std::partition

From cppreference.com
< cpp‎ | algorithm
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Concepts and utilities: std::Sortable, std::projected, ...
Constrained algorithms: std::ranges::copy, std::ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
(C++17)
Modifying sequence operations
Operations on uninitialized storage
Partitioning operations
partition
Sorting operations
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
Minimum/maximum operations
(C++11)
(C++17)
Permutations
Numeric operations
C library
 
Defined in header <algorithm>
(1)
template< class BidirIt, class UnaryPredicate >
BidirIt partition( BidirIt first, BidirIt last, UnaryPredicate p );
(until C++11)
template< class ForwardIt, class UnaryPredicate >
ForwardIt partition( ForwardIt first, ForwardIt last, UnaryPredicate p );
(since C++11)
(until C++20)
template< class ForwardIt, class UnaryPredicate >
constexpr ForwardIt partition( ForwardIt first, ForwardIt last, UnaryPredicate p );
(since C++20)
template< class ExecutionPolicy, class ForwardIt, class UnaryPredicate >

ForwardIt partition( ExecutionPolicy&& policy,

                     ForwardIt first, ForwardIt last, UnaryPredicate p );
(2) (since C++17)
1) Reorders the elements in the range [first, last) in such a way that all elements for which the predicate p returns true precede the elements for which predicate p returns false. Relative order of the elements is not preserved.
2) Same as (1), but executed according to policy. This overload does not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true

Parameters

first, last - the range of elements to reorder
policy - the execution policy to use. See execution policy for details.
p - unary predicate which returns ​true if the element should be ordered before other elements.

The expression p(v) must be convertible to bool for every argument v of type (possibly const) VT, where VT is the value type of ForwardIt, regardless of value category, and must not modify v. Thus, a parameter type of VT&is not allowed, nor is VT unless for VT a move is equivalent to a copy (since C++11). ​

Type requirements
-
BidirIt must meet the requirements of LegacyBidirectionalIterator.
-
ForwardIt must meet the requirements of ValueSwappable and LegacyForwardIterator. However, the operation is more efficient if ForwardIt also satisfies the requirements of LegacyBidirectionalIterator
-
UnaryPredicate must meet the requirements of Predicate.

Return value

Iterator to the first element of the second group.

Complexity

Given N = std::distance(first,last),

1) Exactly N applications of the predicate. At most N/2 swaps if ForwardIt meets the requirements of LegacyBidirectionalIterator, and at most N swaps otherwise.
2) O(N log N) swaps and O(N) applications of the predicate.

Exceptions

The overload with a template parameter named ExecutionPolicy reports errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the standard policies, std::terminate is called. For any other ExecutionPolicy, the behavior is implementation-defined.
  • If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

template<class ForwardIt, class UnaryPredicate>
ForwardIt partition(ForwardIt first, ForwardIt last, UnaryPredicate p)
{
    first = std::find_if_not(first, last, p);
    if (first == last) return first;
 
    for (ForwardIt i = std::next(first); i != last; ++i) {
        if (p(*i)) {
            std::iter_swap(i, first);
            ++first;
        }
    }
    return first;
}

Example

#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
#include <forward_list>
 
template <class ForwardIt>
 void quicksort(ForwardIt first, ForwardIt last)
 {
    if(first == last) return;
    auto pivot = *std::next(first, std::distance(first,last)/2);
    ForwardIt middle1 = std::partition(first, last, 
                         [pivot](const auto& em){ return em < pivot; });
    ForwardIt middle2 = std::partition(middle1, last, 
                         [pivot](const auto& em){ return !(pivot < em); });
    quicksort(first, middle1);
    quicksort(middle2, last);
 }
 
int main()
{
    std::vector<int> v = {0,1,2,3,4,5,6,7,8,9};
    std::cout << "Original vector:\n    ";
    for(int elem : v) std::cout << elem << ' ';
 
    auto it = std::partition(v.begin(), v.end(), [](int i){return i % 2 == 0;});
 
    std::cout << "\nPartitioned vector:\n    ";
    std::copy(std::begin(v), it, std::ostream_iterator<int>(std::cout, " "));
    std::cout << " * ";
    std::copy(it, std::end(v), std::ostream_iterator<int>(std::cout, " "));
 
    std::forward_list<int> fl = {1, 30, -4, 3, 5, -4, 1, 6, -8, 2, -5, 64, 1, 92};
    std::cout << "\nUnsorted list:\n    ";
    for(int n : fl) std::cout << n << ' ';
    std::cout << '\n';  
 
    quicksort(std::begin(fl), std::end(fl));
    std::cout << "Sorted using quicksort:\n    ";
    for(int fi : fl) std::cout << fi << ' ';
    std::cout << '\n';
}

Output:

Original vector:
    0 1 2 3 4 5 6 7 8 9 
Partitioned vector:
    0 8 2 6 4  *  5 3 7 1 9 
Unsorted list:
    1 30 -4 3 5 -4 1 6 -8 2 -5 64 1 92 
Sorted using quicksort:
    -8 -5 -4 -4 1 1 1 2 3 5 6 30 64 92

See also

determines if the range is partitioned by the given predicate
(function template)
divides elements into two groups while preserving their relative order
(function template)