs.

An additional feature to this proposal is to allow static virtual members in interfaces to
have default implementations, just as instance virtual/abstract members do.

One complication here is that default implementations would want to call other static
virtual members "virtually". Allowing static virtual members to be called directly on the
interface would require flowing a hidden type parameter representing the "self" type
that the current static method really got invoked on. This seems complicated, expensive
and potentially confusing.

We discussed a simpler version which maintains the limitations of the current proposal
that static virtual members can only be invoked on type parameters. Since interfaces
with static virtual members will often have an explicit type parameter representing a
"self" type, this wouldn't be a big loss: other static virtual members could just be called
on that self type. This version is a lot simpler, and seems quite doable.

At https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
24.md#default-implementations-of-abstract-statics we decided to support Default
Implementations of static members following/expanding the rules established in

Default implementations

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-24.md#default-implementations-of-abstract-statics

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-8.0/default-
interface-methods.md accordingly.

Given the following code, a user might reasonably expect it to print True (as it would if
the constant pattern was written inline):

C#

However, because the input type of the pattern is not double , the constant 1 pattern
will first type check the incoming T against int . This is unintuitive, so we will block it
until a future C# version adds better handling for numeric matching against types
derived from INumberBase<T> . To do so, we will say that, we will explicitly recognize
INumberBase<T> as the type that all "numbers" will derive from, and block the pattern if
we're trying to match a numeric constant pattern against a number type that we can't
represent the pattern in (ie, a type parameter constrained to INumberBase<T> , or a user-
defined number type that inherits from INumberBase<T>).

Formally, we add an exception to the definition of pattern-compatible for constant
patterns:

A constant pattern tests the value of an expression against a constant value. The
constant may be any constant expression, such as a literal, the name of a declared
const variable, or an enumeration constant. When the input value is not an open
type, the constant expression is implicitly converted to the type of the matched
expression; if the type of the input value is not pattern-compatible with the type of
the constant expression, the pattern-matching operation is an error. If the constant
expression being matched against is a numeric value, the input value is a type
that inherits from System.Numerics.INumberBase<T> , and there is no constant
conversion from the constant expression to the type of the input value, the
pattern-matching operation is an error.

We also add a similar exception for relational patterns:

Pattern matching

M(1.0);

static void M<T>(T t) where T : INumberBase<T>
{
 Console.WriteLine(t is 1);
}

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-8.0/default-interface-methods.md

When the input is a type for which a suitable built-in binary relational operator is
defined that is applicable with the input as its left operand and the given constant
as its right operand, the evaluation of that operator is taken as the meaning of the
relational pattern. Otherwise we convert the input to the type of the expression
using an explicit nullable or unboxing conversion. It is a compile-time error if no
such conversion exists. It is a compile-time error if the input type is a type
parameter constrained to or a type inheriting from
System.Numerics.INumberBase<T> and the input type has no suitable built-in binary
relational operator defined. The pattern is considered not to match if the
conversion fails. If the conversion succeeds then the result of the pattern-matching
operation is the result of evaluating the expression e OP v where e is the converted
input, OP is the relational operator, and v is the constant expression.

"static abstract" is a new concept and will meaningfully add to the conceptual load
of C#.
It's not a cheap feature to build. We should make sure it's worth it.

An alternative approach would be to have "structural constraints" directly and explicitly
requiring the presence of specific operators on a type parameter. The drawbacks of that
are: - This would have to be written out every time. Having a named constraint seems
better. - This is a whole new kind of constraint, whereas the proposed feature utilizes
the existing concept of interface constraints. - It would only work for operators, not
(easily) other kinds of static members.

See https://github.com/dotnet/csharplang/issues/5783 and
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
16.md#static-abstract-interfaces-and-static-classes for more information.

Drawbacks

Alternatives

Structural constraints

Unresolved questions

Static abstract interfaces and static classes

https://github.com/dotnet/csharplang/issues/5783
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-16.md#static-abstract-interfaces-and-static-classes

https://github.com/dotnet/csharplang/blob/master/meetings/2021/LDM-2021-02-
08.md
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-04-
05.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-06-
29.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
24.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
16.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-03-
28.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-04-
06.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-06-
06.md

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2021/LDM-2021-02-08.md
https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-04-05.md
https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-06-29.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-24.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-16.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-03-28.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-04-06.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-06-06.md

Checked user-defined operators
Article • 2022-09-27 • 28 minutes to read

C# should support defining checked variants of the following user-defined operators so
that users can opt into or out of overflow behavior as appropriate:

The ++ and -- unary operators §11.7.14 and §11.8.6 .
The - unary operator §11.8.3 .
The + , - , * , and / binary operators §11.9 .
Explicit conversion operators.

There is no way for a user to declare a type and support both checked and unchecked
versions of an operator. This will make it hard to port various algorithms to use the
proposed generic math interfaces exposed by the libraries team. Likewise, this makes it
impossible to expose a type such as Int128 or UInt128 without the language
simultaneously shipping its own support to avoid breaking changes.

Grammar at operators (§14.10) will be adjusted to allow checked keyword after the
operator keyword right before the operator token:

antlr

Summary

Motivation

Detailed design

Syntax

overloadable_unary_operator
 : '+' | 'checked'? '-' | '!' | '~' | 'checked'? '++' | 'checked'? '--' |
'true' | 'false'
 ;

overloadable_binary_operator
 : 'checked'? '+' | 'checked'? '-' | 'checked'? '*' | 'checked'?
'/' | '%' | '&' | '|' | '^' | '<<'
 | right_shift | '==' | '!=' | '>' | '<' | '>=' | '<='
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11714-postfix-increment-and-decrement-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1186-prefix-increment-and-decrement-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1183-unary-minus-operator
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#119-arithmetic-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1410-operators

For example:

C#

C#

For brevity below, an operator with the checked keyword is referred to as a checked
operator and an operator without it is referred to as a regular operator . These terms
are not applicable to operators that don't have a checked form.

A user-defined checked operator is expected to throw an exception when the result of
an operation is too large to represent in the destination type. What does it mean to be
too large actually depends on the nature of the destination type and is not prescribed
by the language. Typically the exception thrown is a System.OverflowException , but the
language doesn't have any specific requirements regarding this.

A user-defined regular operator is expected to not throw an exception when the result
of an operation is too large to represent in the destination type. Instead, it is expected
to return an instance representing a truncated result. What does it mean to be too large

conversion_operator_declarator
 : 'implicit' 'operator' type '(' type identifier ')'
 | 'explicit' 'operator' 'checked'? type '(' type identifier ')'
 ;

public static T operator checked ++(T x) {...}
public static T operator checked --(T x) {...}
public static T operator checked -(T x) {...}
public static T operator checked +(T lhs, T rhs) {...}
public static T operator checked -(T lhs, T rhs) {...}
public static T operator checked *(T lhs, T rhs) {...}
public static T operator checked /(T lhs, T rhs) {...}
public static explicit operator checked U(T x) {...}

public static T I1.operator checked ++(T x) {...}
public static T I1.operator checked --(T x) {...}
public static T I1.operator checked -(T x) {...}
public static T I1.operator checked +(T lhs, T rhs) {...}
public static T I1.operator checked -(T lhs, T rhs) {...}
public static T I1.operator checked *(T lhs, T rhs) {...}
public static T I1.operator checked /(T lhs, T rhs) {...}
public static explicit I1.operator checked U(T x) {...}

Semantics

and to be truncated actually depends on the nature of the destination type and is not
prescribed by the language.

All existing user-defined operators out there that will have checked form supported fall
into the category of regular operators . It is understood that many of them are likely to
not follow the semantics specified above, but for the purpose of semantic analysis,
compiler will assume that they are.

Checked/unchecked context within the body of a checked operator is not affected by
the presence of the checked keyword. In other words, the context is the same as
immediately at the beginning of the operator declaration. The developer would need to
explicitly switch the context if part of their algorithm cannot rely on default context.

Section "I.10.3.1 Unary operators" of ECMA-335 will be adjusted to include
op_CheckedIncrement, op_CheckedDecrement, op_CheckedUnaryNegation as the names
for methods implementing checked ++ , -- and - unary operators.

Section "I.10.3.2 Binary operators" of ECMA-335 will be adjusted to include
op_CheckedAddition, op_CheckedSubtraction, op_CheckedMultiply, op_CheckedDivision as
the names for methods implementing checked + , - , * , and / binary operators.

Section "I.10.3.3 Conversion operators" of ECMA-335 will be adjusted to include
op_CheckedExplicit as the name for a method implementing checked explicit conversion
operator.

Unary checked operators follow the rules from §14.10.2 .

Also, a checked operator declaration requires a pair-wise declaration of a regular
operator (the return type should match as well). A compile-time error occurs otherwise.

C#

Checked vs. unchecked context within a checked operator

Names in metadata

Unary operators

public struct Int128
{
 // This is fine, both a checked and regular operator are defined
 public static Int128 operator checked -(Int128 lhs);
 public static Int128 operator -(Int128 lhs);

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14102-unary-operators

Binary checked operators follow the rules from §14.10.3 .

Also, a checked operator declaration requires a pair-wise declaration of a regular
operator (the return type should match as well). A compile-time error occurs otherwise.

C#

The https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-
user-defined-operators section will be adjusted as follows (additions/changes are in
bold).

Given a type T and an operation operator op(A) , where op is an overloadable operator
and A is an argument list, the set of candidate user-defined operators provided by T for
operator op(A) is determined as follows:

Determine the type T0 . If T is a nullable type, T0 is its underlying type, otherwise
T0 is equal to T .
Find the set of user-defined operators, U . This set consists of:

In unchecked evaluation context, all regular operator op declarations in T0 .

 // This is fine, only a regular operator is defined
 public static Int128 operator --(Int128 lhs);

 // This should error, a regular operator must also be defined
 public static Int128 operator checked ++(Int128 lhs);
}

Binary operators

public struct Int128
{
 // This is fine, both a checked and regular operator are defined
 public static Int128 operator checked +(Int128 lhs, Int128 rhs);
 public static Int128 operator +(Int128 lhs, Int128 rhs);

 // This is fine, only a regular operator is defined
 public static Int128 operator -(Int128 lhs, Int128 rhs);

 // This should error, a regular operator must also be defined
 public static Int128 operator checked *(Int128 lhs, Int128 rhs);
}

Candidate user-defined operators

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14103-binary-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators

In checked evaluation context, all checked and regular operator op
declarations in T0 except regular declarations that have pair-wise matching
checked operator declaration.

For all operator op declarations in U and all lifted forms of such operators, if at
least one operator is applicable (Applicable function member) with respect to
the argument list A , then the set of candidate operators consists of all such
applicable operators in T0 .
Otherwise, if T0 is object , the set of candidate operators is empty.
Otherwise, the set of candidate operators provided by T0 is the set of candidate
operators provided by the direct base class of T0 , or the effective base class of T0
if T0 is a type parameter.

Similar rules will be applied while determining the set of candidate operators in
interfaces https://github.com/dotnet/csharplang/blob/main/meetings/2017/LDM-2017-
06-27.md#shadowing-within-interfaces .

The section §11.7.18 will be adjusted to reflect the effect that the checked/unchecked
context has on unary and binary operator overload resolution.

C#

Example #1:

public class MyClass
{
 public static void Add(Int128 lhs, Int128 rhs)
 {
 // Resolves to `op_CheckedAddition`
 Int128 r1 = checked(lhs + rhs);

 // Resolves to `op_Addition`
 Int128 r2 = unchecked(lhs + rhs);

 // Resolve to `op_Subtraction`
 Int128 r3 = checked(lhs - rhs);

 // Resolve to `op_Subtraction`
 Int128 r4 = unchecked(lhs - rhs);

 // Resolves to `op_CheckedMultiply`
 Int128 r5 = checked(lhs * rhs);

 // Error: Operator '*' cannot be applied to operands of type
'Int128' and 'Int128'
 Int128 r6 = unchecked(lhs * rhs);
 }

https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#applicable-function-member
https://github.com/dotnet/csharplang/blob/main/meetings/2017/LDM-2017-06-27.md#shadowing-within-interfaces
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11718-the-checked-and-unchecked-operators

C#

 public static void Divide(Int128 lhs, byte rhs)
 {
 // Resolves to `op_Division` - it is a better match than
`op_CheckedDivision`
 Int128 r4 = checked(lhs / rhs);
 }
}

public struct Int128
{
 public static Int128 operator checked +(Int128 lhs, Int128 rhs);
 public static Int128 operator +(Int128 lhs, Int128 rhs);

 public static Int128 operator -(Int128 lhs, Int128 rhs);

 // Cannot be declared in C#, but could be declared by some other
language
 public static Int128 operator checked *(Int128 lhs, Int128 rhs);

 // Cannot be declared in C#, but could be declared by some other
language
 public static Int128 operator checked /(Int128 lhs, int rhs);

 public static Int128 operator /(Int128 lhs, byte rhs);
}

Example #2:

class C
{
 static void Add(C2 x, C3 y)
 {
 object o;

 // error CS0034: Operator '+' is ambiguous on operands of type 'C2'
and 'C3'
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 // Cannot be declared in C#, but could be declared by some other
language
 public static C1 operator checked + (C1 x, C3 y) => new C3();
}

C#

Conversion checked operators follow the rules from §14.10.4 .

class C2 : C1
{
 public static C2 operator + (C2 x, C1 y) => new C2();
}

class C3 : C1
{
}

Example #3:

class C
{
 static void Add(C2 x, C3 y)
 {
 object o;

 // error CS0034: Operator '+' is ambiguous on operands of type 'C2'
and 'C3'
 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator + (C1 x, C3 y) => new C3();
}

class C2 : C1
{
 // Cannot be declared in C#, but could be declared by some other
language
 public static C2 operator checked + (C2 x, C1 y) => new C2();
}

class C3 : C1
{
}

Conversion operators

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14104-conversion-operators

However, a checked operator declaration requires a pair-wise declaration of a regular
operator . A compile-time error occurs otherwise.

The following paragraph

The signature of a conversion operator consists of the source type and the target
type. (This is the only form of member for which the return type participates in the
signature.) The implicit or explicit classification of a conversion operator is not part
of the operator's signature. Thus, a class or struct cannot declare both an implicit
and an explicit conversion operator with the same source and target types.

will be adjusted to allow a type to declare checked and regular forms of explicit
conversions with the same source and target types. A type will not be allowed to declare
both an implicit and a checked explicit conversion operator with the same source and
target types.

The third bullet in §10.5.5 :

Find the set of applicable user-defined and lifted conversion operators, U . This
set consists of the user-defined and lifted implicit or explicit conversion
operators declared by the classes or structs in D that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed
by T . If U is empty, the conversion is undefined and a compile-time error
occurs.

will be replaced with the following bullet points:

Find the set of conversion operators, U0 . This set consists of:
In unchecked evaluation context, the user-defined implicit or regular explicit
conversion operators declared by the classes or structs in D .
In checked evaluation context, the user-defined implicit or regular/checked
explicit conversion operators declared by the classes or structs in D except
regular explicit conversion operators that have pair-wise matching checked
operator declaration within the same declaring type.

Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of the user-defined and lifted implicit or explicit conversion operators in
U0 that convert from a type encompassing or encompassed by S to a type

Processing of user-defined explicit conversions

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#1055-user-defined-explicit-conversions

encompassing or encompassed by T . If U is empty, the conversion is undefined
and a compile-time error occurs.

The Checked and unchecked operators §11.7.18 section will be adjusted to reflect the
effect that the checked/unchecked context has on processing of user-defined explicit
conversions.

A checked operator does not implement a regular operator and vice versa.

Checked operators will be supported in Linq Expression Trees. A
UnaryExpression/BinaryExpression node will be created with corresponding MethodInfo .
The following factory methods will be used:

C#

Note, that C# doesn't support assignments in expression trees, therefore checked
increment/decrement will not be supported as well.

There is no factory method for checked divide. There is an open question regarding this
- Checked division in Linq Expression Trees.

We will investigate the cost of adding support for checked operators in dynamic
invocation in CoreCLR and pursue an implementation if the cost is not too high. This is a
quote from https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-
2022-02-09.md .

Implementing operators

Linq Expression Trees

public static UnaryExpression NegateChecked (Expression expression,
MethodInfo? method);

public static BinaryExpression AddChecked (Expression left, Expression
right, MethodInfo? method);
public static BinaryExpression SubtractChecked (Expression left, Expression
right, MethodInfo? method);
public static BinaryExpression MultiplyChecked (Expression left, Expression
right, MethodInfo? method);

public static UnaryExpression ConvertChecked (Expression expression, Type
type, MethodInfo? method);

Dynamic

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11718-the-checked-and-unchecked-operators
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-09.md

This adds additional complexity to the language and allows users to introduce more
kinds of breaking changes to their types.

The generic math interfaces that the libraries plans to expose could expose named
methods (such as AddChecked). The primary drawback is that this is less
readable/maintainable and doesn't get the benefit of the language precedence rules
around operators.

Alternatively the checked keyword could be moved to the place right before the
operator keyword:

C#

C#

Or it could be moved into the set of operator modifiers:

antlr

Drawbacks

Alternatives

Placement of the checked keyword

public static T checked operator ++(T x) {...}
public static T checked operator --(T x) {...}
public static T checked operator -(T x) {...}
public static T checked operator +(T lhs, T rhs) {...}
public static T checked operator -(T lhs, T rhs) {...}
public static T checked operator *(T lhs, T rhs) {...}
public static T checked operator /(T lhs, T rhs) {...}
public static explicit checked operator U(T x) {...}

public static T checked I1.operator ++(T x) {...}
public static T checked I1.operator --(T x) {...}
public static T checked I1.operator -(T x) {...}
public static T checked I1.operator +(T lhs, T rhs) {...}
public static T checked I1.operator -(T lhs, T rhs) {...}
public static T checked I1.operator *(T lhs, T rhs) {...}
public static T checked I1.operator /(T lhs, T rhs) {...}
public static explicit checked I1.operator U(T x) {...}

operator_modifier
 : 'public'

C#

C#

There were suggestions to support unchecked keyword at the same position as the
checked keyword with the following possible meanings:

Simply to explicitly reflect the regular nature of the operator, or
Perhaps to designate a distinct flavor of an operator that is supposed to be used in
an unchecked context. The language could support op_Addition ,
op_CheckedAddition , and op_UncheckedAddition to help limit the number of
breaking changes. This adds another layer of complexity that is likely not necessary
in most code.

Alternatively the operator names could be op_UnaryNegationChecked,
op_AdditionChecked, op_SubtractionChecked, op_MultiplyChecked, op_DivisionChecked,
with Checked at the end. However, it looks like there is already a pattern established to

 | 'static'
 | 'extern'
 | 'checked'
 | operator_modifier_unsafe
 ;

public static checked T operator ++(T x) {...}
public static checked T operator --(T x) {...}
public static checked T operator -(T x) {...}
public static checked T operator +(T lhs, T rhs) {...}
public static checked T operator -(T lhs, T rhs) {...}
public static checked T operator *(T lhs, T rhs) {...}
public static checked T operator /(T lhs, T rhs) {...}
public static checked explicit operator U(T x) {...}

public static checked T I1.operator ++(T x) {...}
public static checked T I1.operator --(T x) {...}
public static checked T I1.operator -(T x) {...}
public static checked T I1.operator +(T lhs, T rhs) {...}
public static checked T I1.operator -(T lhs, T rhs) {...}
public static checked T I1.operator *(T lhs, T rhs) {...}
public static checked T I1.operator /(T lhs, T rhs) {...}
public static checked explicit I1.operator U(T x) {...}

unchecked keyword

Operator names in ECMA-335

end the names with the operator word. For example, there is a op_UnsignedRightShift
operator rather than op_RightShiftUnsigned operator.

The compiler, when performing member lookup to find candidate user-defined
operators within an unchecked context, could ignore checked operators . If metadata is
encountered that only defines a checked operator , then a compilation error will occur.

C#

The compiler, when performing member lookup to find candidate user-defined
operators within a checked context will also consider applicable operators ending with
Checked . That is, if the compiler was attempting to find applicable function members for
the binary addition operator, it would look for both op_Addition and
op_AdditionChecked . If the only applicable function member is a checked operator , it will
be used. If both a regular operator and checked operator exist and are equally
applicable the checked operator will be preferred. If both a regular operator and a
checked operator exist but the regular operator is an exact match while the checked
operator is not, the compiler will prefer the regular operator .

C#

Checked operators are inapplicable in an unchecked
context

public class MyClass
{
 public static void Add(Int128 lhs, Int128 rhs)
 {
 // Resolves to `op_CheckedMultiply`
 Int128 r5 = checked(lhs * rhs);

 // Error: Operator '*' cannot be applied to operands of type
'Int128' and 'Int128'
 Int128 r5 = unchecked(lhs * rhs);
 }
}

public struct Int128
{
 public static Int128 operator checked *(Int128 lhs, Int128 rhs);
}

More complicated operator lookup and overload
resolution rules in a checked context

Assuming that regular operator matches unchecked evaluation context, checked
operator matches checked evaluation context and an operator that doesn't have
checked form (for example, +) matches either context, the first bullet in
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#unary-operator-
overload-resolution :

public class MyClass
{
 public static void Add(Int128 lhs, Int128 rhs)
 {
 // Resolves to `op_CheckedAddition`
 Int128 r1 = checked(lhs + rhs);

 // Resolves to `op_Addition`
 Int128 r2 = unchecked(lhs + rhs);

 // Resolve to `op_Subtraction`
 Int128 r3 = checked(lhs - rhs);

 // Resolve to `op_Subtraction`
 Int128 r4 = unchecked(lhs - rhs);
 }

 public static void Multiply(Int128 lhs, byte rhs)
 {
 // Resolves to `op_Multiply` even though `op_CheckedMultiply` is
also applicable
 Int128 r4 = checked(lhs * rhs);
 }
}

public struct Int128
{
 public static Int128 operator checked +(Int128 lhs, Int128 rhs);
 public static Int128 operator +(Int128 lhs, Int128 rhs);

 public static Int128 operator -(Int128 lhs, Int128 rhs);

 public static Int128 operator checked *(Int128 lhs, int rhs);
 public static Int128 operator *(Int128 lhs, byte rhs);
}

Yet another way to build the set of candidate user-
defined operators

Unary operator overload resolution

https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#unary-operator-overload-resolution

The set of candidate user-defined operators provided by X for the operation
operator op(x) is determined using the rules of Candidate user-defined
operators .

will be replaced with the following two bullet points:

The set of candidate user-defined operators provided by X for the operation
operator op(x) matching the current checked/unchecked context is determined
using the rules of Candidate user-defined operators .
If the set of candidate user-defined operators is not empty, then this becomes the
set of candidate operators for the operation. Otherwise, the set of candidate user-
defined operators provided by X for the operation operator op(x) matching the
opposite checked/unchecked context is determined using the rules of Candidate
user-defined operators .

Assuming that regular operator matches unchecked evaluation context, checked
operator matches checked evaluation context and an operator that doesn't have a
checked form (for example, %) matches either context, the first bullet in
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#binary-
operator-overload-resolution :

The set of candidate user-defined operators provided by X and Y for the
operation operator op(x,y) is determined. The set consists of the union of the
candidate operators provided by X and the candidate operators provided by
Y , each determined using the rules of Candidate user-defined operators . If
X and Y are the same type, or if X and Y are derived from a common base
type, then shared candidate operators only occur in the combined set once.

will be replaced with the following two bullet points:

The set of candidate user-defined operators provided by X and Y for the
operation operator op(x,y) matching the current checked/unchecked context is
determined. The set consists of the union of the candidate operators provided by
X and the candidate operators provided by Y , each determined using the rules of
Candidate user-defined operators . If X and Y are the same type, or if X and Y
are derived from a common base type, then shared candidate operators only occur
in the combined set once.

Binary operator overload resolution

https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#binary-operator-overload-resolution
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators

If the set of candidate user-defined operators is not empty, then this becomes the
set of candidate operators for the operation. Otherwise, the set of candidate user-
defined operators provided by X and Y for the operation operator op(x,y)
matching the opposite checked/unchecked context is determined. The set
consists of the union of the candidate operators provided by X and the candidate
operators provided by Y , each determined using the rules of Candidate user-
defined operators . If X and Y are the same type, or if X and Y are derived from
a common base type, then shared candidate operators only occur in the combined
set once.

C#

Example #1:

public class MyClass
{
 public static void Add(Int128 lhs, Int128 rhs)
 {
 // Resolves to `op_CheckedAddition`
 Int128 r1 = checked(lhs + rhs);

 // Resolves to `op_Addition`
 Int128 r2 = unchecked(lhs + rhs);

 // Resolve to `op_Subtraction`
 Int128 r3 = checked(lhs - rhs);

 // Resolve to `op_Subtraction`
 Int128 r4 = unchecked(lhs - rhs);

 // Resolves to `op_CheckedMultiply`
 Int128 r5 = checked(lhs * rhs);

 // Resolves to `op_CheckedMultiply`
 Int128 r5 = unchecked(lhs * rhs);
 }

 public static void Divide(Int128 lhs, byte rhs)
 {
 // Resolves to `op_CheckedDivision`
 Int128 r4 = checked(lhs / rhs);
 }
}

public struct Int128
{
 public static Int128 operator checked +(Int128 lhs, Int128 rhs);
 public static Int128 operator +(Int128 lhs, Int128 rhs);

 public static Int128 operator -(Int128 lhs, Int128 rhs);

https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators

C#

C#

 public static Int128 operator checked *(Int128 lhs, Int128 rhs);

 public static Int128 operator checked /(Int128 lhs, int rhs);
 public static Int128 operator /(Int128 lhs, byte rhs);
}

Example #2:

class C
{
 static void Add(C2 x, C3 y)
 {
 object o;

 // C1.op_CheckedAddition
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator checked + (C1 x, C3 y) => new C3();
}

class C2 : C1
{
 public static C2 operator + (C2 x, C1 y) => new C2();
}

class C3 : C1
{
}

Example #3:

class C
{
 static void Add(C2 x, C3 y)
 {
 object o;

 // C2.op_CheckedAddition

C#

 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator + (C1 x, C3 y) => new C3();
}

class C2 : C1
{
 public static C2 operator checked + (C2 x, C1 y) => new C2();
}

class C3 : C1
{
}

Example #4:

class C
{
 static void Add(C2 x, byte y)
 {
 object o;

 // C1.op_CheckedAddition
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }

 static void Add2(C2 x, int y)
 {
 object o;

 // C2.op_Addition
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{

C#

 public static C1 operator checked + (C1 x, byte y) => new C1();
}

class C2 : C1
{
 public static C2 operator + (C2 x, int y) => new C2();
}

Example #5:

class C
{
 static void Add(C2 x, byte y)
 {
 object o;

 // C2.op_CheckedAddition
 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }

 static void Add2(C2 x, int y)
 {
 object o;

 // C1.op_Addition
 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator + (C1 x, int y) => new C1();
}

class C2 : C1
{
 public static C2 operator checked + (C2 x, byte y) => new C2();
}

Processing of user-defined explicit conversions

Assuming that regular operator matches unchecked evaluation context and checked
operator matches checked evaluation context, the third bullet in
https://github.com/dotnet/csharplang/blob/main/spec/conversions.md#processing-of-
user-defined-explicit-conversions :

Find the set of applicable user-defined and lifted conversion operators, U . This
set consists of the user-defined and lifted implicit or explicit conversion
operators declared by the classes or structs in D that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed
by T . If U is empty, the conversion is undefined and a compile-time error
occurs.

will be replaced with the following bullet points:

Find the set of applicable user-defined and lifted explicit conversion operators
matching the current checked/unchecked context, U0 . This set consists of the
user-defined and lifted explicit conversion operators declared by the classes or
structs in D that match the current checked/unchecked context and convert from
a type encompassing or encompassed by S to a type encompassing or
encompassed by T .
Find the set of applicable user-defined and lifted explicit conversion operators
matching the opposite checked/unchecked context, U1 . If U0 is not empty, U1 is
empty. Otherwise, this set consists of the user-defined and lifted explicit
conversion operators declared by the classes or structs in D that match the
opposite checked/unchecked context and convert from a type encompassing or
encompassed by S to a type encompassing or encompassed by T .
Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of operators from U0 , U1 , and the user-defined and lifted implicit
conversion operators declared by the classes or structs in D that convert from a
type encompassing or encompassed by S to a type encompassing or
encompassed by T . If U is empty, the conversion is undefined and a compile-time
error occurs.

The first bullet in section §11.4.4 will be adjusted as follows (additions are in bold).

Yet another another way to build the set of candidate
user-defined operators

Unary operator overload resolution

https://github.com/dotnet/csharplang/blob/main/spec/conversions.md#processing-of-user-defined-explicit-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1144-unary-operator-overload-resolution

The set of candidate user-defined operators provided by X for the operation
operator op(x) is determined using the rules of "Candidate user-defined
operators" section below. If the set contains at least one operator in checked
form, all operators in regular form are removed from the set.

The section §11.7.18 will be adjusted to reflect the effect that the checked/unchecked
context has on unary operator overload resolution.

The first bullet in section §11.4.5 will be adjusted as follows (additions are in bold).

The set of candidate user-defined operators provided by X and Y for the
operation operator op(x,y) is determined. The set consists of the union of the
candidate operators provided by X and the candidate operators provided by Y ,
each determined using the rules of "Candidate user-defined operators" section
below. If X and Y are the same type, or if X and Y are derived from a common
base type, then shared candidate operators only occur in the combined set once. If
the set contains at least one operator in checked form, all operators in regular
form are removed from the set.

The Checked and unchecked operators §11.7.18 section will be adjusted to reflect the
effect that the checked/unchecked context has on binary operator overload resolution.

The https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-
user-defined-operators section will be adjusted as follows (additions are in bold).

Given a type T and an operation operator op(A) , where op is an overloadable operator
and A is an argument list, the set of candidate user-defined operators provided by T for
operator op(A) is determined as follows:

Determine the type T0 . If T is a nullable type, T0 is its underlying type, otherwise
T0 is equal to T .
For all operator op declarations in their checked and regular forms in checked
evaluation context and only in their regular form in unchecked evaluation
context in T0 and all lifted forms of such operators, if at least one operator is
applicable (Applicable function member) with respect to the argument list A ,
then the set of candidate operators consists of all such applicable operators in T0 .
Otherwise, if T0 is object , the set of candidate operators is empty.

Binary operator overload resolution

Candidate user-defined operators

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11718-the-checked-and-unchecked-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1145-binary-operator-overload-resolution
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11718-the-checked-and-unchecked-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#candidate-user-defined-operators
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#applicable-function-member

Otherwise, the set of candidate operators provided by T0 is the set of candidate
operators provided by the direct base class of T0 , or the effective base class of T0
if T0 is a type parameter.

Similar filtering will be applied while determining the set of candidate operators in
interfaces https://github.com/dotnet/csharplang/blob/main/meetings/2017/LDM-2017-
06-27.md#shadowing-within-interfaces .

The https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#the-
checked-and-unchecked-operators section will be adjusted to reflect the effect that
the checked/unchecked context has on unary and binary operator overload resolution.

C#

Example #1:

public class MyClass
{
 public static void Add(Int128 lhs, Int128 rhs)
 {
 // Resolves to `op_CheckedAddition`
 Int128 r1 = checked(lhs + rhs);

 // Resolves to `op_Addition`
 Int128 r2 = unchecked(lhs + rhs);

 // Resolve to `op_Subtraction`
 Int128 r3 = checked(lhs - rhs);

 // Resolve to `op_Subtraction`
 Int128 r4 = unchecked(lhs - rhs);

 // Resolves to `op_CheckedMultiply`
 Int128 r5 = checked(lhs * rhs);

 // Error: Operator '*' cannot be applied to operands of type
'Int128' and 'Int128'
 Int128 r5 = unchecked(lhs * rhs);
 }

 public static void Divide(Int128 lhs, byte rhs)
 {
 // Resolves to `op_CheckedDivision`
 Int128 r4 = checked(lhs / rhs);
 }
}

public struct Int128
{
 public static Int128 operator checked +(Int128 lhs, Int128 rhs);

https://github.com/dotnet/csharplang/blob/main/meetings/2017/LDM-2017-06-27.md#shadowing-within-interfaces
https://github.com/dotnet/csharplang/blob/main/spec/expressions.md#the-checked-and-unchecked-operators

C#

C#

 public static Int128 operator +(Int128 lhs, Int128 rhs);

 public static Int128 operator -(Int128 lhs, Int128 rhs);

 public static Int128 operator checked *(Int128 lhs, Int128 rhs);

 public static Int128 operator checked /(Int128 lhs, int rhs);
 public static Int128 operator /(Int128 lhs, byte rhs);
}

Example #2:

class C
{
 static void Add(C2 x, C3 y)
 {
 object o;

 // C1.op_CheckedAddition
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator checked + (C1 x, C3 y) => new C3();
}

class C2 : C1
{
 public static C2 operator + (C2 x, C1 y) => new C2();
}

class C3 : C1
{
}

Example #3:

class C
{
 static void Add(C2 x, C3 y)
 {

C#

 object o;

 // C2.op_CheckedAddition
 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator + (C1 x, C3 y) => new C3();
}

class C2 : C1
{
 public static C2 operator checked + (C2 x, C1 y) => new C2();
}

class C3 : C1
{
}

Example #4:

class C
{
 static void Add(C2 x, byte y)
 {
 object o;

 // C2.op_Addition
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }

 static void Add2(C2 x, int y)
 {
 object o;

 // C2.op_Addition
 o = checked(x + y);

 // C2.op_Addition
 o = unchecked(x + y);
 }
}

C#

class C1
{
 public static C1 operator checked + (C1 x, byte y) => new C1();
}

class C2 : C1
{
 public static C2 operator + (C2 x, int y) => new C2();
}

Example #5:

class C
{
 static void Add(C2 x, byte y)
 {
 object o;

 // C2.op_CheckedAddition
 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }

 static void Add2(C2 x, int y)
 {
 object o;

 // C1.op_Addition
 o = checked(x + y);

 // C1.op_Addition
 o = unchecked(x + y);
 }
}

class C1
{
 public static C1 operator + (C1 x, int y) => new C1();
}

class C2 : C1
{
 public static C2 operator checked + (C2 x, byte y) => new C2();
}

The third bullet in §10.5.5 :

Find the set of applicable user-defined and lifted conversion operators, U . This
set consists of the user-defined and lifted implicit or explicit conversion
operators declared by the classes or structs in D that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed
by T . If U is empty, the conversion is undefined and a compile-time error
occurs.

will be replaced with the following bullet points:

Find the set of applicable user-defined and lifted explicit conversion operators, U0 .
This set consists of the user-defined and lifted explicit conversion operators
declared by the classes or structs in D in their checked and regular forms in
checked evaluation context and only in their regular form in unchecked
evaluation context and convert from a type encompassing or encompassed by S
to a type encompassing or encompassed by T .
If U0 contains at least one operator in checked form, all operators in regular form
are removed from the set.
Find the set of applicable user-defined and lifted conversion operators, U . This set
consists of operators from U0 , and the user-defined and lifted implicit conversion
operators declared by the classes or structs in D that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed by
T . If U is empty, the conversion is undefined and a compile-time error occurs.

The Checked and unchecked operators §11.7.18 section will be adjusted to reflect the
effect that the checked/unchecked context has on processing of user-defined explicit
conversions.

The compiler could treat the default context of a checked operator as checked. The
developer would need to explicitly use unchecked if part of their algorithm should not
participate in the checked context . However, this might not work well in the future if we
start allowing checked /unchecked tokens as modifiers on operators to set the context
within the body. The modifier and the keyword could contradict each other. Also, we
wouldn't be able to do the same (treat default context as unchecked) for a regular
operator because that would be a breaking change.

Processing of user-defined explicit conversions

Checked vs. unchecked context within a checked operator

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#1055-user-defined-explicit-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11718-the-checked-and-unchecked-operators

Should the language allow checked and unchecked modifiers on methods (e.g. static
checked void M())? This would allow removing nesting levels for methods that require it.

There is no factory method to create a checked division node and there is no
ExpressionType.DivideChecked member. We could still use the following factory method
to create regular divide node with MethodInfo pointing to the op_CheckedDivision
method. Consumers will have to check the name to infer the context.

C#

Note, even though §11.7.18 section lists / operator as one of the operators affected
by checked/unchecked evaluation context, IL doesn't have a special op code to perform
checked division. Compiler always uses the factory method reardless of the context
today.

Proposal: Checked user-defined devision will not be supported in Linq Expression Trees.

In general, implicit conversion operators are not supposed to throw.

Proposal: No.

Resolution: Approved -
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
07.md#checked-implicit-conversions

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
07.md https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-
02-09.md https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-
2022-02-14.md

Unresolved questions

Checked division in Linq Expression Trees

public static BinaryExpression Divide (Expression left, Expression right,
MethodInfo? method);

(Resolved) Should we support implicit checked
conversion operators?

Design meetings

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11718-the-checked-and-unchecked-operators
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-07.md#checked-implicit-conversions
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-07.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-09.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-14.md

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
23.md

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-23.md

Unsigned right shift operator
Article • 2022-09-27 • 5 minutes to read

An unsigned right shift operator will be supported by C# as a built-in operator (for
primitive integral types) and as a user-defined operator.

When working with signed integral value, it is not uncommon that you need to shift bits
right without replicating the high order bit on each shift. While this can be achieved for
primitive integral types with a regular shift operator, a cast to an unsigned type before
the shift operation and a cast back after it is required. Within the context of the generic
math interfaces the libraries are planning to expose, this is potentially more problematic
as the type might not necessary have an unsigned counterpart defined or known
upfront by the generic math code, yet an algorithm might rely on ability to perform an
unsigned right shift operation.

Section §6.4.6 will be adjusted to include >>> operator - the unsigned right shift
operator:

antlr

No characters of any kind (not even whitespace) are allowed between the tokens in
unsigned_right_shift and unsigned_right_shift_assignment productions. These productions
are treated specially in order to enable the correct handling of type_parameter_lists.

Summary

Motivation

Detailed design

Operators and punctuators

unsigned_right_shift
 : '>>>'
 ;

unsigned_right_shift_assignment
 : '>>>='
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/lexical-structure.md#646-operators-and-punctuators

Section §11.10 will be adjusted to include >>> operator - the unsigned right shift
operator:

The << , >> and >>> operators are used to perform bit shifting operations.

antlr

For an operation of the form x << count or x >> count or x >>> count , binary operator
overload resolution (§11.4.5) is applied to select a specific operator implementation.
The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined unsigned shift operators will support the same set of signatures that
predefined signed shift operators support today in the current implementation.

Shift right:

C#

The >>> operator shifts x right by a number of bits computed as described below.

The low-order bits of x are discarded, the remaining bits are shifted right, and the
high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

When the type of x is int or uint , the shift count is given by the low-order five
bits of count . In other words, the shift count is computed from count & 0x1F .
When the type of x is long or ulong , the shift count is given by the low-order six
bits of count . In other words, the shift count is computed from count & 0x3F .

Shift operators

shift_expression
 : additive_expression
 | shift_expression '<<' additive_expression
 | shift_expression right_shift additive_expression
 | shift_expression unsigned_right_shift additive_expression
 ;

int operator >>>(int x, int count);
uint operator >>>(uint x, int count);
long operator >>>(long x, int count);
ulong operator >>>(ulong x, int count);
nint operator >>>(nint x, int count);
nuint operator >>>(nuint x, int count);

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1110-shift-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1145-binary-operator-overload-resolution

If the resulting shift count is zero, the shift operators simply return the value of x .

Shift operations never cause overflows and produce the same results in checked and
unchecked contexts.

Section §11.18 will be adjusted to include unsigned_right_shift_assignment as follows:

antlr

The Integral types §8.3.6 section will be adjusted to include information about >>>
operator. The relevant bullet point is the following:

For the binary << , >> and >>> operators, the left operand is converted to type T ,
where T is the first of int , uint , long , and ulong that can fully represent all
possible values of the operand. The operation is then performed using the
precision of type T , and the type of the result is T .

Operator >>> will be added to the set of constructs permitted in constant expressions at
§11.20 .

Operator >>> will be added to the set of overloadable binary operators at §11.4.3 .

Assignment operators

assignment_operator
 : '='
 | '+='
 | '-='
 | '*='
 | '/='
 | '%='
 | '&='
 | '|='
 | '^='
 | '<<='
 | right_shift_assignment
 | unsigned_right_shift_assignment
 ;

Integral types

Constant expressions

Operator overloading

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1118-assignment-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/types.md#836-integral-types
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1120-constant-expressions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1143-operator-overloading

Operator >>> will be added to the set of binary operators permitting a lifted form at
§11.4.8 .

Section §11.4.2 will be adjusted to add >>> operator to the "Shift" category and >>>=
operator to the "Assignment and lambda expression" category.

The >>> operator is subject to the same grammar ambiguities described at §6.2.5 as a
regular >> operator.

The §14.10 section will be adjusted to include >>> operator.

antlr

The signature of a >>> operator is subject to the same rules as those at §14.10.3 for
the signature of a >> operator.

Section "I.10.3.2 Binary operators" of ECMA-335 already reserved the name for an
unsigned right shift operator - op_UnsignedRightShift.

The >>> operator will not be supported in Linq Expression Trees because semantics of
predefined >>> operators on signed types cannot be accurately represented without

Lifted operators

Operator precedence and associativity

Grammar ambiguities

Operators

overloadable_binary_operator
 : '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' | '<<'
 | right_shift | unsigned_right_shift | '==' | '!=' | '>' | '<' |
'>=' | '<='
 ;

Binary operators

Metadata name

Linq Expression Trees

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1148-lifted-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1142-operator-precedence-and-associativity
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/lexical-structure.md#625-grammar-ambiguities
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1410-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14103-binary-operators

adding conversions to an unsigned type and back. See
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
09.md#unsigned-right-shift-operator for more information.

It looks like dynamic binding uses values of System.Linq.Expressions.ExpressionType
enum to communicate binary operator kind to the runtime binder. Since we don't have
a member specifically representing an unsigned right shift operator, dynamic binding
for >>> operator will not be supported and the static and dynamic binding (§11.3)
section will be adjusted to reflect that.

The >>> operator will be supported in Linq Expressioin Trees.

For a user-defined operator, a BinaryExpression node pointing to the operator
method will be created.
For predefined operators

when the first operand is an ansigned type, a BinaryExpression node will be
created.
when the first operand is a signed type, a conversion for the first operand to an
unsigned type will be added, a BinaryExpression node will be created and
conversion for the result back to the signed type will be added.

For example:

C#

Resolution:

Rejected, see https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-
2022-02-09.md#unsigned-right-shift-operator for more information.

Dynamic Binding

Drawbacks

Alternatives

Linq Expression Trees

Expression<System.Func<int, int, int>> z = (x, y) => x >>> y; // (x, y) =>
Convert((Convert(x, UInt32) >> y), Int32)

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-09.md#unsigned-right-shift-operator
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#113-static-and-dynamic-binding
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-09.md#unsigned-right-shift-operator

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
09.md

Unresolved questions

Design meetings

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-09.md

Relaxing shift operator requirements
Article • 2022-09-27 • 2 minutes to read

The shift operator requirements will be relaxed so that the right-hand side operand is no
longer restricted to only be int .

When working with types other than int , it is not uncommon that you shift using the
result of another computation, such as shifting based on the leading zero count . The
natural type of something like a leading zero count is the same as the input type
(TSelf) and so in many cases, this requires you to convert that result to int before
shifting, even if that result is already within range.

Within the context of the generic math interfaces the libraries are planning to expose,
this is potentially problematic as the type is not well known and so the conversion to
int may not be possible or even well-defined.

§11.10 should be reworded as follows:

diff

That is, the restriction that the first operand be the class or struct containing the
operator declaration remains. While the restriction that the second operand must be
int is removed.

Summary

Motivation

Detailed design

Shift operators

- When declaring an overloaded shift operator, the type of the first operand
must always be the class or struct containing the operator declaration,
and the type of the second operand must always be int.
+ When declaring an overloaded shift operator, the type of the first operand
must always be the class or struct containing the operator declaration.

Binary operators

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1110-shift-operators

§14.10.3 should be reworded as follows:

diff

That is, the restriction that the first parameter be T or T? remains. While the restriction
that the second operand must be int or int? is removed.

The first bullet point at §11.4.5 should be reworded as follows:

The set of candidate user-defined operators provided by X and Y for the
operation operator op(x,y) is determined. The set consists of the union of the
candidate operators provided by X and , unless the operator is a shift operator,
the candidate operators provided by Y , each determined using the rules of
Candidate user-defined operators §11.4.6 . If X and Y are the same type, or if X
and Y are derived from a common base type, then shared candidate operators
only occur in the combined set once.

That is, for shift operators, candidate operators are only those provided by type X .

Users will be able to define operators that do not follow the recommended guidelines,
such as implementing cout << "string" in C#.

The generic math interfaces being exposed by the libraries could expose explicitly
named methods instead. This may make code more difficult to read/maintain.

The generic math interfaces could require the shift take int and that a conversion be
performed. This conversion may be expensive or may be not possible depending on the
type in question.

-* A binary `<<` or `>>` operator must take two parameters, the first of
which must have type `T` or `T?` and the second of which must have type
`int` or `int?`, and can return any type.
+* A binary `<<` or `>>` operator must take two parameters, the first of
which must have type `T` or `T?`, and can return any type.

Binary operator overload resolution

Drawbacks

Alternatives

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14103-binary-operators
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1145-binary-operator-overload-resolution
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1146-candidate-user-defined-operators

Is there concern around preserving the "intent" around why the second operand was
restricted to int?

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
09.md

Unresolved questions

Design meetings

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-09.md

Numeric IntPtr
Article • 2022-09-29 • 10 minutes to read

This is a revision on the initial native integers feature (spec), where the nint /nuint
types were distinct from the underlying types System.IntPtr /System.UIntPtr . In short,
we now treat nint /nuint as simple types aliasing System.IntPtr /System.UIntPtr , like
we do for int in relation to System.Int32 . The
System.Runtime.CompilerServices.RuntimeFeature.NumericIntPtr runtime feature flag
triggers this new behavior.

C# provides a set of predefined struct types called the simple types. The simple types
are identified through keywords, but these keywords are simply aliases for predefined
struct types in the System namespace, as described in the table below.

Keyword Aliased type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

nint System.IntPtr

nuint System.UIntPtr

long System.Int64

ulong System.UInt64

char System.Char

Summary

Design

8.3.5 Simple types

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-9.0/native-integers.md

Keyword Aliased type

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

[...]

C# supports eleven integral types: sbyte , byte , short , ushort , int , uint , nint , nuint ,
long , ulong , and char . [...]

In other words, an unmanaged_type is one of the following:

sbyte , byte , short , ushort , int , uint , nint , nuint , long , ulong , char , float ,
double , decimal , or bool .
Any enum_type.
Any user-defined struct_type that is not a constructed type and contains fields of
unmanaged_types only.
In unsafe code, any pointer_type.

The implicit numeric conversions are:

From sbyte to short , int , nint , long , float , double , or decimal .
From byte to short , ushort , int , uint , nint , nuint , long , ulong , float , double ,
or decimal .
From short to int , nint , long , float , double , or decimal .
From ushort to int , uint , nint , nuint , long , ulong , float , double , or decimal .
From int to nint , long , float , double , or decimal .
From uint to nuint , long , ulong , float , double , or decimal .
From nint to long , float , double , or decimal .
From nuint to ulong , float , double , or decimal .

8.3.6 Integral types

8.8 Unmanaged types

10.2.3 Implicit numeric conversions

From long to float , double , or decimal .
From ulong to float , double , or decimal .
From char to ushort , int , uint , nint , nuint , long , ulong , float , double , or
decimal .
From float to double .

[...]

An implicit constant expression conversion permits the following conversions:

A constant_expression of type int can be converted to type sbyte , byte , short ,
ushort , uint , nint , nuint , or ulong , provided the value of the constant_expression
is within the range of the destination type. [...]

The explicit numeric conversions are the conversions from a numeric_type to another
numeric_type for which an implicit numeric conversion does not already exist:

From sbyte to byte , ushort , uint , nuint , ulong , or char .
From byte to sbyte or char .
From short to sbyte , byte , ushort , uint , nuint , ulong , or char .
From ushort to sbyte , byte , short , or char .
From int to sbyte , byte , short , ushort , uint , nuint , ulong , or char .
From uint to sbyte , byte , short , ushort , int , nint , or char .
From long to sbyte , byte , short , ushort , int , uint , nint , nuint , ulong , or char .
From nint to sbyte , byte , short , ushort , int , uint , nuint , ulong , or char .
From nuint to sbyte , byte , short , ushort , int , uint , nint , long , or char .
From ulong to sbyte , byte , short , ushort , int , uint , nint , nuint , long , or char .
From char to sbyte , byte , or short .
From float to sbyte , byte , short , ushort , int , uint , nint , nuint , long , ulong ,
char , or decimal .
From double to sbyte , byte , short , ushort , int , uint , nint , nuint , long , ulong ,
char , float , or decimal .
From decimal to sbyte , byte , short , ushort , int , uint , nint , nuint , long ,
ulong , char , float , or double .

[...]

10.2.11 Implicit constant expression conversions

10.3.2 Explicit numeric conversions

The explicit enumeration conversions are:

From sbyte , byte , short , ushort , int , uint , nint , nuint , long , ulong , char ,
float , double , or decimal to any enum_type.
From any enum_type to sbyte , byte , short , ushort , int , uint , nint , nuint , long ,
ulong , char , float , double , or decimal .
From any enum_type to any other enum_type.

Given two types T₁ and T₂ , T₁ is a better conversion target than T₂ if one of the
following holds:

An implicit conversion from T₁ to T₂ exists and no implicit conversion from T₂ to
T₁ exists
T₁ is Task<S₁> , T₂ is Task<S₂> , and S₁ is a better conversion target than S₂
T₁ is S₁ or S₁? where S₁ is a signed integral type, and T₂ is S₂ or S₂? where S₂
is an unsigned integral type. Specifically: [...]

[...] The number of expressions in the argument_list shall be the same as the rank of the
array_type, and each expression shall be of type int , uint , nint , nuint , long , or
ulong, or shall be implicitly convertible to one or more of these types.

[...] The number of expressions in the argument_list shall be the same as the rank of the
array_type, and each expression shall be of type int , uint , nint , nuint , long , or
ulong, or shall be implicitly convertible to one or more of these types.

[...] The run-time processing of an array access of the form P[A] , where P is a
primary_no_array_creation_expression of an array_type and A is an argument_list,
consists of the following steps: [...]

The index expressions of the argument_list are evaluated in order, from left to
right. Following evaluation of each index expression, an implicit conversion to one
of the following types is performed: int , uint , nint , nuint , long , ulong . The first
type in this list for which an implicit conversion exists is chosen. [...]

10.3.3 Explicit enumeration conversions

11.6.4.6 Better conversion target

11.7.10 Element access

11.7.10.2 Array access

Unary operator overload resolution is applied to select a specific operator
implementation. Predefined ++ and -- operators exist for the following types: sbyte ,
byte , short , ushort , int , uint , nint , nuint , long , ulong , char , float , double ,
decimal , and any enum type.

The predefined unary plus operators are:

C#

The predefined unary minus operators are:

Integer negation:

C#

Predefined ++ and -- operators exist for the following types: sbyte , byte , short ,
ushort , int , uint , nint , nuint , long , ulong , char , float , double , decimal , and any
enum type.

In addition, a default_value_expression is a constant expression if the type is one of the
following value types: sbyte , byte , short , ushort , int , uint , nint , nuint , long , ulong ,
char , float , double , decimal , bool, or any enumeration type.

11.7.14 Postfix increment and decrement operators

11.8.2 Unary plus operator

...
nint operator +(nint x);
nuint operator +(nuint x);

11.8.3 Unary minus operator

...
nint operator –(nint x);

11.7.14 Postfix increment and decrement operators

11.7.19 Default value expressions

11.8.5 Bitwise complement operator

The predefined bitwise complement operators are:

C#

Predefined ++ and -- operators exist for the following types: sbyte , byte , short ,
ushort , int , uint , nint , nuint , long , ulong , char , float , double , decimal , and any
enum type.

The predefined multiplication operators are listed below. The operators all compute the
product of x and y .

Integer multiplication:

C#

The predefined division operators are listed below. The operators all compute the
quotient of x and y .

Integer division:

C#

...
nint operator ~(nint x);
nuint operator ~(nuint x);

11.8.6 Prefix increment and decrement operators

11.9 Arithmetic operators

11.9.2 Multiplication operator

...
nint operator *(nint x, nint y);
nuint operator *(nuint x, nuint y);

11.9.3 Division operator

...
nint operator /(nint x, nint y);
nuint operator /(nuint x, nuint y);

The predefined remainder operators are listed below. The operators all compute the
remainder of the division between x and y .

Integer remainder:

C#

Integer addition:

C#

Integer subtraction:

C#

The predefined shift operators are listed below.

Shift left:

C#

11.9.4 Remainder operator

...
nint operator %(nint x, nint y);
nuint operator %(nuint x, nuint y);

11.9.5 Addition operator

...
nint operator +(nint x, nint y);
nuint operator +(nuint x, nuint y);

11.9.6 Subtraction operator

...
nint operator –(nint x, nint y);
nuint operator –(nuint x, nuint y);

11.10 Shift operators

...
nint operator <<(nint x, int count);
nuint operator <<(nuint x, int count);

Shift right:

C#

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int , nint or long , the low-order bits of x are discarded, the
remaining bits are shifted right, and the high-order empty bit positions are set to
zero if x is non-negative and set to one if x is negative.

When x is of type uint , nuint or ulong , the low-order bits of x are discarded, the
remaining bits are shifted right, and the high-order empty bit positions are set to
zero.

Unsigned shift right:

C#

For the predefined operators, the number of bits to shift is computed as follows: [...]

When the type of x is nint or nuint , the shift count is given by the low-order five
bits of count on a 32 bit platform, or the lower-order six bits of count on a 64 bit
platform.

The predefined integer comparison operators are:

C#

...
nint operator >>(nint x, int count);
nuint operator >>(nuint x, int count);

...
nint operator >>>(nint x, int count);
nuint operator >>>(nuint x, int count);

11.11 Relational and type-testing operators

11.11.2 Integer comparison operators

...
bool operator ==(nint x, nint y);
bool operator ==(nuint x, nuint y);

The predefined integer logical operators are:

C#

A constant expression may be either a value type or a reference type. If a constant
expression is a value type, it must be one of the following types: sbyte , byte , short ,
ushort , int , uint , nint , nuint , long , ulong , char , float , double , decimal , bool, or
any enumeration type.

[...]

An implicit constant expression conversion permits a constant expression of type int to
be converted to sbyte , byte , short , ushort , uint , nint , nuint , or ulong , provided the

bool operator !=(nint x, nint y);
bool operator !=(nuint x, nuint y);

bool operator <(nint x, nint y);
bool operator <(nuint x, nuint y);

bool operator >(nint x, nint y);
bool operator >(nuint x, nuint y);

bool operator <=(nint x, nint y);
bool operator <=(nuint x, nuint y);

bool operator >=(nint x, nint y);
bool operator >=(nuint x, nuint y);

11.12 Logical operators

11.12.2 Integer logical operators

...
nint operator &(nint x, nint y);
nuint operator &(nuint x, nuint y);

nint operator |(nint x, nint y);
nuint operator |(nuint x, nuint y);

nint operator ^(nint x, nint y);
nuint operator ^(nuint x, nuint y);

11.20 Constant expressions

value of the constant expression is within the range of the destination type.

Array elements are accessed using element_access expressions of the form A[I₁, I₂,
..., Iₓ] , where A is an expression of an array type and each Iₑ is an expression of
type int , uint , nint , nuint , long , ulong , or can be implicitly converted to one or more
of these types. The result of an array element access is a variable, namely the array
element selected by the indices.

[...]

Additionally, in an unsafe context, the set of available explicit conversions is extended to
include the following explicit pointer conversions:

From any pointer_type to any other pointer_type.
From sbyte , byte , short , ushort , int , uint , nint , nuint , long , or ulong to any
pointer_type.
From any pointer_type to sbyte , byte , short , ushort , int , uint , nint , nuint ,
long , or ulong .

[...] In a pointer element access of the form P[E] , P shall be an expression of a pointer
type other than void* , and E shall be an expression that can be implicitly converted to
int , uint , nint , nuint , long , or ulong .

In an unsafe context, the + operator and – operator can be applied to values of all
pointer types except void* . Thus, for every pointer type T* , the following operators are
implicitly defined:

C#

16.4 Array element access

22.5 Pointer conversions

22.5.1 General

22.6.4 Pointer element access

22.6.7 Pointer arithmetic

Given an expression P of a pointer type T* and an expression N of type int , uint ,
nint , nuint , long , or ulong , the expressions P + N and N + P compute the pointer
value of type T* that results from adding N * sizeof(T) to the address given by P .
Likewise, the expression P – N computes the pointer value of type T* that results from
subtracting N * sizeof(T) from the address given by P .

One of the main impacts of this design is that System.IntPtr and System.UIntPtr gain
some built-in operators (conversions, unary and binary).
Those include checked operators, which means that the following operators on those
types will now throw when overflowing:

IntPtr + int

IntPtr - int

IntPtr -> int

long -> IntPtr

void* -> IntPtr

This design means that nint and nuint can simply be emitted as System.IntPtr and
System.UIntPtr , without the use of
System.Runtime.CompilerServices.NativeIntegerAttribute .
Similarly, when loading metadata NativeIntegerAttribute can be ignored.

[...]
T* operator +(T* x, nint y);
T* operator +(T* x, nuint y);
T* operator +(nint x, T* y);
T* operator +(nuint x, T* y);
T* operator -(T* x, nint y);
T* operator -(T* x, nuint y);

Various considerations

Breaking changes

Metadata encoding

Raw string literal
Article • 2023-01-10 • 19 minutes to read

Allow a new form of string literal that starts with a minimum of three """ characters
(but no maximum), optionally followed by a new_line , the content of the string, and
then ends with the same number of quotes that the literal started with. For example:

Because the nested contents might itself want to use """ then the starting/ending
delimiters can be longer like so:

To make the text easy to read and allow for indentation that developers like in code,
these string literals will naturally remove the indentation specified on the last line when
producing the final literal value. For example, a literal of the form:

Will have the contents:

Summary

var xml = """
 <element attr="content"/>
 """;

var xml = """"
 Ok to use """ here
 """";

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>
 """;

<element attr="content">
 <body>

This allows code to look natural, while still producing literals that are desired, and
avoiding runtime costs if this required the use of specialized string manipulation
routines.

If the indentation behavior is not desired, it is also trivial to disable like so:

A single line form is also supported. It starts with a minimum of three """ characters
(but no maximum), the content of the string (which cannot contain any new_line
characters), and then ends with the same number of quotes that the literal started with.
For example:

Interpolated raw strings are also supported. In this case, the string specifies the number
of braces needed to start an interpolation (determined by the number of dollar signs
present at the start of the literal). Any brace sequence with fewer braces than that is just
treated as content. For example:

 </body>
</element>

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>
""";

var xml = """<summary><element attr="content"/></summary>""";

var json = $$"""
 {
 "summary": "text",
 "length" : {{value.Length}},
 };
 """

Motivation

C# lacks a general way to create simple string literals that can contain effectively any
arbitrary text. All C# string literal forms today need some form of escaping in case the
contents use some special character (always if a delimiter is used). This prevents easily
having literals containing other languages in them (for example, an XML, HTML or JSON
literal).

All current approaches to form these literals in C# today always force the user to
manually escape the contents. Editing at that point can be highly annoying as the
escaping cannot be avoided and must be dealt with whenever it arises in the contents.
This is particularly painful for regexes, especially when they contain quotes or
backslashes. Even with a @"" string, quotes themselves must be escaped leading to a
mix of C# and regex interspersed. { and } are similarly frustrating in $"" strings.

The crux of the problem is that all our strings have a fixed start/end delimiter. As long as
that is the case, we will always have to have an escaping mechanism as the string
contents may need to specify that end delimiter in their contents. This is particularly
problematic as that delimiter " is exceedingly common in many languages.

To address this, this proposal allows for flexible start and end delimiters so that they can
always be made in a way that will not conflict with the content of the string.

1. Provide a mechanism that will allow all string values to be provided by the user
without the need for any escape-sequences whatsoever. Because all strings must
be representable without escape-sequences, it must always be possible for the
user to specify delimiters that will be guaranteed to not collide with any text
contents.

2. Support interpolations in the same fashion. As above, because all strings must be
representable without escapes, it must always be possible for the user to specify an
interpolation delimiter that will be guaranteed to not collide with any text
contents. Importantly, languages that use our interpolation delimiter characters
({ and }) should feel first-class and not painful to use.

3. Multiline string literals should look pleasant in code and should not make
indentation within the compilation unit look strange. Importantly, literal values that
themselves have no indentation should not be forced to occupy the first column of
the file as that can break up the flow of code and will look unaligned with the rest
of the code that surrounds it.

This behavior should be easy to override while keeping literals clear and easy
to read.

Goals

4. For all strings that do not themselves contain a new_line or start or end with a
quote (") character, it should be possible to represent the string literal itself on a
single line.

Optionally, with extra complexity, we could refine this to state that: For all
strings that do not themselves contain a new_line (but can start or end with a
quote " character), it should be possible to represent the string literal itself
on a single line. For more details see the expanded proposal in the Drawbacks
section.

We will add a new string_literal production with the following form:

Detailed design (non-interpolation case)

string_literal
 : regular_string_literal
 | verbatim_string_literal
 | raw_string_literal
 ;

raw_string_literal
 : single_line_raw_string_literal
 | multi_line_raw_string_literal
 ;

raw_string_literal_delimiter
 : """
 | """"
 | """""
 | etc.
 ;

raw_content
 : not_new_line+
 ;

single_line_raw_string_literal
 : raw_string_literal_delimiter raw_content raw_string_literal_delimiter
 ;

multi_line_raw_string_literal
 : raw_string_literal_delimiter whitespace* new_line (raw_content |
new_line)* new_line whitespace* raw_string_literal_delimiter
 ;

not_new_line

The ending delimiter to a raw_string_literal must match the starting delimiter. So if
the starting delimiter is """"" the ending delimiter must be that as well.

The above grammar for a raw_string_literal should be interpreted as:

1. It starts with at least three quotes (but no upper bound on quotes).
2. It then continues with contents on the same line as the starting quotes. These

contents on the same line can be blank, or non-blank. 'blank' is synonymous with
'entirely whitespace'.

3. If the contents on that same line is non-blank no further content can follow. In
other words the literal is required to end with the same number of quotes on that
same line.

4. If the contents on the same line is blank, then the literal can continue with a
new_line and some number of subsequent content lines and new_lines.

A content line is any text except a new_line .
It then ends with a new_line some number (possibly zero) of whitespace and
the same number of quotes that the literal started with.

The portions between the starting and ending raw_string_literal_delimiter are used
to form the value of the raw_string_literal in the following fashion:

In the case of single_line_raw_string_literal the value of the literal will exactly
be the contents between the starting and ending raw_string_literal_delimiter .
In the case of multi_line_raw_string_literal the initial whitespace* new_line and
the final new_line whitespace* is not part of the value of the string. However, the
final whitespace* portion preceding the raw_string_literal_delimiter terminal is
considered the 'indentation whitespace' and will affect how the other lines are
interpreted.
To get the final value the sequence of (raw_content | new_line)* is walked and
the following is performed:

If it a new_line the content of the new_line is added to the final string value.
If it is not a 'blank' raw_content (i.e. not_new_line+ contains a non-whitespace
character):

the 'indentation whitespace' must be a prefix of the raw_content . It is an
error otherwise.

 : <any unicode character that is not new_line>
 ;

Raw string literal value

the 'indentation whitespace' is stripped from the start of raw_content and
the remainder is added to the final string value.

If it is a 'blank' raw_content (i.e. not_new_line+ is entirely whitespace):
the 'indentation whitespace' must be a prefix of the raw_content or the
raw_content must be a prefix of of the 'indentation whitespace'. It is an error
otherwise.
as much of the 'indentation whitespace' is stripped from the start of
raw_content and any remainder is added to the final string value.

1. A single_line_raw_string_literal is not capable of representing a string with a
new_line value in it. A single_line_raw_string_literal does not participate in the
'indentation whitespace' trimming. Its value is always the exact characters between
the starting and ending delimiters.

2. Because a multi_line_raw_string_literal ignores the final new_line of the last
content line, the following represents a string with no starting new_line and no
terminating new_line

This maintains symmetry with how the starting new_line is ignored, and it also provides
a uniform way to ensure the 'indentation whitespace' can always be adjusted. To
represent a string with a terminal new_line an extra line must be provided like so:

3. A single_line_raw_string_literal cannot represent a string value that starts or
ends with a quote (") though an augmentation to this proposal is provided in the
Drawbacks section that shows how that could be supported.

Clarifications:

var v1 = """
 This is the entire content of the string.
 """

var v1 = """
 This string ends with a new line.

 """

4. A multi_line_raw_string_literal starts with whitespace* new_line following the
initial raw_string_literal_delimiter . This content after the delimiter is entirely
ignored and is not used in any way when determining the value of the string. This
allows for a mechanism to specify a raw_string_literal whose content starts with
a " character itself. For example:

5. A raw_string_literal can also represent content that end with a quote ("). This is
supported as the terminating delimiter must be on its own line. For example:

5. The requirement that a 'blank' raw_content be either a prefix of the 'indentation
whitespace' or the 'indentation whitespace' must be a prefix of it helps ensure
confusing scenarios with mixed whitespace do not occur, especially as it would be
unclear what should happen with that line. For example, the following case is
illegal:

6. Here the 'indentation whitespace' is nine space characters, but the 'blank'
raw_content does not start with a prefix of that. There is no clear answer as to how
that <tab> line should be treated at all. Should it be ignored? Should it be the

var v1 = """
 "The content of this string starts with a quote
 """

var v1 = """
 "The content of this string starts and ends with a quote"
 """

var v1 = """
 ""The content of this string starts and ends with two quotes""
 """

var v1 = """
 Start
<tab>
 End
 """

same as<tab>? As such, making it illegal seems the clearest for avoiding
confusion.

7. The following cases are legal though and represent the same string:

In both these cases, the 'indentation whitespace' will be nine spaces. And in both cases,
we will remove as much of that prefix as possible, leading the 'blank' raw_content in
each case to be empty (not counting every new_line). This allows users to not have to
see and potentially fret about whitespace on these lines when they copy/paste or edit
these lines.

8. In the case though of:

The 'indentation whitespace' will still be nine spaces. Here though, we will remove as
much of the 'indentation whitespace' as possible, and the 'blank' raw_content will
contribute a single space to the final content. This allows for cases where the content
does need whitespace on these lines that should be preserved.

9. The following is technically not legal:

var v1 = """
 Start
<four spaces>
 End
 """

var v1 = """
 Start
<nine spaces>
 End
 """

var v1 = """
 Start
<ten spaces>
 End
 """

This is because the start of the raw string must have a new_line (which it does) but the
end must have a new_line as well (which it does not). The minimal legal
raw_string_literal is:

However, this string is decidedly uninteresting as it is equivalent to "" .

The 'indentation whitespace' algorithm can be visualized on several inputs like so:

is interpreted as

var v1 = """
 """

var v1 = """

 """

Indentation examples

Example 1 - Standard case

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>
 """;

var xml = """
 |<element attr="content">
 | <body>
 | </body>
 |</element>
 """;

Example 2 - End delimiter on same line as content.

This is illegal. The last content line must end with a new_line .

is interpreted as

This is illegal. The lines of content must start with the 'indentation whitespace'

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>""";

Example 3 - End delimiter before start delimiter

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>
""";

var xml = """
| <element attr="content">
| <body>
| </body>
| </element>
""";

Example 4 - End delimiter after start delimiter

var xml = """
 <element attr="content">
 <body>
 </body>
 </element>
 """;

Example 5 - Empty blank line

is interpreted as

is interpreted as

var xml = """
 <element attr="content">
 <body>
 </body>

 </element>
 """;

var xml = """
 |<element attr="content">
 | <body>
 | </body>
 |
 |</element>
 """;

Example 5 - Blank line with less whitespace than prefix
(dots represent spaces)

var xml = """
 <element attr="content">
 <body>
 </body>
....
 </element>
 """;

var xml = """
 |<element attr="content">
 | <body>
 | </body>
 |
 |</element>
 """;

is interpreted as

Interpolations in normal interpolated strings (e.g. $"...") are supported today through
the use of the { character to start an interpolation and the use of an {{ escape-
sequence to insert an actual open brace character. Using this same mechanism would
violate goals '1' and '2' of this proposal. Languages that have { as a core character
(examples being JavaScript, JSON, Regex, and even embedded C#) would now need
escaping, undoing the purpose of raw string literals.

To support interpolations we introduce them in a different fashion than normal $"
interpolated strings. Specifically, an interpolated_raw_string_literal will start with
some number of $ characters. The count of these indicates how many { (and })
characters are needed in the content of the literal to delimit the interpolation .
Importantly, there continues to be no escaping mechanism for curly braces. Rather, just
as with quotes (") the literal itself can always ensure it specifies delimiters for the
interpolations that are certain to not collide with any of the rest of the content of the
string. For example a JSON literal containing interpolation holes can be written like so:

Example 5 - Blank line with more whitespace than prefix
(dots represent spaces)

var xml = """
 <element attr="content">
 <body>
 </body>
..............
 </element>
 """;

var xml = """
 |<element attr="content">
 | <body>
 | </body>
 |....
 |</element>
 """;

Detailed design (interpolation case)

c#

Here, the {{...}} matches the requisite count of two braces specified by the $$
delimiter prefix. In the case of a single $ that means the interpolation is specified just as
{...} as in normal interpolated string literals. Importantly, this means that an
interpolated literal with N $ characters can have a sequence of 2*N-1 braces (of the
same type in a row). The last N braces will start (or end) an interpolation, and the
remaining N-1 braces will just be content. For example:

c#

In this case the inner two {{ and }} braces belong to the interpolation, and the outer
singular braces are just content. So the above string is equivalent to the content X{2}Z .
Having 2*N (or more) braces is always an error. To have longer sequences of braces as
content, the number of $ characters must be increased accordingly.

Interpolated raw string literals are defined as:

var v1 = $$"""
 {
 "orders":
 [
 { "number": {{order_number}} }
]
 }
 """

var v1 = $$"""X{{{1+1}}}Z""";

interpolated_raw_string_literal
 : single_line_interpolated_raw_string_literal
 | multi_line_interpolated_raw_string_literal
 ;

interpolated_raw_string_start
 : $
 | $$
 | $$$
 | etc.
 ;

interpolated_raw_string_literal_delimiter
 : interpolated_raw_string_start raw_string_literal_delimiter
 ;

The above is similar to the definition of raw_string_literal but with some important
differences. A interpolated_raw_string_literal should be interpreted as:

1. It starts with at least one dollar sign (but no upper bound) and then three quotes
(also with no upper bound).

2. It then continues with content on the same line as the starting quotes. This content
on the same line can be blank, or non-blank. 'blank' is synonymous with 'entirely
whitespace'.

3. If the content on that same line is non-blank no further content can follow. In
other words the literal is required to end with the same number of quotes on that
same line.

4. If the contents on the same line is blank, then the literal can continue with a
new_line and some number of subsequent content lines and new_lines.

A content line is any text except a new_line .

single_line_interpolated_raw_string_literal
 : interpolated_raw_string_literal_delimiter interpolated_raw_content
raw_string_literal_delimiter
 ;

multi_line_interpolated_raw_string_literal
 : interpolated_raw_string_literal_delimiter whitespace* new_line
(interpolated_raw_content | new_line)* new_line whitespace*
raw_string_literal_delimiter
 ;

interpolated_raw_content
 : (not_new_line | raw_interpolation)+
 ;

raw_interpolation
 : raw_interpolation_start interpolation raw_interpolation_end
 ;

raw_interpolation_start
 : {
 | {{
 | {{{
 | etc.
 ;

raw_interpolation_end
 : }
 | }}
 | }}}
 | etc.
 ;

A content line can contain multiple raw_interpolation occurrences at any
position. The raw_interpolation must start with an equal number of open
braces ({) as the number of dollar signs at the start of the literal.
If 'indentation whitespace' is not-empty, a raw_interpolation cannot
immediately follow a new_line .
The raw_interpolation will following the normal rules specified at §11.7.3 .
Any raw_interpolation must end with the same number of close braces (})
as dollar signs and open braces.
Any interpolation can itself contain new-lines within in the same manner as
an interpolation in a normal verbatim_string_literal (@"").
It then ends with a new_line some number (possibly zero) of whitespace and
the same number of quotes that the literal started with.

Computation of the interpolated string value follows the same rules as a normal
raw_string_literal except updated to handle lines containing raw_interpolations.
Building the string value happens in the same fashion, just with the interpolation holes
replaced with whatever values those expressions produce at runtime. If the
interpolated_raw_string_literal is converted to a FormattableString then the values
of the interpolations are passed in their respective order to the arguments array to
FormattableString.Create . The rest of the content of the
interpolated_raw_string_literal after the 'indentation whitespace' has been stripped
from all lines will be used to generate format string passed to
FormattableString.Create , except with appropriately numbered {N} contents in each
location where a raw_interpolation occurred (or {N,constant} in the case if its
interpolation is of the form expression ',' constant_expression).

There is an ambiguity in the above specification. Specifically when a section of { in text
and { of an interpolation abut. For example:

This could be interpreted as: {{ {order_number } }} or { {{order_number}} } . However,
as the former is illegal (no C# expression could start with {) it would be pointless to
interpret that way. So we interpret in the latter fashion, where the innermost { and }
braces form the interpolation, and any outermost ones form the text. In the future this
might be an issue if the language ever supports any expressions that are surrounded by

var v1 = $$"""
 {{{order_number}}}
 """

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#1173-interpolated-string-expressions

braces. However, in that case, the recommendation would be to write such a case like
so: {{({some_new_expression_form})}} . Here, parentheses would help designate the
expression portion from the rest of the literal/interpolation. This has precedence already
with how ternary conditional expressions need to be wrapped to not conflict with the
formatting/alignment specifier of an interpolation (e.g. {(x ? y : z)}).

Examples: (upcoming)

Raw string literals add more complexity to the language. We already have many string
literal forms already for numerous purposes. "" strings, @"" strings, and $"" strings
already have a lot of power and flexibility. But they all lack a way to provide raw
contents that never need escaping.

The above rules do not support the case of 4.a:

4. ...

Optionally, with extra complexity, we could refine this to state that: For all
strings that do not themselves contain a new_line (but can start or end with a
quote " character), it should be possible to represent the string literal itself
on a single line.

That's because we have no means to know that a starting or ending quote (") should
belong to the contents and not the delimiter itself. If this is an important scenario we
want to support though, we can add a parallel ''' construct to go along with the """
form. With that parallel construct, a single line string that start and ends with " can be
written easily as '''"This string starts and ends with quotes"''' along with the
parallel construct """'This string starts and ends with apostrophes'""" . This may also
be desirable to support to help visually separate out quote characters, which may help
when embedding languages that primarily use one quote character much more than
then other.

https://github.com/dotnet/csharplang/discussions/89 covers many options here.
Alternatives are numerous, but i feel stray too far into complexity and poor ergonomics.
This approach opts for simplicity where you just keep increasing the start/end quote
length until there is no concern about a conflict with the string contents. It also allows

Drawbacks

Alternatives

https://github.com/dotnet/csharplang/discussions/89

the code you write to look well indented, while still producing a dedented literal that is
what most code wants.

One of the most interesting potential variations though is the use of ` (or ```) fences
for these raw string literals. This would have several benefits:

1. It would avoid all the issues with strings starting er ending with quotes.
2. It would look familiar to markdown. Though that in itself is potentially not a good

thing as users might expect markdown interpretation.
3. A raw string literal would only have to start and end with a single character in most

cases, and would only need multiple in the much rarer case of contents that
contain back-ticks themselves.

4. It would feel natural to extend this in the future with ```xml , again akin to
markdown. Though, of course, that is also true of the """ form.

Overall though, the net benefit here seems small. In keeping with C# history, i think "
should continue to be the string literal delimiter, just as it is for @"" and $"" .

[x] should we have a single line form? We technically could do without it. But it
would mean simple strings not containing a newline would always take at least
three lines. I think we should It's very heavyweight to force single line constructs to
be three lines just to avoid escaping.

Design decision: Yes, we will have a single line form.

[x] should we require that multiline must start with a newline? I think we should. It
also gives us the ability to support things like """xml in the future.

Design decision: Yes, we will require that multiline must start with a newline

[x] should the automatic dedenting be done at all? I think we should. It makes
code look so much more pleasant.

Design decision: Yes, automatic dedenting will be done.

[x] should we restrict common-whitespace from mixing whitespace types? I don't
think we should. Indeed, there is a common indentation strategy called "tab for
indentation, space for alignment". It would be very natural to use this to align the

Design meetings

Open issues to discuss Resolved issues:

end delimiter with the start delimiter in a case where the start delimiter doesn't
start on a tab stop.

Design decision: We will not have any restrictions on mixing whitespace.

[x] should we use something else for the fences? ` would match markdown syntax,
and would mean we didn't need to always start these strings with three quotes.
Just one would suffice for the common case.

Design decision: We will use """

[x] should we have a requirement that the delimiter have more quotes than the
longest sequence of quotes in the string value? Technically it's not required. for
example:

This is a string with """ as the delimiter. Several community members have stated this is
confusing and we should require in a case like this that the delimiter always have more
characters. That would then be:

Design decision: Yes, the delimiter must be longer than any sequence of quotes in the
string itself.

var v = """
 contents"""""
 """

var v = """"""
 contents"""""
 """"""

Allow new-lines in all interpolations
Article • 2022-09-27 • 2 minutes to read

[x] Proposed
[x] Implementation: https://github.com/dotnet/roslyn/pull/56853
[x] Specification: this file.

The language today non-verbatim and verbatim interpolated strings ($"" and $@""
respectively). The primary sensible difference for these is that a non-verbatim
interpolated string works like a normal string and cannot contain newlines in its text
segments, and must instead use escapes (like \r\n). Conversely, a verbatim interpolated
string can contain newlines in its text segments (like a verbatim string), and doesn't
escape newlines or other character (except for "" to escape a quote itself).

This is all reasonable and will not change with this proposal.

What is unreasonable today is that we extend the restriction on 'no newlines' in a non-
verbatim interpolated string beyond its text segments into the interpolations themselves.
This means, for example, that you cannot write the following:

c#

Ultimately, the 'interpolation must be on a single line itself' rule is just a restriction of
the current implementation. That restriction really isn't necessary, and can be annoying,
and would be fairly trivial to remove (see work
https://github.com/dotnet/roslyn/pull/54875 to show how). In the end, all it does is
force the dev to place things on a single line, or force them into a verbatim interpolated
string (both of which may be unpalatable).

The interpolation expressions themselves are not text, and shouldn't be beholden to any
escaping/newline rules therin.

Summary

var v = $"Count is\t: { this.Is.A.Really(long(expr))
 .That.I.Should(
 be + able)[
 to.Wrap()] }.";

Specification change

https://github.com/dotnet/roslyn/pull/56853
https://github.com/dotnet/roslyn/pull/54875

diff

https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-09-
20.md

single_regular_balanced_text_character
- : '<Any character except / (U+002F), @ (U+0040), \" (U+0022), $
(U+0024), ((U+0028),) (U+0029), [(U+005B),] (U+005D), { (U+007B), }
(U+007D) and new_line_character>'
- | '</ (U+002F), if not directly followed by / (U+002F) or * (U+002A)>'
+ : <Any character except @ (U+0040), \" (U+0022), $ (U+0024), (
(U+0028),) (U+0029), [(U+005B),] (U+005D), { (U+007B), } (U+007D)>
+ | comment
 ;

LDM Discussions

https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-09-20.md

Utf8 Strings Literals
Article • 2022-09-27 • 17 minutes to read

This proposal adds the ability to write UTF8 string literals in C# and have them
automatically encoded into their UTF-8 byte representation.

UTF8 is the language of the web and its use is necessary in significant portions of the
.NET stack. While much of data comes in the form of byte[] off the network stack there
is still significant uses of constants in the code. For example networking stack has to
commonly write constants like "HTTP/1.0\r\n" , " AUTH" or . "Content-Length: " .

Today there is no efficient syntax for doing this as C# represents all strings using UTF16
encoding. That means developers have to choose between the convenience of encoding
at runtime which incurs overhead, including the time spent at startup actually
performing the encoding operation (and allocations if targeting a type that doesn't
actually require them), or manually translating the bytes and storing in a byte[] .

c#

This trade off is a pain point that comes up frequently for our partners in the runtime,
ASP.NET and Azure. Often times it causes them to leave performance on the table
because they don't want to go through the hassle of writing out the byte[] encoding
by hand.

Summary

Motivation

// Efficient but verbose and error prone
static ReadOnlySpan<byte> AuthWithTrailingSpace => new byte[] { 0x41, 0x55,
0x54, 0x48, 0x20 };
WriteBytes(AuthWithTrailingSpace);

// Incurs allocation and startup costs performing an encoding that could
have been done at compile-time
static readonly byte[] s_authWithTrailingSpace =
Encoding.UTF8.GetBytes("AUTH ");
WriteBytes(s_authWithTrailingSpace);

// Simplest / most convenient but terribly inefficient
WriteBytes(Encoding.UTF8.GetBytes("AUTH "));

To fix this we will allow for UTF8 literals in the language and encode them into the UTF8
byte[] at compile time.

The language will provide the u8 suffix on string literals to force the type to be UTF8.
The suffix is case-insensitive, U8 suffix will be supported and will have the same
meaning as u8 suffix.

When the u8 suffix is used, the value of the literal is a ReadOnlySpan<byte> containing a
UTF-8 byte representation of the string. A null terminator is placed beyond the last byte
in memory (and outside the length of the ReadOnlySpan<byte>) in order to handle some
interop scenarios where the call expects null terminated strings.

c#

Since the literals would be allocated as global constants, the lifetime of the resulting
ReadOnlySpan<byte> would not prevent it from being returned or passed around to
elsewhere. However, certain contexts, most notably within async functions, do not allow
locals of ref struct types, so there would be a usage penalty in those situations, with a
ToArray() call or similar being required.

A u8 literal doesn't have a constant value. That is because ReadOnlySpan<byte> cannot
be type of a constant today. If the definition of const is expanded in the future to
consider ReadOnlySpan<byte> , then this value should also be considered a constant.
Practically though this means a u8 literal cannot be used as the default value of an
optional parameter.

c#

Detailed design

u8 suffix on string literals

string s1 = "hello"u8; // Error
var s2 = "hello"u8; // Okay and type is ReadOnlySpan<byte>
ReadOnlySpan<byte> s3 = "hello"u8; // Okay.
byte[] s4 = "hello"u8; // Error - Cannot implicitly convert type
'System.ReadOnlySpan<byte>' to 'byte[]'.
byte[] s5 = "hello"u8.ToArray(); // Okay.
Span<byte> s6 = "hello"u8; // Error - Cannot implicitly convert type
'System.ReadOnlySpan<byte>' to 'System.Span<byte>'.

// Error: The argument is not constant
void Write(ReadOnlySpan<byte> message = "missing"u8) { ... }

When the input text for the literal is a malformed UTF16 string, then the language will
emit an error:

c#

A new bullet point will be added to §11.9.5 Addition operator as follows.

UTF8 byte representation concatenation:

C#

This binary + operator performs byte sequences concatenation and is applicable if
and only if both operands are semantically UTF8 byte representations. An operand
is semantically a UTF8 byte representation when it is eiher a value of a u8 literal, or
a value produced by the UTF8 byte representation concatenation operator.

The result of the UTF8 byte representation concatenation is a ReadOnlySpan<byte>
that consists of the bytes of the left operand followed by the bytes of the right
operand. A null terminator is placed beyond the last byte in memory (and outside
the length of the ReadOnlySpan<byte>) in order to handle some interop scenarios
where the call expects null terminated strings.

The language will lower the UTF8 encoded strings exactly as if the developer had typed
the resulting byte[] literal in code. For example:

c#

var bytes = "hello \uD801\uD802"u8; // Error: the input string is not valid
UTF16

Addition operator

ReadOnlySpan<byte> operator +(ReadOnlySpan<byte> x, ReadOnlySpan<byte>
y);

Lowering

ReadOnlySpan<byte> span = "hello"u8;

// Equivalent to

ReadOnlySpan<byte> span = new ReadOnlySpan<byte>(new byte[] { 0x68, 0x65,
0x6c, 0x6c, 0x6f, 0x00 }).

https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md#1195-addition-operator

That means all optimizations that apply to the new byte[] { ... } form will apply to
utf8 literals as well. This means the call site will be allocation free as C# will optimize this
be stored in the .data section of the PE file.

Multiple consecutive applications of UTF8 byte representation concatenation operators
are collapsed into a single creation of ReadOnlySpan<byte> with byte array containing the
final byte sequence.

c#

The compiler implementation will use UTF8Encoding for both invalid string detection as
well as translation to byte[] . The exact APIs will possibly depend on which target
framework the compiler is using. But UTF8Encoding will be the workhorse of the
implementation.

Historically the compiler has avoided using runtime APIs for literal processing. That is
because it takes control of how constants are processed away from the language and
into the runtime. Concretely it means items like bug fixes can change constant encoding
and mean that the outcome of C# compilation depends on which runtime the compiler
is executing on.

This is not a hypothetical problem. Early versions of Roslyn used double.Parse to handle
floating point constant parsing. That caused a number of problems. First it meant that
some floating point values had different representations between the native compiler
and Roslyn. Second as .NET core envolved and fixed long standing bugs in the
double.Parse code it meant that the meaning of those constants changed in the

 Slice(0,5); // The `Slice` call will be
optimized away by the compiler.

ReadOnlySpan<byte> span = "h"u8 + "el"u8 + "lo"u8;

// Equivalent to

ReadOnlySpan<byte> span = new ReadOnlySpan<byte>(new byte[] { 0x68, 0x65,
0x6c, 0x6c, 0x6f, 0x00 }).
 Slice(0,5); // The `Slice` call will be
optimized away by the compiler.

Drawbacks

Relying on core APIs

language depending on what runtime the compiler executed on. As a result the
compiler ended up writing it's own version of floating point parsing code and removing
the dependency on double.Parse .

This scenario was discussed with the runtime team and we do not feel it has the same
problems we've hit before. The UTF8 parsing is stable across runtimes and there are no
known issues in this area that are areas for future compat concerns. If one does come up
we can re-evaluate the strategy.

The design could rely on target typing only and remove the u8 suffix on string literals.
In the majority of cases today the string literal is being assigned directly to a
ReadOnlySpan<byte> hence it's unnecessary.

c#

The u8 suffix exists primarily to support two scenarios: var and overload resolution. For
the latter consider the following use case:

c#

Given the implementation it is better to call Write(ReadOnlySpan<byte>) and the u8
suffix makes this convenient: Write("hello"u8) . Lacking that developers need to resort
to awkward casting Write((ReadOnlySpan<byte>)"hello") .

Still this is a convenience item, the feature can exist without it and it is non-breaking to
add it at a later time.

Alternatives

Target type only

ReadOnlySpan<byte> span = "Hello World;

void Write(ReadOnlySpan<byte> span) { ... }
void Write(string s) {
 var bytes = Encoding.Utf8.GetBytes(s);
 Write(bytes.AsSpan());
}

Wait for Utf8String type

While the .NET ecosystem is standardizing on ReadOnlySpan<byte> as the defacto Utf8
string type today it's possible the runtime will introduce an actual Utf8String type is the
future.

We should evaluate our design here in the face of this possible change and reflect on
whether we'd regret the decisions we've made. This should be weighed though against
the realistic probability we'll introduce Utf8String , a probability which seems to
decrease every day we find ReadOnlySpan<byte> as an acceptable alternative.

It seems unlikely that we would regret the target type conversion between string literals
and ReadOnlySpan<byte> . The use of ReadOnlySpan<byte> as utf8 is embedded in our
APIs now and hence there is still value in the conversion even if Utf8String comes along
and is a "better" type. The language could simply prefer conversions to Utf8String over
ReadOnlySpan<byte> .

It seems more likely that we'd regret the u8 suffix pointing to ReadOnlySpan<byte>
instead of Utf8String . It would be similar to how we regret that stackalloc int[] has a
natural type of int* instead of Span<int> . This is not a deal breaker though, just an
inconvenience.

The language will allow conversions between string constants and byte sequences
where the text is converted into the equivalent UTF8 byte representation. Specifically the
compiler will allow string_constant_to_UTF8_byte_representation_conversion - implicit
conversions from string constants to byte[] , Span<byte> , and ReadOnlySpan<byte> . A
new bullet point will be added to the implicit conversions §10.2 section. This
conversion is not a standard conversion §10.4 .

c#

When the input text for the conversion is a malformed UTF16 string then the language
will emit an error:

c#

Conversions between string constants and byte
sequences

byte[] array = "hello"; // new byte[] { 0x68, 0x65, 0x6c, 0x6c,
0x6f }
Span<byte> span = "dog"; // new byte[] { 0x64, 0x6f, 0x67 }
ReadOnlySpan<byte> span = "cat"; // new byte[] { 0x63, 0x61, 0x74 }

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#102-implicit-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#104-standard-conversions

The predominant usage of this feature is expected to be with literals but it will work with
any string constant value. A conversion from a string constant with null value will be
supprted as well. The result of the conversion will be default value of the target type.

c#

In the case of any constant operation on strings, such as + , the encoding to UTF8 will
occur on the final string vs. happening for the individual parts and then concatenating
the results. This ordering is important to consider because it can impact whether or not
the conversion succeeds.

c#

The two parts here are invalid on their own as they are incomplete portions of a
surrogate pair. Individually there is no correct translation to UTF8 but together they
form a complete surrogate pair that can be successfully translated to UTF8.

The string_constant_to_UTF8_byte_representation_conversion is not allowed in Linq
Expression Trees.

While the inputs to these conversions are constants and the data is fully encoded at
compile time, the conversion is not considered constant by the language. That is
because arrays are not constant today. If the definition of const is expanded in the
future to consider arrays then these conversions should also be considered. Practically
though this means a result of these conversions cannot be used as the default value of
an optional parameter.

c#

const string text = "hello \uD801\uD802";
byte[] bytes = text; // Error: the input string is not valid UTF16

const string data = "dog"
ReadOnlySpan<byte> span = data; // new byte[] { 0x64, 0x6f, 0x67 }

const string first = "\uD83D"; // high surrogate
const string second = "\uDE00"; // low surrogate
ReadOnlySpan<byte> span = first + second;

// Error: The argument is not constant
void Write(ReadOnlySpan<byte> message = "missing") { ... }

Once implemented string literals will have the same problem that other literals have in
the language: what type they represent depends on how they are used. C# provides a
literal suffix to disambiguate the meaning for other literals. For example developers can
write 3.14f to force the value to be a float or 1l to force the value to be a long .

Whether this conversion is supported and, if so, how it is performed is not specified.

Proposal:

Allow implicit conversions from a string constant with null value to byte[] ,
Span<byte> , and ReadOnlySpan<byte> . The result of the conversion is default value of
the target type.

Resolution:

The proposal is approved -
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
26.md#conversions-from-null-literals .

Is string_constant_to_UTF8_byte_representation_conversion a bullet point in the implicit
conversions §10.2 section on its own, or is it part of §10.2.11 , or does it belong to
some other existing implicit conversions group?

Proposal:

It is a new bullet point in implicit conversions §10.2 , similar to "Implicit interpolated
string conversions" or "Method group conversions". It doesn't feel like it belongs to
"Implicit constant expression conversions" because, even though the source is a
constant expression, the result is never a constant expression. Also, "Implicit constant
expression conversions" are considered to be "Standard implicit conversions" §10.4.2 ,
which is likely to lead to non-trivial behavior changes involving user-defined
conversions.

Unresolved questions

(Resolved) Conversions between a string constant with
null value and byte sequences

(Resolved) Where does
string_constant_to_UTF8_byte_representation_conversion
belong?

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#conversions-from-null-literals
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#102-implicit-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#10211-implicit-constant-expression-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#102-implicit-conversions
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/conversions.md#1042-standard-implicit-conversions

Resolution:

We will introduce a new conversion kind for string constant to UTF-8 bytes -
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
26.md#conversion-kinds

In addition to "pure" Standard Conversions (the standard conversions are those pre-
defined conversions that can occur as part of a user-defined conversion), compiler also
treats some predefined conversions as "somewhat" standard. For example, an implicit
interpolated string conversion can occur as part of a user-defined conversion if there is
an explicit cast to the target type in code. As if it is a Standard Explicit Conversion, even
though it is an implicit conversion not explicitly included into the set of standard implicit
or explicit conversions. For example:

C#

Proposal:

The new conversion is not a standard conversion. This will avoid non-trivial behavior
changes involving user-defined conversions. For example, we won't need to worry about
user-defined cinversions under implicit tuple literal conversions, etc.

Resolution:

Not a standard conversion, for now -
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-

(Resolved) Is
string_constant_to_UTF8_byte_representation_conversion a
standard conversion

class C
{
 static void Main()
 {
 C1 x = $"hello"; // error CS0266: Cannot implicitly convert type
'string' to 'C1'. An explicit conversion exists (are you missing a cast?)
 var y = (C1)$"dog"; // works
 }
}

class C1
{
 public static implicit operator C1(System.FormattableString x) => new
C1();
}

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#conversion-kinds
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#implicit-standard-conversion

26.md#implicit-standard-conversion .

Should string_constant_to_UTF8_byte_representation_conversion be allowed in context of
a Linq Expression Tree conversion? We can disallow it for now, or we could simply
include the "lowered" form into the tree. For example:

C#

What about string literals with u8 suffix? We could surface those as byte array creations:

C#

Resolution:

Disallow in Linq Expression Trees -
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
26.md#expression-tree-representation .

The "Detailed design" section says: "The natural type though will be
ReadOnlySpan<byte> ." At the same time: "When the u8 suffix is used the literal can still
be converted to any of the allowed types: byte[] , Span<byte> or ReadOnlySpan<byte> ."

There are several disadvantages with this approach:

ReadOnlySpan<byte> is not available on desktop framework;
There are no existing conversions from ReadOnlySpan<byte> to byte[] or
Span<byte> . In order to support them we will likely need to treat the literals as

(Resolved) Linq Expression Tree conversion

Expression<Func<byte[]>> x = () => "hello"; // () => new [] {104,
101, 108, 108, 111}
Expression<FuncSpanOfByte> y = () => "dog"; // () => new
Span`1(new [] {100, 111, 103})
Expression<FuncReadOnlySpanOfByte> z = () => "cat"; // () => new
ReadOnlySpan`1(new [] {99, 97, 116})

Expression<Func<byte[]>> x = () => "hello"u8; // () => new []
{104, 101, 108, 108, 111}

(Resolved) The natural type of a string literal with u8
suffix

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#implicit-standard-conversion
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#expression-tree-representation

target typed. Both the language rules and implementation will become more
complicated.

Proposal:

The natural type will be byte[] . It is readily available on all frameworks. BTW, at runtime
we will always be starting with creating a byte array, even with the original proposal. We
also don't need any special conversion rules to support conversions to Span<byte> and
ReadOnlySpan<byte> . There are already implicit user-defined conversions from byte[] to
Span<byte> and ReadOnlySpan<byte> . There is even implicit user-defined conversion to
ReadOnlyMemory<byte> (see the "Depth of the conversion" question below). There is a
disadvantage, language doesn't allow chaining user-defined conversions. So, the
following code will not compile:

C#

However, as with any user-defined conversion, an explicit cast can be used to make one
user-defined conversion a part of another user-defined conversion.

It feels like all motivating scenarios are going to be addressed with byte[] as the
natural type, but the language rules and implementation will be significantly simpler.

Resolution:

The proposal is approved -
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-

using System;
class C
{
 static void Main()
 {
 var y = (C2)"dog"u8; // error CS0030: Cannot convert type 'byte[]'
to 'C2'
 var z = (C3)"cat"u8; // error CS0030: Cannot convert type 'byte[]'
to 'C3'
 }
}

class C2
{
 public static implicit operator C2(Span<byte> x) => new C2();
}

class C3
{
 public static explicit operator C3(ReadOnlySpan<byte> x) => new C3();
}

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#natural-type-of-u8-literals

26.md#natural-type-of-u8-literals . We will likely want to have a deeper debate about
whether u8 string literals should have a type of a mutable array, but we don't think that
debate is necessary for now.

Will it also work anywhere that a byte[] could work? Consider:

c#

The first example likely should work because of the natural type that comes from u8 .

The second example is hard to make work because it requires conversions in both
directions. That is unless we add ReadOnlyMemory<byte> as one of the allowed conversion
types.

Proposal:

Don't do anything special.

Resolution:

No new conversion targets added for now
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
26.md#conversion-depth .

The following API would become ambiguous:

c#

What should we do to address this?

Proposal:

(Resolved) Depth of the conversion

static readonly ReadOnlyMemory<byte> s_data1 = "Data"u8;
static readonly ReadOnlyMemory<byte> s_data2 = "Data";

(Resolved) Overload resolution breaks

M("");
static void M1(ReadOnlySpan<char> charArray) => ...;
static void M1(byte[] byteArray) => ...;

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#natural-type-of-u8-literals
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#conversion-depth

Similar to https://github.com/dotnet/csharplang/blob/main/proposals/csharp-
10.0/lambda-improvements.md#overload-resolution , Better function member
(§11.6.4.3) is updated to prefer members where none of the conversions involved
require converting string constants to UTF8 byte sequences.

Better function member

... Given an argument list A with a set of argument expressions {E1, E2, ..., En}
and two applicable function members Mp and Mq with parameter types {P1, P2,
..., Pn} and {Q1, Q2, ..., Qn} , Mp is defined to be a better function member
than Mq if

1. for each argument, the implicit conversion from Ex to Px is not a
string_constant_to_UTF8_byte_representation_conversion, and for at least one
argument, the implicit conversion from Ex to Qx is a
string_constant_to_UTF8_byte_representation_conversion, or

2. for each argument, the implicit conversion from Ex to Px is not a
function_type_conversion, and

Mp is a non-generic method or Mp is a generic method with type
parameters {X1, X2, ..., Xp} and for each type parameter Xi the type
argument is inferred from an expression or from a type other than a
function_type, and
for at least one argument, the implicit conversion from Ex to Qx is a
function_type_conversion, or Mq is a generic method with type parameters
{Y1, Y2, ..., Yq} and for at least one type parameter Yi the type
argument is inferred from a function_type, or

3. for each argument, the implicit conversion from Ex to Qx is not better than
the implicit conversion from Ex to Px , and for at least one argument, the
conversion from Ex to Px is better than the conversion from Ex to Qx .

Note that the addition of this rule is not going to cover scenarios with instance methods
becoming applicable and "shadowing" extension methods. For example:

C#

using System;

class Program
{
 static void Main()

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-10.0/lambda-improvements.md#overload-resolution
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11643-better-function-member

Behavior of this code will silently change from printing "string" to printing "byte[]".

Are we Ok with this behavior change? Should it be documented as a breaking change?

Note that there is no proposal to make
string_constant_to_UTF8_byte_representation_conversion unavailable when C#10
language version is targeted. In that case, the example above becomes an error rather
than returns to C#10 behavior. This follows a general principle that target language
version doesn't affect semantics of the language.

Are we Ok with this behavior? Should it be documented as a breaking change?

The new rule also is not going to prevent breaks involving tuple litearal conversions. For
example,

C#

is going to silently print "array" instead of "object".

Are we Ok with this behavior? Should it be documented as a breaking change? Perhaps
we could complicate the new rule to dig into the tuple literal conversions.

Resolution:

 {
 var p = new Program();
 Console.WriteLine(p.M(""));
 }

 public string M(byte[] b) => "byte[]";
}

static class E
{
 public static string M(this object o, string s) => "string";
}

class C
{
 static void Main()
 {
 System.Console.Write(Test(("s", 1)));
 }

 static string Test((object, int) a) => "object";
 static string Test((byte[], int) a) => "array";
}

The prototype will not adjust any rules here, so we can hopefully see what breaks in
practice - https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-
01-26.md#breaking-changes .

Proposal:

Support U8 suffix as well for consistency with numeric suffixes.

Resolution:

Approved - https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-
2022-01-26.md#suffix-case-sensitivity .

Examples of where runtime has manually encoded the UTF8 bytes today

https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/Common/src/System/Net/Http/aspnetcore/Http2/Hpack/Stat
usCodes.cs#L13-L78
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Memory/src/System/Buffers/Text/Base64Encoder.cs#L
581-L591
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.HttpListener/src/System/Net/Windows/HttpRespo
nseStream.Windows.cs#L284
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Ht
tp2Stream.cs#L30
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Ht
tp3RequestStream.cs#L852
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Text.Json/src/System/Text/Json/JsonConstants.cs#L35-
L42

Examples where we leave perf on the table

https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.Security/src/System/Net/Security/Pal.Managed/Sa

(Resolved) Should u8 suffix be case-insensitive?

Examples today

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#breaking-changes
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md#suffix-case-sensitivity
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/Common/src/System/Net/Http/aspnetcore/Http2/Hpack/StatusCodes.cs#L13-L78
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Memory/src/System/Buffers/Text/Base64Encoder.cs#L581-L591
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.HttpListener/src/System/Net/Windows/HttpResponseStream.Windows.cs#L284
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Http2Stream.cs#L30
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Http3RequestStream.cs#L852
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Text.Json/src/System/Text/Json/JsonConstants.cs#L35-L42
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Security/src/System/Net/Security/Pal.Managed/SafeChannelBindingHandle.cs#L16-L17

feChannelBindingHandle.cs#L16-L17
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Ht
tpConnection.cs#L37-L43
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Ht
tp2Connection.cs#L78
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad
0d0b38/src/libraries/System.Net.Mail/src/System/Net/Mail/SmtpCommands.cs#L6
69-L687

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-
26.md https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-
04-18.md https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-
2022-06-06.md

Design meetings

https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Security/src/System/Net/Security/Pal.Managed/SafeChannelBindingHandle.cs#L16-L17
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/HttpConnection.cs#L37-L43
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Http/src/System/Net/Http/SocketsHttpHandler/Http2Connection.cs#L78
https://github.com/dotnet/runtime/blob/e095fde94baa480a6d65dfdee43d9cc0ad0d0b38/src/libraries/System.Net.Mail/src/System/Net/Mail/SmtpCommands.cs#L669-L687
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-01-26.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-04-18.md
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-06-06.md

Pattern match Span<char> on a constant
string
Article • 2022-09-27 • 3 minutes to read

Permit pattern matching a Span<char> and a ReadOnlySpan<char> on a constant string.

For perfomance, usage of Span<char> and ReadOnlySpan<char> is preferred over string in
many scenarios. The framework has added many new APIs to allow you to use
ReadOnlySpan<char> in place of a string .

A common operation on strings is to use a switch to test if it is a particular value, and
the compiler optimizes such a switch. However there is currently no way to do the same
on a ReadOnlySpan<char> efficiently, other than implementing the switch and the
optimization manually.

In order to encourage adoption of ReadOnlySpan<char> we allow pattern matching a
ReadOnlySpan<char> , on a constant string , thus also allowing it to be used in a switch.

C#

We alter the spec for constant patterns as follows (the proposed addition is shown in
bold):

Summary

Motivation

static bool Is123(ReadOnlySpan<char> s)
{
 return s is "123";
}

static bool IsABC(Span<char> s)
{
 return s switch { "ABC" => true, _ => false };
}

Detailed design

A constant pattern tests the value of an expression against a constant value. The
constant may be any constant expression, such as a literal, the name of a declared
const variable, or an enumeration constant, or a typeof expression etc.

If both e and c are of integral types, the pattern is considered matched if the result
of the expression e == c is true .

If e is of type System.Span<char> or System.ReadOnlySpan<char> , and c is a constant
string, and c does not have a constant value of null , then the pattern is
considered matching if System.MemoryExtensions.SequenceEqual<char>(e,
System.MemoryExtensions.AsSpan(c)) returns true .

Otherwise the pattern is considered matching if object.Equals(e, c) returns true .
In this case it is a compile-time error if the static type of e is not pattern compatible
with the type of the constant.

System.Span<T> and System.ReadOnlySpan<T> are matched by name, must be ref
structs, and can be defined outside corlib.

System.MemoryExtensions is matched by name and can be defined outside corlib.

The signature of System.MemoryExtensions.SequenceEqual overloads must match:

public static bool SequenceEqual<T>(System.Span<T>, System.ReadOnlySpan<T>)

public static bool SequenceEqual<T>(System.ReadOnlySpan<T>,

System.ReadOnlySpan<T>)

The signature of System.MemoryExtensions.AsSpan must match:

public static System.ReadOnlySpan<char> AsSpan(string)

Methods with optional parameters are excluded from consideration.

None

None

Well-known members

Drawbacks

Alternatives

1. Should matching be defined independently from
MemoryExtensions.SequenceEqual() etc.?

... the pattern is considered matching if e.Length == c.Length and e[i] ==
c[i] for all characters in e .

Recommendation: Define in terms of MemoryExtensions.SequenceEqual() for
performance. If MemoryExtensions is missing, report compile error.

2. Should matching against (string)null be allowed?

If so, should (string)null subsume "" since MemoryExtensions.AsSpan(null) ==
MemoryExtensions.AsSpan("")?

C#

Recommendation: Constant pattern (string)null should be reported as an error.

3. Should the constant pattern match include a runtime type test of the expression
value for Span<char> or ReadOnlySpan<char>?

C#

Unresolved questions

static bool IsEmpty(ReadOnlySpan<char> span)
{
 return span switch
 {
 (string)null => true, // ok?
 "" => true, // error: unreachable?
 _ => false,
 };
}

static bool Is123<T>(Span<T> s)
{
 return s is "123"; // test for Span<char>?
}

static bool IsABC<T>(Span<T> s)
{
 return s is Span<char> and "ABC"; // ok?
}

static bool IsEmptyString<T>(T t) where T : ref struct
{

Recommendation: No implicit runtime type test for constant pattern. (IsABC<T>()
example is allowed because the type test is explicit.)

4. Should subsumption consider constant string patterns, list patterns, and Length
property pattern?

C#

Recommendation: Same subsumption behavior as used when the expression value is
string . (Does that mean no subsumption between constant strings, list patterns, and
Length , other than treating [..] as matching any?)

https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-10-
07.md#readonlyspanchar-patterns

 return t is ""; // test for ReadOnlySpan<char>, Span<char>, string?
}

static int ToNum(ReadOnlySpan<char> s)
{
 return s switch
 {
 { Length: 0 } => 0,
 "" => 1, // error: unreachable?
 ['A',..] => 2,
 "ABC" => 3, // error: unreachable?
 _ => 4,
 };
}

Design meetings

https://github.com/dotnet/csharplang/blob/master/meetings/2020/LDM-2020-10-07.md#readonlyspanchar-patterns

List patterns
Article • 2022-09-27 • 4 minutes to read

Lets you to match an array or a list with a sequence of patterns e.g. array is [1, 2, 3]
will match an integer array of the length three with 1, 2, 3 as its elements, respectively.

The pattern syntax is modified as follow:

antlr

There are two new patterns:

The list_pattern is used to match elements.
A slice_pattern is only permitted once and only directly in a list_pattern_clause and
discards zero or more elements.

A list_pattern is compatible with any type that is countable as well as indexable — it has
an accessible indexer that takes an Index as an argument or otherwise an accessible

Summary

Detailed design

list_pattern_clause
 : '[' (pattern (',' pattern)* ','?)? ']'
 ;

list_pattern
 : list_pattern_clause simple_designation?
 ;

slice_pattern
 : '..' pattern?
 ;

primary_pattern
 : list_pattern
 | slice_pattern
 | // all of the pattern forms previously defined
 ;

Pattern compatibility

indexer with a single int parameter. If both indexers are present, the former is
preferred.

A slice_pattern with a subpattern is compatible with any type that is countable as well as
sliceable — it has an accessible indexer that takes a Range as an argument or otherwise
an accessible Slice method with two int parameters. If both are present, the former is
preferred.

A slice_pattern without a subpattern is compatible with any type that is compatible with
a list_pattern.

This set of rules is derived from the range indexer pattern .

Subsumption checking works just like positional patterns with ITuple - corresponding
subpatterns are matched by position plus an additional node for testing length.

For example, the following code produces an error because both patterns yield the
same DAG:

C#

Unlike:

C#

The order in which subpatterns are matched at runtime is unspecified, and a failed
match may not attempt to match all subpatterns.

Given a specific length, it's possible that two subpatterns refer to the same element, in
which case a test for this value is inserted into the decision DAG.

For instance, [_, >0, ..] or [.., <=0, _] becomes length >= 2 && ([1] > 0 ||
length == 3 || [^2] <= 0) where the length value of 3 implies the other test.
Conversely, [_, >0, ..] and [.., <=0, _] becomes length >= 2 && [1] > 0 &&
length != 3 && [^2] <= 0 where the length value of 3 disallows the other test.

Subsumption checking

case [_, .., 1]: // expr.Length is >= 2 && expr[^1] is 1
case [.., _, 1]: // expr.Length is >= 2 && expr[^1] is 1

case [_, 1, ..]: // expr.Length is >= 2 && expr[1] is 1
case [.., 1, _]: // expr.Length is >= 2 && expr[^2] is 1

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-8.0/ranges.md#implicit-index-support
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-8.0/patterns.md#positional-pattern

As a result, an error is produced for something like case [.., p]: case [p]: because at
runtime, we're matching the same element in the second case.

If a slice subpattern matches a list or a length value, subpatterns are treated as if they
were a direct subpattern of the containing list. For instance, [..[1, 2, 3]] subsumes a
pattern of the form [1, 2, 3] .

The following assumptions are made on the members being used:

The property that makes the type countable is assumed to always return a non-
negative value, if and only if the type is indexable. For instance, the pattern {
Length: -1 } can never match an array.
The member that makes the type sliceable is assumed to be well-behaved, that is,
the return value is never null and that it is a proper subslice of the containing list.

The behavior of a pattern-matching operation is undefined if any of the above
assumptions doesn't hold.

A pattern of the form expr is [1, 2, 3] is equivalent to the following code:

C#

A slice_pattern acts like a proper discard i.e. no tests will be emitted for such pattern,
rather it only affects other nodes, namely the length and indexer. For instance, a pattern
of the form expr is [1, .. var s, 3] is equivalent to the following code (if compatible
via explicit Index and Range support):

C#

The input type for the slice_pattern is the return type of the underlying this[Range] or
Slice method with two exceptions: For string and arrays, string.Substring and

Lowering

expr.Length is 3
&& expr[new Index(0, fromEnd: false)] is 1
&& expr[new Index(1, fromEnd: false)] is 2
&& expr[new Index(2, fromEnd: false)] is 3

expr.Length is >= 2
&& expr[new Index(0, fromEnd: false)] is 1
&& expr[new Range(new Index(1, fromEnd: false), new Index(1, fromEnd:
true))] is var s
&& expr[new Index(1, fromEnd: true)] is 3

RuntimeHelpers.GetSubArray will be used, respectively.

1. Should we support multi-dimensional arrays? (answer [LDM 2021-05-26]: Not
supported. If we want to make a general MD-array focused release, we would want
to revisit all the areas they're currently lacking, not just list patterns.)

2. Should we accept a general pattern following .. in a slice_pattern? (answer [LDM
2021-05-26]: Yes, any pattern is allowed after a slice.)

3. By this definition, the pattern [..] tests for expr.Length >= 0 . Should we omit
such test, assuming Length is always non-negative? (answer [LDM 2021-05-26]:
[..] will not emit a Length check)

Unresolved questions

Required Members
Article • 2023-01-06 • 19 minutes to read

This proposal adds a way of specifying that a property or field is required to be set
during object initialization, forcing the instance creator to provide an initial value for the
member in an object initializer at the creation site.

Object hierarchies today require a lot of boilerplate to carry data across all levels of the
hierarchy. Let's look at a simple hierarchy involving a Person as might be defined in C#
8:

C#

There's lots of repetition going on here:

Summary

Motivation

class Person
{
 public string FirstName { get; }
 public string MiddleName { get; }
 public string LastName { get; }

 public Person(string firstName, string lastName, string? middleName =
null)
 {
 FirstName = firstName;
 LastName = lastName;
 MiddleName = middleName ?? string.Empty;
 }
}

class Student : Person
{
 public int ID { get; }
 public Student(int id, string firstName, string lastName, string?
middleName = null)
 : base(firstName, lastName, middleName)
 {
 ID = id;
 }
}

1. At the root of the hierarchy, the type of each property had to be repeated twice,
and the name had to be repeated four times.

2. At the derived level, the type of each inherited property had to be repeated once,
and the name had to be repeated twice.

This is a simple hierarchy with 3 properties and 1 level of inheritance, but many real-
world examples of these types of hierarchies go many levels deeper, accumulating larger
and larger numbers of properties to pass along as they do so. Roslyn is one such
codebase, for example, in the various tree types that make our CSTs and ASTs. This
nesting is tedious enough that we have code generators to generate the constructors
and definitions of these types, and many customers take similar approaches to the
problem. C# 9 introduces records, which for some scenarios can make this better:

C#

records eliminate the first source of duplication, but the second source of duplication
remains unchanged: unfortunately, this is the source of duplication that grows as the
hierarchy grows, and is the most painful part of the duplication to fix up after making a
change in the hierarchy as it required chasing the hierarchy through all of its locations,
possibly even across projects and potentially breaking consumers.

As a workaround to avoid this duplication, we have long seen consumers embracing
object initializers as a way of avoiding writing constructors. Prior to C# 9, however, this
had 2 major downsides:

1. The object hierarchy has to be fully mutable, with set accessors on every property.
2. There is no way to ensure that every instantation of an object from the graph sets

every member.

C# 9 again addressed the first issue here, by introducing the init accessor: with it,
these properties can be set on object creation/initialization, but not subsequently.
However, we again still have the second issue: properties in C# have been optional since
C# 1.0. Nullable reference types, introduced in C# 8.0, addressed part of this issue: if a
constructor does not initialize a non-nullable reference-type property, then the user is
warned about it. However, this doesn't solve the problem: the user here wants to not
repeat large parts of their type in the constructor, they want to pass the requirement to
set properties on to their consumers. It also doesn't provide any warnings about ID
from Student , as that is a value type. These scenarios are extremely common in
database model ORMs, such as EF Core, which need to have a public parameterless

record Person(string FirstName, string LastName, string MiddleName = "");
record Student(int ID, string FirstName, string LastName, string MiddleName
= "") : Person(FirstName, LastName, MiddleName);

constructor but then drive nullability of the rows based on the nullability of the
properties.

This proposal seeks to address these concerns by introducing a new feature to C#:
required members. Required members will be required to be initialized by consumers,
rather than by the type author, with various customizations to allow flexibility for
multiple constructors and other scenarios.

class , struct , and record types gain the ability to declare a required_member_list. This
list is the list of all the properties and fields of a type that are considered required, and
must be initialized during the construction and initialization of an instance of the type.
Types inherit these lists from their base types automatically, providing a seamless
experience that removes boilerplate and repetitive code.

We add 'required' to the list of modifiers in field_modifier and property_modifier. The
required_member_list of a type is composed of all the members that have had required
applied to them. Thus, the Person type from earlier now looks like this:

C#

All constructors on a type that has a required_member_list automatically advertise a
contract that consumers of the type must initialize all of the properties in the list. It is an
error for a constructor to advertise a contract that requires a member that is not at least
as accessible as the constructor itself. For example:

C#

Detailed Design

required modifier

public class Person
{
 // The default constructor requires that FirstName and LastName be set
at construction time
 public required string FirstName { get; init; }
 public string MiddleName { get; init; } = "";
 public required string LastName { get; init; }
}

public class C
{
 public required int Prop { get; protected init; }

required is only valid in class , struct , and record types. It is not valid in interface
types. required cannot be combined with the following modifiers:

fixed

ref readonly

ref

const

static

required is not allowed to be applied to indexers.

The compiler will issue a warning when Obsolete is applied to a required member of a
type and:

1. The type is not marked Obsolete , or
2. Any constructor not attributed with SetsRequiredMembersAttribute is not marked

Obsolete .

All constructors in a type with required members, or whose base type specifies required
members, must have those members set by a consumer when that constructor is called.
In order to exempt constructors from this requirement, a constructor can be attributed
with SetsRequiredMembersAttribute , which removes these requirements. The constructor
body is not validated to ensure that it definitely sets the required members of the type.

SetsRequiredMembersAttribute removes all requirements from a constructor, and those
requirements are not checked for validity in any way. NB: this is the escape hatch if
inheriting from a type with an invalid required members list is necessary: mark the
constructor of that type with SetsRequiredMembersAttribute , and no errors will be
reported.

If a constructor C chains to a base or this constructor that is attributed with
SetsRequiredMembersAttribute , C must also be attributed with

 // Advertises that Prop is required. This is fine, because the
constructor is just as accessible as the property initer.
 protected C() {}

 // Error: ctor C(object) is more accessible than required property
Prop.init.
 public C(object otherArg) {}
}

SetsRequiredMembersAttribute

SetsRequiredMembersAttribute .

For record types, we will emit SetsRequiredMembersAttribute on the synthesized copy
constructor of a record if the record type or any of its base types have required
members.

NB: An earlier version of this proposal had a larger metalanguage around initialization,
allowing adding and removing individual required members from a constructor, as well
as validation that the constructor was setting all required members. This was deemed
too complex for the initial release, and removed. We can look at adding more complex
contracts and modifications as a later feature.

For every constructor Ci in type T with required members R , consumers calling Ci
must do one of:

Set all members of R in an object_initializer on the object_creation_expression,
Or set all members of R via the named_argument_list section of an attribute_target.

unless Ci is attributed with SetsRequiredMembers .

If the current context does not permit an object_initializer or is not an attribute_target,
and Ci is not attributed with SetsRequiredMembers , then it is an error to call Ci .

A type with a parameterless constructor that advertises a contract is not allowed to be
substituted for a type parameter constrained to new() , as there is no way for the generic
instantiation to ensure that the requirements are satisfied.

It is an error to mark a member required if the member cannot be set in any context
where the containing type is visible.

If the member is a field, it cannot be readonly .
If the member is a property, it must have a setter or initer at least as accessible as
the member's containing type.

This means the following cases are not allowed:

Enforcement

new() constraint

Accessibility

C#

It is an error to hide a required member, as that member can no longer be set by a
consumer.

When overriding a required member, the required keyword must be included on the
method signature. This is done so that if we ever want to allow unrequiring a property
with an override in the future, we have design space to do so.

Overrides are allowed to mark a member required where it was not required in the
base type. A member so-marked is added to the required members list of the derived
type.

interface I
{
 int Prop1 { get; }
}
public class Base
{
 public virtual int Prop2 { get; set; }

 protected required int _field; // Error: _field is not at least as
visible as Base. Open question below about the protected constructor
scenario

 public required readonly int _field2; // Error: required fields cannot
be readonly
 protected Base() { }

 protected class Inner
 {
 protected required int PropInner { get; set; } // Error: PropInner
cannot be set inside Base or Derived
 }
}
public class Derived : Base, I
{
 required int I.Prop1 { get; } // Error: explicit interface implementions
cannot be required as they cannot be set in an object initializer

 public required override int Prop2 { get; set; } // Error: this property
is hidden by Derived.Prop2 and cannot be set in an object initializer
 public new int Prop2 { get; }

 public required int Prop3 { get; } // Error: Required member must have a
setter or initer

 public required int Prop4 { get; internal set; } // Error: Required
member setter must be at least as visible as the constructor of Derived
}

Types are allowed to override required virtual properties. This means that if the base
virtual property has storage, and the derived type tries to access the base
implementation of that property, they could observe uninitialized storage. NB: This is a
general C# anti-pattern, and we don't think that this proposal should attempt to address
it.

Members that are marked required are not required to be initialized to a valid nullable
state at the end of a constructor. All required members from this type and any base
types are considered by nullable analysis to be default at the beginning of any
constructor in that type, unless chaining to a this or base constructor that is attributed
with SetsRequiredMembersAttribute .

Nullable analysis will warn about all required members from the current and base types
that do not have a valid nullable state at the end of a constructor attributed with
SetsRequiredMembersAttribute .

C#

Effect on nullable analysis

#nullable enable
public class Base
{
 public required string Prop1 { get; set; }

 public Base() {}

 [SetsRequiredMembers]
 public Base(int unused) { Prop1 = ""; }
}
public class Derived : Base
{
 public required string Prop2 { get; set; }

 [SetsRequiredMembers]
 public Derived() : base()
 {
 } // Warning: Prop1 and Prop2 are possibly null.

 [SetsRequiredMembers]
 public Derived(int unused) : base()
 {
 Prop1.ToString(); // Warning: possibly null dereference
 Prop2.ToString(); // Warning: possibly null dereference
 }

 [SetsRequiredMembers]
 public Derived(int unused, int unused2) : this()

The following 2 attributes are known to the C# compiler and required for this feature to
function:

C#

It is an error to manually apply RequiredMemberAttribute to a type.

Any member that is marked required has a RequiredMemberAttribute applied to it. In
addition, any type that defines such members is marked with RequiredMemberAttribute ,
as a marker to indicate that there are required members in this type. Note that if type B
derives from A , and A defines required members but B does not add any new or
override any existing required members, B will not be marked with a

 {
 Prop1.ToString(); // Ok
 Prop2.ToString(); // Ok
 }

 [SetsRequiredMembers]
 public Derived(int unused1, int unused2, int unused3) : base(unused1)
 {
 Prop1.ToString(); // Ok
 Prop2.ToString(); // Warning: possibly null dereference
 }
}

Metadata Representation

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct |
AttributeTargets.Field | AttributeTargets.Property, AllowMultiple = false,
Inherited = false)]
 public sealed class RequiredMemberAttribute : Attribute
 {
 public RequiredMemberAttribute() {}
 }
}

namespace System.Diagnostics.CodeAnalysis
{
 [AttributeUsage(AttributeTargets.Constructor, AllowMultiple = false,
Inherited = false)]
 public sealed class SetsRequiredMembersAttribute : Attribute
 {
 public SetsRequiredMembersAttribute() {}
 }
}

RequiredMemberAttribute . To fully determine whether there are any required members in
B , checking the full inheritance hierarchy is necessary.

Any constructor in a type with required members that does not have
SetsRequiredMembersAttribute applied to it is marked with two attributes:

1. System.Runtime.CompilerServices.CompilerFeatureRequiredAttribute with the
feature name "RequiredMembers" .

2. System.ObsoleteAttribute with the string "Types with required members are not
supported in this version of your compiler" , and the attribute is marked as an
error, to prevent any older compilers from using these constructors.

We don't use a modreq here because it is a goal to maintain binary compat: if the last
required property was removed from a type, the compiler would no longer synthesize
this modreq , which is a binary-breaking change and all consumers would need to be
recompiled. A compiler that understands required members will ignore this obsolete
attribute. Note that members can come from base types as well: even if there are no
new required members in the current type, if any base type has required members, this
Obsolete attribute will be generated. If the constructor already has an Obsolete
attribute, no additional Obsolete attribute will be generated.

We use both ObsoleteAttribute and CompilerFeatureRequiredAttribute because the
latter is new this release, and older compilers don't understand it. In the future, we may
be able to drop the ObsoleteAttribute and/or not use it to protect new features, but for
now we need both for full protection.

To build the full list of required members R for a given type T , including all base types,
the following algorithm is run:

1. For every Tb , starting with T and working through the base type chain until
object is reached.

2. If Tb is marked with RequiredMemberAttribute , then all members of Tb marked
with RequiredMemberAttribute are gathered into Rb
a. For every Ri in Rb , if Ri is overridden by any member of R , it is skipped.
b. Otherwise, if any Ri is hidden by a member of R , then the lookup of required

members fails and no further steps are taken. Calling any constructor of T not
attributed with SetsRequiredMembers issues an error.

c. Otherwise, Ri is added to R .

Open Questions

What will the enforcement mechanisms for nested member initializers be? Will they be
disallowed entirely?

C#

Do we strictly enforce that members specified in a init clause without an initializer
must initialize all members? It seems likely that we do, otherwise we create an easy pit-
of-failure. However, we also run the risk of reintroducing the same problems we solved
with MemberNotNull in C# 9. If we want to strictly enforce this, we will likely need a way
for a helper method to indicate that it sets a member. Some possible syntaxes we've
discussed for this:

Allow init methods. These methods are only allowed to be called from a
constructor or from another init method, and can access this as if it's in the
constructor (ie, set readonly and init fields/properties). This can be combined
with init clauses on such methods. A init clause would be considered satisfied if
the member in the clause is definitely assigned in the body of the
method/constructor. Calling a method with a init clause that includes a member
counts as assigning to that member. If we do decided that this is a route we want

Nested member initializers

class Range
{
 public required Location Start { get; init; }
 public required Location End { get; init; }
}

class Location
{
 public required int Column { get; init; }
 public required int Line { get; init; }
}

_ = new Range { Start = { Column = 0, Line = 0 }, End = { Column = 1, Line =
0 } } // Would this be allowed if Location is a struct type?
_ = new Range { Start = new Location { Column = 0, Line = 0 }, End = new
Location { Column = 1, Line = 0 } } // Or would this form be necessary
instead?

Discussed Questions

Level of enforcement for init clauses

to pursue, now or in the future, it seems likely that we should not use init as the
keyword for the init clause on a constructor, as that would be confusing.
Allow the ! operator to suppress the warning/error explicitly. If initializing a
member in a complicated way (such as in a shared method), the user can add a !
to the init clause to indicate the compiler should not check for initialization.

Conclusion: After discussion we like the idea of the ! operator. It allows the user to be
intentional about more complicated scenarios while also not creating a large design
hole around init methods and annotating every method as setting members X or Y. !
was chosen because we already use it for suppressing nullable warnings, and using it to
tell the compiler "I'm smarter than you" in another place is a natural extension of the
syntax form.

This proposal does not allow interfaces to mark members as required. This protects us
from having to figure out complex scenarios around new() and interface constraints in
generics right now, and is directly related to both factories and generic construction. In
order to ensure that we have design space in this area, we forbid required in interfaces,
and forbid types with required_member_lists from being substituted for type parameters
constrained to new() . When we want to take a broader look at generic construction
scenarios with factories, we can revisit this issue.

Is init the right word? init as a postfix modifier on the constructor might
interfere if we ever want to reuse it for factories and also enable init methods
with a prefix modifier. Other possibilities:

set

Is required the right modifier for specifying that all members are initialized?
Others suggested:

default

all

With a ! to indicate complex logic
Should we require a separator between the base /this and the init?

: separator
',' separator

Is required the right modifier? Other alternatives that have been suggested:
req

Required interface members

Syntax questions

require

mustinit

must

explicit

Conclusion: We have removed the init constructor clause for now, and are proceeding
with required as the property modifier.

Should we allow access to this in the init clause? If we want the assignment in init to
be a shorthand for assigning the member in the constructor itself, it seems like we
should.

Additionally, does it create a new scope, like base() does, or does it share the same
scope as the method body? This is particularly important for things like local functions,
which the init clause may want to access, or for name shadowing, if an init expression
introduces a variable via out parameter.

Conclusion: init clause has been removed.

In versions of this proposal with the init clause, we talked about being able to have the
following scenario:

C#

However, we have removed the init clause from the proposal at this point, so we need
to decide whether to allow this scenario in a limited fashion. The options we have are:

Init clause restrictions

Accessibility requirements and init

public class Base
{
 protected required int _field;

 protected Base() {} // Contract required that _field is set
}
public class Derived : Base
{
 public Derived() : init(_field = 1) // Contract is fulfilled and _field
is removed from the required members list
 {
 }
}

1. Disallow the scenario. This is the most conservative approach, and the rules in the
Accessibility are currently written with this assumption in mind. The rule is that any
member that is required must be at least as visible as its containing type.

2. Require that all constructors are either:
a. No more visible than the least-visible required member.
b. Have the SetsRequiredMembersAttribute applied to the constructor. These

would ensure that anyone who can see a constructor can either set all the
things it exports, or there is nothing to set. This could be useful for types that
are only ever created via static Create methods or similar builders, but the
utility seems overall limited.

3. Readd a way to remove specific parts of the contract to the proposal, as discussed
in LDM previously.

Conclusion: Option 1, all required members must be at least as visible as their
containing type.

The current spec says that the required keyword needs to be copied over and that
overrides can make a member more required, but not less. Is that what we want to do?
Allowing removal of requirements needs more contract modification abilities than we
are currently proposing.

Conclusion: Adding required on override is allowed. If the overridden member is
required , the overridding member must also be required .

We could also take a different approach to metadata representation, taking a page from
extension methods. We could put a RequiredMemberAttribute on the type to indicate
that the type contains required members, and then put a RequiredMemberAttribute on
each member that is required. This would simplify the lookup sequence (no need to do
member lookup, just look for members with the attribute).

Conclusion: Alternative approved.

The Metadata Representation needs to be approved. We additionally need to decide
whether these attributes should be included in the BCL.

Override rules

Alternative metadata representation

Metadata Representation

https://github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-10-25.md

1. For RequiredMemberAttribute , this attribute is more akin to the general embedded
attributes we use for nullable/nint/tuple member names, and will not be manually
applied by the user in C#. It's possible that other languages might want to
manually apply this attribute, however.

2. SetsRequiredMembersAttribute , on the other hand, is directly used by consumers,
and thus should likely be in the BCL.

If we go with the alternative representation in the previous section, that might change
the calculus on RequiredMemberAttribute : instead of being similar to the general
embedded attributes for nint /nullable/tuple member names, it's closer to
System.Runtime.CompilerServices.ExtensionAttribute , which has been in the framework
since extension methods shipped.

Conclusion: We will put both attributes in the BCL.

Should not setting a required member be a warning or an error? It is certainly possible
to trick the system, via Activator.CreateInstance(typeof(C)) or similar, which means we
may not be able to fully guarantee all properties are always set. We also allow
suppression of the diagnostics at the constructor-site by using the ! , which we
generally do not allow for errors. However, the feature is similar to readonly fields or init
properties, in that we hard error if users attempt to set such a member after
initialization, but they can be circumvented by reflection.

Conclusion: Errors.

Warning vs Error

Auto-default structs
Article • 2022-09-27 • 6 minutes to read

https://github.com/dotnet/csharplang/issues/5737

This feature makes it so that in struct constructors, we identify fields which were not
explicitly assigned by the user before returning or before use, and initialize them
implicitly to default instead of giving definite assignment errors.

This proposal is raised as a possible mitigation for usability issues found in
dotnet/csharplang#5552 and dotnet/csharplang#5635, as well as addressing #5563 (all
fields must be definitely assigned, but field is not accessible within the constructor).

Since C# 1.0, struct constructors have been required to definitely assign this as if it
were an out parameter.

C#

This presents issues when setters are manually defined on semi-auto properties, since
the compiler can't treat assignment of the property as equivalent to assignment of the
backing field.

C#

Summary

Motivation

public struct S
{
 public int x, y;
 public S() // error: Fields 'S.x' and 'S.y' must be fully assigned
before control is returned to the caller
 {
 }
}

public struct S
{
 public int X { get => field; set => field = value; }
 public S() // error: struct fields aren't fully assigned. But caller can
only assign 'this.field' by assigning 'this'.
 {

https://github.com/dotnet/csharplang/issues/5737

We assume that introducing finer-grained restrictions for setters, such as a scheme
where the setter doesn't take ref this but rather takes out field as a parameter, is
going to be too niche and incomplete for some use cases.

One fundamental tension we are struggling with is that when struct properties have
manually implemented setters, users often have to do some form of "repetition" of
either repeatedly assigning or repeating their logic:

C#

A small group has looked at this issue and considered a few possible solutions:

1. Require users to assign this = default when semi-auto properties have manually
implemented setters. We agree this is the wrong solution since it blows away
values set in field initializers.

2. Implicitly initialize all backing fields of auto/semi-auto properties.

 }
}

struct S
{
 private int _x;
 public int X
 {
 get => _x;
 set => _x = value >= 0 ? value : throw new
ArgumentOutOfRangeException();
 }

 // Solution 1: assign some value in the constructor before "really"
assigning through the property setter.
 public S(int x)
 {
 _x = default;
 X = x;
 }

 // Solution 2: assign the field once in the constructor, repeating the
implementation of the setter.
 public S(int x)
 {
 _x = x >= 0 ? x : throw new ArgumentOutOfRangeException();
 }
}

Previous discussion

This solves the "semi-auto property setters" problem, and it squarely places
explicitly declared fields under different rules: "don't implicitly initialize my
fields, but do implicitly initialize my auto-properties."

3. Provide a way to assign the backing field of a semi-auto property and require users
to assign it.

This could be cumbersome compared to (2). An auto property is supposed to
be "automatic", and perhaps that includes "automatic" initialization of the
field. It could introduce confusion as to when the underlying field is being
assigned by an assignment to the property, and when the property setter is
being called.

We've also received feedback from users who want to, for example, include a few field
initializers in structs without having to explicitly assign everything. We can solve this
issue as well as the "semi-auto property with manually implemented setter" issue at the
same time.

C#

Instead of performing a definite assignment analysis to give errors for unassigned fields
on this , we do it to determine which fields need to be initialized implicitly. Such
initialization is inserted at the beginning of the constructor.

C#

struct MagnitudeVector3d
{
 double X, Y, Z;
 double Magnitude = 1;
 public MagnitudeVector3d() // error: must assign 'X', 'Y', 'Z' before
returning
 {
 }
}

Adjusting definite assignment

struct S
{
 int x, y;

 // Example 1
 public S()
 {
 // ok. Compiler inserts an assignment of `this = default`.

https://github.com/dotnet/csharplang/discussions/5635

In examples (4) and (5), the resulting codegen sometimes has "double assignments" of
fields. This is generally fine, but for users who are concerned with such double
assignments, we can emit what used to be definite assignment error diagnostics as
disabled-by-default warning diagnostics.

C#

 }

 // Example 2
 public S()
 {
 // ok. Compiler inserts an assignment of `y = default`.
 x = 1;
 }

 // Example 3
 public S()
 {
 // valid since C# 1.0. Compiler inserts no implicit assignments.
 x = 1;
 y = 2;
 }

 // Example 4
 public S(bool b)
 {
 // ok. Compiler inserts assignment of `this = default`.
 if (b)
 x = 1;
 else
 y = 2;
 }

 // Example 5
 void M() { }
 public S(bool b)
 {
 // ok. Compiler inserts assignment of `y = default`.
 x = 1;
 if (b)
 M();

 y = 2;
 }
}

struct S
{
 int x;
 public S() // warning: 'S.x' is implicitly initialized to 'default'.
 {

Users who set the severity of this diagnostic to "error" will opt in to the pre-C# 11
behavior. Such users are essentially "shut out" of semi-auto properties with manually
implemented setters.

C#

At first glance, this feels like a "hole" in the feature, but it's actually the right thing to
do. By enabling the diagnostic, the user is telling us that they don't want the compiler to
implicitly initialize their fields in the constructor. There's no way to avoid the implicit
initialization here, so the solution for them is to use a different way of initializing the
field than a manually implemented setter, such as manually declaring the field and
assigning it, or by including a field initializer.

Currently, the JIT does not eliminate dead stores through refs, which means that these
implicit initializations do have a real cost. But that might be fixable.
https://github.com/dotnet/runtime/issues/13727

It's worth noting that initializing individual fields instead of the entire instance is really
just an optimization. The compiler should probably be free to implement whatever
heuristic it wants, as long as it meets the invariant that fields which are not definitely
assigned at all return points or before any non-field member access of this are
implicitly initialized.

For example, if a struct has 100 fields, and just one of them is explicitly initialized, it
might make more sense to do an initobj on the entire thing, than to implicitly emit
initobj for the 99 other fields. However, an implementation which implicitly emits
initobj for the 99 other fields would still be valid.

 }
}

struct S
{
 public int X
 {
 get => field;
 set => field = field < value ? value : field;
 }

 public S() // error: backing field of 'S.X' is implicitly initialized to
'default'.
 {
 X = 1;
 }
}

https://github.com/dotnet/runtime/issues/13727

We adjust the following section of the standard:

https://github.com/dotnet/csharpstandard/blob/draft-
v6/standard/expressions.md#11712-this-access

If the constructor declaration has no constructor initializer, the this variable
behaves exactly the same as an out parameter of the struct type. In particular, this
means that the variable shall be definitely assigned in every execution path of the
instance constructor.

We adjust this language to read:

If the constructor declaration has no constructor initializer, the this variable behaves
similarly to an out parameter of the struct type, except that it is not an error when the
definite assignment requirements (§9.4.1) are not met. Instead, we introduce the
following behaviors:

1. When the this variable itself does not meet the requirements, then all unassigned
instance variables within this at all points where requirements are violated are
implicitly initialized to the default value (§9.3) in an initialization phase before
any other code in the constructor runs.

2. When an instance variable v within this does not meet the requirements, or any
instance variable at any level of nesting within v does not meet the requirements,
then v is implicitly initialized to the default value in an initialization phase before
any other code in the constructor runs.

https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-
14.md#definite-assignment-in-structs

Changes to language specification

Design meetings

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11712-this-access
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#941-general
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/variables.md#93-default-values
https://github.com/dotnet/csharplang/blob/main/meetings/2022/LDM-2022-02-14.md#definite-assignment-in-structs

Low Level Struct Improvements
Article • 2022-12-13 • 73 minutes to read

This proposal is an aggregation of several different proposals for struct performance
improvements: ref fields and the ability to override lifetime defaults. The goal being a
design which takes into account the various proposals to create a single overarching
feature set for low level struct improvements.

Earlier versions of C# added a number of low level performance features to the
language: ref returns, ref struct , function pointers, etc. ... These enabled .NET
developers to write highly performant code while continuing to leverage the C#
language rules for type and memory safety. It also allowed the creation of fundamental
performance types in the .NET libraries like Span<T> .

As these features have gained traction in the .NET ecosystem developers, both internal
and external, have been providing us with information on remaining friction points in
the ecosystem. Places where they still need to drop to unsafe code to get their work
done, or require the runtime to special case types like Span<T> .

Today Span<T> is accomplished by using the internal type ByReference<T> which the
runtime effectively treats as a ref field. This provides the benefit of ref fields but with
the downside that the language provides no safety verification for it, as it does for other
uses of ref . Further only dotnet/runtime can use this type as it's internal , so 3rd
parties can not design their own primitives based on ref fields. Part of the motivation
for this work is to remove ByReference<T> and use proper ref fields in all code bases.

This proposal plans to address these issues by building on top of our existing low level
features. Specifically it aims to:

Allow ref struct types to declare ref fields.
Allow the runtime to fully define Span<T> using the C# type system and remove
special case type like ByReference<T>
Allow struct types to return ref to their fields.
Allow runtime to remove unsafe uses caused by limitations of lifetime defaults

Summary

Motivation

https://github.com/dotnet/runtime/issues/32060

Allow the declaration of safe fixed buffers for managed and unmanaged types in
struct

The rules for ref struct safety are defined in the span safety document . This
document will describe the required changes to this document as a result of this
proposal. Once accepted as an approved feature these changes will be incorporated into
that document.

Once this design is complete our Span<T> definition will be as follows:

c#

The language will allow developers to declare ref fields inside of a ref struct . This can
be useful for example when encapsulating large mutable struct instances or defining
high performance types like Span<T> in libraries besides the runtime.

C#

A ref field will be emitted into metadata using the ELEMENT_TYPE_BYREF signature. This
is no different than how we emit ref locals or ref arguments. For example ref int

Detailed Design

readonly ref struct Span<T>
{
 readonly ref T _field;
 readonly int _length;

 // This constructor does not exist today but will be added as a part
 // of changing Span<T> to have ref fields. It is a convenient, and
 // safe, way to create a length one span over a stack value that today
 // requires unsafe code.
 public Span(ref T value)
 {
 _field = ref value;
 _length = 1;
 }
}

Provide ref fields and scoped

ref struct S
{
 public ref int Value;
}

https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/span-safety.md

_field will be emitted as ELEMENT_TYPE_BYREF ELEMENT_TYPE_I4 . This will require us to
update ECMA335 to allow this entry but this should be rather straight forward.

Developers can continue to initialize a ref struct with a ref field using the default
expression in which case all declared ref fields will have the value null . Any attempt to
use such fields will result in a NullReferenceException being thrown.

c#

While the C# language pretends that a ref cannot be null this is legal at the runtime
level and has well defined semantics. Developers who introduce ref fields into their
types need to be aware of this possibility and should be strongly discouraged from
leaking this detail into consuming code. Instead ref fields should be validated as non-
null using the runtime helpers and throwing when an uninitialized struct is used
incorrectly.

c#

A ref field can be combined with readonly modifiers in the following ways:

readonly ref : this is a field that cannot be ref reassigned outside a constructor or
init methods. It can be value assigned though outside those contexts

ref struct S
{
 public ref int Value;
}

S local = default;
local.Value.ToString(); // throws NullReferenceException

ref struct S1
{
 private ref int Value;

 public int GetValue()
 {
 if (System.Runtime.CompilerServices.Unsafe.IsNullRef(ref Value))
 {
 throw new InvalidOperationException(...);
 }

 return Value;
 }
}

https://github.com/dotnet/runtime/pull/40008

ref readonly : this is a field that can be ref reassigned but cannot be value
assigned at any point. This how an in parameter could be ref reassigned to a ref
field.
readonly ref readonly : a combination of ref readonly and readonly ref .

c#

A readonly ref struct will require that ref fields are declared readonly ref . There is
no requirement that they are declared readonly ref readonly . This does allow a
readonly struct to have indirect mutations via such a field but that is no different than
a readonly field that pointed to a reference type today (more details)

A readonly ref will be emitted to metadata using the initonly flag, same as any other
field. A ref readonly field will be attributed with
System.Runtime.CompilerServices.IsReadOnlyAttribute . A readonly ref readonly will be
emitted with both items.

This feature requires runtime support and changes to the ECMA spec. As such these will
only be enabled when the corresponding feature flag is set in corelib. The issue tracking
the exact API is tracked here https://github.com/dotnet/runtime/issues/64165

The set of changes to our span safety rules necessary to allow ref fields is small and
targeted. The rules already account for ref fields existing and being consumed from
APIs. The changes need to focus on only two aspects: how they are created and how
they are ref reassigned.

ref struct ReadOnlyExample
{
 ref readonly int Field1;
 readonly ref int Field2;
 readonly ref readonly int Field3;

 void Uses(int[] array)
 {
 Field1 = ref array[0]; // Okay
 Field1 = array[0]; // Error: can't assign ref readonly value
(value is readonly)
 Field2 = ref array[0]; // Error: can't repoint readonly ref
 Field2 = array[0]; // Okay
 Field3 = ref array[0]; // Error: can't repoint readonly ref
 Field3 = array[0]; // Error: can't assign ref readonly value
(value is readonly)
 }
}

https://github.com/dotnet/runtime/issues/64165

First the rules establishing ref-safe-to-escape values for fields need to be updated for
ref fields as follows:

An expression in the form ref e.F ref-safe-to-escape as follows:

1. If F is a ref field its ref-safe-to-escape scope is the safe-to-escape scope of e .
2. Else if e is of a reference type, it has ref-safe-to-escape of calling method
3. Else its ref-safe-to-escape is taken from the ref-safe-to-escape of e .

This does not represent a rule change though as the rules have always accounted for
ref state to exist inside a ref struct . This is in fact how the ref state in Span<T> has
always worked and the consumption rules correctly account for this. The change here is
just accounting for developers to be able to access ref fields directly and ensure they
do so by the existing rules implicitly applied to Span<T> .

This does mean though that ref fields can be returned as ref from a ref struct but
normal fields cannot.

c#

This may seem like an error at first glance but this is a deliberate design point. Again
though, this is not a new rule being created by this proposal, it is instead acknowledging
the existing rules Span<T> behaved by now that developers can declare their own ref
state.

Next the rules for ref reassignment need to be adjusted for the presence of ref fields.
The primary scenario for ref reassignment is ref struct constructors storing ref
parameters into ref fields. The support will be more general but this is the core
scenario. To support this the rules for ref reassignment will be adjusted to account for
ref fields as follows:

ref struct RS
{
 ref int _refField;
 int _field;

 // Okay: this falls into bullet one above.
 public ref int Prop1 => ref _refField;

 // Error: This is bullet four above and the ref-safe-to-escape of `this`
 // in a `struct` is the current method scope.
 public ref int Prop2 => ref _field;
}

The left operand of the = ref operator must be an expression that binds to a ref local
variable, a ref parameter (other than this), an out parameter, or a ref field.

For a ref reassignment in the form e1 = ref e2 both of the following must be true:

1. e2 must have ref-safe-to-escape at least as large as the ref-safe-to-escape of e1
2. e1 must have the same safe-to-escape as e2 Note

That means the desired Span<T> constructor works without any extra annotation:

c#

The change to ref reassignment rules means ref parameters can now escape from a
method as a ref field in a ref struct value. As discussed in the compat considerations
section this can change the rules for existing APIs that never intended for ref
parameters to escape as a ref field. The lifetime rules for parameters are based solely
on their declaration not on their usage. All ref and in parameters have ref-safe-to-
escape of return only and hence can now be returned by ref or a ref field. In order to
support APIs having ref parameters that can be escaping or non-escaping, and thus
restore C# 10 call site semantics, the language will introduce limited lifetime
annotations.

Ref reassignment rules

readonly ref struct Span<T>
{
 readonly ref T _field;
 readonly int _length;

 public Span(ref T value)
 {
 // Falls into the `x.e1 = ref e2` case, where `x` is the implicit
`this`. The
 // safe-to-escape of `this` is *return only* and ref-safe-to-escape
of `value` is
 // *calling method* hence this is legal.
 _field = ref value;
 _length = 1;
 }
}

scoped modifier

The keyword scoped will be used to restrict the lifetime of a value. It can be applied to a
ref or a value that is a ref struct and has the impact of restricting the ref-safe-to-
escape or safe-to-escape lifetime, respectively, to the current method. For example:

Parameter or Local ref-safe-to-escape safe-to-escape

Span<int> s current method calling method

scoped Span<int> s current method current method

ref Span<int> s calling method calling method

scoped ref Span<int> s current method calling method

In this relationship the ref-safe-to-escape of a value can never exceed the safe-to-escape.

This allows for APIs in C# 11 to be annotated such that they have the same rules as C#
10:

c#

The scoped annotation also means that the this parameter of a struct can now be
defined as scoped ref T . Previously it had to be special cased in the rules as ref
parameter that had different ref-safe-to-escape rules than other ref parameters (see all
the references to including or excluding the receiver in the span safety rules). Now it can
be expressed as a general concept throughout the rules which further simplifies them.

The scoped annotation can also be applied to the following locations:

Span<int> CreateSpan(scoped ref int parameter)
{
 // Just as with C# 10, the implementation of this method isn't relevant
to callers.
}

Span<int> BadUseExamples(int parameter)
{
 // Legal in C# 10 and legal in C# 11 due to scoped ref
 return CreateSpan(ref parameter);

 // Legal in C# 10 and legal in C# 11 due to scoped ref
 int local = 42;
 return CreateSpan(ref local);

 // Legal in C# 10 and legal in C# 11 due to scoped ref
 Span<int> span = stackalloc int[42];
 return CreateSpan(ref span[0]);
}

locals: This annotation sets the lifetime as safe-to-escape, or ref-safe-to-escape in
case of a ref local, to of current method irrespective of the initializer lifetime.

c#

Other uses for scoped on locals are discussed below.

The scoped annotation cannot be applied to any other location including returns, fields,
array elements, etc ... Further while scoped has impact when applied to any ref , in or
out it only has impact when applied to values which are ref struct . Having
declarations like scoped int has no impact because a non ref struct is always safe to
return. The compiler will create a diagnostic for such cases to avoid developer
confusion.

To further limit the impact of the compat change of making ref and in parameters
returnable as ref fields, the language will change the default ref-safe-to-escape value
for out parameters to be current method. Effectively out parameters are implicitly
scoped out going forward. From a compat perspective this means they cannot be
returned by ref :

Span<int> ScopedLocalExamples()
{
 // Error: `span` has a safe-to-escape of *current method*. That is true
even though the
 // initializer has a safe-to-escape of *calling method*. The annotation
overrides the
 // initializer
 scoped Span<int> span = default;
 return span;

 // Okay: the initializer has safe-to-escape of *calling method* hence so
does `span2`
 // and the return is legal.
 Span<int> span2 = default;
 return span2;

 // The declarations of `span3` and `span4` are functionally identical
because the
 // initializer has a safe-to-escape of *current method* meaning the
`scoped` annotation
 // is effectively implied on `span3`
 Span<int> span3 = stackalloc int[42];
 scoped Span<int> span4 = stackalloc int[42];
}

Change the behavior of out parameters

c#

This will increase the flexibility of APIs that return ref struct values and have out
parameters because it does not have to consider the parameter being captured by
reference anymore. This is important because it's a common pattern in reader style APIs:

c#

The language will also no longer consider arguments passed to an out parameter to be
returnable. Treating the input to an out parameter as returnable was extremely
confusing to developers. It essentially subverts the intent of out by forcing developers
to consider the value passed by the caller which is never used except in languages that
don't respect out . Going forward languages that support ref struct must ensure the
original value passed to an out parameter is never read.

C# achieves this via it's definite assignment rules. That both achieves our ref safety rules
as well as allowing for existing code which assigns and then returns out parameters
values.

ref int Sneaky(out int i)
{
 i = 42;

 // Error: ref-safe-to-escape of out is now the current method
 return ref i;
}

Span<byte> Read(Span<byte> buffer, out int read)
{
 // ..
}

Span<int> Use()
{
 var buffer = new byte[256];

 // If we keep current `out` ref-safe-to-escape this is an error. The
language must consider
 // the `read` parameter as returnable as a `ref` field
 //
 // If we change `out` ref-safe-to-escape this is legal. The language
does not consider the
 // `read` parameter to be returnable hence this is safe
 int read;
 return Read(buffer, out read);
}

c#

Together these changes mean the argument to an out parameter does not contribute
safe-to-escape or ref-safe-to-escape values to method invocations. This significantly
reduces the overall compat impact of ref fields as well as simplifies how developers
think about out . An argument to an out parameter does not contribute to the return, it
is simply an output.

The safe-to-escape of a declaration variable from an out argument (M(x, out var y)) or
deconstruction ((var x, var y) = M()) is the narrowest of the following:

calling method
if out variable is marked scoped , then the current local scope (i.e. current method
or narrower).
if out variable's type is ref struct, consider all arguments to the containing
invocation, including the receiver:

STE of any argument where its corresponding parameter is not out and has STE
of ReturnOnly or wider
RSTE of any argument where its corresponding parameter has RSTE of
ReturnOnly or wider

See also Examples of inferred safe-to-escape of declaration expressions.

Overall there are two ref location which are implicitly declared as scoped :

this on a struct instance method
out parameters

The span safety rules will be written in terms of scoped ref and ref . For span safety
purposes an in parameter is equivalent to ref and out is equivalent to scoped ref .
Both in and out will only be specifically called out when it is important to the semantic
of the rule. Otherwise they are just considered ref and scoped ref respectively.

Span<int> StrangeButLegal(out Span<int> span)
{
 span = default;
 return span;
}

Infer safe-to-escape of declaration expressions

Implicitly scoped parameters

When discussing the ref-safe-to-escape of arguments that correspond to in parameters
they will be generalized as ref arguments in the spec. In the case the argument is an
lvalue then the ref-safe-to-escape is that of the lvalue, otherwise it is current method.
Again in will only be called out here when it is important to the semantic of the current
rule.

The design also requires that the introduction of a new escape scope: return only. This is
similar to calling method in that it can be returned but it can only be returned through a
return statement.

The details of return only is that it's a scope which is greater than current method but
smaller than calling method. An expression provided to a return statement must be at
least return only. As such most existing rules fall out. For example assignment into a ref
parameter from an expression with a safe-to-escape of return only will fail because it's
smaller than the ref parameter's safe-to-escape which is calling method. The need for
this new escape scope will be discussed below.

There are three locations which default to return only:

A ref or in parameter. This is done in part for ref struct to prevent silly cyclic
assignment issues. It is done uniformly though to simplify the model as well as
minimize compat changes.
A out parameter for a ref struct will have safe-to-escape of return only. This
allows for return and out to be equally expressive. This does not have the silly
cyclic assignment problem because out is implicitly scoped so the ref-safe-to-
escape is still smaller than the safe-to-escape.
A this parameter for a struct constructor. This falls out due to being modeled as
out parameters.

Any expression or statement which explicitly returns a value from a method or lambda
must have a safe-to-escape, and if applicable a ref-safe-to-escape, of at least return only.
That includes return statements, expression bodied members and lambda expressions.

Likewise any assignment to an out must have a safe-to-escape of at least return only.
This is not a special case though, this just follows from the existing assignment rules.

Note: An expression whose type is not a ref struct type always has a safe-to-return of
calling method.

Return-only escape scope

The span safety rules for method invocation will be updated in several ways. The first is
by recognizing the impact that scoped has on arguments. For a given argument expr
that is passed to parameter p :

1. If p is scoped ref then expr does not contribute ref-safe-to-escape when
considering arguments.

2. If p is scoped then expr does not contribute safe-to-escape when considering
arguments.

3. If p is out then expr does not contribute ref-safe-to-escape or safe-to-escape
more details

The language "does not contribute" means the arguments are simply not considered
when calculating the ref-safe-to-escape or safe-to-escape value of the method return
respectively. That is because the values can't contribute to that lifetime as the scoped
annotation prevents it.

The method invocation rules can now be simplified. The receiver no longer needs to be
special cased, in the case of struct it is now simply a scoped ref T . The value rules
need to change to account for ref field returns:

A value resulting from a method invocation e1.M(e2, ...) , where M() does not
return ref-to-ref-struct, is safe-to-escape from the narrowest of the following scopes:

1. The calling method
2. When the return is a ref struct the safe-to-escape contributed by all

argument expressions
3. When the return is a ref struct the ref-safe-to-escape contributed by all ref

arguments

If M() does return ref-to-ref-struct, the safe-to-escape is the same as the safe-to-
escape of all arguments which are ref-to-ref-struct. It is an error if there are multiple
arguments with different safe-to-escape because of method arguments must match.

The ref calling rules can be simplified to:

A value resulting from a method invocation ref e1.M(e2, ...) , where M() does not
return ref-to-ref-struct, is ref-safe-to-escape the narrowest of the following scopes:

1. The calling method

Rules for method invocation

2. The safe-to-escape contributed by all argument expressions
3. The ref-safe-to-escape contributed by all ref arguments

If M() does return ref-to-ref-struct, the ref-safe-to-escape is the narrowest ref-safe-
to-escape contributed by all arguments which are ref-to-ref-struct.

This rule now lets us define the two variants of desired methods:

c#

Span<int> CreateWithoutCapture(scoped ref int value)
{
 // Error: value Rule 3 specifies that the safe-to-escape be limited to
the ref-safe-to-escape
 // of the ref argument. That is the *current method* for value hence
this is not allowed.
 return new Span<int>(ref value);
}

Span<int> CreateAndCapture(ref int value)
{
 // Okay: value Rule 3 specifies that the safe-to-escape be limited to
the ref-safe-to-escape
 // of the ref argument. That is the *calling method* for value hence
this is not allowed.
 return new Span<int>(ref value)
}

Span<int> ComplexScopedRefExample(scoped ref Span<int> span)
{
 // Okay: the safe-to-escape of `span` is *calling method* hence this is
legal.
 return span;

 // Okay: the local `refLocal` has a ref-safe-to-escape of *current
method* and a
 // safe-to-escape of *calling method*. In the call below it is passed to
a
 // parameter that is `scoped ref` which means it does not contribute
 // ref-safe-to-escape. It only contributes its safe-to-escape hence the
returned
 // rvalue ends up as safe-to-escape of *calling method*
 Span<int> local = default;
 ref Span<int> refLocal = ref local;
 return ComplexScopedRefExample(ref refLocal);

 // Error: similar analysis as above but the safe-to-escape scope of
`stackLocal` is
 // *current method* hence this is illegal
 Span<int> stackLocal = stackalloc int[42];
 return ComplexScopedRefExample(ref stackLocal);
}

The presence of ref fields means the rules around method arguments must match need
to be updated as a ref parameter can now be stored as a field in a ref struct
argument to the method. Previously the rule only had to consider another ref struct
being stored as a field. The impact of this is discussed in the compat considerations. The
new rule is ...

For any method invocation e.M(a1, a2, ... aN)

1. Calculate the narrowest safe-to-escape from:

calling method
The safe-to-escape of all arguments
The ref-safe-to-escape of all ref arguments whose corresponding
parameters have a ref-safe-to-escape of calling method

2. All ref arguments of ref struct types must be assignable by a value with
that safe-to-escape. This is a case where ref does not generalize to include in
and out

For any method invocation e.M(a1, a2, ... aN)

1. Calculate the narrowest safe-to-escape from:

calling method
The safe-to-escape of all arguments
The ref-safe-to-escape of all ref arguments whose corresponding
parameters are not scoped

2. All out arguments of ref struct types must be assignable by a value with
that safe-to-escape.

The presence of scoped allows developers to reduce the friction this rule creates by
marking parameters which are not returned as scoped . This removes their arguments
from (1) in both cases above and provides greater flexibility to callers.

Impact of this change is discussed more deeply below. Overall this will allow developers
to make call sites more flexible by annotating non-escaping ref-like values with scoped .

Method arguments must match

The scoped modifier and [UnscopedRef] attribute (see below) on parameters also
impacts our object overriding, interface implementation and delegate conversion rules.
The signature for an override, interface implementation or delegate conversion can:

Add scoped to a ref or in parameter
Add scoped to a ref struct parameter
Remove [UnscopedRef] from an out parameter
Remove [UnscopedRef] from a ref parameter of a ref struct type

Any other difference with respect to scoped or [UnscopedRef] is considered a mismatch.

The compiler will report a diagnostic for unsafe scoped mismatches across overrides,
interface implementations, and delegate conversions when:

The method returns a ref struct or returns a ref or ref readonly , or the method
has a ref or out parameter of ref struct type, and
The method has at least one additional ref , in , or out parameter, or a parameter
of ref struct type.

The rules above ignore this parameters because ref struct instance methods cannot
be used for overrides, interface implementations, or delegate conversions.

The diagnostic is reported as an error if the mismatched signatures are both using C#11
ref safety rules; otherwise, the diagnostic is a warning.

The scoped mismatch warning may be reported on a module compiled with C#7.2 ref
safety rules where scoped is not available. In some such cases, it may be necessary to
suppress the warning if the other mismatched signature cannot be modified.

The scoped modifier and [UnscopedRef] attribute also have the following effects on
method signatures:

The scoped modifier and [UnscopedRef] attribute do not affect hiding
Overloads cannot differ only on scoped or [UnscopedRef]

The section on ref field and scoped is long so wanted to close with a brief summary of
the proposed breaking changes:

A value that has ref-safe-to-escape to the calling method is returnable by ref or
ref field.
A out parameter would be considered safe-to-escape within the current method.

Parameter scope variance

Detailed Notes:

A ref field can only be declared inside of a ref struct
A ref field cannot be declared static , volatile or const
A ref field cannot have a type that is ref struct
The reference assembly generation process must preserve the presence of a ref
field inside a ref struct
A readonly ref struct must declare its ref fields as readonly ref
For by-ref values the scoped modifier must appear before in , out , or ref
The span safety rules document will be updated as outlined in this document
The new span safety rules will be in effect when either

The core library contains the feature flag indicating support for ref fields
The langversion value is 11 or higher

12.6.2 Local variable declarations : added 'scoped'? .

antlr

12.9.4 The for statement : added 'scoped'? indirectly from
local_variable_declaration .

12.9.5 The foreach statement : added 'scoped'? .

antlr

11.6.2 Argument lists : added 'scoped'? for out declaration variable.

Syntax

local_variable_declaration
 : 'scoped'? local_variable_mode_modifier? local_variable_type
local_variable_declarators
 ;

local_variable_mode_modifier
 : 'ref' 'readonly'?
 ;

foreach_statement
 : 'foreach' '(' 'scoped'? local_variable_type identifier 'in' expression
')'
 embedded_statement
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/statements.md#1262-local-variable-declarations
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/statements.md#1294-the-for-statement
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/statements.md#1295-the-foreach-statement
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md#1162-argument-lists

antlr

--.-.- Deconstruction expressions :

antlr

14.6.2 Method parameters : added 'scoped'? to parameter_modifier .

antlr

19.2 Delegate declarations : added 'scoped'? indirectly from fixed_parameter .

11.16 Anonymous function expressions : added 'scoped'? .

antlr

argument_value
 : expression
 | 'in' variable_reference
 | 'ref' variable_reference
 | 'out' ('scoped'? local_variable_type)? identifier
 ;

[TBD]

fixed_parameter
 : attributes? parameter_modifier? type identifier default_argument?
 ;

parameter_modifier
 | 'this' 'scoped'? parameter_mode_modifier?
 | 'scoped' parameter_mode_modifier?
 | parameter_mode_modifier
 ;

parameter_mode_modifier
 : 'in'
 | 'ref'
 | 'out'
 ;

explicit_anonymous_function_parameter
 : 'scoped'? anonymous_function_parameter_modifier? type identifier
 ;

anonymous_function_parameter_modifier
 : 'in'
 | 'ref'
 | 'out'
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/classes.md#1462-method-parameters
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/delegates.md#192-delegate-declarations
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md#1116-anonymous-function-expressions

The compiler has a concept of a set of "restricted types" which is largely undocumented.
These types were given a special status because in C# 1.0 there was no general purpose
way to express their behavior. Most notably the fact that the types can contain
references to the execution stack. Instead the compiler had special knowledge of them
and restricted their use to ways that would always be safe: disallowed returns, cannot
use as array elements, cannot use in generics, etc ...

Once ref fields are available and extended to support ref struct these types can be
correctly defined in C# using a combination of ref struct and ref fields. Therefore
when the compiler detects that a runtime supports ref fields it will no longer have a
notion of restricted types. It will instead use the types as they are defined in the code.

To support this our span safety rules will be updated as follows:

__makeref will be treated as a method with the signature static TypedReference
__makeref<T>(ref T value)

__refvalue will be treated as a method with the signature static ref T
__refvalue<T>(TypedReference tr) . The expression __refvalue(tr, int) will
effectively use the second argument as the type parameter.
__arglist as a parameter will have a ref-safe-to-escape and safe-to-escape of
current method.
__arglist(...) as an expression will have a ref-safe-to-escape and safe-to-escape
of current method.

Conforming runtimes will ensure that TypedReference , RuntimeArgumentHandle and
ArgIterator are defined as ref struct . Further TypedReference must be viewed as
having a ref field to a ref struct for any possible type (it can store any value). That
combined with the above rules will ensure references to the stack do not escape beyond
their lifetime.

Note: strictly speaking this is a compiler implementation detail vs. part of the language.
But given the relationship with ref fields it is being included in the language proposal
for simplicity.

Sunset restricted types

Provide unscoped

One of the most notable friction points is the inability to return fields by ref in instance
members of a struct . This means developers can't create ref returning methods /
properties and have to resort to exposing fields directly. This reduces the usefulness of
ref returns in struct where it is often the most desired.

c#

The rationale for this default is reasonable but there is nothing inherently wrong with
a struct escaping this by reference, it is simply the default chosen by the span safety
rules.

To fix this the language will provide the opposite of the scoped lifetime annotation by
supporting an UnscopedRefAttribute . This can be applied to any ref and it will change
the ref-safe-to-escape to be one level wider than its default. For example:

if applied to a struct instance method it will become return only where previously
it was containing method.
if applied to a ref parameter it will become calling method where previously it was
return only

When applying [UnscopedRef] to an instance method of a struct it has the impact of
modifying the implicit this parameter. This means this acts as an unannotated ref of
the same type.

c#

struct S
{
 int _field;

 // Error: this, and hence _field, can't return by ref
 public ref int Prop => ref _field;
}

struct S
{
 int field;

 // Error: `field` has the ref-safe-to-escape of `this` which is *current
method* because
 // it is a `scoped ref`
 ref int Prop1 => ref field;

 // Okay: `field` has the ref-safe-to-escape of `this` which is *calling
method* because
 // it is a `ref`

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-7.2/span-safety.md#struct-this-escape

The annotation can also be placed on out parameters to restore them to C# 10
behavior.

c#

For the purposes of span safety rules, such an [UnscopedRef] out is considered simply a
ref . Similar to how in is considered ref for lifetime purposes.

The [UnscopedRef] annotation will be disallowed on init members and constructors
inside struct . Those members are already special with respect to ref semantics as they
view readonly members as mutable. This means taking ref to those members appears
as a simple ref , not ref readonly . This is allowed within the boundary of constructors
and init . Allowing [UnscopedRef] would permit such a ref to incorrectly escape
outside the constructor and permit mutation after readonly semantics had taken place.

The attribute type will have the following definition:

c#

Detailed Notes:

An instance method or property annotated with [UnscopedRef] has ref-safe-to-
escape of this set to the calling method.
A member annotated with [UnscopedRef] cannot implement an interface.

 [UnscopedRef] ref int Prop1 => ref field;
}

ref int SneakyOut([UnscopedRef] out int i)
{
 i = 42;
 return ref i;
}

namespace System.Diagnostics.CodeAnalysis
{
 [AttributeUsage(
 AttributeTargets.Method | AttributeTargets.Property |
AttributeTargets.Parameter,
 AllowMultiple = false,
 Inherited = false)]
 public sealed class UnscopedRefAttribute : Attribute
 {
 }
}

It is an error to use [UnscopedRef] on
A member that is not declared on a struct
A static member, init member or constructor on a struct
A parameter marked scoped
A parameter passed by value
A parameter passed by reference that is not implicitly scoped

The scoped annotations will be emitted into metadata via the type
System.Runtime.CompilerServices.ScopedRefAttribute attribute. The attribute will be
matched by namespace-qualified name so the definition does not need to appear in any
specific assembly.

The ScopedRefAttribute type is for compiler use only - it is not permitted in source. The
type declaration is synthesized by the compiler if not already included in the
compilation.

The type will have the following definition:

c#

The compiler will emit this attribute on the parameter with scoped syntax. This will only
be emitted when the syntax causes the value to differ from its default state. For example
scoped out will cause no attribute to be emitted.

There are several differences in the ref safety rules between C#7.2 and C#11. Any of
these differences could result in breaking changes when recompiling with C#11 against
references compiled with C#10 or earlier.

1. unscoped ref /in /out parameters may escape a method invocation as a ref field
of a ref struct in C#11, not in C#7.2

ScopedRefAttribute

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, AllowMultiple = false,
Inherited = false)]
 internal sealed class ScopedRefAttribute : Attribute
 {
 }
}

RefSafetyRulesAttribute

2. out parameters are implicitly scoped in C#11, and unscoped in C#7.2
3. ref /in parameters to ref struct types are implicitly scoped in C#11, and

unscoped in C#7.2

To reduce the chance of breaking changes when recompiling with C#11, we will update
the C#11 compiler to use the ref safety rules for method invocation that match the rules
that were used to analyze the method declaration. Essentially, when analyzing a call to a
method compiled with an older compiler, the C#11 compiler will use C#7.2 ref safety
rules.

To enable this, the compiler will emit a new [module: RefSafetyRules(11)] attribute
when the module is compiled with -langversion:11 or higher or compiled with a corlib
containing the feature flag for ref fields.

The argument to the attribute indicates the language version of the ref safety rules used
when the module was compiled. The verion is currently fixed at 11 regardless of the
actual language version passed to the compiler.

The expectation is that future versions of the compiler will update the ref safety rules
and emit attributes with distinct versions.

If the compiler loads a module that includes a [module: RefSafetyRules(version)] with
a version other than 11 , the compiler will report a warning for the unrecognized
version if there are any calls to methods declared in that module.

When the C#11 compiler analyzes a method call:

If the module containing the method declaration includes [module:
RefSafetyRules(version)] , regardless of version , the method call is analyzed with
C#11 rules.
If the module containing the method declaration is from source, and compiled
with -langversion:11 or with a corlib containing the feature flag for ref fields, the
method call is analyzed with C#11 rules.
If the module containing the method declaration references System.Runtime { ver:
7.0 } , the method call is analyzed with C#11 rules. This rule is a temporary
mitigation for modules compiled with earlier previews of C#11 / .NET 7 and will be
removed later.
Otherwise, the method call is analyzed with C#7.2 rules.

A pre-C#11 compiler will ignore any RefSafetyRulesAttribute and analyze method calls
with C#7.2 rules only.

The RefSafetyRulesAttribute will be matched by namespace-qualified name so the
definition does not need to appear in any specific assembly.

The RefSafetyRulesAttribute type is for compiler use only - it is not permitted in
source. The type declaration is synthesized by the compiler if not already included in the
compilation.

C#

The language will relax the restrictions on fixed sized arrays such that they can be
declared in safe code and the element type can be managed or unmanaged. This will
make types like the following legal:

c#

These declarations, much like their unsafe counter parts, will define a sequence of N
elements in the containing type. These members can be accessed with an indexer and
can also be converted to Span<T> and ReadOnlySpan<T> instances.

When indexing into a fixed buffer of type T the readonly state of the container must
be taken into account. If the container is readonly then the indexer returns ref readonly
T else it returns ref T .

Accessing a fixed buffer without an indexer has no natural type however it is
convertible to Span<T> types. In the case the container is readonly the buffer is

namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Module, AllowMultiple = false,
Inherited = false)]
 internal sealed class RefSafetyRulesAttribute : Attribute
 {
 public RefSafetyRulesAttribute(int version) { Version = version; }
 public readonly int Version;
 }
}

Safe fixed size buffers

internal struct CharBuffer
{
 internal char Data[128];
}

implicitly convertible to ReadOnlySpan<T> , else it can implicitly convert to Span<T> or
ReadOnlySpan<T> (the Span<T> conversion is considered better).

The resulting Span<T> instance will have a length equal to the size declared on the
fixed buffer. The safe-to-escape scope of the returned value will be equal to the safe-to-
escape scope of the container, just as it would if the backing data was accessed as a
field.

For each fixed declaration in a type where the element type is T the language will
generate a corresponding get only indexer method whose return type is ref T . The
indexer will be annotated with the [UnscopedRef] attribute as the implementation will
be returning fields of the declaring type. The accessibility of the member will match the
accessibility on the fixed field.

For example, the signature of the indexer for CharBuffer.Data will be the following:

c#

If the provided index is outside the declared bounds of the fixed array then an
IndexOutOfRangeException will be thrown. In the case a constant value is provided then
it will be replaced with a direct reference to the appropriate element. Unless the
constant is outside the declared bounds in which case a compile time error would occur.

There will also be a named accessor generated for each fixed buffer that provides by
value get and set operations. Having this means that fixed buffers will more closely
resemble existing array semantics by having a ref accessor as well as byval get and
set operations. This means compilers will have the same flexibility when emitting code
consuming fixed buffers as they do when consuming arrays. This should make
operations like await over fixed buffers easier to emit.

This also has the added benefit that it will make fixed buffers easier to consume from
other languages. Named indexers is a feature that has existed since the 1.0 release of
.NET. Even languages which cannot directly emit a named indexer can generally
consume them (C# is actually a good example of this).

The backing storage for the buffer will be generated using the [InlineArray] attribute.
This is a mechanism discussed in issue 12320 which allows specifically for the case of
efficiently declaring sequence of fields of the same type. This particular issue is still
under active discussion and the expectation is that the implementation of this feature
will follow however that discussion goes.

[UnscopedRef] internal ref char DataIndexer(int index) => ...;

https://github.com/dotnet/runtime/issues/12320

In section 11.7.15.3 Object initializers , we update the grammar to:

antlr

In the section for with expression , we update the grammar to:

antlr

The left operand of the assignment must be an expression that binds to a ref field.
The right operand must be an expression that yields an lvalue designating a value of the
same type as the left operand.

We add a similar rule to ref local reassignment :
If the left operand is a writeable ref (i.e. it designates anything other than a ref
readonly field), then the right operand must be a writeable lvalue.

The escape rules for constructor invocations remain:

A new expression that invokes a constructor obeys the same rules as a method
invocation that is considered to return the type being constructed.

Namely the rules of method invocation updated above:

An rvalue resulting from a method invocation e1.M(e2, ...) is safe-to-escape from
the smallest of the following scopes:

1. The calling method
2. The safe-to-escape contributed by all argument expressions
3. When the return is a ref struct then ref-safe-to-escape contributed by all ref

arguments

Initializers with ref values in new and with expressions

initializer_value
 : 'ref' expression // added
 | expression
 | object_or_collection_initializer
 ;

member_initializer
 : identifier '=' 'ref' expression // added
 | identifier '=' expression
 ;

https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md#117153-object-initializers
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-9.0/records.md#with-expression
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-7.3/ref-local-reassignment.md
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-7.2/span-safety.md#constructor-invocations

For a new expression with initializers, the initializer expressions count as arguments (they
contribute their safe-to-escape) and the ref initializer expressions count as ref
arguments (they contribute their ref-safe-to-escape), recursively.

Pointer types (section 22.3) are extended to allow managed types as referent type.
Such pointer types are written as a managed type followed by a * token. They produce
a warning.

The address-of operator (section 22.6.5) is relaxed to accept a variable with a
managed type as its operand.

The fixed statement (section 22.7) is relaxed to accept fixed_pointer_initializer that is
the address of a variable of managed type T or that is an expression of an array_type
with elements of a managed type T .

The stack allocation initializer (section 22.9) is similarly relaxed.

There are considerations other parts of the development stack should consider when
evaluating this feature.

The challenge in this proposal is the compatibility implications this design has to our
existing span safety rules . While those rules fully support the concept of a ref struct
having ref fields they do not allow for APIs, other than stackalloc , to capture ref
state that refers to the stack. The span safety rules have a hard assumption that a
constructor of the form Span(ref T value) does not exist. That means the safety rules
do not account for a ref parameter being able to escape as a ref field hence it allows
for code like the following.

c#

Changes in unsafe context

Considerations

Compat Considerations

Span<int> CreateSpan<int>()
{
 // This is legal according to the 7.2 span rules because they do not
account
 // for a constructor in the form Span(ref T value) existing.
 int local = 42;

https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/unsafe-code.md#223-pointer-types
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/unsafe-code.md#2265-the-address-of-operator
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/unsafe-code.md#227-the-fixed-statement
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/unsafe-code.md#229-stack-allocation
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-7.2/span-safety.md
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-7.2/span-safety.md#span-constructor

Effectively there are three ways for a ref parameter to escape from a method
invocation:

1. By value return
2. By ref return
3. By ref field in ref struct that is returned or passed as ref / out parameter

The existing rules only account for (1) and (2). They do not account for (3) hence gaps
like returning locals as ref fields are not accounted for. This design must change the
rules to account for (3). This will have a small impact to compatibility for existing APIs.
Specifically it will impact APIs that have the following properties.

Have a ref struct in the signature
Where the ref struct is a return type, ref or out parameter
Has an additional in or ref parameter excluding the receiver

In C# 10 callers of such APIs never had to consider that ref state input to the API could
be captured as a ref field. That allowed for several patterns to exist, safely in C# 10, that
will be unsafe in C# 11 due to the ability for ref state to escape as a ref field. For
example:

c#

 return new Span<int>(ref local);
}

Span<int> CreateSpan(ref int parameter)
{
 // The implementation of this method is irrelevant when considering the
lifetime of the
 // returned Span<T>. The span safety rules only look at the method
signature, not the
 // implementation. In C# 10 ref fields didn't exist hence there was no
way for `parameter`
 // to escape by ref in this method
}

Span<int> BadUseExamples(int parameter)
{
 // Legal in C# 10 but would be illegal with ref fields
 return CreateSpan(ref parameter);

 // Legal in C# 10 but would be illegal with ref fields
 int local = 42;
 return CreateSpan(ref local);

 // Legal in C# 10 but would be illegal with ref fields
 Span<int> span = stackalloc int[42];

The impact of this compatibility break is expected to be very small. The impacted API
shape made little sense in the absence of ref fields hence it is unlikely customers
created many of these. Experiments running tools to spot this API shape over existing
repositories back up that assertion. The only repository with any significant counts of
this shape is dotnet/runtime and that is because that repo can create ref fields via
the ByReference<T> intrinsic type.

Even so the design must account for such APIs existing because it expresses a valid
pattern, just not a common one. Hence the design must give developers the tools to
restore the existing lifetime rules when upgrading to C# 10. Specifically it must provide
mechanisms that allow developers to annotate ref parameters as unable to escape by
ref or ref field. That allows customers to define APIs in C# 11 that have the same C#
10 callsite rules.

A reference assembly for a compilation using features described in this proposal must
maintain the elements that convey span safety information. That means all lifetime
annotation attributes must be preserved in their original position. Any attempt to
replace or omit them can lead to invalid reference assemblies.

Representing ref fields is more nuanced. Ideally a ref field would appear in a reference
assembly as would any other field. However a ref field represents a change to the
metadata format and that can cause issues with tool chains that are not updated to
understand this metadata change. A concrete example is C++/CLI which will likely error
if it consumes a ref field. Hence it's advantageous if ref fields can be omitted from
reference assemblies in our core libraries.

A ref field by itself has no impact on span safety rules. As a concrete example consider
that flipping the existing Span<T> definition to use a ref field has no impact on
consumption. Hence the ref itself can be omitted safely. However a ref field does have
other impacts to consumption that must be preserved:

A ref struct which has a ref field is never considered unmanaged
The type of the ref field impacts infinite generic expansion rules. Hence if the type
of a ref field contains a type parameter that must be preserved

Given those rules here is a valid reference assembly transformation for a ref struct :

 return CreateSpan(ref span[0]);
}

Reference Assemblies

https://github.com/dotnet/runtime

c#

This design proposes several compatibility breaks with our existing span safety rules.
Even though the breaks are believed to be minimally impactful significant consideration
was given to a design which had no breaking changes.

The compat preserving design though was significantly more complex than this one. In
order to preserve compat ref fields need distinct lifetimes for the ability to return by
ref and return by ref field. Essentially it requires us to provide ref-field-safe-to-escape
tracking for all parameters to a method. This needs to be calculated for all expressions
and tracked in all values virtually everywhere that ref-safe-to-escape is tracked today.

Further this value has relationships with ref-safe-to-escape. For example it's non-sensical
to have a value can be returned as a ref field but not directly as ref . That is because
ref fields can be trivially returned by ref already (ref state in a ref struct can be
returned by ref even when the containing value cannot). Hence the rules further need
constant adjustment to ensure these values are sensible with respect to each other.

Also it means the language needs syntax to represent ref parameters that can be
returned in three different ways: by ref field, by ref and by value. The default being
returnable by ref . Going forward though the more natural return, particularly when ref
struct are involved is expected to be by ref field or ref . That means new APIs require
an extra syntax annotation to be correct by default. This is undesirable.

These compat changes though will impact methods that have the following properties:

// Impl assembly
ref struct S<T>
{
 ref T _field;
}

// Ref assembly
ref struct S<T>
{
 object _o; // force managed
 T _f; // maintain generic expansion protections
}

Open Issues

Change the design to avoid compat breaks

Have a Span<T> or ref struct
Where the ref struct is a return type, ref or out parameter
Has an additional in or ref parameter (excluding the receiver)

To understand the impact it's helpful to break APIs into categories:

1. Want consumers to account for ref being captured as a ref field. Prime example
is the Span(ref T value) constructors

2. Do not want consumers to account for ref being captured as a ref field. These
though break into two categories
a. Unsafe APIs. These are APIS inside the Unsafe and MemoryMarshal types, of

which MemoryMarshal.CreateSpan is the most prominent. These APIs do capture
the ref unsafely but they are also known to be unsafe APIs.

b. Safe APIs. These are APIs which take ref parameters for efficiency but it is not
actually captured anywhere. Examples are small but one is
AsnDecoder.ReadEnumeratedBytes

This change primarily benefits (1) above. These are expected to make up the majority of
APIs that take a ref and return a ref struct going forward. The changes negatively
impact (2.1) and (2.2) as it breaks the existing calling semantics because the lifetime
rules change.

The APIs in category (2.1) though are largely authored by Microsoft or by developers
who stand the most to benefit from ref fields (the Tanner's of the world). It is
reasonable to assume this class of developers would be amenable to a compatibility tax
on upgrade to C# 11 in the form of a few annotations to retain the existing semantics if
ref fields were provided in return.

The APIs in category (2.2) are the biggest issue. It is unknown how many such APIs exist
and it's unclear if these would be more / less frequent in 3rd party code. The
expectation is there is a very small number of them, particularly if we take the compat
break on out . Searches so far have revealed a very small number of these existing in
public surface area. This is a hard pattern to search for though as it requires semantic
analysis. Before taking this change a tool based approach would be needed to verify the
assumptions around this impacting a small number of known cases.

For both cases in category (2) though the fix is straight forward. The ref parameters
that do not want to be considered capturable must add scoped to the ref . In (2.1) this
will likely also force the developer to use Unsafe or MemoryMarshal but that is expected
for unsafe style APIs.

Ideally the language could reduce the impact of silent breaking changes by issuing a
warning when an API silently falls into the troublesome behavior. That would be a
method that both takes a ref , returns ref struct but does not actually capture the ref
in the ref struct . The compiler could issue a diagnostic in that case informing
developers such ref should be annotated as scoped ref instead.

Decision This design can be achieved but the resulting feature is more difficult to use to
the point the decision was made to take the compat break.

Decision The compiler will provide a warning when a method meets the criteria but
does not capture the ref parameter as a ref field. This should suitably warn customers
on upgrade about the potential issues they are creating

This design calls for using attributes to annotate the new lifetime rules. This also
could've been done just as easily with contextual keywords. For instance
[DoesNotEscape] could map to scoped . However keywords, even the contextual ones,
generally must meet a very high bar for inclusion. They take up valuable language real
estate and are more prominent parts of the language. This feature, while valuable, is
going to serve a minority of C# developers.

On the surface that would seem to favor not using keywords but there are two
important points to consider:

1. The annotations will effect program semantics. Having attributes impact program
semantics is a line C# is reluctant to cross and it's unclear if this is the feature that
should justify the language taking that step.

2. The developers most likely to use this feature intersect strongly with the set of
developers that use function pointers. That feature, while also used by a minority
of developers, did warrant a new syntax and that decision is still seen as sound.

Taken together this means syntax should be considered.

A rough sketch of the syntax would be:

[RefDoesNotEscape] maps to scoped ref
[DoesNotEscape] maps to scoped
[RefDoesEscape] maps to unscoped

Decision Use syntax for scoped and scoped ref ; use attribute for unscoped .

Keywords vs. attributes

This design allows for safe fixed buffers that can support any type. One possible
extension here is allowing such fixed buffers to be declared as local variables. This
would allow a number of existing stackalloc operations to be replaced with a fixed
buffer. It would also expand the set of scenarios we could have stack style allocations as
stackalloc is limited to unmanaged element types while fixed buffers are not.

c#

This holds together but does require us to extend the syntax for locals a bit. Unclear if
this is or isn't worth the extra complexity. Possible we could decide no for now and bring
back later if sufficient need is demonstrated.

Example of where this would be beneficial:
https://github.com/dotnet/runtime/pull/34149

Decision hold off on this for now

A decision needs to be made if methods marked with new lifetime attributes should or
should not translate to modreq in emit. There would be effectively a 1:1 mapping
between annotations and modreq if this approach was taken.

The rationale for adding a modreq is the attributes change the semantics of span safety.
Only languages which understand these semantics should be calling the methods in
question. Further when applied to OHI scenarios, the lifetimes become a contract that all
derived methods must implement. Having the annotations exist without modreq can lead
to situations where virtual method chains with conflicting lifetime annotations are
loaded (can happen if only one part of virtual chain is compiled and other is not).

The initial span safety work did not use modreq but instead relied on languages and the
framework to understand. At the same time though all of the elements that contribute

Allow fixed buffer locals

class FixedBufferLocals
{
 void Example()
 {
 Span<int> span = stackalloc int[42];
 int buffer[42];
 }
}

To use modreqs or not

https://github.com/dotnet/runtime/pull/34149

to the span safety rules are a strong part of the method signature: ref , in , ref struct ,
etc ... Hence any change to the existing rules of a method already results in a binary
change to the signature. To give the new lifetime annotations the same impact they will
need modreq enforcement.

The concern is whether or not this is overkill. It does have the negative impact that
making signatures more flexible, by say adding [DoesNotEscape] to a parameter, will
result in a binary compat change. That trade off means that over time frameworks like
BCL likely won't be able to relax such signatures. It could be mitigated to a degree by
taking some approach the language does with in parameters and only apply modreq in
virtual positions.

Decision Do not use modreq in metadata. The difference between out and ref is not
modreq but they now have different span safety lifetimes. There is no real benefit to only
half enforcing the rules with modreq here.

Should the design for fixed buffers be extended to include multi-dimensional style
arrays? Essentially allowing for declarations like the following:

c#

Decision Do not allow for now

The runtime repository has several non-public APIs that capture ref parameters as ref
fields. These are unsafe because the lifetime of the resulting value is not tracked. For
example the Span<T>(ref T value, int length) constructor.

The majority of these APIs will likely choose to have proper lifetime tracking on the
return which will be achieved simply by updating to C# 11. A few though will want to
keep their current semantics of not tracking the return value because their entire intent
is to be unsafe. The most notable examples are MemoryMarshal.CreateSpan and
MemoryMarshal.CreateReadOnlySpan . This will be achieved by marking the parameters as
scoped .

Allow multi-dimensional fixed buffers

struct Dimensions
{
 int array[42, 13];
}

Violating scoped

That means the runtime needs an established pattern for unsafely removing scoped
from a parameter:

1. Unsafe.AsRef<T>(in T value) could expand its existing purpose by changing to
scoped in T value . This would allow it to both remove in and scoped from
parameters. It then becomes the universal "remove ref safety" method

2. Introduce a new method whose entire purpose is to remove scoped : ref T
Unsafe.AsUnscoped<T>(scoped in T value) . This removes in as well because if it
did not then callers still need a combination of method calls to "remove ref safety"
at which point the existing solution is likely sufficient.

The design only has two locations which are scoped by default:

this is scoped ref
out is scoped ref

The decision on out is to significantly reduce the compat burden of ref fields and at
the same time is a more natural default. It lets developers actually think of out as data
flowing outward only where as if it's ref then the rules must consider data flowing in
both directions. This leads to significant developer confusion.

The decision on this is undesirable because it means a struct cannot return a field by
ref . This is an important scenario to high perf developers and the [UnscopedRef]
attribute was added essentially for this one scenario.

Keywords have a high bar and adding it for a single scenario is suspect. As such thought
was given to whether we could avoid this keyword at all by making this simply ref by
default and not scoped ref . All members that need this to be scoped ref could do so
by marking the method scoped (as a method can be marked readonly to create a
readonly ref today).

On a normal struct this is mostly a positive change as it only introduces compat issues
when a member has a ref return. There are very few of these methods and a tool could
spot these and convert them to scoped members quickly.

On a ref struct this change introduces significantly bigger compat issues. Consider the
following:

c#

Unscoped this by default?

Essentially it would mean all instance method invocations on mutable ref struct locals
would be illegal unless the local was further marked as scoped . The rules have to
consider the case where fields were ref reassigned to other fields in this . A readonly
ref struct doesn't have this problem because the readonly nature prevents ref
reassignment. Still this would be a significant back compat breaking change as it would
impact virtually every existing mutable ref struct .

A readonly ref struct though is still problematic once we expand to having ref fields
to ref struct . It allows for the same basic problem by just moving the capture into the
value of the ref field:

c#

ref struct Sneaky
{
 int Field;
 ref int RefField;

 public void SelfAssign()
 {
 // This pattern of ref reassign to fields on this inside instance
methods is now
 // completely legal.
 RefField = ref Field;
 }

 static Sneaky UseExample()
 {
 Sneaky local = default;

 // Error: this is illegal, and must be illegal, by our existing
rules as the
 // ref-safe-to-escape of local is now an input into method arguments
must match.
 local.SelfAssign();

 // This would be dangerous as local now has a dangerous `ref` but
the above
 // prevents us from getting here.
 return local;
 }
}

readonly ref struct ReadOnlySneaky
{
 readonly int Field;
 readonly ref ReadOnlySpan<int> Span;

 public void SelfAssign()

Some thought was given to the idea of having this have different defaults based on
the type of struct or member. For example:

this as ref : struct , readonly ref struct or readonly member
this as scoped ref : ref struct or readonly ref struct with ref field to ref
struct

This minimizes compat breaks and maximizes flexibility but at the cost of complicating
the story for customers. It also doesn't fully solve the problem because future features,
like safe fixed buffers, require that a mutable ref struct have ref returns for fields
which don't work by this design alone as it would fall into the scoped ref category.

Decision Keep this as scoped ref

This feature opens up a new set of ref safety rules because it allows for a ref field to
refer to a ref struct . This generic nature of ByReference<T> meant that up until now
the runtime could not have such a construct. As a result all of our rules are written under
the assumption this is not possible. The ref field feature is largely not about making
new rules but codifying the existing rules in our system. Allowing ref fields to ref
struct requires us to codify new rules because there are several new scenarios to
consider.

The first is that a readonly ref is now capable of storing ref state. For example:

c#

 {
 // Instance method captures a ref to itself
 Span = new ReadOnlySpan<int>(ref Field, 1);
 }
}

ref fields to ref struct

readonly ref struct Container
{
 readonly ref Span<int> Span;

 void Store(Span<int> span)
 {
 Span = span;
 }
}

This means when thinking about method arguments must match rules we must consider
readonly ref T is potential method output when T potentially has a ref field to a ref
struct .

The second issue is language must consider a new type of escape scope: ref-field-safe-
to-escape. All ref struct which transitively contain a ref field have another escape
scope representing the value(s) in the ref field(s). In the case of multiple ref fields they
can be collectively tracked as a single value. The default value for this for parameters is
calling method.

c#

This value is not related to the escape scope of the container; that is as the container
scope gets smaller it has no impact on the ref-field-safe-to-escape of the ref field
values. Further the ref-field-safe-to-escape can never be smaller than the safe-to-escape
of the container.

c#

ref struct Nested
{
 ref Span<int> Span;
}

Span<int> M(ref Nested nested) => nested.Span;

ref struct Nested
{
 ref Span<int> Span;
}

void M(ref Nested nested)
{
 scoped ref Nested refLocal = ref nested;

 // the ref-field-safe-to-escape of local is still *calling method* which
means the following
 // is illegal
 refLocal.Span = stackalloc int[42];

 scoped Nested valLocal = nested;

 // the ref-field-safe-to-escape of local is still *calling method* which
means the following
 // is still illegal
 valLocal.Span = stackalloc int[42];
}

This ref-field-safe-to-escape-scope has essentially always existed. Up until now ref fields
could only point to normal struct hence it was trivially collapsed to calling method. To
support ref fields to ref struct our existing rules need to be updated to take into
account this new escape scope.

Third the rules for ref reassignment need to be updated to ensure that we don't violate
ref-field-safe-to-escape for the values. Essentially for x.e1 = ref e2 where the type of
e1 is a ref struct the ref-field-safe-to-escape must be equal.

These problems are very solvable. The compiler team has sketched out a few versions of
these rules and they largely fall out from our existing analysis. The problem is there is no
consuming code for such rules that helps prove out there correctness and usability. This
makes us very hesitant to add support because of the fear we'll pick wrong defaults and
back the runtime into usability corner when it does take advantage of this. This concern
is particularly strong because .NET 8 likely pushes us in this direction with allow T: ref
struct and Span<Span<T>> . The rules would be better written if it's done in conjunction
with consumption code.

Decision Delay allowing ref field to ref struct until .NET 8 where we have scenarios
that will help drive the rules around these scenarios.

The features outlined in this document don't need to be implemented in a single pass.
Instead they can be implemented in phases across several language releases in the
following buckets:

1. ref fields and scoped
2. [UnscopedRef]
3. ref fields to ref struct
4. Sunset restricted types
5. fixed sized buffers

What gets implemented in which release is merely a scoping exercise.

Decision Only (1) and (2) made C# 11.0. The rest will be considered in future versions of
C#.

What will make C# 11.0?

Future Considerations

Advanced lifetime annotations

The lifetime annotations in this proposal are limited in that they allow developers to
change the default escape / don't escape behavior of values. This does add powerful
flexibility to our model but it does not radically change the set of relationships that can
be expressed. At the core the C# model is still effectively binary: can a value be returned
or not?

That allows limited lifetime relationships to be understood. For example a value that
can't be returned from a method has a smaller lifetime than one that can be returned
from a method. There is no way to describe the lifetime relationship between values that
can be returned from a method though. Specifically there is no way to say that one
value has a larger lifetime than the other once it's established both can be returned
from a method. The next step in our lifetime evolution would be allowing such
relationships to be described.

Other methods such as Rust allow this type of relationship to be expressed and hence
can implement handle more complex scoped style operations. Our language could
similarly benefit if such a feature were included. At the moment there is no motivating
pressure to do this but if there is in the future our scoped model could be expanded to
included it in a fairly straight forward fashion.

Every scoped could be assigned a named lifetime by adding a generic style argument to
the syntax. For example scoped<'a> is a value that has lifetime 'a . Constraints like
where could then be used to describe the relationships between these lifetimes.

c#

This method defines two lifetimes 'a and 'b and there relationship, specifically that 'b
is greater than 'a . This allows for the callsite to have more granular rules for how values
can be safely passed into methods vs. the more coarse grained rules present today.

The following issues are all related to this proposal:

void M(scoped<'a> ref MyStruct s, scoped<'b> Span<int> span)
 where 'b >= 'a
{
 s.Span = span;
}

Related Information

Issues

https://github.com/dotnet/csharplang/issues/1130
https://github.com/dotnet/csharplang/issues/1147
https://github.com/dotnet/csharplang/issues/992
https://github.com/dotnet/csharplang/issues/1314
https://github.com/dotnet/csharplang/issues/2208
https://github.com/dotnet/runtime/issues/32060
https://github.com/dotnet/runtime/issues/61135
https://github.com/dotnet/csharplang/discussions/78

The following proposals are related to this proposal:

https://github.com/dotnet/csharplang/blob/725763343ad44a9251b03814e6897d8
7fe553769/proposals/fixed-sized-buffers.md

Utf8JsonReader

This particular snippet requires unsafe because it runs into issues with passing around a
Span<T> which can be stack allocated to an instance method on a ref struct . Even
though this parameter is not captured the language must assume it is and hence
needlessly causes friction here.

Utf8JsonWriter

This snippet wants to mutate a parameter by escaping elements of the data. The
escaped data can be stack allocated for efficiency. Even though the parameter is not
escaped the compiler assigns it a safe-to-escape scope of outside the enclosing method
because it is a parameter. This means in order to use stack allocation the
implementation must use unsafe in order to assign back to the parameter after
escaping the data.

c#

Proposals

Existing samples

Fun Samples

ReadOnlySpan<T>

public readonly ref struct ReadOnlySpan<T>
{

https://github.com/dotnet/csharplang/issues/1130
https://github.com/dotnet/csharplang/issues/1147
https://github.com/dotnet/csharplang/issues/992
https://github.com/dotnet/csharplang/issues/1314
https://github.com/dotnet/csharplang/issues/2208
https://github.com/dotnet/runtime/issues/32060
https://github.com/dotnet/runtime/issues/61135
https://github.com/dotnet/csharplang/discussions/78
https://github.com/dotnet/csharplang/blob/725763343ad44a9251b03814e6897d87fe553769/proposals/fixed-sized-buffers.md
https://github.com/dotnet/runtime/blob/f1a7cb3fdd7ffc4ce7d996b7ac6867ffe2c953b9/src/libraries/System.Text.Json/src/System/Text/Json/Reader/Utf8JsonReader.cs#L523-L528
https://github.com/dotnet/runtime/blob/f1a7cb3fdd7ffc4ce7d996b7ac6867ffe2c953b9/src/libraries/System.Text.Json/src/System/Text/Json/Writer/Utf8JsonWriter.WriteProperties.String.cs#L122-L127

c#

c#

 readonly ref readonly T _value;
 readonly int _length;

 public ReadOnlySpan(in T value)
 {
 _value = ref value;
 _length = 1;
 }
}

Frugal list

struct FrugalList<T>
{
 private T _item0;
 private T _item1;
 private T _item2;

 public int Count = 3;

 public ref T this[int index]
 {
 [UnscopedRef] get
 {
 switch (index)
 {
 case 0: return ref _item1;
 case 1: return ref _item2;
 case 2: return ref _item3;
 default: throw null;
 }
 }
 }
}

Stack based linked list

ref struct StackLinkedListNode<T>
{
 T _value;
 ref StackLinkedListNode<T> _next;

 public T Value => _value;

 public bool HasNext => !Unsafe.IsNullRef(ref _next);

Below are a set of examples demonstrating how and why the rules work the way they
do. Included are several examples showing dangerous behaviors and how the rules
prevent them from happening. It's important to keep these in mind when making
adjustments to the proposal.

Demonstrating how ref reassignment and method invocation work together.

c#

 public ref StackLinkedListNode<T> Next
 {
 get
 {
 if (!HasNext)
 {
 throw new InvalidOperationException("No next node");
 }

 return ref _next;
 }
 }

 public StackLinkedListNode(T value)
 {
 this = default;
 _value = value;
 }

 public StackLinkedListNode(T value, ref StackLinkedListNode<T> next)
 {
 _value = value;
 _next = ref next;
 }
}

Examples and Notes

Ref reassignment and call sites

ref struct RS
{
 ref int _refField;

 public ref int Prop => ref _refField;

 public RS(int[] array)
 {
 _refField = ref array[0];
 }

 public RS(ref int i)
 {
 _refField = ref i;
 }

 public RS CreateRS() => ...;

 public ref int M1(RS rs)
 {
 // The call site arguments for Prop contribute here:
 // - `rs` contributes no ref-safe-to-escape as the corresponding
parameter,
 // which is `this`, is `scoped ref`
 // - `rs` contribute safe-to-escape of *calling method*
 //
 // This is an lvalue invocation and the arguments contribute only
safe-to-escape
 // values of *calling method*. That means `local1` is ref-safe-to-
escape to
 // *calling method*
 ref int local1 = ref rs.Prop;

 // Okay: this is legal because `local` has ref-safe-to-escape of
calling method
 return ref local1;

 // The arguments contribute here:
 // - `this` contributes no ref-safe-to-escape as the corresponding
parameter
 // is `scoped ref`
 // - `this` contributes safe-to-escape of *calling method*
 //
 // This is an rvalue invocation and following those rules the safe-
to-escape of
 // `local2` will be *calling method*
 RS local2 = CreateRS();

 // Okay: this follows the same analysis as `ref rs.Prop` above
 return ref local2.Prop;

 // The arguments contribute here:
 // - `local3` contributes ref-safe-to-escape of *current method*
 // - `local3` contributes safe-to-escape of *calling method*
 //
 // This is an rvalue invocation which returns a `ref struct` and
following those
 // rules the safe-to-escape of `local4` will be *current method*
 int local3 = 42;
 var local4 = new RS(ref local3);

 // Error:
 // The arguments contribute here:
 // - `local4` contributes no ref-safe-to-escape as the
corresponding parameter

The reason for the following line in the ref reassignment rules may not be obvious at
first glance:

e1 must have the same safe-to-escape as e2

This is because the lifetime of the values pointed to by ref locations are invariant. The
indirection prevents us from allowing any kind of variance here, even to narrower
lifetimes. If narrowing is allowed then it opens up the following unsafe code:

C#

 // is `scoped ref`
 // - `local4` contributes safe-to-escape of *current method*
 //
 // This is an lvalue invocation and following those rules the ref-
safe-to-escape
 // of the return is *current method*
 return ref local4.Prop1;
 }
}

Ref reassignment and unsafe escapes

ref struct RS { }
void Example(ref Span<int> p)
{
 Span<int> local = stackalloc int[42];
 ref Span<int> refLocal = ref local;

 // The safe-to-escape of refLocal is narrower than p. For a non-ref
reassignment
 // this would be allowed as its safe to assign wider lifetimes to
narrower ones.
 // In the case of ref reassignment though this rule prevents it as the
 // safe-to-escape values are different.
 refLocal = ref p;

 // If it were allowed this would be legal as the safe-to-escape of
refLocal
 // is *containing method* and that is satisfied by stackalloc. At the
same time
 // it would be assigning through p and escaping the stackalloc to the
calling
 // method
 //
 // This is equivalent of saying p = stackalloc int[13]!!!
 refLocal = stackalloc int[13];
}

For a ref to non ref struct this rule is trivially satisfied as the values all have the same
safe-to-escape scope. This rule really only comes into play when the value is a ref
struct .

This behavior of ref will also be important in a future where we allow ref fields to ref
struct .

The use of scoped on locals will be particularly helpful to code patterns which
conditionally assign values with different safe-to-escape scope to locals. It means code
no longer needs to rely on initialization tricks like = stackalloc byte[0] to define a local
safe-to-escape but now can simply use scoped .

c#

This pattern comes up frequently in low level code. When the ref struct involved is
Span<T> the above trick can be used. It is not applicable to other ref struct types
though and can result in low level code needing to resort to unsafe to work around the
inability to properly specify the lifetime.

One source of repeated friction in low level code is the default escape for parameters is
permissive. They are safe-to-escape to the calling method. This is a sensible default
because it lines up with the coding patterns of .NET as a whole. In low level code though
there is a larger use of ref struct and this default can cause friction with other parts of
the span safety rules.

scoped locals

// Old way
// Span<byte> span = stackalloc byte[0];
// New way
scoped Span<byte> span;
int len = ...;
if (len < MaxStackLen)
{
 span = stackalloc byte[len];
}
else
{
 span = new byte[len];
}

scoped parameter values

The main friction point occurs because of the method arguments must match rule.
This rule most commonly comes into play with instance methods on ref struct where
at least one parameter is also a ref struct . This is a common pattern in low level code
where ref struct types commonly leverage Span<T> parameters in their methods. For
example it will occur on any writer style ref struct that uses Span<T> to pass around
buffers.

This rule exists to prevent scenarios like the following:

c#

Essentially this rule exists because the language must assume that all inputs to a method
escape to their maximum allowed scope. When there are ref or out parameters,
including the receivers, it's possible for the inputs to escape as fields of those ref values
(as happens in RS.Set above).

In practice though there are many such methods which pass ref struct as parameters
that never intend to capture them in output. It is just a value that is used within the
current method. For example:

c#

ref struct RS
{
 Span<int> _field;
 void Set(Span<int> p)
 {
 _field = p;
 }

 static void DangerousCode(ref RS p)
 {
 Span<int> span = stackalloc int[] { 42 };

 // Error: if allowed this would let the method return a reference to
 // the stack
 p.Set(span);
 }
}

ref struct JsonReader
{
 Span<char> _buffer;
 int _position;

 internal bool TextEquals(ReadOnySpan<char> text)
 {
 var current = _buffer.Slice(_position, text.Length);

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-7.2/span-safety.md#method-arguments-must-match

In order to work around this low level code will resort to unsafe tricks to lie to the
compiler about the lifetime of their ref struct . This significantly reduces the value
proposition of ref struct as they are meant to be a means to avoid unsafe while
continuing to write high performance code.

This is where scoped is an effective tool on ref struct parameters because it removes
them from consideration as being returned from the method according to the updated
method arguments must match rule. A ref struct parameter which is consumed, but
never returned, can be labeled as scoped to make call sites more flexible.

c#

 return current == text;
 }
}

class C
{
 static void M(ref JsonReader reader)
 {
 Span<char> span = stackalloc char[4];
 span[0] = 'd';
 span[1] = 'o';
 span[2] = 'g';

 // Error: The safe-to-escape of `span` is the current method scope
 // while `reader` is outside the current method scope hence this
fails
 // by the above rule.
 if (reader.TextEquals(span))
 {
 ...
 }
 }
}

ref struct JsonReader
{
 Span<char> _buffer;
 int _position;

 internal bool TextEquals(scoped ReadOnySpan<char> text)
 {
 var current = _buffer.Slice(_position, text.Length);
 return current == text;
 }
}

class C
{

When a ref is taken to a readonly field in a constructor or init member the type is
ref not ref readonly . This is a long standing behavior that allows for code like the
following:

c#

That does pose a potential problem though if such a ref were able to be stored into a
ref field on the same type. It would allow for direct mutation of a readonly struct
from an instance member:

c#

 static void M(ref JsonReader reader)
 {
 Span<char> span = stackalloc char[4];
 span[0] = 'd';
 span[1] = 'o';
 span[2] = 'g';

 // Okay: the compiler never considers `span` as capturable here
hence it doesn't
 // contribute to the method arguments must match rule
 if (reader.TextEquals(span))
 {
 ...
 }
 }
}

Preventing tricky ref assignment from readonly mutation

struct S
{
 readonly int i;

 public S(string s)
 {
 M(ref i);
 }

 static void M(ref int i) { }
}

readonly ref struct S
{
 readonly int i;
 readonly ref int r;
 public S()
 {

The proposal prevents this though because it violates the span safety rules. Consider the
following:

The ref-safe-to-escape of this is current method and safe-to-escape is calling
method. These are both standard for this in a struct member.
The ref-safe-to-escape of i is current method. This falls out from the field lifetimes
rules. Specifically rule 4.

At that point the line r = ref i is illegal by ref reassignment rules.

These rules were not intended to prevent this behavior but do so as a side effect. It's
important to keep this in mind for any future rule update to evaluate the impact to
scenarios like this.

One aspect this design struggled with is how freely a ref can be returned from a
method. Allowing all ref to be returned as freely as normal values is likely what most
developers intuitively expect. However it allows for pathological scenarios that the
compiler must consider when calculating ref safety. Consider the following:

c#

This is not a code pattern that we expect any developers to use. Yet when a ref can be
returned with the same lifetime as a value it is legal under the rules. The compiler must

 i = 0;
 r = ref i;
 }

 public void Oops()
 {
 r++;
 }

Silly cyclic assignment

ref struct S
{
 int field;
 ref int refField;

 static void SelfAssign(ref S s)
 {
 s.refField = ref s.field;
 }
}

consider all legal cases when evaluating a method call and this leads to such APIs being
effectively unusable.

c#

To make these APIs usable the compiler ensures that the ref lifetime for a ref
parameter is smaller than lifetime of any references in the associated parameter value.
This is the rationale for having ref-safe-to-escape for ref to ref struct be return only
and out be containing method. That prevents cyclic assignment because of the
difference in lifetimes.

It is also why [UnscopedRef] only promotes the ref-safe-to-escape of any ref to ref
struct values to return only and not calling method. Consider that using calling method
allows for cyclic assignment and would force a viral use of [UnscopedRef] for a ref
struct :

c#

void M(ref S s)
{
 ...
}

S Usage()
{
 // safe-to-escape to calling method
 S local = default;

 // Error: compiler is forced to assume the worst and concludes a self
assignment
 // is possible here and must issue an error.
 M(ref local);
}

ref struct S
{
 byte Field;

 [UnscopedRef]
 public Span<byte> Data => new Span<byte>(ref Field, 1);
}

void M(ref S s)
{
 // Error: passing a scoped ref to [UnscopedRef] ref
 Span<byte> span = s.Data;
}

This is correctly illegal in that case because the compiler has to consider the
pathological case that S.Data could cyclic assign via this . That forces methods all
methods that call S.Data to further mark their ref parameters as [UnscopedRef] . This is
viral until the method which creates the value as a local. This is why return only exists as
an escape scope. It does complicate the spec / implementation but it serves to make the
feature significantly more usable.

Note: this cyclic assignment problem does continue to exist for [UnscopedRef] out to
ref struct because that causes the safe-to-escape and ref-safe-to-escape to be
equivalent.

c#

In terms of advanced annotations the [UnscopedRef] design creates the following:

ref struct RS
{
 int field;
 ref int refField;
}

void M1(out RS p)
{
 // Error: from method arguments must match:
 // Step 1 would calculate the narrowest escape as *containing method*
 // Step 2 would fail the assignment check because p safe-to-escape is
return only
 M2(out p);
}

void M2([UnscopedRef] out RS p)
{
 // The lifetimes of LHS and RHS are equivalent here and hence this is
legal
 p.refField = ref p.Field;
}

ref struct S { }

// C# code
S Create1(ref S p)
S Create2([UnscopedRef] ref S p)

// Annotation equivalent
scoped<'b> S Create1(scoped<'a> ref scoped<'b> S)
scoped<'a> S Create2(scoped<'a> ref scoped<'b> S)
 where 'b >= 'a

Consider the below code sample:

c#

When designing the rules for ref fields on readonly instances in a vacuum the rules can
be validly designed such that the above is legal or illegal. Essentially readonly can
validly be deep through a ref field or it can apply only to the ref . Applying only to the
ref prevents ref reassignment but allows normal assignment which changes the
referred to value.

This design does not exist in a vacuum though, it is designing rules for types that
already effectively have ref fields. The most prominent of which, Span<T> , already has a
strong dependency on readonly not being deep here. Its primary scenario is the ability
to assign to the ref field through a readonly instance.

c#

This means we must choose the shallow interpretation of readonly .

readonly cannot be deep through ref fields

ref struct S
{
 ref int Field;

 readonly void Method()
 {
 // Legal or illegal?
 Field = 42;
 }
}

readonly ref struct SpanOfOne
{
 readonly ref int Field;

 public ref int this[int index]
 {
 get
 {
 if (index != 1)
 throw new Exception();
 return ref Field;
 }
 }
}

One subtle design question is: How are constructors bodies modeled for ref safety?
Essentially how is the following constructor analyzed?

c#

There are roughly two approaches:

1. Model as a static method where this is a local where its safe-to-escape is calling
method

2. Model as a static method where this is an out parameter.

Further a constructor must meet the following invariants:

1. Ensure that ref parameters can be captured as ref fields.
2. Ensure that ref to fields of this cannot be escaped through ref parameters. That

would violate tricky ref assignment.

The intent is to pick the form that satisfies our invariants without introduction of any
special rules for constructors. Given that the best model for constructors is viewing this
as an out parameter. The return only nature of the out allows us to satisfy all the
invariants above without any special casing:

c#

Modeling constructors

ref struct S
{
 int field;

 public S(ref int f)
 {
 field = ref f;
 }
}

public static void ctor(out S @this, ref int f)
{
 // The ref-safe-to-escape of `ref f` is *return only* which is also the
 // safe-to-escape of `this.field` hence this assignment is allowed
 @this.field = ref f;
}

Method arguments must match

The method arguments must match rule is a common source of confusion for
developers. It's a rule which has a number of special cases that are hard to understand
unless you are familiar with the reasoning behind the rule. For the sake of better
understanding the reasons for the rule we will simplify ref-safe-to-escape* and safe-to-
escape to simply escape-scope.

Methods can pretty liberally return state passed to them as parameters. Essentially any
reachable state which is unscoped can be returned (including returning by ref). This
can be returned directly through a return statement or indirectly by assigning into a
ref value.

Direct returns don't pose much problems for ref safety. The compiler simply needs to
look at all the returnable inputs to a method and then it effectively restricts the return
value to be the minimum escape-scope of the input. That return value then goes through
normal processing.

Indirect returns pose a significant problem because all ref are both an input and output
to the method. These outputs already have a known escape-scope. The compiler can't
infer new ones, it has to consider them at their current level. That means the compiler
has to look at every single ref which is assignable in the called method, evaluate it's
escape-scope, and then verify no returnable input to the method has a smaller escape-
scope than that ref . If any such case exists then the method call must be illegal because
it could violate ref safety.

Method arguments must match is the process by which the compiler asserts this safety
check.

A different way to evaluate this which is often easier for developers to consider is to do
the following exercise:

1. Look at the method definition identify all places where state can be indirectly
returned: a. Mutable ref parameters pointing to ref struct b. Mutable ref
parameters with ref assignable ref fields c. Assignable ref params or ref fields
pointing to ref struct (consider recursively)

2. Look at the call site a. Identify the escape scopes that line up with the locations
identified above b. Identify the escape scopes of all inputs to the method that are
returnable (don't line up with scoped parameters)

If any value in 2.b is smaller than 2.a then the method call must be illegal. Let's look at a
few examples to illustrate the rules:

c#

Looking at the call to F0 lets go through (1) and (2). The parameters with potential for
indirect return are a and b as both can be directly assigned. The arguments which line
up to those parameters are:

a which maps to x that has escape-scope of calling method
b which maps to y that has with escape-scope of current method

The set of returnable input to the method are

x with escape-scope of calling method
ref x with escape-scope of calling method
y with escape-scope of current method

The value ref y is not returnable since it maps to a scoped ref hence it is not
considered an input. But given that there is at least one input with a smaller escape
scope (y argument) than one of the outputs (x argument) the method call is illegal.

A different variation is the following:

c#

ref struct R { }

class Program
{
 static void F0(ref R a, scoped ref R b) => throw null;

 static void F1(ref R x, scoped R y)
 {
 F0(ref x, ref y);
 }
}

ref struct R { }

class Program
{
 static void F0(ref R a, ref int b) => throw null;

 static void F1(ref R x)
 {
 int y = 42;
 F0(ref x, ref y);
 }
}

Again the parameters with potential for indirect return are a and b as both can be
directly assigned. But b can be excluded because it does not point to a ref struct
hence cannot be used to store ref state. Thus we have:

a which maps to x that has escape-scope of calling method

The set of returnable input to the method are:

x with escape-scope of calling method
ref x with escape-scope of calling method
ref y with escape-scope of current method

Given that there is at least one input with a smaller escape scope (ref y argument) than
one of the outputs (x argument) the method call is illegal.

This is the logic that the method arguments must match rule is trying to encompass. It
goes further as it considers both scoped as a way to remove inputs from consideration
and readonly as a way to remove ref as an output (can't assign into a readonly ref so
it can't be a source of output). These special cases do add complexity to the rules but it's
done so for the benefit of the developer. The compiler seeks to remove all inputs and
outputs it knows can't contribute to the result to give developers maximum flexibility
when calling a member. Much like overload resolution it's worth the effort to make our
rules more complex when it creates more flexibility for consumers.

Related to Infer safe-to-escape of declaration expressions.

C#

Examples of inferred safe-to-escape of declaration expressions

ref struct RS
{
 public RS(ref int x) { } // assumed to be able to capture 'x'

 static void M0(RS input, out RS output) => output = input;

 static void M1()
 {
 var i = 0;
 var rs1 = new RS(ref i); // safe-to-escape of 'rs1' is CurrentMethod
 M0(rs1, out var rs2); // safe-to-escape of 'rs2' is CurrentMethod
 }

 static void M2(RS rs1)
 {
 M0(rs1, out var rs2); // safe-to-escape of 'rs2' is CallingMethod

Note that the local scope which results from the scoped modifier is the narrowest which
could possibly be used for the variable--to be any narrower would mean the expression
refers to variables which are only declared in a narrower scope than the expression.

 }

 static void M3(RS rs1)
 {
 M0(rs1, out scoped var rs2); // 'scoped' modifier forces safe-to-
escape of 'rs2' to the current local scope (CurrentMethod or narrower).
 }
}

Extended nameof scope
Article • 2022-09-27 • 2 minutes to read

Allow nameof(parameter) inside an attribute on a method or parameter. For example:

[MyAttribute(nameof(parameter))] void M(int parameter) { }

[MyAttribute(nameof(TParameter))] void M<TParameter>() { }

void M(int parameter, [MyAttribute(nameof(parameter))] int other) { }

Attributes like NotNullWhen or CallerExpression need to refer to parameters, but those
parameters are currently not in scope.

Methods

The method's type_parameters are in scope throughout the method_declaration, and can
be used to form types throughout that scope in return_type, method_body, and
type_parameter_constraints_clauses but not in attributes, except within a nameof
expression in attributes.

Method parameters

A method declaration creates a separate declaration space for parameters, type
parameters and local variables. Names are introduced into this declaration space by the
type parameter list and the formal parameter list of the method and by local variable
declarations in the block of the method. Names are introduced into this declaration
space by the type parameter list and the formal parameter list of the method in
nameof expressions in attributes placed on the method or its parameters.

[...]
Within the block of a method, formal parameters can be referenced by their identifiers
in simple_name expressions (Simple names). Within a nameof expression in attributes
placed on the method or its parameters, formal parameters can be referenced by
their identifiers in simple_name expressions.

Summary

Motivation

Detailed design

https://github.com/dotnet/csharplang/blob/master/spec/classes.md#methods
https://github.com/dotnet/csharplang/blob/master/spec/classes.md#method-parameters

Anonymous function signatures

The scope of the parameters of the anonymous function is the
anonymous_function_body (§7.7) and nameof expressions in attributes placed on the
anonymous function or its parameters.

Delegate declarations

The scope of the parameters of the delegate is nameof expressions in attributes
placed on the declaration, its type parameters or its parameters.

Simple names

A simple_name is either of the form I or of the form I<A1,...,Ak> , where I is a single
identifier and <A1,...,Ak> is an optional type_argument_list. When no
type_argument_list is specified, consider K to be zero. The simple_name is evaluated and
classified as follows:

If K is zero and the simple_name appears within a block and if the block's (or an
enclosing block's) local variable declaration space (Declarations) contains a local
variable, parameter or constant with name I , then the simple_name refers to that
local variable, parameter or constant and is classified as a variable or value.
If K is zero and the simple_name appears within the body of a generic method
declaration and if that declaration includes a type parameter with name I , then
the simple_name refers to that type parameter.
If K is zero and the simple_name appears within a nameof expression in an
attribute on the method declaration or its parameters and if that declaration
includes a parameter or type parameter with name I , then the simple_name
refers to that parameter or type parameter.
Otherwise, for each instance type T (The instance type), starting with the instance
type of the immediately enclosing type declaration and continuing with the
instance type of each enclosing class or struct declaration (if any):
[...]
Otherwise, for each namespace N , starting with the namespace in which the
simple_name occurs, continuing with each enclosing namespace (if any), and
ending with the global namespace, the following steps are evaluated until an entity
is located:
[...]
Otherwise, the simple_name is undefined and a compile-time error occurs.

Scopes

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/expressions.md#11162-anonymous-function-signatures
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/delegates.md#192-delegate-declarations
https://github.com/dotnet/csharplang/blob/master/spec/expressions.md#simple-names
https://github.com/dotnet/csharplang/blob/master/spec/basic-concepts.md#scopes

The scope of a type parameter declared by a type_parameter_list on a
method_declaration is [...] and nameof expressions in an attribute on the method
declaration or its parameters.
The scope of a parameter declared in a method_declaration (Methods) is the
method_body of that method_declaration and nameof expressions in an attribute
on the method declaration or its parameters.

Declarations

Related spec sections

https://github.com/dotnet/csharplang/blob/master/spec/basic-concepts.md#declarations

File-local types
Article • 2022-10-08 • 5 minutes to read

Permit a file modifier on top-level type declarations. The type only exists in the file
where it is declared.

C#

Our primary motivation is from source generators. Source generators work by adding
files to the user's compilation.

1. Those files should be able to contain implementation details which are hidden
from the rest of the compilation, yet are usable throughout the file they are
declared in.

2. We want to reduce the need for generators to "search" for type names which won't
collide with declarations in user code or code from other generators.

Summary

// File1.cs
namespace NS;

file class Widget
{
}

// File2.cs
namespace NS;

file class Widget // different symbol than the Widget in File1
{
}

// File3.cs
using NS;

var widget = new Widget(); // error: The type or namespace name 'Widget'
could not be found.

Motivation

Detailed design

We add the file modifier to the following modifier sets:
class
struct
interface
enum
delegate
record
record struct.

The file modifier can only be used on a top-level type.

When a type has the file modifier, it is said to be a file-local type.

No accessibility modifiers can be used in combination with file on a type. file is
treated as an independent concept from accessibility. Since file-local types can't be
nested, only the default accessibility internal is usable with file types.

C#

The implementation guarantees that file-local types in different files with the same
name will be distinct to the runtime. The type's accessibility and name in metadata is
implementation-defined. The intention is to permit the compiler to adopt any future
access-limitation features in the runtime which are suited to the feature. It's expected
that in the initial implementation, an internal accessibility would be used and an
unspeakable generated name will be used which depends on the file the type is
declared in.

We amend the member lookup section as follows (new text in bold):

Next, if K is zero, all nested types whose declarations include type parameters
are removed. If K is not zero, all members with a different number of type
parameters are removed. When K is zero, methods having type parameters are

Accessibility

public file class C1 { } // error
internal file class C2 { } // error
file class C3 { } // ok

Naming

Lookup

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#1422-class-modifiers
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/structs.md#1522-struct-modifiers
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/interfaces.md#1722-interface-modifiers
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/enums.md#183-enum-modifiers
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/delegates.md#192-delegate-declarations
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md#115-member-lookup

not removed, since the type inference process (§11.6.3) might be able to
infer the type arguments.
Next, let F be the compilation unit which contains the expression where
member lookup is occurring. All members which are file-local types and are
not declared in F are removed from the set.
Next, if the set of accessible members contains file-local types, all non-file-
local types are removed from the set.

These rules disallow usage of file-local types outside the file in which they are declared.

These rules also permit shadowing of a non-file-local type by a file-local type:

C#

C#

Note that we don't update the scopes section of the spec. This is because, as the spec
states:

The scope of a name is the region of program text within which it is possible to refer
to the entity declared by the name without qualification of the name.

Remarks

// File1.cs
class C
{
 public static void M() { }
}

// File2.cs
file class C
{
 public static void M() { }
}

class Program
{
 static void Main()
 {
 C.M(); // refers to the 'C' in File2.cs
 }
}

https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/expressions.md#1163-type-inference
https://github.com/dotnet/csharpstandard/blob/draft-v7/standard/basic-concepts.md#77-scopes

In effect, scope only impacts the lookup of non-qualified names. This isn't quite the right
concept for us to leverage because we need to also impact the lookup of qualified
names:

C#

C#

Therefore, we don't specify the feature in terms of which scope the type is contained in,
but rather as additional "filtering rules" in member lookup.

File-local classes are permitted to be attribute types, and can be used as attributes
within both file-local types and non-file-local types, just as if the attribute type were a
non-file-local type. The metadata name of the file-local attribute type still goes through
the same name generation strategy as other file-local types. This means detecting the

// File1.cs
namespace NS1
{
 file class C
 {
 public static void M() { }
 }
}

namespace NS2
{
 class Program
 {
 public static void M()
 {
 C.M(); // error: C is not in scope
 NS1.C.M(); // ok: C can be accessed through NS1.
 }
 }
}

// File2.cs
namespace NS1
{
 class Program
 {
 C.M(); // error
 NS1.C.M(); // error
 }
}

Attributes

presence of a file-local type by a hard-coded string name is likely to be impractical,
because it requires depending on the internal name generation strategy of the compiler,
which may change over time. However, detecting via typeof(MyFileLocalAttribute)
works.

C#

There is a general need to prevent file-local types from appearing in member
parameters, returns, and type parameter constraints where the file-local type might not
be in scope at the point of usage of the member.

Note that non-file-local types are permitted to implement file-local interfaces, similar to
how types can implement less-accessible interfaces. Depending on the types present in
the interface members, it could result in a violation of the rules in the following section.

Perhaps the simplest way to ensure this is to enforce that file-local types can only
appear in signatures or as base types of other file-local types:

C#

using System;
using System.Linq;

file class MyFileLocalAttribute : Attribute { }

[MyFileLocalAttribute]
public class C
{
 public static void Main()
 {
 var attribute = typeof(C).CustomAttributes.Where(attr =>
attr.AttributeType == typeof(MyFileLocalAttribute)).First();
 Console.Write(attribute); // outputs the generated name of the file-
local attribute type
 }
}

Usage in signatures

Only allow signature usage in members of file-local types

file class FileBase
{
}

public class Derived : FileBase // error
{

Note that this does restrict usage in explicit implementations, even though such usages
are safe. We do this in order to simplify the rules for the initial iteration of the feature.

C#

It is a compile-time error to use a file-local type in a global using static directive, i.e.

C#

file-local type declarations can implement interfaces, override virtual methods, etc. just
like regular type declarations.

C#

 private FileBase M2() => new FileBase() // error
}

file class FileDerived : FileBase // ok
{
 private FileBase M2() => new FileBase() // ok
}

file interface I
{
 void M(I i);
}

class C : I
{
 void I.M(I i) { } // error
}

global using static

global using static C; // error

file class C
{
 public static void M() { }
}

Implementation/overrides

file struct Widget : IEquatable<Widget>
{
 public bool Equals(Widget other) => true;
}

Generic Attributes
Article • 2022-10-15 • 2 minutes to read

When generics were introduced in C# 2.0, attribute classes were not allowed to
participate. We can make the language more composable by removing (rather,
loosening) this restriction. The .NET Core runtime has added support for generic
attributes. Now, all that's missing is support for generic attributes in the compiler.

Currently attribute authors can take a System.Type as a parameter and have users pass a
typeof expression to provide the attribute with types that it needs. However, outside of
analyzers, there's no way for an attribute author to constrain what types are allowed to
be passed to an attribute via typeof . If attributes could be generic, then attribute
authors could use the existing system of type parameter constraints to express the
requirements for the types they take as input.

The following section is amended: §14.2.4.2

The direct base class of a class type must not be any of the following types:
System.Array, System.Delegate, System.MulticastDelegate, System.Enum, or
System.ValueType. Furthermore, a generic class declaration cannot use
System.Attribute as a direct or indirect base class.

One important note is that the following section of the spec is unaffected when
referencing the point of usage of an attribute, i.e. within an attribute list: Type
parameters - §8.5 .

A type parameter cannot be used anywhere within an attribute.

This means that when a generic attribute is used, its construction needs to be fully
"closed", i.e. not containing any type parameters, which means the following is still
disallowed:

Summary

Motivation

Detailed design

https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/classes.md#14242-base-classes
https://github.com/dotnet/csharpstandard/blob/draft-v6/standard/types.md#85-type-parameters

C#

When a generic attribute is used in an attribute list, its type arguments have the same
restrictions that typeof has on its argument. For example, [Attr<dynamic>] is an error.
This is because "attribute-dependent" types like dynamic , List<string?> , nint , and so
on can't be fully represented in the final IL for an attribute type argument, because there
isn't a symbol to "attach" the DynamicAttribute or other well-known attribute to.

Removing the restriction, reasoning out the implications, and adding the appropriate
tests is work.

Attribute authors who want users to be able to discover the requirements for the types
they provide to attributes need to write analyzers and guide their users to use those
analyzers in their builds.

[x] What does AllowMultiple = false mean on a generic attribute? If we have
[Attr<string>] and [Attr<object>] both used on a symbol, does that mean
"multiple" of the attribute are in use?

For now we are inclined to take the more restrictive route here and consider the
attribute class's original definition when deciding whether multiple of it have
been applied. In other words, [Attr<string>] and [Attr<object>] applied
together is incompatible with AllowMultiple = false .

using System;
using System.Collections.Generic;

public class Attr<T1> : Attribute { }

public class Program<T2>
{
 [Attr<T2>] // error
 [Attr<List<T2>>] // error
 void M() { }
}

Drawbacks

Alternatives

Unresolved questions

https://github.com/dotnet/csharplang/blob/main/meetings/2017/LDM-2017-02-
21.md#generic-attributes

At the time there was a concern that we would have to gate the feature on
whether the target runtime supports it. (However, we now only support C# 10
on .NET 6. It would be nice to for the implementation to be aware of what
minimum target framework supports the feature, but seems less essential
today.)

Design meetings

https://github.com/dotnet/csharplang/blob/main/meetings/2017/LDM-2017-02-21.md#generic-attributes

	C# documentation
	Get started
	Introduction
	Types
	Program building blocks
	Major language areas
	Tutorials
	Choose your first lesson
	Browser based tutorials
	Hello world
	Numbers in C#
	Branches and loops
	List collections

	Work in your local environment
	Set up your environment
	Numbers in C#
	Branches and loops
	List collections

	Fundamentals
	Program structure
	Overview
	Main method
	Top-level statements

	Type system
	Overview
	Namespaces
	Classes
	Records
	Interfaces
	Generics
	Anonymous Types

	Object-oriented programming
	Classes, structs, and records
	Objects
	Inheritance
	Polymorphism

	Functional techniques
	Pattern matching
	Discards
	Deconstructing tuples and other types

	Exceptions and errors
	Overview
	Using exceptions
	Exception handling
	Creating and throwing exceptions
	Compiler-generated exceptions

	Coding style
	C# identifier names
	C# coding conventions

	Tutorials
	How to display command-line arguments
	Introduction to classes
	Object-oriented C#
	Inheritance in C# and .NET
	Converting types
	Build data-driven algorithms with pattern matching
	How to handle an exception using try-catch
	How to execute cleanup code using finally

	What's new in C#
	C# 11
	New features
	Breaking changes

	C# 10
	C# 9.0
	Breaking changes in earlier versions
	C# Version History
	Relationships to .NET library
	Version compatibility
	Tutorials
	Explore static interface members
	Explore record types
	Explore top-level statements
	Explore patterns in objects
	Write a custom string interpolation handler

	Tutorials
	Safely update interfaces with default interface methods
	Create mixin functionality with default interface methods
	Explore indexes and ranges
	Work with nullable reference types
	Generate and consume asynchronous streams
	Explore string interpolation - interactive
	Explore string interpolation - in your environment
	Advanced scenarios for string Interpolation
	Console Application
	REST Client
	Work with LINQ
	Use Attributes

	C# concepts
	Nullable reference types
	Nullable reference migrations
	Methods
	Properties
	Indexers
	Iterators
	Delegates & events
	Introduction to Delegates
	System.Delegate and the delegate keyword
	Strongly Typed Delegates
	Common Patterns for Delegates
	Introduction to events
	Standard .NET event patterns
	The Updated .NET Event Pattern
	Distinguishing Delegates and Events

	Language-Integrated Query (LINQ)
	Overview of LINQ
	Query expression basics
	LINQ in C#
	Write LINQ queries in C#
	Query a collection of objects
	Return a query from a method
	Store the results of a query in memory
	Group query results
	Create a nested group
	Perform a subquery on a grouping operation
	Group results by contiguous keys
	Dynamically specify predicate filters at runtime
	Perform inner joins
	Perform grouped joins
	Perform left outer joins
	Order the results of a join clause
	Join by using composite keys
	Perform custom join operations
	Handle null values in query expressions
	Handle exceptions in query expressions

	Write safe, efficient code
	Expression trees
	Introduction to expression trees
	Expression Trees Explained
	Framework Types Supporting Expression Trees
	Executing Expressions
	Interpreting Expressions
	Building Expressions
	Translating Expressions
	Summary

	Native interoperability
	Versioning

	How-to C# articles
	Article index
	Split strings into substrings
	Concatenate strings
	Search strings
	Modify string contents
	Compare strings
	How to catch a non-CLS exception

	The .NET Compiler Platform SDK (Roslyn APIs)
	The .NET Compiler Platform SDK (Roslyn APIs) overview
	Understand the compiler API model
	Work with syntax
	Work with semantics
	Work with a workspace
	Explore code with the syntax visualizer
	Source Generators
	Quick starts
	Syntax analysis
	Semantic analysis
	Syntax Transformation

	Tutorials
	Build your first analyzer and code fix

	C# programming guide
	Overview
	Programming concepts
	Overview
	Asynchronous programming
	Overview
	Asynchronous programming scenarios
	Task asynchronous programming model
	Async return types
	Cancel tasks
	Cancel a list of tasks
	Cancel tasks after a period of time

	Process asynchronous tasks as they complete
	Asynchronous file access

	Attributes
	Overview
	Creating Custom Attributes
	Accessing Attributes by Using Reflection
	How to create a C/C++ union by using attributes

	Collections
	Covariance and contravariance
	Overview
	Variance in Generic Interfaces
	Create Variant Generic Interfaces
	Use Variance in Interfaces for Generic Collections

	Variance in Delegates
	Use Variance in Delegates
	Use Variance for Func and Action Generic Delegates

	Expression trees
	Overview
	How to execute expression trees
	How to modify expression trees
	How to use expression trees to build dynamic queries
	Debugging Expression Trees in Visual Studio
	DebugView Syntax

	Iterators
	Language-Integrated Query (LINQ)
	Overview
	Getting Started with LINQ in C#
	Introduction to LINQ Queries
	LINQ and Generic Types
	Basic LINQ Query Operations
	Data Transformations with LINQ
	Type Relationships in LINQ Query Operations
	Query Syntax and Method Syntax in LINQ
	C# Features That Support LINQ
	Walkthrough: Writing Queries in C# (LINQ)

	Standard Query Operators Overview
	Overview
	Query Expression Syntax for Standard Query Operators
	Classification of Standard Query Operators by Manner of Execution
	Sorting Data
	Set Operations
	Filtering Data
	Quantifier Operations
	Projection Operations
	Partitioning Data
	Join Operations
	Grouping Data
	Generation Operations
	Equality Operations
	Element Operations
	Converting Data Types
	Concatenation Operations
	Aggregation Operations

	LINQ to Objects
	Overview
	LINQ and Strings
	How to articles
	How to count occurrences of a word in a string (LINQ)
	How to query for sentences that contain a specified set of words (LINQ)
	How to query for characters in a string (LINQ)
	How to combine LINQ queries with regular expressions
	How to find the set difference between two lists (LINQ)
	How to sort or filter text data by any word or field (LINQ)
	How to reorder the fields of a delimited file (LINQ)
	How to combine and compare string collections (LINQ)
	How to populate object collections from multiple sources (LINQ)
	How to split a file into many files by using groups (LINQ)
	How to join content from dissimilar files (LINQ)
	How to compute column values in a CSV text file (LINQ)

	LINQ and Reflection
	How to query an assembly's metadata with Reflection (LINQ)
	LINQ and File Directories
	Overview
	How to query for files with a specified attribute or name
	How to group files by extension (LINQ)
	How to query for the total number of bytes in a set of folders (LINQ)
	How to compare the contents of two folders (LINQ)
	How to query for the largest file or files in a directory tree (LINQ)
	How to query for duplicate files in a directory tree (LINQ)
	How to query the contents of files in a folder (LINQ)

	How to query an ArrayList with LINQ
	How to add custom methods for LINQ queries

	LINQ to ADO.NET (Portal Page)
	Enabling a Data Source for LINQ Querying
	Visual Studio IDE and Tools Support for LINQ

	Reflection
	Serialization (C#)
	Overview
	How to write object data to an XML file
	How to read object data from an XML file
	Walkthrough: Persisting an Object in Visual Studio

	Statements, expressions, and equality
	Statements
	Expression-bodied members
	Equality and equality comparisons
	Equality comparisons
	How to define value equality for a type
	How to test for reference equality (identity)

	Types
	Casting and Type Conversions
	Boxing and Unboxing
	How to convert a byte array to an int
	How to convert a string to a number
	How to convert between hexadecimal strings and numeric types
	Using Type dynamic
	Walkthrough: Creating and Using Dynamic Objects (C# and Visual Basic)

	Classes, Structs, and Records
	Polymorphism
	Versioning with the Override and New Keywords
	Knowing When to Use Override and New Keywords
	How to override the ToString method

	Members
	Members overview
	Abstract and Sealed Classes and Class Members
	Static Classes and Static Class Members
	Access Modifiers
	Fields
	Constants
	How to define abstract properties
	How to define constants in C#

	Properties
	Properties overview
	Using Properties
	Interface Properties
	Restricting Accessor Accessibility
	How to declare and use read write properties
	Auto-Implemented Properties
	How to implement a lightweight class with auto-implemented properties

	Methods
	Methods overview
	Local functions
	Implicitly Typed Local Variables
	How to use implicitly typed local variables and arrays in a query expression
	Extension Methods
	How to implement and call a custom extension method
	How to create a new method for an enumeration
	Named and Optional Arguments
	How to use named and optional arguments in Office programming

	Constructors
	Constructors overview
	Using Constructors
	Instance Constructors
	Private Constructors
	Static Constructors
	How to write a copy constructor

	Finalizers
	Object and Collection Initializers
	How to initialize objects by using an object initializer
	How to initialize a dictionary with a collection initializer
	Nested Types
	Partial Classes and Methods
	How to return subsets of element properties in a query

	Interfaces
	Explicit Interface Implementation
	How to explicitly implement interface members
	How to explicitly implement members of two interfaces

	Delegates
	Overview
	Using Delegates
	Delegates with Named vs. Anonymous Methods
	How to combine delegates (Multicast Delegates) (C# Programming Guide)
	How to declare, instantiate, and use a delegate

	Arrays
	Overview
	Single-Dimensional Arrays
	Multidimensional Arrays
	Jagged Arrays
	Using foreach with Arrays
	Passing Arrays as Arguments
	Implicitly Typed Arrays

	Strings
	Programming with strings
	How to determine whether a string represents a numeric value

	Indexers
	Overview
	Using Indexers
	Indexers in Interfaces
	Comparison Between Properties and Indexers

	Events
	Overview
	How to subscribe to and unsubscribe from events
	How to publish events that conform to .NET Guidelines
	How to raise base class events in derived classes
	How to implement interface events
	How to implement custom event accessors

	Generics
	Generic Type Parameters
	Constraints on Type Parameters
	Generic Classes
	Generic Interfaces
	Generic Methods
	Generics and Arrays
	Generic Delegates
	Differences Between C++ Templates and C# Generics
	Generics in the Run Time
	Generics and Reflection
	Generics and Attributes

	File System and the Registry
	Overview
	How to iterate through a directory tree
	How to get information about files, folders, and drives
	How to create a file or folder
	How to copy, delete, and move files and folders
	How to provide a progress dialog box for file operations
	How to write to a text file
	How to read From a text file
	How to read a text file one line at a time
	How to create a key in the registry

	Interoperability
	.NET Interoperability
	Interoperability Overview
	How to access Office interop objects by using C# features
	How to use indexed properties in COM interop programming
	How to use platform invoke to play a WAV file
	Walkthrough: Office Programming (C# and Visual Basic)
	Example COM Class

	Language reference
	Overview
	Configure language version
	Types
	Value types
	Overview
	Integral numeric types
	Floating-point numeric types
	Built-in numeric conversions
	bool
	char
	Enumeration types
	Struct types
	Ref struct types
	Tuple types
	Nullable value types

	Reference types
	Features of reference types
	Built-in reference types
	record
	class
	interface
	Nullable reference types

	void
	Built-in types
	Unmanaged types
	Default values

	Keywords
	Overview
	Modifiers
	Access Modifiers
	Quick reference
	Accessibility Levels
	Accessibility Domain
	Restrictions on Using Accessibility Levels
	internal
	private
	protected
	public
	protected internal
	private protected
	file

	abstract
	async
	const
	event
	extern
	in (generic modifier)
	new (member modifier)
	out (generic modifier)
	override
	readonly
	sealed
	static
	unsafe
	virtual
	volatile

	Statement Keywords
	Statement categories
	Exception Handling Statements
	throw
	try-catch
	try-finally
	try-catch-finally

	Method Parameters
	Passing parameters
	params
	in (Parameter Modifier)
	ref
	out (Parameter Modifier)

	Namespace Keywords
	namespace
	using
	Contexts for using
	using Directive
	using Statement

	extern alias

	Generic Type Constraint Keywords
	new constraint
	where

	Access Keywords
	base
	this

	Literal Keywords
	null
	true and false
	default

	Contextual Keywords
	add
	get
	init
	partial (Type)
	partial (Method)
	remove
	required
	set
	when (filter condition)
	value

	Query Keywords
	Quick reference
	from clause
	where clause
	select clause
	group clause
	into
	orderby clause
	join clause
	let clause
	ascending
	descending
	on
	equals
	by
	in

	Operators and expressions
	Overview
	Arithmetic operators
	Boolean logical operators
	Bitwise and shift operators
	Equality operators
	Comparison operators
	Member access operators and expressions
	Type-testing operators and cast expression
	User-defined conversion operators
	Pointer-related operators
	Assignment operators
	Lambda expressions
	Patterns
	+ and += operators
	- and -= operators
	?: operator
	! (null-forgiving) operator
	?? and ??= operators
	=> operator
	:: operator
	await operator
	default value expressions
	delegate operator
	is operator
	nameof expression
	new operator
	sizeof operator
	stackalloc expression
	switch expression
	true and false operators
	with expression
	Operator overloading

	Statements
	Declaration statements
	Iteration statements
	Selection statements
	Jump statements
	checked and unchecked statements
	fixed statement
	lock statement
	yield statement

	Special characters
	Overview
	Comments
	$ -- string interpolation
	@ -- verbatim identifier
	""" -- raw string literal

	Attributes read by the compiler
	Global attributes
	Caller information
	Nullable static analysis
	Miscellaneous

	Unsafe code and pointers
	Preprocessor directives
	Compiler options
	Overview
	Language options
	Output options
	Input options
	Error and warning options
	Code generation options
	Security options
	Resources options
	Miscellaneous options
	Advanced options

	XML documentation comments
	Generate API documentation
	Recommended tags
	Examples

	Compiler messages

	Specifications
	C# 7 draft specification
	Detailed table of contents
	Foreword
	Introduction
	Scope
	Normative references
	Terms and definitions
	General description
	Conformance
	Lexical structure
	Basic concepts
	Types
	Variables
	Conversions
	Expressions
	Statements
	Namespaces
	Classes
	Structs
	Arrays
	Interfaces
	Enums
	Delegates
	Exceptions
	Attributes
	Unsafe code
	Grammar
	Portability issues
	Standard library
	Documentation comments
	Bibliography

	C# 7.0 - 11.0 features
	C# 7.0 features
	Pattern matching
	Out variable declarations
	Async task types

	C# 7.1 features
	Infer tuple names
	Pattern matching with generics

	C# 7.2 features
	Readonly references
	Compile-time safety for ref-like types
	Conditional ref

	C# 7.3 features
	Unmanaged generic type constraints
	Indexing `fixed` fields should not require pinning regardless of the movable/unmovable context
	Pattern-based `fixed` statement
	Ref local reassignment
	Stackalloc array initializers
	Expression variables in initializers
	Tuple equality (==) and inequality (!=)

	C# 8.0 features
	Nullable reference types - proposal
	Recursive pattern matching
	Default interface methods
	Async streams
	Ranges
	Pattern based using and using declarations
	Static local functions
	Null coalescing assignment
	Readonly instance members
	Nested stackalloc

	C# 9.0 features
	Records
	Top-level statements
	Nullable reference types - specification
	Pattern matching enhancements
	Init only setters
	Target-typed new expressions
	Module initializers
	Extending partial methods
	Static anonymous functions
	Target-typed conditional expression
	Covariant return types
	Extension GetEnumerator in foreach loops
	Lambda discard parameters
	Attributes on local functions
	Native sized integers
	Function pointers
	Suppress emitting localsinit flag
	Unconstrained type parameter annotations

	C# 10 features
	Record structs
	Parameterless struct constructors
	Global using directive
	File scoped namespaces
	Extended property patterns
	Improved interpolated strings
	Constant interpolated strings
	Lambda improvements
	Caller argument expression
	Enhanced #line directives
	Improved definite assignment analysis
	AsyncMethodBuilder override

	C# 11 features
	Static abstracts in interfaces
	Checked user-defined operators
	Unsigned right-shift operator
	Relaxing shift operator
	Numeric IntPtr
	Raw string literals
	Interpolated string newline
	UTF-8 string literals
	Pattern match span
	List patterns
	Required members
	Auto-default struct
	Low-level struct improvements
	Extended nameof scope
	File local types
	Generic attributes

